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not our in B, then �x:A:B is the type of funtions from A to B, writtenA! B. To the �-abstration at the level of types orresponds �-abstration atthe level of objets. Roughly speaking, if M is a term of type B (M and possiblyB ontaining x), then �x:A:M is a term of type �x:A:B. The Cube has twosorts � (the set of types) and 2 (the set of kinds) with � : 2. If A : � (resp.A : 2) we say A is a type (resp. a kind). All systems of the Cube have the sametyping rules. What distinguishes one system from another however is the set Rof pairs of sorts (s1; s2) allowed in the so-alled type-formation or �-formationrule, simply referred to as the rule (�). Eah system of the Cube has its ownset R (whih must ontain (�; �)). A �-type an only be formed in a spei�system of the Cube if rule (�) is satis�ed for some (s1; s2) in the set R of thatsystem. The rule (�) is as follows:(�) � ` A : s1 �; x:A ` B : s2� ` (�x:A:B) : s2 (s1; s2) 2 RNote that as there are only two sorts, � and 2, and as eah set R mustontain (�; �), there are only eight possible di�erent systems of the Cube. Withthe rule (�), an important aspet of the Cube is that it provides a fatorisationof the expressive power of the Calulus of Construtions into three features:polymorphism, type onstrutors, and dependent types:{ (�; �) is the basi rule that forms types. All type systems of the Cube havethis rule.{ (2; �) is the rule that takes are of polymorphism. Girard's System (alsoknown as �2) is the weakest system on the Cube that features this rule.{ (2;2) takes are of type onstrutors. The system �! is the weakest systemon the Cube that features this rule.{ (�;2) takes are of term dependent types. The system �P is the weakestsystem on the Cube that features this rule.Figures 1: : : 3 illustrate the various systems of the Cube.Many other well-known type systems, like Automath [18℄, LF [11℄, andML [17℄ an be more or less related to one of the systems of the BarendregtCube. However, the relations between systems from \pratie", and systems ofthe Cube are not always perfet. Here are some examples illustrating this point:Example 1 (Automath) All the Automath systems have a relatively re-strited typed �-alulus. But they are more expressive than their �-alulussuggests at �rst sight. This is due to a strong parameter mehanism. Even ifone removes the typed �-alulus from Automath, a quite expressive system\PAL", fully based on parameters, remains. See [18℄. On the other hand, bothAut-68 and Aut-QE have been related to the Cube. But the orrespondingCube-systems are too weak to properly desribe these Automath-systems (seebelow). We will be able to plae both Aut-68 and Aut-QE on our re�ned Cube.



Example 2 (LF) The system LF (see [11℄) is often desribed as the system�P of the Barendregt Cube. However, Geuvers [9℄ shows that the use of the�-formation rule (�;2) is very restrited in the pratial use of LF. We willsee that this use is in fat based on a parametri onstrut rather than on a�-formation rule. Here again, we will be able to �nd a more preise position ofLF on the Cube whih will be the enter of the line whose ends are �! and �P .Example 3 (ML) In ML (see [17℄), types are written impliitly �a la Curry.For example, instead of writing �x:A:B, one writes �x:B and the type hekerin ML looks for the type. It is well-known however from [4℄ that the impliitand expliit type shemes an be related. In any ase, for the purposes of ourpaper, we only onsider an expliit version of a subset of ML. Furthermore, wedo not treat reursive types nor the Y ombinator. In ML, one an de�ne thepolymorphi identity by:Id(�:�) = (�x:�:x) : (�! �): (1)But in ML, it is not possible to make an expliit �-abstration over � : � by:Id = (��: � :�x:�:x) : (��: � :�! �) (2)Those familiar with ML know that the type ��:� :�! � does not belong to thelanguage of ML and hene the �-abstration of equation (2) is not possible inML. Therefore, we an state that ML does not have a �-formation rule (2; �).Nevertheless, it learly has some parameter mehanism (� ating as parameterof Id) and hene ML has limited aess to the rule (2; �) enabling equation (1)to be de�ned. This means that ML's type system is none of those of the eightsystems of the Cube. We will �nd a plae for the type system of ML on ourre�ned Cube. That plae will be the intersetion of the diagonals of the square(of the Barendregt Cube) whose orners are �!, �2, �!, and �! (f. Figure 5).The above examples show that the Barendregt Cube of [4℄ annot aommodatewell-known and pratial type systems in a preise manner. In this paper, were�ne the Barendregt Cube by extending it with a parameter mehanism. Suha mehanism allows the onstrution of terms of the form (b1; : : : ; bn) where is a onstant and b1; : : : :bn are terms. In traditional typed �-alulus suh aterm would be written as b1 : : : bn. This last term is onstruted step by step.First,  gets typed, then it is applied to b1, then the result is applied to b2, andso on. This means that , b1, b1b2, : : : , b1 : : : bn are all legal terms of thesystem. Hene, the attempt to internalise the parameter mehanism into typed�-alulus as desribed above, is going too far. In the parametri situation, only(b1; : : : ; bn) is a term. Partial onstrutions of this term like (b1; : : : ; bi) (fori < n) are not a part of the syntax.Adding parameters is an extension, and a useful one, sine parametri on-struts our in many pratial systems:Example 4 As explained in Example 1, Automath has a parametri system.



