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Abstract

Kamareddine and Nederpelt [9], resp. Kamareddine and Rios [11] gave two calculi of
explicit of substitutions highly influenced by de Bruijn’s notation of the A-calculus.
These calculi added to the explosive pool of work on explicit substitution in the past
15 years. As far as we know, calculi of explicit substitutions: a) are unable to handle
local substitutions, and b) have answered (positively or negatively) the question of
the termination of the underlying calculus of substitutions. The exception to a) is
the calculus of [9] where substitution is handled both locally and globally. However,
the calculus of [9] does not satisfy properties like confluence and termination. The
exception to b) is the Ase-calculus [11] for which termination of the s.-calculus, the
underlying calculus of substitutions, remains unsolved. This paper has two aims:

(i) To provide a calculus & la de Bruijn which deals with local substitution and
whose underlying calculus of substitutions is terminating and confluent.

(ii) To pose the problem of the termination of the substitution calculus of [11] in
the hope that it can generate interest as a termination problem which at least
for curiosity, needs to be settled. The answer here can go either way. On
the one hand, although the Ao-calculus [1] does not preserve termination, the
o-calculus itself terminates. On the other hand, could the non-preservation of
termination in the As.-calculus imply the non-termination of the se-calculus?
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1 Introduction

Given (A\z.zz)y, one may not be interested in having yy as the result but
rather only (Az.yz)y. In other words, only one occurrence of z is substituted
by y and the substitution can be continued later. Such local substitution is a
major issue in functional language implementation [I5]. Yet, most calculi of
explicit substitutions are not able to handle this process. This paper presents
an explicit substitution calculus which is able to handle local substitution.

There are two main styles of explicit substitution: the Ao- and the As,-
styles. The Ao-calculus [I] reflects in its choice of operators and rules the
calculus of categorical combinators [3]. The main innovation of the Ao-calculus
is the division of terms in two sorts: sort term and sort substitution. As, [11]
departs from this style of explicit substitutions in two ways. First, it keeps
the classical and unique sort term of the A-calculus. Second, it does not use
some of the categorical operators, especially those which are not present in
the classical A-calculus. The As. has two new operators which reflect the
substitution and updating that are present in the meta-language of the A-
calculus, and so it can be said to be closer to the A-calculus from an intuitive
point of view, rather than a categorical one. The s, is based on the As-
calculus [I0] which is a refinement of the calculus of [9] that was influenced
by the Automath style and, as a result was able to handle local as well as
global substitutions. The calculus of [9] however does not enjoy confluence and
termination and refining it into As (and \As.) led to loss of local substitutions.
As far as we know any explicit substitution calculus other than that of 9]
is unable to handle local substitutions. For a survey of calculi of explicit
substitutions, and a comparison between both Ao- and As.-styles, see [13].

The Ao- and Asc-calculi, although in different styles, enjoy some common
properties: they are both confluent, they both fail to preserve the termination
of the A-calculus, and they both simulate S-reduction. However, although
the underlying substitution calculus of Ao is known to be terminating, this
question remains unsettled for As.. This is frustrating. This question has been
settled for any other calculus of explicit substitutions, so why has it proved
very hard for As.? This paper reports on the status of this question so far.

Since the calculus of [9] and the calculus of local substitutions we will give
in this paper are better described in a notation [8] highly influenced by de
Bruijn’s A-calculus, we will separate the section dealing with local substitu-
tions from that dealing with the termination of s..

2 The local substitution calculus

Since we are going to discuss and continue the work of [9] we shall present
our calculus in item notation (cf. [8]). In this notation we write ab = (bd)a,
Aa = (N)a, ao'b = (bo*)a and ¢ia = (¢})a. The o'-operator is the operator
for explicit substitution at level i and the ¢}-operator stands for the explicit
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updating. The following nomenclature is used: (b6), (A), (co?), (L) are
called items (0-, \-, o- and ¢-items, respectively) and b and ¢ the bodies of the
respective items. A sequence of items is called a segment. Every term can be
written as sn, where n is a de Bruijn index, with a convenient segment s.

In order to treat local substitution [9] proposed the following rules:

oos-transition (ca’)(bd)a — ((ca®)bd)a

o15-transition (ca’)(bd)a — (bS)(cot)a

o-destruction 1 (co)i — ¢

o-destruction 2 (co)j — ] if j#i
These rules are enough to prevent confluence. For example:
(201)(10)1 = p-tr ((201)10)1 = 5_gestn (20)1

(201)(16)1 =4y 5-tr (10)(201)1 —mgest1 (16)2

[9] gave a o-generationtule to start 3-reduction by generating a o*-operator:
o-generation b (Na — (BN ((pd)boh)a

Note that the starting J-A pair is kept after reduction. This enables the
reuse of the rule to substitute another occurrence of the intended variable.

Considering only the rules introduced so far, the calculus presents another
problem: terms which are strongly normalising in the classical A-calculus, lose
this property in the new calculus, and this occurs even if the application of
the o-generation rule is restricted to the case when the abstractor binds at
least one occurrence of a de Bruijn number in a. Here is an example:

(16)(A)(26)1 =r—gen (10)(A)((0)101)(20)1 —og,—tr

(16)(A)(((90)101)20)1 =o—destz (16)(A)(26)1 —o—gen -+

In order to solve the problem of confluence we will introduce a calculus
where the rules ogs-transition and o;5-transition are modified as follows:

o-0-transition 1 (co’)(bd)a — (co?)((ca®)bd)a
o--transition 2 (co’)(bd)a — (co?)(bé)(co)a
Therefore, we shall be keeping the starting o*-item in order to reuse it. But

we shall need a rule to dispose of this o-item once all possible substitutions
have been performed. We could try, for instance, the following:

o-disposal (cc)Ya — a ifig FV(a)
But this rule is not enough to get rid of the ¢'-item. For example:
(101)(10)2 =str1 (L) ((L1)16)2 —pgest1 (1Y) (16)2 = gmpotr1 + - -
The problem is that after the substitution is performed on the index 1 we
have again 1 and hence 1 will always be free in the scope of (10').

