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Abstract

We study the position of the AuTOMATH systems within the framework of Pure Type
Systems (PTSs). In [1,15], a rough relationship has been given between AuToMATH
and PTSs. That relationship ignores three of the most important features of Au-
TOMATH: definitions, parameters and Il-reduction, because at the time, PTSs did
not have these features. Since, PTSs have been extended with these features and
in view of this, we revisit the correspondence between AuToMATH and PTSs. This
paper gives the most accurate description of AuTomaTH as a PTS so far.

1 Introduction

The Automath systems are the first examples of proof checkers, and in this
way they are predecessors of modern proof checkers like Coq [I3] and Nuprl
[10]. The project started in 1967 by N.G. de Bruijn:

“it was not just meant as a technical system for verification of mathematical texts, it

was rather a life style with its attitudes towards understanding, developing and teaching
mathematics.” ([8]; see [24] p. 201)
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Thus, the roots of AutomaTtn are not to be found in logic or type theory,
but in mathematics and the mathematical vernacular [7]. For some years, de
Bruijn had been wondering what a proof of a theorem in mathematics should
be like, and how its correctness can be checked. The development of computers
in the sixties made him wonder whether a machine could check the proof of a
mathematical theorem, provided the proof is written in a very accurate way.
De Bruijn developed the language AUTOMATH for this purpose. This language
is not only (according to de Bruijn [6]) “a language which we claim to be
suitable for expressing very large parts of mathematics, in such a way that the
correctness of the mathematical contents is guamnteed as long as the rules of
grammar are obeyed’ but also “very close to the way mathematicians have
always been writing”. The goals of the AuTomaTH project were given as:

“1. The system should be able to verify entire mathematical theories.

2. The system should remain very general, tied as little as possible to any set of rules
for logic and foundations of mathematics. Such basic rules should belong to material
that can be presented for verification, on the same level with things like mathematical
axioms that have to be explained to the reader.

3. The way mathematical material is to be presented to the system should correspond to
the usual way we write mathematics. The only things to be added should be details
that are usually omitted in standard mathematics.” ([8]; see [24] pp. 209-210)

Goal 1 was achieved: Van Benthem Jutting [2] translated and verified Lan-
dau’s “Grundlagen der Analysis” [23] in Autromatn and Zucker [29] formalised
classical real analysis in AUTOMATH.

As for goal 2, de Bruijn used types and a propositions as types (par)
principld¥ that was somewhat different from Curry and Howard’s [ITy17]).

De Bruijn spent a lot of effort on goal 3 and studied the language of math-
ematics in depth [7]. Auromarn features that helped him in goal 3 include:

* The use of books. Just like a mathematical text, AuromaTh is written line
by line. Each line may refer to definitions or results given in earlier lines.

* The use of definitions and parameters. Without definitions, expressions
become too long. Also, a definition gives a name to a certain expression
making it easy to remember what the use of the definiens is.

As Automatn was developed independently from other developments in
the world of type theory and A-calculus, and as it invented powerful typing
ideas that were later adopted in influential type systems (cf. [I]), there are
many things to be explained in (and learned from) the relation between the
various AutomaTH languages and other type theories. Type theory was origi-
nally invented by Bertrand Russell to exclude the paradoxes that arose from
Frege’s “Begriffschrift” [14]. It was presented in 1910 in the famous “Principia
Mathematica” [28] and simplified by Ramsey and Hilbert and Ackermann. In
1940, Church combined his theory of functions, the A-calculus, with the sim-
plified type theory resulting in the influential “simple theory of types” [9]. In
1988-1989, Berardi [4] and Terlouw [27] gave as an extension of Barendregt’s
work [I, a general framework for type systems, which is at the basis of the so-

4 The first practical use of the propositions-as-types principle is found in AUTOMATH.
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called Pure Type Systems (PTSs [1]). PTSs include many of the type systems
that play an important role in programming languages and theorem proving.

In this paper we focus on the relation between Avromaru and Pure Type
Systems (PTSs). Both [1] and [T5] mention this relation in a few lines, but as
far as we know a satisfactory explanation of the relation between Auromarn
and PTSs is not available. Moreover, both [T] and [I5] consider Auromaru
without one of its most important mechanisms: definitions and parameters.
But definitions and parameters are powerful in Auromarn. Even the Automarn
system Par, which roughly consists of the definition system of Auromarh only,
is able to express some simple mathematical reasoning (cf. Section 5 of [6]).
According to de Bruijn [§] this is “due to the fact that mathematicians worked
with abbreviations all the time already”. Moreover, recent developments on the
use of definitions and parameters in Pure Type Systems [I826JT20] justify
renewed research on the relation between Avromarn and PTSs.

* In Section Pl we give a description of Aut-68, a basic AuToMAaTH system.

* In Section [ we discuss how we can transform Aut-68 into a PTS. In doing
S0, we notice that AuT-68 has some properties that are not usual for PTSs:
e Aut-68 has n-reduction; e Aur-68 has Il-application and Il-reduction (as
it does not distinguish A and II); e AuT-68 has a definition system; e Aut-
68 has a parameter mechanism. We do not consider n-reduction as an
essential feature of Auromath, and focus on the definition and parameter
mechanisms, which are the most characteristic type-theoretical features of
AvutomaTH. In systems with [I-application, II behaves like A, and there is a
rule of II-reduction: (Ilz:A.B)N —y Blz:=N]|. In Auromars, both I1z:A.B
and Az:A.B are denoted by [z:A]B. It is not easy to see whether [z:A|B
represents A\z:A.B or Ilz:A.B. Fortunately, this is not a problem for Aur-68.

e In Section H] we present a system A68 that is (almost) a PTS. We show that
it has the usual properties of PTSs and we prove that A68 can be seen as
Avut-68 without n-reduction, II-application and II-reduction.

2 Description of Avromarn

During the Avromarn-project, several Auromaru-languages were developed.
They all have two mechanisms for describing mathematics. The first is es-
sentially a typed A-calculus, with the important features of A-abstraction,
A-application and S-reduction. The second mechanism is the use of defini-
tions and parameters. The latter is the same for most Auromaru-systems, and
the difference between the various systems is mainly caused by the A-calculi
used. In this section we will describe the system Aur-68 [3J5/T2] which not
only is one of the first AuTomaTH-systems, but also a system with a relatively
simple typed A-calculus, which makes it easier to focus on the (less known)
mechanism for definitions and parameters. We start with a review of PTSs.
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2.1 Pure Type Systems

Definition 2.1 Let V be a set of variables and C a set of constants (both
countably infinite). The set T(V, C) (or T, if it is clear which sets V and C are

used) of typed lambda terms with variables from V and constants from C is
defined by the following abstract syntax: T ::=V | C | TT | A\V:T.T | IV:T.T.

