Parameters in Pure Type Systems

Roel Bloo", Fairouz Kamareddirté, Twan Laari* *, and Rob Nederpélt

Abstract. In this paper we study the addition of parameters to typealculus
with definitions. We show that the resulting systems have pioperties and
illustrate that parameters allow for a better fine-tuningtte# strength of type
systems as well as staying closer to type systems used itiqarac theorem
provers and programming languages.

1 What are parameters?

Parameters occur when functions are only allowed to occwmwirovided with argu-

ments. As we will show below, both in mathematics and in palogming languages the
use of parameters is abundant and closely connected to ¢hef e®nstants and defi-
nitions. If we want to be able to use type systems in accomlavith practice and yet

described in a precise manner, we therefore need parametetants, and definitions
in type theory as well.

Parameters, constants and definitions in theorem provinig interesting to note that
the first tool for mechanical representation and verifigatid mathematical proofs,
AUTOMATH, already has a combined constant, definition and parametehamism
and was developed from the viewpoint of mathematicians[([@@eThe representation
of a mathematical text in BTOMATH consists of a finite list ofineswhere every line
has the formatr; : Ay,...,x, : Ay F g(x1,...,2,) =t : T. Hereg is a new name;
a constant ift is the acronym ‘primitive notion’, or an abbreviation (defion) for the
expressiont of typeT', andxy,...,z, are the parameters gf with respective types
Ai,..., A,. Use of the definitiory in the rest of the list of lines is only allowed when
g is supplied with a list of arguments, . . ., t,, (with types conforming td,, ..., 4,,
see again [7]) to be substituted for the parameteis of

We see that parameters and definitions are a very substpatiabf AUTOMATH
since each line introduces a new constant or definition wkhidhherently parame-
terizedby the variables occurring in the context needed for it. Attlevelopment of
ordinary mathematical theory in theUkOMATH system by e.g. van Benthem Jutting
(cf. [3]) revealed that this combined definition and paraanetechanism is vital for
keeping proofs manageable and sufficiently readable fordmsm

* Eindhoven University of Technology, Computing science;B&Xx 513, 5600 MB Eindhoven,
The Netherlands, emait. j . bl oo@ ue. nl
** Heriot-Watt University, dept. of Computing and Electri€aig., Edinburgh, Scotland, email:
fai rouz@ee. hw. ac. uk
*** email:t wan. | aan@vxs. nl
t Same address as Bloo, email:p. neder pel t @ ue. nl

Similar but more recent experience with the Coq proof sysied} suggests the
same necessity of parameterized definitions, and indesd,@ftthe art theorem provers
have parameter mechanisms as well.

There is another advantage to the use of parameters. Allpaity parameters of
a certain type and not the corresponding abstractions nedg giweaker type system.
This can have advantages such as a first-order system irsdtaddgher-order one, or
a simpler typecheck algorithm as has been observed for feedysten\ P— in [14].

Parameters, constants and definitions in programming laigggMost non-assembly
level programming languages have parameterized defisiismpart of the syntax. Con-
sider the Pascal definition of a function double:

function double(z: Integer): Integer;

begin

double :=z 4 z

end;

The argumen(z : Integer) is a parameter in our sense: the functiaruble can
only be used when given an argument, ed@able iS a non-abstracted function. In
ordinary A-calculus this functiorouble can only be represented by theabstraction
(Az : Int.(z + x)). This representation is unfaithful since this wéyuble is a term
on its own, of ‘higher-order character’ (it can be used witha parameter).

For an example of the use of constants, we consider the progiieg language
ML, which has the basic typemt andlist. However,list is not just an ordinary
constant. It can only be used when given an argument (whiahifen prefix in ML)
asinint list. We see thatist is in fact a parameterized constant.

1.1 Extending pure type systems with parameters, constantmd definitions

There are many other examples of the frequent use of paresrietsmathematics and
computer science, occurring in combination with both d&éins and constants. The
general framework used to describe type systems, Pure Tygier8s (PTSs, [2]), does
not possess constahtsr parameters nor does it have syntax for definitions. Tioeeef
we set out to extend pure type systems with parameters,amssand definitions in
order to better be able to describe type systems used iniggachis work is based on
the parameterized type systems of Laan in [12], althougtethee several subtle dif-
ference$in the precise definition of the system. We first discuss whék has already
been done in this direction.

Two approaches are known for extending type theory with dafirs. The first, by
Severi and Poll, extends the syntax)eferms to include definitions [17]. The second
only extends PTSs with global definitions (i.e., definitiomthe context of derivations),
and treats local definitions as ordingiyredexes [5].

! The role of unparameterized constants is usually imitateddsiables, by agreeing not to
make any abstraction over such variables. This is done imarng PTSs for the sorts andO.
Another extension of PTSs in which constants play an esdente are Modal PTSs, cf. [6].

2 Definition 1 is slightly different, the rules Gweak) and (B-weak) are now correct and we
have a different treatment of topsorts in the rules for deéins.