We can try to add the classical o-6-transition rule to ensure that the o'-
item will be disposed of at some time:

o-0-transition (ca)(bd)a — ((ca®)bd)(co%)a

But the inclusion of this rule forces us to justify the new calculus, since it
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stands for global substitution and is always needed to dispose of the o’-items.

In principle, we have two choices for the o-generation rule: either we keep
it as in [9] (see above) or we decide not to preserve the d-A-pairs and we state
it as it is usually given in calculi of explicit substitutions (cf. [TOJT2]):

new o-generation b6 (N)a — (bol)a

If we admit this new o-generation rule and keep our choice of operators, we
are going to end up with either the As-calculus (cf. [10]) if we decide for global
updatings, or with the At-calculus (cf. [12]) if we decide for partial updatings.
But, none of these calculi permit local substitutions. Also, since these calculi
do not preserve the §-A-pairs, their o-destruction rules must update the free
variables and hence in both calculi we have:

o-destruction 3 (ca)j — j—1 if j >1i

But with this rule and the new o-d-transition rules we lose confluence:

(1Y) (830)1 —pgtr1 (LY ((LH)30)1 =5 gests (1) (20)1 —oosoir

(101)20)(LoM)1 =5 _gest3 (1) (1 oY) =4 _gest1 (1)1

And the following derivation is also available:

(101)(838)1 —pmsetr (101)38) (L)L =5 dest3 (20)(Lo1)1 =4 gest1 (20)1

Therefore, we discard the new o-generation rule in order to avoid o-
destruction 8 and choose to keep the first version of these rules.

Finally, since the o-generation rule preserves the -\ pair we need a rule
to dispose of the pair once all the possible substitutions have been carried on,
i.e. when the abstractor in the -\ pair does not bind any de Bruijn index.
When discarding the -\ pair we must update the de Bruijn numbers that
stand for free variables. We shall perform this updating by introducing a new
family of operators: p* and rewriting rules for their propagation.

2.1 A first attempt
With this intuition behind our calculus, we give a formal presentation.

Definition 2.1 The terms of the calculus are given by the following grammar:
Aop == IN | (Aopd)Aop | (NAop | (Aopa’)Aop | (pr)Aop | (1')Aop

where ¢ > 1, k > 0. We let a, b, ¢, ... range over Aopu.

Note that the updating operators contain only one index. This is because
our calculus will work with partial updatings and therefore, as for the At-
calculus [12], the lower index is enough to deal with the updating mechanism.

The notion of free variable in our calculus needs the following definition:

Definition 2.2 Let N C IN and k£ > 0. We define
(i) N\k={n—k:neNn>k}, N+k={n+k:neN}
(ii) Ny = {n € N :npk}, where p € {<,<,>,>}.
We can define now the free variables of a term in Aopu.
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o-generation b (Na — BN ((po)bot)a if 1€ FV(a)
p-generation boH(Na — (uh)a if 1¢ FV(a)
o-A-transition (ba)(Na — (M) ((go)bo™)a
o-0-transition  (bo")(a10)aa —> ((bo')aid) (bob)as
o-0-transition 1 (bo*)(a18)aa — (bo®)((bot)aid)ay
o-8-transition 2 (bo')(a10)az — (bo*)(a1d) (bo')ay
. bif n=1
o-destruction (bo')n —»
nif n#1
p-A-transition () Na  —  (AN)(rt1)a
p-0-transition (pr)(ar16)as  —>  ((vr)a10)(vk)az
n+1if n>k
p-destruction (p)n —>
n if n<k
p-A-transition wyNae — N)Ea
p-o-transition (1) (a18)as —  ((1")a16)(u)ay
. n—1if n>7
p-destruction (i')n —>
n if n<i

Fig. 1. The Aop-calculus

Definition 2.3 The set of free variables of a term in Aop is defined by:
FV(n) = {n} FV((¢r)a) = FV(a)<x U (FV(a)>k + 1)
FV((bd)a) = FV(b)UFV(a)  FV((u')a) = FV(a)<; U (FV(a)>i \ 1)
FV((A)a)=FV(a)\1 FV((bo")a) = FV(a)<; U (FV(a)s; \ 1) U FV(b)

Definition 2.4 The Aop-calculus is the reduction system (Aop,—) where
— is the least compatible relation (with the operators of Aoyu) generated by
the set Aoy of rules in Figure 24l The calculus of substitutions associated
with the Aopu-calculus is the reduction system generated by the set Aoy —
{o-generation, p-generation} and we call it the op-calculus.