Example 5 First-order prediate logi has no �-alulus. It only has parametrionstruts. In [15℄ it is shown that parametri onstruts make it possible togive a desription of �rst-order prediate logi in type theory that is muh moreaurate than the traditional approah in typed �-alulus.Example 6 Parameters our in many parts of omputer siene. For example,look at the following Pasal fragment P with the funtion double:funtion double(z : integer) : integer;begindouble := z + zend;P ould be represented by the de�nitiondouble = (�z:Int:(z+z)) : (Int! Int): (3)Of ourse, this delaration an imitate the behaviour of the funtion perfetlywell. But the onstrution has the following disadvantages:{ The delaration has as subterm the type Int ! Int. This subterm doesnot our in P itself. More general, Pasal does not have a mehanism toonstrut types of the form A! B. Hene, the representation ontains termsthat do not our in Pasal;{ double itself is not a separate expression in Pasal: you an't write x :=double in a program body. One may only use the expression double in aprogram, if one spei�es a parameter p that serves as an argument of double.We onlude that the translation of P as given above is not fully to the point.A parameter mehanism allows us to translate P in the parametri formdouble(z : Int) = (z + z) : Int: (4)This delaration in (4) does not have the disadvantages of (3) desribed above.So for an optimal desription of pratial systems it may be an advantage tostudy the \mild" extension with parametri onstruts only.In Setion 2, we give a short desription of the Barendregt Cube. In Setion 3,we extend the syntax of the Cube with parametri onstruts, and propose typessystems that an type these new onstruts. In Setion 4 we show that theproposed extension in fat leads to a re�nement of the Barendregt Cube: itis split into eight smaller ubes. Setion 5 plaes systems like LF, ML, andAutomath in the Re�ned Barendregt Cube. We onlude in Setion 6.2 The Barendregt CubeIn this setion we shortly repeat the de�nition of the systems in the Cube. Forbakground information the reader may onsult [4℄.
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System Related system Names, referenes�! �� simply typed �-alulus; [7℄, [2℄ (Appendix A), [12℄ (Chapter 14)�2 F seond order typed �-alulus; [10℄, [20℄�P aut-QE [6℄LF [11℄�P2 [16℄�! POLYREC [19℄�! F! [10℄�C CC Calulus of Construtions; [8℄Fig. 3. Systems of the Barendregt Cube



