Intersection Type System with de Bruijn Indices

Daniel Lima Ventura ${ }^{1 *}$ and Mauricio Ayala-Rincón ${ }^{1 \dagger}$ and Fairouz Kamareddine ${ }^{2}$
${ }^{1}$ Grupo de Teoria da Computação, Dep. de Matemática Universidade de Brasília, Brasília D.F., Brasil
${ }^{2}$ School of Mathematical and Computer Sciences
Heriot-Watt University, Edinburgh, Scotland
\{ventura, ayala\}@mat.unb.br, fairouz@macs.hw.ac.uk

September 30, 2008

Abstract

The λ-calculus in de Bruijn notation avoids α-conversion using indices instead of variable names. Intersection types provide finitary type polymorphism and characterise normalisable λ-terms, that is a term is normalisable if and only if it is typable. To be closer to computations and to simplify the formalisation of the atomic operations involved in β-contractions several calculi of explicit substitution were developed and most of them are written in de Bruijn notation. Versions of explicit substitutions calculi without types and with simple type systems are well investigated in contrast to versions with more elaborated type systems such as intersection types. Besides the application in real implementations, the study of a system's de Bruijn version is of interest in proof theory, since the type-contexts, usually treated as sets, are changed to sequences. As a first step, a λ-calculus in de Bruijn notation with an intersection type system is introduced in this work and it is proved that this system satisfies the subject reduction property, that is typed λ-terms preserve theirs types under β-reduction. The proof of subject reduction is done in a standard way, through a generation and substitution lemmas. For doing this, the proper definition of free index is given and properties corresponding to the ones in λ-calculus with names related to free variables are proved.

1 Introduction

The λ-calculus à la de Bruijn [dB72] was introduced by the Dutch mathematician N.G. de Bruijn in the context of the project Automath [NGdV94], one of the leading projects on automated deduction which still influences modern proof assistants [Kam03]. Variables are represented by indices instead of names, assembling each α-class of terms in the λ-calculus with names in a unique term in de Bruijn notation. Despite there is a common sense that de Bruijn notation is unreadable, it is machine-friendly and has been adopted for several calculi

[^0]of explicit substitutions (e.g. [dB78], [ACCL91], [KR95]) in which operations related to β-reductions are atomized in order to create calculi closer to actual implementations of the λ-calculus. Type free and simply typed versions of the λ-calculus as well as of these calculi of explicit substitutions have been investigated, but to the best of our knowledge there is no work on more elaborated type systems for these calculi in de Bruijn notation.

In this paper a version of the λ-calculus in de Bruijn notation with an intersection types system is introduced. Intersection types were introduced to provide a characterization of strongly normalizing λ-terms [CDC78, CDC80, Pot80]. In programming, the intersection type discipline is of interest because λ-terms not typable in the standard Curry type assignment system ([CF58]) or in extensions allowing some sort of polymorphism, as the one present in programming languages such as ML ([Mil78]), are typable with intersection types. For instance, $\lambda x .(x x)$ is typable, assigning two different types to $x(x: \sigma \rightarrow \varphi \cap \sigma)$. The intersection type system presented in [BCDC83] is closed under β-equality, a property that does not hold for simply typed systems. However, the typability problem (Given a λ-term t, is there a context Γ and a type σ such that $\Gamma \vdash t: \sigma$?), decidable in the Curry type assignment system, is undecidable in [BCDC83]. This is a consequence of the fact that all terms having normal form can be characterized by their assignable types. In [CW04] Carlier and Wells presented the exact correspondence between the inference mechanism for their intersection type system and β-reduction. They introduce expansion variables to perform Expansion, a operation used during type inference (see [CW04.2]).

The type system in this paper is based on the one given in [KN07]. The version in de Bruijn notation is proved to preserve subject reduction, that is the property of preserving types under β-reduction: whenever $\Gamma \vdash t: \sigma$ and t β-reduces into $s, \Gamma \vdash s: \sigma$.