CPDP-PTS

/N

CPD-PTS CD-PTS

NN

CP-PTS[11] CD-PTS D?-PTS

NSNS

C-PTS D-PTS [17]

N

PTS[2]

Fig. 1. The hierarchy of parameters, constants and definitions

Both these approaches fail to model the definition of dheble function from
section 1 above, since they don't have parameterized defigitThe best they can do
is addingdouble = (Az:Int.x +) : IIz:Int.Int to the context, which clearly isn’t
in the spirit of Pascal wher@uble on its own is not a valid expression.

We shall call the extension of PTSs with unparameterizediidieins D-PTSs. In
this paper, we go one step further and introduéeRT Ss,pure type systems extended
with parameterized definitionso that we can imitat@ouble by addingdouble(z :
Int) = z + z : Int to the context. This wilhot allow the use ofiouble unless it is
provided an argument for its parameterThis is an extension of the work of [17] on
unparameterized definitions.

Orthogonally, one can extend PTSs with parameterized antssas has been stud-
ied in [11]. We shall call these system&-€TSs. Similar to the extension of PTSs with
unparameterized definitions, one might consider PTSs drttwith unparameterized
constants only (C-PTSs). Although C-PTSs are not very éstarg on their own, we
include them here for symmetry reasons.

Combining the various extensions, we obtain a hierarchtydaia be depicted as in
Figure 1.

In this paper we study the top system in Figure 1, that is, RE:&anded with pa-
rameterized constants as well as parameterized definitions

Similar to the restrictions on the formation of abstraction ordinary PTSs, it is
natural to put restrictions on the formation of parametarsvall. Although an unre-
stricted use of parameters may seem elegant from a thealrptimt of view, this is not
custom in programming languages. For instance, in manyaPascsions, parametric
termscan only have parameterstarm level Therefore, in the €DP-PTSs we study
in this paper, in a parameterized tetfp,, ..., p,) we might want to restrict its for-

mation according to the type ofp1, ..., p,) as well as according to the types of the
parameterg:, . .., py.

This paper is organized as follows:

In Section 2, we define XDP-PTSs, PTSs extended with parametric constants and defini-
tions. This section includes an extension of dheeduction of [17] to parametric definitions.

In Section 3 we extend the theory in [17] t&'0P-PTSs. We show that our extendéd
reduction (needed for unfolding definitions) add-reductions are also confluent, and that the
extended-reduction (under reasonable conditions) is strongly radizing. Then we show some
elementary properties like the Generation Lemma, and thgeSuReduction property fof4-
reduction. Finally we prove tha@d-reduction in a €D?-PTS is strongly normalizing if a slightly
stronger PTS ig-strongly normalizing.

Section 4 is devoted to comparing B”-PTSs to ordinary PTSs. We show that for a large
class of €D?-PTSs there is a natural projection into an ordinary, butrgjer, PTS.

We conclude in Section 5.

2 Extending PTSs with parametric constants and definitions

In this section, we extend Pure Type Systems (PTSs) (cfwih) parameterized con-
stants and parameterized definitions.

Pure Type Systems (PTSs) were introduced by Berardi [4] atbdw [18] as a
general framework in which many current type systems carelseribed. Though PTSs
were not introduced before 1988, many rules in PTSs are yigfilenced by rules of
known type systems like Church’s Simple Theory of Types [8] AUTOMATH (see
5.5.4. of [9]). The description of our extension of PTSs vwatirametric constants and
definitions is based on the description of PTSs in [2].

Definition 1 Let V, C and S be disjoint sets of respectively variables, constants and
sorts® The set7p of parametric termds defined together with the sét, of lists of
typed variablegnd the sel of lists of termsy:

Tp ==V I|S|C(Lr) | (TpTp) | (AV:Tp.Tp)

| (HV:TP.TP) | (C(ﬁv):TP:TPi n TP);

Ly ==& | (Ly,V:Tp); L= | {(Lr,Tp).

Instead of(--- ((&, x1:41), 2:A2) - - - 1 A,), We write (x1:A;,...,x,:4,) or
x1:A1, ..., x5:A,. A similar convention is adopted for lists of terms. In a paed-
ric term of the forme(by, . . ., by,), the subterm$,, . .. b, are called th@parameterof
the term.

Terms of the formC(Ly)=Tp:Tp i n Tp represent parametric local definitions. An
example of such a term iouble(x:Int)=(x+x):Int i N A which indicates that a
subterm ofA of the formdouble(P) is to be interpreted aB + P, and has typént.
The definition is local, that is: the scope of the definitiothistermA. Local definitions
contrast with global definitions which are given in a contéxtand refer to any term
that is considered withid™ (see Definition 5). The definition system inUAOMATH

is similar to the system of global definitions in this papeowéver, there are no local
definitions in AUTOMATH.

% Note that, in contrast to PTSs, we require the set of sortetdigjoint from the set of (para-
metric) constants.