We use z, 9, z,a, B as meta-variables over V. In examples, we sometimes
want to use some specific elements of V; we use typewriter-style to denote
such specific elements. So: x is a specific element of V; while = is a meta-
variable over V. The variables x, y, z are assumed to be distinct elements of
V (so x # y etc.), while meta-variables z, y, 2, ... may refer to variables in the
object language that are syntactically equal. We use A, B,C,...,a,b,... as
meta-variables over T. rv(A), the set of free variables of A, and substitution
A|z:=B] are defined in the usual way. We use = to denote syntactical equality
between typed lambda terms. Terms that are equal up to a change of bound
variables are considered to be syntactically equal. We assume the Barendregt
Convention [1] where bound variables are chosen to differ from free ones.

Note 1 « We write AB; - -- By, as shorthand for (---((AB1)Bs) -+ - By,).

o We write mrx:A.B, or m x;:A;. A, as shorthand for
mx: AL (Tre: Ao (- - - (X An. A) - - +)); for m e {\ 11}

» We use the abbreviation A[z;:=B;|",. to denote A[xp:=By]- - [Tn:=By).
If m > n then Alx;:=B;|,,, denotes A. We write Alx:=B] for Alz;:=B;|"_,.

Definition 2.2 (f-reduction) The relation —4 is given by the contraction
rule (Az:A1.As) B —3 Ao[z:=B] and the usual compatibility. —»4 is the small-
est reflexive transitive relation that includes —g; =g is the smallest equivalence
relation that includes —5. By A —} B we indicate that A —5 B, but A # B.

A term with no subterms of the form (Az:A;.Ay)B is in -normal form,
or a normal form if no confusion arises. We write A —>Iﬂ1f B (resp. A —»gf B)
if A —4 B (resp. A —3 B) and B is in S-normal form.

Definition 2.3 * A specification is a triple (S, A, R), such that S C C,
AC SxSand RC S xS xS. The specification is singly sorted if A and
R are (partial) function from S — S, and S x § — S resp. We call S the
set of sorts, A the set of azioms, and R the set of (II-formation) rules.

» A context is a finite (maybe empty) list x1:A41,...,z,: A, (written x:A) of
variable declarations. {x1,...,z,} is the domain pom (x:A) of the context.
The empty context is denoted (). We use I', A as meta-variables for contexts.

Definition 2.4 (Pure Type Systems) Let & = (S, A, R) be a specifica-
tion. The Pure Type System A& describes how judgements I' g A : B (or
' A: B, ifit is clear which & is used) can be derived. I' - A : B states that
A has type B in context I'. The typing rules are given in Figure [Il

A context I' is legal if there are A, B such that ' = A : B. A term A is
4
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(axiom) () F s1:s9 (s1,52) € A

'FA:s
(Start) m X ¢ DOM (F)
I'A:B '-C:s
(weak) r2.0F A B x ¢ powm (I)
'FA:s Iz:AFB:s
() r I—1 (Tlz:A.B) : s3 : (51,52, 55) € R

[Lz:AFb: B ['F (lz:A.B) : s
I'F (Az:AD) : (I1z:A.B)
'k F: (Ilz:A.B) F'Fa:A
'k Fa: Blz:=a]
'HA:B I'-B':s B =3B’
'FA:B
Fig. 1. The typing rules of PTSs

()

(appl)

(conv)

legal if there are I', B such that ' A: Bor '+ B : A.
An important class of PTSs is formed by the eight PTSs of the Barendregt
Cube [1]. These systems all have S = {x,0}, A = {(x:0)}, but differ on R.

2.2  Books, lines and expressions of AUTOMATH

In Auromarh, a mathematical text is thought of as being a series of consecutive
“clauses”. Each clause is expressed in AuromaTh as a line. Lines are stored in
so-called books. For writing lines and books in Aur-68 we need: e The symbol
type e A set V of variables; ® A set C of constants; @ The symbols () [ ]
— , . We assume V and C are infinite, VN C = @ and type ¢ V UC.

Definition 2.5 (Expressions) Define the set £ of Aur-68-ezpressions by:
(variable) If z € V then z € £.

(parameter) If a € C, n € N (n = 0 is allowed) and ¥,...,3, € & then
a(Xq,...,5,) € E. We call Xy,..., %, the parameters of a(Xq,...,%5,).

(abstraction) If z € V, ¥ € EU {type} and Q € & then [2:X]Q € £.
(application) If 3;,%, € £ then (X)X € £.

Remark 2.6 ¢ The Aut-68-expression [z:3]Q2 is Avromars-notation for ab-
straction terms. In PTS-notation one would write either Az:%.Q2 or I1z:3.€).
In a relatively simple Automatu-system like AuT-68, it is easy to determine
whether Az:3.Q or IIz:X.Q is the correct interpretation for [z:X]€2. This is
harder in more complex AvromarH-systems like auT-QE (see Section H).

» The Aur-68-expression (¥)Y; is Auromars-notation for the application of

5
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the “function” X; to the “argument” 5. In PTS-notation: 2122

We define rv(A) as for PTSs adding that rv(a(Sy, ..., 5,)) & Ui, 7v(%).

If Q,%,...,%, are expressions (in &), and z1,...,z, are distinct variables,
then Q[z1,...,2,:=%1,...,%,] denotes the expression Q (in &) in which all
free occurrences of x4, . . ., x,, have simultaneously been replaced by 31, ..., %,.

Correctness of this definition is shown by induction on the structure of 2. We
define type[zy,...,T,:=%1,...,5,] as type.

Definition 2.7 (Books/lines) An Aut-68-book (or book) is a finite list (pos-
sibly empty) of (Aur-68)-lines. If [y, ..., [, are the lines of book B, we write
B=1I,...,lp. An Aur-68-line (or line) is a 4-tuple ('; k; X1; Xo) where:

 [' is a context, i.e. a finite (possibly empty) list z1:04, ..., Z,:q,, where the
x;s are different elements of V and the ;s are elements of £ U {type};

* ¥; can be (only): o The symbol — (if £ € V); o The symbol pn (if k¥ € C)
(pn stands for “primitive notion”); o An element of £ (if £ € C);

* k is an element of V U C; and X is an element of £ U {type}.

