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AbstratIn this paper we report on the design of a new mathematial language and ourmethod of designing it, driven by the enoding of mathematial texts. MathLangis intended to provide support for heking basi well-formedness of mathematialtext without requiring the heavy and diÆult-to-use mahinery of full type theoryor other forms of full formalization. At the same time, it is intended to allow the ad-dition of fuller formalization to a doument as time and e�ort permits. MathLang isintended to, ultimately, be useful in providing better software support for authoringmathematis, reading mathematis, and organizing and distributing mathematis.The preliminary language presented in this paper is intended only for mahine ma-nipulation and for debugging of the design of MathLang.Key words: Mathematial language, Mathematial vernaular,Mathematial knowledge management Weak types, MathLang
1 IntrodutionData management has beome an important area for automation. Editing,storage, publishing, data retrieving and other omputations are gratefullyhelped by omputers with appropriate software. Nowadays omputers ouldbe used at eah step of writing texts, the use of pen & paper may not beessential. Could we make the same remark for mathematial work? Would itbe possible for a mathematiian to use omputers as a help tool from srathto treatise?1 http://www.mas.hw.a.uk/ultra/2003 Published by Elsevier Siene B. V.
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Kamareddine Maarek Wells1.1 Current situation of mathematis on omputersPutting mathematis on omputers.First of all, to use omputers for mathematial purposes, we need to putmathematial ontent inside them. Di�erent ways to do so exist:� One an san mathematial books and store their images on eletroni sup-port. This solution brings no failities of omputation and even no auto-mati searh on data.� One an enode mathematis. Programs ould then deal with these enodedmathematial data. Storage is possible, and so are omputations on datasuh as visualizing, alulating, analysing and searhing.Existing enodings.Many languages to enode mathematis exist already. We sort them inategories based on what they were invented for:A. Languages for printing mathematial symbols on paper/sreen (e.g. LATEX).Sine they follow a rendering aim, they enode only the shape of a dou-ment and not its meaning.B. Languages for theorem provers and omputer algebra systems (see [Wie03℄)whih try to formalize mathematis. These systems laim to assist themathematiian to prove theorems by verifying them.C. Languages whih store the semantial struture of mathematial textswithout heking it (e.g. OMDo [Koh03℄). They ombine natural lan-guage with notions like formulae or text strutures (theorems, examples,...).Use of enoded texts.Choosing an enoding depends on its intended use. Hene we need to knowwhat omputers ould do to assist the mathematiian in his work. Mathemat-ial work ould be summarized in three levels:1. At the �rst one, the mathematiian starts from srath to put down moreor less random ideas. He organizes, polishes and re�nes them.2. At the seond level, ideas evolve into learer views and theories begin totake shape. Things move to a onrete form that allows publiations.3. At the last level, alulations and proofs take plae. Details need to belari�ed to reah omplete theories. This level leads to a full formalization.At eah of these levels we deal with mathematial data. From strutured butnot omplete ontent in the �rst level to formalized data at the latter. Noneof the enoding listed above satis�es the needs of all these levels:� Languages for rendering (A) do not apture the semantis of a text (for usein level 3). 2



Kamareddine Maarek Wells� Languages in (B) are too strit to enode inomplete (from level 1) or partly-formalized (from level 3) mathematial ontents.� Languages in (C) do not allow enough automation to bene�t from omputersat eah level.Thus we gather that urrently there is no language to enode mathematisto be used at every level of mathematial work.1.2 Our ConernsN.G. de Bruijn in his extensive writings and di�erent stages of mathematiallanguages and vernaulars proposed that \the way mathematial material is tobe presented to the [omputer℄ system should orrespond to the usual way wewrite mathematis." We are proposing a language, MathLang to realise thisproposition. MathLang goals ould be desribed following four main onernsfor mathematis on omputers.� The �rst onern is to be able to automate omputations of data enoded inMathLang to use omputer skills. For this reason we have designed Math-Lang using a full symbolism (that is to say every element of the languageonsists of reognisable symbols). This failitates the manipulations thatan be done by the omputer.� When using existing formal languages to write mathematis, one needs tobe sure that the mathematis used will �t in the underlying logi of the lan-guage. This restrits the expressivity of the language. To over all math-ematis, MathLang is intended to desribe the struture of mathematialtexts and their reasoning steps.� Having a grammatial enoding for mathematial texts brings obviouslythe need to have properties of these texts. A type system validates thegrammatial struture of a MathLang text. A sentene like \if x belongs toM then x+ y = y+ x" will be valid if x, y,M, \belongs to", \if", + and =are known beforehand and satisfy some weak typing relations. Otherwise,\if x belongs to M then x + y" does not make sense and is pointed asinorret with the MathLang type system.� Our last important onern is to provide a user interfae for the workingmathematiian. Providing one language whih allows to enode any mathe-matis and to leave the possibility of further transformations through moreformal data, will make the step of bridging mathematis and omputers assmooth as possible.1.3 From MV to WTT to MathLangIn 1979, de Bruijn developed a ourse on the Mathematial Vernaular (MV)intended to be a language to write mathematis. This ourse beame part ofthe urriulum for mathematis teahers in the Netherlands. In 1987, almost3



