or with entcsmacro. sty for your meeting. Both can be
found at the ENTCS Macro Home Page.

MathLang: experience-driven development of a
new mathematical language

Fairouz Kamareddine! Manuel Maarek! J. B. Wells!

ULTRA Group
Heriot-Watt University
Edinburgh, Scotland

Abstract

In this paper we report on the design of a new mathematical language and our
method of designing it, driven by the encoding of mathematical texts. MathLang
is intended to provide support for checking basic well-formedness of mathematical
text without requiring the heavy and difficult-to-use machinery of full type theory
or other forms of full formalization. At the same time, it is intended to allow the ad-
dition of fuller formalization to a document as time and effort permits. MathLang is
intended to, ultimately, be useful in providing better software support for authoring
mathematics, reading mathematics, and organizing and distributing mathematics.
The preliminary language presented in this paper is intended only for machine ma-
nipulation and for debugging of the design of MathLang.

Key words: Mathematical language, Mathematical vernacular,
Mathematical knowledge management Weak types, MathLang

1 Introduction

Data management has become an important area for automation. Editing,
storage, publishing, data retrieving and other computations are gratefully
helped by computers with appropriate software. Nowadays computers could
be used at each step of writing texts, the use of pen & paper may not be
essential. Could we make the same remark for mathematical work? Would it
be possible for a mathematician to use computers as a help tool from scratch
to treatise?

! http://www.macs.hw.ac.uk/ultra/

(©2003 Published by Elsevier Science B. V.

http://www.math.tulane.edu/~entcs

1.1 Clrrent situation of mathematics on computers

Putting mathematics on computers.
First of all, to use computers for mathematical purposes, we need to put
mathematical content inside them. Different ways to do so exist:

* One can scan mathematical books and store their images on electronic sup-
port. This solution brings no facilities of computation and even no auto-
matic search on data.

* One can encode mathematics. Programs could then deal with these encoded
mathematical data. Storage is possible, and so are computations on data
such as visualizing, calculating, analysing and searching.

Existing encodings.
Many languages to encode mathematics exist already. We sort them in
categories based on what they were invented for:

A. Languages for printing mathematical symbols on paper/screen (e.g. KTEX).
Since they follow a rendering aim, they encode only the shape of a docu-
ment and not its meaning.

B. Languages for theorem provers and computer algebra systems (see [Wie03])
which try to formalize mathematics. These systems claim to assist the
mathematician to prove theorems by verifying them.

C. Languages which store the semantical structure of mathematical texts
without checking it (e.g. OMDoc [Koh03]). They combine natural lan-
guage with notions like formulae or text structures (theorems, examples,...).

Use of encoded texts.

Choosing an encoding depends on its intended use. Hence we need to know
what computers could do to assist the mathematician in his work. Mathemat-
ical work could be summarized in three levels:

1. At the first one, the mathematician starts from scratch to put down more
or less random ideas. He organizes, polishes and refines them.

2. At the second level, ideas evolve into clearer views and theories begin to
take shape. Things move to a concrete form that allows publications.

3. At the last level, calculations and proofs take place. Details need to be
clarified to reach complete theories. This level leads to a full formalization.

At each of these levels we deal with mathematical data. From structured but
not complete content in the first level to formalized data at the latter. None
of the encoding listed above satisfies the needs of all these levels:

 Languages for rendering (A) do not capture the semantics of a text (for use
in level 3).

 Languages in (B) are too strict to encode incomplete (from level 1) or partly-
formalized (from level 3) mathematical contents.

 Languages in (C) do not allow enough automation to benefit from computers
at each level.

Thus we gather that currently there is no language to encode mathematics
to be used at every level of mathematical work.

1.2 Our Concerns

N.G. de Bruijn in his extensive writings and different stages of mathematical
languages and vernaculars proposed that “the way mathematical material is to
be presented to the [computer] system should correspond to the usual way we
write mathematics.” We are proposing a language, MathLang to realise this
proposition. MathLang goals could be described following four main concerns
for mathematics on computers.

* The first concern is to be able to automate computations of data encoded in
MathLang to use computer skills. For this reason we have designed Math-
Lang using a full symbolism (that is to say every element of the language
consists of recognisable symbols). This facilitates the manipulations that
can be done by the computer.

e When using existing formal languages to write mathematics, one needs to
be sure that the mathematics used will fit in the underlying logic of the lan-
guage. This restricts the expressivity of the language. To cover all math-
ematics, MathLang is intended to describe the structure of mathematical
texts and their reasoning steps.

* Having a grammatical encoding for mathematical texts brings obviously
the need to have properties of these texts. A type system validates the
grammatical structure of a MathLang text. A sentence like “if x belongs to
M then x +y = y+ 2" will be valid if z, y, 91, “belongs to”, “if”, + and =
are known beforehand and satisfy some weak typing relations. Otherwise,
“if © belongs to 9 then = + y” does not make sense and is pointed as
incorrect with the MathLang type system.

* QOur last important concern is to provide a user interface for the working
mathematician. Providing one language which allows to encode any mathe-
matics and to leave the possibility of further transformations through more
formal data, will make the step of bridging mathematics and computers as
smooth as possible.

