
An approximation of reductional equivalence�Fairouz Kamareddine Roel Bloo and Rob NederpeltDepartment of Computing ScienceUniversity of Glasgow17 Lilybank GardensGlasgow G12 8QQ, Scotlandfairouz@dcs.gla.ac.uk Mathematics and Computing Science,Eindhoven University of Technology,P.O.Box 513,5600 MB Eindhoven, the Netherlands,fbloo, wsinrpng@win.tue.nlAbstractWe de�ne an equivalence relation on �-terms called shu�e-equivalence which attempts tocapture the notion of reductional equivalence on strongly normalizing terms. The shu�e-equivalence classes are shown to divide the classes of �-equal terms into smaller ones consistingof terms with similar reduction behaviour. We re�ne �-reduction from a relation on terms toa relation on shu�e-equivalence classes, called shu�e-reduction, and show that this re�nementcaptures existing generalisations of �-reduction. Shu�e-reduction moreover, apart from allow-ing one to make more redexes visible and to contract these newly visible redexes, enables oneto have more freedom in choosing the reduction path of a term, which can result in smallerterms along the reduction path if a clever reduction strategy is used. This can bene�t both pro-gramming languages and theorem provers since this
exibility and freedom in chosing reductionpaths can be exploited to produce the shortest program evaluation paths and optimal proofs.1 Introduction�-equality of two terms A and B is by the Church-Rosser property equivalent to the existence ofa common reduct C. Nothing can be said about the nature of the two reduction paths A !!� Cand B !!� C. It can be that both paths consist of the same number of steps, or that one of themis larger than the other. Also, the reduction behaviour of A and B can be very di�erent, as is thecase if A � KI
 and B � KII. We think it is an interesting problem to characterize terms withequal reduction behaviour. We are interested in terms A and B that have a common reduct C suchthat the reductional behaviour from A to C is equivalent to the reductional behaviour from B toC. This is di�erent from reduction paths. In this paper we try to give an approximation to thereductional equivalence between two strongly normalizing terms.1.1 Making as many redexes as possible visibleExample 1.1 Consider the terms: A � (��:�y:�f :fy)�x and B � (�� :(�y:�f :fy)x)�. Both termshave the term �f :fx as a reduct, so A =� B. However, B has two redexes whereas A has only one.Here are the redexes of B and their corresponding reducts in B:1. r1 = (��:(�y:�f :fy)x)� which when contracted in B results in (�y:�f :fy)x�We are grateful for the Netherlands Computer Science Research Foundation (SION), the Netherlands Organ-isation for Scienti�c Research (NWO), the universities of Glasgow and Eindhoven, the Basic Action for ResearchESPRIT project \Types for Proofs and Programs", and EPSRC Grant nb GR/K 25014 for �nancial support.1

2. r2 = (�y:�f :fy)x which when contracted in B results in (��:�f :fx)�Here is the only redex in A and the result of contracting this redex in A:1. r01 = (��:�y:�f :fy)� which when contracted in A results in (�y:�f :fy)xNote that r1 in B and r01 in A are both based on (��:�)� and contracting r1 in B results in thesame term as contracting r01 in A.A closer look at A enables us to see that in A (as in B), �y will get matched with x resultingin a redex r02 = (�y:�)x. There are di�erences however between r2 in B and r02 in A. r2 in B iscompletely visible and may be contracted before r1 in B. r02 on the other hand is a future redex inA. In fact, it is not a redex of A itself but a redex of a contractum of A, namely (�y:�f :fy)x, theresult of contracting the redex r01 in A.We could guess from A itself the presence of the future redex. That is, looking at A itself, wesee that �� is matched with � and �y is matched with x.This has been noted by many researchers and hence rules like (�x:N)PQ !� (�x:NQ)P havebeen introduced in many articles with di�erent purposes [1, 4, 6, 8, 10, 11, 13, 15, 16, 18, 19, 20, 22]Such rules enable one to rewrite A so that both redexes become visible in A. Note that: A �(��:�y:�f :fy)�x !� (�� :(�y:�f :fy)x)� � B.These transformations are rather powerful in that they can group together terms with equalreductional behaviour. Let us give here this example:Example 1.2 Take D;E; F;G with D � ((�f :(�x:�y:fxy)m)+)n, E � (�f :(�x:(�y:fxy)n)m)+,F � (((�f :�x:�y:fxy)+)m)n and G � (�f :((�x:�y:fxy)m)n)+. In D, (�f :(�x:�y:fxy)m)+ and(�x:�y:fxy)m are the visible redexes with a potential for (�y:�)n. In E, (�f :(�x:(�y:fxy)n)m)+,(�x:(�y:fxy)n)m and (�y:fxy)n are all redexes. F has the unique redex (�f :�x:�y:fxy)+. More-over, D =� E =� F =� G. Note that F !� D !� G!