
Flexible Encoding of Mathematics on the Computer

Fairouz Kamareddine, Manuel Maarek, and J. B. Wells

Heriot-Watt University, http://www.macs.hw.ac.uk/ultra/

Abstract. This paper reports on refinements and extensions to the MathLang
framework that add substantial support for natural language text. We show how
the extended framework supports multiple views of mathematical texts, including
natural language views using the exact text that the mathematician wants to use.
Thus, MathLang now supports the ability to capture the essential mathematical
structure of mathematics written using natural language text. We show examples
of how arbitrary mathematical text can be encoded in MathLang without needing
to change any of the words or symbols of the texts or their order. In particular,
we show the encoding of a theorem and its proof that has been used by Wiedijk
for comparing many theorem prover representations of mathematics, namely the
irrationality of

√
2 (originally due to Pythagoras). We encode a 1960 version by

Hardy and Wright, and a more recent version by Barendregt.

1 On the way to a mathematical vernacular for computers

Mathematicians now use computer software for a variety of tasks: typing mathematical
texts, performing calculation, analyzing theories, verifying proofs. Software tools like
Mathematica have been refined through many years of development. Research in math-
ematics, logic, and computer science has led to computer algebra systems (CAS’s) and
theorem provers (TPs). Languages like OMDoc [21] show good promise of having a
universal way to share CAS and TP data in a mathematical software network [22].

Nevertheless, ordinary mathematicians stillwrite mathematical knowledge (MK)
using the traditionalcommon mathematical language(CML) and typesetting tools like
LATEX. CML is mature and capable for human communication of mathematics, but un-
fortunately is difficult to computerize in a way that captures its essential structure.

We believe this is largely because existing computer MK representations either fail
to capture the mathematical structure of natural language as used in mathematics or re-
quire writing in a rigid format [7]. Mathematical typesetting systems like LATEX fail to
capture the mathematical structure of both natural language text and symbolic formu-
las. Existing computer mathematics systems that capture mathematical structure either
(1) do so for symbolic formulas but not natural language sentences and phrases (e.g.,
OpenMath or computer algebra systems), (2) handle natural language text via very com-
plicated type systems (e.g., GF [17]), (3) require full formalization (e.g., Mizar [18] or
other proof systems), or (4) otherwise restrict mathematicians’ freedom to edit and dis-
play their texts in the form that best meets their needs and desires.

Theoretical approaches to this issue include De Bruijn’s Mathematical Vernacular
(MV) [2] and the recently developed Weak Type Theory (WTT) ofKamareddine and

Nederpelt [12], both of which strive toward a formalism thatcaptures the structure of
mathematical text while remaining close to the mathematician’s original text.

Carrying the work of MV and WTT forward, we have been buildingMathLang,
a framework for encoding mathematical texts on the computer. MathLang’s heart is
a formalism capturing the important mathematical structure of mathematical writing
while keeping the flexibility of the traditional common mathematical language (CML).
MathLang aims to interface computer mathematics systems with mathematicians.

MathLang analyses all mathematical texts into two interleaved parts, one for the nat-
ural language and one for the symbolic structure. The natural language part represents
the text as the mathematician expects to view it. The symbolic part is automatically
checked for structural correctness and contains enough semantic information to support
further automatic manipulation by other available computer mathematics tools.

MathLang’s design is constrained by the desire to balance the needs of ordinary
mathematicians in writing MK with the needs of automated computer manipulation of
MK. To support mathematicians, MathLang seeks to be (1)expressive, so it can handle
all kinds of mathematical mental constructs, (2)flexible, so that ordinary mathemati-
cians will not find it awkward to use, and (3)universal, so that it covers many branches
of mathematics and is adaptable to new ones. To support computer manipulation, Math-
Lang seeks to be (4) relativelyunambiguous, so that automated processing will often be
possible without human interaction, (5) sensiblyorganized, so that most desired ways of
browsing the data will not be difficult, and (6)automation-friendly, to facilitate further
more complex computations.