1.3 From MV to WT'T to MathLang

In 1979, de Bruijn developed a course on the Mathematical Vernacular (MV)
intended to be a language to write mathematics. This course became part of
the curriculum for mathematics teachers in the Netherlands. In 1987, almost

3

twenty years after the beginning of Automath, de Bruijn published an article
on MV (cf. F3 of [Aut94]). In MV, a Mathematical text is seen as a set of
lines. Each line being either the introduction of a new notion or an assumption,
these in a certain context. The structure of a text is line-by-line where each
notion used in a line should have been defined beforehand. This structure
was inspired by the development of the language Automath. In MV a notion
of typing gives meta-information in the language. Two levels of typing are
described: the low typing which expresses that an object is part of a certain
set and the high typing which indicates the grammatical category of which an
expression is part. All this makes MV:

e faithful to the mathematician’s language while being formal and avoiding
ambiguities;

* close to the way in which mathematicians express themselves in writing;

* possess a syntax based on linguistic categories rather than sets/types;

* mainly concerned with structural rather than logical correctness.

The type theory of MV is weak because it is composed mostly by atomic types.
These types refer to the grammatical categories of a Mathematical text. Using
the rules of MV one can check if the reasoning structure of a text is valid.
After de Bruijn’s retirement, Nederpelt took over the course and continues to
teach it today. Nederpelt refined MV into the so-called Weak Type Theory
(WTT) which has a precise abstract syntax. This makes it possible to establish
important desirable properties such as strong normalisation, decidability of
type checking and subject reduction as was done by Kamareddine. For details
on MV and WTT, see [Aut94,KNO4]|.

Since MV and WTT are said to help provide a language to encode math-
ematics which can be used at every level of mathematical work, we set out to
test these languages through the Foundations of Analysis (E. Landau [Lan51])
which is already fully formalised in Automath [vBJ77] by Bert van Benthem-
Jutting. Since our aim is not the full formalisation, but an encoding which
allows a full formalisation at a later stage, we felt that choosing a fully for-
malised book for our encoding, would allow us in the future, to compare the
already existing full formalisation, with the full formalisation that could be
built on top of our encoding. This paper reports the extensions that had to
be made to WTT to encode the first chapter while remaining faithful to the
mathematician’s intentions and keeping the road open to reach (in the long
run) a full formalisation that can be compared to that of Automath. In par-
ticular, we present the language MathLang, the implementation we have made
of its type checker and an overview of the MathLang translation we have done
of the first chapter of E. Landau [Lan51]. In Section 2, we give the abstract
syntax of MathLang. To illustrate the use and extensions of MathLang we
give examples taken from our translation of the first chapter of [Lan51]. In
Section 3, we describe the derivation rules of MathLang. In Section 4 we dis-
cuss our implementation of MathLang and present the full translation of the

4

first chapter which is automatically checked by our software. In Section 5 we
discuss related and future work and we conclude.

2 Abstract syntax of MathLang

MathLang is an extension of both MV and WTT. It attempts to be closer to a
grammatical encoding of the reasoning structure of Mathematics. MathLang
is designed to encoded entire mathematical texts. It is composed by several
grammatical levels to distinguish mathematical structures from symbols to en-
tire books. The levels define grammatical categories as groups of mathematical
objects. In this section we will first explain what we mean by grammatical
categories (Section 2.1) and then describe the grammatical levels (Section 2.2).
The abstract syntax is presented here with examples of MathLang encodings
taken from our translation of the first chapter of E. Landau’s Foundations of
Analysis [Lanb1].

2.1 Grammatical categories

MathLang extends the grammatical categories of WI'T which in turn extends
those of MV.

T We first have a grammatical category that groups the so-called terms which
are common mathematical objects like “x+1”, “the point A”, or “a triangle
ABC”. T denotes the set of terms.

S Then we have the sets of mathematical objects like “N” (the set of natural
numbers). We name this category sets and use S for the set of sets.

N The nouns grammatical category is commonly used in mathematics to desig-
nate families of terms. For example in the sentence “1 is a natural number”,
“natural number” is a noun. The set of nouns is represented by N.

A In MathLang, a noun could be defined from another noun. For example,
“isosceles triangle” is a noun. It is a restricted family of “triangle”. We
define adjectives as the kind of expressions that refine and/or change the
meaning of a noun. “Isosceles” is then an element of the set A of adjectives.

P Expressions like “x =17 or “Vo € Nyx > 1”7 which describe mathematical
properties are statements in MathLang. P is the set of statements.

D The sentences that define new symbols in mathematical texts are called
definitions in MathLang. For example, “We define x + y such that ...”
belongs to the set D of definitions.

Z The grammatical category of declarations groups variable declarations like
“let M be a set”. Elements of the set of declaration Z could be components
of contexts (see below).

[, I'r and I'pg Construction like “let be in 9”7, “assume that y > x +
17, etc., are elements that build a context. These are declarations and

5

assumptions needed before stating properties. Combinations of this kind of
expressions are named contexts and belong to the set ['. Furthermore, for
assumptions and declarations which cover a certain paragraph, we have the
notion of flags (see Example 2.3).

L Lines in MathLang are steps of reasoning in mathematical texts. They
sometimes correspond to real lines in texts.

K Proofs, examples, paragraphs or sections are groups of lines. We designate
them by blocks. K is the set of blocks.

B The grammatical category of books designates MathLang documents. A
mathematical text corresponds to a book and so is an element of B.