De�nition 7 (Terms) Let V be a set of variables. The set T of terms is de�nedby the following abstrat syntax: T ::= � j 2 j V j �V :T :T j�V :T :T j T T :De�nition 8 (Contexts) A ontext is a �nite (and possibly empty) listx1 : A1; : : : ; xn : An (shorthand: !x :!A) of delarations of typed variables wherexi has type Ai. The set fx1; : : : ; xng of distint variables is alled the domaindom�!x :!A� of the ontext. The empty ontext is denoted hi. We use � , � asmeta-variables for ontexts.De�nition 9 (Systems of the Barendregt Cube) Let R be a subset off(�; �); (�;2); (2; �); (2;2)g suh that (�; �) 2 R. The type system �R desribesin whih ways judgments � `R A : B (or � ` A : B, if it is lear whih R isused) an be derived. � ` A : B states that A has type B in ontext � . Thetyping rules are indutively de�ned as follows:(axiom) hi ` � : 2(start) � ` A : s�; x:A ` x : A x 62 dom (� )(weak) � ` A : B � ` C : s�; x:C ` A : B x 62 dom (� )(�) � ` A : s1 �; x:A ` B : s2� ` (�x:A:B) : s2 (s1; s2) 2 R(�) �; x:A ` b : B � ` (�x:A:B) : s� ` (�x:A:b) : (�x:A:B)(appl) � ` F : (�x:A:B) � ` a : A� ` Fa : B[x:=a℄(onv) � ` A : B � ` B0 : s B =� B0� ` A : B0There are eight di�erent possibilities for R leading to the systems in Figure 1.The dependenies between these systems an be depited in the BarendregtCube (see Figure 2). Furthermore, the systems in the Cube are related to othertype systems as is shown in the overview of Figure 3 whih is taken from [4℄.3 ParametersWe extend the eight systems of the Barendregt Cube with parametri onstruts.Parametri onstruts are of the form (b1; : : : ; bn) where b1; : : : ; bn are termsof ertain presribed types. Just as we an allow several kinds of �-onstruts(via the set R) in the Barendregt Cube, we an also allow several kinds ofparametri onstruts. This is indiated by a set P, onsisting of tuples (s1; s2)where s1; s2 2 f�;2g. (s1; s2) 2 P means that we allow parametri onstruts(b1; : : : ; bn) : A where b1; : : : ; bn have types B1; : : : ; Bn of sort s1, and A is of



type s2. However, if both (�; s2) 2 P and (2; s2) 2 P then ombinations ofparameters are possible. For example, it is allowed that B1 has type �, whilstB2 has type 2.First we desribe the extended syntax.De�nition 10 The set TP of parametri terms is de�ned together with the setLV of lists of variables and the set LT of lists of terms as follows:TP ::= V j S j C(LT ) j TP TP j �V :TP :TP j �V :TP :TP ;LT ::= ? j hLT ; TP i:where, as usual, V is a set of variables, C is a set of onstants, and S = f�;2g isa set of sorts. Formally, lists of terms are of the form h: : : hh?; A1i; A2i : : : Ani:We usually write hA1; : : : ; Ani or even A1; : : : ; An. In a parametri term of theform (b1; : : : ; bn), the subterms b1; : : : ; bn are alled the parameters of the term.Let !x :!A denote x1:A1; : : : ; xn:An. We extend the usual de�nition of fv(A), theset of free variables of a term A, to parametri terms:fv((a1; : : : ; an)) = Sni=1 fv(ai);Convention 11 Names of bound variables and onstants will always be hosensuh that they di�er from the free ones in a term.Hene, we do not write (�x:A:x)x but (�y:A:y)x.We extend the de�nition of substitution of a term a for a variable x in aterm b, b[x:=a℄, to parametri terms, assuming that x is not a bound variable ofeither b or a: (b1; : : : ; bn)[x:=a℄ � (b1[x:=a℄; : : : ; bn[x:=a℄);De�nition 12 Given the set of parametri terms, we de�ne the set CP of para-metri ontexts (whih we denote by �; � 0; : : : ) and the set LD of lists of variabledelarations as follows:CP ::= ? j hCP ;V :TP i j hCP ; C(LV ):TP iLD ::= ? j hLD;V :TP i:Notie that LD � CP : all lists of variable delarations are ontexts, as well.Now we extend the typing rules of the Cube as follows:De�nition 13 (The Barendregt Cube with parametri onstants) LetR be as in De�nition 9 and let P be a subset of f(�; �); (�;2); (2; �); (2;2)g,suh that (�; �) 2 P. The judgments that are derivable in �RP are determinedby the rules for �R of De�nition 9 and the following two rules where � �x1:B1; : : : ; xn:Bn and �i � x1:B1; : : : ; xi�1:Bi�1:(!C-weak) � ` b : B �;�i ` Bi : si �;� ` A : s�; (�) : A ` b : B (si; s) 2 P(!C-app) �1; (�):A;�2 ` bi:Bi[xj :=bj ℄i�1j=1 (i = 1; : : : ; n)�1; (�):A;�2 ` A : s (if n = 0)�1; (�):A;�2 ` (b1; : : : ; bn) : A[xj :=bj ℄nj=1