The language formalism of MathLang has three main features.(1) A symbolic
structure. MathLang encodes mathematical texts via a symbolic syntax.A small set of
grammatical constructions allows encoding the reasoning structure of texts. The sym-
bolic structure is helpful for further encodings and translations.(2) A CML layer. Math-
Lang can coat the symbolic structure of the text with naturallanguage information that
supports a CML view of the text, like the kind of visual output that could be generated
if it was written in LATEX, but also keeping the full underlying computerized structure.
(3) Automatic checking of basic grammatical conditions of the reasoning struc-
ture. MathLang encodes the reasoning structure of a texts. A set oftyping rules checks
basic grammatical conditions using weak types, thus validating the good formation of
the text at a grammatical level. It is very important that this checking does not require
full formalization or committing to any specific foundationof mathematics.

In earlier work [13], we introduced MathLang, defined its XML-based concrete
syntax, implemented a weak type checker, and tested the encoding of substantial real
mathematical documents. MathLang’s CML layer is new and is reported here for the first
time. MathLang’s symbolic structure and automated checking have had minor improve-
ments since first reported, mainly to better support the integration of natural language
text.

This article introduces MathLang’s CML support in the context of explaining how
the design of MathLang is evolving so that it can balance the needs both for the encoding
to easily support desired computations and for the representation to be close enough to
the thinking of the mathematician. Section 2 presents the MathLang philosophy while
the later sections explain the capabilities of MathLang viaexample encodings. Although

we are currently testing MathLang by encoding two large mathematical books [14,
10], this article presents encodings of shorter examples, fully developed in MathLang.
Section 3 presents an example (translated earlier into WTT)and shows its encoding in
MathLang via both the symbolic and CML views automatically derived by MathLang.
Section 4 presents a bigger example:Pythagoras’ proof of the irrationality of

√
2. We

chose this proof because it has been previously used by Wiedijk as auniversalexample
of proof encoding for theorem provers [19]. We encode two informal versions of this
proof in MathLang: an earlier one due to Hardy and Wright as well as a more explicit
(but still informal) one due to Barendregt. For all 3 exampleencodings presented in this
paper, the CML view illustrates that (unlike WTT) MathLang indeed preserves all the
original text, including the natural language part.

2 MathLang’s philosophy and evolving design

MathLang follows these goals:

1. Remain close to CML as used by mathematicians to write mathematics.
2. Act as a formal structured style which can be plugged into CAS’s, TPs and other

mathematical software systems.
3. Provide users of mathematics with much needed help in getting the original math-

ematical text into the computer by providing both a formal view of the text, and
a natural language view. The formal view of the text is exactly its symbolic part
and is passed to an automatic weak type checker which tests the structural validity
of the text. The natural language view is automatically generated from the formal
view and looks exactly like the original text.

We believe MathLang is the first framework which satisfies allthe goals above.
Some systems, Mizar [18] being the best example, have impressive libraries that show
that much mathematics can be computerized and formalized, but they are not yet widely
used by mathematicians. Abstract languages like MV and WTT are strongly based on
goal 1, but fall short on goals 2 and 3, because neither provides any computer help,
nor an automatic type checker to check the structural correctness of texts, nor is there
a method yet of taking the translation of an original text in MV or WTT and deriving
from the translation a text that looks exactly like the original one. Although MathLang
has a type system which is an extension of WTT with flags and blocks, it goes well
beyond MV and WTT by also working as a computer system which will communicate
with other computer systems via XML and XSLT and will offer the user software help.
Moreover, the merge between the abstract and the software could not have worked
well to provide a view that looks so much like the original text, without both (1) the
careful separation of texts into a natural language part anda formal part and (2) a careful
interleaving of both parts.

Below we describe the framework MathLang following its three main features listed
in section 1. We first describe the syntax and grammar of MathLang, then we describe
how the CML layer has been designed, then we explain the value that is added by Math-
Lang’s type system compared to a normal CML encoding.