Remark 2.8 Three sorts of Automath-lines (see Example 29):

(i) (T';k;—; Xs) with & € V. This is a variable declaration of the variable k
having type 5. This does not really add a new statement to the book,
but these declarations are needed to form contexts.

(ii) (I';k;pn;Xy) with £ € C. This line introduces a primitive notion: A
constant k of type Yo. Constant k& can act as a primitive notion (e.g.,
introducing the number 0, or the type of natural numbers), or as an
axiom. The introduction of k& is parametrised by the context I'. For in-
stance, when introducing the primitive notion of “logical conjunction”,
we do not use a separate primitive notion for each possible conjunction
and(A, B). Instead, we use one primitive notion and, to which we can add
two propositions A and B as parameters when needed to form the proposi-
tion and(A, B). Hence, we introduce and in a context I' = x:prop, y:prop.
Given propositions A, B we can form the Aut-68-expression and(A4, B);

(iii) (I';k;%1;32) with £ € C and X; € £. This line introduces a definition.
The definiendum k is defined by the definiens ¥; and has type ¥5. Defi-
nitions are parametrised like primitive notions. They help to clarify the
book structure, make expression manipulations efficient, and abbreviate
long expressions by a name. E.g., 7 names S(S(S(S(S(S(S(0)))))))-

Example 2.9 In Figure Pl we give an example of an auromars-book that
introduces some elementary notions of propositional logic. We have numbered
each line in the example, and use these line numbers for reference in our

5 Note the unusual order of “function” ¥; and “argument” ¥,. The advantages of writing
(22)X%; instead of X1, are extensively discussed in [21].
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& | prop |PpN type (1)

%] x — prop (2)
x|y | — prop (3)

X,y | and |PN prop (4)

x | proof | PN type (5)

X,y px — proof (x) (6)

X,y ,pX Py — proof (y) (7)
y,PX,py | and-I | pN proof (and) (8)
X,y | pxy |— proof (and) 9)
X,¥,pxy | and-01 | PN proof (x) (10)
X,¥,pxy | and-02 | PN proof (y) (11)
x| prx | — proof (x) (12)

x,prx | and-R | and-I(x,x,prx,prx) proof (and(x,x)) (13)
X,y,pxy | and-S | and-I(y,x,and-02,and-01) | proof(and(y,x)) (14)

Fig. 2. Example of an AuTomMATH-book

comments below. To keep things clear, we have omitted the types of the
variables in the context. The book consists of three parts:

e In lines 1-5 we introduce some basic material:

- o=

The type prop (of propositions) is a primitive notion.

We declare a variable x of type prop. x will be used in the book;

We define a variable y of type prop within the context x:prop.

Given propositions x and y, we introduce a primitive notion, the conjunc-
tion and(x,y) of x and y;

Given a proposition x we introduce the type proof (x) of the proofs of x
as a primitive notion.

* In lines 6-11 we show how we can construct proofs of propositions of the
form and(x,y), and how we can use proofs of such propositions:

6.

7.
8.

Given propositions x and y, we assume that we have a px € V of type
proof (x). lLe., the variable px represents a proof of x;

We also assume a proof py of y;

Given propositions x and y, and proofs px and py of x and y, we want to
conclude that and(x,y) holds. This is a natural deduction axiom called
and-I (and-introduction). and-I(x,y,px,py) is a proof of and(x,y), so
of type proof (and(x,y)). In line 8, proof(and) is the type of and-I
instead of proof (and(x,y)). Automath does this to keeps lines short.
To express how we can use a proof of and(x,y), first we introduce a

7
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variable pxy that represents an arbitrary proof of and(x,y);

10. As we want x to hold whenever and(x,y) holds, we introduce an axiom
and-01 (and-out, first and-elimination). Given propositions x,y and a
proof pxy of the proposition and(x,y), and-01(x,y,pxy) is a proof of x;

11. Similarly, we introduce an axiom and-02 representing a proof of y;

* We can now derive some elementary theorems:

12. We want to derive and(x,x) from x. I.e., construct a proof of and(x,x)
from a proof of x. In line 6, we introduced a variable px for a proof of x
in the context x,y. As we do not want a second proposition y to occur in
this theorem, we declare a new proof variable prx, in the context x;

13. We derive our theorem: The reflexivity of logical conjunction. Given a
proposition x, and a proof prx of x, we can use the axiom and-I to find
a proof of and(x,x): we can use and-I(x,x,px,px) thanks to line 8. We
give a name to this proof: and-R. If, anywhere in the sequel of the book, X
is a proposition, and 2 is a proof of ¥, we can write and-R(%, 2) for a proof
of and(X, X). This is shorter, and more expressive, than and-I(%, 3, Q,Q);

14. We show and is symmetric: Whenever and(x,y) holds, we have and (y,x).
Given propositions x,y and a proof pxy of and(x,y), we can form proofs
and-01(x,y,pxy) of x and and-02(x,y,pxy) of y. We feed these proofs
“in reverse order” to the axiom and-I: and-I(y,x,and-02,and-01) rep-
resents a proof of and(y,x). The expressions and-02 and and-01 must
be read as and-02(x,y,pxy) and and-01(x,y,pxy).

2.8 Correct books

Not all books are good books. If (T';k;3;;3,) is a line of a book 9B, the
expressions X1 and ¥y (as long as 3 is not px or —, and X5 is not type) must
be well-defined, i.e. the elements of V U C occurring in them must have been
established (as variables, primitive notions, or defined constants) in earlier
parts of 8. The same holds for the type assignments z;:a; of I'. Moreover, if
31 is not pN or —, then Y; must be of the same type as k, hence ¥; must be
of type 3y (within context I'). Finally, there should be only one definition of
any object in a book, so k£ should not occur in earlier lines. So we need notions
of correctness and of typing (with respect to a book and/or a context).

We write 8; @ - ok to indicate that book B is correct, and B;I" F ok to
indicate that context I' is correct with respect to the (correct) book B [f] We
write B; "' - X; : ¥y to indicate that ¥ is a correct expression of type ¥, (or
simply a correct expression) with respect to 8 and I'. We also say 3; : 3, is a
correct statement with respect to ‘B and I'. We write FAyT_gs if a confusion
of system arises. The following two interrelated definitions are based on [12].

