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iple, many logi
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ed in the Barendregt Cube or inthe larger framework of Pure Type Systems. In this paper we add aparameter me
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not o

ur in B, then �x:A:B is the type of fun
tions from A to B, writtenA! B. To the �-abstra
tion at the level of types 
orresponds �-abstra
tion atthe level of obje
ts. Roughly speaking, if M is a term of type B (M and possiblyB 
ontaining x), then �x:A:M is a term of type �x:A:B. The Cube has twosorts � (the set of types) and 2 (the set of kinds) with � : 2. If A : � (resp.A : 2) we say A is a type (resp. a kind). All systems of the Cube have the sametyping rules. What distinguishes one system from another however is the set Rof pairs of sorts (s1; s2) allowed in the so-
alled type-formation or �-formationrule, simply referred to as the rule (�). Ea
h system of the Cube has its ownset R (whi
h must 
ontain (�; �)). A �-type 
an only be formed in a spe
i�
system of the Cube if rule (�) is satis�ed for some (s1; s2) in the set R of thatsystem. The rule (�) is as follows:(�) � ` A : s1 �; x:A ` B : s2� ` (�x:A:B) : s2 (s1; s2) 2 RNote that as there are only two sorts, � and 2, and as ea
h set R must
ontain (�; �), there are only eight possible di�erent systems of the Cube. Withthe rule (�), an important aspe
t of the Cube is that it provides a fa
torisationof the expressive power of the Cal
ulus of Constru
tions into three features:polymorphism, type 
onstru
tors, and dependent types:{ (�; �) is the basi
 rule that forms types. All type systems of the Cube havethis rule.{ (2; �) is the rule that takes 
are of polymorphism. Girard's System (alsoknown as �2) is the weakest system on the Cube that features this rule.{ (2;2) takes 
are of type 
onstru
tors. The system �! is the weakest systemon the Cube that features this rule.{ (�;2) takes 
are of term dependent types. The system �P is the weakestsystem on the Cube that features this rule.Figures 1: : : 3 illustrate the various systems of the Cube.Many other well-known type systems, like Automath [18℄, LF [11℄, andML [17℄ 
an be more or less related to one of the systems of the BarendregtCube. However, the relations between systems from \pra
ti
e", and systems ofthe Cube are not always perfe
t. Here are some examples illustrating this point:Example 1 (Automath) All the Automath systems have a relatively re-stri
ted typed �-
al
ulus. But they are more expressive than their �-
al
ulussuggests at �rst sight. This is due to a strong parameter me
hanism. Even ifone removes the typed �-
al
ulus from Automath, a quite expressive system\PAL", fully based on parameters, remains. See [18℄. On the other hand, bothAut-68 and Aut-QE have been related to the Cube. But the 
orrespondingCube-systems are too weak to properly des
ribe these Automath-systems (seebelow). We will be able to pla
e both Aut-68 and Aut-QE on our re�ned Cube.



Example 2 (LF) The system LF (see [11℄) is often des
ribed as the system�P of the Barendregt Cube. However, Geuvers [9℄ shows that the use of the�-formation rule (�;2) is very restri
ted in the pra
ti
al use of LF. We willsee that this use is in fa
t based on a parametri
 
onstru
t rather than on a�-formation rule. Here again, we will be able to �nd a more pre
ise position ofLF on the Cube whi
h will be the 
enter of the line whose ends are �! and �P .Example 3 (ML) In ML (see [17℄), types are written impli
itly �a la Curry.For example, instead of writing �x:A:B, one writes �x:B and the type 
he
kerin ML looks for the type. It is well-known however from [4℄ that the impli
itand expli
it type s
hemes 
an be related. In any 
ase, for the purposes of ourpaper, we only 
onsider an expli
it version of a subset of ML. Furthermore, wedo not treat re
ursive types nor the Y 
ombinator. In ML, one 
an de�ne thepolymorphi
 identity by:Id(�:�) = (�x:�:x) : (�! �): (1)But in ML, it is not possible to make an expli
it �-abstra
tion over � : � by:Id = (��: � :�x:�:x) : (��: � :�! �) (2)Those familiar with ML know that the type ��:� :�! � does not belong to thelanguage of ML and hen
e the �-abstra
tion of equation (2) is not possible inML. Therefore, we 
an state that ML does not have a �-formation rule (2; �).Nevertheless, it 
learly has some parameter me
hanism (� a
ting as parameterof Id) and hen
e ML has limited a