2.1 The symbolic structure

The MathLang symbolic language [13] has a strict grammar that allows one to describe,
with a small set of constructions, any feature that composesthe reasoning content of a
mathematical text.

MathLang’s grammar. As in MV [2] and WTT [12], an entire MathLang document
is called abook. It is composed by a set of blocks, flags and lines. Blocks and flags
are themselves composed by sub-blocks, flags and lines. Ablockhighlights a piece
of text as a coherent entity. It could be a section, a proof or asubproof, an example or
any structure that the author wants to identify. Local constants are defined within a
block (see below for more explanation). Aflagdeclares variables (again, see below)
and makes assumptions that will hold on a piece of text. Aline is an atomic step
of reasoning. As in common mathematical texts, a line could either make a new
statement in the theory or define a new symbol (thesentence levelgroups these two
possible kinds of line). Books, blocks, flags and lines compose thediscourse level.
Four constructions are defined in MathLang to write expressions that will be the
material of assumptions, declarations, definitions and statements from the discourse
level. Avariable instancerefers to an already declared variable. Aconstant calluses
a defined constant by referring to its definition and, in the case of a parametrized
constant, by instantiating it.Bindingan expression and a new variable is also possible
with one of the many binders of the language. The last construction attributesan
adjective to a noun to refine its meaning (again, see in the following for explanation
on adjectives and nouns). These four constructions make up thephrase level
Symbols used in MathLang texts are used in theatomic level. They could be of three
kinds:variablesthat are an abstraction of a mathematical object,constantsthat are
parameterizable shortcuts for mathematical objects, andbinders.

Grammatical categories. Any construction of the phase level is part of a specific
grammatical category depending on the sort of the mathematical object described.
In an obvious sense it depends on the symbol used to constructthe expression in
question. There are five of them:termsfor elements designing a mathematical ob-
ject,setsfor sets of objects,nounsfor kinds of mathematical objects,adjectivesfor
elements that gives some attributes to a noun, andstatementsfor expression that are
considered as structurally valid statements. This grammatical information will be
used by the MathLang type system (see section 2.3).

Concrete syntax. Theconcrete syntaxof MathLang uses XML. XML-MathLang texts
have level-based structure and contain grammatical information for each symbol.

2.2 The CML layer

A MathLang author separates a CML -text into its natural language part and its symbolic
part, saving the natural language part for coating purposeslater, and translating the
symbolic part into XML-MathLang. This XML-MathLang text isthen passed into the
automatic type checker of the symbolic framework to test itsstructural well-formedness
(see section 2.3) and thus implicitly also the original text. Figure 1 informally compares
this encoding approach to others.
CML The overall document is in an informal encoding.

OMDoc’s approach A slightly formal structure (dashed triangle) covers the entire
document. CML texts are spread all around the document. OpenMath objects are
used for formal definitions (<FMP>tag). Informal definitions (<CMP>tag) are text
with embedded OpenMath formulas.

WTT The overall document is a formal encoding. Like N.G. de Bruijn’s MV and
Z. Luo and P. Callaghan’s Mathematical Vernacular [15], WTTis a theoretical lan-
guage and does not have any natural language representation.

MathLang’s approach A computerized structure covers the entire documents. Pieces
of CML transformation procedures are attached to nodes of the document’s skeleton.

TPs’ approach The document is a fully formal data. Usually, CML explanations are
separately given (dashed blobby shapes). The natural language is produced with
generic computations according to some structured text given by the programmer.
(We consider here the generation of natural language texts from Coq [3], the de-
sign of an electronic library of mathematics [4], the MoWGLIproject [5], work to
interface Coq with TEXMACS [8], and the documentation system of FoC [16].)

Figure 2 shows that the original CML text is first divided into a symbolic part and
a natural language part and that afterward, the full original text can be retrieved, as
well as a fully symbolic part which can be passed for further processing. We are cur-
rently using XSLT to express the transformations to CML . We are considering the use
of the Grammatical Framework [17] for its expressiveness asa replacement of XSL. A
possible intermediate stage from CML -texts to fully formalized texts (the “later compu-
tations” in figure 2) could be to use the Mathematical Proof Language [1], a language
between informal and formalized mathematics.