Definition 2.10 (Correct books and contexts) A book B and a context
I are correct if B; - ok can be derived with the rules below (=pq is given

6 As the empty context will be correct with respect to any correct book, this does not lead
to misunderstandings.
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in Section Z4l The rules use correct statements of Definition ZZTTI):

(axiom) ;D F ok
By, (T2, — ), By ' F ok
By, (T;2;—; ), By; T, 2 - ok
B[+ ok
B, ([';2;—; type); ¥ - ok
B; 1" - X5 : type
B, ([ 2;—;29); & F ok
B: ' F ok
B, ('; k; pn; type); D F ok
B;[' - X5 : type
B, (I'; k;pN; X9); @ - oK
B; 1" - X @ type
B, (I'; k; Xq; type); @ F ok
B; Ty :type B; T X, BTy =p 3
B, (' k; 315 32); @ F ok

In the (book ext.) rules, we assume z € V and k£ € C do not occur in 8 or I'.

(context ext.)

(book ext.: varl)

(book ext.: var2)

(book ext.: pnl)

(book ext.: pn2)

(book ext.: defl)

(book ext.: def2)

Definition 2.11 (Correct statements) A statement B; ' - X : Q is correct
if it can be derived with the rules below (the start rule uses the notions of
correct context and correct book as given in Definition ZZTT).

B [, z:a,'s - ok

tart
(start) B: ',z F 2:cx
B =By, (T1:00, ..., Tpiy; b; Q15 Q5), Bo
( arameters) iB, F |_ Ei:ai[acl, e ,.IZ’,IZ:EI, ceey Ezfl](l = ]_, ceay TL)
P BT F b(Z1,... %) Qalat, o Tni=51, ..., 5]
B;[' - Xy type B; [, 2:3, - Qy:type
bstr.1
(abstr.1) BT+ [2:31]Q : type
B;['FX:type B, 23 F Qpitype BT, 23 F 3o:()y
bstr.2
(abstr.2) BT E [2:351]2 ¢ [2:5]
(application) BT F Xy [2:0]Q BT Xg: )y
PP BT - (D)5, : Qola=2)]
(conversion) B:T'HX: B; ' - (Qy:type B; ' =€ =4 29

B I'EX:Q
When using the parameter rule, we assume that B; " - ok, even if n = 0.

Lemma 2.12 The book of Example[Z3 (see Figure[d) is correct.
9
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2.4 Definitional equality

We need to describe the notion =gq (“definitional equality”). This notion
is based on both the definition and the abstraction/application mechanisms
of Aur-68. The abstraction/application mechanism provides the well-known
notion of S-equality, originating from (X)[z:Q2]Q; —4 Q[z:=X]. We need to
describe the definition mechanism of Aur-68 via the notion of d—equality.

Definition 2.13 (d-equality) Let B;' - X : ¥'. We define the d-normal
form nfq(X) of ¥ with respect to B by induction on the length of B. Assume
nfy(X) has been defined for all B’ with less lines than B and all correct X
with respect to 8’ and a context I'. By induction on the structure of X:

o If ¥ is a variable x, then nfy(X) © o

* Now assume ¥ = b(2,...,€,), and assume that the normal forms of the
;s have already been defined. Determine a line (A;b;Z1;=s) in the book
B (there is exactly one such line, and it is determined by b). Write A =

T1:Q, ..., Tp:0y. Distinguish:

o =i = —. This case doesn’t occur, as b € C;

o Z; = px. Then define nfy(Z) % b(nfs(21), . .., nfa());

o Zp is an expression. Then Z; is correct with respect to a book 9B’ that

contains less lines than B (B’ doesn’t contain the line (A;b; Z1; =), and
all lines of B’ are lines of B), and we can assume nfy(Z) has already been

defined. Now define nfy(2) & nfy(2,)[z1, . .., zp:=nfy(Q),. .., nfg(U)];

o If ¥ = [2:]Q then nfy(S) ¥ [zenfy (Q1)]nfs (Q);

o« If ¥ = (2,)Q; then nfy(S) ' (nfy(Q))nfy ().

Write 37 =q X if nfg(3;) = nfd(E2) and =4 for the smallest equivalence
relation containing =4 and =g.

Definition 2.14 ¥; and Y, are called definitionally equal (with respect to a
book %) if El =8d 22.

Instead of Definition T3 d-equality can be given via a reduction relation.
Definition 2.15 (d-reduction) Let B be a book, I' a correct context with

respect to B, and ¥ a correct expression with respect to B;I". We define
Y —s Q2 by the usual compatibility rules, and

7 This definition depends on the definition of derivability F which in turn depends on the
definition of =gq. The definitions of correct book, correct line, correct context, correct
expression and =gq should be given within one definition, using induction on the length of
the book. This would lead to a correct but very long definition, and that is the reason why
the definitions are split into smaller parts (in this paper as well as in [12]).

8 Note that the d-normal form nfq(X) of a correct expression ¥ depends on the book B,
and to be completely correct we should write nfges (X) instead of nfy(X). We will, however,
omit the subscript 28 as long as no confusion arises.

10
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(0) If ¥ = b(%q,...,%,), and B contains a line (z1:04,...,Tn:0;b0;Z1;2))
where Z; € &€, then ¥ —4 Zq[z1,. .., 20 =1, ..., Xy

We say that X is in d-normal form if for no expression €2, ¥ —; €2, and
define —», —»} and =4 as usual. —5 depends on B, but as before, we drop
B if no confusion occurs. The relations =4 and =; are the same:

Lemma 2.16 fe (Church-Rosser) If Ay =5 As then there is B such that
Ay =5 B and Ay —s B. 2e nfy(X) is the unique d-normal form of X.
30 ¥ =5 Q if and only if X =4 €. 4o —5 is strongly normalising.

Definition 2.17 ¢ A book ‘B is part of a book B’, denoted as B C B’, if all
lines of B are lines of 8.

* A context I' is part of a context I, notation I' C I, if all declarations z:«
of I" are declarations in I".

Lemma 2.18 (Weakening) If B;: '3 :Q, B C B [ CI' and BT I
ok then B";T"EF X : Q.