Definition 2 Let ?:Z denote the listry: 44, ..., z,:4,,. FV(4), the set offree vari-
ablesof a parametric termd is defined as usual with the extra cases for constants and
definitions:
FV(c(ai,-..,an)) = Ui, FV(a;); and
FV(c(z:A)=A:BinC) =

Ui (FV(A) \ {21, ..., zic1 1) U (FV(A) URV(B)) \ {21, ..., 2, }) UFV(C).
We similarly defineCong A), the set ofonstants and global definitions$ A as follows:
Congs) = Congz) = 0);
Congc(ai, ..., a,)) = {c} U, Conga;);
CongAB) = Cong\z:A.B) = CongIlz:A.B) = CongA) U CongB);
Conde(z:A)=A:BinC) =

Ui, Cong4;) U CongA) UCongB) U (CongC) \ {c}).

FV(A) U Cong A) forms thedomain DonfA) of A.

We omit parentheses in parametric terms when possible. #a usPTSs (cf. [2]), we
do not distinguish terms that are equal up to renaming of Hoamiables. Moreover,
we assume the Barendregt variable convention so that nafriesuad variables and
constants will always be chosen such that they differ froenftbe ones in a term.

Definition 3 We extend the usual definition of substitution of a terrfor a variable
x in a termb, b[z:=a], to parametric terms, assuming thais not a bound variable of
eitherd or a:

c(by,...,bp)[z:=a] = c(bi[x:=aq],...,b,[x:=a]);
—
(e(2:A) = A:Bin C)[z:=a] =
c(zr:Ar[z:=al,. .., xn:Ap[z:=a]) = Alx:=a]:B[z:=a] i n C[z:=al].
Definition 4 The setCp of contextswhich we denote by, I'', ..., is given by:

Cp =@ | ({Cp,V:Tp) | (Cp,C(Ly)=Tp:Tp) | (Cp,C(Lv):Tp).
Notice thatly C Cp: all lists of variable declarations are contexts as well.
Definition 5 Let I" be a contextDeclarationsare elements of” as follows:

— x:A is avariable declaratiorwith subjectz andtype A;

— ¢(x1:By, ..., xy:By):Ais aconstant declaratiomwith subjectc (also calledporim-
itive constan), parameterscy, ..., z, andtypeA;

— ¢(z1:By,...,z,:B,)=a:A is aglobal definition (declarationjvith subjectc (also
calledglobally defined constaptparametersy, .. ., z,, definiens: andtype A.

Notation In the rest of this paper) denotes a context; : By, . . ., z,:B,, consisting of
variable declarations only. Such a context is typicallyduas a list of parameters in a
definitionc(A)=a:A. We write A; = x1:By, ..., x;—1:B;—1 fori < n. We extend the
definition of substitution to contexts in the usual way.

Definition 6 For a contextI” we defineFV(I") to be the set of subjects of variable
declarations in” andCongI") the set of subjects of constant declarations and global
definitions inI". Thedomainof I", Dom(I"), is defined a§V(I") U CongI").

In ordinary PTSs we have that, for a legal tednn a legal context”, FV(A) C FV(I').
In our C’DP-PTSs we will haveFV(A) C FV(I") andCong A) C CongIl’).

A natural condition on contexts is that all variables, ptiv@ constants and defined
constants are declared only once. Furthermore it is alsgalab require that variables
and constants are declaredforethey are being used. For this we introduce the notion
of soundcontext:

Definition 7 I € Cp is soundif variables, primitive constants and defined constants
are declared only once and It = I1,c¢(A)=a:4, I thenDom(a) U Dom(A) C
Dom(I1) U Dom(A) and fori = 1, ... ,n: Dom(B;) C Dom(I7, 4;).

The contexts occurring in the type systems proposed in thiepare all sound (see
Lemma 15). This fact will be useful when proving propertiéthese systems.

We now start a more detailed description of the top systenigarg 1, the system
with both parameterized defined constants and paramedepizmitive constants. We
define two reduction relations, namely theand 5-reduction.S-reduction is defined
as usual, and we useg, —»g, —>g, and=g as usual. As far as global definitions are
concernedg-reduction is comparable t®-reduction in AJITOMATH. This is reflected
in rule (41) in Figure 2 and Definition 8 below. But now,dareduction step can also
unfold local definitions. Therefore, two new reduction steps are intoedu Rule(§2)
removes the declaration of a local definition if there is nsifjon within its scope where
it can be unfolded (‘removal of void local definitions’). Ruld3) shows how one can
treat a local definition as a global definition, and thus hows phoblem of unfolding
local definitions can be reduced to unfolding global defimisi (‘localization of global
definitions’). Remember thal = z,:By, ... , z,:B;.

Definition 8 (é-reduction) §-reduction is defined as the smallest relatiog onCp x
Tp x Tp closed under the rulgg1), (62), (63) and the compatibility rules of Figure 2.
I' + - =5 - denotes the reflexive, symmetric and transitive closurf of - —5 -.

WhenI is the empty context, we writ@ —4 o instead ofl" - a —; a'.
Furthermore’-reduction between contexts is the smallest relationonCp x Cp
closed under the rules in Figure 3.

Before describing the typing rules foPOP-PTSs, we introduce the concepts of speci-
fication (taken from [2]) and parametric specification.

Definition 9 (Specification) A specificationis a triple (S, A, R), such thatS C C,
A CSxSandR C S x S x S. The specification is callegingly sortedif A is
a (partial) functionS — S, andR is a (partial) functionS x S — S. S is called
the set ofsorts A is the set ofaxioms and R is the set of {I-formation)rules of the
specification.