Kamareddine Maarek Wellstwenty years after the beginning of Automath, de Bruijn published an artileon MV (f. F3 of [Aut94℄). In MV, a Mathematial text is seen as a set oflines. Eah line being either the introdution of a new notion or an assumption,these in a ertain ontext. The struture of a text is line-by-line where eahnotion used in a line should have been de�ned beforehand. This struturewas inspired by the development of the language Automath. In MV a notionof typing gives meta-information in the language. Two levels of typing aredesribed: the low typing whih expresses that an objet is part of a ertainset and the high typing whih indiates the grammatial ategory of whih anexpression is part. All this makes MV:� faithful to the mathematiian's language while being formal and avoidingambiguities;� lose to the way in whih mathematiians express themselves in writing;� possess a syntax based on linguisti ategories rather than sets/types;� mainly onerned with strutural rather than logial orretness.The type theory of MV is weak beause it is omposed mostly by atomi types.These types refer to the grammatial ategories of a Mathematial text. Usingthe rules of MV one an hek if the reasoning struture of a text is valid.After de Bruijn's retirement, Nederpelt took over the ourse and ontinues toteah it today. Nederpelt re�ned MV into the so-alled Weak Type Theory(WTT) whih has a preise abstrat syntax. This makes it possible to establishimportant desirable properties suh as strong normalisation, deidability oftype heking and subjet redution as was done by Kamareddine. For detailson MV and WTT, see [Aut94,KN04℄.Sine MV and WTT are said to help provide a language to enode math-ematis whih an be used at every level of mathematial work, we set out totest these languages through the Foundations of Analysis (E. Landau [Lan51℄)whih is already fully formalised in Automath [vBJ77℄ by Bert van Benthem-Jutting. Sine our aim is not the full formalisation, but an enoding whihallows a full formalisation at a later stage, we felt that hoosing a fully for-malised book for our enoding, would allow us in the future, to ompare thealready existing full formalisation, with the full formalisation that ould bebuilt on top of our enoding. This paper reports the extensions that had tobe made to WTT to enode the �rst hapter while remaining faithful to themathematiian's intentions and keeping the road open to reah (in the longrun) a full formalisation that an be ompared to that of Automath. In par-tiular, we present the language MathLang, the implementation we have madeof its type heker and an overview of the MathLang translation we have doneof the �rst hapter of E. Landau [Lan51℄. In Setion 2, we give the abstratsyntax of MathLang. To illustrate the use and extensions of MathLang wegive examples taken from our translation of the �rst hapter of [Lan51℄. InSetion 3, we desribe the derivation rules of MathLang. In Setion 4 we dis-uss our implementation of MathLang and present the full translation of the4



Kamareddine Maarek Wells�rst hapter whih is automatially heked by our software. In Setion 5 wedisuss related and future work and we onlude.2 Abstrat syntax of MathLangMathLang is an extension of both MV and WTT. It attempts to be loser to agrammatial enoding of the reasoning struture of Mathematis. MathLangis designed to enoded entire mathematial texts. It is omposed by severalgrammatial levels to distinguish mathematial strutures from symbols to en-tire books. The levels de�ne grammatial ategories as groups of mathematialobjets. In this setion we will �rst explain what we mean by grammatialategories (Setion 2.1) and then desribe the grammatial levels (Setion 2.2).The abstrat syntax is presented here with examples of MathLang enodingstaken from our translation of the �rst hapter of E. Landau's Foundations ofAnalysis [Lan51℄.2.1 Grammatial ategoriesMathLang extends the grammatial ategories of WTT whih in turn extendsthose of MV.T We �rst have a grammatial ategory that groups the so-alled terms whihare ommon mathematial objets like \x+1", \the point A", or \a triangleABC". T denotes the set of terms.S Then we have the sets of mathematial objets like \N" (the set of naturalnumbers). We name this ategory sets and use S for the set of sets.N The nouns grammatial ategory is ommonly used in mathematis to desig-nate families of terms. For example in the sentene \1 is a natural number",\natural number" is a noun. The set of nouns is represented by N.A In MathLang, a noun ould be de�ned from another noun. For example,\isoseles triangle" is a noun. It is a restrited family of \triangle". Wede�ne adjetives as the kind of expressions that re�ne and/or hange themeaning of a noun. \Isoseles" is then an element of the set A of adjetives.P Expressions like \x = 1" or \8x 2 N ; x � 1" whih desribe mathematialproperties are statements in MathLang. P is the set of statements.D The sentenes that de�ne new symbols in mathematial texts are alledde�nitions in MathLang. For example, \We de�ne x + y suh that ..."belongs to the set D of de�nitions.Z The grammatial ategory of delarations groups variable delarations like\letM be a set". Elements of the set of delaration Z ould be omponentsof ontexts (see below).�, �F and �FS Constrution like \let x be in M", \assume that y > x +1 ", et., are elements that build a ontext. These are delarations and5



Kamareddine Maarek Wellsassumptions needed before stating properties. Combinations of this kind ofexpressions are named ontexts and belong to the set �. Furthermore, forassumptions and delarations whih over a ertain paragraph, we have thenotion of ags (see Example 2.3).L Lines in MathLang are steps of reasoning in mathematial texts. Theysometimes orrespond to real lines in texts.K Proofs, examples, paragraphs or setions are groups of lines. We designatethem by bloks. K is the set of bloks.B The grammatial ategory of books designates MathLang douments. Amathematial text orresponds to a book and so is an element of B.Figure 1 shows an example of a mathematial text with a diagram of theorresponding MathLang struture. MathLang an be seen as providing fora mathematial text, a grammatial struture that is not neessarily whatwould result from an analysis by linguists. Setion 3 explains how one anhek the well-formedness of a MathLang struture. Although the long-termgoals of MathLang inlude the integration with mathematial texts writtenin natural language, we do not yet do this | the �gure is purely to helpunderstand the eventual role we expet MathLang to play. We do not yethave any mehanism for mathing a MathLang struture with atual naturallanguage mathematial text.Let M be the set of ..., y a natural number,... if x belongs to MS T NZ Z�then x + y = y + x T S
T T T T P