Figure 1 shows an example of a mathematical text with a diagram of the
corresponding MathLang structure. MathLang can be seen as providing for
a mathematical text, a grammatical structure that is not necessarily what
would result from an analysis by linguists. Section 3 explains how one can
check the well-formedness of a MathLang structure. Although the long-term
goals of MathLang include the integration with mathematical texts written
in natural language, we do not yet do this — the figure is purely to help
understand the eventual role we expect MathLang to play. We do not yet
have any mechanism for matching a MathLang structure with actual natural
language mathematical text.

Let 9% bethesetof.. y anatural number,.. if x belongsto M

(’ Lo R — . Lo
Z

U z
r

L then =z + y = y +

Lrd Lrd prd Lo

Fig. 1. A mathematical line and its MathLang grammatical categories

2.2 Grammatical levels

In this section we describe the four grammatical levels of MathLang: atomic,
phrase, sentence and discourse. We extend the elements of the third and fourth
levels of WTT. We will illustrate these extensions with examples taken from
our translation of the first chapter of [Lan51] (see the authors’ web pages for
the translation of the full chapter). Examples 2.2, 2.3, 2.4 and 2.5 illustrate
MathLang constructions: flags, definitions by cases, blocks and references. As
to the notations we use to print MathLang texts, note that the language Math-
Lang is still in development since the translations of the other chapters will no
doubt call for further extensions. For this reason the MathLang texts given

6

http://www.macs.hw.ac.uk/~mm20/papers/Kamareddine+Maarek+Wells:mkm_symposium-entcs-appendix-2004.ps.gz

here are rendered with an experimental syntax which we intend to improve.
Currently, the concrete syntax of MathLang is implemented using the XML
recommendations. We have made this choice to facilitate transformations on
MathLang data. One of these transformations produces automatically the
renderings shown in this paper. Below is an example. (i) being line numbers
and {i.i} being block indices. In a line, the symbol > separates the context
from the new statement or the new definition.

(1)

(ii)

context elements > line body (1)

block name | {1.1}

lines (2)
block (4)
{list of constants local to the block}

flag’s head
lines (5)
sharing (6)
the same (7)
flag (8)

The atomic level is composed by identifiers: the mathematical symbols.
There are three kinds of identifiers: variables (undefined mathematical
objects), constants (defined objects) and binders (to write constructions
which locally introduce a variable).

Variables v € V Constants ¢ € C Binders b € B

Whereas constants and binders can be of any grammatical category, a
variable can only be a term or a set or a statement. We use superscripts
to denote the relevant category. For example, v € VT means that v is a
variable of category T.

Example 2.1 Identifiers

In an expression (taken from our translation of the first chapter of [Lan51])
like Vo : 9, 2 + 1 = 2’

e x, M are variables

e :, 1, +, = and ' are constants

* Vis a binder

The phrase level is the formula level. It describes how to construct terms,
sets, nouns and adjectives. Four constructions exists. Variable instanti-
ations V. Constant calls C(E) Abstractions with binders Bz(E). And
attributions AN that attribute an adjective to a noun to create a new
noun.

(iii)

Terms t € T u= VT C’T(E) | B3 (E)
Sets s € S u= VS|CSE)|BE)
Nouns n € N = C’N(E) | By (E) | AN
Adjectives a € A = C’A(E) | B (E)

We take E and Z as below. We also take E to be a list of E’s.
T|S|N|P
VI:S|VT:N|VS:SET |VFP:STAT

The set Z describes the four constructions which declare a new variable.
In the first two constructions, the colon states the belonging of the de-
clared variable. The variable on the left side of the colon belongs to the
entity on the right side of the colon. The first construction introduces a
term variable by stating in which set the term belongs (expression from
S). The second also introduces a term variable but by stating of which
noun it is an instance of (expression from N). With the keyword : SET
(resp. : STAT), the third (resp. fourth) construction introduces a new
set (resp. statement) variable.

€ E

Expressions e

Declarations z € Z

The sentence level defines how to construct one step of reasoning: either
statement or definition. Note the extension with definitions by cases in

C(E) =E.

Statements p € P == V?| C’P(E) | B3 (E)
— —
Definitions d € D == CYV):=T |CYE):=T
| C%(V)i=s | C(E) =S
— —
| CY(v):=N |CYE):=N
| CAV)i=A | CHE) =4
| CP(V)i=P | CP(E):=P
As we see, the set of definitions D is composed by two kinds of con-
—

structions. The first, C(V) := E (representing constructions of the left
column) gives an expression as a full definition for the constant. Each

parameter of the constant is a variable (these parameters are represented
%

as a list of variables: V). The second, C’(E) := E (representing construc-
tions of the right column) is used to define a constant with several cases
(by providing each time an expression). Each case of the definition will be
described using one definition line (see the lines in the discourse level).

5
The parameters are now pattern expressions that match the case (E).
MathLang type analysis (see Section 3) checks that variables appearing
in the patterns are well declared in the context. MathLang checking per-

8

forms only this kind grammatical analysis. Note that no comparisons of
cases to find uncovered cases or unused ones are done while this is a more
semantical analysis.