ess to the rule (2; �) enabling equation (1)to be de�ned. This means that ML's type system is none of those of the eightsystems of the Cube. We will �nd a pla
e for the type system of ML on ourre�ned Cube. That pla
e will be the interse
tion of the diagonals of the square(of the Barendregt Cube) whose 
orners are �!, �2, �!, and �! (
f. Figure 5).The above examples show that the Barendregt Cube of [4℄ 
annot a

ommodatewell-known and pra
ti
al type systems in a pre
ise manner. In this paper, were�ne the Barendregt Cube by extending it with a parameter me
hanism. Su
ha me
hanism allows the 
onstru
tion of terms of the form 
(b1; : : : ; bn) where
 is a 
onstant and b1; : : : :bn are terms. In traditional typed �-
al
ulus su
h aterm would be written as 
b1 : : : bn. This last term is 
onstru
ted step by step.First, 
 gets typed, then it is applied to b1, then the result is applied to b2, andso on. This means that 
, 
b1, 
b1b2, : : : , 
b1 : : : bn are all legal terms of thesystem. Hen
e, the attempt to internalise the parameter me
hanism into typed�-
al
ulus as des
ribed above, is going too far. In the parametri
 situation, only
(b1; : : : ; bn) is a term. Partial 
onstru
tions of this term like 
(b1; : : : ; bi) (fori < n) are not a part of the syntax.Adding parameters is an extension, and a useful one, sin
e parametri
 
on-stru
ts o

ur in many pra
ti
al systems:Example 4 As explained in Example 1, Automath has a parametri
 system.



Example 5 First-order predi
ate logi
 has no �-
al
ulus. It only has parametri

onstru
ts. In [15℄ it is shown that parametri
 
onstru
ts make it possible togive a des
ription of �rst-order predi
ate logi
 in type theory that is mu
h morea

urate than the traditional approa
h in typed �-
al
ulus.Example 6 Parameters o

ur in many parts of 
omputer s
ien
e. For example,look at the following Pas
al fragment P with the fun
tion double:fun
tion double(z : integer) : integer;begindouble := z + zend;P 
ould be represented by the de�nitiondouble = (�z:Int:(z+z)) : (Int! Int): (3)Of 
ourse, this de
laration 
an imitate the behaviour of the fun
tion perfe
tlywell. But the 
onstru
tion has the following disadvantages:{ The de
laration has as subterm the type Int ! Int. This subterm doesnot o

ur in P itself. More general, Pas
al does not have a me
hanism to
onstru
t types of the form A! B. Hen
e, the representation 
ontains termsthat do not o

ur in Pas
al;{ double itself is not a separate expression in Pas
al: you 
an't write x :=double in a program body. One may only use the expression double in aprogram, if one spe
i�es a parameter p that serves as an argument of double.We 
on
lude that the translation of P as given above is not fully to the point.A parameter me
hanism allows us to translate P in the parametri
 formdouble(z : Int) = (z + z) : Int: (4)This de
laration in (4) does not have the disadvantages of (3) des
ribed above.So for an optimal des
ription of pra
ti
al systems it may be an advantage tostudy the \mild" extension with parametri
 
onstru
ts only.In Se
tion 2, we give a short des
ription of the Barendregt Cube. In Se
tion 3,we extend the syntax of the Cube with parametri
 
onstru
ts, and propose typessystems that 
an type these new 
onstru
ts. In Se
tion 4 we show that theproposed extension in fa
t leads to a re�nement of the Barendregt Cube: itis split into eight smaller 
ubes. Se
tion 5 pla
es systems like LF, ML, andAutomath in the Re�ned Barendregt Cube. We 
on
lude in Se
tion 6.2 The Barendregt CubeIn this se
tion we shortly repeat the de�nition of the systems in the Cube. Forba
kground information the reader may 
onsult [4℄.