T TP
L

Fig. 1. A mathematial line and its MathLang grammatial ategories2.2 Grammatial levelsIn this setion we desribe the four grammatial levels of MathLang: atomi,phrase, sentene and disourse. We extend the elements of the third and fourthlevels of WTT. We will illustrate these extensions with examples taken fromour translation of the �rst hapter of [Lan51℄ (see the authors' web pages forthe translation of the full hapter). Examples 2.2, 2.3, 2.4 and 2.5 illustrateMathLang onstrutions: ags, de�nitions by ases, bloks and referenes. Asto the notations we use to print MathLang texts, note that the language Math-Lang is still in development sine the translations of the other hapters will nodoubt all for further extensions. For this reason the MathLang texts given6
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Kamareddine Maarek Wellshere are rendered with an experimental syntax whih we intend to improve.Currently, the onrete syntax of MathLang is implemented using the XMLreommendations. We have made this hoie to failitate transformations onMathLang data. One of these transformations produes automatially therenderings shown in this paper. Below is an example. (i) being line numbersand fi.ig being blok indies. In a line, the symbol � separates the ontextfrom the new statement or the new de�nition.ontext elements � line body (1)blok name f1.1glines (2)in (3)blok (4)flist of onstants loal to the blokgag's headlines (5)sharing (6)the same (7)ag (8)(i) The atomi level is omposed by identi�ers: the mathematial symbols.There are three kinds of identi�ers: variables (unde�ned mathematialobjets), onstants (de�ned objets) and binders (to write onstrutionswhih loally introdue a variable).Variables v 2 V Constants  2 C Binders b 2 BWhereas onstants and binders an be of any grammatial ategory, avariable an only be a term or a set or a statement. We use supersriptsto denote the relevant ategory. For example, v 2 V T means that v is avariable of ategory T.Example 2.1 Identi�ersIn an expression (taken from our translation of the �rst hapter of [Lan51℄)like 8x :M; x+ 1 = x0:� x, M are variables� :, 1, +, = and 0 are onstants� 8 is a binder(ii) The phrase level is the formula level. It desribes how to onstrut terms,sets, nouns and adjetives. Four onstrutions exists. Variable instanti-ations V . Constant alls C(!E). Abstrations with binders BZ(E). Andattributions AN that attribute an adjetive to a noun to reate a newnoun. 7



Kamareddine Maarek WellsTerms t 2 T ::= V T j CT(!E) j BTZ(E)Sets s 2 S ::= V S j CS(!E) j BSZ(E)Nouns n 2 N ::= CN(!E) j BNZ(E) j ANAdjetives a 2 A ::= CA(!E) j BAZ(E)We take E and Z as below. We also take !E to be a list of E's.Expressions e 2 E ::= T j S j N j PDelarations z 2 Z ::= V T : S j V T : N j V S : SET j V P : STATThe set Z desribes the four onstrutions whih delare a new variable.In the �rst two onstrutions, the olon states the belonging of the de-lared variable. The variable on the left side of the olon belongs to theentity on the right side of the olon. The �rst onstrution introdues aterm variable by stating in whih set the term belongs (expression fromS). The seond also introdues a term variable but by stating of whihnoun it is an instane of (expression from N). With the keyword : SET(resp. : STAT), the third (resp. fourth) onstrution introdues a newset (resp. statement) variable.(iii) The sentene level de�nes how to onstrut one step of reasoning: eitherstatement or de�nition. Note the extension with de�nitions by ases inC(!E) := E.Statements p 2 P ::= V P j CP(!E) j BPZ(E)De�nitions d 2 D ::= CT(!V ) := T j CT(!E) := Tj CS(!V ) := S j CS(!E) := Sj CN(!V ) := N j CN(!E) := Nj CA(!V ) := A j CA(!E) := Aj CP(!V ) := P j CP(!E) := PAs we see, the set of de�nitions D is omposed by two kinds of on-strutions. The �rst, C(!V ) := E (representing onstrutions of the leftolumn) gives an expression as a full de�nition for the onstant. Eahparameter of the onstant is a variable (these parameters are representedas a list of variables: !V ). The seond, C(!E) := E (representing onstru-tions of the right olumn) is used to de�ne a onstant with several ases(by providing eah time an expression). Eah ase of the de�nition will bedesribed using one de�nition line (see the lines in the disourse level).The parameters are now pattern expressions that math the ase (!E).MathLang type analysis (see Setion 3) heks that variables appearingin the patterns are well delared in the ontext. MathLang heking per-8