� E and one sees that, by transforming Fto D, an extra redex becomes visible and by transforming G to E the same happens, and that inE all redexes are visible.Based on this, one wonders if one could classify terms according to their transformational relation-ship as in F;D;G;E. One has to be careful however:Example 1.3 Let E1 !!� E2 and F1 !!� F2 (meaning E1 and E2 (respectively F1 and F2) can betransformed to have the same redexes as �-reduction is Church Rosser and strongly normalizing).It is not the case that (F2�)E1 !!� (F1�)E2 or (F1�)E2 !!� (F2�)E1 despite the fact that (F1�)E2and (F2�)E1 can be transformed to have the same redexes.In this paper, we propose to de�ne for each term M , a term TS(M) (the �-normal form of M) thatmakes as many redexes as possible visible. We consider the equivalence class of a term M to befM 0 j TS(M) � TS(M 0)g. As !!� is Church Rosser and strongly normalizing, then if M1 =� M2we get TS(M1) � TS(M2). We set out to show that the notion of equivalence classes modulo TShelps us to capture reductional equivalence on terms that are strongly normalizing.1.2 Reductional EquivalenceIn order to discuss reductional equivalence between terms, redexes will be extended so that a futureredex like (�y:�)x in A of Example 1.1 will be treated as a �rst class redex and will be contractedin A even before the originator (�� :�y:�f :fy)� has been contracted. Hence, with our extendednotion of redexes and reduction we get in A:r02 = (�y:�f :fy)x which when contracted in A results in (��:�f :fx)�2

Note that r02 is �y matched with x (exactly as r2 in B). Note moreover that contracting r02 in Agives the same result as contracting r2 in B.With this notion of extended redex, we can observe that there is a bijective correspondencebetween the (extended) redexes of A and B of Example 1.1. That is, r1 corresponds to r01 and r2corresponds to r02. Moreover, if one redex is contracted in A, the reduct is syntactically equal tothe reduct which results from contracting the corresponding redex in B and vice versa. That is, r1and r01 yield the same values; similarly r2 and r02 yield the same values.These considerations lead us to de�ne reductional equivalence �inf informally by:De�nition 1.4 We say that A and B are reductionally equivalent and write A �inf B i�1. There is a bijective correspondence between the (extended) redexes of A and B.2. Contracting an (extended) redex in A results in a value syntactically equal (�) or reductionallyequivalent (�inf) to the result of contracting the corresponding redex in B and vice versa.3. Arguments of corresponding (extended) redexes are � or reductionally equivalent.Example 1.5 Note that A �inf B for A;B as in Example 1.1. Also D �inf E �inf F �inf G forD;E; F;G as in Example 1.2.Alas however, it may not be easy to decide on the reductional equivalence of two terms. Weconjecture that in general it is undecidable whether two terms are reductionally equivalent.Conjecture 1.6 It is undecidable whether two terms are reductionally equivalent.It seems interesting to �nd notions that are more easy to decide which approximate �inf . Oneapproach suggested by Henk Barendregt, in personal communications, could be to de�ne degreesof reductional equivalence (�n with n � 0 for short) in the following way:� M �0 N i� M � N .� M �n+1 N i� there is a bijective correspondence between the (extended) redexes of M andN such that contracting one in M yields a term �m, m � n to the result of contracting thecorresponding redex in N .These are not well behaved notions since the notions �n for n � 2 are not compatible. For thisreason we follow a di�erent approach and consider what we call shu�e-equivalence. Our notion ofshu�e-equivalence will be decidable but it is incomparable to reductional equivalence of any degree�n, n � 0. It is however a good approximation to �inf on strongly normalizing terms.1.3 Shu�e-equivalence and shu�e-reductionWe settle in this paper for a new notion that we call shu�e-equivalence. Shu�e-equivalence isparticularly related to � and to the notion of term-reshu�ing of [6]. First, the term-reshu�ingof [6] is the �-normal form. Moreover, shu�e-equivalence equates terms modulo term-reshu�ing.Hence, if A!� B or A term-reshu�es to B then A and B are shu�e-equivalent. There are manycases however where A and B are shu�e-equivalent without A and B being �-related. Shu�e-equivalence looks for the class of all terms that have the same term-reshu�ing.In order to give an intuition why we take classes modulo term-reshu�ing, observe that extendedredexes can be shu�ed to \classical" (i.e., non extended) redexes without losing reductional equiv-alence. This can be seen by our terms A and B of Example 1.1. The extended redex r02 in Abecomes classical in B. We call B the reshu�ed version of A. We have seen that A �inf B.3