where the  that is introdued in the !C-weakening rule is assumed to be � -fresh.At �rst sight one might miss a !C-introdution rule. Suh a rule, however, isnot neessary, as  (on its own) is not a term.  an only be (part of) a term inthe form (b1; : : : ; bn), and suh terms an be typed by the (!C-app) rule.Constant weakening (!C-weak) explains how we an introdue a delarationof a parametri onstant in the ontext. The ontext � indiates the arity of theparametri onstants (the number of delarations in �), and of whih type eahparameter must be (xj : Bj in � means the j-th parameter must be of type Bj).The extra ondition �1; (�):A;�2 ` A : s in the (!C-app) for n = 0 isneessary to prevent an empty list of premises. Suh an empty list of premiseswould make it possible to have almost arbitrary ontexts in the onlusion. Theextra ondition is needed to assure that the ontext in the onlusion is a legal.A term a is legal (with respet to a ertain type system) if there are � , b suhthat either � ` a : b or � ` b : a is derivable (in that type system). Similarly, aontext � is legal if there are a, b suh that � ` a : b.The parametri type system of De�nition 13 has similar meta-theoretialproperties as the systems of the Barendregt Cube. We list them below. Theproofs are similar to those of the Barendregt Cube (see [14℄).Lemma 14 Assume � ` b : B. Then dom (b) ;dom (B) � dom (� );Lemma 15 (Generation Lemma)1. If � ` s : C then s � �, C =� 2 and if C 6� 2 then � ` C : s0 for some sorts0.2. If � ` x : C then there is s 2 S and B =� C suh that � ` B : s and(x:B) 2 � ;3. If � ` (�x:A:B) : C then there is (s1; s2) 2 R suh that � ` A : s1,�; x:A ` B : s2 and C =� s2;4. If � ` (�x:A:b) : C then there is s 2 S and B suh that � ` (�x:A:B) : s;�; x:A ` b : B; and C =� (�x:A:B);5. If � ` Fa : C then there are A;B suh that � ` F : (�x:A:B), � ` a : Aand C =� B[x:=a℄.6. If � ` (b1; : : : ; bn) : D then there exist s, � � x1 : B1; : : : ; xn : Bn andA suh that � ` D =� A[xj :=bj ℄nj=1, and � ` bi:Bi[xj :=bj ℄i�1j=1. Moreover,� � �1; (�) : A;�2 and �1; � ` A : s. Finally, there are si 2 S suh that�;�i ` Bi : si and (si; s) 2 P.Lemma 16 (Corretness of Types) If � ` A : B then B � s or � ` B : sfor some s 2 S.Lemma 17 (Subterm Lemma) If A is legal and B is a subterm of A, thenB is legal.Lemma 18 (Subjet Redution) If � ` A : B and A!� A0 then � ` A0 : B.



Lemma 19 (Uniity of Types) If � ` A : B1 and � ` A : B2, then B1 =�B2.Theorem 20 (Strong Normalisation) If � ` A : B then A and B are �-strongly normalising, that is: any �-redution path of A or B is �nite.4 The Re�ned Barendregt CubeThe systems of De�nition 13 have six degrees of freedom: three for the possiblehoies of (�;2), (2; �) and (2;2) 2 R and three for the possible hoies of(�;2), (2; �), and (2;2) 2 P. However, these hoies are not independent sineonstruts that an be made with P-rule (s1; s2) an be imitated in a typed�-alulus with R-rule (s1; s2). This means that the parameter-free type systemwith R = f(�; �); (�;2)g is at least as strong as the type system with parameterswith the same set R, but with P = f(�; �); (�;2)g. We make this preise inTheorem 26.The insight of Theorem 26 an be expressed by depiting the systems withparameters of De�nition 13 as a re�nement of the Barendregt Cube. As in theBarendregt Cube, we start with the system �!, whih hasR = f(�; �)g and P =f(�; �)g. Adding an extra element (s1; s2) toR still orresponds to moving in onedimension in the Cube. Now we add the possibility of moving in one dimension inthe Cube but stopping half-way. We let this movement orrespond to extendingP with (s1; s2). This \going only half-way" is in line with the intuition that �-formation with (s1; s2) an imitate the onstrution of a parametri onstrutwith (s1; s2). In other words, the system obtained by \going all the way" is atleast as strong as the system obtained by \going only half-way".The re�nement of the Barendregt Cube is depited in Figure 4. We now makethe above intuition that \R an imitate P" preise.De�nition 21 Consider the system �RP. We all this system parametriallyonservative if (s1; s2) 2 P implies (s1; s2) 2 R.Let �RP be parametrially onservative. In order to show that the parameter-free system �R is at least as powerful as �RP, we need to remove the parametersfrom the syntax of �RP. To do so, we replae the parametri appliation in aterm (b1; : : : ; bn) by funtion appliation b1; : : : ; bn:De�nition 22 De�ne the parameter-free translation ftg of a term t 2 TP by:fag � a if a � x or a � s;f(b1; : : : ; bn)g �  fb1g � � � fbng ;fabg � fag fbg ;fOx:A:Bg � Ox: fAg : fBg if O is � or �De�nition 23 We extend the de�nition of f g to ontexts:fhig � hi;f�; x:Ag � f�g ; x: fAg ;f�; (�):Ag � f�g ; (): fQ�:Ag :
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Fig. 4. The re�ned Barendregt CubeHere, � � x1 : B1; : : : ; xn : Bn, and Q�:A is shorthand for Qni=1 xn : Bi:A.To demonstrate the behaviour of f g under �-redution, we need a lemmathat shows how to manipulate with substitutions and f g. The proof is straight-forward, using indution on the struture of a.Lemma 24 For a; b 2 TP : fa[x:=b℄g � fag [x:= fbg℄. �The mapping f g maintains �-redution:Lemma 25 a!� a0 if and only if fag !� fa0g.Proof: Follows easily by indution on the struture of a, and Lemma 24. �Now we show that f g embeds the parametrially onservative �RP in theparameter-free �R:Theorem 26 Let �RP be parametrially onservative. If � `RP a : A thenf�g `R fag : fAg :Proof: Indution on the derivation of � `RP a : A. By Lemma 24, all ases areeasy exept for (!C-weak). So: assume the last step of the derivation was� `RP b : B �;�i `RP Bi : si �;� `RP A : s�; (�):A `RP b : B (si; s) 2 P :



