
Explicit Substitutions Calculi with Explicit Eta rules which
Preserve Subject Reduction∗

Daniel Lima Ventura1†, Mauricio Ayala-Rincón1‡ and Fairouz Kamareddine2

1Grupo de Teoria da Computação, Departamento de Matemática,
Universidade de Brası́lia, Brası́lia D.F., Brasil

2School of Mathematical and Computer Sciences,
Heriot-Watt University, Edinburgh, Scotland

{ventura,ayala }@mat.unb.br fairouz@macs.hw.ac.uk

Abstract. Subject reduction (for short SR) is an essential property of any type system.
This property guarantees that all terms of the system preserve their types during any
possible computation. It is well-known that the classic simply typed λ-calculus has
this property, which means that any well-typed λ-term preserves its type under β- and
η-contractions. It has been argued in the past decade that the notion of substitution
in the λ-calculus needs to be made explicit. In this paper, we show that SR poses
computational difficulties when the λ-calculus is extended with explicit substitutions.
In particular, we show that two important calculi of explicit substitutions enlarged
with Eta rules, when no explicit type and normalisation considerations are given, do
not preserve subject reduction. However, we show also that if Eta reduction was made
“explicit” then SR will hold for these calculi. More specifically, our results can be
summarized as follows:
• We show that one needs to define constructively the Eta rule in both the λσ-calculus
and the λse-calculus in order to guarantee SR when Eta is applied to well-typed
unrestricted terms (note that these calculi without Eta already preserve SR).
• We introduce constructive and explicit Eta rules for λσ and λse and prove that the
enlarged calculi satisfy SR. The formalization of these rules involves the development
of specific calculi for explicitly checking the condition of the proposed Eta rules while
constructing the Eta contractum.

1. Introduction

The development of well-behaved calculi of explicit substitutions is of great interest in order to
bridge the formal study of the λ-calculus and its real implementations. Since β and η contrac-
tions depend on the definition of the operation of substitution, which is informally given in the
theory of λ-calculus, most computational environments develop in an ad-hoc way an explicit
notion of substitutions.

In the formal study of making substitutions explicit, several alternatives have been pro-
posed, most of which were concerned with essential properties such as the simulation of beta-
reduction, confluence, noetherianity (of the associated substitution calculus), subject reduction,
principal typing, preservation of strong normalization etc. This is a non trivial task; for instance,

∗Research supported by the CNPq Brazilian Research Council grants CT-INFO and Universal.
†Author supported by the Brazilian CNPq Research Council.
‡Author partially supported by the Brazilian CNPq Research Council.

the λσ-calculus [1], the first proposed calculus of explicit substitutions, was reported to break
the last property after some years of its introduction [11]: this implies that infinite derivations
starting from well-typed λ-terms are possible in this calculus. Here, our focus is on the property
of subject reduction (for short SR), which guarantees that after any contraction, all well-typed
terms preserve their types.

Originally, the simply typed version of λσ was introduced (without an Eta rule) and
was proved to preserve SR [1]. This calculus was enlarged with an Eta rule in [7] which
was restricted to terms normalised according to the associated substitution calculus; that is to
σ-normal forms. This enlarged calculus was used in [6] for treating higher-order unification
(HOU) problems. In this paper, we show how to constructively define an adequate Eta rule
which preserves SR for unrestricted terms. We also show how to do it for the implicit Eta rule
defined in [3] for the λse-calculus. The proposed implementations of these Eta rules, presented
respectively in [4] and [2], can be considered as informal formulations of constructive Eta
rules. Of course, when restricted to well-typed normalised terms the presentations of these
rules have no problem, but in [6] and [3] this was given marginally and not as an explicit part
of the definitions. Here we present new constructive formalizations of explicit Eta rules for
λσ and λse and prove that they preserve SR for unrestricted terms. These definitions involve a
constructive treatment of the generation of the Eta-contractums while deciding simultaneously
whether the rule applies or not.

Related works include [5], where the λυ-calculus was enlarged with an explicit noncon-
dinional Eta rule extending directly the associated substitution calculus υ instead of extending
the η-contraction, and [9], were η-expansion (extensionality) instead contraction of general ex-
plicit substitution calculi was formulated. Although η-expansion is relevant in HOU (in fact, in
Huet’s HOU method the η-rule is defined as the Eta expansion which makes the method more
efficient), it is guided by the types of the terms which makes it possible to apply in a unique
step, many rewriting steps of Huet’s η-rule. Our motivation is on HOU via explicit substitutions
and for this, it is necessary to use η-contractions separately.1

In Section 2, we enlarge λσ with a constructive and explicit Eta rule which preserves
SR. In Section 3, the same is done for λse. Then we conclude and present future work. Omitted
proofs can be found in the appendix.

2. The λσ-Calculus with an explicit Eta rule which preserves SR

We assume familiarity with the simply typed λ-calculus, TAλ (cf [8]) and de Bruijn notation.
We recall the simply typed λσ-calculus and show that for this calculus as enlarged with the
Eta rule defined in [7, 6] when no restriction are given on terms may not satisfy SR. Then, we
define an explicit Eta rule.

1The normalization rule for unification in λσ, for instance, converts problems of the form a =?

λσ b into
a′ =?

λσ b′, where a′ and b′ are the long normal form of a and b respectively. For obtaining this kind of normal
forms, firstly, terms are βη-normalized (we use η-contraction!); secondly, these normal forms are converted to
η-long normal forms. This corresponds to η-expansions which are normally done in a unique step according to
the type of the term. An analogous situation occurs in λse. The practical evidence can be found in [4] where weak
η-normal forms are defined which avoids the complete construction of η-long normal forms. In this way the set
of inference rules of the HOU algorithm is modified as follows: the rule of the decomposition of applications is
split in two specialized dec-application rules based on adequate application of weak long/head normal forms; the
rule of normalisation is dropped but the (ηβ) normalization is used as part of the rule of expansion of applications
exp-app.

2

2.1. The λσ-Calculus

The λσ-calculus is a first-order rewriting system which explicits substitutions by extending the
language with two sorts of objects: terms and substitutions.