Section 2 presents the λ-calculus in de Bruijn notation and introduces the formal definition of free index, giving some lemmas about syntactic properties regarding update of free indices (free variables), substitution and β-reduction. In section 3 the intersection type system is introduced and properties about shape of type and contexts (an ordered environment) are presented, analogue to the ones given in [KN07]. Section 4 proves the property of subject reduction, following the standard sketch proving a generation and substitution lemmas. Finally, we conclude talking about future work.

2 The type free calculi

2.1λ-calculus in de Bruijn notation

Definition 1 (Set $\left.\Lambda_{d B}\right)$. The syntax of the λ-calculus in de Bruijn notation, the $\lambda d B$-calculus, is defined inductively by:

Terms $\quad M::=\underline{n}|(M M)| \lambda . M$ where $n \in \mathbb{N}^{*}=\mathbb{N} \backslash\{0\}$
Definition 2. 1. We define $F I(M)$, the set of free indices of $M \in \Lambda_{d B}$, by:

$$
\begin{aligned}
F I(\underline{n}) & =\{\underline{n}\} \\
F I(\lambda \cdot M) & =\{\underline{n-1}, \forall \underline{n} \in F I(M), n>1\} \\
F I\left(M_{1} M_{2}\right) & =F I\left(M_{1}\right) \cup F I\left(M_{2}\right)
\end{aligned}
$$

2. A term M is called closed if $F I(M) \equiv \emptyset$.
3. The greatest value of a free index in M, denoted by $\sup (M)$, is defined by:

$$
\sup (M)= \begin{cases}0 & \text { if } F I(M) \equiv \emptyset \\ n \text { where } \underline{n} \in F I(M) \text { and } n \geq i, \forall \underline{i} \in F I(M) & \text { otherwise }\end{cases}
$$

Lemma 1. 1. $\sup \left(M_{1} M_{2}\right)=\max \left(\sup \left(M_{1}\right), \sup \left(M_{2}\right)\right)$.
2. If $\sup (M)=0$, then $\sup (\lambda \cdot M)=0$. Otherwise, $\sup (\lambda \cdot M)=\sup (M)-1$.

Proof. 1. If $\sup \left(M_{1} M_{2}\right)=0$, nothing to prove. Otherwise, $\sup \left(M_{1} M_{2}\right)=n$, where $n \geq i, \forall \underline{i} \in F I\left(M_{1} M_{2}\right)=F I\left(M_{1}\right) \cup F I\left(M_{2}\right)$ and $\underline{n} \in F I\left(M_{1}\right)$ or $\underline{n} \in F I\left(M_{2}\right)$. Suppose, w.l.o.g., that $\underline{n} \in F I\left(M_{1}\right)$. Hence, $n \geq \sup \left(M_{1}\right)$ and $\sup \left(M_{1}\right) \geq n$, thus, $n=\sup \left(M_{1}\right)$ and $n \geq \sup \left(M_{2}\right)$.
2. If $\sup (M)=0$, then $F I(\lambda \cdot M)=F I(M)=\emptyset$, hence, $\sup (\lambda \cdot M)=0$. Let $\sup (M)=m>0$. Hence, $m \geq i, \forall \underline{i} \in F I(M)$ and $\underline{m} \in F I(M)$. If $m=1$, then $F I(M)=\{\underline{1}\}$, thus, $F I(\lambda . M)=\emptyset$ and $\sup (\lambda . M)=0$. Otherwise, $F I(\lambda . M)=\{\underline{n-1}, \forall \underline{n} \in F I(M), n>1\}$. Thus, $\underline{m-1} \in F I(\lambda . M)$ and $m-1 \geq i-1, \forall \underline{i-1} \in F I(\lambda . M)$.