CML
MathLang's

approach
TPs'

approach
OMDoc's

approach
WTT's

approach

Fig. 1. Approaches. Informal data is represented by blobby shapes (). Computerized and more

formal data is represented by triangles ().

Rendering tools have been developed using XSLT to generate representations of
MathLang documents. All the examples of this article have been automatically gener-
ated using these tools which work as follows given an XML-MathLang text:
– Display the information in symbolic structural view.
– Display the information in CML form (if it contains a natural language coating).

CML MathLang
document

MathLang
formal structure

Later
computations

Similar

Translation
Automatic

computations

CML
produced

Fig. 2. Translation process

2.3 MathLang typing

From this grammatical information given in the writing downof MathLang document,
computerized analysis is possible. It gives some properties about the coherence of the
text. This is done by assigning weak types to each grammatical category and construc-
tion. This weak typing remains at a grammatical level. A typetheory could then be
used to check the text. If a book is considered as a valid book after typing, it means that
variables are well declared before being used and constantsare well used according to
their definitions. Because this analysis remains at a grammatical level, it therefore does
not deal with the logical truth or validity of the text.

We developed anautomatic weak type checkerwhich analyzes the coherence of
the XML-MathLang text. This automatic type checker, when given a text in XML-
MathLang, checks whether the reasoning structure of the text is valid or not. In the
latter case, an error message gives the reason of failure.

3 A working example

The translation of a mathematical text into a MathLang document is done by a human
assisted by a computer. The MathLang writer should have a mathematical background
to follow the reasoning of the mathematician author of the original text. Moreover, the
MathLang writer needs to have skills in computer science to encode the document into
the MathLang XML syntax. This last requirement would be avoided in the future by the
development of a dedicated editor for MathLang (see section5).

3.1 The translation process

Four actions compose the translation process of a CML text into MathLang with pre-
sentation directives. The first two are to be done by the MathLang user. They are repre-
sented by theTranslation arrow of figure 2. The last two are initiated by the user

and are automatically executed by MathLang’s framework. These are theAutomatic
computations of figure 2.

Translating. This is the main work done by the user: it reveals the reasoning structure
of the original text and encodes it into MathLang. These do not require more work
than a normal study of the text. The writer just needs to unfold implicit information
form his understanding of the CML text (see section 3.2).

Adding natural language. This is a crucial stage of the translation. It will not influ-
ence thedeepMathLang encoding of the text and so will not change its validity. But
it will make the MathLang document as readable as the original CML text. Because
this stage is independent from type checking, this information could be added during
the early translation of a piece of text or after the validating stage.

Type checking. This stage is an automatic computation. The MathLang framework
has a built in type checker which takes a MathLang XML document and checks its
structural validity. The type checking of a MathLang XML document returns true if
the program goes through the document without finding any problem. Otherwise the
MathLang type checker will point an element of the document where an error has
been found. The user will then need to fix it and recall the checker again.

Producing the CML output. This stage is again fully automatic. It uses several XSL
transformations to generate a CML text with colour annotations showing the weak
types in the document. This process takes into account the presentation information
given by the author to generate an output which is close to theoriginal CML text.

To illustrate the steps to be taken by a MathLang user, we willexplain the two first
stages with a concrete example. We give the original text to be encoded, a representation
of our MathLang encoding, and the CML output obtained from it. We use grey scale to
show the belonging of text parts to a grammatical category. This helps to show in the
CML MathLang output, the underlying structure of the MathLang encoding. Figure 4
contains the grey scale coding we are using in this paper.

We took our example from article [12]. By using the same example we aim to show
what improvements MathLang makes over WTT. WTT was a theory describing a type
system for the first level of formalization of mathematical texts. The language descrip-
tion was not precise enough to be used and no implementation of its ideas were avail-
able. MathLang reuses this type theory in its implementation. New constructions have
been added as explained in [13].

