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Abstra
tIn this paper we report on the design of a new mathemati
al language and ourmethod of designing it, driven by the en
oding of mathemati
al texts. MathLangis intended to provide support for 
he
king basi
 well-formedness of mathemati
altext without requiring the heavy and diÆ
ult-to-use ma
hinery of full type theoryor other forms of full formalization. At the same time, it is intended to allow the ad-dition of fuller formalization to a do
ument as time and e�ort permits. MathLang isintended to, ultimately, be useful in providing better software support for authoringmathemati
s, reading mathemati
s, and organizing and distributing mathemati
s.The preliminary language presented in this paper is intended only for ma
hine ma-nipulation and for debugging of the design of MathLang.Key words: Mathemati
al language, Mathemati
al verna
ular,Mathemati
al knowledge management Weak types, MathLang
1 Introdu
tionData management has be
ome an important area for automation. Editing,storage, publishing, data retrieving and other 
omputations are gratefullyhelped by 
omputers with appropriate software. Nowadays 
omputers 
ouldbe used at ea
h step of writing texts, the use of pen & paper may not beessential. Could we make the same remark for mathemati
al work? Would itbe possible for a mathemati
ian to use 
omputers as a help tool from s
rat
hto treatise?1 http://www.ma
s.hw.a
.uk/ultra/
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Kamareddine Maarek Wells1.1 Current situation of mathemati
s on 
omputersPutting mathemati
s on 
omputers.First of all, to use 
omputers for mathemati
al purposes, we need to putmathemati
al 
ontent inside them. Di�erent ways to do so exist:� One 
an s
an mathemati
al books and store their images on ele
troni
 sup-port. This solution brings no fa
ilities of 
omputation and even no auto-mati
 sear
h on data.� One 
an en
ode mathemati
s. Programs 
ould then deal with these en
odedmathemati
al data. Storage is possible, and so are 
omputations on datasu
h as visualizing, 
al
ulating, analysing and sear
hing.Existing en
odings.Many languages to en
ode mathemati
s exist already. We sort them in
ategories based on what they were invented for:A. Languages for printing mathemati
al symbols on paper/s
reen (e.g. LATEX).Sin
e they follow a rendering aim, they en
ode only the shape of a do
u-ment and not its meaning.B. Languages for theorem provers and 
omputer algebra systems (see [Wie03℄)whi
h try to formalize mathemati
s. These systems 
laim to assist themathemati
ian to prove theorems by verifying them.C. Languages whi
h store the semanti
al stru
ture of mathemati
al textswithout 
he
king it (e.g. OMDo
 [Koh03℄). They 
ombine natural lan-guage with notions like formulae or text stru
tures (theorems, examples,...).Use of en
oded texts.Choosing an en
oding depends on its intended use. Hen
e we need to knowwhat 
omputers 
ould do to assist the mathemati
ian in his work. Mathemat-i
al work 
ould be summarized in three levels:1. At the �rst one, the mathemati
ian starts from s
rat
h to put down moreor less random ideas. He organizes, polishes and re�nes them.2. At the se
ond level, ideas evolve into 
learer views and theories begin totake shape. Things move to a 
on
rete form that allows publi
ations.3. At the last level, 
al
ulations and proofs take pla
e. Details need to be
lari�ed to rea
h 
omplete theories. This level leads to a full formalization.At ea
h of these levels we deal with mathemati
al data. From stru
tured butnot 
omplete 
ontent in the �rst level to formalized data at the latter. Noneof the en
oding listed above satis�es the needs of all these levels:� Languages for rendering (A) do not 
apture the semanti
s of a text (for usein level 3). 2



Kamareddine Maarek Wells� Languages in (B) are too stri
t to en
ode in
omplete (from level 1) or partly-formalized (from level 3) mathemati
al 
ontents.� Languages in (C) do not allow enough automation to bene�t from 
omputersat ea
h level.Thus we gather that 
urrently there is no language to en
ode mathemati
sto be used at every level of mathemati
al work.1.2 Our Con
ernsN.G. de Bruijn in his extensive writings and di�erent stages of mathemati
allanguages and verna
ulars proposed that \the way mathemati
al material is tobe presented to the [
omputer℄ system should 
orrespond to the usual way wewrite mathemati
s." We are proposing a language, MathLang to realise thisproposition. MathLang goals 
ould be des
ribed following four main 
on
ernsfor mathemati
s on 
omputers.� The �rst 
on
ern is to be able to automate 
omputations of data en
oded inMathLang to use 
omputer skills. For this reason we have designed Math-Lang using a full symbolism (that is to say every element of the language
onsists of re
ognisable symbols). This fa
ilitates the manipulations that
an be done by the 
omputer.� When using existing formal languages to write mathemati
s, one needs tobe sure that the mathemati
s used will �t in the underlying logi
 of the lan-guage. This restri
ts the expressivity of the language. To 
over all math-emati
s, MathLang is intended to des
ribe the stru
ture of mathemati
altexts and their reasoning steps.� Having a grammati
al en
oding for mathemati
al texts brings obviouslythe need to have properties of these texts. A type system validates thegrammati
al stru
ture of a MathLang text. A senten
e like \if x belongs toM then x+ y = y+ x" will be valid if x, y,M, \belongs to", \if", + and =are known beforehand and satisfy some weak typing relations. Otherwise,\if x belongs to M then x + y" does not make sense and is pointed asin
orre
t with the MathLang type system.� Our last important 
on
ern is to provide a user interfa
e for the workingmathemati
ian. Providing one language whi
h allows to en
ode any mathe-mati
s and to leave the possibility of further transformations through moreformal data, will make the step of bridging mathemati
s and 
omputers assmooth as possible.1.3 From MV to WTT to MathLangIn 1979, de Bruijn developed a 
ourse on the Mathemati
al Verna
ular (MV)intended to be a language to write mathemati
s. This 
ourse be
ame part ofthe 
urri
ulum for mathemati
s tea
hers in the Netherlands. In 1987, almost3



