Flexible Encoding of Mathematics on the Computer

Fairouz Kamareddine, Manuel Maarek, and J. B. Wells

Heriot-Watt University, http://www.macs.hw.ac.uk/ultra/

Abstract. This paper reports on refinements and extensions to the MathL
framework that add substantial support for natural languagt. We show how
the extended framework supports multiple views of mathaaktexts, including
natural language views using the exact text that the matti@arawants to use.
Thus, MathLang now supports the ability to capture the eidenathematical
structure of mathematics written using natural language e show examples
of how arbitrary mathematical text can be encoded in Matighaithout needing
to change any of the words or symbols of the texts or theirrotdeparticular,
we show the encoding of a theorem and its proof that has beshhysWiedijk
for comparing many theorem prover representations of madkies, namely the
irrationality of /2 (originally due to Pythagoras). We encode a 1960 version by
Hardy and Wright, and a more recent version by Barendregt.

1 Onthe way to a mathematical vernacular for computers

Mathematicians now use computer software for a varietysidatyping mathematical
texts, performing calculation, analyzing theories, weni§ proofs. Software tools like
Mathematica have been refined through many years of developResearch in math-
ematics, logic, and computer science has led to computebedgystems (CAS’s) and
theorem provers (TPs). Languages like OMDoc [21] show gaodhise of having a

universal way to share CAS and TP data in a mathematical adtnetwork [22].

Nevertheless, ordinary mathematicians stitite mathematical knowledge (MK)
using the traditionatommon mathematical langua¢@mL) and typesetting tools like
IATEX. CML is mature and capable for human communication of mathesydtig un-
fortunately is difficult to computerize in a way that captuits essential structure.

We believe this is largely because existing computer MKe&sentations either fail
to capture the mathematical structure of natural languagesad in mathematics or re-
quire writing in a rigid format [7]. Mathematical typeseitj systems likeALEX fail to
capture the mathematical structure of both natural langtext and symbolic formu-
las. Existing computer mathematics systems that captutieemetical structure either
(1) do so for symbolic formulas but not natural languageeseres and phrases (e.g.,
OpenMath or computer algebra systems), (2) handle naaurgliage text via very com-
plicated type systems (e.g., GF [17]), (3) require full fatipation (e.g., Mizar [18] or
other proof systems), or (4) otherwise restrict matheraat& freedom to edit and dis-
play their texts in the form that best meets their needs asuete

Theoretical approaches to this issue include De Bruijn’shdaatical Vernacular
(MV) [2] and the recently developed Weak Type Theory (WTTKamareddine and

Nederpelt [12], both of which strive toward a formalism tleaptures the structure of
mathematical text while remaining close to the mathenetisioriginal text.

Carrying the work of MV and WTT forward, we have been buildiMgthLang,

a framework for encoding mathematical texts on the compiathLang’s heart is
a formalism capturing the important mathematical struetlfr mathematical writing
while keeping the flexibility of the traditional common mathatical language (@L).
MathLang aims to interface computer mathematics systetismathematicians.

MathLang analyses all mathematical texts into two interelparts, one for the nat-
ural language and one for the symbolic structure. The nldtamguage part represents
the text as the mathematician expects to view it. The syrohudit is automatically
checked for structural correctness and contains enougargenmformation to support
further automatic manipulation by other available compuotathematics tools.

MathLang’s design is constrained by the desire to balaneentfeds of ordinary
mathematicians in writing MK with the needs of automated patar manipulation of
MK. To support mathematicians, MathLang seeks to bexpyessiveso it can handle
all kinds of mathematical mental constructs, {&kible so that ordinary mathemati-
cians will not find it awkward to use, and (Bhiversa) so that it covers many branches
of mathematics and is adaptable to new ones. To support dempanipulation, Math-
Lang seeks to be (4) relativelynambiguousso that automated processing will often be
possible without human interaction, (5) sensibiganizedso that most desired ways of
browsing the data will not be difficult, and (&utomation-friendlyto facilitate further
more complex computations.