�! (�; �)�2 (�; �) (2; �)�P (�; �) (�;2)�! (�; �) (2;2)�P2 (�; �) (2; �) (�;2)�! (�; �) (2; �) (2;2)�P! (�; �) (�;2) (2;2)�C (�; �) (2; �) (�;2) (2;2)Fig. 1. Di�erent type formation 
onditions

��������
����������������

���������! �P
�2 �P2

�! �P!
�C�!

r r
rr

r r
rr

-6����1 (�;2) 2 R(2;2) 2 R(2; �) 2 R
Fig. 2. The Barendregt Cube

System Related system Names, referen
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al
ulus; [7℄, [2℄ (Appendix A), [12℄ (Chapter 14)�2 F se
ond order typed �-
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ulus; [10℄, [20℄�P aut-QE [6℄LF [11℄�P2 [16℄�! POLYREC [19℄�! F! [10℄�C CC Cal
ulus of Constru
tions; [8℄Fig. 3. Systems of the Barendregt Cube



De�nition 7 (Terms) Let V be a set of variables. The set T of terms is de�nedby the following abstra
t syntax: T ::= � j 2 j V j �V :T :T j�V :T :T j T T :De�nition 8 (Contexts) A 
ontext is a �nite (and possibly empty) listx1 : A1; : : : ; xn : An (shorthand: !x :!A) of de
larations of typed variables wherexi has type Ai. The set fx1; : : : ; xng of distin
t variables is 
alled the domaindom�!x :!A� of the 
ontext. The empty 
ontext is denoted hi. We use � , � asmeta-variables for 
ontexts.De�nition 9 (Systems of the Barendregt Cube) Let R be a subset off(�; �); (�;2); (2; �); (2;2)g su
h that (�; �) 2 R. The type system �R des
ribesin whi
h ways judgments � `R A : B (or � ` A : B, if it is 
lear whi
h R isused) 
an be derived. � ` A : B states that A has type B in 
ontext � . Thetyping rules are indu
tively de�ned as follows:(axiom) hi ` � : 2(start) � ` A : s�; x:A ` x : A x 62 dom (� )(weak) � ` A : B � ` C : s�; x:C ` A : B x 62 dom (� )(�) � ` A : s1 �; x:A ` B : s2� ` (�x:A:B) : s2 (s1; s2) 2 R(�) �; x:A ` b : B � ` (�x:A:B) : s� ` (�x:A:b) : (�x:A:B)(appl) � ` F : (�x:A:B) � ` a : A� ` Fa : B[x:=a℄(
onv) � ` A : B � ` B0 : s B =� B0� ` A : B0There are eight di�erent possibilities for R leading to the systems in Figure 1.The dependen
ies between these systems 
an be depi
ted in the BarendregtCube (see Figure 2). Furthermore, the systems in the Cube are related to othertype systems as is shown in the overview of Figure 3 whi
h is taken from [4℄.3 ParametersWe extend the eight systems of the Barendregt Cube with parametri
 
onstru
ts.Parametri
 
onstru
ts are of the form 
(b1; : : : ; bn) where b1; : : : ; bn are termsof 
ertain pres
ribed types. Just as we 
an allow several kinds of �-
onstru
ts(via the set R) in the Barendregt Cube, we 
an also allow several kinds ofparametri
 
onstru
ts. This is indi
ated by a set P, 
onsisting of tuples (s1; s2)where s1; s2 2 f�;2g. (s1; s2) 2 P means that we allow parametri
 
onstru
ts
(b1; : : : ; bn) : A where b1; : : : ; bn have types B1; : : : ; Bn of sort s1, and A is of



type s2. However, if both (�; s2) 2 P and (2; s2) 2 P then 
ombinations ofparameters are possible. For example, it is allowed that B1 has type �, whilstB2 has type 2.First we des
ribe the extended syntax.De�nition 10 The set TP of parametri
 terms is de�ned together with the setLV of lists of variables and the set LT of lists of terms as follows:TP ::= V j S j C(LT ) j TP TP j �V :TP :TP j �V :TP :TP ;LT ::= ? j hLT ; TP i:where, as usual, V is a set of variables, C is a set of 
onstants, and S = f�;2g isa set of sorts. Formally, lists of terms are of the form h: : : hh?; A1i; A2i : : : Ani:We usually write hA1; : : : ; Ani or even A1; : : : ; An. In a parametri
 term of theform 
(b1; : : : ; bn), the subterms b1; : : : ; bn are 
alled the parameters of the term.Let !x :!A denote x1:A1; : : : ; xn:An. We extend the usual de�nition of fv(A), theset of free variables of a term A, to parametri
 terms:fv(
(a1; : : : ; an)) = Sni=1 fv(ai);Convention 11 Names of bound variables and 
onstants will always be 
hosensu
h that they di�er from the free ones in a term.Hen
e, we do not write (�x:A:x)x but (�y:A:y)x.We extend the de�nition of substitution of a term a for a variable x in aterm b, b[x:=a℄, to parametri
 terms, assuming that x is not a bound variable ofeither b or a: 
(b1; : : : ; bn)[x:=a℄ � 
(b1[x:=a℄; : : : ; bn[x:=a℄);De�nition 12 Given the set of parametri
 terms, we de�ne the set CP of para-metri
 