Example 2.2 Definitions by cases

A common way to define mathematical objects is to use cases. As an ex-
ample we take the following text from Landau’s Definition 1 of Chapter 1,
Section 2:

Theorem 4, and at the same time Definition 1: To every pair of

numbers x,y, we may assign in exactly one way a natural number,
called x +y (+ to be read “plus”), such that

z+1=21" for every x (1)

z+y = (z+y) for every x and every y (2)

x4y is called the sum of x and y, or the number obtained by addition
of y to x. [Lan51]

We only consider the definition of the + operator which is recursively
defined by two equations. The definition by cases we have introduced
in MathLang gives an encoding of this kind of mathematical definitions.
This encoding is closer to the original text than was the normal encoding
in MV and WTT (that is to say, providing a unique object as definition).
This normal encoding of MV and W'T'T can still be made in MathLang
as follows:

z:Ny:N D@y =ty (=1 = z=2YAIn (y=t = z=(x+1)))

This MathLang text defines x 4+ y in one line. The two cases of the
original text are represented by a conjunction of two implications. This
encoding however is not close enough to the original text. The original
definition of + is explicitly composed by two cases while here it is merged
in one case using the logical symbols of implication = and conjunction
A which are not properly defined in E. Landau’s text.

Let us see now how the same definition of the addition of natural
numbers could be expressed in MathLang using, this time, a definition
by cases. As it is written in E. Landau’s text, in both cases we assign a
term to the addition of a pair of terms:

Definition 1 ‘ {2.4}
z:N>+(x,1) =2 ‘ (38)

z:N, y:N>+(z,¢) = (z+y)| (39)

In MathLang, a definition by cases defines a constant using several
lines. Each line being one case. This construction brings MathLang

9

closer to the original text for two reasons. First, to each original case
corresponds one case in MathLang. Second, in this encoding we are not
using additional constants. We do not need logical symbols as we did in
the earlier translation of MV and WTT. These logical constructions may
not always be explicitly defined in the mathematical text.

The discourse level gives constructions to describe the structure of math-
ematical texts. Note the extension with flags, flagstaffs and blocks.

Contexts ~ € I' o= TIp|[,Z|I,P
Flags v € Trp = Dps|Tr 2] |TF,[P]
Flagstaffs vyps € Tps = 0p |TCps,e

Lines 1 € L == I'p>P|I'>D
Blocks k € K u= fk|koL[KofK},
Books b € B u= (p[BoL[Bo{K},

It starts with the line construction which could be seen as a step of rea-
soning. A line is a mathematical sentence expressed in a specific context.
A context being a sequence of declarations (Z) and assumptions (state-
ments P). Then we have blocks that group lines and sub-blocks together
(expressing for example that several consecutive lines proving a certain
proposition should be considered as one entity together). They allow one
to specify a set of constants ({ },) which will be local to the block.

We take 8 to be a list of C’s. The use of these constants is then restricted
to the block in question. (x stands for the empty block. Lastly books are
defined as sequences of lines and blocks. () stands for the empty book.

MathLang contexts are described using the three sets [', I'p and I'pg.
(r stands for the empty context. To extend MV and WTT contexts, we
have introduced in MathLang’s abstract syntax a construction to scope
variables or assumptions on several lines. This uses the flag notation
already present in MV but only as syntax sugaring. Flags were used
as syntax sugaring to avoid repetition of similar elements in consecutive
contexts and so to reduce the size of MV or WTT examples. Moreover,
flags help clarify the scope of a variable or an assumption over several
lines. We introduce flags in MathLang’s abstract syntax since we consider
it important to have this scope information encoded in the language.
Flags are composed of a head (a statement or a variable declaration
in [|) and a flagstaff (several o). We will use a specific notation for flags
as shown here:

10

AALLVIALAVL LUV AVASALR AV VY UL

Normal notation Flag notation
lez1], [ezy], ez3,024 ey ez,
®, 0 cZy >es ezo
e, [ezﬁ] >es; ezz,ezy > e;
o 0 >ey ezs > ey
ezg
>es
>ey

ez; 18 a statement or a variable declarations and e; is a line

body.

Example 2.3 Flags

Our MathLang translation of the definition and the proof of theorem 2
from chapter 1, section 2 illustrates the use of flags. In Figure 2, we
give the original text of this example and an output of our MathLang
translation. Note that line numbering starts at 24 since the earlier parts
of the chapter occupy the other 23 lines. Note also that x' is the successor
of x. We refer the reader to authors’ web pages for the translation of all
the first chapter.

By looking quickly at this example we see that a commonly used sentence
“let a variable be something in the following ...” is easily expressible
with a flag in MathLang. In this example the first two flags respectively
introduce a set of variables and state that Theorem 2 holds for it. The
third flag introduce the hypothesis that x is in 91. With MathLang’s
flags, one could express that the variables x used in lines 27 to 29 stand
for the same object. In MV and WTT these variables x would have been
introduced three times (one time per line) and there would have been no
possibility to retrieve the strong link that unify them together.

Example 2.4 Blocks

In MathLang we introduced in the abstract syntax the notion of blocks
of lines. Blocks were already used at the metalevel in F3 of [Aut94]
where they were linked with flags. In MathLang we have separated both
notions: flags extend the contexts whereas blocks describe the structure
of a text. In mathematics, sections or delimiters (of proofs or examples)
give important information to the reader and help him understand and
follow the author’s reasonings. Blocksin MathLang describe the structure
of the text. Our encodings above of Definition 1 (see Example 2.2) and
of the Proof of Theorem 2 (see Figure 2 of Example 2.3), give examples
of blocks.