3 From Aur-68 towards a PTS )\68

To describe AuT-68 as a PTS A\68, we translate AuT-68-expressions to A-terms:

Definition 3.1 Recall that Md V are the set of terms and variables for

PTSs. We define a mapping [...] from the correct expressions in & (relative

to a book B and a context I') to T. We assume that CUYV C V.
def ;=

ez sforzeV;eb(Sr,. .., 5 LT T, 0 (AT L TQ; 0 Type ¥ x;
o [2:3]Q U 2:3.0 if [2:3]Q has type type, otherwise [z:X](2 LS 0;

With this translation in mind, we want to find a type system A68 that
“suits” AuT68, i.e. if X is a correct expression of type {2 with respect to a
book B and a context ', then we want B, I" - X : Q to be derivable in
A68, and vice versa. Here, B’ and I are some suitable translations of B and
I'. The search for a suitable A\68 will focus on three points: II-formation and
parameter types; constants and variables; and definitions.

3.1 The choice of the T1-formation rules and the parameter types Yx:A.B
As type = *, Definition ZTT] clarifies which Il-rules are implied by the ab-

straction mec%arlgis}fnzof AuT-68: BT o b O
The rule — 1:type ! 1:type

B; T F [2:X1]Q : type
B,TF X« B,T,2:5 F Q%
B,T F (Mz:X,.0) : *
It is, however, not immediately clear which Il-rules are induced by the
parameter mechanism of Aur-68. Let ¥ = b(%4,...,%,) be a correct ex-
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pression of type 2 with respect to a book B and a context I'. By Defi-

nition there is a line (z1:0,...,%n:0p;0;21;22) in B such that each
>; is a correct expression with respect to 8 and I', and has a type that
is definitionally equal to o;|zy,...,z; 1:=%1,...,%; 1]. We also know that

Q =pgq Safz1,.. ., 2:=21,...5,]. Now X = b%;---%,, and, assuming that
we can derive in A\68 that X; has type &;[x1,...,Zi_1:=X1, ..., X;_1], it is not
unreasonable to assign the type Ilzi:aq---Iz,:0ntob.2,. We will abbrevi-
ate this last term by H?Zl Z;®;.29. Then we can derive (using n times the
application rule that we will introduce for A68) that ¥ has type 2 in \68.

It is important to notice that the type of b, ]\, T;:04.29, does not neces-
sarily have an equivalent in AuT-68, as in AuT-68 abstractions over type are
not allowed (only abstractions over expressions ¥ that have type as type are
possible — cf. Definition EZTT]). In other words, the type of b, [T}, ;:05.Zs, is
not necessarily a first-class citizen of AuT-68 and should therefore have special
treatment in A68. This is the reason to create a special sort A\, in which these
types of Aur-68 constants and definitions are stored. This idea originates from
van Benthem Jutting and was firstly presented in [I].

If we construct Ilz,:0,,.Z; from Z,, we must use a rule (si, so, 53), where
S1, S2, 83 are sorts. Sort s; must be the type of @,. As «a, = type or a,
has type type, we must allow the possibilities s; = % and s; = 0. Similarly,
=9 = type or =, has type type, so we also allow sy = % and s, = 0. As we
intended to store the new type in sort A\, we take s3 = A.

For similar reasons, we introduce rules (x, A, A) and (0, A, A) to construct
| z;:05.29 from I1z,,:@,.2, for n > 1. Hence, we have the IT-rules:
(G, %, %); (, 0%, A); (O, %, A); (%, 0, A); (3,0,4); (%, A, A); (O, A, A).

We do not have rules of the form (A, sq, s3) or (s1,4, s3) with s3 = * or
s3 = 0. So types of sort A cannot be used to construct types of other sorts.
In this way, we can keep the types of the A-calculus part of Aur-68 separated
from the types of the parameter mechanism: The last ones are stored in A.

In Example 5.2.4.8 of [I], there is no rule (x,*, A). In principle, this rule
is superfluous, as each application of rule (x,%,/\) can be replaced by an
application of rule (k,*,*). Nevertheless we maintain this rule as:

» The presence of both (*,x,*) and (*,*, /) in the system stresses the fact
that Aur-68 has two type mechanisms: One provided by the parameter
mechanism and one by the A-abstraction mechanism;

* There are technical arguments to make a distinction between types formed
by the abstraction mechanism and types that appear via the parameter
mechanism. In this paper, we denote product types constructed by the
abstraction mechanism in the usual way (so: Ilz:A.B), whilst we will use
the notation §x:A.B for a type constructed by the parameter mechanism.
Hence, we have for the constant b above that b : 7, xi:@.E_QE]. As an
additional advantage, the resulting system will maintain Unicity of Types.

% we use 7', z;:0;.Z2 as an abbreviation for §z;:a7 - - - §z,,:0,.22

12
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This would have been lost if we use rules (*,x,x) and (x,*,A) without

making this difference, as we can then by these rules derive both:
o Foac ok sk, T ok ok B oo x ok, Tioc ek
an
ax F (Mz:a.a) @ * ax F (z:a.a) : A

3.2  The different treatment of constants and variables

When we seek to translate the Aur-68 judgement B;[' = X : Q in 68, we
must pay attention to the translation of B, as there is no equivalent of books
in PTSs. Our solution is to store the information on identifiers of B in a PTS-
context. Therefore, contexts of A68 will have the form A;I'. The left part A
contains type information on primitive notions and definitions, and can be
seen as the translation of the information on primitive notions and definitions
in B. The right part I' has the usual type information on variables.

The idea to store the constant information of B in the left part of the
context arises naturally. Let 8 be a correct AuT-68 book, to which we add a
line (T'; b; pN; Eg). Then I' = 21:avy, . . ., iy, is a correct context with respect
to B, and B;[' - Zy:type or = = type. In A68 we can work as follows.
Assume the information on constants in 8 has been translated into the left
part A of a A\68 context. We have (assuming that A68 is a type system that
behaves like auT-68, and writing I" for the translation z,:07, ..., T,:@, of I'):
A;T F Zyis (s = # if B;T F Eyitype; s = O if Sy = type). Applying the
§-formation rule n times, we obtain A; @ + qI.E, : A (If T is the empty
context, then .2, = Z,, and =, has type * or O instead of A. We write
T for €, z;:05). As qT.E; is exactly the type that we want to give to b
(see the discussion in Subsection BIl), we use this statement as premise for
the start rule that introduces b. As the right part T of the original context
has disappeared when we applied the §-formation rules, b: T.Z, is automat-
ically placed at the righthand end of A: The conclusion of the start rule is
A, b:qT.E, F b:qT.Z,. Adding b: T.E, at the end of A can be compared
with adding the line (T'; b; pn; Z5) at the end of 8.