Now to decide on the shu�e-equivalence of two terms A and B, we reshu�e both A and Band if we get in both cases the same result, then we say that A and B are shu�e-equivalent. Wedenote the reshu�ed version of a term A by TS(A); a concise de�nition of TS will be given insubsection 3.It will be easier to understand what the operation TS does if we change the classical notationwe have been using so far.So we depart from those researchers who use �, by using an extended form of � based on theterm-reshu�ing of [6] (which turns out to be the �-normal form). Furthermore, we depart from [6]by working with the equivalence classes modulo term-reshu�ing rather than the terms themselves.Our motivation for doing so is that those equivalence classes capture as much as possible thenotion of reductional equivalence. We de�ne [M], the class of M , to be fM 0jTS(M) � TS(M 0)g.Hence, D, E F and G above belong to the same class. All elements of [M] are =� and havesomehow the same redexes. We believe this is the closest decidable approximation that exists sofar to the undecidable notion of reductional equivalence. In particular, we establish (see Fact 4.18)that on strongly normalizing terms, two shu�e-equivalent terms are reductionally equivalent, that ashu�e-equivalence class is decidable and that shu�e-equivalence does not coincide with reductionalequivalence (which we conjecture to be undecidable).Certainly, our notion of shu�e-equivalence captures (and is stronger than) already existingextensions of reductions. For example, A!� B =) A and B are shu�e-equivalent. The converseis not true (see Example 3.10).Once we have an approximation to reductional equivalence, we will extend the notion of �-reduction to apply to classes rather than terms. As classes capture already extensions of reductionssuch as �, term reshu�ing, etc., �-reduction over classes will capture all these notions. We say Ashu�e-reduces to A0 and we write A ;� A0 i� 9B 2 [A]9B0 2 [A0] such that B !� B0. We show(see Lemma 4.3) that both !� and the generalised reduction ,!� of [3] are captured by ;�.1.4 Comparison with previous workThe last few years have seen an explosion in new notions of reductions which can be used for variouspurposes. Attempts at generalising reduction can be summarized by four axioms:(�) ((�x:N)P)Q! (�x:NQ)P , (
) (�x:�y:N)P ! �y:(�x:N)P ,(
C) ((�x:�y:N)P)Q! (�y:(�x:N)P)Q, (g) ((�x:�y:N)P)Q! (�x:N [y := Q])PThese rules attempt to make more redexes visible and to contract non-visible redexes. g is acombination of a �-step with a g-step.
C e.g., makes sure that �y and Q form a redex evenbefore the redex based on �x and P is contracted. By compatibility,
 implies
C . Moreover,((�x:�y:N)P)Q!� (�x:(�y:N)Q)P and hence both � and
C put � adjacently next to its matchingargument. � moves the argument next to its matching � whereas
C moves the � next to itsmatching argument. � can be equally applied to explicitly and implicitly typed systems. Thetransfer of
 or
C to explicitly typed systems is not straightforward however, since in these systems,the type of y may be a�ected by the reducible pair �x; P . E.g., it is �ne to write ((�x:�:�y:x:y)z)u!�(�x:�:(�y:x:y)u)z but not to write ((�x:�:�y:x:y)z)u !
C (�y:x:(�x:�:y)z)u. Hence, we study �-likerules in this paper. Now, we discuss where generalised reduction has been used1 (cf. [12, 8]).[18] introduces the notion of a premier redex which is similar to the redex based on �y and Qabove (which we call generalised redex). [19] uses � and
 (and calls the combination �) to showthat the perpetual reduction strategy �nds the longest reduction path when the term is StronglyNormalizing (SN). [22] also introduces reductions similar to those of [19]. Furthermore, [10] uses� (and other reductions) to show that typability in ML is equivalent to acyclic semi-uni�cation.1We are grateful to Joe Wells for enlightening discussions on this subject.4

[20] uses a reduction which has some common themes with �. Nederpelt's thesis in [17] and [4]use � whereas [13] uses
 to reduce the problem of �-strong normalization to the problem of weaknormalization (WN) for related reductions. [11] uses � and
 to reduce typability in the rank-2restriction of the 2nd order �-calculus to the problem of acyclic semi-uni�cation. [15, 23, 21, 14] userelated reductions to reduce SN to WN and [9] uses similar notions in SN proofs. [1] uses � (called\let-C") as a part of an analysis of how to implement sharing in a real language interpreter in away that directly corresponds to a formal calculus. [6] uses a more extended version of � (calledterm-reshu�ing) and of g (called generalised reduction) where Q and N are not only separated bythe redex (�x:N)P but by many redexes (ordinary and generalised).After looking carefully at all these attempts, we realised that none of the extensions of reductionsintroduced so far can play as general a role as approximating reductional equivalence. Of courseall these notions have in