By the indution hypothesis, we have:f�g `R fbg : fBg ; (5)f�;�ig `R fBig : si; (6)f�;�g `R fAg : s: (7)�RP is parametrially onservative, so (si; s) 2 R for i = 1; : : : ; n. Therefore,we an repeatedly use the �-formation rule, starting with (7) and (6), obtainingf�g `R Qni=1 xi: fBig : fAg : s: (8)Notie thatQni=1 xi: fBig : fAg � fQ�:Ag. Using (!C-weak) on (5) and (8) givesf�g ; (): fQ�:Ag `R fbg : fBg : �5 Systems in the Re�ned Barendregt CubeIn this setion, we show that the Re�ned Barendregt Cube enables us to om-pare some well-known type systems with systems from the Barendregt Cube. Inpartiular, we show that Aut-68, and Aut-QE, LF, and ML, an be seen assystems in the Re�ned Barendregt Cube. This is depited in Figure 5 on page14, and motivated in the three subsetions below.5.1 AutomathThe Automath-systems (see [18℄) all heavily rely on parametri onstruts.1) Aut-68: The typed �-alulus of one of the most elementary systems of Au-tomath, Aut-68, is relatively simple and orresponds to �!: it has only (�; �)as a �-formation rule. This should suggest that Aut-68 has omparable expres-siveness �!. But for the parametrial onstrutions there are no limitations inAut-68 whose parameter mehanism has the following features:{ A line (� ; k; pn; type) in a book is nothing more that the delaration of aparametri onstant k(� ):�. There are no demands on the ontext � , andthis means that for a delaration x:A 2 � we an have either A � type (inCube-terminology: A � �, so A : 2) or A:type (in Cube-terminology: A : �).We onlude that aut-68 has the parameter rules (�;2) and (2;2);{ Similarly, lines of the form (� ; k; pn;�2) where �2:type, represent para-metri onstants that are onstruted using the parameter rules (�; �) and(2; �).This suggests that aut-68 an be represented by the parametri system withR = f(�; �)g and P = f�;2g � f�;2g. The Aut-68 system an be found in theexat middle of the re�ned Barendregt Cube.2) Aut-QE: Something similar holds for the more extensive system Aut-QE.This system has an extra �-formation rule: (�;2) additionally to the rules of