3.2 The example

Our example is a definition which defines thedifference quotientof a function, explains
what is adifferentiablefunction and then states that

√

|x| is not differentiable at0. The
original CML text is given by figure 3. Figure 5 shows our MathLang encodingand
figure 6 the output we get.

Translating. The original text is titled “Definition” and contains three steps. We
encode it by a block (with indices{1}) to reflect the grouping of the overall definition.
Then to each step corresponds one line. The first one (numbered 1) stands for the defi-
nition of the difference quotient and will be a definition line in MathLang. The second
(numbered 2) will again be a definition line defining a new notion: differentiable. The

Definition 1. Let h 6= 0, let f be a function fromA to R, a ∈ A and a + h ∈ A.
Then f(a+h)−f(a)

h
is the difference quotientof f in a with differenceh. We call f

differentiableat a if limh→0
f(a+h)−f(a)

h
exists. The function

p

|x| is not differentiable
at 0.

Fig. 3. Difference quotientexample: original text

T Terms S Sets N Nouns A Adjectives P StatementsZ Declarations

Γ Contexts L Lines F Flags K Blocks B Books

Fig. 4. Grey scale coding

{1}

A :SET , f : A → R , a : A

h : R , h 6= 0 , a + h : A

difference quotient (h , A , a , f) :=
f (a + h) − f (a)

h
(1)

differentiable (A , f , a) :=

∃ l : R , l = limit(0 , R , λ h : R difference quotient(h , A , a , f))

(2)

¬(differentiable(R , λ x : R

q

| x | , 0)) (3)

Fig. 5. Difference quotientexample: symbolic structural view of MathLang

Definition 1.

Let f be a function from A to R , a ∈ A .

Let h 6= 0 , a + h ∈ A .

Then

f (a + h) - f (a)

h

is the difference quotientof f in a with differenceh .

1

We call f differentiable at a

if lim
0 → h

f (a + h) − f (a)

h
exists . 2

The function

r

| x | is not differentiable at0 . 3

Fig. 6.Difference quotientexample: CML view of MathLang

last step (numbered 3) that establishes that
√

|x| is not differentiable at0 is encoded by
a statement line.

The definitions.In the text, we notice that both definitions have some elements in
common. They use the same setA, the same functionf and the same elementa of A.
These are variables. To put them in common in the MathLang document we use the flag
construction that introduces context elements for severallines. In our case three vari-
ables are declared for the first two lines. The first definitionalso requires the declaration
of the variableh together with two assumptions:h 6= 0 anda + h is in A.

We notice that the flag contains three elements. In the original text only four context
elements are visible (the first sentence of figure 3). The MathLang grammar forces one
to strictly declare any variable.A : SET that declares a set variableA is an example of
implicit declaration which is revealed by MathLang.

With these contexts enunciated, we give our two definitions.Here again some infor-
mation will become explicit. Constant parameters should correspond to the current set
of declared variables:h, A, a andf for the difference quotient andA, f anda for differ-
entiable notion. The first definition uses some constants that we consider to be defined
earlier on. The second definition uses the existential binder to state that a limit exists
and that its value is the limit of the differential quotient whenh tends towards0. Our
choice here was to reuse the constant previously defineddifference quotient
instead of writing again the equation.

The statement.The last line with an empty context states that the function
√

|x|
(encoded with theλ binder) is not differentiable at0. This expression uses the newly
defined constantdifferentiable .

Adding natural language.The block including the entire text is represented with
a definition LATEX environment. The sentence “Let1 , 2 .” stands for the flag of our
encoding where1 and 2 are the declarations off anda. An empty little box in figure 6
shows that an implicit declaration (the setA) took place. We do the same for the context
of line 1. The order of declarations and assumptions was changed from figure 3 to
figure 6 on purpose to show the boxes that correspond to the flagand to the context of
the first line. “Then1 is the 2 of 3 in 4 with difference 5 ” is the template for our
first definition. 1 being the expression of the definition,2 the constant’s name,3 the
constant’s fourth parameter,4 the third one and5 the first one.