The language formalism of MathLang has three main featyfi§sA symbolic
structure. MathLang encodes mathematical texts via a symbolic sy@tamall set of
grammatical constructions allows encoding the reasortiugtsire of texts. The sym-
bolic structure is helpful for further encodings and tratisins.(2) A CmL layer. Math-
Lang can coat the symbolic structure of the text with natlaraguage information that
supports a ®@L view of the text, like the kind of visual output that could bengrated
if it was written in BTpX, but also keeping the full underlying computerized stinet
(3) Automatic checking of basic grammatical conditions of he reasoning struc-
ture. MathLang encodes the reasoning structure of a texts. A dgpofg rules checks
basic grammatical conditions using weak types, thus vitigahe good formation of
the text at a grammatical level. It is very important thasttiecking does not require
full formalization or committing to any specific foundatiohmathematics.

In earlier work [13], we introduced MathLang, defined its XNbdlased concrete
syntax, implemented a weak type checker, and tested thelengcof substantial real
mathematical documents. MathLang'siClayer is new and is reported here for the first
time. MathLang’s symbolic structure and automated charhave had minor improve-
ments since first reported, mainly to better support thegnatigon of natural language
text.

This article introduces MathLang’'sM@. support in the context of explaining how
the design of MathLang is evolving so that it can balance #egls both for the encoding
to easily support desired computations and for the reptagen to be close enough to
the thinking of the mathematician. Section 2 presents théhMang philosophy while
the later sections explain the capabilities of MathLangexample encodings. Although

we are currently testing MathLang by encoding two large madtical books [14,
10], this article presents encodings of shorter exampldly, developed in MathLang.
Section 3 presents an example (translated earlier into Vefd)shows its encoding in
MathLang via both the symbolic andMC views automatically derived by MathLang.
Section 4 presents a bigger exampigthagoras’ proof of the irrationality of/2. We
chose this proof because it has been previously used by Weeslauniversalexample
of proof encoding for theorem provers [19]. We encode tworiimfal versions of this
proof in MathLang: an earlier one due to Hardy and Wright aBl asea more explicit
(but still informal) one due to Barendregt. For all 3 examgiieodings presented in this
paper, the @L view illustrates that (unlike WTT) MathLang indeed pres=all the
original text, including the natural language part.

2 MathLang’s philosophy and evolving design

MathLang follows these goals:

1. Remain close to BL as used by mathematicians to write mathematics.

2. Act as a formal structured style which can be plugged il&&§, TPs and other
mathematical software systems.

3. Provide users of mathematics with much needed help ingette original math-
ematical text into the computer by providing both a formawiof the text, and
a natural language view. The formal view of the text is exaiti symbolic part
and is passed to an automatic weak type checker which tessdrtictural validity
of the text. The natural language view is automatically gateel from the formal
view and looks exactly like the original text.

We believe MathLang is the first framework which satisfiestladl goals above.
Some systems, Mizar [18] being the best example, have irsipeekbraries that show
that much mathematics can be computerized and formalip¢théy are not yet widely
used by mathematicians. Abstract languages like MV and WETsarongly based on
goal 1, but fall short on goals 2 and 3, because neither pesvichy computer help,
nor an automatic type checker to check the structural coress of texts, nor is there
a method yet of taking the translation of an original text it r WTT and deriving
from the translation a text that looks exactly like the anagione. Although MathLang
has a type system which is an extension of WTT with flags andkslait goes well
beyond MV and WTT by also working as a computer system whidhowmmunicate
with other computer systems via XML and XSLT and will offeethser software help.
Moreover, the merge between the abstract and the software cot have worked
well to provide a view that looks so much like the originalttexithout both (1) the
careful separation of texts into a natural language paradodnal part and (2) a careful
interleaving of both parts.

Below we describe the framework MathLang following its #areain features listed
in section 1. We first describe the syntax and grammar of Matll_then we describe
how the GaL layer has been designed, then we explain the value that &ldiidMath-
Lang'’s type system compared to a normadiCencoding.

2.1 The symbolic structure

The MathLang symbolic language [13] has a strict grammaih@vs one to describe,
with a small set of constructions, any feature that comptisegeasoning content of a
mathematical text.