ontexts (whi
h we denote by �; � 0; : : : ) and the set LD of lists of variablede
larations as follows:CP ::= ? j hCP ;V :TP i j hCP ; C(LV ):TP iLD ::= ? j hLD;V :TP i:Noti
e that LD � CP : all lists of variable de
larations are 
ontexts, as well.Now we extend the typing rules of the Cube as follows:De�nition 13 (The Barendregt Cube with parametri
 
onstants) LetR be as in De�nition 9 and let P be a subset of f(�; �); (�;2); (2; �); (2;2)g,su
h that (�; �) 2 P. The judgments that are derivable in �RP are determinedby the rules for �R of De�nition 9 and the following two rules where � �x1:B1; : : : ; xn:Bn and �i � x1:B1; : : : ; xi�1:Bi�1:(!C-weak) � ` b : B �;�i ` Bi : si �;� ` A : s�; 
(�) : A ` b : B (si; s) 2 P(!C-app) �1; 
(�):A;�2 ` bi:Bi[xj :=bj ℄i�1j=1 (i = 1; : : : ; n)�1; 
(�):A;�2 ` A : s (if n = 0)�1; 
(�):A;�2 ` 
(b1; : : : ; bn) : A[xj :=bj ℄nj=1



where the 
 that is introdu
ed in the !C-weakening rule is assumed to be � -fresh.At �rst sight one might miss a !C-introdu
tion rule. Su
h a rule, however, isnot ne
essary, as 
 (on its own) is not a term. 
 
an only be (part of) a term inthe form 
(b1; : : : ; bn), and su
h terms 
an be typed by the (!C-app) rule.Constant weakening (!C-weak) explains how we 
an introdu
e a de
larationof a parametri
 
onstant in the 
ontext. The 
ontext � indi
ates the arity of theparametri
 
onstants (the number of de
larations in �), and of whi
h type ea
hparameter must be (xj : Bj in � means the j-th parameter must be of type Bj).The extra 
ondition �1; 
(�):A;�2 ` A : s in the (!C-app) for n = 0 isne
essary to prevent an empty list of premises. Su
h an empty list of premiseswould make it possible to have almost arbitrary 
ontexts in the 
on
lusion. Theextra 
ondition is needed to assure that the 
ontext in the 
on
lusion is a legal.A term a is legal (with respe
t to a 
ertain type system) if there are � , b su
hthat either � ` a : b or � ` b : a is derivable (in that type system). Similarly, a
ontext � is legal if there are a, b su
h that � ` a : b.The parametri
 type system of De�nition 13 has similar meta-theoreti
alproperties as the systems of the Barendregt Cube. We list them below. Theproofs are similar to those of the Barendregt Cube (see [14℄).Lemma 14 Assume � ` b : B. Then dom (b) ;dom (B) � dom (� );Lemma 15 (Generation Lemma)1. If � ` s : C then s � �, C =� 2 and if C 6� 2 then � ` C : s0 for some sorts0.2. If � ` x : C then there is s 2 S and B =� C su
h that � ` B : s and(x:B) 2 � ;3. If � ` (�x:A:B) : C then there is (s1; s2) 2 R su
h that � ` A : s1,�; x:A ` B : s2 and C =� s2;4. If � ` (�x:A:b) : C then there is s 2 S and B su
h that � ` (�x:A:B) : s;�; x:A ` b : B; and C =� (�x:A:B);5. If � ` Fa : C then there are A;B su
h that � ` F : (�x:A:B), � ` a : Aand C =� B[x:=a℄.6. If � ` 
(b1; : : : ; bn) : D then there exist s, � � x1 : B1; : : : ; xn : Bn andA su
h that � ` D =� A[xj :=bj ℄nj=1, and � ` bi:Bi[xj :=bj ℄i�1j=1. Moreover,� � �1; 
(�) : A;�2 and �1; � ` A : s. Finally, there are si 2 S su
h that�;�i ` Bi : si and (si; s) 2 P.Lemma 16 (Corre
tness of Types) If � ` A : B then B � s or � ` B : sfor some s 2 S.Lemma 17 (Subterm Lemma) If A is legal and B is a subterm of A, thenB is legal.Lemma 18 (Subje
t Redu
tion) If � ` A : B and A!� A0 then � ` A0 : B.