Note that the problem of loss of strong normalisation for terms which are
strongly normalising in the classical A-calculus still persists. For example:

(10")(20)1 =5tr1 (L) ((101)28)1 =5 gest (101)(20)1 — -+ -

Note also that this calculus is not confluent. E.g., let a = ((1§)10')(26)1:

a —g--tro ((10)101)(26)((10) 10N =4 gest (1)1 (26)(10)1 —pmsmir2

((18)10M)(26)((16)1 M) (L 8)1 —»omstr, o—dest (20)((16)10)(16)1
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But also a —g-s-4r (((18)101)26)((161)0" )1 —»4_gest (20)(16)1

Finally, A\ou not only does not solve the problem of confluence and does not
preserve strong normalisation, but it also is not a first order rewriting system
in the classical sense since both generation rules are conditional and extra and
maybe costly calculations must be performed to evaluate the conditions.

The only properties that we have proved, concern a subsystem of Aou, we
call it o™, and is obtained by deleting o-0-tr 1 and o-0-tr 2 from opu.

Lemma 2.5 ou™ is SN and CR and the set of ou™-normal forms is exactly
the set of pure terms.

Proof. Analogous to the proof of this property for At [12]. O

2.2 A better attempt

In the previous section we have given several counterexamples, the majority
of which are based on the fact that rules like o-6-tr 1 and o-6-tr 2 can be used
several times to perform the same substitution. Therefore, these rules are not
adequate to formalise the notion of local substitution.

In order to prevent a rule like o-0-tr 1 to evaluate the same substitution
several times we are going to introduce a unary operator L to mark the term
where the substitution has been locally performed and we will not allow the
substitution to be evaluated again on marked terms. Let us try the following:

preliminary o-0-local 1 (co))(bd)a — (co’)((L)(co’)bd)a
Now this rule poses still the problem of normalisation:
(ca’)(bd)a — (co)((L)(co*)bd)a — (ca®)((L)(co?)(L)(cot)bd)a — -
To prevent this we propose to introduce another family of o-operators that
we denote of . and we modify the rule as follows:

o-0-local 1 (ca)(bd)a — (cob,.)((L)(co’)bd)a
And to dispose of these new operators we add:
OLoc-disposal 1 (€oLoe)(L)bO)a —>  (b)(co')a

We must also add the following, in order to be able to perform local sub-
stitution in the other branch of the application:

o-6-local 2 (co))(bd)a — (cot,)(bd)(L)(co)a

OrLoe-disposal 2 (cot, )(b6)(L)a — ((co®)bd)a

We are approaching the right solution but the confluence problem persist:

(€00 (L)DO)(L)a =y aisp (b8)(co?)(L)a |

And on the other hand (co},,.)((L)bd)(L)a —4,, —disp2 ((co®)(L)bd)a

But this problem has an easy solution: split the family of operators o%
into one family that stands for the local substitution performed in the left
branch of the application and another family for the right branch. We denote
these families o% and ob%, respectively. Hence, we propose:
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o Rr-generation (co))(bd)a — (co%)((L)(co)bd)a
og-destruction (cot)(L)bd)a — (bd)(co’)a
or-generation (co)(bd)a — (cob)(bd)(L)(co")a
or-destruction (coat)(bd)(L)a — ((co®)bd)a

With this formulation we solve several problems at the same time: the
distinction between o, and ot allow us to obtain confluence for the calculus
of substitution and the distinction between o'-operators on one hand and o?,
and o% on the other is a good sign for the preservation of strong normalisation.
Moreover, with this formulation we are not forced to preserve the -\ pairs
and hence we do not need to introduce conditions on free or bound variables
and furthermore we do not need the introduction of the p-operator and all
the rules that it generates. Now, we present formally the calculus:

Definition 2.6 The terms of the calculus are given by the following grammar:
Asp == IN | (Asp8)Asy | (L)Asy | (M)Asy | (Aspo?)Asy | (0%)Asy
| (Aspot)Asy | (Aspoy)Asy  wherei>1, k>0
We let a, b, c, ... range over Asy;. Note that we come back to the updating

operators of As. In fact, the calculus we will define is As where o-d-transition
is replaced by the four rules above. Note also that A C As C Asy.

Definition 2.7 The Asy-calculus is the reduction system (Asy, —ys, ), where
— s, 15 the least compatible reduction on Asy, generated by the rules in Figure
2. We use Asy, to denote this set of rules. The calculus of substitutions
associated with the Asy-calculus is the reduction system generated by the set
Asp, — {o-generation} and we call it the op-calculus.

LemmaP_8shows that the As-calculus can be simulated in the As;-calculus:
Lemma 2.8 Let a, b € As, if a —)s b then a — 5, b.

Proof. It is enough to show that the o-d-transition rule can be simulated
in the Asp-calculus. This may be done by consecutive application either of
or-generation and og-destruction or or-generation and or-destruction. O

We conclude now that the Asp-calculus simulates classical S-reduction:
Corollary 2.9 Let a, b€ A, if a —5 b then a =4, b.
Proof. Using the previous lemma and the simulation of § in As (cf. [10]). O

We are going to prove now confluence and strong normalisation of the
or-calculus, in order to have existence and uniqueness of oz-normal forms.

Lemma 2.10 The o -calculus is locally confluent.
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o-generation (
o-A-transition (bo?

oR-generation (co?)

or-generation (ca?)

Lol bl

)
(
og-destruction (co%)((L)
(
)

or,-destruction (cob)(bo)(L

n—1if n>j

o-destruction (bol)n — (ap{;)b if n=j

n if n<j
©-\-transition () (Na — (N (ghi)a
p-0-transition (g&};)(aﬁ)az — ((902)@15)«02)“2
p-destruction (i)n —> itk

n if n<k

Fig. 2. The Asp-calculus

Proof. By Knuth-Bendix Theorem it is enough to study the critical pairs.
There is only one, namely the one generated by the ogr-generation and oy -
generation rules. It can be closed using oy -destruction and og-destruction. O

The proof of SN is not immediate. We envisage a proof by structural
induction split in the following lemmas. We note SN the set of terms in Asy,
which are op-strongly normalising. Our aim is to prove that SN = Asy.