Kamareddine Maarek Wellstwenty years after the beginning of Automath, de Bruijn published an arti
leon MV (
f. F3 of [Aut94℄). In MV, a Mathemati
al text is seen as a set oflines. Ea
h line being either the introdu
tion of a new notion or an assumption,these in a 
ertain 
ontext. The stru
ture of a text is line-by-line where ea
hnotion used in a line should have been de�ned beforehand. This stru
turewas inspired by the development of the language Automath. In MV a notionof typing gives meta-information in the language. Two levels of typing aredes
ribed: the low typing whi
h expresses that an obje
t is part of a 
ertainset and the high typing whi
h indi
ates the grammati
al 
ategory of whi
h anexpression is part. All this makes MV:� faithful to the mathemati
ian's language while being formal and avoidingambiguities;� 
lose to the way in whi
h mathemati
ians express themselves in writing;� possess a syntax based on linguisti
 
ategories rather than sets/types;� mainly 
on
erned with stru
tural rather than logi
al 
orre
tness.The type theory of MV is weak be
ause it is 
omposed mostly by atomi
 types.These types refer to the grammati
al 
ategories of a Mathemati
al text. Usingthe rules of MV one 
an 
he
k if the reasoning stru
ture of a text is valid.After de Bruijn's retirement, Nederpelt took over the 
ourse and 
ontinues totea
h it today. Nederpelt re�ned MV into the so-
alled Weak Type Theory(WTT) whi
h has a pre
ise abstra
t syntax. This makes it possible to establishimportant desirable properties su
h as strong normalisation, de
idability oftype 
he
king and subje
t redu
tion as was done by Kamareddine. For detailson MV and WTT, see [Aut94,KN04℄.Sin
e MV and WTT are said to help provide a language to en
ode math-emati
s whi
h 
an be used at every level of mathemati
al work, we set out totest these languages through the Foundations of Analysis (E. Landau [Lan51℄)whi
h is already fully formalised in Automath [vBJ77℄ by Bert van Benthem-Jutting. Sin
e our aim is not the full formalisation, but an en
oding whi
hallows a full formalisation at a later stage, we felt that 
hoosing a fully for-malised book for our en
oding, would allow us in the future, to 
ompare thealready existing full formalisation, with the full formalisation that 
ould bebuilt on top of our en
oding. This paper reports the extensions that had tobe made to WTT to en
ode the �rst 
hapter while remaining faithful to themathemati
ian's intentions and keeping the road open to rea
h (in the longrun) a full formalisation that 
an be 
ompared to that of Automath. In par-ti
ular, we present the language MathLang, the implementation we have madeof its type 
he
ker and an overview of the MathLang translation we have doneof the �rst 
hapter of E. Landau [Lan51℄. In Se
tion 2, we give the abstra
tsyntax of MathLang. To illustrate the use and extensions of MathLang wegive examples taken from our translation of the �rst 
hapter of [Lan51℄. InSe
tion 3, we des
ribe the derivation rules of MathLang. In Se
tion 4 we dis-
uss our implementation of MathLang and present the full translation of the4



Kamareddine Maarek Wells�rst 
hapter whi
h is automati
ally 
he
ked by our software. In Se
tion 5 wedis
uss related and future work and we 
on
lude.2 Abstra
t syntax of MathLangMathLang is an extension of both MV and WTT. It attempts to be 
loser to agrammati
al en
oding of the reasoning stru
ture of Mathemati
s. MathLangis designed to en
oded entire mathemati
al texts. It is 
omposed by severalgrammati
al levels to distinguish mathemati
al stru
tures from symbols to en-tire books. The levels de�ne grammati
al 
ategories as groups of mathemati
alobje
ts. In this se
tion we will �rst explain what we mean by grammati
al
ategories (Se
tion 2.1) and then des
ribe the grammati
al levels (Se
tion 2.2).The abstra
t syntax is presented here with examples of MathLang en
odingstaken from our translation of the �rst 
hapter of E. Landau's Foundations ofAnalysis [Lan51℄.2.1 Grammati
al 
ategoriesMathLang extends the grammati
al 
ategories of WTT whi
h in turn extendsthose of MV.T We �rst have a grammati
al 
ategory that groups the so-
alled terms whi
hare 
ommon mathemati
al obje
ts like \x+1", \the point A", or \a triangleABC". T denotes the set of terms.S Then we have the sets of mathemati
al obje
ts like \N" (the set of naturalnumbers). We name this 
ategory sets and use S for the set of sets.N The nouns grammati
al 
ategory is 
ommonly used in mathemati
s to desig-nate families of terms. For example in the senten
e \1 is a natural number",\natural number" is a noun. The set of nouns is represented by N.A In MathLang, a noun 
ould be de�ned from another noun. For example,\isos
eles triangle" is a noun. It is a restri
ted family of \triangle". Wede�ne adje
tives as the kind of expressions that re�ne and/or 
hange themeaning of a noun. \Isos
eles" is then an element of the set A of adje
tives.P Expressions like \x = 1" or \8x 2 N ; x � 1" whi
h des
ribe mathemati
alproperties are statements in MathLang. P is the set of statements.D The senten
es that de�ne new symbols in mathemati
al texts are 
alledde�nitions in MathLang. For example, \We de�ne x + y su
h that ..."belongs to the set D of de�nitions.Z The grammati
al 
ategory of de
larations groups variable de
larations like\letM be a set". Elements of the set of de
laration Z 
ould be 
omponentsof 
ontexts (see below).�, �F and �FS Constru
tion like \let x be in M", \assume that y > x +1 ", et
., are elements that build a 
ontext. These are de
larations and5



Kamareddine Maarek Wellsassumptions needed before stating properties. Combinations of this kind ofexpressions are named 
ontexts and belong to the set �. Furthermore, forassumptions and de
larations whi
h 
over a 
ertain paragraph, we have thenotion of 
ags (see Example 2.3).L Lines in MathLang are steps of reasoning in mathemati
al texts. Theysometimes 
orrespond to real lines in texts.K Proofs, examples, paragraphs or se
tions are groups of lines. We designatethem by blo
ks. K is the set of blo
ks.B The grammati
al 
ategory of books designates MathLang do
uments. Amathemati
al text 
orresponds to a book and so is an element of B.Figure 1 shows an example of a mathemati
al text with a diagram of the
orresponding MathLang stru
ture. MathLang 
an be seen as providing fora mathemati
al text, a grammati
al stru
ture that is not ne
essarily whatwould result from an analysis by linguists. Se
tion 3 explains how one 
an
he
k the well-formedness of a MathLang stru
ture. Although the long-termgoals of MathLang in
lude the integration with mathemati
al texts writtenin natural language, we do not yet do this | the �gure is purely to helpunderstand the eventual role we expe
t MathLang to play. We do not yethave any me
hanism for mat
hing a MathLang stru
ture with a
tual naturallanguage mathemati
al text.Let M be the set of ..., y a natural number,... if x belongs to MS T NZ Z�then x + y = y + x T S
T T T T P