Lemma 19 (Uni
ity of Types) If � ` A : B1 and � ` A : B2, then B1 =�B2.Theorem 20 (Strong Normalisation) If � ` A : B then A and B are �-strongly normalising, that is: any �-redu
tion path of A or B is �nite.4 The Re�ned Barendregt CubeThe systems of De�nition 13 have six degrees of freedom: three for the possible
hoi
es of (�;2), (2; �) and (2;2) 2 R and three for the possible 
hoi
es of(�;2), (2; �), and (2;2) 2 P. However, these 
hoi
es are not independent sin
e
onstru
ts that 
an be made with P-rule (s1; s2) 
an be imitated in a typed�-
al
ulus with R-rule (s1; s2). This means that the parameter-free type systemwith R = f(�; �); (�;2)g is at least as strong as the type system with parameterswith the same set R, but with P = f(�; �); (�;2)g. We make this pre
ise inTheorem 26.The insight of Theorem 26 
an be expressed by depi
ting the systems withparameters of De�nition 13 as a re�nement of the Barendregt Cube. As in theBarendregt Cube, we start with the system �!, whi
h hasR = f(�; �)g and P =f(�; �)g. Adding an extra element (s1; s2) toR still 
orresponds to moving in onedimension in the Cube. Now we add the possibility of moving in one dimension inthe Cube but stopping half-way. We let this movement 
orrespond to extendingP with (s1; s2). This \going only half-way" is in line with the intuition that �-formation with (s1; s2) 
an imitate the 
onstru
tion of a parametri
 
onstru
twith (s1; s2). In other words, the system obtained by \going all the way" is atleast as strong as the system obtained by \going only half-way".The re�nement of the Barendregt Cube is depi
ted in Figure 4. We now makethe above intuition that \R 
an imitate P" pre
ise.De�nition 21 Consider the system �RP. We 
all this system parametri
ally
onservative if (s1; s2) 2 P implies (s1; s2) 2 R.Let �RP be parametri
ally 
onservative. In order to show that the parameter-free system �R is at least as powerful as �RP, we need to remove the parametersfrom the syntax of �RP. To do so, we repla
e the parametri
 appli
ation in aterm 
(b1; : : : ; bn) by fun
tion appli
ation 
b1; : : : ; bn:De�nition 22 De�ne the parameter-free translation ftg of a term t 2 TP by:fag � a if a � x or a � s;f
(b1; : : : ; bn)g � 
 fb1g � � � fbng ;fabg � fag fbg ;fOx:A:Bg � Ox: fAg : fBg if O is � or �De�nition 23 We extend the de�nition of f g to 
ontexts:fhig � hi;f�; x:Ag � f�g ; x: fAg ;f�; 
(�):Ag � f�g ; 
(): fQ�:Ag :
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Fig. 4. The re�ned Barendregt CubeHere, � � x1 : B1; : : : ; xn : Bn, and Q�:A is shorthand for Qni=1 xn : Bi:A.To demonstrate the behaviour of f g under �-redu
tion, we need a lemmathat shows how to manipulate with substitutions and f g. The proof is straight-forward, using indu
tion on the stru
ture of a.Lemma 24 For a; b 2 TP : fa[x:=b℄g � fag [x:= fbg℄. �The mapping f g maintains �-redu
tion:Lemma 25 a!� a0 if and only if fag !� fa0g.Proof: Follows easily by indu
tion on the stru
ture of a, and Lemma 24. �Now we show that f g embeds the parametri
ally 
onservative �RP in theparameter-free �R:Theorem 26 Let �RP be parametri
ally 
onservative. If � `RP a : A thenf�g `R fag : fAg :Proof: Indu
tion on the derivation of � `RP a : A. By Lemma 24, all 
ases areeasy ex
ept for (!C-weak). So: assume the last step of the derivation was� `RP b : B �;�i `RP Bi : si �;� `RP A : s�; 
(�):A `RP b : B (si; s) 2 P :