Lemma 2.11 Let a, b € Asy, the following hold:
(i) (bd)a € SN iffa € SN and b€ SN.

(ii) (\)a € SN iff a € SN.

(iii) (L)a € SN iff a € SN.

Proof. No o;-rule has an application, an abstraction or a mark at the root.O

In the following lemmas we use the notation: lg(a) stands for the length of
term a and is defined as usual, dp(a) stands for the depth of a, i.e. the length
of the longest derivation to its or-normal form. We use dp(a) for a € SN.

Lemma 2.12 Fori>1and k >0, ifa € SN then (¢})a € SN.

Proof. By induction on the ordinal (dp(a),lg(a)).
If (dp(a),lg(a)) = (0,1) then a = n; obvious. If ¢.a is a normal form, then
obvious. Therefore we study all possible reducts of (¢%)a and prove them SN.
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If (¢h)a — (¢h)b, with a — b, we conclude by IH since dp(a) > dp(b).

If the reduction is at the root we must analyse the three possible rules.
We just study @-0-transition: We have (¢%)((bd)c) — ((¢4)bd)(pL)c. Now
dp((b6)c) > dp(b), dp((bd)c) > dp(c), Ig((bd)c) > 1g(b) and 1g((bd)c) > lg(c).
Hence by IH, (¢})b € SN and (¢})c € SN, and we use Lemma 2TT11. O

Lemma 2.13 Fori>1,ifa, b€ SN then (bo')a € SN.

Proof. By induction on the ordinal (dp(a),lg(a),dp(b)).

If (dp(a),lg(a),dp(b)) = (0,1,0), then @ = n and b is in normal form. The
result is obvious if n # 4, whereas if n =7 we use the previous lemma.

The proof follows now the lines of the previous lemma, but an interesting
case arises when considering the reduction at the root by the ogr-generation
or the or-generation rule. Let us study for instance the latter.

Therefore we have a = (dd)c and (bo?)(d6)c — (bot)(d6)(L)(bo)c.

Let us assume that (bot)(dd6)(L)(bo*)c € SN.

Since dp((dd)c) > dp(c) and 1g((d §)c) > 1g(c), by IH we have (bo')c € SN
and by LemmaZT1l3, L((bo*)c) € SN. Now, since a € SN, we have d € SN,
and by Lemma ZT111, we conclude (d§)(L)(bo?)c € SN.

Therefore, since b € SN, there must be an infinite derivation beginning
at (bot)(dd)(L)(bo*)c which reduces at the root. Furthermore, since there
are no rules which reduce applications or marks, there exist d’, ¢/, b’ such that
d—»d, (bo')e =, b—» b and (bot)(dd)(L)(bot)e — (V' ob)(d' §)(L)d —
((t 6*)d' 6)c — -- - But the fact that this derivation is infinite is a contradic-
tion because by IH, we have (bo*)c € SN, and hence ¢ € SN, and also by TH
we have (bo')d € SN, and hence (b' 0")d’ € SN. Therefore, by Lemma EZTT11,
((t' o¥)d' §)c € SN. We conclude that (bo?)(dd)(L)(bo?)c must be SN. O

Lemma 2.14 Fori>1, ifa, b€ SN then (bot)a € SN and (bok)a € SN.

Proof. By induction on the ordinal (dp(a),dp(b)). Use the previous lemma
when considering the reduction at the root. O

Theorem 2.15 The op-calculus is strongly normalising.

Proof. By induction on a we prove that every a € Asy, is SN.
If a = n, it is obviously SN.
If a = (cd)bora=(N)bora=(L)b, use Lemma 2Tl
If a = (¢%)b use Lemma 212
If a = (co®)b use Lemma
If a = (cot)b or a = (cok)b use Lemma 214 O

Theorem 2.16 The o -calculus is confluent.

Proof. By Newman’s Lemma, the previous lemma and Lemma P.T0 O

9
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3 The status of the open question of termination of s,

The As.-calculus, like the Ao-calculus, simulates S-reduction, is confluent (on
open term) [I1] and does not preserve strong normalisation (we say does
not have PSN) [6]. However, although strong normalisation (SN) of the o-
calculus (the substitution calculus associated with the Ao-calculus) has been
established, it is still unknown whether strong normalisation of the s.-calculus
(the substitution calculus associated with the As.-calculus) holds. Only weak
normalisation of the s.-calculus is known so far [I1].

The sc-calculus (see Definition B.8)) has the o-o-transition rule which seems
to be responsible for the difficulties in establishing SN of s,. However, Zantema
showed that the o-o-transition scheme on its own is SN [TT].

This section is a discussion of the status of strong normalisation of the
se-calculus. We show that the set of rules s, is the union of two disjoint sets
of rules o-o-tr.4+¢-o-tr. and the rest of the rules where each of these two sets
gives a calculus which is SN. However, commutation does not hold and hence
modularity cannot be used to obtain SN of s.. In addition, the distribution
elimination [I7] and recursive path ordering methods are not applicable and
we remain unsure whether s, is actually SN or not.

