
Parameters in Pure Type Systems

Roel Bloo?, Fairouz Kamareddine??, Twan Laan? ? ?, and Rob Nederpelty
Abstract. In this paper we study the addition of parameters to typed�-calculus
with definitions. We show that the resulting systems have nice properties and
illustrate that parameters allow for a better fine-tuning ofthe strength of type
systems as well as staying closer to type systems used in practice in theorem
provers and programming languages.

1 What are parameters?

Parameters occur when functions are only allowed to occur when provided with argu-
ments. As we will show below, both in mathematics and in programming languages the
use of parameters is abundant and closely connected to the use of constants and defi-
nitions. If we want to be able to use type systems in accordance with practice and yet
described in a precise manner, we therefore need parameters, constants, and definitions
in type theory as well.

Parameters, constants and definitions in theorem provingIt is interesting to note that
the first tool for mechanical representation and verification of mathematical proofs,
AUTOMATH, already has a combined constant, definition and parameter mechanism
and was developed from the viewpoint of mathematicians (see[7]). The representation
of a mathematical text in AUTOMATH consists of a finite list oflineswhere every line
has the format:x1 : A1; : : : ; xn : An ` g(x1; : : : ; xn) = t : T . Hereg is a new name;
a constant ift is the acronym ‘primitive notion’, or an abbreviation (definition) for the
expressiont of typeT , andx1; : : : ; xn are the parameters ofg, with respective typesA1; : : : ; An. Use of the definitiong in the rest of the list of lines is only allowed wheng is supplied with a list of argumentst1; : : : ; tn (with types conforming toA1; : : : ; An,
see again [7]) to be substituted for the parameters ofg.

We see that parameters and definitions are a very substantialpart of AUTOMATH

since each line introduces a new constant or definition whichis inherently parame-
terizedby the variables occurring in the context needed for it. Actual development of
ordinary mathematical theory in the AUTOMATH system by e.g. van Benthem Jutting
(cf. [3]) revealed that this combined definition and parameter mechanism is vital for
keeping proofs manageable and sufficiently readable for humans.? Eindhoven University of Technology, Computing science, PO-Box 513, 5600 MB Eindhoven,

The Netherlands, email:c.j.bloo@tue.nl?? Heriot-Watt University, dept. of Computing and ElectricalEng., Edinburgh, Scotland, email:
fairouz@cee.hw.ac.uk? ? ? email:twan.laan@wxs.nly Same address as Bloo, email:r.p.nederpelt@tue.nl

Similar but more recent experience with the Coq proof system[10] suggests the
same necessity of parameterized definitions, and indeed, state of the art theorem provers
have parameter mechanisms as well.

There is another advantage to the use of parameters. Allowing only parameters of
a certain type and not the corresponding abstractions may yield a weaker type system.
This can have advantages such as a first-order system insteadof a higher-order one, or
a simpler typecheck algorithm as has been observed for the type system�P� in [14].

Parameters, constants and definitions in programming languagesMost non-assembly
level programming languages have parameterized definitions as part of the syntax. Con-
sider the Pascal definition of a function double:fun
tion double(z : Integer) : Integer;begindouble := z+ zend;

The argument(z : Integer) is a parameter in our sense: the functiondouble can
only be used when given an argument, ergodouble is a non-abstracted function. In
ordinary�-calculus this functiondouble can only be represented by the�-abstraction(�x : Int:(x + x)). This representation is unfaithful since this waydouble is a term
on its own, of ‘higher-order character’ (it can be used without a parameter).

For an example of the use of constants, we consider the programming language
ML, which has the basic typesint andlist. However,list is not just an ordinary
constant. It can only be used when given an argument (which iswritten prefix in ML)
as inint list. We see thatlist is in fact a parameterized constant.

1.1 Extending pure type systems with parameters, constantsand definitions

There are many other examples of the frequent use of parameters in mathematics and
computer science, occurring in combination with both definitions and constants. The
general framework used to describe type systems, Pure Type Systems (PTSs, [2]), does
not possess constants1 or parameters nor does it have syntax for definitions. Therefore
we set out to extend pure type systems with parameters, constants and definitions in
order to better be able to describe type systems used in practice. This work is based on
the parameterized type systems of Laan in [12], although there are several subtle dif-
ferences2 in the precise definition of the system. We first discuss work that has already
been done in this direction.

Two approaches are known for extending type theory with definitions. The first, by
Severi and Poll, extends the syntax of�-terms to include definitions [17]. The second
only extends PTSs with global definitions (i.e., definitionsin the context of derivations),
and treats local definitions as ordinary�-redexes [5].

1 The role of unparameterized constants is usually imitated by variables, by agreeing not to
make any abstraction over such variables. This is done in ordinary PTSs for the sorts� and2.
Another extension of PTSs in which constants play an essential role are Modal PTSs, cf. [6].

2 Definition 1 is slightly different, the rules (Cp-weak) and (Dp-weak) are now correct and we
have a different treatment of topsorts in the rules for definitions.

PTS [2]

C-PTS D-PTS [17]

Cp-PTS [11] CD-PTS Dp-PTS

CpD-PTS CDp-PTS

CpDp-PTS

��� ������ ��� ��� ������ ��� ��� ������ ���

Fig. 1. The hierarchy of parameters, constants and definitions

Both these approaches fail to model the definition of thedouble function from
section 1 above, since they don’t have parameterized definitions. The best they can do
is addingdouble = (�x:Int:x + x) : �x:Int:Int to the context, which clearly isn’t
in the spirit of Pascal wheredouble on its own is not a valid expression.