Terms like $\left(\left(\ldots\left(\left(M_{1} M_{2}\right) M_{3}\right) \ldots\right) M_{n}\right)$ are written as $\left(M_{1} M_{2} \ldots M_{n}\right)$, as usual. The β-contraction definition in this notation needs a mechanism which detects and updates free indices of terms. It follows an operator similar to the one presented in [ARK01].
Definition 3. Let $M \in \Lambda_{d B}$ and $i \in \mathbb{N}$. The \boldsymbol{i}-lift of M, denoted as M^{+i}, is defined inductively by:

$$
\begin{array}{ll}
\text { 1. }\left(M_{1} M_{2}\right)^{+i}=\left(M_{1}^{+i} M_{2}^{+i}\right) & \text { 3. } \underline{n}^{+i}=\left\{\begin{array}{ll}
\frac{n+1}{n}, & \text { if } n>i \\
\text { 2. }\left(\lambda \cdot M_{1}\right)^{+i}=\lambda \cdot M_{1}^{+(i+1)} & \text { if } n \leq i .
\end{array} . . . ~\right.
\end{array}
$$

The lift of a term M is its 0 -lift, denoted by M^{+}. Intuitively, the lift of M corresponds to an increment by 1 of all free indices occurring in M. The next lemma states general relations between the i-lift and the free indices of M.

Lemma 2. 1. If $i \geq \sup (M)$, then $M^{+i} \equiv M$.
2. $F I\left(M^{+i}\right)=\{\underline{n} \mid \underline{n} \in F I(M), n \leq i\} \cup\{\underline{n+1} \mid \underline{n} \in F I(M), n>i\}$.
3. If $\sup (M)>i$, then $\sup \left(M^{+i}\right)=\sup (M)+1$.
4. If $\sup (M) \leq i$, then $\sup \left(M^{+i}\right)=\sup (M)$.

Proof. 1 and 2: By induction on the structure of M.
3: If $\sup (M)=m$, then $m \geq n, \forall \underline{n} \in F I(M)$ and $\underline{m} \in F I(M)$. Since $m>i$, by lemma $2.2, \underline{m+1} \in F I\left(M^{+i}\right)$ and $\forall j \in F I\left(M^{+i}\right)$, either $j=n$ or $j=n+1$, where $\underline{n} \in F I(M)$. One has $m+1 \geq n+\overline{1}>n, \forall \underline{n} \in F I(M)$, thus, $m+1 \geq j, \forall \underline{j} \in$ $F I\left(M^{+i}\right)$.
4: From lemma 2.1, $M^{+i} \equiv M$, thus, $\sup \left(M^{+i}\right)=\sup (M)$.
Using the i-lift, we are able to present the definition of the substitution used by β-contractions, similarly to the one presented in [ARK01].
Definition 4. Let $m, n \in \mathbb{N}^{*}$. The β-substitution for free occurrences of \underline{n} in $M \in \Lambda_{d B}$ by term N, denoted as $\{\underline{n} / N\} M$, is defined inductively by

1. $\{\underline{n} / N\}\left(M_{1} M_{2}\right)=\left(\{\underline{n} / N\} M_{1}\{\underline{n} / N\} M_{2}\right) \quad$ 3. $\{\underline{n} / N\} \underline{m}=\left\{\begin{array}{ll}\underline{m-1}, & \text { if } m>n \\ \text { 2. }\{\underline{n} / N\} \lambda \cdot M_{1}=\lambda .\left\{\underline{n+1} / N^{+}\right\} M_{1} & \text { if } m=n \\ \underline{m}, & \text { if } m<n\end{array}, l\right.$

Observe that in item 2 of Def. 4, the lift operator is used to avoid captures of free indices in N. We present the β-contraction as defined in [ARK01].
Definition 5. β-contraction in $\lambda d B$ is defined by $(\lambda . M N) \rightarrow_{\beta}\{\underline{1} / N\} M$.
Notice that item 3 in Definition 4, for $n=1$, is the mechanism which does the substitution and updates the free indices in M as consequence of the lead abstractor elimination.