3.1 The classical A-calculus in de Bruijn notation

We assume the reader familiar with de Bruijn notation [5]. We define A, the
set of terms with de Bruijn indices, by: A :=IN | (AA) | (AA).
We use a, b, . .. to range over A and m, n, ... to range over IN (positive natural
numbers). Furthermore, we assume the usual conventions about parentheses
and avoid them when no confusion occurs. Throughout the whole article,
a = b is used to mean that a and b are syntactically identical. We write
—T and — to denote the transitive and the reflexive transitive closures of a
reduction notion —. We say that a reduction — is compatible on A when for
all a, b, c € A, we have a — b implies ac — bec, ca — cb and Aa — Ab.

As fp-reduction a la de Bruijn involves the substitution of a variable n for
a term b in a term a, we need to update the terms:

Definition 3.1 Let the updating functions Ui : A — A for k > 0 be i > 1 be:

Uilat) = V(@) Vi) (it
. | Ukw) = o
Ui(Aa) = A(Ug441(a)) n I n<k.

Definition 3.2 The meta-substitutions at level j,for 7 > 1,of aterm b € A

in a term a € A, denoted af{{j + b}, is defined inductively on a as follows:

3 The \s.-calculus is confluent on the whole set of open terms whereas Ao is confluent on
the open terms without metavariables of sort substitution as is shown in [T6].
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(alag){j — b} = (alﬁj < b}) (G'Q{j — b}}) 1'1.— 1if n >]
nf{j < b} = UIb)if n=

(Ma){j < b} = Mafj+ 1+ b}) n if n<j.

Definition 3.3 [-reduction is the least compatible reduction on A generated
by: (B-rule) (Aa)b—p af1<b}
The A-calculus a la de Bruijn, is the reduction system with rewriting rule f.

3.2 The As- and A\s.-calculi

As [10] handles explicitly the meta-operators of definitions Bl and Hence,
the syntax of the As-calculus is obtained by adding two families of operators :

 {07};>1, which denotes the explicit substitution operators. The term ao?b
stands for term a where all free occurrences of the variable corresponding
to de Bruijn index j are to be substituted by term b.

* {¢L} k>0 i>1, which denotes the updating functions necessary when working
with de Bruijn numbers to fix the variables of the term to be substituted.

Definition 3.4 The set As of terms of the As-calculus is given as follows:
As == 1IN | AsAs | Ms | Aso’As | ptAs  where j,i>1, k>0.

We take a, b, ¢ to range over As. A term of the form a o7b is called a closure.
Furthermore, a term containing neither o’s nor ¢’s is called a pure term.

A reduction — on As is compatible if for all a, b, ¢ € As, if a — b then
ac—be, ca— chb, Aa— M\b, ac’c = bolc, cola — co’b and gha — ¢ib.

To o-generation which mimicks the g-rule, we add a set of rules which are
the equations in definitions Bl and B2 oriented from left to right.

Definition 3.5 The As-calculusis the reduction system (As, —)s), where — )
is the least compatible reduction on As generated by the set As of the rules of
Figure Bl The s-calculus, the calculus of substitutions associated with the As-
calculus, is the reduction system generated by the set s = A\s—{o-generation}.
Lemma 3.6 (cf. [10]) The following holds:

(i) (SN and CR of s) The s-calculus is strongly normalising and confluent
on As. Hence, every term a has a unique s-normal form denoted s(a).

(ii) The set of s-normal forms is exactly A.

(iii) For all a,b € As we have: s(ab) = s(a)s(b),  s(Aa) = A(s(a)),
s(gia) =Ui(s(a)),  s(ao’d) =s(a){j<s(b)} .

(iv) Let a, be As, if a =5_gen b 0or a =5 b then s(a) —»5 s(b) .

(v) (Soundness) Let a, b€ A, if a —» ;b then a —»pb.

(vi) (Simulation of B-reduction) Let a, b € A, if a = b then a —»s b.

) (CR of As) The As-calculus is confluent on As.

11
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o-generation (Aa)b — ac'bd
o-\-transition (Aa)a?b  — A ao?T1b)
o-app-transition  (ay az) 0’b  — (a1 07b) (az 07Db)
n—1if n>j
o-destruction nolb — Glb if n=j
n if n<y
©-A-transition eh(Aa) — Aghya)
p-app-transition Oh(aras) — (¢har) (¢hag)
p-destruction ohn — nti-—tif n>4k
n if n<k

Fig. 3. The As-calculus

(viii) (Preservation of SN) Pure terms which are strongly normalising in the
A-calculus are also strongly normalising in the \s-calculus.

Open terms were introduced in the As-calculus as follows (see [I1]):

Definition 3.7 The set of open terms, noted As,, is given as follows:
Asop :=V | IN | AsopAsop | AMSop | ASop 07 ANsep | @4 ASep

where 7,72 > 1, k> 0 and where V stands for a set of variables, over which
X, Y, .. range. We take a, b, c to range over As,,. Furthermore, closures,
pure terms and compatibility are defined as for As.

Working with open terms one loses confluence as shown by the example:
(AX)Y)o'1 = (Xo'Y)o'1 (AX)Y)o'1t = (AX)o'1)(Yo'1)

and (Xo'Y)o!1 and ((AX)o!1)(Yol1) have no common reduct. This example
also shows that even local confluence is lost. In order to solve this problem,
[T1] added to the As-calculus a set of rules that guarantees confluence.

Definition 3.8 The set of rules As, is As together with the rules of Figure Hl
The As.-calculus is the reduction system (As,,, —\s,) where —;, is the least
compatible reduction on As,, generated by the set of rules As.. The s,-
calculus, the calculus of substitutions associated with the As.-calculus, is the
rewriting system generated by the set of rules s, = As, — {o-generation}.