We shall call the extension of PTSs with unparameterized definitions D-PTSs. In
this paper, we go one step further and introduce Dp-PTSs,pure type systems extended
with parameterized definitions, so that we can imitatedouble by addingdouble(z :Int) = z + z : Int to the context. This willnot allow the use ofdouble unless it is
provided an argument for its parameterz. This is an extension of the work of [17] on
unparameterized definitions.

Orthogonally, one can extend PTSs with parameterized constants as has been stud-
ied in [11]. We shall call these systems Cp-PTSs. Similar to the extension of PTSs with
unparameterized definitions, one might consider PTSs extended with unparameterized
constants only (C-PTSs). Although C-PTSs are not very interesting on their own, we
include them here for symmetry reasons.

Combining the various extensions, we obtain a hierarchy that can be depicted as in
Figure 1.

In this paper we study the top system in Figure 1, that is, PTSsextended with pa-
rameterized constants as well as parameterized definitions.

Similar to the restrictions on the formation of abstractions in ordinary PTSs, it is
natural to put restrictions on the formation of parameters as well. Although an unre-
stricted use of parameters may seem elegant from a theoretical point of view, this is not
custom in programming languages. For instance, in many Pascal versions, parametric
termscan only have parameters atterm level. Therefore, in the CpDp-PTSs we study
in this paper, in a parameterized termt(p1; : : : ; pn) we might want to restrict its for-

mation according to the type oft(p1; : : : ; pn) as well as according to the types of the
parametersp1; : : : ; pn.

This paper is organized as follows:
In Section 2, we define CpDp-PTSs, PTSs extended with parametric constants and defini-

tions. This section includes an extension of theÆ-reduction of [17] to parametric definitions.
In Section 3 we extend the theory in [17] to CpDp-PTSs. We show that our extendedÆ-

reduction (needed for unfolding definitions) and�Æ-reductions are also confluent, and that the
extendedÆ-reduction (under reasonable conditions) is strongly normalizing. Then we show some
elementary properties like the Generation Lemma, and the Subject Reduction property for�Æ-
reduction. Finally we prove that�Æ-reduction in a CpDp-PTS is strongly normalizing if a slightly
stronger PTS is�-strongly normalizing.

Section 4 is devoted to comparing CpDp-PTSs to ordinary PTSs. We show that for a large
class of CpDp-PTSs there is a natural projection into an ordinary, but stronger, PTS.

We conclude in Section 5.

2 Extending PTSs with parametric constants and definitions

In this section, we extend Pure Type Systems (PTSs) (cf. [2])with parameterized con-
stants and parameterized definitions.

Pure Type Systems (PTSs) were introduced by Berardi [4] and Terlouw [18] as a
general framework in which many current type systems can be described. Though PTSs
were not introduced before 1988, many rules in PTSs are highly influenced by rules of
known type systems like Church’s Simple Theory of Types [8] and AUTOMATH (see
5.5.4. of [9]). The description of our extension of PTSs withparametric constants and
definitions is based on the description of PTSs in [2].

Definition 1 Let V , C andS be disjoint sets of respectively variables, constants and
sorts.3 The setTP of parametric termsis defined together with the setLV of lists of
typed variablesand the setLT of lists of termsby:TP ::= V j S j C(LT) j (TP TP) j (�V :TP :TP)j (�V :TP :TP) j (C(LV)=TP :TP in TP);LV ::= ? j hLV ;V :TP i; LT ::= ? j hLT ; TP i:

Instead ofh� � � hh?; x1:A1i; x2:A2i � � �xn:Ani, we write hx1:A1; : : : ; xn:Ani orx1:A1; : : : ; xn:An. A similar convention is adopted for lists of terms. In a paramet-
ric term of the form
(b1; : : : ; bn), the subtermsb1; : : : ; bn are called theparametersof
the term.

Terms of the formC(LV)=TP :TP in TP represent parametric local definitions. An
example of such a term isdouble(x:Int)=(x+x):Int in A which indicates that a
subterm ofA of the formdouble(P) is to be interpreted asP + P , and has typeInt.
The definition is local, that is: the scope of the definition isthe termA. Local definitions
contrast with global definitions which are given in a context� , and refer to any term
that is considered within� (see Definition 5). The definition system in AUTOMATH

is similar to the system of global definitions in this paper. However, there are no local
definitions in AUTOMATH.
3 Note that, in contrast to PTSs, we require the set of sorts to be disjoint from the set of (para-

metric) constants.

Definition 2 Let
!x :!A denote the listx1:A1; : : : ; xn:An. FV(A), the set offree vari-

ablesof a parametric termA is defined as usual with the extra cases for constants and
definitions:
FV(
(a1; : : : ; an)) = Sni=1 FV(ai); and

FV(
(!x :!A)=A:B in C) =Sni=1(FV(Ai) n fx1; : : : ; xi�1g) [�(FV(A) [FV(B)) n fx1; : : : ; xng� [FV(C).
We similarly defineCons(A), the set ofconstants and global definitionsofA as follows:
Cons(s) = Cons(x) = ;;
Cons(
(a1; : : : ; an)) = f
g [Sni=1 Cons(ai);
Cons(AB) = Cons(�x:A:B) = Cons(�x:A:B) = Cons(A) [Cons(B);
Cons(
(!x :!A)=A:B in C) =Sni=1 Cons(Ai) [Cons(A) [Cons(B) [(Cons(C) n f
g).
FV(A) [Cons(A) forms thedomain Dom(A) of A.