MathLang’s grammar. Asin MV [2] and WTT [12], an entire MathLang document
is called abook It is composed by a set of blocks, flags and lines. Blocks ag$fl
are themselves composed by sub-blocks, flags and linbodk highlights a piece
of text as a coherent entity. It could be a section, a proofsutgproof, an example or
any structure that the author wants to identify. Local cantst are defined within a
block (see below for more explanation) flag declares variables (again, see below)
and makes assumptions that will hold on a piece of texlinA is an atomic step
of reasoning. As in common mathematical texts, a line coitltee make a new
statement in the theory or define a new symbol @betence levajroups these two
possible kinds of line). Books, blocks, flags and lines cosetbediscourse level
Four constructions are defined in MathLang to write expoessihat will be the
material of assumptions, declarations, definitions anestants from the discourse
level. Avariable instanceefers to an already declared variablecénstant caluses
a defined constant by referring to its definition and, in theecaf a parametrized
constant, by instantiating Bindingan expression and a new variable is also possible
with one of the many binders of the language. The last cocstruattributesan
adjective to a noun to refine its meaning (again, see in theWaig for explanation
on adjectives and nouns). These four constructions makieaphtase level
Symbols used in MathLang texts are used inatamic level They could be of three
kinds:variablesthat are an abstraction of a mathematical objeatstantghat are
parameterizable shortcuts for mathematical objectsbamnders

Grammatical categories. Any construction of the phase level is part of a specific
grammatical category depending on the sort of the matheaiatbject described.
In an obvious sense it depends on the symbol used to confitieietxpression in
question. There are five of therermsfor elements designing a mathematical ob-
ject, setsfor sets of objectspounsfor kinds of mathematical objectadjectivesor
elements that gives some attributes to a noun saatgmentfor expression that are
considered as structurally valid statements. This grancadahformation will be
used by the MathLang type system (see section 2.3).

Concrete syntax. Theconcrete syntagf MathLang uses XML. XML-MathLang texts
have level-based structure and contain grammatical irdiion for each symbol.

2.2 The QuL layer

A MathLang author separates a1C-text into its natural language part and its symbolic
part, saving the natural language part for coating purptaes, and translating the
symbolic part into XML-MathLang. This XML-MathLang text then passed into the
automatic type checker of the symbolic framework to testitsctural well-formedness
(see section 2.3) and thus implicitly also the original t€igure 1 informally compares
this encoding approach to others.

CMmL The overall documentis in an informal encoding.

OMDoc'’s approach A slightly formal structure (dashed triangle) covers théiren
document. @iL texts are spread all around the document. OpenMath objeets a
used for formal definitions{FMP>tag). Informal definitions{CMP>tag) are text
with embedded OpenMath formulas.

WTT The overall document is a formal encoding. Like N.G. de BraijMV and
Z. Luo and P. Callaghan’s Mathematical Vernacular [15], W3 & theoretical lan-
guage and does not have any natural language representation

MathLang’s approach A computerized structure covers the entire documentseRiec
of CML transformation procedures are attached to nodes of thentr's skeleton.

TPs’ approach The document is a fully formal data. UsuallymC explanations are
separately given (dashed blobby shapes). The natural dgegis produced with
generic computations according to some structured texngby the programmer.
(We consider here the generation of natural language texis €oq [3], the de-
sign of an electronic library of mathematics [4], the MoWGirbject [5], work to
interface Coq with §X,,,.s [8], and the documentation system of FoC [16].)

Figure 2 shows that the originalMZ text is first divided into a symbolic part and
a natural language part and that afterward, the full origieet can be retrieved, as
well as a fully symbolic part which can be passed for furth@rcpssing. We are cur-
rently using XSLT to express the transformations taLCWe are considering the use
of the Grammatical Framework [17] for its expressiveness @placement of XSL. A
possible intermediate stage fronmC-texts to fully formalized texts (the “later compu-
tations” in figure 2) could be to use the Mathematical Proafduage [1], a language
between informal and formalized mathematics.

AR SHA

OMDoc's WTT's MathLang's TPS'
CML approach approach approach approach

Fig. 1. Approaches. Informal data is represented by blobby sh@¢s£?(omputerized and more
formal data is represented by trianglé' (

Rendering tools have been developed using XSLT to genesptesentations of
MathLang documents. All the examples of this article havenb@utomatically gener-
ated using these tools which work as follows given an XML-Maing text:

— Display the information in symbolic structural view.
— Display the information in @L form (if it contains a natural language coating).