T TP
L

Fig. 1. A mathemati
al line and its MathLang grammati
al 
ategories2.2 Grammati
al levelsIn this se
tion we des
ribe the four grammati
al levels of MathLang: atomi
,phrase, senten
e and dis
ourse. We extend the elements of the third and fourthlevels of WTT. We will illustrate these extensions with examples taken fromour translation of the �rst 
hapter of [Lan51℄ (see the authors' web pages forthe translation of the full 
hapter). Examples 2.2, 2.3, 2.4 and 2.5 illustrateMathLang 
onstru
tions: 
ags, de�nitions by 
ases, blo
ks and referen
es. Asto the notations we use to print MathLang texts, note that the language Math-Lang is still in development sin
e the translations of the other 
hapters will nodoubt 
all for further extensions. For this reason the MathLang texts given6

http://www.macs.hw.ac.uk/~mm20/papers/Kamareddine+Maarek+Wells:mkm_symposium-entcs-appendix-2004.ps.gz


Kamareddine Maarek Wellshere are rendered with an experimental syntax whi
h we intend to improve.Currently, the 
on
rete syntax of MathLang is implemented using the XMLre
ommendations. We have made this 
hoi
e to fa
ilitate transformations onMathLang data. One of these transformations produ
es automati
ally therenderings shown in this paper. Below is an example. (i) being line numbersand fi.ig being blo
k indi
es. In a line, the symbol � separates the 
ontextfrom the new statement or the new de�nition.
ontext elements � line body (1)blo
k name f1.1glines (2)in (3)blo
k (4)flist of 
onstants lo
al to the blo
kg
ag's headlines (5)sharing (6)the same (7)
ag (8)(i) The atomi
 level is 
omposed by identi�ers: the mathemati
al symbols.There are three kinds of identi�ers: variables (unde�ned mathemati
alobje
ts), 
onstants (de�ned obje
ts) and binders (to write 
onstru
tionswhi
h lo
ally introdu
e a variable).Variables v 2 V Constants 
 2 C Binders b 2 BWhereas 
onstants and binders 
an be of any grammati
al 
ategory, avariable 
an only be a term or a set or a statement. We use supers
riptsto denote the relevant 
ategory. For example, v 2 V T means that v is avariable of 
ategory T.Example 2.1 Identi�ersIn an expression (taken from our translation of the �rst 
hapter of [Lan51℄)like 8x :M; x+ 1 = x0:� x, M are variables� :, 1, +, = and 0 are 
onstants� 8 is a binder(ii) The phrase level is the formula level. It des
ribes how to 
onstru
t terms,sets, nouns and adje
tives. Four 
onstru
tions exists. Variable instanti-ations V . Constant 
alls C(!E). Abstra
tions with binders BZ(E). Andattributions AN that attribute an adje
tive to a noun to 
reate a newnoun. 7



Kamareddine Maarek WellsTerms t 2 T ::= V T j CT(!E) j BTZ(E)Sets s 2 S ::= V S j CS(!E) j BSZ(E)Nouns n 2 N ::= CN(!E) j BNZ(E) j ANAdje
tives a 2 A ::= CA(!E) j BAZ(E)We take E and Z as below. We also take !E to be a list of E's.Expressions e 2 E ::= T j S j N j PDe
larations z 2 Z ::= V T : S j V T : N j V S : SET j V P : STATThe set Z des
ribes the four 
onstru
tions whi
h de
lare a new variable.In the �rst two 
onstru
tions, the 
olon states the belonging of the de-
lared variable. The variable on the left side of the 
olon belongs to theentity on the right side of the 
olon. The �rst 
onstru
tion introdu
es aterm variable by stating in whi
h set the term belongs (expression fromS). The se
ond also introdu
es a term variable but by stating of whi
hnoun it is an instan
e of (expression from N). With the keyword : SET(resp. : STAT), the third (resp. fourth) 
onstru
tion introdu
es a newset (resp. statement) variable.(iii) The senten
e level de�nes how to 
onstru
t one step of reasoning: eitherstatement or de�nition. Note the extension with de�nitions by 
ases inC(!E) := E.Statements p 2 P ::= V P j CP(!E) j BPZ(E)De�nitions d 2 D ::= CT(!V ) := T j CT(!E) := Tj CS(!V ) := S j CS(!E) := Sj CN(!V ) := N j CN(!E) := Nj CA(!V ) := A j CA(!E) := Aj CP(!V ) := P j CP(!E) := PAs we see, the set of de�nitions D is 
omposed by two kinds of 
on-stru
tions. The �rst, C(!V ) := E (representing 
onstru
tions of the left
olumn) gives an expression as a full de�nition for the 
onstant. Ea
hparameter of the 
onstant is a variable (these parameters are representedas a list of variables: !V ). The se
ond, C(!E) := E (representing 
onstru
-tions of the right 
olumn) is used to de�ne a 
onstant with several 
ases(by providing ea
h time an expression). Ea
h 
ase of the de�nition will bedes
ribed using one de�nition line (see the lines in the dis
ourse level).The parameters are now pattern expressions that mat
h the 
ase (!E).MathLang type analysis (see Se
tion 3) 
he
ks that variables appearingin the patterns are well de
lared in the 
ontext. MathLang 
he
king per-8