Definition 1 The syntax of the simply typed λσ-calculus is given by

Types A ::= K |A → A Terms a ::= 1 | (a a) |λA.a | a[s]
Contexts Γ ::= nil |A.Γ Substitutions s ::= id | ↑ | a.s | s ◦ s

Substitutions are lists of the form b/i indicating that the index i should be changed to
the term b. The identity substitution id is of the form {1 /1 , 2 /2 , . . . } while the lift substitu-
tion ↑ is {i + 1 /i }. The composition of substitutions is given by ◦. When n ∈ N

∗ = N \ {0},
1 [↑n], codifies the de Bruijn index n + 1 and ↑0 represents id. The value of i by the substi-
tution s is written i [s] and can be seen as a function s(i). The substitution a.s has the form
{a/1 , s(i)/i + 1 }, and is called the cons of a in s. The β-reduction of (λA.a b) in λσ leads
to a[b.id]. Thus, in addition to the substitution of the free occurrences of the index 1 by the
corresponding term, free occurrences of indices should be actualized (decreased) because of
the elimination of the abstractor. Table 1 includes the rewriting system of the λσ-calculus
augmented with an Eta rule for the η-reduction, as presented in [6].

(λA.a b) −→ a[b.id] (Beta)
(a b)[s] −→ (a[s] b[s]) (App)
1 [a.s] −→ a (V arCons)
a[id] −→ a (Id)
(λA.a)[s] −→ λA.(a[1 .(s ◦↑)]) (Abs)
(a[s])[t] −→ a[s ◦ t] (Clos)
id ◦ s −→ s (IdL)
↑◦ (a.s) −→ s (ShiftCons)
(s1 ◦ s2) ◦ s3 −→ s1 ◦ (s2 ◦ s3) (AssEnv)
(a.s) ◦ t −→ a[t].(s ◦ t) (MapEnv)
s ◦ id −→ s (IdR)
1 .↑ −→ id (V arShift)
1 [s].(↑◦ s) −→ s (Scons)
λA.(a 1) −→ b if a =σ b[↑] (Eta)

Table 1. The rewriting system for the λσ-calculus

The rules (Beta), (Abs) and (Eta) include the relevant information about types. Without
(Eta), this system is equivalent to the one presented in [1] originally. The associated substitution
calculus, denoted as σ, is the one induced by all the rules except (Beta) and (Eta), and its
equality is denoted as =σ.

The typing rules of the λσ-calculus provide types for objects of sort term as well as
for objects of sort substitution. An object of sort substitution is a list of terms, consequently
its type corresponds to a list of types or context. Finally, s B Γ denotes that the object of sort
substitution s has type Γ.

Definition 2 TAλσ, the Simple Type system for λσ is given by the following typing rules:

3

(var) A.Γ ` 1 : A (lambda)
A.Γ ` b : B

Γ ` λA.b : A → B

(app)
Γ ` a : A → B Γ ` b : A

Γ ` (a b) : B
(clos)

Γ ` s B Γ′ Γ′ ` a : A

Γ ` a[s] : A
(id) Γ ` id B Γ (shift) A.Γ `↑ BΓ

(cons)
Γ ` a : A Γ ` s B Γ′

Γ ` a.s B A.Γ′
(comp)

Γ ` s′′ B Γ′′ Γ′′ ` s′ B Γ′

Γ ` s′ ◦ s′′ B Γ′

Example 1 In TAλ (and TAλσ), a = (λC .(λC→A.(1 2)) 2) has type (C → A) → A in
context B.C. By (Beta) and (Abs), a reduces to b = λC→A.((1 2)[1 .(2 .id) ◦ ↑]). Note that 2
abbreviates 1 [↑]. We show that B.C ` b : (C → A) → A.

First, we have
B.C `↑ BC (shift) C ` 1 : C (var)

B.C ` 1 [↑] : C
(clos). Analo-

gously we have C → A.C.B.C ` 1 [↑] : C. Furthermore,

C → A.B.C `↑ BB.C (shift)
B.C ` 2 : C B.C ` id B B.C (id)

B.C ` 2 .id B C.B.C
(cons)

C → A.B.C ` (2 .id) ◦↑ BC.B.C
(comp)

Hence
C → A.B.C ` 1 : C → A (var) C → A.B.C ` (2 .id) ◦↑ BC.B.C

C → A.B.C ` 1 .(2 .id) ◦↑ BC → A.C.B.C
(cons)

Also,
C → A.C.B.C ` 1 : C → A (var) C → A.C.B.C ` 2 : C

C → A.C.B.C ` (1 2) : A
(app)

Consequently
C → A.B.C ` 1 .(2 .id) ◦↑ BC → A.C.B.C C → A.C.B.C ` (1 2) : A

C → A.B.C ` (1 2)[1 .(2 .id) ◦↑] : A

B.C ` λC→A.((1 2)[1 .(2 .id) ◦↑]) : (C → A) → A
(lambda)

(clos)

It is known that SR holds for the simply typed λσ without the rule (Eta).

Theorem 1 (SR for λσ without the Eta rule [1]) Let a be a If Γ `TAλσ
a : A and a →λσ a′,

then Γ `TAλσ
a′ : A. Analogously, if Γ `TAλσ

s B Γ′ and s →λσ s′, then Γ `TAλσ
s′ B Γ′.

2.2. An explicit Eta rule for λσ which preserves SR

The rule Eta introduced in [7] explicitly states that both a and b must be σ-normal forms: “The
ground λσ-terms in σ-normal form are exactly the λ-terms so we may apply the η-reduction
of λ-calculus to those terms”. And when b is restricted as well to be in σ-normal form in
principle no problem appears, but without these restrictions subject reduction may be violated.
In fact, assuming the definition of Eta in Table 1 and without any restriction on terms, observe
that λ(2 1) −→η 2 [λ(1 1).1 . ↑], since 2 =σ

(

2 [λ(1 1).1 . ↑]
)

[↑], where 2 abbreviates 1 [↑],
because (1 [↑])[λ(1 1).1 . ↑] −→Clos 1 [↑ ◦(λ(1 1).1 . ↑)] −→ShiftCons 1 [1 . ↑] −→V arCons 1.
But the term λ(1 1) is not typable in the simply typed λ-calculus. Thus, without restrictions
on terms this rule violates the SR property. Also, notice that this rule gives non terminality
directly. In addition, notice that adding conditions to Eta such as b is well-typed is not enough
for guaranteeing that computations preserve SR. In fact, the reduction λ(2 1) −→η 1 can
be decided by infering that 1[↑] =σ 2 by a σ-expansion that goes through ill-typed terms:
1[↑] =σ 2[λ(1 1). ↑] =σ 2. Consequently, in order to have a constructive and implementable
definition of Eta one needs to explicitly define how the condition of the rule should be decided.
The definition of Eta for the λσ-calculus in Table 1 is inherited from the usual (non constructive)
definition of η-reduction given in the literature for the λ-calculus à la de Bruijn: λ(a 1) →η

b if b+ = a, where b+ denotes the lifting of b, operator which increases by one the free indices

4

in b. By the given definition, using the σ-equality in the condition, one has infinite possibilities
of reduction, since 1 [b.s][↑] =σ a, where b[↑] =σ a and s is any λσ-substitution.