These associations that link one construction of the language to a natural language
template could either be defined globally or locally to the document. One association
could be reused at different positions. They are defined using XSL with some Math-
Lang specific commands to easily refer to the information contained in the encoding.
For example a unique command is used to colour the pieces of text according to their
grammatical categories. For example, the presentation information for the line num-
bered 1 is as follow.

<template output="cml.tex" kind="xsl">
<categ kind="par" boxed="no">
<xsl:apply-templates select="context"/>
<xsl:text>Then </xsl:text>
<xsl:apply-templates select="expression"/>
<xsl:text> is the </xsl:text>
<xsl:apply-templates select="constant"/>
<xsl:text> of </xsl:text>
<xsl:apply-templates select="parameters[4]"/>
<xsl:text> in </xsl:text>
<xsl:apply-templates select="parameters[3]"/>
<xsl:text> with difference </xsl:text>
<xsl:apply-templates select="parameters[1]"/>
<number/>

</categ>
</template>

This information is a mix of XSL standard elements and MathLang specific ones. A first
process will transform all these presentation data that coat the document to produce one
single XSL file specific to the document in question. The second process simply consists
of applying these transformation to the document itself.

4 Pythagoras’ proof of irrationality of
√

2

In this section we give the CML -MathLang view of two versions ofPythagoras’ proof
of the irrationality of

√
2. We chose this proof because it has been previously used by

Wiedijk as auniversalexample of proof encoding for theorem provers [19, 20]. Both
original versions are included in [19]. The first one is an informal version written by
G. H. Hardy and E. M. Wright (see figure 7). Section 4.1 is the CML view of our
translation into MathLang. The second one is a more explicitproof written by Henk
Barendregt. We give the CML view of our MathLang translation in section 4.2.

Theorem 1 (Pythagoras’ Theorem).
√

2 is irrational.

Proof. If
√

2 is rational, then the equation

a
2 = 2b

2

is soluble in integersa, b with (a, b) = 1. Hencea2 is even, and thereforea
is even. Ifa = 2c, then4c2 = 2b2, 2c2 = b2, andb is also even, contrary to
the hypothesis that(a, b) = 1.

Fig. 7. Proof of the irrationality of
√

2

4.1 The informal proof of Hardy and Wright

Theorem 1 (Pythagoras’ Theorem).
√

2 is irrational . 1

Proof. The traditional proof ascribed to Pythagoras runs as follows.