Kamareddine Maarek Wellsforms only this kind grammati
al analysis. Note that no 
omparisons of
ases to �nd un
overed 
ases or unused ones are done while this is a moresemanti
al analysis.Example 2.2 De�nitions by 
asesA 
ommon way to de�ne mathemati
al obje
ts is to use 
ases. As an ex-ample we take the following text from Landau's De�nition 1 of Chapter 1,Se
tion 2:Theorem 4, and at the same time De�nition 1: To every pair ofnumbers x; y, we may assign in exa
tly one way a natural number,
alled x+ y (+ to be read \plus"), su
h thatx+ 1 = x0 for every x (1)x+ y0 = (x+ y)0 for every x and every y (2)x+ y is 
alled the sum of x and y, or the number obtained by additionof y to x. [Lan51℄We only 
onsider the de�nition of the + operator whi
h is re
ursivelyde�ned by two equations. The de�nition by 
ases we have introdu
edin MathLang gives an en
oding of this kind of mathemati
al de�nitions.This en
oding is 
loser to the original text than was the normal en
odingin MV and WTT (that is to say, providing a unique obje
t as de�nition).This normal en
oding of MV and WTT 
an still be made in MathLangas follows:x : N; y : N �+(x; y) := �z:N ((y = 1 =) z = x0) ^ 9t:N (y = t0 =) z = (x + t)0))This MathLang text de�nes x + y in one line. The two 
ases of theoriginal text are represented by a 
onjun
tion of two impli
ations. Thisen
oding however is not 
lose enough to the original text. The originalde�nition of + is expli
itly 
omposed by two 
ases while here it is mergedin one 
ase using the logi
al symbols of impli
ation =) and 
onjun
tion^ whi
h are not properly de�ned in E. Landau's text.Let us see now how the same de�nition of the addition of naturalnumbers 
ould be expressed in MathLang using, this time, a de�nitionby 
ases. As it is written in E. Landau's text, in both 
ases we assign aterm to the addition of a pair of terms:De�nition 1 f2.4gx : N �+(x; 1) := x0 (38)x : N ; y : N �+(x; y0) := (x+ y)0 (39)In MathLang, a de�nition by 
ases de�nes a 
onstant using severallines. Ea
h line being one 
ase. This 
onstru
tion brings MathLang9



Kamareddine Maarek Wells
loser to the original text for two reasons. First, to ea
h original 
ase
orresponds one 
ase in MathLang. Se
ond, in this en
oding we are notusing additional 
onstants. We do not need logi
al symbols as we did inthe earlier translation of MV and WTT. These logi
al 
onstru
tions maynot always be expli
itly de�ned in the mathemati
al text.
(iv) The dis
ourse level gives 
onstru
tions to des
ribe the stru
ture of math-emati
al texts. Note the extension with 
ags, 
agsta�s and blo
ks.Contexts 
 2 � ::= �F j �; Z j �; PFlags 
F 2 �F ::= �FS j �F ; [Z℄ j �F ; [P℄Flagsta�s 
FS 2 �FS ::= ;� j �FS; �Lines l 2 L ::= �� P j �� DBlo
ks k 2 K ::= ;K j k Æ L j K Æ fKg!CBooks b 2 B ::= ;B j B Æ L j B Æ fKg!CIt starts with the line 
onstru
tion whi
h 
ould be seen as a step of rea-soning. A line is a mathemati
al senten
e expressed in a spe
i�
 
ontext.A 
ontext being a sequen
e of de
larations (Z) and assumptions (state-ments P). Then we have blo
ks that group lines and sub-blo
ks together(expressing for example that several 
onse
utive lines proving a 
ertainproposition should be 
onsidered as one entity together). They allow oneto spe
ify a set of 
onstants (f g
1;:::;
n) whi
h will be lo
al to the blo
k.We take !C to be a list of C's. The use of these 
onstants is then restri
tedto the blo
k in question. ;K stands for the empty blo
k. Lastly books arede�ned as sequen
es of lines and blo
ks. ;B stands for the empty book.MathLang 
ontexts are des
ribed using the three sets �, �F and �FS.;� stands for the empty 
ontext. To extend MV and WTT 
ontexts, wehave introdu
ed in MathLang's abstra
t syntax a 
onstru
tion to s
opevariables or assumptions on several lines. This uses the 
ag notationalready present in MV but only as syntax sugaring. Flags were usedas syntax sugaring to avoid repetition of similar elements in 
onse
utive
ontexts and so to redu
e the size of MV or WTT examples. Moreover,
ags help 
larify the s
ope of a variable or an assumption over severallines. We introdu
e 
ags in MathLang's abstra
t syntax sin
e we 
onsiderit important to have this s
ope information en
oded in the language.Flags are 
omposed of a head (a statement or a variable de
larationin [ ℄) and a 
agsta� (several �). We will use a spe
i�
 notation for 
agsas shown here: 10



Kamareddine Maarek WellsNormal notation Flag notation[ez1℄; [ez2℄; ez3; ez4 �e1�; �; ez5 �e2�; [ez6℄ �e3�; � �e4
ez1ez2ez3; ez4 � e1ez5 � e2ez6�e3�e4ezi is a statement or a variable de
larations and ei is a linebody.Example 2.3 FlagsOur MathLang translation of the de�nition and the proof of theorem 2from 
hapter 1, se
tion 2 illustrates the use of 
ags. In Figure 2, wegive the original text of this example and an output of our MathLangtranslation. Note that line numbering starts at 24 sin
e the earlier partsof the 
hapter o

upy the other 23 lines. Note also that x0 is the su

essorof x. We refer the reader to authors' web pages for the translation of allthe �rst 
hapter.By looking qui
kly at this example we see that a 
ommonly used senten
e\let a variable be something in the following ..." is easily expressiblewith a 
ag in MathLang. In this example the �rst two 
ags respe
tivelyintrodu
e a set of variables and state that Theorem 2 holds for it. Thethird 
ag introdu
e the hypothesis that x is in M. With MathLang's
ags, one 
ould express that the variables x used in lines 27 to 29 standfor the same obje
t. In MV and WTT these variables x would have beenintrodu
ed three times (one time per line) and there would have been nopossibility to retrieve the strong link that unify them together.Example 2.4 Blo
ksIn MathLang we introdu
ed in the abstra
t syntax the notion of blo
ksof lines. Blo
ks were already used at the metalevel in F3 of [Aut94℄where they were linked with 
ags. In MathLang we have separated bothnotions: 
ags extend the 
ontexts whereas blo
ks des
ribe the stru
tureof a text. In mathemati
s, se
tions or delimiters (of proofs or examples)give important information to the reader and help him understand andfollow the author's reasonings. Blo
ks in MathLang des
ribe the stru
tureof the text. Our en
odings above of De�nition 1 (see Example 2.2) andof the Proof of Theorem 2 (see Figure 2 of Example 2.3), give examplesof blo
ks. 11

http://www.macs.hw.ac.uk/~mm20/papers/Kamareddine+Maarek+Wells:mkm_symposium-entcs-appendix-2004.ps.gz