A parametric specificatios a quadrupléS, A, R, P) such that(S, A, R) is a
specification, and the set parametric rulesP C S x S. The parametric specification
is calledsingly sortedf the specificatior(S, A, R) is singly sorted.

We first give the typing rules for ordinary terms of PTSs. Tehean also be found in [2].

Definition 10 (Typing rules for ordinary terms) LetS = (S, A, R) be a specifica-
tion. The Pure Type SystemS describes in which ways judgemerits-s A : B (or

(51): Fl, C(A):CLEA, I; + C(bl, - ,bn) —6 a[z‘i::bi]?:l

¢ ¢ Congb)
I'tc(A)=a:Ainb—sb

Ie(A)=a:AFb—s b
T'Fc(A)=a:Ainb—sc(A)=a:Aind

(62): (63):

F,Al—a—n;a' F,Al—A—h;A,
T'Fce(A)=a:Ainb—;sc(A)=a"Ainb I'kc(A)=a:Ainb—sc(A)=a:A"inbd

F, AI [Bi —5 B;
I'tce(A)y=a:Ainb —s c(x1:By, ... ,xi:Bl, ... ,Zn:Bp)=a:Ainb

I'Fa—sa I'Fb—st
I'tab—sad'b 't ab—sab
IFz:AFa—sa I'tA—oz A
T'FAx:A.a =5 \x:Ad T'FAx:Aa =5 A a
Iz:AFa—sa I'FA—os A
I'tIIx:Aa —s Hx:Ad 't Iz:Aa —s Hz:A a

I'kFaj =5 a;
I'tcla,...,an) =5 c(a,...,a},...,an)

Fig. 2. Reduction rules and compatibility rules fe¥s

Fll—A—h;A, Fl,A—)(;Fl,A’
Fl,l':A,Fz 6 F1,$:A’,F2 Fl,C(A):A,Fz 6 Fl,C(A,):A, I
F1,A|—A—)5A’ Fl,Al—a—>5a'
Fl,C(A):A,Fz 6 Fl,C(A):A’,FQ Fl,C(A):a:A,Fg 6 I_'l,c(A)za’:A,I_é
Fl,A—mFl,A, F1,A|—A—)5A,
Fl,C(A)Za:A,Fg 6 Fl,c(A')za:A,F2 Fl,C(A):a:A,Fg 6 Fl,c(A)za:A',F2

Fig. 3. Rules ford-reduction on contexts

I' - A : B,ifitis clear whichsS is used) can be derived’ - A : B states thatd has
type B in contextl". AS consists of the derivation rules given in Figure 4.

A terma is legal (with respect to a certain type system) if there &re such that
eitherI'Fa:bor'+ b: ais derivable (in that type system). Similarly, a contékis
legal if there area, b such thatl” - a : b. A sorts € S is calledtopsortif there is no
context!" ands’ € S suchthatl' I s : s'.

An important class of examples of PTSs is formed by the eigt8%of the so-called
Barendregt Cube. The Barendregt Cube is a three-dimergioesentation of eight
well-known PTSs. All systems have so¥s = {x,0}, and axioms4A = {(x,0)}.
Moreover, all the systems have rule, , *). SystemA— has no extra rules, but the
other seven systems all have one or more of the Wgs, O), (O, %, x) and(O, O, O).

(axiom) () F s1:s2 (s1,82) € A
I'HA:s
I'-A:B r-cC:s
(weak) TeCFA:B @ & bom(I’)
I'HA:s; I''z:AF B : s2
(1) I'+- (IIz:A.B) : s3 (s1,52,83) € B
o0 I''e:A+-b:B I'+ (Izx:A.B):s
I' (A\z:Ab) : (IIz:A.B)
(appl) I'+F:(IIz:A.B) I'Fa:A
PP T'F Fa: Blz=a]
(conv) I'-A:B I'HB:s B=3 DB
r'-A:B
Fig. 4. Typing rules for PTSs
(CP-weak) L F0B LAY Ais oA RS Biisi (si,s) P (i=1,...,n)

Ie(A): AR b: B

I, c(A):A Iy HC° bi:Bi[xj::bj]j;ll (t=1,...,n)
I, e(A):A T, FO° Acs (if n=0)

Cp_a]
(C*-app) I, e(A):A, Ty F c(by, ... by) - Aleji=bj]i—,

Fig. 5. Typing rules for parametric constants

Now we add rules for typing parametric constants. In thetesrwe use the set of
parametric ruled? to govern which types parameters can have.

Definition 11 (Typing rules for parametric constants)Let S = (S, A, R, P) be a
parametric specification. Thgping relation-" is the smallest relation ofip x Tp x
Tp closed under the rules in Definition 10 and the rule$-(¢&ak) and (€-app) in
Figure 5. Recall that = z,:B,,...,z,:B, ands € S. The parameterized constant
in the C’-weakening rule is, due to the Barendregt variable coneantissumed to be
I'-fresh, that is¢ ¢ CongI).