uenced our choice of the relation which we consider to best approximatereductional equivalence (i.e. shu�e equivalence).2 The formal machineryThe classical notation cannot extend the notion of redexes or enable reshu�ing in an easy way.Item notation however can ([7] discusses various advantages of this notation). Let V be an in�nitecollection of variables over which x; y; z; : : : range. In item notation, terms of the �-calculus are:T ::= V j(T �)T j (�V)T . We take A;B;C; : : : to range over T . We call (A�) a �-item, A the bodyof the item and (A�)B means apply B to A (note the order). (�x) is called a �-item. A redexstarts with a �-item (i.e., (A�)) next to a �-item (i.e., (�x)).Example 2.1 A � (u�)(w�)(�x)(v�)(�y)(�z)(z�)(y�)x, by moving the item (u�) to the right untilit is next to its matching partner (�z), reshu�es to TS(A) � (w�)(�x)(v�)(�y)(u�)(�z)(z�)(y�)xSuch a reshu�ing in item notation is clearer than reshu�ing in classical notation where the term((�x:(�y:�z :xyz)v)w)u is reshu�ed to (�x:(�y:(�z :xyz)u)v)w.Note furthermore that the shu�ing is not problematic because we use the Barendregt Convention(see below) which means that no free variable will become unnecessarily bound after reshu�ingdue to the fact that names of bound and free variables are distinct.Example 2.2 D of Example 1.2 reads (n�)(+�)(�f)(m�)(�x)(�y)(y�)(x�)f in item notation. Here,the two (classical) redexes correspond to ��-pairs followed by the body of the abstraction as fol-lows: (�f :(�x:�y:fxy)m)+ corresponds to (+�)(�f)(m�)(�x)(�y)(y�)(x�)f and (�x:�y:fxy)m cor-responds to (m�)(�x)(�y)(y�)(x�)f . Note that the �-item (+�) and the �-item ((�f) are adjacent,showing the presence of a redex. Similarly, note the adjacency of (m�) and (�x).The third redex of D is obtained by matching � and �-items. (�y:fxy)n is visible as it correspondsto the matching (n�)(�y) where (n�) and (�y) are separated by the segment (+�)(�f)(m�)(�x)which has the bracketing structure [][] (see Figure 1 which represents D). We will use obvi-ous notions throughout like partner, bachelor, match, etc. In Figure 1, (+�) and (�f) matchor are partnered. So are the items (n�) and (�y). (y�) and (x�) on the other hand are bache-lor. (+�)(�f) is called a ��-pair and (n�)(�y) is a ��-couple. Term reshu�ing amounts tomoving �-items to occur next to their matching �-items. Hence D of Example 1.2 is reshu�edto (+�)(�f)(m�)(�x)(n�)(�y)(y�)(x�)f and Figure 1 changes to Figure 2 (which represents E).Furthermore, Figures 3 and 4 (which represent F and G) also change to Figure 2.According to our shu�e-equivalence, D, E, F and G belong to the same class and are �inf .Each term A is the concatenation of zero or more items and a variable: A � s1s2 � � � snx wherex 2 V . These items s1; s2; : : : ; sn are called the main items of A, x is called the heart of A,5

(n�)(+�) (�f)(m�) (�x) (�y)(y�)(x�)fFigure 1: (Extended) redexes in item notation: D(+�) (�f)(m�) (�x) (n�) (�y)(y�)(x�)fFigure 2: The reshu�ed term D in item notation: Enotation ~(A). We use s; s1; si; : : : to range over items. A concatenation of zero or more itemss1s2 � � � sn is called a segment. We use s; s1; si; : : : as meta-variables for segments. We write ; forthe empty segment. The items s1; s2; : : : ; sn (if any) are called the main items of the segment. Aconcatenation of adjacent main items sm � � � sm+k, is called a main segment. A ��-segment is a�-item immediately followed by a �-item.The weight of a segment s, weight(s), is the number of main items that compose the segment.Moreover, we de�ne weight(sx) = weight(s) for x 2 V .In reduction, thematching of the � and the � in question is the important thing. Well-balancedsegments (w-b) separate matching � and �-items. They are: The empty segment ;, if s is w-bthen (A�)s(�x) is w-b, the concatenation of w-b segments is w-b. Hence in Figures 1, 2, 3 and 4all segments that occur under a hat are w-b.Lemma 2.3 Every term has one of the following three forms:� (�x)B� (A1�) � � � (An�)x, where x 2 V� (A1�) � � � (An�)(B�)(�x)D, where n � 0De�nition 2.4 We say that two terms A and B are semantically equivalent i� A =� B.Bound and free variables and substitution are de�ned as usual. We write BV (A) and FV (A) torepresent the bound and free variables of A respectively. Note that in item notation, the scopeof a �-item is anything to the right of it. We write A[x := B] to denote the term where allthe free occurrences of x in A have been replaced by B. We take terms to be equivalent up tovariable renaming and use � to denote syntactical equality of terms. We assume moreover, theusual Barendregt variable convention BC and usual de�nition of compatibility (see [2]). We saythat A is strongly normalizing with respect to a reduction relation ! (written SN!(A)) i� every!-reduction path starting at A terminates.