11

http://www.macs.hw.ac.uk/~mm20/papers/Kamareddine+Maarek+Wells:mkm_symposium-entcs-appendix-2004.ps.gz

Theorem 2

' # .

Proof. Let M be the set of all x for which

By Axiom 5, 91 therefore contains all the nat-
ural numbers, i.e. we have for each = that (30) >V,.nTh2(x)

Ax5(9m, (26), (29)) >N C I

this holds true. z:Np>Th2(z) ==z # o' (24)
I) By Axiom 1 and Axiom 3, Proof Theorem 2| {2.2}

1 #£1; M : SET

therefore 1 belongs to 9. Va:m Th2(z)

IT) If belongs to M, then Axl, Ax3(1) B1'#1 (25)
(25), (Def Th2) >1: 9 (26)

T #x, P
and hence by Theorem 1, o' # (27)
(z") # 2, (27), Thl(z',z) >a'" #2' | (28)
so that 2’ belongs to 9. (28), (Def Th2) o' : I (29)
(30)
(31)

' # .
O

[Lan51]

Fig. 2. Flags example

In MathLang, a block denotes a structure. It is possible to restrict the
definition of a constant to a precise block, we call this constant local. An
example of these local constant could be seen in our translation of the
first chapter of [Lan51] with blocks {2.5.1} and {4.2.1}. Each of these
blocks represents a part of a proof of a theorem (respectively part A of
Theorem 4 and part A of Theorem 28) where the local constants a and b
are defined.

Although we make heavy use of blocks and we fully incorporate them
in the implementation, we still do not have rules that help derive useful
information about these blocks. For example, we still cannot formally
state that a certain block is a proof of a given theorem.

Example 2.5 References

The example given in Figure 3, from chapter 1, section 2 (part of the
proof of Theorem 4), illustrates the use of line and definition references
in MathLang. Referencing is already implemented but is not yet part
of the definition of MathLang’s abstract syntax. We have annotated the
original text with the line numbers of our translation in parentheses.

12

z:IM
Let = belong to 90, so that there exists
an z + y for all y. Then the number Vyndenz =ty
' N
¥ +y=(x+y) Y
+y=(z+y)
is the required number for z’, since
>’ +1=(x+1) (70)
a' +1 =) (x+1) =@ (&) (72) (Def +(38)) > (2 +1)" = 2" (71)
and (70), (71) pa' + 1 =a" (72)
o' +y =3 (z+y") >z’ +y' = (z+y') (73)
_ NG
=(14) ((ff + l/)l) (Def +(30)) >(z+y') = (x+y)" (74)
= v +y). 76
%) (= +3) o >(@+)" = (@ +) (75)
Hence z' belongs to 9. (77)
Lans1] (73), (74), (75) >’ +y' = (¢’ +)'(76)
(72), (76) >a' : M (77)

Fig. 3. References example

References to previous steps of the reasoning are commonly used in math-

ematics. A sentence like “By definition of ...” could be encoded in Math-
Lang by adding in the line context a reference to the definition of a
constant.

In addition to such referencing, mathematicians use the habit of group-
ing several steps of reasoning together. For example, to show that z'+1 =
(2")', E. Landau first states that 2’ +1 = (z 4+ 1)’ and then states that
(x + 1) = (2/) and writes these steps in one equation. In MathLang
we have represented A = B = C' as three explicit steps of reasoning.
Each step corresponds to one line. The first one states that A = B. The
second states that B = C'. Then the third concludes that A = C' by ref-
erencing the two previous lines. References make this kind of reasoning
constructions easier to encode.

3 The derivation rules of MathLang

The derivation rules of MathLang assign (unique) types to well formed Math-
Lang expression. The set of types is a subset of the grammatical categories.
We list here all the types which are atomic: T, S, N, A, P, D, I', K, B. In
the example given in Figure 1, the type analysis assigns types corresponding
to the grammatical categories while the sentence is well formed. The same
sentence slightly modified will this time be badly formed. Figure 4 points out
the type error.

The type analysis will raise an error while applying the vLiNe-iN-Book (or
LINE-IN-BLOCK) rule. The context is valid but the expression given as the body
of line (z + y) should either be a statement (P) or a definition (D) while here

13

Let 9% bethesetof.., gy anatural number,... if =z belongsto M

Lo . L, Lo
Z | Z | P
r
then =z + y
L) Lo
I—ErrorT—

Fig. 4. An invalid mathematical line and its assigned MathLang types

r +y is a term (T). See later on in this Section for a description of the
derivation rules.

Typing notations.

Before giving the derivation rules of MathLang we need to make precise
the notations we use. A typing states that a type is assigned to an expres-
siton in a certain environment. This is written as follow: environment +
expression o type. The environment consists of a book in which the expression
is typed. For expressions at the sentence and phrase level, the environment
also contains a context.

Flattening flags.

The flag construction we have introduced in the previous section has an
important role in the encoding of mathematical texts. To make our typing
rules more readable these are only applicable to MathLang without flags (con-
text elements are restricted to assumptions from P and declarations from Z).
We are able by flattening each flag of a MathLang text to keep the typing
information they contained. Each flagstaff element is then replaced by the
content of the corresponding flag’s head. With this flattening operation we
lose the information that the same assumption holds on several lines or that a
variable stands for the same object on several lines as well, but this does not
change the typing of a book. The derivation rules are defined on MathLang
texts obtained after doing a flags flattening operation.