At first sight one might miss a’Gintroduction rule. Such a rule, however, is not neces-
sary, as: (on its own) is not a term. A parameterized constacan only be (part of) a
term in the forme(by, . . ., by,), and such terms can be typed by tHedpplication rule.
The extra conditiody, ¢(A):A, I F€° A : s in the C-application rule fom = 0 is
necessary to prevent an empty list of premises. Such an emptf premises would
make it possible to have almost arbitrary contexts in thehkamion. The extra condition

is only needed to assure that the context in the conclusiateigal context.

(D”-weak) re?" v:B AP a:Ais 1A FP” Bis; (si,s) € P (i=1,...,n)
Ie(A)=a:AF?" b: B
Fl, c(A)za:A, I I—Dp b; : Bl[szb]];;ll (Z =]., ey n)
(D”-app) I, c(A)=a:A, I FPP a: A (if n=0)
I, e(A)=a:A, T FP7 c(br, ... by) - Alwji=b;]"_,
—_— . Dp .
(D-form) F,gg]A)—a.A F _ B:s
I't" ¢(A)=a:AinB:s
(DP-intro) Ie(A)=a:AF?" b: B 't ¢(A)=a:AinB:s
I'tP" c(A)=a:Ainb:c(A)=a:Ain B
re®v:B e B':s I'eB=B
(D?-conv) 5
re""v: 8

Fig. 6. Typing rules for parametric definitions

Note that in the (€-weak) rule it is not necessary that all theare equal: in one
application of rule (€-weak) it is possible to rely on more than one elemenPof

Remark 12 If we have a parametric constaplus(z:Int, y:Int):Int in the context,
then it is tempting to think oplusas a parametric function. Note however that in PTS-
terms it is not a function anymore since the only way to obgaiegal term with it is in

its parameterized forrplus(z, y) which has typent; plusz:Int,y:Int) itself is not

a legal term. In order to talk about propertiespifis ‘as a function’ we are forced to
consider\z: Int. \y:Int.plugz,y).

Adapting the rules from Definition 11 and the rules for deforis of [17] results in
rules forparametric definitiongby I' - a: A: swemean'Fa: Aandl'+ A : s):

Definition 13 (Typing rules for parametric definitions) The typing relation-" is
the smallest relation ofip x 7p x Tp closed under the rules in Definition 10 and those
in Figure 6, wheres € S, and the parameterized definitioerthat is introduced in the
DP-weakening rule is assumed to befresh. Again it is not necessary that all thein

the (DP-weak) rule are equal.

Definition 14 (C’DP-PTSs)LetS = (S, A, R, P) be a parametric specification. Then
FC"D” is the smallest relation ofp x Tp x Tp that is closed under the rules of

Definitions 10, 11 and 13. The’!O?-PTSA“"P”S is the system with typing relation
FePD7,

All contexts occurring in €DP-PTSs are sound (see Definition 7). ABDZ-PTSs are
clearly extensions of PTSsP@TSs and B-PTSs, then all contexts occurring in PTSs,
CP-PTSs and B-PTSs are sound.

Lemma 15 Assumd” <" b : B. Then
1. Dom(b),Dom(B) C Dom(I"); 2.1 is sound.

PROOF. We prove 1 and 2 simultaneously by induction on the dewvatf I” F¢*P*
b: B. X

In the specific case of the Barendregt Cube, the combinafid end P leads to a
refinement of the Cube, thus making it possible to classifyatype systems within one
and the same framework. This is studied in detail for PT Ssredéd with parameterized
constants (without definitions) in [11]; it is shown that tiipe systems of ATOMATH,
LF and ML can be described more naturally and accurately ithandinary PTSs.

Remark 16 LetS = (S, A, R) be a specification, and observe the parametric speci-
ficationS’ = (S, A, R, @). The fact that the set of parametric rules is empty does not
exclude the existence of definitions: it is still possibl@fiply the rules (B-weak) and
(DP-app) forn = 0. In that case, we obtain only definitions without parametensi

the rules of the parametric system reduce to the rules of & Bwith specificatiorS

as introduced by [17}.There is however one case of the rules in [17] thatB'GPTS
cannot simulate, since in rule {Bveak) we requird”, A FP° A : s which [17] does
not. Therefore, the system of [17] can abbreviate inhatdtahtopsorts which is im-
possible in the €DP-PTSs of Definition 14. We feel that abbreviating inhabisaot
topsorts is not very useful. It is however routine to check tidding an extra rule

I'tP" 5B IAFP a: A
Ie)=a:AFP"b: B

(DP-weak-top

does not change the theory of @°-PTSs developed in sections 3 and 4, and yields
exactly the same power for unparameterized definitions@a®tRTSs of [17].

3 Meta-Properties

We first list the properties of terms which are not dependéttieir being legal. How-
ever, we often demand that the free variables and constéatteom are contained in
the domain of a sound context.

First we show that-reduction is invariant under enlarging of the context ¢
weakening), then we establish a relation between substitahd— 35 (substitutivity),
then we can establish confluence ferz; and termination of—+5;. Most proofs are
similar to those of [19, 17]; more details can be found in #ehhical report [13].