A constructive definition of the rule Eta should depend on the original term a where in
the equality a =σ b[↑], b should be obtained from a. The implementation of the rule Eta for the
λσ-calculus given in [4] may be considered as an informal effort in this direction. Similarly,
this happens for the definition and implementation of the Eta rule for the λse given in [3] and
[2], respectively.

In order to give a constructive Eta rule, we use a counterpart of ↑ (see [12]).

Definition 3 Let a be a λ-term. The i-dash of a, denoted as a−i, is given by

1. (a1 a2)
−i = (a−i

1 a−i
2)

2. (λa1)
−i = λa

−(i+1)
1

3. n−i =

n − 1 , if n > i
undefined, if n = i
n , if n < i.

The dash of a term a is its 1-dash, denoted as a−. If a− is well-defined, then there is a b such
that b+ = a. This happens when a has no free occurrences of 1 . This gives rise to an adequate
definition of η-reduction:

Definition 4 The Eta rule for λ-terms à la de Bruijn is given by

λ(a 1) →η a−, whenever a− is well defined (Eta)

For a constructive definition of η-reduction in λσ some relevant aspects have to be
considered. Given a potential η-redex λ(a 1), the central point is how to provide a definition
of free occurrences of the index 1 in a. If (Eta) is restricted to σ-normalized terms (i.e., free of
substitutions), then one can use a notion like “i occurs free in a, if a has occurrences of i + n
in the depth n of a, where a subterm a1 of a is said to be in the depth r of a if the smaller free
index in a1 is greater than r; i.e., if a1 is between the scope of r abstractors”.

(a b)[s] −→ (a[s] b[s]) if � occurs in s (η-App)
1 [a.s] −→ a if � occurs in s (η-VarCons)
(λA.a)[s] −→ λA.(a[1 .(s◦↑)]) if � occurs in s (η-Abs)
(a[s])[t] −→ a[s ◦ t] if � occurs in t (η-Clos)
(s1 ◦ s2) ◦ t −→ s1 ◦ (s2 ◦ t) if � occurs in t (η-AssEnv)
(a.s) ◦ t −→ a[t].(s ◦ t) if � occurs in (a.s) ◦ t (η-MapEnv)
↑◦ (a.s) −→ s if � occurs in a.s (η-ShiftCons)
�[↑] −→ � (η-Cons)
id ◦ s −→ s if � occurs in s (η-IdL)
1 [�.s] −→ � (Error)

Table 2. Rηλσ
: the rewriting system for η-reduction in λσ

Here, the syntax of the λσ-calculus is enlarged with a dummy symbol �. � occurs in a
substitution s if s = �.t or s = a.t and � occurs in t. Although � belongs to the sort of terms, it
will always occur between a substitution, according to the definition of (Eta) (to be given) and

5

any possible application of the rules above. NRηλσ
(a) denotes the normal form of a in relation to

Rηλσ
, whose termination and confluence are easy to check, because respectively normalisation

with Rηλσ
simply propagates the symbol � between the finite structure of the terms and because

joinability of all its critical pairs. The rule (Error) points out free occurrences of the index
1 . Conditions of the rules (η-IdL) and (η-Clos) are for avoiding simplifications which do not
belong to the η-reduction in course.

The following definition of (Eta) is proposed.
Definition 5 Let λA.(a 1) be a λσ-term. The rule (Eta) is given by

λA.(a 1) → NRηλσ
(a[�.id]), if NRηλσ

(a[�.id]) is a λσ-term. (Eta)

Having the convergence of Rηλσ
their rewriting rules can be modified in order to quickly

verify whether the Rηλσ
-normal form of terms either belong or not to Λσ. This is done enlarging

the language with an error symbol and changing three rules by:

(a[s])[t] −→

a[s ◦ t] if � occurs in t and a = 1
a[NRηλσ

(s ◦ t)] if � occurs in t and
NRηλσ

(s ◦ t) ∈ Λσ

error if � occurs in t and
NRηλσ

(s ◦ t) /∈ Λσ

(η-Clos)

id ◦ s −→ error if � occurs in s (η-IdL)
1 [�.s] −→ error (Error)

This modified system will be called Rηλσ
too. NRηλσ

(a[�.id]) is a λσ-term whenever
the reduction finishes without error. With this definition, a =σ b[↑] where b = NRηλσ

(a[�.id]).
Here, “b” depends on a, which avoids infinite reductions in this new system.

Normalized λσ-terms with respect to the σ-calculus are terms whose subterms
of the form a[s] are of the form 1 [↑n]. All other subterms are of the form 1 , (a b) or
λA.a. I.e., normalized terms are terms without pending substitutions. The λσ-substitution
(1 .2 . · · · .i − 1 . � . (id ◦↑i−1)) will be denoted by si, where i > 1, and s1 denotes �.id.
Lemma 1 Let i ∈ N

∗ and a be a λσ-term in normal form with respect to the σ-calculus. Then
NRηλσ

(a[si]) is a λσ-term, whenever a has no free occurrences of i . In this case, one has
that NRηλσ

(a[si]) corresponds to a, with the free indices greater than i decremented by one.
Otherwise, NRηλσ

(a[si]) = error.

Proof. The proof is by induction on the structure of a.
1) a = 1 : if i = 1, then by (Error) one has 1 [�.id] → error. If i > 1, then by (η-VarCons)

one obtains 1 [1 .2 . · · · .i − 1 . � . (id ◦↑i−1)] → 1 .
2) a = 1 [↑n]: by (η-Clos), 1 [↑n][1 .2 . · · · .i − 1 . � . (id ◦ ↑i−1)] → 1 [↑n

◦ (1 .2 . · · · .i − 1 . � . (id ◦↑i−1))].
– If n < i − 1, then by (η-ShiftCons) one obtains

1 [↑n ◦ (1 .2 . · · · .i − 1 . � . (id ◦↑i−1))] →n 1 [n + 1 . · · · .i − 1 . � . (id ◦↑i−1)].
So, by (η-VarCons), 1 [n + 1 . · · · .i − 1 . � . (id ◦↑i−1)] → n + 1 = 1 [↑n].

– If n = i − 1, then if i = 1, by (η-IdL),1 [id ◦ s1] → error.
If i > 1, then by (η-ShiftCons), 1 [↑n ◦ (1 .2 . · · · .i − 1 . � . (id ◦ ↑i−1))] →n

1 [�. (id ◦↑i−1)].
Then, by (Error), one obtains 1 [�. (id ◦↑i−1)] → error.