Kamareddine Maarek WellsTheorem 2 x0 6= x:Proof. Let M be the set of all x for whi
hthis holds true.I) By Axiom 1 and Axiom 3,10 6= 1;therefore 1 belongs to M.II) If x belongs to M, thenx0 6= x;and hen
e by Theorem 1,(x0)0 6= x0;so that x0 belongs to M.By Axiom 5,M therefore 
ontains all the nat-ural numbers, i.e. we have for ea
h x thatx0 6= x: 2[Lan51℄

x : N �Th2(x) := x 6= x0 (24)Proof Theorem 2 f2.2gM : SET8x:MTh2(x)Ax1; Ax3(1) �10 6= 1 (25)(25); (Def Th2) �1 :M (26)x :M�x0 6= x (27)(27); Th1(x0; x) �x00 6= x0 (28)(28); (Def Th2) �x0 :M (29)Ax5(M; (26); (29)) �N �M (30)(30) �8x:NTh2(x) (31)
Fig. 2. Flags exampleIn MathLang, a blo
k denotes a stru
ture. It is possible to restri
t thede�nition of a 
onstant to a pre
ise blo
k, we 
all this 
onstant lo
al. Anexample of these lo
al 
onstant 
ould be seen in our translation of the�rst 
hapter of [Lan51℄ with blo
ks f2.5.1g and f4.2.1g. Ea
h of theseblo
ks represents a part of a proof of a theorem (respe
tively part A ofTheorem 4 and part A of Theorem 28) where the lo
al 
onstants a and bare de�ned.Although we make heavy use of blo
ks and we fully in
orporate themin the implementation, we still do not have rules that help derive usefulinformation about these blo
ks. For example, we still 
annot formallystate that a 
ertain blo
k is a proof of a given theorem.Example 2.5 Referen
esThe example given in Figure 3, from 
hapter 1, se
tion 2 (part of theproof of Theorem 4), illustrates the use of line and de�nition referen
esin MathLang. Referen
ing is already implemented but is not yet partof the de�nition of MathLang's abstra
t syntax. We have annotated theoriginal text with the line numbers of our translation in parentheses.12



Kamareddine Maarek WellsLet x belong to M, so that there existsan x + y for all y. Then the numberx0 + y = (x + y)0is the required number for x0, sin
ex0 + 1 =(70) (x + 1)0 =(71) (x0)0 (72)and x0 + y0 =(73) (x + y0)0=(74) ((x + y)0)0=(75) (x0 + y)0: (76)Hen
e x0 belongs to M. (77)[Lan51℄

x :M8y:N9z:Nz = x + yy : Nx0 + y = (x + y)0�x0 + 1 = (x + 1)0 (70)(Def +(38)) �(x+ 1)0 = x00 (71)(70); (71) �x0 + 1 = x00 (72)�x0 + y0 = (x + y0)0 (73)(Def +(39)) �(x+ y0)0 = (x + y)00 (74)�(x + y)00 = (x0 + y)0 (75)(73); (74); (75) �x0 + y0 = (x0 + y)0(76)(72); (76) �x0 :M (77)Fig. 3. Referen
es exampleReferen
es to previous steps of the reasoning are 
ommonly used in math-emati
s. A senten
e like \By de�nition of ..." 
ould be en
oded in Math-Lang by adding in the line 
ontext a referen
e to the de�nition of a
onstant.In addition to su
h referen
ing, mathemati
ians use the habit of group-ing several steps of reasoning together. For example, to show that x0+1 =(x0)0, E. Landau �rst states that x0 + 1 = (x + 1)0 and then states that(x + 1)0 = (x0)0 and writes these steps in one equation. In MathLangwe have represented A = B = C as three expli
it steps of reasoning.Ea
h step 
orresponds to one line. The �rst one states that A = B. These
ond states that B = C. Then the third 
on
ludes that A = C by ref-eren
ing the two previous lines. Referen
es make this kind of reasoning
onstru
tions easier to en
ode.3 The derivation rules of MathLangThe derivation rules of MathLang assign (unique) types to well formed Math-Lang expression. The set of types is a subset of the grammati
al 
ategories.We list here all the types whi
h are atomi
: T; S; N; A; P; D; �; K; B: Inthe example given in Figure 1, the type analysis assigns types 
orrespondingto the grammati
al 
ategories while the senten
e is well formed. The samesenten
e slightly modi�ed will this time be badly formed. Figure 4 points outthe type error.The type analysis will raise an error while applying the line-in-book (orline-in-blo
k) rule. The 
ontext is valid but the expression given as the bodyof line (x + y) should either be a statement (P) or a de�nition (D) while here13



Kamareddine Maarek WellsLet M be the set of ..., y a natural number,... if x belongs to MS T NZ Z�then x + y T S
T T P

TErrorFig. 4. An invalid mathemati
al line and its assigned MathLang typesx + y is a term (T). See later on in this Se
tion for a des
ription of thederivation rules.Typing notations.Before giving the derivation rules of MathLang we need to make pre
isethe notations we use. A typing states that a type is assigned to an expres-sion in a 
ertain environment. This is written as follow: environment `expression �� type. The environment 
onsists of a book in whi
h the expressionis typed. For expressions at the senten
e and phrase level, the environmentalso 
ontains a 
ontext.Flattening 
ags.The 
ag 
onstru
tion we have introdu
ed in the previous se
tion has animportant role in the en
oding of mathemati
al texts. To make our typingrules more readable these are only appli
able to MathLang without 
ags (
on-text elements are restri
ted to assumptions from P and de
larations from Z).We are able by 
attening ea
h 
ag of a MathLang text to keep the typinginformation they 
ontained. Ea
h 
agsta� element is then repla
ed by the
ontent of the 
orresponding 
ag's head. With this 
attening operation welose the information that the same assumption holds on several lines or that avariable stands for the same obje
t on several lines as well, but this does not
hange the typing of a book. The derivation rules are de�ned on MathLangtexts obtained after doing a 
ags 
attening operation.Fun
tions.We use in the set of derivation rules some spe
i�
 fun
tions. We onlydes
ribe these fun
tions here rather than giving their full formal de�nitions.� dvars returns the set of variables de
lared in a given 
ontext(dvars : �! }(V )).� d
onsB returns the set of de�ned 
onstant in a given book. This ex
ludeslo
al 
onstants (d
onsB : B! }(C)).14