Similar
—_— -
- ~~

- ~
7
/7
CML
Translation . produced
—_— > Automatic
computations
MathLang
M- document 0 0N / \ -e---- >

------ > Later
______ > computations

MathLang
formal structure

Fig. 2. Translation process

2.3 MathLang typing

From this grammatical information given in the writing do@hMathLang document,
computerized analysis is possible. It gives some proeati®ut the coherence of the
text. This is done by assigning weak types to each gramnhatitagory and construc-
tion. This weak typing remains at a grammatical level. A tyipeory could then be
used to check the text. If a book is considered as a valid bfiektgping, it means that
variables are well declared before being used and consteamisell used according to
their definitions. Because this analysis remains at a graioahéevel, it therefore does
not deal with the logical truth or validity of the text.

We developed amutomatic weak type checkarhich analyzes the coherence of
the XML-MathLang text. This automatic type checker, whewegi a text in XML-
MathLang, checks whether the reasoning structure of thieigevalid or not. In the
latter case, an error message gives the reason of failure.

3 A working example

The translation of a mathematical text into a MathLang doewninis done by a human
assisted by a computer. The MathLang writer should have henatical background
to follow the reasoning of the mathematician author of thigioal text. Moreover, the
MathLang writer needs to have skills in computer sciencentmde the document into
the MathLang XML syntax. This last requirement would be deaiin the future by the
development of a dedicated editor for MathLang (see se&jon

3.1 The translation process

Four actions compose the translation process of4a @xt into MathLang with pre-
sentation directives. The first two are to be done by the Matigluser. They are repre-
sented by th@ranslation arrow of figure 2. The last two are initiated by the user

and are automatically executed by MathLang’s frameworlesehare théutomatic
computations of figure 2.

Translating. This is the main work done by the user: it reveals the reagmstiucture
of the original text and encodes it into MathLang. These doraguire more work
than a normal study of the text. The writer just needs to uhifoiplicit information
form his understanding of then@ text (see section 3.2).

Adding natural language. This is a crucial stage of the translation. It will not influ-
ence theleepMathLang encoding of the text and so will not change its wglidut
it will make the MathLang document as readable as the otligina. text. Because
this stage is independent from type checking, this inforomatould be added during
the early translation of a piece of text or after the validgstage.

Type checking. This stage is an automatic computation. The MathLang fraonlew
has a built in type checker which takes a MathLang XML docurnaei checks its
structural validity. The type checking of a MathLang XML dmgent returns true if
the program goes through the document without finding anglpro. Otherwise the
MathLang type checker will point an element of the documenérg an error has
been found. The user will then need to fix it and recall the kbeagain.

Producing the CMmL output. This stage is again fully automatic. It uses several XSL
transformations to generate a1C text with colour annotations showing the weak
types in the document. This process takes into account #eeptation information
given by the author to generate an output which is close totiginal CvL text.

To illustrate the steps to be taken by a MathLang user, weexglain the two first
stages with a concrete example. We give the original tex¢ erftoded, a representation
of our MathLang encoding, and thevC output obtained from it. We use grey scale to
show the belonging of text parts to a grammatical categdrmis fielps to show in the
CML MathLang output, the underlying structure of the MathLangasgling. Figure 4
contains the grey scale coding we are using in this paper.

We took our example from article [12]. By using the same exam aim to show
what improvements MathLang makes over WTT. WTT was a theesgibing a type
system for the first level of formalization of mathematialts. The language descrip-
tion was not precise enough to be used and no implementdtitsmideas were avail-
able. MathLang reuses this type theory in its implementatidew constructions have
been added as explained in [13].

3.2 The example

Our example is a definition which defines tiéerence quotientf a function, explains
what is adifferentiablefunction and then states thgf|z| is not differentiable ab. The
original CmL text is given by figure 3. Figure 5 shows our MathLang encodind
figure 6 the output we get.