AT FEys A 9qT.5;:s9

A,b:qT .2y - b:qT.5, '
Here s; € {*,0} (compare: Zy:type or =Zo = type) and s, € {x,0, A}
(usually, so = A\; the cases sy = *, 0 only occur if I' is empty).

This process can be captured by rule:

3.3 The definition system and the translation using §

A line (z1:04, ..., Tpiay; b; 215 Z2), in which b is a constant and Z; € &, repre-
sents the definition: “For all expressions 2y, ..., (2, (obeying some type con-
ditions), b(24,...,$,) abbreviates Z[z1,...,2,:=0,...,Q,], and has type
Eolz1, ey =0, ..., Q] So in A68, the context should have bX; - - - X,, “is
equal to” Zq[z1,...,2,:=X1,...,X,], for all terms X,..., X,,. This can be
done by writing b:= ()\?:1 szE_l) : (ﬂ-‘:l szE_Q) in the context instead of
only b: §7_, z;:%;.Z5, and adding a d-reduction rule which unfolds the definition

13
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of b A F b —5 A\, z;:0;.2; whenever b:= (/\?:1 x,EZE_l) : (ﬁw:l x,—:ﬁi.E_g) €
A. Unfolding the definition of b in a term bX; - - -3, and applying B-reduction
n times gives Z1[z,:=X1] - - - [2,:=%,]. In AUT—6, this corresponds to
AFbO(E,...,8,) =6 1T, ooy T =20, . .., Ly

This method, however, has disadvantages:

o In the AuT-68 line (z1:0v, ..., Tpiapn; b; 213 52), b(S4,...,%,) has b2, --- %,
as its equivalent in A\68. If n > 0, the latter A\68-term has B = b%; ---%,,
as a subterm for any m < n. But B has no equivalent in Autr-68: Only after
B is applied to suitable terms %,,.1, ..., %, the result BY,, i ---%, has
b(Xy,...,%,) as its equivalent in Aut-68. Hence B must not be seen as a
term directly translatable into Auromars, but only as an intermediate result
necessary to construct the equivalent of b(Xy,...,%,). B is recognisable as
an intermediate result via its type I, . 7;:0;.52, of sort A (not x or O).

The method above allows to unfold the definition of b in B, because
bY; - - - X, can reduce to (A% z;:0;.5;) X1 - - - ¥y, and we can S-reduce this

term m times to (A7, ,; 2::05.51) [£;:=%;]7,. In Aur-68 such unfolding is

i=m+
not possible before all n arguments ¥, ..., %, are applied to b, so only when
the construction of the equivalent of b(Xq,...,%,) has been completed;

* A\, 7;:@;.2; does not necessarily have an equivalent in Aur-68. Consider
for instance the constant b in the line (a:type; b; [z:]z; [z:a]«). In this case,
AV 105.5) = Ak Aria.z. Its equivalent in Aut-68 is [a:type][z:a]z, but
an abstraction [a:type] cannot be made in Aur-68[1] This is the reason why
we do not incorporate A}, x; 0.2 as a citizen of \68.

Hence we choose another translation. The line (zi:aq, ..., %y ;b Z1;2)),
where Z; € &, is translated by taking b:= (87, z;:05.51) @ (0 2:0.52)
instead of b:= (/\?:1 x,EZE_l) : (ﬁ]le x,EE_g) in the left part of the context.
A reduction rule bX;--- X, —s Zi[11,...,2,:=X1,...,X,] is added for all
terms X1i,...,X,. We use § instead of A to emphasise that, though both §x:A
and Ax:A are abstractions, they are not the same kind of abstraction.

4 )68

Here, we give \68, show that it has the desirable properties of PTSs and that
it is the PTS version of Aut-68.

Definition 4.1 (\68)

(i) Terms of \68 are given by 7 ==V |C | S| TT | \V:T.T | §V:T.T |
V:T.T | §V:T.T, where S is the set of sorts {*, 0, A}. Free variables

10We can assume that the z; do not occur in the ¥;, so the simultaneous substitution
Ei[z1, -, 2ni=%1, ..., ] is equal to Eq[z1:=%1] - - - [n:=%0]-

1 Compare with the situation of Section BIl where we found that the type of b is not
necessarily a first-class citizen of AUT-68. There, we could not avoid that the type of b
became a citizen of A68 (though we made it second-class by storing it in the sort A).

14
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rv(T) and “free” constants rc(T') of term 7" are defined as usual;

We define the notion of context inductively:

* O, is a context; pom (J; &) = &

o If A;T is a context, z € V, x does not occur in A;T" and A € T, then
A; T, z:A is a context (z is a newly introduced variable); pom (A;T') =
poM (A;T) U {z};

o If A;T is a context, b € C, b does not occur in A;I" and A € T
then A,b:A;[" is a context (in this case b is a primitive constant;
poM (A, b:A;T) = pom (A; T') U {b};

e If A;T'is a context, b € C, b does not occur in A;I', Ae T,and T € T,
then A, 0:=T:A;T is a context (in this case b is a defined constant;
pom (A, b:=T:A;T) = pom (A;T) U {b}.

PRIMCONS (A; ') = {b € pom (A;T) | b is a primitive constant}; rv(A; ) =

poMm (;I') and percons (A;T) = {b € pom (A;T") | b is a defined constant}.

We define d-reduction on terms. Let A be the left part of a context.

If (b:= (8§, z;:A;.T): (§7, z;:A;.B)) € A, and B is not §y:B;.By, then

AFOX - Xy, =5 Tw1, .y xni=Xq,...,X,] forall Xq,... X, € T.

We also have the usual compatibility rules on dé-reduction. We use

notations like —»;, —»;,=; as usual. If no confusion about which A

occurs, we simply write bX; --- X,, =5 Tz, ..., 20:=X1, ..., Xp|;

We use the usual notion of S-reduction;

Judgements in A68 have the form A;I' = A : B, where A; T is a context
and A and B are terms. If a judgement A;I" = A : B is derivable
according to the rules below, then A;I' is a legal context and A and B
are legal terms. We write A;I'- A : B : C if both A;T'H A : B and
A;T'F B : C are derivable in A68. The rules for A68 are given in Figurem
(v, pc, and dc are shorthand for variable, primitive constant, and defined
constant, resp.). The newly introduced variables in the Start-rules and
Weakening-rules are assumed to be fresh. Moreover, when introducing a
variable x with a “pc”-rule or a “dc”-rule, we assume z € C, and when
introducing z via a “v’-rule, we assume x € V. We write A;T" 3 A: B
instead of A;T"+ A : B if the latter gives rise to confusion.