Kamareddine Maarek Wells� d
onsK returns the set of de�ned 
onstant in a given blo
k. This ex
ludes
onstants de�ned lo
ally in inner blo
ks (d
onsK : K! }(C)).� inC(i; 
; b) gives the type of the ith argument of 
onstant 
 as de�ned in thebook b.� inB(i; b; b) represents the type expe
ted by the binder b.� fvars returns the set of free variables of a given expression(fvars : E! }(V )).� 
ased
onsB (resp. 
ased
onsK) returns the set of 
onstants de�ned by 
asesin a given book (resp. blo
k), ex
luding lo
al de�nitions (
ased
onsB : B!}(C) and 
ased
onsK : K! }(C)).� OK(b ; 
) is an abbreviation for ` b �� B and b ` 
 �� �.Rules for expressions.These rules assign a type to the expressions taken from the phrase andthe senten
e levels. That is to say variable instan
es, 
onstant 
alls, bindingexpressions and adje
tive attributions. A spe
ial rule re
-
ons allows 
alls toannotated 
onstant whi
h is 
urrently being de�ned (
0 with its input typeswt i). This rule allows re
ursive de�nitions of 
onstants (see rules full-def and
ase-def-first).OK(b ; 
) v 2 V T=S=P v 2 dvars(
)b ; 
 ` v �� T=S=P varOK(b ; 
) 
 2 CT=S=N=A=P
 2 d
onsB(b) 8i 2 f1; : : : ; ng; b ; 
 ` ei �� inC(i; 
; b)b ; 
 ` 
(e1; : : : ; en) �� T=S=N=A=P 
onsOK(b ; 
) 
 2 CT=S=N=A=P
 = 
0 8i 2 f1; : : : ; ng; bREC
0wt1;:::;wtn ; 
 ` ei �� wt ibREC
0wt1;:::;wtn ; 
 ` 
(e1; : : : ; en) �� T=S=N=A=P re
-
onsOK(b ; 
) b 2 BT=S=N=A=P b ; 
; z ` e �� inB(b)b ; 
 ` bz(e) �� T=S=N=A=P bindb ; 
 ` e1 �� A b ; 
 ` e2 �� Nb ; 
 ` e1e2 �� N attrGrouping rules. In the above rules, we use the symbol = to group similarrules. For example the var rule is in pla
e of three rules, the �rst of whi
h is:OK(b ; 
) v 2 V T v 2 dvars(
)b ; 
 ` v �� T var-term15



Kamareddine Maarek WellsTypi
ally, the rule var assigns the type 
orresponding to the variable's gram-mati
al 
ategory. The 
onstant rules 
ons and re
-
ons will do the same after
he
king the 
oheren
e of the arguments' typings with what the 
onstant ex-pe
ts (the fun
tion inC gives the list of types of the 
onstant's parameters).The bind rule, in addition, introdu
es the new variable in the typing environ-ment of the inner expression. The rule attr des
ribes how to 
onstru
t a newnoun by attributing an adje
tive to an existing noun.Rules for 
ontexts.These rules 
he
k the 
oheren
e of 
ontexts. The �rst one states that anempty 
ontext is a valid 
ontext. The last one 
he
ks if an assumption inthe 
ontext is a well formed statement expression. The three remaining rules
orrespond to the three 
onstru
tions of variable introdu
tion. The grammat-i
al 
ategory of the introdu
ed variable must �t the kind of 
onstru
tion used:either a set or a statement or a term.` b �� Bb ` ;� �� � empty-
ontOK(b ; 
) v 2 V S v 62 dvars(
)b ` 
; v : SET �� � set-var-de
lOK(b ; 
) v 2 V P v 62 dvars(
)b ` 
; v : STAT �� � stat-var-de
lOK(b ; 
) v 2 V T v 62 dvars(
) b ; 
 ` e �� S=Nb ` 
; v : e �� � term-var-de
lOK(b ; 
) b ; 
 ` p �� Pb ` 
; p �� � assump
Rules for de�nitions.There are two kinds of de�nitions in the abstra
t syntax with three typingrules. First, we have a rule for the basi
 