We omit parentheses in parametric terms when possible. As usual in PTSs (cf. [2]), we
do not distinguish terms that are equal up to renaming of bound variables. Moreover,
we assume the Barendregt variable convention so that names of bound variables and
constants will always be chosen such that they differ from the free ones in a term.

Definition 3 We extend the usual definition of substitution of a terma for a variablex in a termb, b[x:=a℄, to parametric terms, assuming thatx is not a bound variable of
eitherb or a:
(b1; : : : ; bn)[x:=a℄ �
(b1[x:=a℄; : : : ; bn[x:=a℄);(
(!x :!A) = A:B in C)[x:=a℄ �
(x1:A1[x:=a℄; : : : ; xn:An[x:=a℄) = A[x:=a℄:B[x:=a℄ in C[x:=a℄:
Definition 4 The setCP of contexts, which we denote by�; � 0; : : : , is given by:CP ::= ? j hCP ;V :TP i j hCP ; C(LV)=TP :TP i j hCP ; C(LV):TP i:
Notice thatLV � CP : all lists of variable declarations are contexts as well.

Definition 5 Let � be a context.Declarationsare elements of� as follows:

– x:A is avariable declarationwith subjectx andtypeA;
–
(x1:B1; : : : ; xn:Bn):A is aconstant declarationwith subject
 (also calledprim-

itive constant), parametersx1; : : : ; xn andtypeA;
–
(x1:B1; : : : ; xn:Bn)=a:A is aglobal definition (declaration)with subject
 (also

calledglobally defined constant), parametersx1; : : : ; xn, definiensa andtypeA.

Notation In the rest of this paper,� denotes a contextx1:B1; : : : ; xn:Bn consisting of
variable declarations only. Such a context is typically used as a list of parameters in a
definition
(�)=a:A. We write�i � x1:B1; : : : ; xi�1:Bi�1 for i � n. We extend the
definition of substitution to contexts in the usual way.

Definition 6 For a context� we defineFV(�) to be the set of subjects of variable
declarations in� andCons(�) the set of subjects of constant declarations and global
definitions in� . Thedomainof � , Dom(�), is defined asFV(�) [Cons(�).

In ordinary PTSs we have that, for a legal termA in a legal context� , FV(A) � FV(�).
In our CpDp-PTSs we will have:FV(A) � FV(�) andCons(A) � Cons(�).

A natural condition on contexts is that all variables, primitive constants and defined
constants are declared only once. Furthermore it is also natural to require that variables
and constants are declaredbeforethey are being used. For this we introduce the notion
of soundcontext:

Definition 7 � 2 CP is soundif variables, primitive constants and defined constants
are declared only once and if� � �1;
(�)=a:A;�2 then Dom(a) [Dom(A) �
Dom(�1) [Dom(�) and fori = 1; : : : ; n: Dom(Bi) � Dom(�1; �i):
The contexts occurring in the type systems proposed in this paper are all sound (see
Lemma 15). This fact will be useful when proving properties of these systems.

We now start a more detailed description of the top system in Figure 1, the system
with both parameterized defined constants and parameterized primitive constants. We
define two reduction relations, namely theÆ- and�-reduction.�-reduction is defined
as usual, and we use!� , !!�, !+� , and=� as usual. As far as global definitions are
concerned,Æ-reduction is comparable toÆ-reduction in AUTOMATH. This is reflected
in rule (Æ1) in Figure 2 and Definition 8 below. But now, aÆ-reduction step can also
unfold local definitions. Therefore, two new reduction steps are introduced. Rule(Æ2)
removes the declaration of a local definition if there is no position within its scope where
it can be unfolded (‘removal of void local definitions’). Rule (Æ3) shows how one can
treat a local definition as a global definition, and thus how the problem of unfolding
local definitions can be reduced to unfolding global definitions (‘localization of global
definitions’). Remember that� � x1:B1; : : : ; xn:Bn.

Definition 8 (Æ-reduction) Æ-reduction is defined as the smallest relation!Æ onCP �TP �TP closed under the rules(Æ1), (Æ2), (Æ3) and the compatibility rules of Figure 2.� ` � =Æ � denotes the reflexive, symmetric and transitive closure of� ` � !Æ �.
When� is the empty context, we writea!Æ a0 instead of� ` a!Æ a0.

FurthermoreÆ-reduction between contexts is the smallest relation!Æ onCP � CP
closed under the rules in Figure 3.

Before describing the typing rules for CpDp-PTSs, we introduce the concepts of speci-
fication (taken from [2]) and parametric specification.

Definition 9 (Specification)A specificationis a triple (S;A;R), such thatS � C,A � S � S andR � S � S � S. The specification is calledsingly sortedif A is
a (partial) functionS ! S, andR is a (partial) functionS � S ! S. S is called
the set ofsorts, A is the set ofaxioms, andR is the set of (�-formation)rulesof the
specification.