Aut-68. This means that for representing this system, we need the �-formationrules R = f(�; �); (�;2)g, and parametri rules (s1; s2) for s1; s2 2 f�;2g. Thissystem is loated in the middle of the right side of the Re�ned Barendregt Cube,exatly in between �C and �P.3) Pal: It should be noted that the Automath languages are all based ontwo onepts: typed �-alulus and a parameter/de�nition mehanism. Bothonepts an be isolated: it is possible to study �-alulus without a parame-ter/de�nition mehanism (for instane via the format of Pure Type Systems orthe Barendregt Cube of [4℄), but one an also isolate the parameter/de�nitionmehanism from Automath. One then obtains a language that is alled Pal,the \PrimitiveAutomath Language". It annot be desribed within the Re�nedBarendregt Cube (as all the systems in that ube have at least some basi �-alulus in it), but it an be desribed as a system with the following parametrispei�ation: R = ?; P = f(�; �); (�;2); (2; �); (2;2)g.This parametri spei�ation orresponds to the parametri spei�ationsthat were given for the Automath systems above, from whih the �-formationrules are removed.5.2 LFGeuvers [9℄ initially desribes the system LF (see [11℄) as the system �P of theCube. However, the use of the �-formation rule (�;2) is quite restritive in mostappliations of LF. Geuvers splits the �-formation rule in two:(�0)�; x:A `M : B � ` �x:A:B : �� ` �0x:A:M : �x:A:B ;(�P )�; x:A `M : B � ` �x:A:B : 2� ` �Px:A:M : �x:A:B :System LF without rule (�P ) is alled LF�. �-redution is split into �0-redutionand �P -redution: (�0x:A:M)N !�0 M [x:=N ℄;(�Px:A:M)N !�P M [x:=N ℄:Geuvers then shows that{ If M : � or M : A : � in LF, then the �P -normal form of M ontains no �P ;{ If � `LF M : A, and �;M;A do not ontain a �P , then � `LF� M : A;{ If � `M : A(: �), all in �P -normal form, then � `LF� M : A(: �).This means that the only real need for a type �x:A:B : 2 is to be able todelare a variable in it. The only point at whih this is really done is where thebool-style implementation of the Propositions-As-Types priniple pat is made:the onstrution of the type of the operator Prf (in an unparameterised form)has to be made as follows:prop:� ` prop: � prop:�; �:prop ` �:2prop:� ` (��:prop:�) : 2 :



In the pratial use of LF, this is the only point where the �-formation rule(�;2) is used. No �P -abstrations are used, either, and the term Prf is onlyused when it is applied to a term p:prop. This means that the pratial useof LF would not be restrited if we introdued Prf in a parametri form, andreplaed the �-formation rule (�;2) by a parameter rule (�;2). This puts (thepratial appliations of) LF in between the systems �! and �P in the Re�nedBarendregt Cube.5.3 MLIn ML (f. [17℄) one an de�ne the polymorphi identity by (we use the notationof this paper, whereas in ML, the types and the parameters are left impliit):Id(�:�) = (�x:�:x) : (�! �):But we annot make an expliit �-abstration over �:�. That is, the expressionId = (��: � :�x:�:x) : (��: � :�! �)annot be onstruted in ML, as the type ��:�:� ! � does not belong to thelanguage of ML. Therefore, we an state that ML does not have a �-formationrule (2; �), but that it does have the parametri rule (2; �).Similarly, one an introdue the type of lists and some operations by:List(�:�) : �;nil(�:�) : List(�);ons(�:�) : �! List(�)! List(�);but the expression ��:�:� does not belong to ML, so introduing List byList : ��:�:�is not possible in ML. We onlude that ML does not have a �-formation rule(2;2), but only the parametri rule (2;2). Together with the fat that ML hasa �-formation rule (�; �), this plaes ML in the middle of the left side of there�ned Barendregt Cube, exatly in between �! and �!.6 ConlusionIn this paper, we observed that many existing type systems do not �t exatly inthe Barendregt Cube. In partiular, we explained that previous attempts to de-sribe LF and Automath were not very suessfull. We noted that Automathuses parameters heavily, and that there are some types that are only used inspeial situations by LF and that those types and situations ould be overedby parameters. In addition, we onsidered an expliitly typed version of ML andnoted that there too, ML annot oupy any of the orners of the ube. Thereason being that, ML (as well as LF and Automath) allows �-types, but notall of them. In any orner of the Cube, as soon as an abstration of a sort isallowed, all abstrations of that sort are allowed too.



���������
������������������

������ ��� ������������������
������ ��������� ��������� ���

�! �P
�2 �P2

�! �P!
�C�!

Aut-68 Aut-QEML
LFr r

rr
r r

rr
r rr
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