6

– If n ≥ i, then if i = 1, by (η-ShiftCons), 1 [↑n ◦(�.id)] → 1 [↑n−1 ◦ id].
If i > 1, by (η-ShiftCons), 1 [↑n ◦ (1 .2 . · · · .i − 1 . � . (id ◦ ↑i−1))] →i 1 [↑n−i

◦(id ◦↑i−1)].
3) a = (b c): by (η-App) one has (b c)[si] → (b[si] c[si]). By induction hypothesis

(IH), if either b or c have free occurrences of i , then either NRηλσ
(b[si]) = error or

NRηλσ
(c[si]) = error. Otherwise NRηλσ

(b[si]) and NRηλσ
(c[si]) are λσ-terms of the

desired form.
4) a = λA.b: by (η-Abs), (λA.b)[si] → λA.(b[1 .(si◦ ↑)]). By (η-MapEnv), λA.(b[1 .(si◦ ↑

)]) →i+1

λA.(b[1 . · · · .i . � [↑]. (id ◦↑i)]).
By (η-Cons), λA.(b[1 . · · · .i . � [↑]. (id ◦↑i)]) → λA.(b[1 . · · · .i . � . (id ◦↑i)]).
By IH NRηλσ

(b[1 . · · · .i . � . (id ◦ ↑i)]) = error, if there are free occurrences of i + 1 ,
else,
NRηλσ

(b[1 .2 . · · · .i . � . (id ◦↑i)]) is the desired λσ-term. �

Taking i = 1 in the previous lemma, one has that for σ-normalized λσ-terms, (Eta) implements
the η-reduction correctly. Let ti = 1 .2 . · · · .i − 1 . � .↑i and a be a σ-normalized term, where
i ∈ N

∗. Observe that NRηλσ
(a[ti]) signalizes with an error a free occurrence of i . For any

substitution s, making NRηλσ
(s ◦ ti), one can give a definition of free occurrence of i in a

substitution.
Definition 6 Let ti = 1 .2 . · · · .i − 1 . � . ↑i. If NRηλσ

(a[ti]) = error, we say a has free
occurrences of i .

Notice that the rules of the system Rηλσ
are a subset of restricted rules of the σ-calculus

with conditions and augmenting the rule (η-Cons). Consequently, in order to have well-typed
intermediate terms, it is enough to verify how the symbol � and the substitutions containing
this symbol can be typed.

Definition 7 Let Γ be a context. If Γ ` i : A, then � represents i in Γ, denoted as Γ<i.Γ>i `
� : A.

From this definition, one has a rule for inferring the type of �, that depends on the given
context and has semantics related to this context only. As a consequence, the rule (η-Cons)
allows � to own the same type in other contexts. It is necessary to check the correctness of
Definition 7 in relation to its semantics.

Lemma 2 If � represents i in context Γ, then �[↑] represents i + 1 in A.Γ.

Proof. LetΓ ` i : B. Then Γ<i.Γ>i ` � : B. By (shift), A.Γ<i.Γ>i ` ↑ BΓ<i.Γ>i. By (clos),
A.Γ<i.Γ>i ` �[↑] : B. By (shift) and (clos), we get A.Γ ` i [↑] : B. �

Lemma 3 Let Γ ` i : A where � represents i in Γ. Then Γ<i.Γ>i ` si B Γ.

Proof. By (shift), Γ<i.Γ>i ` ↑i−1 BΓ>i. By (id) and (comp), Γ<i.Γ>i ` id ◦ ↑i−1 BΓ>i. By
(cons), Γ<i.Γ>i ` �.(id ◦ ↑i−1) B Γ≥i holds. By (shift) and (clos), Γ<i.Γ>i ` j : Aj , for all
j < i, where Γ<i = A1. · · · .Ai−1. Hence, by (cons) applied i−1 times, we get Γ<i.Γ>i ` siBΓ.
�

Lemma 4 Let a be a λσ-term, such that Γ ` a : A, Γ ` i : B and � represents i in Γ. If a has
no free occurrences of i , then Γ<i.Γ>i ` NRηλσ

(a[si]) : A.

7

Proof. By Lemma 3, one has that Γ<i.Γ>i ` siBΓ. By (clos) one obtains Γ<i.Γ>i ` a[si] : A.
In order to guarantee that Γ<i.Γ>i ` NRηλσ

(a[si]) : A, it is enough to verify that each rule of
Rηλσ

preserves the context and type of the derived terms. Since a substitution with occurrence
of � is well-typed, SR for the rules of the σ-calculus enlarged with the condition is preserved.
It is necessary to verify that the property holds for the rule (η-Cons). The rule will always be
applied after one application of the rule (η-Abs).

Suppose that Γ<i.Γ>i ` (λC .b)[si] : A, where Γ ` λC .b : A and � represents i in
Γ. One has that Γ<i.Γ>i ` λC .(b[1 .(si◦↑)]) : A, by SR for (η-Abs). By (lambda) one has
C.Γ<i.Γ>i ` b[1 .(si◦↑)] : D and C.Γ ` b : D, where A = C → D. After i applications
of (η-MapEnv) one obtains C.Γ<i.Γ>i ` b[1 .2 . · · · .i. � [↑]. (id ◦ ↑i)] : D. By Lemma 2,
�[↑] represents i + 1 in C.Γ. Thus, when (η-Cons) is applied, b[1 .2 . · · · .i. � [↑]. (id ◦ ↑i)] →
b[si+1], with � representing i + 1 in C.Γ. By Lemma 3, C.Γ<i.Γ>i ` si+1 B C.Γ. By (clos),
C.Γ<i.Γ>i ` b[si+1] : D. Hence, by (lambda), we getΓ<i.Γ>i ` λC .(b[si+1]) : C → D = A.
�

Theorem 2 (SR for the rule (Eta)) If Γ ` λB.(a 1) : A and λB.(a 1) →Eta b, then Γ ` b :
A.

Proof. Suppose that Γ ` λB.(a 1) : A. By (lambda), B.Γ ` (a 1) : C, where A = B → C.
By (app), B.Γ ` a : D → C and B.Γ ` 1 : D. By (var), D = B, thus B.Γ ` a : B → C = A.
One has b = NRηλσ

(a[�.id]), where a has no free occurrence of 1 . Since s1 = �.id, by Lemma
4 with i = 1, Γ ` b : A. �

3. The λse-Calculus with an explicit Eta rule which preserves SR

3.1. The λse-Calculus

In contrast to the λσ-calculus, the λse-calculus has a sole sort of objects and introduces two
operators σ and ϕ, for substitution and updating.