If
√

2 is rational with (a , b) = 1 , then

the equation a
2

= 2 ∗ b
2

is soluble . 2

Hence a
2

is even , 3

and therefore a is even . 4

If a = 2 ∗ c , then

4 ∗ c
2

= 2 ∗ b
2

, 5

2 ∗ c
2

= b
2

, 6

and b is also even , 7

8

contrary to the hypothesis that(a , b) = 1 . 9

QED. 10

4.2 A more explicit informal proof by Barendregt

Lemma 1. For m , n ∈ N one has m
2

= 2 n
2 ⇒ m = n = 0 . 1

Proof. 1.1

Define onN the predicateP(m) ⇔ ∃ n . m
2

= n
2

& m > 0 . 2

Claim: P(m) ⇒ ∃ m’ < m . P(m’) . 3

Indeed suppose m 2
= 2 n 2 and m > 0 . It follows that m 2 is even , 4

but then m must be even , as odds square to odds. 5

So m = 2 k 6 and we have 2 n
2

= m
2

= 4 k
2

7

⇒ n
2

= 2 k
2

8

Since m > 0 ,it follows that m
2

> 0 , 9 n
2

> 0 10

and n > 0 . 11 ThereforeP(n) . 12 Moreover m
2

= n
2

+ n
2

13

> n
2

14 so m
2

> n
2

15 and hence m > n . 16

So we can takem’ = n . 17

By the claim ∀ m ∈ N . ¬ P(m) since

there are noinfinite descendingsequences ofnatural numbers . 18

Now suppose m
2

= 2 n
2

with m 6= 0 . Then m > 0 19

and henceP(m) . 20 Contradiction. 21 Therefore m = 0 . 22

But then also n = 0 . 23

24

Corollary 1.
√

2 6∈ Q 25

Proof. 1.2

Suppose
√

2 ∈ Q , i.e.
√

2 =
p

q
with p ∈ Z , q ∈ Z − { 0 } .

Then
√

2 =
m

n
26 , with m = | p | , n = | q | 6= 0 .

It follows that m
2

= 2 n
2

. 27 But then n = 0 by the lemma . 28

Contradiction 29

shows that
√

2 6∈ Q . 30

4.3 Discussions

More or less explicit texts.The small set of grammatical constructions of MathLang
gives all the material needed to express reasoning of different levels of precision. Both
versions given here follow the same kind of structures in their demonstrations. Small
steps leading to bigger ones. New statements in a certain context and definitions of new
symbols. This is what MathLang is designed for: encoding these simple demonstra-
tion constructions into a structured document that eases computation. In both cases the
MathLang encoding follows the reasoning structure of the text. Simple transformation
procedures are then given to get the original text in return.These two versions of the
same proof show the expressiveness of MathLang: we have usedthe same language to
write a non precise proof as well as a fully explicit one. Fromthis encoding of the proof
in MathLang we get both the original text and the computerized document.

Moving from MathLang to other encodings.As we said before, the symbolic structure
of MathLang texts eases both the automatic computations on the text and further trans-
lations to other languages. To illustrate this we have translated Barendregt’s version of
the proof into OMDoc/OpenMath.

The translation process is the same as the one carried out to obtain the CML view of
MathLang documents. We spread the document with transformation information. This
led to a big program that transforms automatically the MathLang document into OM-
Doc/OpenMath. In this transformation<CMP>(informal) and<FMP>(formal) OM-
Doc’s tags could easily be informed. The first one using the same process as the one
carried out to obtain a CML view of the MathLang text. The second one by using the
symbolic structure to obtain OpenMath formulas. The third part of this translation con-
sists in mapping the MathLang basic structures into OMDoc constructions.

For example, our MathLang translation of Barendregt’s version of the proof consists
of one line followed by one block, one line and one block. The first line being the
definition of the lemma, the first block its proof, the second line (numbered 25) is the
definition of the corollary and the second block its proof. InOMDoc the lines 1 and 25
are<assertions> and the blocks are<proof> . The predicateP defined in the
proof of the lemma (line 2) is a symbol definition (<symbol>) in the overall proof
(<theory> in OMDoc,book in MathLang).

We compared this translation, that leads from a CML text to an OMDoc document
via a MathLang document, to a direct translation from CML to OMDoc. The direct
translation seems to be quicker but the one via MathLang has three advantages.

– The MathLang document is checked by the MathLang weak type checking. This
validates the good formation of the structure of the document. Such an analysis does
not exist for OMDoc and OpenMath.

– OMDoc has a formal (<FMP>) and an informal (CMP) tag for data. There are no
requirements in OMDoc to have them both informed. The computerisable content of
an OMDoc document depends on the author. In MathLang the mainskeleton of the
document fully uses symbols (similar to OMDoc’s formal data), the natural language
is added on top of this structured content. A MathLang-text always provides aformal
content that could be forgotten in OMDoc.

– This structured content is encoded using a small set of MathLang constructions.
These simple grammatical constructions guide the author inthe translation process.
It is then easier with this guiding process to obtain well structured OMDoc formal
data by translating first into MathLang than directly into OMDoc.

5 Future works

We described in this paper how we encode mathematics using MathLang and how we
produce a CML view of this encoding. Our main future work is to ease the input of data
inside the MathLang framework. Currently one requires skills in computer science to
write a MathLang document. We are currently developing a user interface for MathLang
based on the scientific editor TEXMACS .