By the indu
tion hypothesis, we have:f�g `R fbg : fBg ; (5)f�;�ig `R fBig : si; (6)f�;�g `R fAg : s: (7)�RP is parametri
ally 
onservative, so (si; s) 2 R for i = 1; : : : ; n. Therefore,we 
an repeatedly use the �-formation rule, starting with (7) and (6), obtainingf�g `R Qni=1 xi: fBig : fAg : s: (8)Noti
e thatQni=1 xi: fBig : fAg � fQ�:Ag. Using (!C-weak) on (5) and (8) givesf�g ; 
(): fQ�:Ag `R fbg : fBg : �5 Systems in the Re�ned Barendregt CubeIn this se
tion, we show that the Re�ned Barendregt Cube enables us to 
om-pare some well-known type systems with systems from the Barendregt Cube. Inparti
ular, we show that Aut-68, and Aut-QE, LF, and ML, 
an be seen assystems in the Re�ned Barendregt Cube. This is depi
ted in Figure 5 on page14, and motivated in the three subse
tions below.5.1 AutomathThe Automath-systems (see [18℄) all heavily rely on parametri
 
onstru
ts.1) Aut-68: The typed �-
al
ulus of one of the most elementary systems of Au-tomath, Aut-68, is relatively simple and 
orresponds to �!: it has only (�; �)as a �-formation rule. This should suggest that Aut-68 has 
omparable expres-siveness �!. But for the parametri
al 
onstru
tions there are no limitations inAut-68 whose parameter me
hanism has the following features:{ A line (� ; k; pn; type) in a book is nothing more that the de
laration of aparametri
 
onstant k(� ):�. There are no demands on the 
ontext � , andthis means that for a de
laration x:A 2 � we 
an have either A � type (inCube-terminology: A � �, so A : 2) or A:type (in Cube-terminology: A : �).We 
on
lude that aut-68 has the parameter rules (�;2) and (2;2);{ Similarly, lines of the form (� ; k; pn;�2) where �2:type, represent para-metri
 
onstants that are 
onstru
ted using the parameter rules (�; �) and(2; �).This suggests that aut-68 
an be represented by the parametri
 system withR = f(�; �)g and P = f�;2g � f�;2g. The Aut-68 system 
an be found in theexa
t middle of the re�ned Barendregt Cube.2) Aut-QE: Something similar holds for the more extensive system Aut-QE.This system has an extra �-formation rule: (�;2) additionally to the rules of



Aut-68. This means that for representing this system, we need the �-formationrules R = f(�; �); (�;2)g, and parametri
 rules (s1; s2) for s1; s2 2 f�;2g. Thissystem is lo
ated in the middle of the right side of the Re�ned Barendregt Cube,exa
tly in between �C and �P.3) Pal: It should be noted that the Automath languages are all based ontwo 
on
epts: typed �-
al
ulus and a parameter/de�nition me
hanism. Both
on
epts 
an be isolated: it is possible to study �-
al
ulus without a parame-ter/de�nition me
hanism (for instan
e via the format of Pure Type Systems orthe Barendregt Cube of [4℄), but one 
an also isolate the parameter/de�nitionme
hanism from Automath. One then obtains a language that is 
alled Pal,the \PrimitiveAutomath Language". It 
annot be des
ribed within the Re�nedBarendregt Cube (as all the systems in that 
ube have at least some basi
 �-
al
ulus in it), but it 
an be des
ribed as a system with the following parametri
spe
i�
ation: R = ?; P = f(�; �); (�;2); (2; �); (2;2)g.This parametri
 spe
i�
ation 
orresponds to the parametri
 spe
i�
ationsthat were given for the Automath systems above, from whi
h the �-formationrules are removed.5.2 LFGeuvers [9℄ initially des
ribes the system LF (see [11℄) as the system �P of theCube. However, the use of the �-formation rule (�;2) is quite restri
tive in mostappli
ations of LF. Geuvers splits the �-formation rule in two:(�0)�; x:A `M : B � ` �x:A:B : �� ` �0x:A:M : �x:A:B ;(�P )�; x:A `M : B � ` �x:A:B : 2� ` �Px:A:M : �x:A:B :System LF without rule (�P ) is 
alled LF�. �-redu
tion is split into �0-redu
tionand �P -redu
tion: (�0x:A:M)N !�0 M [x:=N ℄;(�Px:A:M)N !�P M [x:=N ℄:Geuvers then shows that{ If M : � or M : A : � in LF, then the �P -normal form of M 
ontains no �P ;{ If � `LF M : A, and �;M;A do not 
ontain a �P , then � `LF� M : A;{ If � `M : A(: �), all in �P -normal form, then � `LF� M : A(: �).This means that the only real need for a type �x:A:B : 2 is to be able tode
lare a variable in it. The only point at whi
h this is really done is where thebool-style implementation of the Propositions-As-Types prin
iple pat is made:the 
onstru
tion of the type of the operator Prf (in an unparameterised form)has to be made as follows:prop:� ` prop: � prop:�; �:prop ` �:2prop:� ` (��:prop:�) : 2 :