Functions.

We use in the set of derivation rules some specific functions. We only
describe these functions here rather than giving their full formal definitions.
* dvars returns the set of variables declared in a given context

(dvars : I' — p(V)).
* dconsg returns the set of defined constant in a given book. This excludes
local constants (dconsg : B — p(C)).

14

* dconsg returns the set of defined constant in a given block. This excludes
constants defined locally in inner blocks (dconsg : K — p(C)).

e inc(i, ¢, b) gives the type of the i argument of constant ¢ as defined in the
book b.

* inp(i,b,b) represents the type expected by the binder b.

» fvars returns the set of free variables of a given expression
(fvars : E — p(V)).

* casedconsg (resp. casedconsy) returns the set of constants defined by cases
in a given book (resp. block), excluding local definitions (casedconsg : B —
©(C) and casedconsg : K — p(C)).

* OK(b; 7) is an abbreviation for b ¢ Band b~y : I

Rules for expressions.

These rules assign a type to the expressions taken from the phrase and
the sentence levels. That is to say variable instances, constant calls, binding
expressions and adjective attributions. A special rule rec-cons allows calls to
annotated constant which is currently being defined (¢ with its input types
wt;). This rule allows recursive definitions of constants (see rules ruLL-pEF and
CASE-DEF-FIRST).

OK(b; v) v e VISP v € dvars(7)
b; yFuviT/S/P

VAR

OK(b; v) c € C/S/N/A/P
¢ € dconsg(b) Vie{l,...,n}, b; yF e ¢ inc(i,c,D)
b; vFcley,...,e,) s T/S/N/A/P

CONS

OK(b; v) c € CT/S/NAR

REC-CONS

OK(b; v) b c BY/S/M/A/P b; v,z el ing(b)
b; v b.(e) s T/S/N/A/P

BIND

b; yFe ¢ A b;yFey s N
b;*yl—eleQ:N

ATTR

Grouping rules. In the above rules; we use the symbol / to group similar
rules. For example the var rule is in place of three rules, the first of which is:

OK(b; v) veV? v € dvars(y)
b; yFvT

VAR-TERM

15

Typically, the rule var assigns the type corresponding to the variable’s gram-
matical category. The constant rules cons and rec-cons will do the same after
checking the coherence of the arguments’ typings with what the constant ex-
pects (the function ing gives the list of types of the constant’s parameters).
The BiND rule, in addition, introduces the new variable in the typing environ-
ment of the inner expression. The rule artr describes how to construct a new
noun by attributing an adjective to an existing noun.

Rules for contexts.

These rules check the coherence of contexts. The first one states that an
empty context is a valid context. The last one checks if an assumption in
the context is a well formed statement expression. The three remaining rules
correspond to the three constructions of variable introduction. The grammat-
ical category of the introduced variable must fit the kind of construction used:
either a set or a statement or a term.

Fb:B
b T

EMPTY-CONT

OK(b; v) veVs v & dvars(y)
bk~vy,v:SET: T

SET-VAR-DECL

OK(b; v) veVr? v & dvars(y)
bF,0:STAT: [

STAT-VAR-DECL

OK(b; v) veV? v ¢ dvars(y) b; vyFe:S/N
bFvyv:et D

TERM-VAR-DECL

OK(;vy) byykp:P
bFvype:l

ASSUMP

Rules for definitions.

There are two kinds of definitions in the abstract syntax with three typing
rules. First, we have a rule for the basic constant definition which provides a
unique expression as a value for the constant. Then there are two other rules
for the definitions by cases: one for the first (basic) case, the other for the
following cases and checks if the types of the constant’s arguments correspond
to those of the first case.

16

OK(b; 7)
c e CUSMAP ¢ dconsg(b) dvars(y) = U, u;
Vie{l,...,n}, v; e V¥ b wn et T/S/N/A/P

FULL-DEF
b; vFc(vy,...,u5):=e D

OK(b;) ¢ € CV/S/N/AR
¢ ¢ casedconsg(b) dvars(y) = Ul fvars(e;)
Vi € {1,...,n}, b; vFe;t wt
B ECutwtn sy e 3 T/S/N/A/P

b; vyFc(er,...,e,):=eD

CASE-DEF-FIRST

OK(b; v) ¢ € C1/s/n/a/p
¢ € casedconsg(b) dvars(y) = U} fvars(e;)
Vie{l,...,n}, b; yF e ¢ inc(i, ¢, b)
b;ykes T/S/N/A/P
b; vFc(er,...,e,):=e2D

CASE-DEF-ALTER

In rules ruLL-pEF and case-per-rFIRST, to allow recursive definitions, we are
annotating the environment (notation b™Cwtwtn) in which we will type the
body of the definition (expression e). This annotation contains the constant
currently defined and the types of its parameters. This information will be
kept in the environment to allow calls to this constant (see rule rec-cons).

Rules for blocks.

A block could either be empty, end with a line or end with a block. The
rules below describe how to build a block from an already well-formed one.
This is done by adding a line or a sub-block to the existing block.

Fb:B

——— EMPTY-BLOCK
bk 0k K

bFk:K bo{k},; yFp/d:P/D
bFkoy>p/d:K

LINE-IN-BLOCK

Fb:B
bFk:K {c,...,cn} Cdeonsg(k’) bo{k},FkK K

- BLOCK-IN-BLOCK
bFko{k}, . K

Rules for books.
The rules for books are similar to the rules for blocks while a book could
be seen as the outermost block.