Kamareddine Maarek Wellsforms only this kind grammatial analysis. Note that no omparisons ofases to �nd unovered ases or unused ones are done while this is a moresemantial analysis.Example 2.2 De�nitions by asesA ommon way to de�ne mathematial objets is to use ases. As an ex-ample we take the following text from Landau's De�nition 1 of Chapter 1,Setion 2:Theorem 4, and at the same time De�nition 1: To every pair ofnumbers x; y, we may assign in exatly one way a natural number,alled x+ y (+ to be read \plus"), suh thatx+ 1 = x0 for every x (1)x+ y0 = (x+ y)0 for every x and every y (2)x+ y is alled the sum of x and y, or the number obtained by additionof y to x. [Lan51℄We only onsider the de�nition of the + operator whih is reursivelyde�ned by two equations. The de�nition by ases we have introduedin MathLang gives an enoding of this kind of mathematial de�nitions.This enoding is loser to the original text than was the normal enodingin MV and WTT (that is to say, providing a unique objet as de�nition).This normal enoding of MV and WTT an still be made in MathLangas follows:x : N; y : N �+(x; y) := �z:N ((y = 1 =) z = x0) ^ 9t:N (y = t0 =) z = (x + t)0))This MathLang text de�nes x + y in one line. The two ases of theoriginal text are represented by a onjuntion of two impliations. Thisenoding however is not lose enough to the original text. The originalde�nition of + is expliitly omposed by two ases while here it is mergedin one ase using the logial symbols of impliation =) and onjuntion^ whih are not properly de�ned in E. Landau's text.Let us see now how the same de�nition of the addition of naturalnumbers ould be expressed in MathLang using, this time, a de�nitionby ases. As it is written in E. Landau's text, in both ases we assign aterm to the addition of a pair of terms:De�nition 1 f2.4gx : N �+(x; 1) := x0 (38)x : N ; y : N �+(x; y0) := (x+ y)0 (39)In MathLang, a de�nition by ases de�nes a onstant using severallines. Eah line being one ase. This onstrution brings MathLang9



Kamareddine Maarek Wellsloser to the original text for two reasons. First, to eah original aseorresponds one ase in MathLang. Seond, in this enoding we are notusing additional onstants. We do not need logial symbols as we did inthe earlier translation of MV and WTT. These logial onstrutions maynot always be expliitly de�ned in the mathematial text.
(iv) The disourse level gives onstrutions to desribe the struture of math-ematial texts. Note the extension with ags, agsta�s and bloks.Contexts  2 � ::= �F j �; Z j �; PFlags F 2 �F ::= �FS j �F ; [Z℄ j �F ; [P℄Flagsta�s FS 2 �FS ::= ;� j �FS; �Lines l 2 L ::= �� P j �� DBloks k 2 K ::= ;K j k Æ L j K Æ fKg!CBooks b 2 B ::= ;B j B Æ L j B Æ fKg!CIt starts with the line onstrution whih ould be seen as a step of rea-soning. A line is a mathematial sentene expressed in a spei� ontext.A ontext being a sequene of delarations (Z) and assumptions (state-ments P). Then we have bloks that group lines and sub-bloks together(expressing for example that several onseutive lines proving a ertainproposition should be onsidered as one entity together). They allow oneto speify a set of onstants (f g1;:::;n) whih will be loal to the blok.We take !C to be a list of C's. The use of these onstants is then restritedto the blok in question. ;K stands for the empty blok. Lastly books arede�ned as sequenes of lines and bloks. ;B stands for the empty book.MathLang ontexts are desribed using the three sets �, �F and �FS.;� stands for the empty ontext. To extend MV and WTT ontexts, wehave introdued in MathLang's abstrat syntax a onstrution to sopevariables or assumptions on several lines. This uses the ag notationalready present in MV but only as syntax sugaring. Flags were usedas syntax sugaring to avoid repetition of similar elements in onseutiveontexts and so to redue the size of MV or WTT examples. Moreover,ags help larify the sope of a variable or an assumption over severallines. We introdue ags in MathLang's abstrat syntax sine we onsiderit important to have this sope information enoded in the language.Flags are omposed of a head (a statement or a variable delarationin [ ℄) and a agsta� (several �). We will use a spei� notation for agsas shown here: 10



Kamareddine Maarek WellsNormal notation Flag notation[ez1℄; [ez2℄; ez3; ez4 �e1�; �; ez5 �e2�; [ez6℄ �e3�; � �e4
ez1ez2ez3; ez4 � e1ez5 � e2ez6�e3�e4ezi is a statement or a variable delarations and ei is a linebody.Example 2.3 FlagsOur MathLang translation of the de�nition and the proof of theorem 2from hapter 1, setion 2 illustrates the use of ags. In Figure 2, wegive the original text of this example and an output of our MathLangtranslation. Note that line numbering starts at 24 sine the earlier partsof the hapter oupy the other 23 lines. Note also that x0 is the suessorof x. We refer the reader to authors' web pages for the translation of allthe �rst hapter.By looking quikly at this example we see that a ommonly used sentene\let a variable be something in the following ..." is easily expressiblewith a ag in MathLang. In this example the �rst two ags respetivelyintrodue a set of variables and state that Theorem 2 holds for it. Thethird ag introdue the hypothesis that x is in M. With MathLang'sags, one ould express that the variables x used in lines 27 to 29 standfor the same objet. In MV and WTT these variables x would have beenintrodued three times (one time per line) and there would have been nopossibility to retrieve the strong link that unify them together.Example 2.4 BloksIn MathLang we introdued in the abstrat syntax the notion of bloksof lines. Bloks were already used at the metalevel in F3 of [Aut94℄where they were linked with ags. In MathLang we have separated bothnotions: ags extend the ontexts whereas bloks desribe the strutureof a text. In mathematis, setions or delimiters (of proofs or examples)give important information to the reader and help him understand andfollow the author's reasonings. Bloks in MathLang desribe the strutureof the text. Our enodings above of De�nition 1 (see Example 2.2) andof the Proof of Theorem 2 (see Figure 2 of Example 2.3), give examplesof bloks. 11

http://www.macs.hw.ac.uk/~mm20/papers/Kamareddine+Maarek+Wells:mkm_symposium-entcs-appendix-2004.ps.gz