A parametric specificationis a quadruple(S;A;R;P) such that(S;A;R) is a
specification, and the set ofparametric rulesP � S�S. The parametric specification
is calledsingly sortedif the specification(S;A;R) is singly sorted.

We first give the typing rules for ordinary terms of PTSs. These can also be found in [2].

Definition 10 (Typing rules for ordinary terms) Let S = (S;A;R) be a specifica-
tion. The Pure Type System�S describes in which ways judgements� `S A : B (or

(Æ1): �1;
(�)=a:A; �2 `
(b1; : : : ; bn) !Æ a[xi:=bi℄ni=1(Æ2):
 62 Cons(b)� `
(�)=a:A in b!Æ b (Æ3): �;
(�)=a:A ` b!Æ b0� `
(�)=a:A in b!Æ
(�)=a:A in b0�;� ` a!Æ a0� `
(�)=a:A in b!Æ
(�)=a0:A in b �;� ` A!Æ A0� `
(�)=a:A in b!Æ
(�)=a:A0 in b�;�i ` Bi !Æ B0i� `
(�)=a:A in b!Æ
(x1:B1; : : : ; xi:B0i; : : : ; xn:Bn)=a:A in b� ` a!Æ a0� ` ab!Æ a0b � ` b!Æ b0� ` ab!Æ ab0�; x:A ` a!Æ a0� ` �x:A:a!Æ �x:A:a0 � ` A!Æ A0� ` �x:A:a!Æ �x:A0:a�; x:A ` a!Æ a0� ` �x:A:a!Æ �x:A:a0 � ` A!Æ A0� ` �x:A:a!Æ �x:A0:a� ` aj !Æ a0j� `
(a1; : : : ; an) !Æ
(a1; : : : ; a0j ; : : : ; an)
Fig. 2. Reduction rules and compatibility rules for!Æ�1 ` A!Æ A0�1; x:A; �2 !Æ �1; x:A0; �2 �1; �!Æ �1; �0�1;
(�):A; �2 !Æ �1;
(�0):A; �2�1; � ` A!Æ A0�1;
(�):A; �2 !Æ �1;
(�):A0; �2 �1; � ` a!Æ a0�1;
(�)=a:A; �2 !Æ �1;
(�)=a0:A;�2�1; �!Æ �1; �0�1;
(�)=a:A; �2 !Æ �1;
(�0)=a:A;�2 �1; � ` A!Æ A0�1;
(�)=a:A; �2 !Æ �1;
(�)=a:A0; �2

Fig. 3. Rules forÆ-reduction on contexts� ` A : B, if it is clear whichS is used) can be derived.� ` A : B states thatA has
typeB in context� . �S consists of the derivation rules given in Figure 4.

A term a is legal (with respect to a certain type system) if there are� , b such that
either� ` a : b or � ` b : a is derivable (in that type system). Similarly, a context� is
legal if there area, b such that� ` a : b. A sort s 2 S is calledtopsortif there is no
context� ands0 2 S such that� ` s : s0.
An important class of examples of PTSs is formed by the eight PTSs of the so-called
Barendregt Cube. The Barendregt Cube is a three-dimensional presentation of eight
well-known PTSs. All systems have sortsS = f�;2g, and axiomsA = f(�;2)g.
Moreover, all the systems have rule(�; �; �). System�! has no extra rules, but the
other seven systems all have one or more of the rules(�;2;2), (2; �; �) and(2;2;2).

(axiom) hi ` s1 : s2 (s1; s2) 2 A
(start)

� ` A : s�; x:A ` x : A x 62 Dom(�)
(weak)

� ` A : B � ` C : s�; x:C ` A : B x 62 Dom(�)
(�)

� ` A : s1 �; x:A ` B : s2� ` (�x:A:B) : s3 (s1; s2; s3) 2 R
(�)

�; x:A ` b : B � ` (�x:A:B) : s� ` (�x:A:b) : (�x:A:B)
(appl)

� ` F : (�x:A:B) � ` a : A� ` Fa : B[x:=a℄
(conv)

� ` A : B � ` B0 : s B =� B0� ` A : B0
Fig. 4. Typing rules for PTSs

(Cp-weak)
� `Cp b:B �;� `Cp A:s �;�i `Cp Bi:si (si; s) 2 P (i = 1; : : : ; n)�;
(�) : A `Cp b : B

(Cp-app)

�1;
(�):A;�2 `Cp bi:Bi[xj :=bj ℄i�1j=1 (i = 1; : : : ; n)�1;
(�):A;�2 `Cp A : s (if n = 0)�1;
(�):A; �2 `Cp
(b1; : : : ; bn) : A[xj :=bj ℄nj=1
Fig. 5. Typing rules for parametric constants

Now we add rules for typing parametric constants. In these rules we use the set of
parametric rulesP to govern which types parameters can have.

Definition 11 (Typing rules for parametric constants)Let S = (S;A;R;P) be a
parametric specification. Thetyping relation`Cp

is the smallest relation onCP �TP �TP closed under the rules in Definition 10 and the rules (Cp-weak) and (Cp-app) in
Figure 5. Recall that� � x1:B1; : : : ; xn:Bn ands 2 S. The parameterized constant

in the Cp-weakening rule is, due to the Barendregt variable convention, assumed to be� -fresh, that is,
 =2 Cons(�).
At first sight one might miss a Cp-introduction rule. Such a rule, however, is not neces-
sary, as
 (on its own) is not a term. A parameterized constant
 can only be (part of) a
term in the form
(b1; : : : ; bn), and such terms can be typed by the Cp-application rule.
The extra condition�1;
(�):A;�2 `Cp A : s in the Cp-application rule forn = 0 is
necessary to prevent an empty list of premises. Such an emptylist of premises would
make it possible to have almost arbitrary contexts in the conclusion. The extra condition
is only needed to assure that the context in the conclusion isa legal context.