(n�)(m�)(+�) (�f) (�x) (�y)(y�)(x�)fFigure 3: More extended redexes: F6

(+�) (�f) (n�)(m�) (�x) (�y)(y�)(x�)fFigure 4: The term G in item notation3 Shu
le-equivalenceIn this section we follow [6] and rewrite terms so that all the newly visible redexes can be subjectto !�. We shall show that this term rewriting function is correct in the sense that A =� TS(A),i.e., A and TS(A) are semantically equivalent (see Lemma 3.5). Furthermore, we show that shu�e-equivalence is stronger than!� and than the term-reshu�ing of [6] (Lemma 3.9 and Example 3.10)and that shu�e-equivalence classes are decidable (Lemma 3.8). In Section 4 (Lemma 4.17), we showthat shu�e-equivalence is indeed a (decidable) approximation of reductional equivalence.De�nition 3.1 The reshu�ing function TS is de�ned such that:TS((�x)C) =df (�x)TS(C)TS((B1�) � � � (Bn�)x) =df (TS(B1)�) � � � (TS(Bn)�)x if x 2 VTS((B1�) � � � (Bn�)(C�)(�x)E) =df (TS(C)�)(�x)TS((B1�) � � � (Bn�)E)Note that the second and third clauses also apply for n = 0.As an example, the term (�x)(w�) +(x�) �(y�) (��v) �(v�) 00(x�) 00(�w) �(�t) +(�s) (s�)twill be reshu�ed to the term (�x) �(y�) (��v) 00(x�) 00(�w) �(v�) �(�t) +(x�) +(�s) (w�)(s�)tIt can be seen that for any A, TS(A) is of the form s0 s1x where x 2 V , s1 consists of allbachelor main �-items of A and s0 is of the form s2 s3 � � � sn where si is either a ��-segment or abachelor main �-item. Now, let us show some properties of TS.Lemma 3.2 (Decidability of TS) For any A, B, it is decidable whether TS(A) � TS(B).Proof: This is obvious as � is decidable. 2Lemma 3.31.For all terms M , TS(M) is well de�ned.2. FV (M) = FV (TS(M))3.If s is well-balanced, then TS((A1�) � � � (An�)sB) � TS(s(A1�) � � � (An�)B).Proof: 1. Every time at most one case of the de�nition of TS(M) is applicable, and weights ofthe resulting terms to which TS is applied become smaller or TS disappears. 2. Induction on thestructure of M . 3. By induction on weight(s). 2Lemma 3.4 For a term A, TS(A) � s0 s1~(A), where s1 consists of the term reshu�ings of allbachelor main �-items of A and s0 is a sequence of term reshu�ings of main ��-segments andbachelor main �-items.Proof: Induction on weight(A).�A � (�x)C, use IH on C.�A � (B1�) � � � (Bn�)x, x 2 V . Then s0 is empty.�A � (B1�) � � � (Bn�)(C�)(�x)E.Then TS(A) � (TS(C)�)(�x)TS((B1�) � � � (Bn�)E). By the induction hypothesisTS((B1�) � � � (Bn�)E) is of the form s0 s1~(E) � s0 s1~(A). 27

Lemma 3.5 For all terms A;B and variable x:1. TS(A) � TS(TS(A)) 2. TS(A[x := B]) � TS(TS(A)[x := TS(B)]) 3. A =� TS(A)Proof:1. By induction on the structure of A.2. Induction on the number of symbols in A, using 1.3. By induction on the number of symbols in A. If A � (A1�) � � � (An�)x where x 2 V orA � (�x)A2 then use the induction hypothesis. If A � (A1�) � � � (An�)(B�)(�x)D thenTS(A) � (TS(B)�)(�x)TS((A1�) � � � (An�)D) IH=�(B�)(�x)(A1�) � � � (An�)D =� ((A1�) � � � (An�)D)[x := B] x=2FV (Ai)=�(A1�) � � � (An�)D[x := B] =� (A1�) � � � (An�)(B�)(�x)D 2Corollary 3.6 For all terms A;B, TS(A) =� TS(B) i� A =� B. 2De�nition 3.7 (Shu�e-class and shu�e-equivalence) For a term A, we de�ne [A], the shu�eclass of A, to be fB j TS(A) � TS(B)g. We say that A and B are shu�e-equivalent if [A] = [B].Lemma 3.8 For any A, B, it is decidable whether A 2 [B]. Moreover, if A 2 [B] then A =� B.Proof Follows from Lemma 3.2 and Corollary 3.6. 2The following shows that shu�e-equivalence contains !� and term-reshu�ing of [6].Lemma 3.9 If A !� B or A term-reshu�es to B in the sense of [6] then A and B are shu�e-equivalent.Proof: TS formalizes term-reshu�ing of [6] and the latter captures !�. 2The other way round does not always hold however:Example 3.10 A � (A1�)(A2�)(A3�)(�x)(�y)(�z)A4 and B � (A2�)(A3�)(�x)(�y)(A1�)(�z)A4are not related by !� (9C 6� A however such that B !� C and A!!� C). Moreover, neither A isTS(B) nor B is TS(A), but TS(A) � TS(B).4 Shu�e-reductionIn this section, we introduce shu�e-reduction ;�, show that it is Church-Rosser and that shu�e-equivalence preserves reduction in the sense that if A!� B then A;� B. We show that shu�e-equivalence implies reductional equivalence (on SN terms) and that shu�e-reduction on classesmakes more redexes visible and allows for smaller terms during reductions.De�nition 4.1 (Shu�e-reduction, extended redexes and ,!�)� One-step shu�e-reduction ;� is the least compatible relation generated by:A;� A0 i� 9B 2 [A]9B0 2 [A0][B !� B0]Many-step shu�e-reduction ;;� is the re