Lemma 17 (—s-weakening and Substitutivity)

1. 1If <F1,F2,F3> eCp is such thaTl,Fg Fb—ys v, thenFl,FQ,Fg Fb—s b,
2. Ifa =3 ' thena[z:=b] — 3 a'[z:=D];
3. fI't a —5 d' then[[z:=b] - a[z:=b] —5 a'[z:=D];

* The parametric system with specificatiShhas a €-weakening rule while the system of [17]
does not. But the Gweakening rule can only be used for= 0, and in that case'Gweakening
can be imitated by the normal weakening rule of PTSs: a paraneenstant with zero param-
eters is in fact a parameter-free constant, and for such staoinone can use a variable as
well.

4. fI'F b —ps b thenl' F a[x:=b] —» 5 a[z:=b].
Theorem 18 (Confluence for—g, —5 and Strong Normalization for —4)

1. —gis confluent.

2. —p4 is confluent when taking contexts into accounf?iis sound,]” - a — 35 b;
andI" - a —»gs b2 then there exists a ternd such that” - b, —»3; d and
't by —»36 d.

3. =, When restricted to sound contextsand terms: with Dom(a) C Dom(I"), is
strongly normalizing, i.e. there are no infinidereduction paths.

Without the restriction to sound contextsand terms: with Dom(a) € Dom(I"), we
do not even have weak normalization: consifiee (c()=d():A,d()=c():A). The term
c() does not have &-normal form.

3.1 Properties of Legal terms

The properties in this section are proved forlafialterms, i.e. for terms for which
there ared, I" such thatl” F€“P” @ : A or I' F€"P” A : a. The main property we
prove is that strong normalization of a PTS is preserved loyateextensions.

Many of the standard properties of PTSs in [2] hold f&iD2-PTSs as well. In the
same way as in [2], we can prove the following theorem:

Theorem 19 Let S be a parametric specification. The type systgm?’S has the
following properties®
1) Substitution Lemma,; 2) Correctness of Types; 3) Subjedu&tion (for—ss).
4) If S is singly sorted then”P” S has Uniqueness of Types.

The Generation Lemma is extended with two extra cases:
Lemma 20 (Generation Lemma, extension)

1. I FC"P? ¢(by,...,b,) : D then there exist sod, A = z,:B,...,z,:B, and
term A such thatl” - D =g5 Afz;:=b;]l,, andI" F9"P" b; : Bi[z;:=b;]iZ}.
Besides we have one of these two possibilities:I{ay= (I1,c(A):A,) and
N,AFC"P" A:s;0r(b) I = (I, c(A)=a:A, Iy and I, A FE'P" g . A : s
for some sort;

2. f T FC"P% ¢(A)=a:Ai nb: D then either we have (a) or (b) below:

@) Ie(A)=a:AFC"P" b B, I P (¢(A)=a:Ain B):sandl'+ D =gs
c¢(A)=a:Ain B;
(b) Ie(A)=a:AFC"P" b:sandl" - D =45 s.

Also Correctness of Contexts has some extra cases companeddl PTSs. Recall that
I is legalif there areb, B such thatl” F¢"P" b : B.

® Substitution Lemma: i’z : A, A b: Bandl' - a : Athenalsal’, Alz := a] F bz :=
a] : B[z := a]. Correctness of Types: I - a : AthenI' - A : s for some sorts or A is a
topsort. Subject Reduction: If - a : A anda —4s o’ then alsal” F a’ : A. Uniqueness of
Types:ifl'+a: Aandl' Fa: Bthenl' F A =5 B.

Lemma 21 (Correctness of Contexts)

1. If I',z:A, I'" is legal then there exists a sarsuch thatl” F¢"P" A : s;
2. IfI',e(A):A, I is legal thenl, A FC7P” A : s;
3. f I c(A)=a:A, I'" is legal thenl, A FC"P” ¢ : A - s.

Now we prove that\®’ P’ S is 3é-strongly normalizing if a slightly larger PTSS’
is B-strongly normalizing. We follow the idea of [17] for PTSsterded with only
definitions; the extension is tedious but fairly routine.

For legal termsz € Tp in a contextl”, we define a lambda terru|| ~ without
definitions and without parametersais typable in a EDP-PTSAC"P*S, then||a|| -
will be typable in a PTS\S’, whereS’ is a so-calleccompletion(see Definition 24)
of the specificatio5. Moreover, we take care thatdf —3 o', then||a|| - —fg lla"||
(that is:||al|» —3 ||a|| and||a|| # ||a'||;-). Together with strong normalization of
d-reduction (Theorem 18.3), this guarantees tfat”” S is 4é-strongly normalizing
whenevenS’ is -strongly normalizing.

Definition 22 Fora € Tp andI’ € Cp we define||al| . as in [17], but with the extra
cases:

||c(b17"'7bn)||F =

N2y iz Bieall 101l oo - ([bnll I I'=(11, c(A)=a:A, I3);
clIbrll -+ 1ball- otherwise;
le(A)=a:A i nbll = (AT 2B Allp)- I8l 1o ay—asa) N @32 Bicall

Note: constants iff p are translated to similarly named variables\ktalculus without
definitions and parameters.