Lemma 3. 1. If $\underline{i} \notin F I(M)$, then

$$
F I(\{\underline{i} / N\} M)=\{\underline{n} \mid \underline{n} \in F I(M), n<i\} \cup\{\underline{n-1} \mid \underline{n} \in F I(M), n>i\} .
$$

2. Otherwise,

$$
F I(\{\underline{i} / N\} M)=F I(N) \cup\{\underline{n} \mid \underline{n} \in F I(M), n<i\} \cup\{\underline{n-1} \mid \underline{n} \in F I(M), n>i\} .
$$

3. If $i>\sup (M)$, then $\{\underline{i} / N\} M \equiv M$.

Proof. By induction on the structure of M.
In particular, if $F I(M)=\{\underline{i}\}$, then $\{\underline{n} \mid \underline{n} \in F I(M), n<i\} \equiv \emptyset$ and $\{\underline{n-1} \mid \underline{n} \in$ $F I(M), n>i\} \equiv \emptyset$, thus, $F I(\{\underline{i} / N\} M)=F I(N)$.
Corollary 1. If $\underline{1} \in F I(M)$, then $F I(\{\underline{1} / N\} M)=F I(\lambda . M N)$. Otherwise, $F I(\{\underline{1} / N\} M)=F I(\lambda . M)$.
Lemma 4. Let M be a term such that $\sup (M)=m$:

1. If $i<m$ and $\underline{i} \notin F I(M)$, then $\sup (\{\underline{i} / N\} M)=m-1$.
2. If $i>m$, then $\sup (\{\underline{i} / N\} M)=m$.
3. Suppose $\underline{i} \in F I(M)$. If $F I(M)=\{\underline{i}\}$, then $\sup (\{\underline{i} / N\} M)=\sup (N)$. Otherwise, $\sup (\{\underline{i} / N\} M)=\max (\sup (N), m-1)$.
Proof. 1. One has that $m \geq n, \forall \underline{n} \in F I(M)$ and $\underline{m} \in F I(M)$. Since $m>i$, by lemma 3.1, $\underline{m-1} \in F I(\{\underline{i} / N\} M)$ and $\forall \underline{j} \in F \bar{I}(\{\underline{i} / N\} M)$, either $j=n<i$ or $j=n-1$, where $\underline{n} \in F I(M)$. Thus, $m-1 \geq n-1 \geq i, \forall \underline{n} \in F I(M)$ such that $n>i$, hence, $m-1 \geq j, \forall \underline{j} \in F I(\{\underline{i} / N\} M)$.
4. If $i>m$, then, by lemma $3.3,\{\underline{i} / N\} M \equiv M$, thus, $\sup (\{\underline{i} / N\} M)=$ $\sup (M)$.
5. By lemma 3.2 one has $F I(\{\underline{i} / N\} M)=F I(N) \cup A$, where $A \equiv\{\underline{n} \mid \underline{n} \in$ $F I(M), n<i\} \cup\{\underline{n-1} \mid \underline{n} \in F I(M), n>i\}$. If $F I(M)=\{\underline{i}\}$, then $A \equiv \emptyset$, thus $F I(\{\underline{i} / N\} M)=F I(N)$. Otherwise, A is not empty and, similarly to case 1 , one has that $m-1 \geq j, \forall \underline{j} \in A$.

Lemma 5. $\sup (\{\underline{1} / N\} M) \leq \sup (\lambda \cdot M N)$.
Proof. If $\underline{1} \in F I(M)$, then $\sup (\{\underline{1} / N\} M)=\sup (\lambda . M N)$. Otherwise, one has two possibilities. If $\sup (M)=0$, then, by lemma $4.2, \sup (\{\underline{1} / N\} M)=$ $0 \leq \max (0, \sup (N))=\sup (\lambda \cdot M N)$. If $\sup (M)>1$, then, by lemma 4.1, $\sup (\{\underline{1} / N\} M)=\sup (M)-1=\sup (\lambda \cdot M) \leq \max (\sup (\lambda \cdot M), \sup (N))$.
Definition 6. β-reduction in $\lambda d B$ is defined by:

$$
\begin{array}{cc}
\frac{(\lambda . M N) \rightarrow_{\beta}\{\underline{1} / N\} M}{(\lambda . M N) \longrightarrow_{\beta}\{\underline{1} / N\} M} & \frac{M \longrightarrow_{\beta} N}{\lambda . M \longrightarrow_{\beta} \lambda . N} \\
\frac{M_{1} \longrightarrow_{\beta} N_{1}}{\left(M_{1} M_{2}\right) \longrightarrow_{\beta}\left(N_{1} M_{2}\right)} & \frac{M_{2} \longrightarrow_{\beta} N_{2}}{\left(M_{1} M_{2}\right) \longrightarrow_{\beta}\left(M_{1} N_{2}\right)}
\end{array}
$$

Theorem 1. If $M \longrightarrow \beta$ then $F I(N) \subseteq F I(M)$ and $\sup (N) \leq \sup (M)$.
Proof. By induction on the derivation $M \longrightarrow_{\beta} N$.

- If $M \equiv\left(\lambda . M_{1} M_{2}\right)$, then $N \equiv\left\{\underline{1} / M_{2}\right\} M_{1}$ and, by corollary 1 , $F I\left(\{\underline{1} / N\} M_{1}\right) \subseteq F I\left(\lambda . M_{1} M_{2}\right)$.
- Let $M \equiv\left(M_{1} M_{2}\right)$ and $N \equiv\left(M_{1} N_{2}\right)$, where $M_{2} \longrightarrow_{\beta} N_{2}$, then, by $\mathrm{IH}, F I\left(N_{2}\right) \subseteq F I\left(M_{2}\right)$. Thus, $F I(N)=F I\left(M_{1}\right) \cup F I\left(N_{2}\right) \subseteq F I\left(M_{1}\right) \cup$ $F I\left(M_{2}\right)=F I(M)$.
- Case $M \equiv\left(M_{1} M_{2}\right)$ and $N \equiv\left(N_{1} M_{2}\right)$, where $M_{1} \longrightarrow_{\beta} N_{1}$, is similar.
- If $M \equiv \lambda . M^{\prime}$, then $N \equiv \lambda . N^{\prime}$, where $M^{\prime} \longrightarrow_{\beta} N^{\prime}$. By IH, $F I\left(N^{\prime}\right) \subseteq$ $F I\left(M^{\prime}\right)$, hence, $\forall \underline{n} \in F I\left(N^{\prime}\right), \underline{n} \in F I\left(M^{\prime}\right)$. Thus, $\forall \underline{n-1} \in F I\left(\lambda . N^{\prime}\right)$, $\underline{n-1} \in F I\left(\lambda . M^{\prime}\right)$.

3 The Type System

Definition 7. 1. Intersection types are defined by:

$$
\mathbb{T}::=\mathcal{A}|\mathbb{U} \rightarrow \mathbb{T} \quad \mathbb{U}::=\omega| \mathbb{U} \sqcap \mathbb{U} \mid \mathbb{T}
$$

The types are quotiented by taking \sqcap to be commutative, associative, idempotent and to have ω as neutral.
2. Contexts are ordered lists of types $U \in \mathbb{U}$, defined by: $\Gamma::=$ nil \mid U. Γ