Lemma 3.9 (cf. [T1]) The following holds:

(i) (WN and CR of s¢) The s.-calculus is weakly normalising and confluent.
(i) (Simulation of B-reduction) Let a, b € A, if a —5 b then a —»,s, b.
(iii) (CR of Ase) The As.-calculus is confluent on open terms.

12
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o-o-transition (ao’b)oic — (aoitle) o' (bo/~le) if i<
o-p-transition 1 (¢t a)oib —> (pfc_l a if k<j<k+i
o-p-transition 2 (¢t a)olb — i(aci TLh) if k+:i<j
p-o-transition pi(aclb) — (ol a)0? (902+17j b) if j<k+1
p-p-transition 1 oL ((p{ a) —» (p{ ((10;.04—17]' a) if I+5<k
p-p-transition 2 o} ((pf a) —» (pgﬂ_l a if I<k<l+j

Fig. 4. The extra rules of the As.-calculus

(Beta) (Aa)b — alb-id]
(Varld) 1fid] — 1

(VarCons) 1la-s] — a

(App) (ab)[s] — (als]) (b[s])
(Abs) (Aa)[s] — Aa[t-(so1)])
(Clos) (a[s])[t] — alsot]
(IdL) idos —» s

(Shiftd) toid — 1
(ShiftCons) to(a-s) — s

(Map) (a-s)ot — aft]-(sot)
(Ass) (s1089)083 — s10(sy083)

Fig. 5. The Ao-calculus

(iv) (Soundness) Let a, b€ A, if a —»ys, b then a —»5b.

3.3 The Ao-calculus and the termination of the o-calculus

Definition 3.10 The syntax of the Ao-calculus [1] is given by:
Terms Aot :=1 | AotAc? | Mat | Adt[Ac?]
Substitutions Ac® :=1id | T | Ao’ - Ac® | Ao® o Ac®

The set, denoted Ao, of rules of the Ao-calculus is given in Figure Bl

The set of rules of the o-calculus is Ao — {(Beta)}. We use a,b,c,...
to range over Ao’ and s,t,... to range over Ao®. For every substitution s
we define the iteration of the composition of s inductively as s' = s and
5"t = 50 5". We use the convention s = id. Note that the only de Bruijn
index used is 1, but we can code n as 1[1"!]. So, A C Ac?®.

13
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Theorem 3.11 The o-calculus is strongly normalising (SN).

There are various proofs of this theorem in the literature:

(i) The first strong normalisation proof of ¢ is based on the strong normal-
isation of SUBST [7], which is, within CCL, the set of rewriting rules
that compute the substitutions. See [7].

(ii) The proof in [4] shows the termination of o via a strict translation from o
to another calculus oy (an economic variant of o) and the termination of
0o- The calculus oy is one sorted and treats both o and [] as o, observing
that o and [] behave in the same way.

(iii) Zantema gives two proofs in [I7JI8]. The first is based on a suitable
generalisation of polynomial orders to show the termination of the cal-
culus oy given below (and hence the termination of o). The second uses
semantic labelling to show the termination of o.

We will explain why these techniques for showing SN of o do not apply to s..
Definition 3.12 [The oy-calculus] The set of terms Aoy of the og-calculus

has the abstract syntax s,t=11]4d || As|sot]|s-t.
The set, denoted oy, of rules of the calculus is the following:

(Vild)  loid— 1 (ShId) 1 oid — 1

(VrCons) 1lo(s-t) — s (Abs)  (As)ot — A(so(1-(to1)))
(ShCons) to(s-t) =t (

(IdL) idos —s (Ass) (sot)ou— so(tou)

Map) (s-t)ou— (sowu)- (tou)

Remark 3.13 o is a particular case of the system Subst of CCL. Rules
(VrId) and (ShId) are particular cases of the right identity rule. Hence, the
techniques of (i) and (ii) above for showing SN for SUBST and o, will have
similar status with respect to s,.

The methods of techniques (i) .. (iii) above do not apply to s.:

* Problem 1: Unable to use recursive path ordering By taking a look
at the s.-rules (Definition B.8]), it becomes obvious that the unfriendly rules,
with respect to SN, are o-o-transition and to a lesser extent p-o-transition.
These rules prevent us from finding an order on the set of operators in order
to solve the normalisation problem with a recursive path ordering (rpo).

* Problem 2: Unable to use Zantema’s distribution elimination
lemma. The s.-rules “look like” associative rules but unfortunately they
are not; e.g. in o-o-transition one could think the o’-operator distributes
over the o'-operator, but it is not a “true” distribution: o/ changes to o/+!
when acting on the first term and to 07 ~**! when acting on the second. This
prevents use of Zantema’s distribution elimination method [I7] to show SN.

Another technique to show SN is modularity where SN is proved for certain

14
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subcalculi os s, which are shown to satisfy a commutation property. We show
in the next section that indeed s, can be divided into two subcalculi which
are SN, but that unfortunately, the needed commutation results do not hold.

3.4 Dividing s in two disjoint sets s + xp and *xo

Definition 3.14 We define the following sets of rules:

xp = {o-p-tr.1, o-p-tr.2, p-p-tr.1, p-p-tr.2},
xo = {o-0-tr., @p-o-tr.},

xp~ = {o-p-tr.1, p-p-tr.2}, xo~~ = {o-p-tr.2, p-p-tr.1}.