Translating. The original text is titled “Definition” and contains threteps. We
encode it by a block (with indicegl}) to reflect the grouping of the overall definition.
Then to each step corresponds one line. The first one (nuchbgetands for the defi-
nition of the difference quotient and will be a definitiondim MathLang. The second
(numbered 2) will again be a definition line defining a new olotidifferentiable. The

Definition 1. Leth # 0, let f be a function fromAtoR, a € A anda + h € A.
Then w is the difference quotienof f in a with differenceh. We call f
differentiableat a if limy, .o L2 =1(2) exists. The function/|z] is not differentiable
at0.

Fig. 3. Difference quotienexample: original text

[Termd IS8 [WINGURS [KAdjecived [P Statements Declaration}
[Contex3[Eilines] | Flags ISIGEKS [E1866kS

Fig. 4. Grey scale coding

Fig. 5. Difference quotienexample: symbolic structural view of MathLang

Let. h #0/, @+ <.

aierence quotieol / il «

differentiableat o

£ (@ [n])

The function is not differentiable a 0

Fig. 6. Difference quotienexample: GiL view of MathLang

last step (numbered 3) that establishes W is not differentiable af is encoded by
a statement line.

The definitionsin the text, we notice that both definitions have some elemient
common. They use the same gktthe same functiorf and the same elemeatof A.
These are variables. To put them in common in the MathLangmeat we use the flag
construction that introduces context elements for seViras. In our case three vari-
ables are declared for the first two lines. The first definititso requires the declaration
of the variableh together with two assumptions:=# 0 anda + h is in A.

We notice that the flag contains three elements. In the @iggxt only four context
elements are visible (the first sentence of figure 3). The Mat grammar forces one
to strictly declare any variablel : SET that declares a set variabfeis an example of
implicit declaration which is revealed by MathLang.

With these contexts enunciated, we give our two definitiblese again some infor-
mation will become explicit. Constant parameters shouldespond to the current set
of declared variableg:, A, « andf for the difference quotient and, f anda for differ-
entiable notion. The first definition uses some constantanbkaconsider to be defined
earlier on. The second definition uses the existential bitmletate that a limit exists
and that its value is the limit of the differential quotientbh@&n’ tends toward$. Our
choice here was to reuse the constant previously defiifeetence quotient
instead of writing again the equation.

The statemenfThe last line with an empty context states that the func\i;:’)ﬁ
(encoded with the\ binder) is not differentiable d. This expression uses the newly
defined constardifferentiable

Adding natural language. The block including the entire text is represented with
a definition £TEX environment. The sentence “LEt], [2]” stands for the flag of our
encoding wherEl|and 2] are the declarations gfanda. An empty little box in figure 6
shows that an implicit declaration (the sEttook place. We do the same for the context
of line 1. The order of declarations and assumptions wasgdthfrom figure 3 to
figure 6 on purpose to show the boxes that correspond to thariddo the context of
the first line. “Ther]1] is the[2] of [3]in [4] with differencd5]" is the template for our
first definition,1] being the expression of the definiti}@] the constant's namgg| the
constant’s fourth parametgd) the third one an{b] the first one.

These associations that link one construction of the laggta a natural language
template could either be defined globally or locally to theuwtnent. One association
could be reused at different positions. They are definedgusBL with some Math-
Lang specific commands to easily refer to the informatiornt@ioed in the encoding.
For example a uniqgue command is used to colour the piecestodideording to their
grammatical categories. For example, the presentatiannrdtion for the line num-
bered 1 is as follow.

<template out put="cnl .tex" kind="xsl">
<cat eg ki nd="par" boxed="no">
<xsl :appl y-tenpl ates sel ect ="context"/>
<xsl:text>Then </xsl:text>
<xsl : appl y-tenpl ates sel ect ="expression"/>
<xsl:text>is the </xsl:text>
<xsl : appl y-tenpl ates sel ect ="constant"/>
<xsl:text> of </xsl:text>
<xsl : appl y-tenpl ates sel ect ="paraneters[4]"/>
<xsl:text> in </xsl:text>
<xsl :appl y-tenpl ates sel ect="paraneters[3]"/>
<xsl:text> wth difference </xsl:text>
<xsl : appl y-tenpl ates sel ect ="paraneters[1]"/>
<number />
</ cat eg>
</ tenpl at e>

This information is a mix of XSL standard elements and Matidspecific ones. A first
process will transform all these presentation data thattbealocument to produce one
single XSL file specific to the documentin question. The sdgncess simply consists
of applying these transformation to the document itself.