Definition 8 The syntax of the simply typed λse-calculus, where n, i, j ∈ N
∗ and k ∈ N is

given by

Types A ::= K |A → A Terms a ::= n | (a a) |λA.a | a σia |ϕj
k a

Contexts Γ ::= nil |A.Γ

a σib represents the term {i /b}a; i.e., the substitution of the free occurrences of i in a
by b, updating the free variables in a (and in b). The term ϕj

k a represents j − 1 applications of
the k-lift to a; i.e., a+k(j−1) . Table 3 gives the rules of the λse-calculus augmented with the rule
(Eta), as introduced in [3].

=se
denotes equality for the calculus se, induced by all the rules except (σ-generation)

and (Eta).

Definition 9 TAλse
, the Simply Typed λse, is given by the typing rules:

(Var) A.Γ ` 1 : A (Varn)
Γ ` n : B

A.Γ ` n + 1 : B

(Lambda)
A.Γ ` b : B

Γ ` λA.b : A → B
(App)

Γ ` a : A → B Γ ` b : A

Γ ` (a b) : B

(Sigma)
Γ≥i ` b : B Γ<i.B.Γ≥i ` a : A

Γ ` a σib : A
(Phi)

Γ≤k.Γ≥k+i ` a : A

Γ ` ϕi
k a : A

8

(λA.a b) −→ a σ1b (σ-generation)
(λA.a) σib −→ λA.(a σi+1b) (σ-λ-transition)
(a1 a2) σib −→ ((a1 σib) (a2 σib)) (σ-app-transition)

n σib −→

n − 1 if n > i
ϕi

0 b if n = i
n if n < i

(σ-destruction)

ϕi
k (λA.a) −→ λA.(ϕi

k+1 a) (ϕ-λ-transition)
ϕi

k (a1 a2) −→ ((ϕi
k a1) (ϕi

k a2)) (ϕ-app-transition)

ϕi
k n −→

{

n + i − 1 if n > k
n if n ≤ k

(ϕ-destruction)

(a1 σia2) σjb −→ (a1 σj+1b) σi(a2 σj−i+1b) if i ≤ j (σ-σ-transition)
(ϕi

k a) σjb −→ ϕi−1
k a if k < j < k + i (σ-ϕ-transition 1)

(ϕi
k a) σjb −→ ϕi

k (a σj−i+1b) if k + i ≤ j (σ-ϕ-transition 2)
ϕi

k (a σjb) −→ (ϕi
k+1 a) σj(ϕi

k+1−j b) if j ≤ k + 1 (ϕ-σ-transition)
ϕi

k (ϕj
l a) −→ ϕj

l (ϕi
k+1−j a) if l + j ≤ k (ϕ-ϕ-transition 1)

ϕi
k (ϕj

l a) −→ ϕj+i−1
l a if l ≤ k < l + j (ϕ-ϕ-transition 2)

λA.(a 1) −→ b if a =se
ϕ2

0 b (Eta)

Table 3. The rewriting system of the λse-calculus

In this definition, Γ≤i denotes the context built as the ordered list of the first i types in Γ. The
contexts Γ<i, Γ>i and Γ≥i are defined similarly.

Example 2 As in Example 1, applying λse-rules to (λC .λC→A.(1 2)) 2 leads to
λC→A.((1 σ22) (ϕ2

0 2)). We show that B.C `TAλse
λC→A.((1σ22) (ϕ2

0 2)) :

(C → A) → A. Initially, one has
C ` 1 : C (Var)
B.C ` 2 : C

(Varn). Thus

B.C ` 2 : C C→A.C.B.C ` 1 : C → A

C → A.B.C ` 1σ22 : C → A
(Sigma)

B.C ` 2 : C

C → A.B.C ` ϕ2
0 2 : C

(Phi)

C → A.B.C ` ((1 σ22) (ϕ2
0 2)) : A

B.C ` λC→A.((1 σ22) (ϕ2
0 2)) : (C → A) → A

(Lambda)

(App)

For the simply typed λse without the rule (Eta), SR holds.

Theorem 3 (SR for λse without the Eta rule [10]) If Γ `Tλse
a : A and a →λse

a′, then
Γ `Tλse

a′ : A.

3.2. An explicit Eta rule for the λse which preserves SR

Similarly to the λσ-calculus, for the definition of (Eta) for λse given in Table 3, inherited from
the usual definition based on lifting, when no restrictions are given on terms, derivation of ill-
typed terms may happen. For instance, let Γ ` i : B and Γ ` n : A, where n < i. Assume
Γ≥i ` N : C, where C 6= A. By (σ-destruction), nσiN → n. Note that n σiN is not typable.
Thus, λ(n + 1 1) → nσ1N , because ϕ2

0(nσiN) → ϕ2
0(n) → n + 1 (n + 1 =se

ϕ2
0(nσiN)). In

order to give a constructive and explicit definition of Eta, one should define the free occurrences
of i in a λse-term. We propose the following:

Definition 10 Let m, n ∈ N
∗. The Calculus of detection of Occurrences of Free Variables in

9

λse, denoted as COFV, is given by the following rules

〈ϕi
k a, n〉

〈a, n − i + 1〉
(if n ≥ k + i)

〈m,n〉

False
(if m 6= n)

〈λA.a, n〉

〈a, n + 1〉
〈a σib, n〉

〈a, n〉
(if n < i)

〈a σib, n〉

〈a, n + 1〉 ∨ 〈b, n − i + 1〉
(if n ≥ i)

〈n , n〉

True
〈ϕi

k a, n〉

〈a, n〉
(if n ≤ k)

〈ϕi
k a, n〉

False
(if k < n < k + i)

〈(a b), n〉

〈a, n〉 ∨ 〈b, n〉

With this definition the notion of occurrence of free variables in λse-terms can be formalized.
Definition 11 (Free indices in λse) If 〈a, i〉 `COFV True, we say a has a free occurrence of
i .

We let Nse
(a) denote the normal form of a with respect to the se-calculus.

Lemma 5 Let a, b, λse-terms, in normal forms with respect to the se-calculus.

1. For i ≤ k, Nse
(ϕj

ka) has a free occurrence of i if, and only if, a has too.
2. For k < i < k + j, Nse

(ϕj
ka) has no free occurrence of i.

3. For i ≥ k+j, Nse
(ϕj

ka) has a free occurrence of i if, and only if, a has a free occurrence
of i − j + 1.

4. For i < j, Nse
(a σjb) has a free occurrence of i if, and only if, a has too.

5. For i ≥ j, Nse
(a σjb) has a free occurrence of i if, and only if, either a has a free

occurrence of i + 1 or a has a free occurrence of j and b has a free occurrence of
i − j + 1.

Lemma 6 If Nse
(a) has free occurrences of i , then 〈a, i〉 `COFV True.