Note that s, = (s+*p)+*0. We shall prove in this section that both calculi
generated by the set of rules s+ % (Theorem BI7) and %o (Theorem B.28) are
SN. Unfortunately, these calculi do not possess the property of commutation
needed to ensure that their union s, is SN (see Example B3T]).

3.5 SN of s + xp

We prove that s + x¢ is SN by giving a weight that decreases by reduction.
We begin by defining two weight functions needed for the final weight:

Definition 3.15 Let P : As,, — IN and W : As,, — IN be defined by:
P(X)=P(n)=2 W(X)=W(@n) =1

P(ab) = P(a) + P(b) W(ab) =W(a) +W(b)+1
P(\a) = P(a) W(Aa) =W(a)+1
(aoib) = j * P(a) * P(b) W(ao’b) =2 W(a) x (W(b) + 1)
P(gia) = (k+1) « (P(a) +1)  W(gha) =2+ W(a)
Lemma 3.16 For a, b € As,, the following hold:
(i) If @ —=s4sp b then W(a) > W (b).
(i) If @ —5qup- b then W(a) > W(b).
(iii) If @ —.,—- b then P(a) > P(b).

)

Proof. By induction on a: if the reduction is internal, the induction hypoth-
esis applies; otherwise, the theorem must be checked for each rule. O

Theorem 3.17 The s + xp-calculus s SN.

Proof. The previous lemma ensures that the ordinal (W (a), P(a)) decreases
with the lexicographical order for each s + *¢-reduction. O

3.6 The \w- and Aw,-calculi

Recall that the xo-calculus consists of the two painful rules o-o-tr. and ¢-o-tr.
which are at the heart of our inability to use the rpo method or the methods

15
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of Zantema. In order to establish SN of %o, we will use an isomorphism
established in [I3] between As. and Awe, a calculus written in the Ao-style.

In order to express As-terms in the Ao-style, [I3] split the closure operator
of Ao (denoted in a semi-infix notation as —[—]) in a family of closures opera-
tors that were denoted also with a semi-infix notation as —[—];, where i ranges
on the set of natural numbers. [I3] also admitted as basic operators the iter-
ations of 1 and therefore had a countable set of basic substitutions 1", where
n ranges on the set of natural numbers. By doing so, the updating operators
of As become available as —[1"];. Finally, [I3] introduced a slash operator of
sort term — substitution which transforms a term « into a substitution a/.
This operator may be considered as consing with id (in the Ao-jargon) and
was first introduced and exploited in the Av-calculus (cf. [2]). Here is the
formalisation of this syntax and the rewriting rules of Aw:

Definition 3.18 The set Aw of terms of the Aw-calculus, is defined as Aw'U
Aw?, where Aw'’ and Aw® are mutually defined as follows (j > 1 and ¢ > 0):

Terms Aw' i=IN | AwPAw® | Mw® | Aw'[Aw®];
Substitutions Aw® ::=1 | Aw!/

The set, denoted Aw, of rules of the Aw-calculus is given as follows:

o-generation (Ma)b — alb/l
o-app-transition  (ab)[s]; —> (als];) (b]s];)
o-A-transition (Aa)[sl; — Aa[s]j+1)

n—1 if n>7y
o-/-destruction nfa/]; — a7y if n=j
n if n<y
n+iif n>j

o-t-destruction n[tY];, —
n if n<y

The set of rules of the w-calculus is Aw — {o — generation}. We use
a,b,c,...to range over Aw’ and s,,... to range over Aw®.

Definition 3.19 Let V stand for a set of variables, over which X, Y, ...
range. The set Aw,, of open terms, is defined as Awl, U Awj,, where Awl,
and Aw}, are mutually defined as follows (j > 1 and i > 0):

Open Terms Aw), ==V | IN | Aw} Awl, | M), | Awl [Aw];
Substitutions Awj, :=1" | Aw),/

We take a, b, ¢ to range over Awf)p and s, t, ... over Aw;,. Closures, pure
terms and compatibility are defined as expected. The set Aw, of rules of the

16
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Awe-calculus is obtained by adding to Aw the new following rules:

o-/-transition  a[b/lg[s];, — a[s]jt1[b[s]j—kt1/lk if K<j

/-M-transition  a [1*][b/]; alb/]—i[M*e if k+i1<j

a1 g if k<j<k+i

1. (4 . . .

tttransition a1, — 4 ATmlTle A EFI<y
a1+, if k<j<k+i

The set of rules of the we-calculus is Aw. — {o—generation} .

Remark 3.20 Note that the rule schemes /-1 and 1-1 can be merged into
the single scheme a [1%|x[s]; — a[s];_i[1]x for k +i < j but they must be kept
distinct when k£ + ¢ = j if SN is to hold. The 1-f-scheme, if admitted when
k + i = j, may generate an infinite loop (e.g.,if i=k =1=1 and j = 2).

[13] established an isomorphism between As, and Aw, and also between \s
and Aw. These isomorphisms translate properties of As and As. to Aw and
Awe, respectively. Hence, all the results mentioned above concerning As and
Ase translate into corresponding results for the sort term to Aw and Aws,.

Theorem 3.21 (cf. [13]) The following hold:

(i) The w-calculus is SN and confluent on Aw'.
(ii) Let a,be A. If a —»), b then a —»gb. If a =3 b then a —»), b.

(iii) The Aw-calculus is confluent on Aw'.

Pure terms which are SN in the \-calculus are also SN in the Aw-calculus.