We now show thaf_|| translates @-reduction into zero or morg-reductions, and
that it translates &-reduction into one or morg-reductions.

Lemma 23 Let " be sound, and assume Dam C Dom(I"). The following holds:
If '+ a =5 bthen|lal| . =5 [|b]l,-. Similarly: If a —5 b then|lal| . =% [[b]] -

Definition 24 The specificatios = (S, A, R) is calledquasi fullif for all s, s2 € S
there exists; € S such thafsy, s2, s3) € R.

A specificationS’ = (S’, A’, R') is acompletionof a parametric specificatio =
(S,A,R,P)if SC S',AC A’,andR C R/, S' is quasi full, andvs € S3s' €
S'[(s,s") € A"].5

Theorem 25 LetS = (S, A, R, P) andS’' = (S', A, R') be such thatS’ is a com-
pletion ofS. If I" FE"P" a : Athen||I'|| ks [lall,- : || Al -

Using Theorem 18.3, Lemma 23 and Theorem 25, we can now proveoomalization
result for @DP-PTSs.

Theorem 26 LetS = (S, A, R, P) andS' = (S§', A, R) be such thatS’ is a com-
pletion ofS. If the PTS\S' is -strongly normalizing, then the*DP-PTSAC P’ S is
B4d-strongly normalizing.

8 Note that there are no requirements Brin the definition of completion.

Since ECC of [15] is3-strongly normalizing and is a completion of all systemshaf t
extended\-cube, Theorem 26 guarantees that all extended systems af¢hbe are
Bd-strongly normalizing. Note thatC' itself is not a completion since it has a topsort
O.

4 Comparison of ’DP-PTSs with D-PTSs

In this section we show that the parameter mechanisn? DP€PTSs can be seen as a
system for abstraction and application that is weaker thar\tcalculus mechanism.
We will make this precise by proving (in Theorem 31) that’d€-PTS with parametric
specificationS, A, R, @) is as powerful as any®”-PTS with parametric specifica-
tion (S, A, R, P) for which (s1,s2) € P implies (s1, s2,s2) € R. We call such a
CPDP-PTSparametrically conservativeeach €DP-PTS withP C S x S can be ex-
tended to a parametrically conservative one by takingatemetric closure

Definition 27 LetS = (S, A, R, P) be a parametric specificatiafi.is parametrically
conservativef for all s1,s, € S, (s1,52) € P implies(sy, s2,52) € R.

cL(S), theparametric closuref S, is defined agS, A, R, P), whereR' = RU
{(81,82,82) | S1,82 € S and(81,82) € P}

Lemma 28 LetS be a parametric specification. The following holds:
1. cL(S) is parametrically conservative; and 2L(CL(S)) = CL(S).

LetS = (S, A, R, P) be a parametric specification. & is parametrically conser-
vative, then each parametric rule;, s») of S has a corresponding -formation rule
(s1,s2,s2). We show that thidI-formation rule can indeed take over the role of the
parametric rulgsy, s2). This means thaf has the same ‘power’ (see Theorem 31) as
(S, A, R,). This even means that has the same power as the D-PTS with speci-
fication (S, A, R). In order to comparé = (S, A, R, P) with S’ = (S, A, R, 9),

we need to remove the parameters from the synta¥6f" S. This can be obtained as
follows:

— The parametric application in a tere, , . . . , b,) is replaced by a function appli-
cationcb; - - - by,;

— A local parametric definition is translated by a parameteefocal definition, and
the parameters are replaced yabstractions;

— A global parametric definition is translated by a paramétee-global definition,
and the parameters are replaced\sgbstractions.

This leads to the following definitions (which can be exteshttecontexts in the obvious
way):

Definition 29 We define the parameter-free translat{oh of a termt € 7p inductively
as follows:

{a} =aifa=zora=s; {c(b,...,bn)}=c{bi}---{bn}; {ab}={a}{b};
{0z:A.B} = Ox: {A} . {B} if Ois\orll;

{c(A)=a:Ainb} =c={\Aa}:{[]A.A} i n {b}.

The mapping{-} maintains3-reduction. Aé-reduction is translated into&reduction
followed by zero or morg-reductions. Thesé-reductions take over thesubstitutions
that are needed infreductionc(by, . .., b,) —5 a[z;:=b;];-, . Note that the restriction
on the formation of parameters induced by the parametrasiBIprevents the creation
of illegal abstractiongl A. A with A a topsort.

Lemma 30 1. Fora,b € Tp: {a[z:=b]} = {a} [x:={b}];

2. Ifa =g d' then{a} =} {d'};

3. If I' - a —; o' then there is1” such that{I"} - {a} =} o —»5 {a'};
4. fI't a —»p5 o’ then{I'} - {a} —»35 {a'}.

Now we show that the parameter-free translajohembeds the TD?-PTS with para-
metric specificatios = (S, A, R, P) in the @DP-PTS with parametric specification
S'=(S,A, R, o), provided thatS is parametrically conservative.

Thus we can conclude that the (restrictive) use of parametees not yield a
stronger type system than using abstraction, applicatidruaparameterized constants
and definitions only.