The rewriting system for checking η-redices in λse, denoted as Rηse
, is given in Table

4. Note that the language of λse is enlarged with the symbol η.
(a b) ηi −→ (a ηi b ηi) (η-app-transition)
(λA.a) ηi −→ λA.a ηi+1 (η-λ-transition)

n ηi −→

{

n if n < i
n − 1 if n > i

(η-destruction)

(a σjb) ηi −→ (a ηi) σj−1b if i < j (η-σ-transition 1)
(a σjb) ηi −→ (a ηi+1) σj(b ηi−j+1) if i ≥ j (η-σ-transition 2)
(ϕj

k a) ηi −→ ϕj
k−1 (a ηi) if i ≤ k (η-ϕ-transition 1)

(ϕj
k a) ηi −→ ϕj−1

k a if k < i < k + j (η-ϕ-transition 2)
(ϕj

k a) ηi −→ ϕj
k (a ηi−j+1) if i > k and i ≥ k + j (η-ϕ-transition 3)

Table 4. Rηse
: the rewriting system for η-reduction in λse

Note that the Rηse
-rules have similar structure to the rules of detection of free variables

of Definition 10, with a simple adaptation for checking and updating the free variables of the
rule (η-destruction), and for updatings coming from the elimination of abstractors from η-
reduction, given in the transition rules. Rηse

is easily checked to be terminating and confluent.
For the former, notice that for any term a, the Rηse

normalisation of aη is simply a propagation
of the symbol η between the finite structure of a. For the later, notice that Rηse

is left linear and
there are no possible overlapping between left-hand sides of the rules; thus, by orthogonality,
confluence holds.

One has the following property of Rηse
which guarantees reductions for λse-terms.

10

Lemma 7 If 〈a, i〉 `COFV False, then NRηse
(a ηi) has no occurrence of the operator η.

Now it is possible to give the following definition of (Eta).

Definition 12 Let λA.(a 1) be a λse-term. The rule (Eta) is given by

λA.(a 1) → NRηse
(a η1) if 〈a, 1〉 `COFV False (Eta)

By Lemma 7, the condition 〈a, 1〉 `COFV False guarantees that NRηse
(a η1) is a λse-term. The

following property of Rηse
, related to types, is necessary in order to prove SR for the proposed

rule (Eta).

Lemma 8 If Γ ` a : A and 〈a, i〉 `COFV False, then Γ<i.Γ>i ` NRηse
(a ηi) : A.

Theorem 4 (SR for (Eta)) If Γ ` λB.(a 1) : A and λB.(a 1) →Eta b, then Γ ` b : A.

Proof. Suppose that Γ ` λB.(a 1) : A. By (Lambda) one has that B.Γ ` (a 1) : C, where
A = B → C. By (App) and (Var) one has that B.Γ ` a : B → C = A and B.Γ ` 1 : B. By
hypothesis 〈a, 1〉 `COFV False and b = NRηse

(a η1). Consequently, by case i = 1 of Lemma
8, one obtains Γ ` b : A. �

When the λse-term a of the Eta rule has no free occurrences of 1 , deciding the applica-
bility of the Eta rule and building the η-contractum are practically equivalent processes. Then,
a straightforward adaptation of the calculus Rηse

will do both tasks: detecting the presence of
free occurrences of 1 in a and, in the negative case, simultaneously building the corresponding
η-contractum. This is possible by changing the rule η-destruction in Table 4 to

n ηi −→

n if n < i

error if n = i

n − 1 if n > i

(η-destruction2)

The new system R′
ηse

, allows the following definition of Eta which does both tasks
simultaneously.

λA.(a 1) → NR′

ηse
(a η1) if NR′

ηse
(a η1) is a λse-term (Eta2)

In implementations, (Eta2) is more adequate than the first new version of (Eta) which
duplicates work.

4. Conclusions and Future Work

We defined constructive explicit Eta rules for the λσ- and the λse-calculi which preserve SR.
This formalization involves the presentation of specific sub-calculi, given as well-behaved
rewriting systems, for verifying the condition of Eta in each of these two calculi. The proposed
definitions work in such a way that the construction of the Eta-contractum is given, while the
condition of the rule is checked. In this way, we presented a formalization which is directly
implementable from the constructive definition of the Eta rules for the simply-typed version of
these calculi. In addition to making explict the definitions of Eta in [7, 6] and [3], our work
contributes to making precise the informal implementations of these rules suggested in [4] and
[2] respectively. In contrast with the rule Eta introduced in [7] (for λσ) our constructive defi-
nition can be applied to non (σ-)normal forms in such a way that the rules Beta and Eta are put
on an equal footing.

11

As future work, it is interesting to compare the efficiency of the implementation of the
suggested Eta rules in both calculi. Superficially, notice that the condition ”� occurs in” for
Rηλσ

, suggests a quadratic verification of the applicability of Eta in λσ, while this appears to
be linear in λse. In order to be conclusive, it is necessary to discard the possibility of doing this
task correctly in λσ in a more efficient manner.

References
[1] M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy. Explicit Substitutions. Functional Pro-

gramming, 1(4):375–416, 1991.
[2] M. Ayala-Rincón, F. de Moura, and F. Kamareddine. Comparing and Implementing Calculi of

Explicit Substitutions with Eta-Reduction. Annals of Pure and Applied Logic, 134:5–41,
2005.

[3] M. Ayala-Rincón and F. Kamareddine. Unification via the λse-Style of Explicit Substitution.
Interest Group in Pure and Applied Logics, 9(4):489–523, 2001.

[4] P. Borovanský. Implementation of Higher-Order Unification Based on Calculus of Explicit
Substitutions. Volume 1012 of LNCS, pages 363–368. 1995.

[5] D. Briaud. An explicit Eta rewrite rule. In Typed lambda calculi and applications, volume 902
of LNCS, pages 94–108. 1995.

[6] G. Dowek, T. Hardin, and C. Kirchner. Higher-order Unification via Explicit Substitutions.
Information and Computation, 157(1/2):183–235, 2000.

[7] T. Hardin. Eta-conversion for the languages of explicit substitutions. In Algebraic and logic
programming, volume 632 of LNCS, pages 306–321. 1992.

[8] J. R. Hindley. Basic Simple Type Theory. Number 42 in Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press, 1997.

[9] D. Kesner. Confluence of extensional and non-extensional λ-calculi with explicit substitutions.
TCS, 238(1-2):183–220, 2000.

[10] F. Kamareddine and A. Rı́os. Relating the Lambda-sigma and Lambda-s styles of Explicit
Substitutions. Logic and Computation volume, 10(3): 349–380. 2000.