)
)
)
(v) The we-calculus is weakly normalising and confluent.
) The Awe-calculus is confluent on open terms.

)

Let a,be A. If a —»x, b then a —pb. If a =5 b then a —»y,. b.

3.7 SN of xo

To prove SN for xo we will use the isomorphism presented in Section B8l and
the technique that Zantema used to prove SN for the calculus whose only rule
is o-o-transition (cf. [I1]). Following this isomorphism, the schemes o-o-tr.
and @-o-tr. of As. both translate into the same scheme of Aw., namely o-
/-transition of Definition Hence, to show that %o is SN, it is enough
to show that the calculus whose only rule is o-/-transition, let us call it o-/-
calculus, is SN. To do so, we use the following Lemma of Zantema (cf. [14]):

Lemma 3.22 Any reduction relation — on a set T satisfying the three prop-

erties below is strongly normalising:
(i) — is weakly normalising.

17
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(ii) — s locally confluent.
(iii) — is increasing, i.e., 3 function f : T — IN where a — b= f(a) < f(b).

For weak normalisation of the o-/ — calculus we use the technique of [T1]:

Definition 3.23 We say that ¢ € Aw’ is an external normal form if

¢ = a[s1]i, * -+ [Snli, Where a # e[d/] and if s, = by/ then i}, > ip41. We denote
the set of external normal forms ENF'.

Lemma 3.24 Let ¢ = a[s1];, - [sn]i, € ENF and let iy, < i1 and s, = b,/
then there exists a o-/-derivation ¢ =% alt1];, - - - [tnt1lj, € ENF such that
Jni1 = tn and for every r with 1 < r < n+ 1 we have either t, = si for some
k<n+1ort. = (ay[snt1])/ for some s, = a,/ with1 < p < n.

Proof. By induction on n. o

Lemma 3.25 Let ¢ = a[s1;, - - - [sn)i, such that a # e[d/|x. There exists a
o-/-derivation ¢ = alt1]j, - - - [tn]j, € ENF such that for everyr with1 <r <
n+ 1 we have either t, = si, for some k <n ort, = (ap,,[Sp,slks = [Sprnlin)/
with 1 < py1 < -+ < pprp < 1 and with some s, = a,,,/ (1 <p<n).

Proof. By induction on n, using the previous lemma. O

Lemma 3.26 The o-/-calculus is weakly normalising.

Proof. Assume a term ¢ not having a normal form for which every term
smaller (in size) than ¢ admits a normal form. Let ¢ = a[s1]; - - - [sn]s, such
that a # e[d/];. By LemmaB28 ¢ — a[t1];, - - [tn];, € ENF. Asa, ty, -+ t,
are all smaller than ¢, they admit a normal form. Replacing each of them by
its normal form in a[t1];, - - - [tn];, gives a normal form for ¢. Absurd. O

Theorem 3.27 The o-/-calculus is strongly normalising on Aw'.

Proof. Use Lemma (i) was shown in Lemma (ii) follows from a
critical pair analysis and (iii) is shown by choosing f(a) to be the size of a.O

Since both rule schemes in %o translate into the single o-/ rule scheme,
the isomorphism gives:

Theorem 3.28 The xo-calculus is strongly normalising.

3.8 Modularity fails

Now that s+ *¢ and *o are SN the question arises whether the whole system
can be shown SN using a modularity result. The answer is negative for the
classical modularity theorem of Bachmair-Dershowitz, which we recall here.

Definition 3.29 A rewrite relation R commutes over S if whenever a —g
b — g c, there is an alternative derivation a —g d —gus c.

Theorem 3.30 (Bachmair-Dershowitz-85) Let R commute over S. The
combined system RU S is SN iff R and S both are SN.

18
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Example B3T] shows that no commutation exists between s + *¢ and *o
and so the Bachmair-Dershowitz’s Theorem cannot be used to get SN of s..

Example 3.31 To show that xo does not commute over s+ g, let k+1 < 7,
h<j—i+4+1and h>k+ 1. Now take the following derivation:
(pi(ac™®))oic —.p @i((aa™)oi= ) —=o_siyp ¢i((ac?™12c) oM (boi =711 2c))
It is easy to see that (¢%(ac"b)) o/c does not contain any *o-redex.

On the other hand, s + *p does not commute over *xo either:
Let ¢ < j and let us consider the following derivation:
((Aa) ') 07¢) —5o_g_tr (Ma) 07T c) o' (ba? ™ e) =, (Mao?t2e)) o (bo?~te)
But reducing the only s-redex in ((A\a) o®b) o7¢) we get (A(ao™'b)) 07c which
also has a unique s-redex. Reducing it we get A((a 0*™'b) 07*'¢c) and now there
is only the o-o-transition redex which gives us A((ao?*2c)o*™!(bo?~* c))
which has no further redexes. Therefore, (\(a0/2c)) o%(bo?~*"!¢) cannot be
reached from ((Aa) o'b) oic) with an s.-derivation beginning with an s-step.

4 Conclusion
This paper attempted two goals:

(i) It gave a calculus of explicit substitutions which allows local as well as
global substitutions. We showed that this calculus simulates beta reduc-
tion and that the underlying calculus of substitutions is strongly normal-
ising and confluent. A calculus of local explicit substitutions was given
in [9], however that calculus did not enjoy good theoretical properties.

(ii) It explained the problems faced in showing that the s.-calculus is strongly
normalising. We are not sure whether the answer is positive or negative
at this stage. We leave this problem as a challenge to the community.
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