exive and transitive closure of ;� and �� is theleast equivalence relation generated by ;;�.� An extended redex starts with the �-item of a ��-couple (i.e. is of the form (C�)s(�x)A wheres is well-balanced). 8

� ,!� is the least compatible relation generated by (B1�)s(�x)B2 ,!� s(B2[x := B1]) for swell-balanced, that is, ,!�-reduction contracts an (extended) redex. ,!,!� is the re
exive andtransitive closure of ,!� and �� the least equivalence relation closed under ,!,!�.Example 4.2 Let A � (z�)(w�)(�x)(�y)y. Then [A] = fA; (w�)(�x)(z�)(�y)yg. Moreover, A;�(w�)(�x)z and A;� (z�)(�y)y.,!,!� has been used in [3, 6] where it was shown to be more general than other generalised notionsof reduction introduced in the literature (such as (g) of Subsection 1.4). Here, we show that ;;�is more general than ,!,!�. Shu�e-reduction captures classical �-reduction and the generalisedreduction of [3, 6]:Lemma 4.3 !� � ,!� �;�.Proof: (A�)(�x)C � (A�);(�x)C ,!� ;C[x := A] � C[x := A]. Also, by Lemma 3.3, we knowthat (A�)s(�x)C 2 [s(A�)(�x)C], and since s(A�)(�x)C !� sC[x := A] we have (A�)s(�x)C ;�sC[x := A]. It is easy to show that these inclusions are strict. 2Corollary 4.4 !!� � ,!,!� �;;�.Remark 4.5 It is not in general true that A ;;� B) 9A0 2 [A]9B0 2 [B][A0 !!� B0]. This canbe seen by the following counterexample:Let A � ((�u)(�v)v�)(�x)(w�)(w�)x and B � (w�)(�u)w. Then A ;� (w�)(w�)(�u)(�v)v ;�B. But [A] has three elements, namely: A, (w�)((�u)(�v)v�)(�x)(w�)x and (w�)(w�)((�u)(�v)v�)(�x)x,[B] = fBg and if A0 2 [A] then the only!� reduct of A0 is (w�)(w�)(�u)(�v)v, which doesn't !�-reduce to B. In Lemma 4.13 however, we show that there is a correspondence between ;;� onclasses and !!� on terms.Lemma 4.6 TS(A) ,!� B i� TS(A)!� B.Proof: This is a direct consequence of Lemma 3.4 2Lemma 4.7 If A;� B then for all A0 2 [A], for all B0 2 [B], A0 ;� B0.Proof: As A ;� B then 9A1 2 [A]9B1 2 [B][A1 !� B1]. Let A0; B0 2 [A]; [B] respectively.Then A1 2 [A0], B1 2 [B0], A1 !� B1. So A0 ;� B0. 2Corollary 4.8 A;� B , TS(A);� TS(B)Remark 4.9 Note that A ,!� B 6) TS(A) ,!,!� TS(B) nor do we have A !� B) TS(A) !!� TS(B). Take for example A and B where A � ((z�u)(z�v)v�)(v�x)(y�)(y�)x and B �(y�)(y�)(z�u)(z�v)v. It is obvious that A !� B (hence A ,!� B) yet TS(A) � A 6,!,!� nor6!!� TS(B) � (y�)(z�u)(y�)(z�v)v.The following lemma helps establish that ;� is Church-Rosser:Lemma 4.10 If A;� B then A =� B.Proof: Say A0 2 [A], B0 2 [B], A0 !� B0. Then by lemma 3.5: A =� TS(A) � TS(A0) =�A0 =� B0 =� TS(B0) � TS(B) =� B. 2Corollary 4.111. If A;;� B then A =� B. 2. A �� B i� A =� B i� A �� B i� TS(A) =� TS(B). 29

Theorem 4.12 (The general Church Rosser theorem for ;;�)If A;;� B and A;;� C, then there exists D such that B ;;� D and C ;;� D.Proof: As A ;;� B and A ;;� C then by Corollary 4.11, A =� B and A =� C. Hence,B =� C and by CR for !!�, there exists D such that B !!� D and C !!� D. But, M !!� Nimplies M ;;� N . Hence we are done. 2As we noted in Remark 4.9, we can have TS(C) !� D where D 6� TS(D). Nevertheless, termreshu�ing preserves �-reduction. This is a generalisation of the result in [6] to equivalence classes.Lemma 4.13 If A;B 2 T and A ;� B then (9B0 2 [B])[TS(A) !� B0]. In other words, thefollowing diagram commutes: TS(A)A B0 2 [B]B!�;�Proof: We prove by induction on the structure of A0 that if A0 !� B0 2 [B], then for some B00,TS(A0)!� B00 2 [B]. The compatibility cases are easy, distinguish cases according to the de�nitionof TS. If A0 � (C�)(�x)E and B0 � E[x := C] 2 [B] then TS(A0) � (TS(C)�)(�x)TS(E) !�TS(E)[x := TS(C)] and by Lemma 3.5, TS(TS(E)[x := TS(C)]) � TS(E[x := C]) 2 [B]. 2Corollary 4.14 If A;;� B then there exist A0; A1; : : : ; An such that[(A � A0) ^ (TS(A0)!� A1) ^ (TS(A1)!� A2) ^ � � � ^ (TS(An�1)!� An 2 [B])]Proof: By induction on ;;�. 2Now we show that shu�e-equivalence preserves strong normalization:Lemma 4.15 Let A 2 SN;� . Then for all A0 2 [A], A0 2 SN;� .Proof: 8B;A0 ;� B implies A;� B by Lemma 4.7 Hence, A0 must be 2 SN;� . 2Moreover, shu�e-reduction preserves �-strong normalization:Lemma 4.16 A 2 SN;� () A 2 SN!