[11] P.-A. Melliès. Typed λ-calculi with explicit substitutions may not terminate in Proceedings of
TLCA’95. LNCS, 902, 1995.

[12] A. Rı́os. Contribution à l’étude des λ-calculs avec substitutions explicites. PhD thesis, Uni-
versité de Paris 7, 1993.

A. Proofs
Proof. (Lemma 5) All the proofs are by induction on the structure of a. The notation N(a)
stands for Nse

(a).
1. • a = n : by (ϕ-destruction), ϕj

kn → n. Thus, N(ϕj
kn) has a free occurrence of i

iff n = i.
• a = (c d): by (ϕ-app-transition), ϕj

k(c d) → (ϕj
kc ϕj

kd). By IH, N(ϕj
kc) has

a free occurrence of i iff c has too. Analogously for N(ϕj
kd) and d. Note that

N(ϕj
ka) = (N(ϕj

kc) N(ϕj
kd)). Thus, N(ϕj

ka) has a free occurrence of i iff
either c or d has too.

12

• a = λA.c: by (ϕ-λ-transition), ϕj
k(λA.c) → λA.(ϕj

k+1c). Since i + 1 ≤ k + 1,
by IH, N(ϕj

k+1c) has a free occurrence of i + 1 iff c has too. Hence, N(ϕj
k+1a)

has a free occurrence of i iff a has too.
2. • a = n : If n ≤ k, then by (ϕ-destruction) one has ϕj

kn → n, where n ≤ k < i.
If n > k, then by (ϕ-destruction) one has ϕj

kn → n + j − 1, where n + j − 1 >
k + j − 1 ≥ i. Thus n + j − 1 > i.

• a = (c d): by (ϕ-app-transition), ϕj
k(c d) → (ϕj

kc ϕj
kd). Thus, by IH, neither

N(ϕj
kc) nor N(ϕj

kd) has a free occurrence of i.
• a = λA.c: by (ϕ-λ-transition), ϕj

k(λA.c) → λA.(ϕj
k+1c). k + 1 < i + 1 <

(k + 1) + j, thus, by IH, N(ϕj
kc) has no free occurrence of i + 1. Hence,

N(ϕj
k+1a) has no free occurrence of i.

3. • a = n : If n ≤ k, then by (ϕ-destruction), ϕj
kn → n, where i ≥ k + j > k ≥ n.

If n > k, then by (ϕ-destruction), ϕj
kn → n + j − 1. Thus, N(ϕj

kn) has a free
occurrence of i iff n = i − j + 1.

• a = (c d): by (ϕ-app-transition), ϕj
k(c d) → (ϕj

kc ϕj
kd). By IH, N(ϕj

ka) =
(N(ϕj

kc) N(ϕj
kd)) has a free occurrence of i iff either c or d has a free ocurrence

of i − j + 1.
• a = λA.c: by (ϕ-λ-transition), ϕj

k(λA.c) → λA.(ϕj
k+1c). Since i + 1 ≥ (k +

1) + j, by IH, N(ϕj
k+1c) has a free ocurrence of i + 1 iff c has a free ocurrence

of (i + 1) − j + 1. Hence, N(ϕj
k+1a) has a free ocurrence of i iff a has a free

ocurrence of i − j + 1.
4. • a = n : If n < j, then by (σ-destruction), n σjb → n. Thus, N(n σjb) has a

free occurrence of i iff n = i. If n = j, then by (σ-destruction), nσjb → ϕj
0 b.

Since 0 = k < i < k + j, by item 2, N(ϕj
0 b) has no free occurrence of i . If

n > j, then by (σ-destruction), n σjb → n − 1, where n − 1 ≥ j > i.
• a = (c d): by (σ-app-transition), (c d)σjb → ((c σjb) (d σjb)). Thus, by IH,

N(a σjb) = (N(c σjb) N(d σjb)) has a free occurrence of i iff either c or d has
too.

• a = λA.c: by (σ-λ-transition), (λA.c)σjb → λA.(c σj+1b). Since i + 1 < j + 1,
by IH, N(c σj+1b) has a free ocurrence of i + 1 iff c has a free ocurrence of
i + 1. Hence, N(a σj+1b) has a free ocurrence of i iff a has a free ocurrence of
i.

5. • a = n : If n < j, then by (σ-destruction), n σjb → n, where n < j ≤ i. If
n = j, then by (σ-destruction), n σjb → ϕj

0 b. Since i ≥ k + j where k = 0, by
item 3, N(ϕj

0 b) has free occurrence of i iff b has a free occurrence of i − j + 1 .
If n > j, then by (σ-destruction) one has n σjb → n − 1. Thus, N(n σjb) has a
free occurrence of i iff n = i + 1. Observe that i + 1 > i ≥ j.

• a = (c d): by (σ-app-transition), (c d)σjb → ((c σjb) (d σjb)). Thus, by IH,
N(a σjb) = (N(c σjb) N(d σjb)) has a free occurrence of i iff either c or d has
a free occurrence of i + 1 or either c or d has a free occurrence of j and b has a
free occurrence of i − j + 1.

• a = λA.c: by (σ-λ-transition), (λA.c)σjb → λA.(c σj+1b). Since i + 1 ≥ j + 1,
thus, by IH, N(c σj+1b) has a free ocurrence of i + 1 iff c has a free ocurrence
of (i + 1) + 1 or c has a free ocurrence of j + 1 and b has a free ocurrence
of (i + 1) − (j + 1) + 1 = i − j + 1 . Consequently, N(a σj+1b) has a free

13

ocurrence of i if, and only if, a has a free ocurrence of i + 1 or a has a free
ocurrence of j and b has a free ocurrence of i − j + 1 . �

Proof. (Lemma 6) By induction on the structure of a.

1) a = n : If n = i, then 〈n, i〉 ` True
2) a = (b c): we have 〈(b c), i〉 ` 〈b, i〉 ∨ 〈c, i〉. By IH, if Nse

(b) has free occurrences
of i , then 〈b, i〉 ` True. Analogously for Nse

(c). Thus if Nse
(b) or Nse

(c) have free
occurrences of i , then 〈(b c), i〉 ` True. Note that Nse

(b c) = (Nse
(b) Nse

(c)).
3) a = λA.b: we have 〈λA.b, i〉 ` 〈b, i+1〉. By IH, if Nse

(b) has free occurrences of i + 1 ,
then 〈b, i + 1〉 ` True. Thus, if Nse

(a) = λA.Nse
(b) has free occurrences of i , then

〈a, i〉 ` True.
4) a = b σjc: if i < j, then 〈b σjc, i〉 ` 〈b, i〉. By Lemma 5.4, if Nse

(b σjc) has free
occurrences of i , then Nse

(b) has free occurrences of i . Thus, by IH, 〈b, i〉 ` True.
If i ≥ j, then 〈b σjc, i〉 ` 〈b, i + 1〉 ∨ 〈c, i − j + 1〉. by Lemma 5.5, if Nse

(b σjc)
has free occurrences of i , then Nse

(b) has free occurrences of i + 1 or Nse
(b) has free

occurrences of j and Nse
(c) has free occurrences of i − j + 1 . Thus, by IH, 〈a, i〉 `

True. Observe that even if Nse
(b) has no free occurrences of j , 〈a, i〉 is still assigned

True.
5) a = ϕj

k b: if i ≤ k, then 〈ϕj
k b, i〉 ` 〈b, i〉. By Lemma 5.1, if Nse

(ϕj
k b) has free

occurrences of i , then Nse
(b) has too. Thus, by IH, 〈b, i〉 ` True.