onstant de�nition whi
h provides aunique expression as a value for the 
onstant. Then there are two other rulesfor the de�nitions by 
ases: one for the �rst (basi
) 
ase, the other for thefollowing 
ases and 
he
ks if the types of the 
onstant's arguments 
orrespondto those of the �rst 
ase. 16
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)
 2 CT=S=N=A=P 
 62 d
onsB(b) dvars(
) = [ni=1vi8i 2 f1; : : : ; ng; vi 2 V wt i bREC
wt1;:::;wtn ; 
 ` e �� T=S=N=A=Pb ; 
 ` 
(v1; : : : ; vn) := e �� D full-defOK(b ; 
) 
 2 CT=S=N=A=P
 62 
ased
onsB(b) dvars(
) = [ni=1fvars(ei)8i 2 f1; : : : ; ng; b ; 
 ` ei �� wt ibREC
wt1;:::;wtn ; 
 ` e �� T=S=N=A=Pb ; 
 ` 
(e1; : : : ; en) := e �� D 
ase-def-firstOK(b ; 
) 
 2 CT=S=N=A=P
 2 
ased
onsB(b) dvars(
) = [ni=1fvars(ei)8i 2 f1; : : : ; ng; b ; 
 ` ei �� inC(i; 
; b)b ; 
 ` e �� T=S=N=A=Pb ; 
 ` 
(e1; : : : ; en) := e �� D 
ase-def-alterIn rules full-def and 
ase-def-first, to allow re
ursive de�nitions, we areannotating the environment (notation bREC
wt1;:::;wtn ) in whi
h we will type thebody of the de�nition (expression e). This annotation 
ontains the 
onstant
urrently de�ned and the types of its parameters. This information will bekept in the environment to allow 
alls to this 
onstant (see rule re
-
ons).Rules for blo
ks.A blo
k 
ould either be empty, end with a line or end with a blo
k. Therules below des
ribe how to build a blo
k from an already well-formed one.This is done by adding a line or a sub-blo
k to the existing blo
k.` b �� Bb ` ;K �� K empty-blo
kb ` k �� K b Æ fkg; ; 
 ` p=d �� P=Db ` k Æ 
 � p=d �� K line-in-blo
k` b �� Bb ` k �� K f
1; : : : ; 
ng � d
onsK(k0) b Æ fkg; ` k0 �� Kb ` k Æ fk0g
1;:::;
n �� K blo
k-in-blo
kRules for books.The rules for books are similar to the rules for blo
ks while a book 
ouldbe seen as the outermost blo
k. 17
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` ;B �� B empty-book ` b �� B b ; 
 ` p=d �� P=D` b Æ 
 � p=d �� B line-in-book` b �� B f
1; : : : ; 
ng � d
onsK(k) b ` k �� K` b Æ fkg
1;:::;
n �� B blo
k-in-book4 ImplementationA main improvement of MathLang over MV and WTT is the implementationwe have made of a language 
he
ker whi
h was fully guided by the translationof the �rst 
hapter.Con
rete syntaxOur 
hoi
e for the 
on
rete syntax was to use XML re
ommendations. Weintend this XML syntax to be used only by the MathLang framework and bysoftware developers. The MathLang user, instead of using a 
on
rete syntax,will use a spe
i�
 user-friendly editor (see Se
tion 5). This 
hoi
e has beenmade to �t in our main requirement for a mathemati
al software whi
h is tobe easy to use by mathemati
ians. By 
hoosing a 
omputer oriented syntaxwe avoid the need of the user to learn a new spe
i�
 syntax. This is avoidedby in
luding MathLang in a 
ommon s
ienti�
 text editor.In MathLang's 
on
rete syntax, ea
h o

urren
e of an identi�er is 
om-posed by its name and the grammati
al 
ategory of whi
h it is part. The
on
rete syntax is then mainly verbose. This fa
ilitates the 
he
king and al-lows lo
al analysis of the typing. This dupli
ation of information also easesthe design of software rendering and enfor
es the use of an editor rather thanallowing editing by hand.The type 
he
kerWe have implemented a type 
he
ker that analyses a MathLang text byapplying the rules of the type system (see Se
tion 3). This software has beenprogrammed using Camlp4 (parser part) and OCaml (type inferen
e part).This program 
he
ks the typing of a given MathLang do
ument. If the typingsu

eeds, the XML do
ument is then 
onsidered as a well formed MathLangbook. Otherwise, if the do
ument is not 
orre
tly formed, the 
he
ker willpoint the syntax or type error that has been found. We have used our 
he
kerduring the translation of Landau's �rst 
hapter.RenderingWe apply synta
ti
 transformations on MathLang texts in order to obtainpresentable versions of the XML 
on
rete syntax. For this paper we have used18



Kamareddine Maarek Wellsone XSL transformation that produ
es a LATEX do
ument. We have automati-
ally generated the examples of Se
tion 2.2 and the full translation of the �rst
hapter of [Lan51℄ using this transformation. This rendering is experimental.It remains 
lose to MV and WTT while also being 
learer thanks to the 
agsand blo
ks, and also to some synta
ti
 sugaring (the grammati
al 
ategory ofea
h identi�er is not printed and we use 
ommon symbols to help the reader).We explain our goals for MathLang rendering in Se
tion 5.TranslationIn order to experiment with our language MathLang we have used in itsdevelopment, a translation of E. Landau's Foundations of Analysis[Lan51℄.Translating an existing mathemati
al text and 
he
king the resulting Math-Lang text with our software show the feasibility of su
h a mathemati
al en
od-ing. This experien
e demonstrates the usability of our language and guidesour resear
h and development as 
losely as possible to e�e
tive mathemati-
ians' writing habits. We have a
hieved so far the translation of the full �rst
hapter. This translation and the original text 
an be found in an appendixto this arti
le rea
hable at the authors' web pages.5 Related and Future workM. S
he�er's master thesis [S
h03℄ gives a translation of the same �rst 
hapterof [Lan51℄ but in the original 
al
ulus WTT with sugared notation 
alledWTTS. The meta theory developed for WTT did not involve the synta
ti
sugaring and we suspe
t that R. K�orvers' implementation of WTT (uponwhi
h M. S
he�er's en
oding was based) did not involve the synta
ti
 sugaringeither. This means that:� There is a gap between the language used in M. S
he�er's en
oding andthe theory and its implementation. Our en
oding on the other hand takespla
e in a framework where there is a harmony between the language, itsmetatheory and its implementation. We give the translation in MathLang,an extended version of WTT where mu
h of the sugaring of WTT is repla
edby �rst 
lass status in MathLang. Furthermore, the implementation is thatof MathLang and hen
e we 
an guarantee the 
oheren
e of our en
odedtexts. This would be hard to guarantee in M. S
he�er's 
ase sin
e theimplementation is of WTT whereas the en
oding is in another languageWTTS .� The rendering we automati
ally obtain from the en
oding is 
loser to themathemati
ians' text than that of S
he�er's. This is sin
e both the languageMathLang and its implementation 
ontain 
ags and blo
ks.� Moreover, referen
es to lines, de�nitions and blo
ks make our en
oding
loser to the mathemati
ian's intentions.19
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Kamareddine Maarek WellsAs we said earlier, MathLang is still under development. We believe thatit is important that this development be guided by existing mathemati
altexts and pra
ti
e and that the en
oding should be in the language underdevelopment and not in synta
ti
 sugaring versions of it. It is also importantthat the metatheory and implementation be as faithful as possible to thelanguage itself.M. S
he�er also dis
usses the step of moving fromWTT into a more formallanguage. Although this step is an important future dire
tion, we believe that�rst, a more stable language of mathemati
s needs to be found and extensivelytested before moving into higher levels of formalisation. Already, we havedeveloped many type theories with many of the features of Automath (e.g.,expli
it substitutions, parameters, de�nitions, lo
al and/or global redu
tions,notions of uni�
ation). These type theories will guide us into the more formallevels of MathLang. But, to avoid the danger of 
reating \toy" levels offormalisation, we need to have a good basis for the mathemati
al languageunder development whi
h 
an then lead us into more trustworthy formal levels.There exist di�erent frameworks for putting mathemati
s on the 
omputer,ea
h with a parti
ular aim: 
al
ulation, analysis, storage, visualization, 
he
k-ing, et
. However, none of these frameworks is expressive enough to allow theintegration of many aims in one system. In [KW01℄, we proposed to designa language in
uen
ed by MV [Aut94℄ and WTT [KN04℄ and driven by theen
oding of three books: 1) the Landau's Foundations of Analysis [Lan51℄sin
e it was fully-formalised in Automath (and hen
e provides an ex
ellentbasis for 
omparison), 2) the Elements of Eu
lid [Hea56℄ sin
e it is known tohave many errors (and hen
e helps distinguish between logi
al and stru
tural
orre
tness), and 3) The Compendium of Latti
es [GHK+80℄ sin
e 60% of ithas been formalised in Mizar. We have not yet ta
kled the third book. Onthe other hand, work on Eu
lid's book is under development by a studentfor his degree proje
t while work on Landau's book has been in progress forover a year now [Maa03℄, and we have already 
ompleted the translation ofthe �rst 
hapter while building at the same time, a basis of a re�ned lan-guage MathLang, its implementation and useful asso
iated software pa
kages.The immediate future work on MathLang and its framework will follow threedire
tions strongly linked together.� Spe
i�
ations. The MathLang language is still in development. We needto in
orporate referen
es in the MathLang syntax and to put the notionof blo
ks into a
tion by adding some 
onstru
tions to enable us to deriveinformation about blo
ks. These extensions will always be made in parallelwith the guiding translation work. At every stage, we will make sure thatthe metatheory is well developed and that the implementation is faithful tothe language.� Translation. Continuing the translation of Landau's book (and makingprogress on the translation of Eu
lid's book) is a main target to guide the20