17

Fb:B b;ykp/d:P/D
———— EMPTY-BOOK LINE-IN-BOOK
~0gtB Fbovyr>p/d:B

Fb:B {c1,...,¢,} C dconsg(k) bFk:K
l_ b © {k}cl,...,cn : B

BLOCK-IN-BOOK

4 Implementation

A main improvement of MathLang over MV and WTT is the implementation
we have made of a language checker which was fully guided by the translation
of the first chapter.

Concrete syntax

Our choice for the concrete syntax was to use XML recommendations. We
intend this XML syntax to be used only by the MathLang framework and by
software developers. The MathLang user, instead of using a concrete syntax,
will use a specific user-friendly editor (see Section 5). This choice has been
made to fit in our main requirement for a mathematical software which is to
be easy to use by mathematicians. By choosing a computer oriented syntax
we avoid the need of the user to learn a new specific syntax. This is avoided
by including MathLang in a common scientific text editor.

In MathLang’s concrete syntax, each occurrence of an identifier is com-
posed by its name and the grammatical category of which it is part. The
concrete syntax is then mainly verbose. This facilitates the checking and al-
lows local analysis of the typing. This duplication of information also eases
the design of software rendering and enforces the use of an editor rather than
allowing editing by hand.

The type checker

We have implemented a type checker that analyses a MathLang text by
applying the rules of the type system (see Section 3). This software has been
programmed using Camlp4 (parser part) and OCaml (type inference part).
This program checks the typing of a given MathLang document. If the typing
succeeds, the XML document is then considered as a well formed MathLang
book. Otherwise, if the document is not correctly formed, the checker will
point the syntax or type error that has been found. We have used our checker
during the translation of Landau’s first chapter.

Rendering
We apply syntactic transformations on MathLang texts in order to obtain
presentable versions of the XML concrete syntax. For this paper we have used

18

one XSL transformation that produces a XTEX document. We have automati-
cally generated the examples of Section 2.2 and the full translation of the first
chapter of [Lan51] using this transformation. This rendering is experimental.
It remains close to MV and WTT while also being clearer thanks to the flags
and blocks, and also to some syntactic sugaring (the grammatical category of
each identifier is not printed and we use common symbols to help the reader).
We explain our goals for MathLang rendering in Section 5.

Translation

In order to experiment with our language MathLang we have used in its
development, a translation of E. Landau’s Foundations of Analysis[Lan51].
Translating an existing mathematical text and checking the resulting Math-
Lang text with our software show the feasibility of such a mathematical encod-
ing. This experience demonstrates the usability of our language and guides
our research and development as closely as possible to effective mathemati-
cians’ writing habits. We have achieved so far the translation of the full first
chapter. This translation and the original text can be found in an appendix
to this article reachable at the authors’ web pages.

5 Related and Future work

M. Scheffer’s master thesis [Sch03] gives a translation of the same first chapter
of [Lan51] but in the original calculus WTT with sugared notation called
WTTg. The meta theory developed for WTT did not involve the syntactic
sugaring and we suspect that R. Korvers’ implementation of WTT (upon
which M. Scheffer’s encoding was based) did not involve the syntactic sugaring
either. This means that:

e There is a gap between the language used in M. Scheffer’s encoding and
the theory and its implementation. Our encoding on the other hand takes
place in a framework where there is a harmony between the language, its
metatheory and its implementation. We give the translation in MathLang,
an extended version of WT'T where much of the sugaring of WT'T is replaced
by first class status in MathLang. Furthermore, the implementation is that
of MathLang and hence we can guarantee the coherence of our encoded
texts. This would be hard to guarantee in M. Scheffer’s case since the
implementation is of WT'T whereas the encoding is in another language
WTTg.

* The rendering we automatically obtain from the encoding is closer to the
mathematicians’ text than that of Scheffer’s. This is since both the language
MathLang and its implementation contain flags and blocks.

* Moreover, references to lines, definitions and blocks make our encoding
closer to the mathematician’s intentions.

19

http://www.macs.hw.ac.uk/~mm20/papers/Kamareddine+Maarek+Wells:mkm_symposium-entcs-appendix-2004.ps.gz

As we said earlier, MathLang is still under development. We believe that
it is important that this development be guided by existing mathematical
texts and practice and that the encoding should be in the language under
development and not in syntactic sugaring versions of it. It is also important
that the metatheory and implementation be as faithful as possible to the
language itself.

M. Scheffer also discusses the step of moving from WTT into a more formal
language. Although this step is an important future direction, we believe that
first, a more stable language of mathematics needs to be found and extensively
tested before moving into higher levels of formalisation. Already, we have
developed many type theories with many of the features of Automath (e.g.,
explicit substitutions, parameters, definitions, local and/or global reductions,
notions of unification). These type theories will guide us into the more formal
levels of MathLang. But, to avoid the danger of creating “toy” levels of
formalisation, we need to have a good basis for the mathematical language
under development which can then lead us into more trustworthy formal levels.