� .Proof: As !��;�, =) is immediate. (= is by using a result of [19] which states thatthe length of the longest reduction of a term is invariant by �-equivalence and by noting thatshu�e-reduction is isomorphic to �-reduction modulo �-equivalence. Another way of showing (=is by induction on (d(A); A) ordered by the lexicographic product ordering where d(A) denotesthe maximum length of a �-reduction of A to its �-normal form. Case d(A) = 0 is trivial. Cased(A) 6= 0, we use induction on the structure of A as given in Lemma 2.3. The interesting case whenA � (A1�) � � � (An�)(B�)(�x)D, for n � 0 can be done by noting that (A1�) � � � (An�)(B�)(�x)D !�(A1�) � � � (An�)fD[x := B]g which satis�es IH. Another way is to follow the lines of [5]. 2Now we show that shu�e-equivalence for SN terms implies reductional equivalence:Lemma 4.17 Let A 2 SN;� . Then for all A0 2 [A], A0 �inf A.Proof: It is su�cient to show that (B�)sC �inf s(B�)C if s is well-balanced and (B�)sC 2SN;� . We prove this by induction on the maximal length of ;�-reduction paths of (B�)sC.If (B�)sC is in normal form then s � ; so (B�)sC � s(B�)C. If (B�)sC is not in normalformthen contraction of some redex yields a term which is either of the form (B0�)s0C 0 (if the redex wasinside B, s or C) or of the form sC 0 if the redex consisted of (B�) and its partnered item.Then in the �rst case s(B�)C can reduce to s0(B0�)C 0 by contracting the corresponding redex,now by the induction hypothesis (B0�)s0C 0 is reductionally equivalent to s0(B0�)C 0. In the secondcase, s(B�)C also reduces to sC 0. Hence (B�)sC is reductionally equivalent to s(B�)C. 210

Hence we have provided a relation between terms which approximates reductional equivalence.Here are some facts on this relation and on reductional equivalence:Fact 4.18 The following holds:1. Let A 2 SN;� . TS(A) � TS(B) =) A �inf B (Lemma 4.17).2. TS(A) � TS(B) 6=) A �inf B (Example 4.19).3. A �inf B 6=) TS(A) � TS(B) (Example 4.20 below).4. TS(A) � TS(B) is decidable (Lemma 3.2).5. A �inf B is not decidable (Conjecture 1.6).6. Let A 2 SN;� . Then for all A0 2 [A], A0 2 SN;� .Example 4.19 Take the terms A and B where A � (a�)(b�)(�x)(�y)((�z)(z�)z�)(�z)(z�)z andB � (b�)(�x)(a�)(�y)((�z)(z�)z�)(�z)(z�)z. These terms read in classical notation (�x:�y:
)barespectively (�x:(�y:
)a)b where
 � (�z:zz)(�z :zz). Now, TS(A) � TS(B) but A 6�inf B sincecontracting
 will not result in syntactically equivalent terms. This shows that one cannot dropthe assumption that A is strongly normalizing.Example 4.20 Let A � ((a�)(�x)x�)(�y)y and B � (a�)(�x)(x�)(�y)y. A �inf B but TS(A) 6�TS(B). The same holds for the terms (a�)(�y)(y�)y and (a�)(�y)(y�)a.We shall now show that due to the fact that shu�e-reduction on classes makes more redexes visible,it allows for smaller terms during reductions.Example 4.21 Let M � (�x:�y:y(Cxx � � � x))B(�z:u) where B is a BIG term. Then M !�(�y:y(CBB � � �B))(�z:u) !� (�z:u)(CBB � � �B)!� u and u is in normal form. Now the �rst andsecond reducts both contain CBB � � �B, so they are very long terms. Shu�e reduction allows us toreduceM in the following way: TS(M) � (�x:(�y:y(Cxx � � � x))�z:u)B !� (�x:(�z:u)(Cxx � � � x))B!� (�x:u)B !� u, and in this reduction all the terms are of smaller size than M ! So shu�ereduction might allow us to de�ne clever strategies that reduce terms via paths of relatively smallterms. Note also that the length of the reduction path to normal form doesn't change.5 ConclusionMany new notions of reductions in the �-calculus have recently been proposed. Most of thesenotions reduce one term to another with the the same reductional behaviour. The only di�erenceis that some potential future redexes are visible in the new term when they were not in the old.This paper uni�es all this work by looking for the class of reductionally equivalent terms. Sucha class is conjectured to be undecidable but a decidable approximation of it is found which doesindeed capture the existing new notions of reduction. We believe that our shu�e-equivalence isthe closest decidable approximation to reductional equivalence. Moreover, if A ! B where !is a new notion of reduction given by the existing accounts (such as those of Moggi, Ariola etal,Regnier, Kfoury and Wells, Vidal, Kamareddine and Nederpelt, etc) then A and B belong to thesame shu�e-equivalence class under our apoproach of this paper. Furthermore, shu�e-equivalenceclasses partition �-equivalence classes into smaller parts.In addition to the many notions of reduction where A ! B implies A and B have the samereductional behaviour, we �nd many extensions of �-reduction !e where if A!� B then A!e B11