Notice the lack of rule (§) as we do not want that terms of the form § z:A.B
be first-class citizens of A68: they do not have an equivalent in AuTomATH.

Example 4.2 The translation of Example 29 into A68 is given in Figure m[2]
We see that all variable declarations of the original book have disappeared in
the translation. In the original book, they do not add any new knowledge but
are only used to construct contexts. In our translation, this happens in the
right part of the context, instead of the left part.

12 Because of the habit in computer science to use more than one digit for a variable, we
have to write additional brackets around subterms like proof to keep things unambiguous.

15
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(Axiom) Ex: 0

A;THA:
(Start : v) : > s=x,0
AFFBA;F’"T:AFA:UF%FB
) 81 ; b sy
Start : =%, 0
(Start : pc) Ab9qT.B.Fb:qT.B =S
(Start : dc) ATHET:B:s A;FQI.B : s 5y =%, 0

Ab:=@8I.7T):(qI'.B);-b:qI'.B

A;THM:N ATHA:s
: ’ ’ =%, 0

(Weak : v) AT,z AFM:N =

AFM:N A;THFB:sg AFqT.B: sy

: =%, 0
(Wealk : pc) Ab:U.BFM:N e
A;FM:N  ATHT:B:sy AFQIB sy
Weak : d =%, 0
(Weak : dc) A b= T.T):(YT.B);F M : N L=
AT HA: % AT 2:AF B x
H—f Y Y 7
( orm) AT+ (IIz:A.B) : %
A;THA: s AT 2:AF B : sy
— f =%, 0O
(4 - form) AT (f2:A.B) : A =S
) AT F1lz:A.B @ % AT 2:A-F : B
A;TF (Az:AF) : (Ilz:A.B)
(App,) A;T'EM :1lz:A.B A TEN:A
PP A;T - MN : Blz:=N]
(App,) A;THEM:92:A.B A TEN:GA
PP2 A;T - MN : Blz:=N]
(Conv) ATEM:A A'FB:s AFA=gB

A;THM: B
Fig. 3. Rules of \68

Lemma 4.3 (Free Variable Lemma)
For A;\TM:N, A=bi:By, -+ ,by:By, and I’ = x1: A4, . .. ,xn:A:

e Theby,...,bp, € C and x,...,x, €V are all distinct;

o ve(M),rc(N) C{b1,...,bn}; #v(M),rv(N) C {z1,...,2n};

* bllBl, ceey bifllBifl; = BiZSZ' fOT S; € {*, D, A}, and A, .’EllAl, PN ,ij,lIAj,l F
Ajt; fort; € {*,0}.

Lemma 4.4 « (Start) Let A;T" be a legal context. Then A;T =+ : O, and
ifb:Ae AT, or e:=T:A € A, then A;T Fc: A.

* (Definition) Let Ay, b:= (8", z;:A;.T): (Y7, z;:Ai.B) ,Ay; T = M : N,
where B # §y:By.Bs. Then Ay;x1:Aq, ..., 2 Ay ET : B : s for s € {x,0}.

131n A, also expressions b;:=T;:B; may occur, but for uniformity we leave out the :=T;-part.
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prop @ %,

and : 9x:prop.§y:prop.prop,
proof :  9Yx:prop.x,
and-I :  9x:prop.§y:prop.fpx:(proof)x.§py:(proof)y.(proof)((and)xy),
and-01 :  9Yx:prop.Yy:prop.Ypxy:(proof)((and)xy).(proof)x,
and-02 : 9Yx:prop.Yy:prop.Ypxy:(proof)((and)xy).(proof)y,
and-R := §x:prop.§prx :(proof)x.(and-I)xx(prx)(prx) :

Yx:prop.§prx:(proof)x.(proof)((and)xx),
and-S := §x:prop.§y:prop.§pxy:(proof)((and)xy).
(and-T)yx((and-02)xy (pxy))((and-01)xy (pxy))
:fx:prop.{y:prop.fpxy:(proof)((and)xy).(proof)((and)yx)
Fig. 4. Translation of Example 21

Definition 4.5 We define: Aq;I'; F Ay; 'y if and only if

o If :A € Ay; Ty then AT F b:A; o If b:=T:A € Ay then A;T' - b:A;

o If :=(8 2z, : A;.U):B € Ayand U # §y:B.A" then Ay Fbxy -+ -z, =35 U.

Lemma 4.6 * (Transitivity) Assume A1;T1 F Ag; Ty and Ay;To - B : C.
Then Ay; T F B :C.

* (Substitution) If A;T'y,2:A,To = B:C and A;T'y = D : A then
A; Ty, Dyx:=D] - Blx:=D] : Clz:=D].

* (Thinning) Let Ay;T'; be a legal context, and let Ay; Ty be a legal context
such that Ay C Ay and 'y CTy. Then A;T1HA:B= Ay A B.

Lemma 4.7 (Generation Lemma)
e Ifx €V and A;T F 2:C then ds € {,0} and B =5 C' such that
A;T'FB:sand x:B el

e Ifbe C and A;T' = b:C then 3s € § and B =5 C such that A;T' = B : s,
and either b:B € A or 3T such that b:=T:B € A;

e Ifs€ S and A;T' F s:C then s = x and C =p; O;

e If A;T'F MN : C then 3A, B such that A;T'+= M : (Ilz:A.B) or
AT M. (§2:A.B), and A;T = N:A and C =5 Blz:=N];

o If A;T'F (Az:Ab) : C then 3B such that
A;TF (He:AB) %, A;T,2:AFb: B and C =ps 112:A.B;

o If A;TH (IIx:A.B) : C then C =p5 %, A;T' - Arx and A;T, 2:A F Brx;

o« If A;T F (92:A.B) : C then C =5 A, A; T = A:sy for sy € {+,0}, and
AT 2 A Bisy for so € {x,0, A}

Lemma 4.8 * (Unicity of Types) If A;T'+ A: By and A;T'F+ A : By then
B =35 Bs.

* (Correctness of Types) If A;T' = A : B then there is s € S such that
B=sorA;THB:s.
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o If A;THA: (Ilz:By.By) then A;T = Byt x; and A;T,2:By = By : *.

o If A;TH A: (§2:B1.Bs) then A;T F By : sy for s1 € {x,0};
and A; T, x: By F By:sy for some so.