4 Pythagoras’ proof of irrationality of /2

In this section we give the 1@ -MathLang view of two versions dPythagoras’ proof

of the irrationality of /2. We chose this proof because it has been previously used by
Wiedijk as auniversalexample of proof encoding for theorem provers [19, 20]. Both
original versions are included in [19]. The first one is aromial version written by

G. H. Hardy and E. M. Wright (see figure 7). Section 4.1 is theLGriew of our
translation into MathLang. The second one is a more exi@bf written by Henk
Barendregt. We give theMd. view of our MathLang translation in section 4.2.

Theorem 1 (Pythagoras’ Theorem)./2 is irrational.
Proof. If v/2 is rational, then the equation
a® =2v°
is soluble in integers, b with (a,b) = 1. Hencea? is even, and therefore

is even. Ifa = 2¢, thendc® = 2b%, 2¢% = b2, andb is also even, contrary t
the hypothesis thdt, b) = 1.

O

Fig. 7. Proof of the irrationality of,/2

4.1 The informal proof of Hardy and Wright

4.2 A more explicit informal proof by Barendregt

Suppose ce@. ie = %with m .

with o m=|[p]|, w«n/=|[ql/#0.

n=20 the lemm

| Contradictio_

4.3 Discussions

More or less explicit textsThe small set of grammatical constructions of MathLang
gives all the material needed to express reasoning of diftdevels of precision. Both
versions given here follow the same kind of structures ifir tlemonstrations. Small
steps leading to bigger ones. New statements in a certatexdand definitions of new
symbols. This is what MathLang is designed for: encodingehg&mple demonstra-
tion constructions into a structured document that easepuatation. In both cases the
MathLang encoding follows the reasoning structure of thxé ®imple transformation
procedures are then given to get the original text in retliese two versions of the
same proof show the expressiveness of MathLang: we havethisasdme language to
write a non precise proof as well as a fully explicit one. Fithis encoding of the proof
in MathLang we get both the original text and the computeridecument.

Moving from MathLang to other encodingés we said before, the symbolic structure
of MathLang texts eases both the automatic computationseotekt and further trans-
lations to other languages. To illustrate this we have ted@d Barendregt’s version of
the proof into OMDoc/OpenMath.

The translation process is the same as the one carried obtetimthe GiL view of
MathLang documents. We spread the document with transtamimformation. This
led to a big program that transforms automatically the Matid.document into OM-
Doc/OpenMath. In this transformaticftCMP>(informal) and<FMP> (formal) OM-
Doc's tags could easily be informed. The first one using theesprocess as the one
carried out to obtain a &L view of the MathLang text. The second one by using the
symbolic structure to obtain OpenMath formulas. The thid pf this translation con-
sists in mapping the MathLang basic structures into OMDatstroictions.

For example, our MathLang translation of Barendregt'sieersf the proof consists
of one line followed by one block, one line and one block. Thst fiine being the
definition of the lemma, the first block its proof, the secoiné I(numbered 25) is the
definition of the corollary and the second block its proofORMDoc the lines 1 and 25
are <assertions> and the blocks argproof> . The predicate” defined in the
proof of the lemma (line 2) is a symbol definitiorgymbol>) in the overall proof
(<theory> in OMDoc,book in MathLang).

We compared this translation, that leads frommaLQext to an OMDoc document
via a MathLang document, to a direct translation fromLCto OMDoc. The direct
translation seems to be quicker but the one via MathLangtras aidvantages.

— The MathLang document is checked by the MathLang weak typekihg. This
validates the good formation of the structure of the docunfurch an analysis does
not exist for OMDoc and OpenMath.

— OMDoc has a formal{FMP> and an informal CMB tag for data. There are no
requirements in OMDoc to have them both informed. The coengdble content of
an OMDoc document depends on the author. In MathLang the skaieton of the
document fully uses symbols (similar to OMDoc’s formal Jathe natural language
is added on top of this structured content. A MathLang-texags provides dormal
content that could be forgotten in OMDoc.

— This structured content is encoded using a small set of MatblLconstructions.
These simple grammatical constructions guide the authibreitranslation process.
It is then easier with this guiding process to obtain wellstured OMDoc formal
data by translating first into MathLang than directly into ObEL.