As we said earlier in this paper we are starting and planing toextend the current
language and framework. We aim to do it by making a use of the Grammatical Frame-
work of A. Ranta and by moving to a second level of MathLang encoding which will
include more logic and semantic.

6 Conclusion

By providing at the same time a computable encoding and a simple structure to produce
readable output, our language MathLang tries to fill the gap between printed mathemat-
ical texts and mathematical softwares. The main problem mathematicians face when
using formal systems is that it is very difficult, even for an expert, to find her way in a
formal proof written by someone else. As described in this article, our system provides
a direct correspondence between a symbolic structure and a CML view of a text. The

original mathematical document is wisely partitioned between a natural language part
and a symbolic part. The symbolic part can be used in more formal computations on the
original text. This is how we imagine what could be thenew mathematical vernacular
for computers.

References

1. Barendregt, H.: Towards an Interactive Mathematical Proof Mode. In Thirty Five Years of
Automating Mathematics, Kamareddine, Editor, Kluwer Applied Logic28, (2003).

2. de Bruijn, N.G.: The Mathematical Vernacular, a languagefor mathematics with typed sets.
Workshop on Programming Logic (1987).

3. Coscoy, Y.: A Natural Language Explanation for Formal Proofs. LACL (1996).
4. Asperti, A., Padovani, L., Sacerdoti Coen, C., Guidi, F.,Schena, I.: Mathematical Knowledge

Management in HELM. AMAI38(1-3), 27–46, (2003).
5. Mathematics On the Web: Get it by Logic and Interfaces (MOWGLI). http://www.
mowgli.cs.unibo.it/

6. Davenport, J.H.: MKM from Book to Computer: A Case Study. LNCS2594, 17–29 (2003).
7. Théry, L.: Formal Proof Authoring: an Experiment. UITP (2003).
8. Audebaud, P., Rideau, L.: TEXMACS as Authoring Tool for Publication and Dissemination of

Formal Developments. UITP (2003).
9. Deach, S.: Extensible Stylesheet Language (XSL) Recommendation. World Wide Web Con-

sortium (1999),http://www.w3.org/TR/xslt .
10. Heath: The 13 Books of Euclid’s Elements. Dover (1956).
11. Heijenoort (van), ed.: From Frege to Gödel: A Source Book in Mathematical Logic, 1879–

1931, Harvard University Press (1967).
12. Kamareddine, F., Nederpelt, R.: A refinement of de Bruijn’s formal language of mathematics.

Journal of Logic, Language and Information13(3), 287–340, (2004).
13. Kamareddine, F., Maarek, M., Wells, J.B.: MathLang: Experience-driven Development of a

New Mathematical Language. ENTCS93, 138–160, (2004).
14. Landau, E.: Foundations of Analysis. Chelsea (1951).
15. Luo, Z., Callaghan, P.: Mathematical vernacular and conceptual well-formedness in mathe-

matical language. LNCS/LNAI1582(1999).
16. Maarek, M., Prevosto, V.: FoCDoc: The documentation system of FoC. Calculemus (2003).
17. Ranta., A.: Grammatical Framework: A Type-TheoreticalGrammar Formalism. Journal of

Functional Programming (2003).
18. Rudnicki, P., Trybulec, A.: On Equivalents of Well-foundedness. Journal of Automated Rea-

soning23, 197–234, (1999).
19. Wiedijk, F.: The Fifteen Provers of the World. University of Nijmegen.
20. Wiedijk, F.: Comparing Mathematical Provers. LNCS2594, 188–202, (2003).
21. Kohlhase, M.: OMDoc: An Open Markup Format for Mathematical Documents (Version

1.1). Technical report (2003).
22. Zimmer, J., Kohlhase, M.: System Description: The MathWeb Software Bus for Distributed

Mathematical Reasoning. LNCS2392(2002).