Kamareddine Maarek WellsTheorem 2 x0 6= x:Proof. Let M be the set of all x for whihthis holds true.I) By Axiom 1 and Axiom 3,10 6= 1;therefore 1 belongs to M.II) If x belongs to M, thenx0 6= x;and hene by Theorem 1,(x0)0 6= x0;so that x0 belongs to M.By Axiom 5,M therefore ontains all the nat-ural numbers, i.e. we have for eah x thatx0 6= x: 2[Lan51℄

x : N �Th2(x) := x 6= x0 (24)Proof Theorem 2 f2.2gM : SET8x:MTh2(x)Ax1; Ax3(1) �10 6= 1 (25)(25); (Def Th2) �1 :M (26)x :M�x0 6= x (27)(27); Th1(x0; x) �x00 6= x0 (28)(28); (Def Th2) �x0 :M (29)Ax5(M; (26); (29)) �N �M (30)(30) �8x:NTh2(x) (31)
Fig. 2. Flags exampleIn MathLang, a blok denotes a struture. It is possible to restrit thede�nition of a onstant to a preise blok, we all this onstant loal. Anexample of these loal onstant ould be seen in our translation of the�rst hapter of [Lan51℄ with bloks f2.5.1g and f4.2.1g. Eah of thesebloks represents a part of a proof of a theorem (respetively part A ofTheorem 4 and part A of Theorem 28) where the loal onstants a and bare de�ned.Although we make heavy use of bloks and we fully inorporate themin the implementation, we still do not have rules that help derive usefulinformation about these bloks. For example, we still annot formallystate that a ertain blok is a proof of a given theorem.Example 2.5 ReferenesThe example given in Figure 3, from hapter 1, setion 2 (part of theproof of Theorem 4), illustrates the use of line and de�nition referenesin MathLang. Referening is already implemented but is not yet partof the de�nition of MathLang's abstrat syntax. We have annotated theoriginal text with the line numbers of our translation in parentheses.12



Kamareddine Maarek WellsLet x belong to M, so that there existsan x + y for all y. Then the numberx0 + y = (x + y)0is the required number for x0, sinex0 + 1 =(70) (x + 1)0 =(71) (x0)0 (72)and x0 + y0 =(73) (x + y0)0=(74) ((x + y)0)0=(75) (x0 + y)0: (76)Hene x0 belongs to M. (77)[Lan51℄

x :M8y:N9z:Nz = x + yy : Nx0 + y = (x + y)0�x0 + 1 = (x + 1)0 (70)(Def +(38)) �(x+ 1)0 = x00 (71)(70); (71) �x0 + 1 = x00 (72)�x0 + y0 = (x + y0)0 (73)(Def +(39)) �(x+ y0)0 = (x + y)00 (74)�(x + y)00 = (x0 + y)0 (75)(73); (74); (75) �x0 + y0 = (x0 + y)0(76)(72); (76) �x0 :M (77)Fig. 3. Referenes exampleReferenes to previous steps of the reasoning are ommonly used in math-ematis. A sentene like \By de�nition of ..." ould be enoded in Math-Lang by adding in the line ontext a referene to the de�nition of aonstant.In addition to suh referening, mathematiians use the habit of group-ing several steps of reasoning together. For example, to show that x0+1 =(x0)0, E. Landau �rst states that x0 + 1 = (x + 1)0 and then states that(x + 1)0 = (x0)0 and writes these steps in one equation. In MathLangwe have represented A = B = C as three expliit steps of reasoning.Eah step orresponds to one line. The �rst one states that A = B. Theseond states that B = C. Then the third onludes that A = C by ref-erening the two previous lines. Referenes make this kind of reasoningonstrutions easier to enode.3 The derivation rules of MathLangThe derivation rules of MathLang assign (unique) types to well formed Math-Lang expression. The set of types is a subset of the grammatial ategories.We list here all the types whih are atomi: T; S; N; A; P; D; �; K; B: Inthe example given in Figure 1, the type analysis assigns types orrespondingto the grammatial ategories while the sentene is well formed. The samesentene slightly modi�ed will this time be badly formed. Figure 4 points outthe type error.The type analysis will raise an error while applying the line-in-book (orline-in-blok) rule. The ontext is valid but the expression given as the bodyof line (x + y) should either be a statement (P) or a de�nition (D) while here13



Kamareddine Maarek WellsLet M be the set of ..., y a natural number,... if x belongs to MS T NZ Z�then x + y T S
T T P

TErrorFig. 4. An invalid mathematial line and its assigned MathLang typesx + y is a term (T). See later on in this Setion for a desription of thederivation rules.Typing notations.Before giving the derivation rules of MathLang we need to make preisethe notations we use. A typing states that a type is assigned to an expres-sion in a ertain environment. This is written as follow: environment `expression �� type. The environment onsists of a book in whih the expressionis typed. For expressions at the sentene and phrase level, the environmentalso ontains a ontext.Flattening ags.The ag onstrution we have introdued in the previous setion has animportant role in the enoding of mathematial texts. To make our typingrules more readable these are only appliable to MathLang without ags (on-text elements are restrited to assumptions from P and delarations from Z).We are able by attening eah ag of a MathLang text to keep the typinginformation they ontained. Eah agsta� element is then replaed by theontent of the orresponding ag's head. With this attening operation welose the information that the same assumption holds on several lines or that avariable stands for the same objet on several lines as well, but this does nothange the typing of a book. The derivation rules are de�ned on MathLangtexts obtained after doing a ags attening operation.Funtions.We use in the set of derivation rules some spei� funtions. We onlydesribe these funtions here rather than giving their full formal de�nitions.� dvars returns the set of variables delared in a given ontext(dvars : �! }(V )).� donsB returns the set of de�ned onstant in a given book. This exludesloal onstants (donsB : B! }(C)).14