Theorem 31 LetS = (S, A, R, P) be a parametric specification. Assume tlsais
parametrically conservative. Le&t’ = (S, A, R, @). ThenI’ F$"P" a : A implies

{r}yrgP {a} - {A}.
PROOF: Induction on the derivation af " a : A. X

Since unparameterized constants can be mimicked by dedigatiables, Theorem 31
can be paraphrased as §fandS’ are parametric specifications such ti¥ats cL(S)
with P replaced byz, then type derivations in®“”” S can be mapped to type deriva-
tions in the D-PTS\S"".

Now [17] shows that type derivations in a D-PXS’ can be mapped to type deriva-
tions in the PTS which is a completion of the D-PTS. We conelildht parametrically
conservative €DP-PTSs are conservative extensions of PTSs.

Note however that, in order to mimic type derivations\i’ ** S in a PTS, we need
to strengthen the system twice: first by considering thematsdc closure and then by
considering a completion of the D-PTS.

5 Conclusion

In recent literature, extensions of Pure Type Systems witbarameterizedefinitions
and with parameterized constants have been proposed. ldgwmrameterized con-
stants and definitions are required for PTSs in order to hialsigifor studying semantics
and implementations of theorem provers and programmirguages and for reasoning
about mathematics, since these all depend heavily on thef pseameterized constants
as well as parameterized definitions.

In this paper we studied an extension of PTSs with both paenmed constants and
parameterized definitions. Extending the existing theogysivowed that our extension
has all the desired properties and yields well-behavedsypeems.

References

[EY

10.

11.

12.

13.

14.

15.
16.

17.

18.

19.

. S. Abramsky, Dov M. Gabbay, and T.S.E. Maibaum, editdesdbook of Logic in Computer
Science, Volume 2: Background: Computational Structu@sdord University Press, 1992.
H.P. Barendregt. Lambda calculi with types. In [1], pat®8-309. Oxford University Press,
1992.

L.S. van Benthem JuttingChecking Landau’s “Grundlagen” in the Automath systefhD
thesis, Eindhoven University of Technology, 1977. Puldishs Mathematical Centre Tracts
nr. 83 (Amsterdam, Mathematisch Centrum, 1979).

S. Berardi. Towards a mathematical analysis of the Cadpliret calculus of constructions
and the other systems in Barendregt’s cube. Technical tiePept. of Computer Science,
Carnegie-Mellon University and Dipartimento Matematidajversita di Torino, 1988.

R. Bloo, F. Kamareddine, and R. Nederpelt. The Barendtedpe with Definitions and
Generalised Reductiofnformation and Computatiqri26(2):123-143, 1996.

V.A.J. Borghuis. Modal Pure Type Systendsurnal of Logic, Language, and Information
7:265-296, 1998.

N.G. de Bruijn. Reflections on Automath. Eindhoven Ursigrof Technology, 1990. Also
in [16], pages 201-228.

A. Church. A formulation of the simple theory of type$he Journal of Symbolic Logic
5:56-68, 1940.

D.T. van Daalen. A description of Automath and some aspefits language theory. In
P. Braffort, editor,Proceedings of the Symposium APLAS#®Iume |, pages 48-77, 1973.
Also in [16], pages 101-126.

J.H. Geuvers, F. Wiedijk, J. Zwanenburg, R. Pollack, EndBarendregt. Personal com-
munication on the "Fundamental Theorem of Algebra” projd€tA web page available at
http: //www.cs.kun.nl/gi/projects/fta/index.html.

F. Kamareddine, L. Laan, and R.P. Nederpelt. Refinin@@trendregt cube using parame-
ters. Fifth International Symposium on Functional and Logic Feomgming, FLOPS 2001
Lecture Notes in Computer Science:375-389, 2001.

T. Laan.The Evolution of Type Theory in Logic and MathematiB$D thesis, Eindhoven
University of Technology, 1997.

T. Laan, R. Bloo, F. Kamareddine, and R. Nederpelt. Patensiin pure type systems. Tech-
nical Report 00-18, TUE Computing Science Reports, Eindhdyniversity of Technology,
2000. Available fronhttp : //www.win.tue.nl/"bloo/parameter — report.ps.gz.

Twan Laan and Michael Franssen. Parameters for first togee. Logic and Computation
2001.

Z. Luo. An Extended Calculus of ConstructiorhD thesis, 1990.

R.P. Nederpelt, J.H. Geuvers, and R.C. de Vrijer, eslifelected Papers on Automa8tud-
ies in Logic and the Foundations of Mathematl&3 North-Holland, Amsterdam, 1994.

P. Severi and E. Poll. Pure type systems with definitionsA. Nerode and Yu.V. Matiya-
sevich, editorsProceedings of LFCS'94 (LNC8&L3), pages 316-328, New York, 1994.
LFCS'94, St. Petersburg, Russia, Springer Verlag.

J. Terlouw. Een nadere bewijstheoretische analyse &ITG. Technical report, Depart-
ment of Computer Science, University of Nijmegen, 1989.

R. de Vrijer. A direct proof of the finite developmentsdheam. The Journal of Symbolic
Logic, 50(2):339-343, 1985.