(Dp-weak)
� `Dp b:B �;� `Dp a:A:s �;�i `Dp Bi:si (si; s) 2 P (i=1; : : : ; n)�;
(�)=a:A `Dp b : B

(Dp-app)

�1;
(�)=a:A; �2 `Dp bi : Bi[xj :=bj ℄i�1j=1 (i = 1; : : : ; n)�1;
(�)=a:A; �2 `Dp a : A (if n = 0)�1;
(�)=a:A;�2 `Dp
(b1; : : : ; bn) : A[xj :=bj ℄nj=1
(Dp-form)

�;
(�)=a:A `Dp B : s� `Dp
(�)=a:A in B : s
(Dp-intro)

�;
(�)=a:A `Dp b : B � `Dp
(�)=a:A in B : s� `Dp
(�)=a:A in b :
(�)=a:A in B
(Dp-conv) � `Dp b : B � `Dp B0 : s � ` B =Æ B0� `Dp b : B0

Fig. 6.Typing rules for parametric definitions

Note that in the (Cp-weak) rule it is not necessary that all thesi are equal: in one
application of rule (Cp-weak) it is possible to rely on more than one element ofP .

Remark 12 If we have a parametric constantplus(x:Int; y:Int):Int in the context,
then it is tempting to think ofplusas a parametric function. Note however that in PTS-
terms it is not a function anymore since the only way to obtaina legal term with it is in
its parameterized formplus(x; y) which has typeInt; plus(x:Int; y:Int) itself is not
a legal term. In order to talk about properties ofplus ‘as a function’ we are forced to
consider�x:Int:�y:Int:plus(x; y).
Adapting the rules from Definition 11 and the rules for definitions of [17] results in
rules forparametric definitions(by� ` a : A : s we mean� ` a : A and� ` A : s):
Definition 13 (Typing rules for parametric definitions) The typing relation`Dp

is
the smallest relation onCP �TP �TP closed under the rules in Definition 10 and those
in Figure 6, wheres 2 S, and the parameterized definition
 that is introduced in the
Dp-weakening rule is assumed to be� -fresh. Again it is not necessary that all thesi in
the(Dp-weak) rule are equal.

Definition 14 (CpDp-PTSs)LetS = (S;A;R;P) be a parametric specification. Then`CpDp
is the smallest relation onCP � TP � TP that is closed under the rules of

Definitions 10, 11 and 13. The CpDp-PTS�CpDpS is the system with typing relation`CpDp
.

All contexts occurring in CpDp-PTSs are sound (see Definition 7). As CpDp-PTSs are
clearly extensions of PTSs, Cp-PTSs and Dp-PTSs, then all contexts occurring in PTSs,
Cp-PTSs and Dp-PTSs are sound.

Lemma 15 Assume� `CpDp b : B. Then
1. Dom(b);Dom(B) � Dom(�); 2. � is sound.

PROOF: We prove 1 and 2 simultaneously by induction on the derivation of� `CpDpb : B. �
In the specific case of the Barendregt Cube, the combination of R andP leads to a
refinement of the Cube, thus making it possible to classify more type systems within one
and the same framework. This is studied in detail for PTSs extended with parameterized
constants (without definitions) in [11]; it is shown that thetype systems of AUTOMATH,
LF and ML can be described more naturally and accurately thanin ordinary PTSs.

Remark 16 Let S = (S;A;R) be a specification, and observe the parametric speci-
ficationS 0 = (S;A;R;?). The fact that the set of parametric rules is empty does not
exclude the existence of definitions: it is still possible toapply the rules (Dp-weak) and
(Dp-app) forn = 0. In that case, we obtain only definitions without parameters, and
the rules of the parametric system reduce to the rules of a D-PTS with specificationS
as introduced by [17].4 There is however one case of the rules in [17] that a CpDp-PTS
cannot simulate, since in rule (Dp-weak) we require�;� `Dp A : s which [17] does
not. Therefore, the system of [17] can abbreviate inhabitants of topsorts which is im-
possible in the CpDp-PTSs of Definition 14. We feel that abbreviating inhabitants of
topsorts is not very useful. It is however routine to check that adding an extra rule(Dp-weak-top) � `Dp b : B �;� `Dp a : A�;
() = a : A `Dp b : B
does not change the theory of CpDp-PTSs developed in sections 3 and 4, and yields
exactly the same power for unparameterized definitions as the D-PTSs of [17].

3 Meta-Properties

We first list the properties of terms which are not dependent of their being legal. How-
ever, we often demand that the free variables and constants of a term are contained in
the domain of a sound context.

First we show thatÆ-reduction is invariant under enlarging of the context (!Æ-
weakening), then we establish a relation between substitution and!�Æ (substitutivity),
then we can establish confluence for!�Æ and termination of!Æ. Most proofs are
similar to those of [19, 17]; more details can be found in the technical report [13].