Kamareddine Maarek Wells� donsK returns the set of de�ned onstant in a given blok. This exludesonstants de�ned loally in inner bloks (donsK : K! }(C)).� inC(i; ; b) gives the type of the ith argument of onstant  as de�ned in thebook b.� inB(i; b; b) represents the type expeted by the binder b.� fvars returns the set of free variables of a given expression(fvars : E! }(V )).� asedonsB (resp. asedonsK) returns the set of onstants de�ned by asesin a given book (resp. blok), exluding loal de�nitions (asedonsB : B!}(C) and asedonsK : K! }(C)).� OK(b ; ) is an abbreviation for ` b �� B and b `  �� �.Rules for expressions.These rules assign a type to the expressions taken from the phrase andthe sentene levels. That is to say variable instanes, onstant alls, bindingexpressions and adjetive attributions. A speial rule re-ons allows alls toannotated onstant whih is urrently being de�ned (0 with its input typeswt i). This rule allows reursive de�nitions of onstants (see rules full-def andase-def-first).OK(b ; ) v 2 V T=S=P v 2 dvars()b ;  ` v �� T=S=P varOK(b ; )  2 CT=S=N=A=P 2 donsB(b) 8i 2 f1; : : : ; ng; b ;  ` ei �� inC(i; ; b)b ;  ` (e1; : : : ; en) �� T=S=N=A=P onsOK(b ; )  2 CT=S=N=A=P = 0 8i 2 f1; : : : ; ng; bREC0wt1;:::;wtn ;  ` ei �� wt ibREC0wt1;:::;wtn ;  ` (e1; : : : ; en) �� T=S=N=A=P re-onsOK(b ; ) b 2 BT=S=N=A=P b ; ; z ` e �� inB(b)b ;  ` bz(e) �� T=S=N=A=P bindb ;  ` e1 �� A b ;  ` e2 �� Nb ;  ` e1e2 �� N attrGrouping rules. In the above rules, we use the symbol = to group similarrules. For example the var rule is in plae of three rules, the �rst of whih is:OK(b ; ) v 2 V T v 2 dvars()b ;  ` v �� T var-term15



Kamareddine Maarek WellsTypially, the rule var assigns the type orresponding to the variable's gram-matial ategory. The onstant rules ons and re-ons will do the same afterheking the oherene of the arguments' typings with what the onstant ex-pets (the funtion inC gives the list of types of the onstant's parameters).The bind rule, in addition, introdues the new variable in the typing environ-ment of the inner expression. The rule attr desribes how to onstrut a newnoun by attributing an adjetive to an existing noun.Rules for ontexts.These rules hek the oherene of ontexts. The �rst one states that anempty ontext is a valid ontext. The last one heks if an assumption inthe ontext is a well formed statement expression. The three remaining rulesorrespond to the three onstrutions of variable introdution. The grammat-ial ategory of the introdued variable must �t the kind of onstrution used:either a set or a statement or a term.` b �� Bb ` ;� �� � empty-ontOK(b ; ) v 2 V S v 62 dvars()b ` ; v : SET �� � set-var-delOK(b ; ) v 2 V P v 62 dvars()b ` ; v : STAT �� � stat-var-delOK(b ; ) v 2 V T v 62 dvars() b ;  ` e �� S=Nb ` ; v : e �� � term-var-delOK(b ; ) b ;  ` p �� Pb ` ; p �� � assump
Rules for de�nitions.There are two kinds of de�nitions in the abstrat syntax with three typingrules. First, we have a rule for the basi onstant de�nition whih provides aunique expression as a value for the onstant. Then there are two other rulesfor the de�nitions by ases: one for the �rst (basi) ase, the other for thefollowing ases and heks if the types of the onstant's arguments orrespondto those of the �rst ase. 16



Kamareddine Maarek WellsOK(b ; ) 2 CT=S=N=A=P  62 donsB(b) dvars() = [ni=1vi8i 2 f1; : : : ; ng; vi 2 V wt i bRECwt1;:::;wtn ;  ` e �� T=S=N=A=Pb ;  ` (v1; : : : ; vn) := e �� D full-defOK(b ; )  2 CT=S=N=A=P 62 asedonsB(b) dvars() = [ni=1fvars(ei)8i 2 f1; : : : ; ng; b ;  ` ei �� wt ibRECwt1;:::;wtn ;  ` e �� T=S=N=A=Pb ;  ` (e1; : : : ; en) := e �� D ase-def-firstOK(b ; )  2 CT=S=N=A=P 2 asedonsB(b) dvars() = [ni=1fvars(ei)8i 2 f1; : : : ; ng; b ;  ` ei �� inC(i; ; b)b ;  ` e �� T=S=N=A=Pb ;  ` (e1; : : : ; en) := e �� D ase-def-alterIn rules full-def and ase-def-first, to allow reursive de�nitions, we areannotating the environment (notation bRECwt1;:::;wtn ) in whih we will type thebody of the de�nition (expression e). This annotation ontains the onstanturrently de�ned and the types of its parameters. This information will bekept in the environment to allow alls to this onstant (see rule re-ons).Rules for bloks.A blok ould either be empty, end with a line or end with a blok. Therules below desribe how to build a blok from an already well-formed one.This is done by adding a line or a sub-blok to the existing blok.` b �� Bb ` ;K �� K empty-blokb ` k �� K b Æ fkg; ;  ` p=d �� P=Db ` k Æ  � p=d �� K line-in-blok` b �� Bb ` k �� K f1; : : : ; ng � donsK(k0) b Æ fkg; ` k0 �� Kb ` k Æ fk0g1;:::;n �� K blok-in-blokRules for books.The rules for books are similar to the rules for bloks while a book ouldbe seen as the outermost blok. 17