5 Future works

We described in this paper how we encode mathematics usitiglisliag and how we
produce a ®L view of this encoding. Our main future work is to ease the trgfwata
inside the MathLang framework. Currently one requiresiskil computer science to
write a MathLang document. We are currently developing ainserface for MathLang
based on the scientific editoEX, s -

As we said earlier in this paper we are starting and planingxtend the current
language and framework. We aim to do it by making a use of tlar@ratical Frame-
work of A. Ranta and by moving to a second level of MathLangoelirog which will
include more logic and semantic.

6 Conclusion

By providing at the same time a computable encoding and asistqucture to produce
readable output, our language MathLang tries to fill the gapben printed mathemat-
ical texts and mathematical softwares. The main problenhemaaticians face when
using formal systems is that it is very difficult, even for aqpert, to find her way in a
formal proof written by someone else. As described in thiglar our system provides
a direct correspondence between a symbolic structure andLaview of a text. The

original mathematical document is wisely partitioned bedtw a natural language part
and a symbolic part. The symbolic part can be used in moredbcomputations on the

original text. This is how we imagine what could be thew mathematical vernacular
for computers.

References

1. Barendregt, H.: Towards an Interactive MathematicabPMode. In Thirty Five Years of
Automating Mathematicamareddine, Editor, Kluwer Applied LogR8, (2003).

2. de Bruijn, N.G.: The Mathematical Vernacular, a langutngenathematics with typed sets.
Workshop on Programming Logic (1987).

3. Coscoy, Y.: A Natural Language Explanation for Formald?soLACL (1996).

4. Asperti, A., Padovani, L., Sacerdoti Coen, C., GuidiSEhena, |.: Mathematical Knowledge
Management in HELM. AMAI38(1-3) 27-46, (2003).

5. Mathematics On the Web: Get it by Logic and Interfaces (M&W. http://www.

mowgli.cs.unibo.it/

. Davenport, J.H.: MKM from Book to Computer: A Case Stud@S2594 17-29 (2003).

. Théry, L.: Formal Proof Authoring: an Experiment. UITZE03).

8. Audebaud, P., Rideau, L.gX,,,cs as Authoring Tool for Publication and Dissemination of
Formal Developments. UITP (2003).

9. Deach, S.: Extensible Stylesheet Language (XSL) Recomat®n. World Wide Web Con-
sortium (1999) http://www.w3.0rg/TR/xslt

10. Heath: The 13 Books of Euclid’'s Elements. Dover (1956).

11. Heijenoort (van), ed.: From Frege to Godel: A SourcelBodviathematical Logic, 1879—
1931, Harvard University Press (1967).

12. Kamareddine, F., Nederpelt, R.: A refinement of de Biafprmal language of mathematics.
Journal of Logic, Language and Informatit8(3), 287—-340, (2004).

13. Kamareddine, F., Maarek, M., Wells, J.B.: MathLang: &ignce-driven Development of a
New Mathematical Language. ENT@®S, 138-160, (2004).

14. Landau, E.: Foundations of Analysis. Chelsea (1951).

15. Luo, Z., Callaghan, P.: Mathematical vernacular anadceptual well-formedness in mathe-
matical language. LNCS/LNA1582(1999).

16. Maarek, M., Prevosto, V.: FoCDoc: The documentatiotesyf FoC. Calculemus (2003).

17. Ranta., A.: Grammatical Framework: A Type-Theoreti@ehmmar Formalism. Journal of
Functional Programming (2003).

18. Rudnicki, P., Trybulec, A.: On Equivalents of Well-faledness. Journal of Automated Rea-
soning23, 197-234, (1999).

19. Wiedijk, F.: The Fifteen Provers of the World. Univeysiff Nijmegen.

20. Wiedijk, F.: Comparing Mathematical Provers. LNZ594 188-202, (2003).

21. Kohlhase, M.: OMDoc: An Open Markup Format for Matherm@tiDocuments (Version
1.1). Technical report (2003).

22. Zimmer, J., Kohlhase, M.: System Description: The MatbV8oftware Bus for Distributed
Mathematical Reasoning. LNCZE392(2002).

~N O