Lemma 17 (!Æ-weakening and Substitutivity)

1. If h�1; �2; �3i 2 CP is such that�1; �3 ` b!Æ b0, then�1; �2; �3 ` b!Æ b0;
2. If a!� a0 thena[x:=b℄ !� a0[x:=b℄;
3. If � ` a!Æ a0 then� [x:=b℄ ` a[x:=b℄ !Æ a0[x:=b℄;
4 The parametric system with specificationS 0 has a Cp-weakening rule while the system of [17]

does not. But the Cp-weakening rule can only be used forn = 0, and in that case Cp-weakening
can be imitated by the normal weakening rule of PTSs: a parametric constant with zero param-
eters is in fact a parameter-free constant, and for such a constant one can use a variable as
well.

4. If � ` b!�Æ b0 then� ` a[x:=b℄ !!�Æ a[x:=b0℄.
Theorem 18 (Confluence for!� , !Æ and Strong Normalization for !Æ)
1. !� is confluent.
2. !�Æ is confluent when taking contexts into account: if� is sound,� ` a !!�Æ b1

and � ` a !!�Æ b2 then there exists a termd such that� ` b1 !!�Æ d and� ` b2 !!�Æ d.
3. !Æ , when restricted to sound contexts� and termsa with Dom(a) � Dom(�), is

strongly normalizing, i.e. there are no infiniteÆ-reduction paths.

Without the restriction to sound contexts� and termsa with Dom(a) � Dom(�), we
do not even have weak normalization: consider� � h
()=d():A; d()=
():Ai: The term
() does not have a� -normal form.

3.1 Properties of Legal terms

The properties in this section are proved for alllegal terms, i.e. for termsa for which
there areA, � such that� `CpDp a : A or � `CpDp A : a. The main property we
prove is that strong normalization of a PTS is preserved by certain extensions.

Many of the standard properties of PTSs in [2] hold for CpDp-PTSs as well. In the
same way as in [2], we can prove the following theorem:

Theorem 19 Let S be a parametric specification. The type system�CpDpS has the
following properties:5

1) Substitution Lemma; 2) Correctness of Types; 3) Subject Reduction (for!�Æ).
4) If S is singly sorted then�CpDpS has Uniqueness of Types.

The Generation Lemma is extended with two extra cases:

Lemma 20 (Generation Lemma, extension)

1. If � `CpDp
(b1; : : : ; bn) : D then there exist sorts, � � x1:B1; : : : ; xn:Bn and
termA such that� ` D =�Æ A[xi:=bi℄ni=1, and� `CpDp bi : Bi[xj :=bj ℄i�1j=1.
Besides we have one of these two possibilities: (a)� = h�1;
(�):A;�2i and�1; � `CpDp A : s; or (b) � = h�1;
(�)=a:A;�2i and�1; � `CpDp a : A : s
for some sorts;

2. If � `CpDp
(�)=a:A in b : D then either we have (a) or (b) below:
(a) �;
(�)=a:A `CpDp b : B, � `CpDp (
(�)=a:A in B) : s and� ` D =�Æ
(�)=a:A in B;
(b) �;
(�)=a:A `CpDp b : s and� ` D =�Æ s.

Also Correctness of Contexts has some extra cases compared to usual PTSs. Recall that� is legal if there areb, B such that� `CpDp b : B.
5 Substitution Lemma: if�; x : A;� ` b : B and� ` a : A then also�;�[x := a℄ ` b[x :=a℄ : B[x := a℄. Correctness of Types: if� ` a : A then� ` A : s for some sorts or A is a

topsort. Subject Reduction: if� ` a : A anda !�Æ a0 then also� ` a0 : A. Uniqueness of
Types: if� ` a : A and� ` a : B then� ` A =�Æ B.

Lemma 21 (Correctness of Contexts)

1. If �; x:A;� 0 is legal then there exists a sorts such that� `CpDp A : s;
2. If �;
(�):A;� 0 is legal then�;� `CpDp A : s;
3. If �;
(�)=a:A;� 0 is legal then�;� `CpDp a : A : s.

Now we prove that�CpDpS is �Æ-strongly normalizing if a slightly larger PTS�S 0
is �-strongly normalizing. We follow the idea of [17] for PTSs extended with only
definitions; the extension is tedious but fairly routine.

For legal termsa 2 TP in a context� , we define a lambda termkak� without
definitions and without parameters. Ifa is typable in a CpDp-PTS�CpDpS, thenkak�
will be typable in a PTS�S 0, whereS 0 is a so-calledcompletion(see Definition 24)
of the specificationS. Moreover, we take care that ifa !� a0, thenkak� !+� ka0k�
(that is:kak� !!� ka0k� andkak� 6� ka0k�). Together with strong normalization ofÆ-reduction (Theorem 18.3), this guarantees that�CpDpS is �Æ-strongly normalizing
whenever�S 0 is �-strongly normalizing.

Definition 22 For a 2 TP and� 2 CP we definekak� as in [17], but with the extra
cases:k
(b1; : : : ; bn)k� �8<:k�ni=1 xi:Bi:ak�1 kb1k� � � � kbnk� if �=h�1;
(�)=a:A;�2i;
 kb1k� � � � kbnk� otherwise;k
(�)=a:A in bk� � ��
:(kQni=1 xi:Bi:Ak�): kbk�;
(�)=a:A� k�ni=1 xi:Bi:ak� :
Note: constants inTP are translated to similarly named variables in�-calculus without
definitions and parameters.