Kamareddine Maarek Wells
` ;B �� B empty-book ` b �� B b ;  ` p=d �� P=D` b Æ  � p=d �� B line-in-book` b �� B f1; : : : ; ng � donsK(k) b ` k �� K` b Æ fkg1;:::;n �� B blok-in-book4 ImplementationA main improvement of MathLang over MV and WTT is the implementationwe have made of a language heker whih was fully guided by the translationof the �rst hapter.Conrete syntaxOur hoie for the onrete syntax was to use XML reommendations. Weintend this XML syntax to be used only by the MathLang framework and bysoftware developers. The MathLang user, instead of using a onrete syntax,will use a spei� user-friendly editor (see Setion 5). This hoie has beenmade to �t in our main requirement for a mathematial software whih is tobe easy to use by mathematiians. By hoosing a omputer oriented syntaxwe avoid the need of the user to learn a new spei� syntax. This is avoidedby inluding MathLang in a ommon sienti� text editor.In MathLang's onrete syntax, eah ourrene of an identi�er is om-posed by its name and the grammatial ategory of whih it is part. Theonrete syntax is then mainly verbose. This failitates the heking and al-lows loal analysis of the typing. This dupliation of information also easesthe design of software rendering and enfores the use of an editor rather thanallowing editing by hand.The type hekerWe have implemented a type heker that analyses a MathLang text byapplying the rules of the type system (see Setion 3). This software has beenprogrammed using Camlp4 (parser part) and OCaml (type inferene part).This program heks the typing of a given MathLang doument. If the typingsueeds, the XML doument is then onsidered as a well formed MathLangbook. Otherwise, if the doument is not orretly formed, the heker willpoint the syntax or type error that has been found. We have used our hekerduring the translation of Landau's �rst hapter.RenderingWe apply syntati transformations on MathLang texts in order to obtainpresentable versions of the XML onrete syntax. For this paper we have used18



Kamareddine Maarek Wellsone XSL transformation that produes a LATEX doument. We have automati-ally generated the examples of Setion 2.2 and the full translation of the �rsthapter of [Lan51℄ using this transformation. This rendering is experimental.It remains lose to MV and WTT while also being learer thanks to the agsand bloks, and also to some syntati sugaring (the grammatial ategory ofeah identi�er is not printed and we use ommon symbols to help the reader).We explain our goals for MathLang rendering in Setion 5.TranslationIn order to experiment with our language MathLang we have used in itsdevelopment, a translation of E. Landau's Foundations of Analysis[Lan51℄.Translating an existing mathematial text and heking the resulting Math-Lang text with our software show the feasibility of suh a mathematial enod-ing. This experiene demonstrates the usability of our language and guidesour researh and development as losely as possible to e�etive mathemati-ians' writing habits. We have ahieved so far the translation of the full �rsthapter. This translation and the original text an be found in an appendixto this artile reahable at the authors' web pages.5 Related and Future workM. She�er's master thesis [Sh03℄ gives a translation of the same �rst hapterof [Lan51℄ but in the original alulus WTT with sugared notation alledWTTS. The meta theory developed for WTT did not involve the syntatisugaring and we suspet that R. K�orvers' implementation of WTT (uponwhih M. She�er's enoding was based) did not involve the syntati sugaringeither. This means that:� There is a gap between the language used in M. She�er's enoding andthe theory and its implementation. Our enoding on the other hand takesplae in a framework where there is a harmony between the language, itsmetatheory and its implementation. We give the translation in MathLang,an extended version of WTT where muh of the sugaring of WTT is replaedby �rst lass status in MathLang. Furthermore, the implementation is thatof MathLang and hene we an guarantee the oherene of our enodedtexts. This would be hard to guarantee in M. She�er's ase sine theimplementation is of WTT whereas the enoding is in another languageWTTS .� The rendering we automatially obtain from the enoding is loser to themathematiians' text than that of She�er's. This is sine both the languageMathLang and its implementation ontain ags and bloks.� Moreover, referenes to lines, de�nitions and bloks make our enodingloser to the mathematiian's intentions.19
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Kamareddine Maarek WellsAs we said earlier, MathLang is still under development. We believe thatit is important that this development be guided by existing mathematialtexts and pratie and that the enoding should be in the language underdevelopment and not in syntati sugaring versions of it. It is also importantthat the metatheory and implementation be as faithful as possible to thelanguage itself.M. She�er also disusses the step of moving fromWTT into a more formallanguage. Although this step is an important future diretion, we believe that�rst, a more stable language of mathematis needs to be found and extensivelytested before moving into higher levels of formalisation. Already, we havedeveloped many type theories with many of the features of Automath (e.g.,expliit substitutions, parameters, de�nitions, loal and/or global redutions,notions of uni�ation). These type theories will guide us into the more formallevels of MathLang. But, to avoid the danger of reating \toy" levels offormalisation, we need to have a good basis for the mathematial languageunder development whih an then lead us into more trustworthy formal levels.There exist di�erent frameworks for putting mathematis on the omputer,eah with a partiular aim: alulation, analysis, storage, visualization, hek-ing, et. However, none of these frameworks is expressive enough to allow theintegration of many aims in one system. In [KW01℄, we proposed to designa language inuened by MV [Aut94℄ and WTT [KN04℄ and driven by theenoding of three books: 1) the Landau's Foundations of Analysis [Lan51℄sine it was fully-formalised in Automath (and hene provides an exellentbasis for omparison), 2) the Elements of Eulid [Hea56℄ sine it is known tohave many errors (and hene helps distinguish between logial and struturalorretness), and 3) The Compendium of Latties [GHK+80℄ sine 60% of ithas been formalised in Mizar. We have not yet takled the third book. Onthe other hand, work on Eulid's book is under development by a studentfor his degree projet while work on Landau's book has been in progress forover a year now [Maa03℄, and we have already ompleted the translation ofthe �rst hapter while building at the same time, a basis of a re�ned lan-guage MathLang, its implementation and useful assoiated software pakages.The immediate future work on MathLang and its framework will follow threediretions strongly linked together.� Spei�ations. The MathLang language is still in development. We needto inorporate referenes in the MathLang syntax and to put the notionof bloks into ation by adding some onstrutions to enable us to deriveinformation about bloks. These extensions will always be made in parallelwith the guiding translation work. At every stage, we will make sure thatthe metatheory is well developed and that the implementation is faithful tothe language.� Translation. Continuing the translation of Landau's book (and makingprogress on the translation of Eulid's book) is a main target to guide the20