If k < i < k + j, then 〈ϕj
k b, i〉 ` False. By Lemma 5.2, Nse

(ϕj
k b) has no free

occurrences of i .
If i ≥ k + j, then 〈ϕj

k b, i〉 ` 〈b, i − j + 1〉. By Lemma 5.3, if Nse
(ϕj

k b) has free
occurrences of i , then Nse

(b) has free occurrences of i − j + 1 . Thus, by IH, 〈b, i −
j + 1〉 ` True. �

Proof. (Lemma 7) By structural induction on a.

1) a = n : from 〈n , i〉 ` False one has that n 6= i. If n < i, then n ηi → n . If n > i, then
n ηi → n − 1 .

2) a = (b c): one has that (b c) ηi → (b ηi c ηi). From 〈(b c), i〉 ` False one has that
〈b, i〉 ` False and 〈c, i〉 ` False. Thus, by IH, neither NRηse

(b ηi) nor NRηse
(c ηi)

have occurrences of η.
3) a = λB.b: one has (λB.b) ηi → λB.b ηi+1. From 〈λB.b, i〉 ` False one has that

〈b, i + 1〉 ` False. Thus, by IH, one has that NRηse
(b ηi+1) has no occurrence of η.

4) a = b σjc: one has 〈b σjc, i〉 ` False.
If i < j, then (b σjc) ηi → (b ηi) σj−1c and 〈b, i〉 ` False. By IH, NRηse

(b ηi) has no
occurrence of η.
If i ≥ j, then (b σjc) ηi → (b ηi+1) σj(c ηi−j+1), 〈b, i + 1〉 ` False and 〈c, i− j + 1〉 `
False. Thus, by IH, neither NRηse

(b ηi+1) nor NRηse
(c ηi−j+1) have occurrences of η.

5) a = ϕj
k b: one has that 〈ϕj

k b, i〉 ` False.
If i ≤ k, then (ϕj

k b) ηi → ϕj
k−1 (b ηi) and 〈b, i〉 ` False. By IH, NRηse

(b ηi) has no
occurrences of η.
If k < i < k+j, then (ϕj

k b) ηi → ϕj−1
k b and since b is a λse-term, it has no occurrences

of η.
If i ≥ k + j, then (ϕj

k b) ηi → ϕj
k (b ηi−j+1) and 〈b, i − j + 1〉 ` False. By IH,

NRηse
(b ηi−j+1) has no occurrences of η. �

14

Proof. (Lemma 8) By induction on the structure of a. We write N(a) for the Rηse
-normal

form of a.
1) a = n : Let Γ ` n : A. By 〈n , i〉 `COFV False, n 6= i. If n < i, by (η-destruction),

n ηi → n and Γ<i.Γ>i ` n : A. If n > i, by (η-destruction), n ηi → n − 1 and by
(Varn), Γ>i ` n − i : A and hence by i−1 applications of (Varn), Γ<i.Γ>i ` n − 1 : A

2) a = (b c): Let Γ ` (b c) : A. By (η-app-transition), N((b c) ηi) = (N(b ηi) N(c ηi)).
By (App), Γ ` b : B → A and Γ ` c : B. By IH, Γ<i.Γ>i ` N(b ηi) : B → A and
Γ<i.Γ>i ` N(c ηi) : B. Thus, by (App), Γ<i.Γ>i ` (N(b ηi) N(c ηi)) : A.

3) a = λB.b: Let Γ ` λB.b : A. By (η-λ-transition), N((λB.b) ηi) = λB.N(b ηi+1). By
(Lambda), B.Γ ` b : C, where A = B → C. By IH, B.Γ<i.Γ>i ` N(b ηi+1) : C. By
(Lambda), Γ<i.Γ>i ` λB.N(b ηi+1) : A.

4) a = b σjc: Let Γ ` b σjc : A. By (Sigma), Γ≥j ` c : B and Γ<j.B.Γ≥j ` b : A.
If i < j, by (η-σ-transition 1), N((b σjc) ηi) = (N(b ηi)) σj−1c. By IH,
Γ<i.(Γ<j)>i.B.Γ≥j ` N(b ηi) : A. By (Sigma), Γ<i.Γ>i ` N(b ηi) σj−1c : A.
If i ≥ j, by (η-σ-transition 2), N((b σjc) ηi) = N(b ηi+1) σjN(c ηi−j+1). By IH,
Γ<j.B.(Γ≥j)<i−j+1.Γ>i ` N(b ηi+1) : A and (Γ≥j)<i−j+1.Γ>i ` N(c ηi−j+1) : B.
By (Sigma) Γ<i.Γ>i ` N(b ηi+1) σjN(c ηi−j+1) : A.

5) a = ϕj
k b: Let Γ ` ϕj

k b : A. By (Phi), Γ≤k.Γ≥k+j ` b : A.
If i ≤ k, by (η-ϕ-transition 1), N((ϕj

k b) ηi) = ϕj
k−1 N(b ηi). By IH,

Γ<i.(Γ≤k)>i.Γ≥k+j ` N(b ηi) : A. Thus, by (Phi), Γ<i.Γ>i ` ϕj
k−1 N(b ηi) : A.

If k < i < k + j, by (η-ϕ-transition 2), N((ϕj
k b) ηi) = ϕj−1

k b. Thus, by (Phi),
Γ<i.Γ>i ` ϕj−1

k b : A.
If k < i and k + j ≤ i, by (η-ϕ-transition 3), N((ϕj

k b) ηi) = ϕj
k N(b ηi−j+1).

By IH, Γ≤k.(Γ≥k+j)<i−j+1−k.Γ>i ` N(b ηi−j+1) : A. By (Phi), Γ<i.Γ>i `
ϕj

k N(b ηi−j+1) : A. �

15