We now show thatk k translates aÆ-reduction into zero or more�-reductions, and
that it translates a�-reduction into one or more�-reductions.

Lemma 23 Let� be sound, and assume Dom(a) � Dom(�). The following holds:
If � ` a!Æ b thenkak� !!� kbk� . Similarly: If a!� b thenkak� !+� kbk� .

Definition 24 The specificationS = (S;A;R) is calledquasi fullif for all s1, s2 2 S
there existss3 2 S such that(s1; s2; s3) 2 R.
A specificationS 0 = (S0;A0;R0) is a completionof a parametric specificationS =(S;A;R;P) if S � S0, A � A0, andR � R0, S0 is quasi full, and8s 2 S9s0 2S0[(s; s0) 2 A0℄.6
Theorem 25 LetS = (S;A;R;P) andS 0 = (S0;A0;R0) be such thatS 0 is a com-
pletion ofS. If � `CpDpS a : A thenk�k `S0 kak� : kAk� :
Using Theorem 18.3, Lemma 23 and Theorem 25, we can now prove our normalization
result for CpDp-PTSs.

Theorem 26 LetS = (S;A;R;P) andS 0 = (S0;A0;R0) be such thatS 0 is a com-
pletion ofS. If the PTS�S 0 is �-strongly normalizing, then the CpDp-PTS�CpDpS is�Æ-strongly normalizing.
6 Note that there are no requirements onP in the definition of completion.

Since ECC of [15] is�-strongly normalizing and is a completion of all systems of the
extended�-cube, Theorem 26 guarantees that all extended systems of the �-cube are�Æ-strongly normalizing. Note that�C itself is not a completion since it has a topsort2.

4 Comparison of CpDp-PTSs with D-PTSs

In this section we show that the parameter mechanism in CpDp-PTSs can be seen as a
system for abstraction and application that is weaker than the�-calculus mechanism.
We will make this precise by proving (in Theorem 31) that a CpDp-PTS with parametric
specification(S;A;R;?) is as powerful as any CpDp-PTS with parametric specifica-
tion (S;A;R;P) for which (s1; s2) 2 P implies (s1; s2; s2) 2 R. We call such a
CpDp-PTSparametrically conservative; each CpDp-PTS withP � S � S can be ex-
tended to a parametrically conservative one by taking itsparametric closure.

Definition 27 LetS = (S;A;R;P) be a parametric specification.S is parametrically
conservativeif for all s1; s2 2 S, (s1; s2) 2 P implies(s1; s2; s2) 2 R.

CL(S), theparametric closureof S, is defined as(S;A;R0;P), whereR0 = R [f(s1; s2; s2) j s1; s2 2 S and(s1; s2) 2 P g.

Lemma 28 LetS be a parametric specification. The following holds:
1. CL(S) is parametrically conservative; and 2.CL(CL(S)) = CL(S).

Let S = (S;A;R;P) be a parametric specification. IfS is parametrically conser-
vative, then each parametric rule(s1; s2) of S has a corresponding�-formation rule(s1; s2; s2). We show that this�-formation rule can indeed take over the role of the
parametric rule(s1; s2). This means thatS has the same ‘power’ (see Theorem 31) as(S;A;R;?). This even means thatS has the same power as the D-PTS with speci-
fication (S;A;R). In order to compareS = (S;A;R;P) with S 0 = (S;A;R;?),
we need to remove the parameters from the syntax of�CpDpS. This can be obtained as
follows:

– The parametric application in a term
(b1; : : : ; bn) is replaced by a function appli-
cation
b1 � � � bn;

– A local parametric definition is translated by a parameter-free local definition, and
the parameters are replaced by�-abstractions;

– A global parametric definition is translated by a parameter-free global definition,
and the parameters are replaced by�-abstractions.

This leads to the following definitions (which can be extended to contexts in the obvious
way):

Definition 29 We define the parameter-free translationftg of a termt 2 TP inductively
as follows:fag � a if a � x or a � s; f
(b1; : : : ; bn)g �
 fb1g � � � fbng; fabg � fag fbg;fOx:A:Bg � Ox: fAg : fBg if O is � or� ;f
(�)=a:A in bg �
= f��:ag : fQ�:Ag in fbg.

The mappingf g maintains�-reduction. AÆ-reduction is translated into aÆ-reduction
followed by zero or more�-reductions. These�-reductions take over then substitutions
that are needed in aÆ-reduction
(b1; : : : ; bn) !Æ a[xi:=bi℄ni=1:Note that the restriction
on the formation of parameters induced by the parametric rulesP prevents the creation
of illegal abstractions��:A with A a topsort.

Lemma 30 1. Fora; b 2 TP : fa[x:=b℄g � fag [x:= fbg℄;
2. If a!� a0 thenfag !+� fa0g;
3. If � ` a!Æ a0 then there isa00 such thatf�g ` fag !+Æ a00 !!� fa0g;
4. If � ` a!!�Æ a0 thenf�g ` fag !!�Æ fa0g.

Now we show that the parameter-free translationf g embeds the CpDp-PTS with para-
metric specificationS = (S;A;R;P) in the CpDp-PTS with parametric specificationS 0 = (S;A;R;?), provided thatS is parametrically conservative.