Kamareddine Maarek Wellsdesign of MathLang. This translation guides us as to how we should furtherdevelop MathLang and enables us to build an implementation that is easyto use whih we an then pass for external feedbaks from mathematiiansor programmers as our future users.� Framework. Beause our language will be as exhaustive as possible in itsway to enode mathematial texts we will need to have a spei� editor to as-sist the mathematiian. This editor should have a user friendly interfae. Itshould be able to print mathematial symbols on the sreen. An integratedheker should give instantaneous feedbak about the type analysis of thetext. We have planned and started to use the What-You-See-Is-What-You-Get editor TEXmas 2 for this development. TEXmas is an editor dediatedto mathematial texts. It is mostly interative and has been developed toallow extensions. MathLang's framework should assist mathematiians toreate new douments and to translate existing mathematial texts (suh asLATEX and OMDo douments). For this seond purpose we aim to developa tool to semi-automate the work of translation. The work desribed in theartile [BS03℄ is a good basis for this development. Y. Baba and M. Suzukipresent a grammatial analyser whih extends its own grammatial ruleson the y. After translating one sentene, the grammatial analyser will beable to reognize the same kind of pattern used by the mathematiian inthe rest of the text.In addition to this disussed development of a language of mathematisMathLang, we will also use earlier developments we made on extensions oftype systems (with notions like de�nitions, expliit substitutions, parametersand higher order uni�ation) in order to take our full enoding of Landau'sbook in MathLang into a fully formalised version whih an then be omparedwith the existing Automath formalisation. At eah stage, we will be workingon general methods that an be applied to other books.Referenes[MKM03℄ Asperti, Buhberger and Davenport (Eds.). The Seond InternationalConferene on Mathematial Knowledge Management, MKM 2003,Bertinoro, Italy, February 16-18. Leture Notes in Computer Siene2594, 2003.[BS03℄ Yusuke Baba and Masakazu Suzuki. An annotated orpus and agrammar model of theorem desription. In [MKM03℄, 2003.[GHK+80℄ G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove, andD. S. Sott. A Compendium of Continuous Latties. Springer-Verlag,1980.[Hea56℄ Heath. The 13 Books of Eulid's Elements. Dover, 1956.2 http://www.texmas.org/ 21

http://www.texmacs.org/


Kamareddine Maarek Wells[KN04℄ Fairouz Kamareddine and Rob Nederpelt. A re�nement of de Bruijn'sformal language of mathematis. To appear in Journal of Logi,Language and Information. 2004.[Koh03℄ Mihael Kohlhase. OMDo: An Open Markup Format for MathematialDouments (Version 1.1). http://www.mathweb.org/omdo, 2003.[KW01℄ Fairouz Kamareddine and Joe Wells. Promath: presenting, proving andprogramming mathematial books. Revised under the title: MathLang,A new language for Mathematis, Logi and Computation, August 2001.[Lan30℄ Edmund Landau. Grundlagen der Analysis. Chelsea, 1930.[Lan51℄ Edmund Landau. Foundations of Analysis. Chelsea, 1951. Translationof [Lan30℄ by F. Steinhardt.[Maa03℄ Manuel Maarek. First year PhD report. Tehnial report, Heriot-WattUniversity, August 2003.[Aut94℄ R.P. Nederpelt and J.H. Geuvers and R.C. de Vrijer (Eds.), Seletedpapers on Automath, North-Holland, 1994.[Sh03℄ Mark She�er. Formalizing Mathematis using Weak Type Theory.Master's thesis, Tehnishe Universiteit Eindhoven, September 2003.[vBJ77℄ L. S. van Benthem Jutting. Cheking Landau's \Grundlagen" in theAUTOMATH system. PhD thesis, Eindhoven University of Tehnology,1977. Mathematial Centre Trats nr. 83, Math. Centre, Amsterdam1979.[Wie03℄ Freek Wiedijk. Comparing mathematial provers. In [MKM03℄, 2003.

22

http://www.mathweb.org/omdoc

	Introduction
	Current situation of mathematics on computers
	Our Concerns
	From MV to WTT to MathLang

	Abstract syntax of MathLang
	Grammatical categories
	Grammatical levels

	The derivation rules of MathLang
	Implementation
	Related and Future work
	References
	References