In the pra
ti
al use of LF, this is the only point where the �-formation rule(�;2) is used. No �P -abstra
tions are used, either, and the term Prf is onlyused when it is applied to a term p:prop. This means that the pra
ti
al useof LF would not be restri
ted if we introdu
ed Prf in a parametri
 form, andrepla
ed the �-formation rule (�;2) by a parameter rule (�;2). This puts (thepra
ti
al appli
ations of) LF in between the systems �! and �P in the Re�nedBarendregt Cube.5.3 MLIn ML (
f. [17℄) one 
an de�ne the polymorphi
 identity by (we use the notationof this paper, whereas in ML, the types and the parameters are left impli
it):Id(�:�) = (�x:�:x) : (�! �):But we 
annot make an expli
it �-abstra
tion over �:�. That is, the expressionId = (��: � :�x:�:x) : (��: � :�! �)
annot be 
onstru
ted in ML, as the type ��:�:� ! � does not belong to thelanguage of ML. Therefore, we 
an state that ML does not have a �-formationrule (2; �), but that it does have the parametri
 rule (2; �).Similarly, one 
an introdu
e the type of lists and some operations by:List(�:�) : �;nil(�:�) : List(�);
ons(�:�) : �! List(�)! List(�);but the expression ��:�:� does not belong to ML, so introdu
ing List byList : ��:�:�is not possible in ML. We 
on
lude that ML does not have a �-formation rule(2;2), but only the parametri
 rule (2;2). Together with the fa
t that ML hasa �-formation rule (�; �), this pla
es ML in the middle of the left side of there�ned Barendregt Cube, exa
tly in between �! and �!.6 Con
lusionIn this paper, we observed that many existing type systems do not �t exa
tly inthe Barendregt Cube. In parti
ular, we explained that previous attempts to de-s
ribe LF and Automath were not very su

essfull. We noted that Automathuses parameters heavily, and that there are some types that are only used inspe
ial situations by LF and that those types and situations 
ould be 
overedby parameters. In addition, we 
onsidered an expli
itly typed version of ML andnoted that there too, ML 
annot o

upy any of the 
orners of the 
ube. Thereason being that, ML (as well as LF and Automath) allows �-types, but notall of them. In any 
orner of the Cube, as soon as an abstra
tion of a sort isallowed, all abstra
tions of that sort are allowed too.
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rFig. 5. LF, ML, Aut-68, and Aut-QE in the re�ned Barendregt CubeOur above reasoning led us to propose a re�nement of the Cube where notonly the eight 
orners 
an be inhabited, but also points half way between these
orners. This way, Automath, LF, and ML �nd more a

urate lo
ations onthe Cube to represent their typing systems. We des
ribed an extension of theBarendregt Cube with parameters. This is more a re�nement than an extension,as new systems that are introdu
ed 
an be depi
ted by dividing the traditionalBarendregt Cube into eight sub-
ubes. This is due to the fa
t that parametri

onstru
ts 
an be imitated by 
onstru
tions of typed �-
al
ulus (see Theorem 26)but not the other way around.We showed that our re�nement makes it possible to:{ Give a better des
ription of pra
ti
al type systems like LF and ML than thesystems in the usual Cube.{ Position systems that 
ould not be pla
ed in the usual Cube (severalAutomath-systems).This makes it possible to give a more detailed 
omparison between the expres-siveness of several type systems.Not only 
an we add parameters to the Barendregt Cube resulting in anelegant and more re�ned hierar
hy of systems, but we 
an follow a similar 
on-stru
tion to the more generalised notion of Pure Type Systems (PTSs) (see [4℄).In addition, we 
an add de�nitions (see [5, 22℄) and parametri
 de�nitions to ourabove re�nement of the Cube and even to the re�nements of PTSs, giving a verygeneral hierar
hy that 
an express more pre
isely and elegantly many pra
ti
alsystems and that give a full des
ription of Automath.Referen
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