and where the equivalence relation generated by!e is just �-equality. These extensions make moreredexes visible and hence allow for more
exibility in reducing a term.We propose a generalisation of these extensions which we call shu�e-reduction. Shu�e-reductiondoes indeed accommodate the existing accounts and achieve their goals. In particular, we showthat using shu�e-reduction we indeed may avoid size explosion without the cost of a longer reduc-tion path, that it has the Church-Rosser property, and that the equivalence relation generated byshu�e-reduction is just �-equality.We used the item-notation to give a clearer description of shu�e-equivalence and shu�e-reduction. We think that the item-notation is a good candidate for answering the two questionsposed in the conclusions of [19] concerning the existence of a syntax for terms realising shu�e-equivalence (which Regnier [19] calls �-equivalence).References[1] Z.M. Ariola, M. Felleisen, J. Maraist, M. Odersky, and P. Wadler. A call by need lambda calculus. Conf. Rec.22nd Ann. ACM Symp. Princ. Program. Lang. ACM, 1995.[2] H. Barendregt. �-calculi with types. Handbook of Logic in Computer Science, II, 1992.[3] R. Bloo, F. Kamareddine, and R. Nederpelt. The Barendregt Cube with De�nitions and Generalised Reduction.Information and Computation, 126 (2):123{143, 1996.[4] P. de Groote. The conservation theorem revisited. Int'l Conf. Typed Lambda Calculi and Applications LNCS,664, 1993.[5] F. Kamareddine. A reduction relation for which postponement of k-contractions, conservation and preservationof strong normalisation holds. Submitted.[6] F. Kamareddine and R. Nederpelt. Generalising reduction in the �-calculus. Journal of Functional Programming,5(4):637{651, 1995.[7] F. Kamareddine and R. Nederpelt. A useful �-notation. Theoretical Computer Science, 155:85{109, 1996.[8] F. Kamareddine and A. R��os. A �-calculus �a la de Bruijn with explicit substitutions. Proceedings of PLILP'96.LNCS, 1140:378{392, 1996. To appear.[9] M. Karr. Delayability in proofs of strong normalizability in the typed �-calculus. Mathematical Foundations ofComputer Software, LNCS, 185, 1985.[10] A.J. Kfoury, J. Tiuryn, and P. Urzyczyn. An analysis of ML typability. ACM, 41(2):368{398, 1994.[11] A.J. Kfoury and J.B. Wells. A direct algorithm for type inference in the rank-2 fragment of the second order�-calculus. Proc. 1994 ACM Conf. LISP Funct. Program., 1994.[12] A.J. Kfoury and J.B. Wells. Addendum to new notions of reduction and non-semantic proofs of �-strongnormalisation in typed �-calculi. Technical report, Boston University, 1995.[13] A.J. Kfoury and J.B. Wells. New notions of reductions and non-semantic proofs of �-strong normalisation intyped �-calculi. LICS, 1995.[14] Z. Khasidashvili. The longest perpetual reductions in orthogonal expression reduction systems. Proc. of the 3rdInternational Conference on Logical Foundations of Computer Science, Logic at St Petersburg, 813, 1994.[15] J. W. Klop. Combinatory Reduction Systems. Mathematical Center Tracts, 27, 1980.[16] E. Moggi. Computational �-calculus and monads. LICS'89, 89.[17] R. P. Nederpelt, J. H. Geuvers, and R. C. de Vrijer. Selected papers on Automath. North-Holland, Amsterdam,1994.[18] L. Regnier. Lambda calcul et r�eseaux. PhD thesis, Paris 7, 1992.[19] L. Regnier. Une �equivalence sur les lambda termes. Theoretical Computer Science, 126:281{292, 1994.[20] A. Sabry and M. Felleisen. Reasoning about programs in continuation-passing style. Proc. 1992 ACM Conf.LISP Funct. Program., pages 288{298, 1992.[21] M. S�rensen. Strong normalisation from weak normalisation in typed �-calculi. Information and Computation.To appear.[22] D. Vidal. Nouvelles notions de r�eduction en lambda calcul. PhD thesis, Universit�e de Nancy 1, 1989.[23] H. Xi. On weak and strong normalisations. Technical Report 96-187, Carnegie Mellon University, 1996.12