There exist different frameworks for putting mathematics on the computer,
each with a particular aim: calculation, analysis, storage, visualization, check-
ing, etc. However, none of these frameworks is expressive enough to allow the
integration of many aims in one system. In [KWO01], we proposed to design
a language influenced by MV [Aut94] and WTT [KN04] and driven by the
encoding of three books: 1) the Landau’s Foundations of Analysis [Lan51]
since it was fully-formalised in Automath (and hence provides an excellent
basis for comparison), 2) the Elements of Euclid [Hea56] since it is known to
have many errors (and hence helps distinguish between logical and structural
correctness), and 3) The Compendium of Lattices [GHK'80] since 60% of it
has been formalised in Mizar. We have not yet tackled the third book. On
the other hand, work on Euclid’s book is under development by a student
for his degree project while work on Landau’s book has been in progress for
over a year now [Maa03], and we have already completed the translation of
the first chapter while building at the same time, a basis of a refined lan-
guage MathLang, its implementation and useful associated software packages.
The immediate future work on MathLang and its framework will follow three
directions strongly linked together.

» Specifications. The MathLang language is still in development. We need
to incorporate references in the MathLang syntax and to put the notion
of blocks into action by adding some constructions to enable us to derive
information about blocks. These extensions will always be made in parallel
with the guiding translation work. At every stage, we will make sure that
the metatheory is well developed and that the implementation is faithful to
the language.

e Translation. Continuing the translation of Landau’s book (and making
progress on the translation of Euclid’s book) is a main target to guide the

20

design of MathLang. This translation guides us as to how we should further
develop MathLang and enables us to build an implementation that is easy
to use which we can then pass for external feedbacks from mathematicians
or programmers as our future users.

* Framework. Because our language will be as exhaustive as possible in its
way to encode mathematical texts we will need to have a specific editor to as-
sist the mathematician. This editor should have a user friendly interface. It
should be able to print mathematical symbols on the screen. An integrated
checker should give instantaneous feedback about the type analysis of the
text. We have planned and started to use the What-You-See-Is-What-You-
Get editor TEX,,,s > for this development. TEX,,, . is an editor dedicated
to mathematical texts. It is mostly interactive and has been developed to
allow extensions. MathLang’s framework should assist mathematicians to
create new documents and to translate existing mathematical texts (such as
ITEX and OMDoc documents). For this second purpose we aim to develop
a tool to semi-automate the work of translation. The work described in the
article [BS03] is a good basis for this development. Y. Baba and M. Suzuki
present a grammatical analyser which extends its own grammatical rules
on the fly. After translating one sentence, the grammatical analyser will be
able to recognize the same kind of pattern used by the mathematician in
the rest of the text.

In addition to this discussed development of a language of mathematics
MathLang, we will also use earlier developments we made on extensions of
type systems (with notions like definitions, explicit substitutions, parameters
and higher order unification) in order to take our full encoding of Landau’s
book in MathLang into a fully formalised version which can then be compared
with the existing Automath formalisation. At each stage, we will be working
on general methods that can be applied to other books.

References

[MKMO03] Asperti, Buchberger and Davenport (Eds.). The Second International
Conference on Mathematical Knowledge Management, MKM 2003,
Bertinoro, Italy, February 16-18. Lecture Notes in Computer Science
2594, 2003.

[BS03] Yusuke Baba and Masakazu Suzuki. An annotated corpus and a
grammar model of theorem description. In [MKMO03], 2003.

[GHK*80] G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove, and
D. S. Scott. A Compendium of Continuous Lattices. Springer-Verlag,
1980.

[Heab6] Heath. The 13 Books of Euclid’s Elements. Dover, 1956.

2 http://www.texmacs.org/
21

http://www.texmacs.org/

[KNO04] Fairouz Kamareddine and Rob Nederpelt. A refinement of de Bruijn’s
formal language of mathematics. To appear in Journal of Logic,
Language and Information. 2004.

[Koh03] Michael Kohlhase. OMDoc: An Open Markup Format for Mathematical
Documents (Version 1.1). http://www.mathweb.org/omdoc, 2003.

[KWO01] Fairouz Kamareddine and Joe Wells. Promath: presenting, proving and
programming mathematical books. Revised under the title: MathLang,
A new language for Mathematics, Logic and Computation, August 2001.

[Lan30] Edmund Landau. Grundlagen der Analysis. Chelsea, 1930.

[Lan51] Edmund Landau. Foundations of Analysis. Chelsea, 1951. Translation
of [Lan30] by F. Steinhardt.

[Maa03] Manuel Maarek. First year PhD report. Technical report, Heriot-Watt
University, August 2003.

[Aut94] R.P. Nederpelt and J.H. Geuvers and R.C. de Vrijer (Eds.), Selected
papers on Automath, North-Holland, 1994.

[Sch03] Mark Scheffer. Formalizing Mathematics using Weak Type Theory.
Master’s thesis, Technische Universiteit Eindhoven, September 2003.

[vBJ77] L. S. van Benthem Jutting. Checking Landau’s “Grundlagen” in the
AUTOMATH system. PhD thesis, Eindhoven University of Technology,
1977. Mathematical Centre Tracts nr. 83, Math. Centre, Amsterdam
1979.

[Wie03] Freek Wiedijk. Comparing mathematical provers. In [MKMO03], 2003.

22

http://www.mathweb.org/omdoc

	Introduction
	Current situation of mathematics on computers
	Our Concerns
	From MV to WTT to MathLang

	Abstract syntax of MathLang
	Grammatical categories
	Grammatical levels

	The derivation rules of MathLang
	Implementation
	Related and Future work
	References
	References