In order to show some properties of the reduction relations —3, —4 and
—p5 and as d-reduction also depends on books, we first have to give a trans-
lation of Aut-68 books and Aut-contexts to A68-contexts:

Definition 4.9 « Let I' be a Aur-68-context zi:a,...,Z,:,. Then T' def
L1000, ..oy Tyt Oly.
 Let 8 be a book. We define the left part B of a context in \68:
Y 7 e B, ([;b;px; Q) dof B,0:qI.Q;

B (I'z;— Q) & B; e B, ([5,%;Q) & B,b:=§.2: qT.Q.

Lemma 4.10 Assume, ¥ is a correct expression with respect to a book *B.
o 1. X —g X if and only if ¥ —p X'y B B
e 2. Bl AuT s X —o X if and only if B by X —5 2.

Theorem 4.11 (Church-Rosser for —3;) Let A be the left part of a context
in which M is typable. If A= M —g5 N1 and A= M —»5; Ny then there is
P such that A= Ny —gs P and A= Ny —%35 P.

Lemma 4.12 (Subject Reduction) Let A;T'+ A: B.
1.IfA =3 A" then A;,TFA":B. 2. A—=5 A then A, TEFA B, 3 If
A —»ps A" then A;THA': B.

Lemma 4.13 Assume s € S and M legal. Then (At M =p5 s) = M = s.
Theorem 4.14 (Strong Normalisation) \68 is $0-strongly normalising.
The next two theorems formally relate AuT-68 and A68.

Theorem 4.15 Let B be an A_UTOMATH book and I' an Auromaru context.
o IfB; ' - gpy7_gs OK then B; I is legal;
o IfB; ' - apyT_6s 2 : S then B; "y X : (2.

Theorem 4.16 Let A;I'Fyes M : N. There is an Auvtomatn book B and an
Avtomat context I such that B;T" F 47 _6s 0k, and B, 1" = A;T'. Also,
(i) If N =0 then M = %,

(i) If A;T Frss N : O then N = x and there is Q € £ such that Q= M and
B; I EgyT_es 2 : type;

(iii) If N = A then there is I = z1:3, ..., 2,:5,, Q €fU {type} with:

o [T is correct with respect to B; ¢ M = qI'"S); e Q = type or
B; I EgyT_es 2 : type;

(iv) IfA;T Faes N @ A then there areb € C and 3y, . .., Xy, € € such that M =
b¥y---X,.  Moreover, B contains a line (3:1:9_1, ey TniQlm; b5 B =)
such that: ¢ N = ( 1 xi:Qi.Ez) [T1, . T =21, .., S, em>n; e
%, | |_AUT—68 Ei:Qi[xl, P ,.’131711:21, caay 2171] (1 S 1 S n);
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(v) If N = * then there is Q) € € where Q = M and B;T" F 4pyr_6s 2 : type;
(vi) If A;T Fyes N : * then there are 2,2 € € such that ¥ = M and Q = N,
and BT Faur_es L : Q, and B; " F 4768 2 : type.

5 Conclusion

The system Autr-68 is one of several Auromaru-systems. Another frequently
used system is avT-QE. We shall briefly compare Aut-68 to AuT-QE and de-
scribe how we can easily adapt A68 to a system AQE. The system Aur-QE has
many similarities with Aur-68 but differs on the following extensions:
(i) In Aur-QE we can also form the abstraction expression [z:X|type (thus
extending Definition E1);
(ii) Inhabitants of types [z:X]type are introduced in Aur-QE by extend-
ing abstraction rules 1 and 2 of Definition EXT1] with the Aur-QE rule:
B; ' = Xy:type B; I, 23 - Xoitype
B[ [2:1]3 : [2:X4]type
pable. In a translation to a PTS, these expressions should get type O,

. Like type, [2:X;]type is not ty-

(iii) In Aut-QE, there is a new reduction —QE on expressions, given by the
rule [z1:31] -« - [2,: 5] [y:Q]type —QE [21:21] - - [xn: 2] type (for n > 0).
The first two rules are straightforward. They correspond to an extension of

A— to AP in PTSs. It is easy to extend A68 with similar rules; just add the
ATHFA:x ANx:AEB: O .
. The third rule

AT (ITz:A.B) : O

is unusual. It is needed because Aur-QE does not distinguish As and IIs. In
AuT-68 this did not matter, as we could always derive whether [2:X]Q should
be interpreted as Az:3.(2 or as [1x:3.€2. The latter should have type type, and
the first should not have type type. Though A68 does not have II-conversion,
it is easy to extend it to a system AII68 following the lines of [I8] by:

A;T'EM :1lz:A.B A;TEN A
A;T'FMN : (Ilz:A.B)N ’
* Adding a new reduction rule —y by (Ilz:A.B)N —n B[z:=N].

II-formation rule (%, 3, 0):

» Changing rule (App,) into

In this paper we described the most basic AutomaTH-system, AuT-68, in a PTS
style. Though an attempt at such a description has been given before in [IJT5],
we feel our description is more accurate and unlike [TJT5], pays attention to
the definition and parameter systems, which are crucial in Avromarn. We
provided a PTS called A68 which we showed to be the system Aut-68 written
as a PTS. Although A68 does not include II-conversion (while Auromaru does),
it is easy to adapt A68 to include II-conversion following the lines of [I§].
The adaptation of A\68 to a system AQE, representing the AuTomaTH-system
Aur-QE is not hard, either: It requires adapting of the II-formation rule to
include not only the rule (x, x, %) but also (%, d, 0) and the introduction of the
additional reduction rule of type inclusion. We leave this as a future work.
There is no doubt that Auromars has had an amazing influence in the-
orem proving, type theory and logical frameworks. Auvromara however, was
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developed independently from other developments in type theory and uses
a A-calculus and type-theoretical style that is unique to AuvromaTn. Writing
AvutomaTH in the modern style of type theory will enable useful comparisons
between type systems to take place. There are still many lessons to learn from
AvtomaTth and writing it in modern style is a useful step in this direction.

When comparing A68 to other type systems with definitions, we find an
important difference. In A68, the correspondence between types of definien-
dum and definiens differs from that of the systems in [26]T8]. Auromars allows
parameters to occur in the definiens, and there is no parameter mechanism in
the PTSs of [T26/T8] althrough this mechansim exists in [2Z2JT920].
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