Kamareddine Maarek Wellsdesign of MathLang. This translation guides us as to how we should furtherdevelop MathLang and enables us to build an implementation that is easyto use whi
h we 
an then pass for external feedba
ks from mathemati
iansor programmers as our future users.� Framework. Be
ause our language will be as exhaustive as possible in itsway to en
ode mathemati
al texts we will need to have a spe
i�
 editor to as-sist the mathemati
ian. This editor should have a user friendly interfa
e. Itshould be able to print mathemati
al symbols on the s
reen. An integrated
he
ker should give instantaneous feedba
k about the type analysis of thetext. We have planned and started to use the What-You-See-Is-What-You-Get editor TEXma
s 2 for this development. TEXma
s is an editor dedi
atedto mathemati
al texts. It is mostly intera
tive and has been developed toallow extensions. MathLang's framework should assist mathemati
ians to
reate new do
uments and to translate existing mathemati
al texts (su
h asLATEX and OMDo
 do
uments). For this se
ond purpose we aim to developa tool to semi-automate the work of translation. The work des
ribed in thearti
le [BS03℄ is a good basis for this development. Y. Baba and M. Suzukipresent a grammati
al analyser whi
h extends its own grammati
al ruleson the 
y. After translating one senten
e, the grammati
al analyser will beable to re
ognize the same kind of pattern used by the mathemati
ian inthe rest of the text.In addition to this dis
ussed development of a language of mathemati
sMathLang, we will also use earlier developments we made on extensions oftype systems (with notions like de�nitions, expli
it substitutions, parametersand higher order uni�
ation) in order to take our full en
oding of Landau'sbook in MathLang into a fully formalised version whi
h 
an then be 
omparedwith the existing Automath formalisation. At ea
h stage, we will be workingon general methods that 
an be applied to other books.Referen
es[MKM03℄ Asperti, Bu
hberger and Davenport (Eds.). The Se
ond InternationalConferen
e on Mathemati
al Knowledge Management, MKM 2003,Bertinoro, Italy, February 16-18. Le
ture Notes in Computer S
ien
e2594, 2003.[BS03℄ Yusuke Baba and Masakazu Suzuki. An annotated 
orpus and agrammar model of theorem des
ription. In [MKM03℄, 2003.[GHK+80℄ G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove, andD. S. S
ott. A Compendium of Continuous Latti
es. Springer-Verlag,1980.[Hea56℄ Heath. The 13 Books of Eu
lid's Elements. Dover, 1956.2 http://www.texma
s.org/ 21
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Kamareddine Maarek Wells[KN04℄ Fairouz Kamareddine and Rob Nederpelt. A re�nement of de Bruijn'sformal language of mathemati
s. To appear in Journal of Logi
,Language and Information. 2004.[Koh03℄ Mi
hael Kohlhase. OMDo
: An Open Markup Format for Mathemati
alDo
uments (Version 1.1). http://www.mathweb.org/omdo
, 2003.[KW01℄ Fairouz Kamareddine and Joe Wells. Promath: presenting, proving andprogramming mathemati
al books. Revised under the title: MathLang,A new language for Mathemati
s, Logi
 and Computation, August 2001.[Lan30℄ Edmund Landau. Grundlagen der Analysis. Chelsea, 1930.[Lan51℄ Edmund Landau. Foundations of Analysis. Chelsea, 1951. Translationof [Lan30℄ by F. Steinhardt.[Maa03℄ Manuel Maarek. First year PhD report. Te
hni
al report, Heriot-WattUniversity, August 2003.[Aut94℄ R.P. Nederpelt and J.H. Geuvers and R.C. de Vrijer (Eds.), Sele
tedpapers on Automath, North-Holland, 1994.[S
h03℄ Mark S
he�er. Formalizing Mathemati
s using Weak Type Theory.Master's thesis, Te
hnis
he Universiteit Eindhoven, September 2003.[vBJ77℄ L. S. van Benthem Jutting. Che
king Landau's \Grundlagen" in theAUTOMATH system. PhD thesis, Eindhoven University of Te
hnology,1977. Mathemati
al Centre Tra
ts nr. 83, Math. Centre, Amsterdam1979.[Wie03℄ Freek Wiedijk. Comparing mathemati
al provers. In [MKM03℄, 2003.
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