Thus we can conclude that the (restrictive) use of parameters does not yield a
stronger type system than using abstraction, application and unparameterized constants
and definitions only.

Theorem 31 Let S = (S;A;R;P) be a parametric specification. Assume thatS is
parametrically conservative. LetS 0 = (S;A;R;?). Then� `CpDpS a : A impliesf�g `CDS0 fag : fAg :
PROOF: Induction on the derivation of� `CpDpS a : A. �
Since unparameterized constants can be mimicked by dedicated variables, Theorem 31
can be paraphrased as “ifS andS 0 are parametric specifications such thatS 0 is CL(S)
with P replaced by?, then type derivations in�CpDpS can be mapped to type deriva-
tions in the D-PTS�S 0”.

Now [17] shows that type derivations in a D-PTS�S 0 can be mapped to type deriva-
tions in the PTS which is a completion of the D-PTS. We conclude that parametrically
conservative CpDp-PTSs are conservative extensions of PTSs.

Note however that, in order to mimic type derivations in�CpDpS in a PTS, we need
to strengthen the system twice: first by considering the parametric closure and then by
considering a completion of the D-PTS.

5 Conclusion

In recent literature, extensions of Pure Type Systems withunparameterizeddefinitions
and with parameterized constants have been proposed. However, parameterized con-
stants and definitions are required for PTSs in order to be suitable for studying semantics
and implementations of theorem provers and programming languages and for reasoning
about mathematics, since these all depend heavily on the useof parameterized constants
as well as parameterized definitions.

In this paper we studied an extension of PTSs with both parameterized constants and
parameterized definitions. Extending the existing theory we showed that our extension
has all the desired properties and yields well-behaved typesystems.

References

1. S. Abramsky, Dov M. Gabbay, and T.S.E. Maibaum, editors.Handbook of Logic in Computer
Science, Volume 2: Background: Computational Structures. Oxford University Press, 1992.

2. H.P. Barendregt. Lambda calculi with types. In [1], pages117–309. Oxford University Press,
1992.

3. L.S. van Benthem Jutting.Checking Landau’s “Grundlagen” in the Automath system. PhD
thesis, Eindhoven University of Technology, 1977. Published as Mathematical Centre Tracts
nr. 83 (Amsterdam, Mathematisch Centrum, 1979).

4. S. Berardi. Towards a mathematical analysis of the Coquand-Huet calculus of constructions
and the other systems in Barendregt’s cube. Technical report, Dept. of Computer Science,
Carnegie-Mellon University and Dipartimento Matematica,Universita di Torino, 1988.

5. R. Bloo, F. Kamareddine, and R. Nederpelt. The BarendregtCube with Definitions and
Generalised Reduction.Information and Computation, 126(2):123–143, 1996.

6. V.A.J. Borghuis. Modal Pure Type Systems.Journal of Logic, Language, and Information,
7:265–296, 1998.

7. N.G. de Bruijn. Reflections on Automath. Eindhoven University of Technology, 1990. Also
in [16], pages 201–228.

8. A. Church. A formulation of the simple theory of types.The Journal of Symbolic Logic,
5:56–68, 1940.

9. D.T. van Daalen. A description of Automath and some aspects of its language theory. In
P. Braffort, editor,Proceedings of the Symposium APLASM, volume I, pages 48–77, 1973.
Also in [16], pages 101–126.

10. J.H. Geuvers, F. Wiedijk, J. Zwanenburg, R. Pollack, andH. Barendregt. Personal com-
munication on the ”Fundamental Theorem of Algebra” project. FTA web page available athttp : ==www:
s:kun:nl=gi=proje
ts=fta=index:html.

11. F. Kamareddine, L. Laan, and R.P. Nederpelt. Refining theBarendregt cube using parame-
ters. Fifth International Symposium on Functional and Logic Programming, FLOPS 2001,
Lecture Notes in Computer Science:375–389, 2001.

12. T. Laan.The Evolution of Type Theory in Logic and Mathematics. PhD thesis, Eindhoven
University of Technology, 1997.

13. T. Laan, R. Bloo, F. Kamareddine, and R. Nederpelt. Parameters in pure type systems. Tech-
nical Report 00-18, TUE Computing Science Reports, Eindhoven University of Technology,
2000. Available fromhttp : ==www:win:tue:nl=~bloo=parameter � report:ps:gz.

14. Twan Laan and Michael Franssen. Parameters for first order logic. Logic and Computation,
2001.

15. Z. Luo.An Extended Calculus of Constructions. PhD thesis, 1990.
16. R.P. Nederpelt, J.H. Geuvers, and R.C. de Vrijer, editors.Selected Papers on Automath. Stud-

ies in Logic and the Foundations of Mathematics133. North-Holland, Amsterdam, 1994.
17. P. Severi and E. Poll. Pure type systems with definitions.In A. Nerode and Yu.V. Matiya-

sevich, editors,Proceedings of LFCS’94 (LNCS813), pages 316–328, New York, 1994.
LFCS’94, St. Petersburg, Russia, Springer Verlag.

18. J. Terlouw. Een nadere bewijstheoretische analyse van GSTT’s. Technical report, Depart-
ment of Computer Science, University of Nijmegen, 1989.

19. R. de Vrijer. A direct proof of the finite developments theorem. The Journal of Symbolic
Logic, 50(2):339–343, 1985.