Let Γ be some context and $n \in \mathbb{N}$. Then $\Gamma_{<n}$ denotes the first $n-1$ types of Γ. Similarly we define $\Gamma_{>n}, \Gamma_{\leq n}$ and $\Gamma_{\geq n}$. Note that, for $\Gamma_{>n}$ and $\Gamma_{\geq n}$ the final nil element is included. For $n=0, \Gamma_{\leq 0} . \Gamma=\Gamma_{<0} . \Gamma=\Gamma$. The i-th element of Γ is denoted by Γ_{i}. The length of Γ is defined as \mid nil $\mid=0$ and, if Γ is not nil, $|\Gamma|=1+\left|\Gamma_{>1}\right|$. For any $i>m=|\Gamma|$, let $\Gamma_{\geq i}=\Gamma_{>i}=\Gamma_{>m}$ and $\Gamma_{\leq i}=\Gamma_{<i}=\Gamma_{\leq m}$.
For a term M, we denote env ${ }_{\omega}^{M}$ the context Γ such that $|\Gamma|=\sup (M)$ and $\Gamma=\omega . \omega . \cdots . \omega . n i l$.
The extension of \sqcap for contexts is done by nil $\sqcap \Gamma=\Gamma \sqcap$ nil $=\Gamma$ and $\left(U_{1} \cdot \Gamma\right) \sqcap\left(U_{2} . \Delta\right)=\left(U_{1} \sqcap U_{2}\right) .(\Gamma \sqcap \Delta)$. Hence, \sqcap is commutative, associative and idempotent on contexts.

Some properties over contexts follow from the above definitions.
Lemma 6. Let Γ and Δ be contexts, where neither Γ nor Δ are nil:

1. If $|\Gamma| \geq \sup (M)$, then $\Gamma \sqcap e n v_{\omega}^{M}=\Gamma$
2. $\Gamma \sqcap \Delta=\left(\Gamma_{1} \sqcap \Delta_{1}\right) \cdot\left(\Gamma_{>1} \sqcap \Delta_{>1}\right)$
3. If $i \leq|\Gamma|,|\Delta|$, then $(\Gamma \sqcap \Delta)_{i}=\Gamma_{i} \sqcap \Delta_{i}$.
4. $(\Gamma \sqcap \Delta)_{<i}=\Gamma_{<i} \sqcap \Delta_{<i}$ and $(\Gamma \sqcap \Delta)_{>i}=\Gamma_{>i} \sqcap \Delta_{>i}$. The same for $(\Gamma \sqcap \Delta)_{\leq i}$ and $(\Gamma \sqcap \Delta)_{\geq i}$.
5. $|\Gamma \sqcap \Delta|=\max (|\Gamma|,|\Delta|)$.

Definition 8. The typing rules are given as follows:

$$
\begin{array}{lc}
\frac{M:\langle n i l \vdash T\rangle}{\underline{1}:\langle T \cdot n i l \vdash T\rangle} \text { var } & \frac{{ }^{\prime}}{\lambda . M:\langle n i l \vdash \omega \rightarrow T\rangle}{ }_{i}^{\prime} \\
\frac{\underline{n}:\langle\Gamma \vdash U\rangle}{\underline{n+1}:\langle\omega \cdot \Gamma \vdash U\rangle} \operatorname{varn} & \frac{M_{1}:\langle\Gamma \vdash U \rightarrow T\rangle \quad M_{2}:\left\langle\Gamma^{\prime} \vdash U\right\rangle}{M_{1} M_{2}:\left\langle\Gamma \sqcap \Gamma^{\prime} \vdash T\right\rangle} \rightarrow_{e} \\
\frac{M:\left\langle\Gamma \vdash U_{1}\right\rangle \quad M:\left\langle\Gamma \vdash U_{2}\right\rangle}{M:\left\langle e n v_{\omega}^{M} \vdash \omega\right\rangle} \sqcap_{i} \\
\frac{M:\left\langle\Gamma \vdash U_{1} \sqcap U_{2}\right\rangle}{\lambda . M:\langle\Gamma \vdash U \vdash T\rangle} \rightarrow_{i} & \frac{M:\langle\Gamma \vdash U\rangle\langle\Gamma \vdash U\rangle \sqsubseteq\left\langle\Gamma^{\prime} \vdash U^{\prime}\right\rangle}{M:\left\langle\Gamma^{\prime} \vdash U^{\prime}\right\rangle} \sqsubseteq
\end{array}
$$

where the binary relation \sqsubseteq is defined by the following rules:

$$
\begin{array}{cc}
\overline{\Phi \sqsubseteq \Phi} \mathrm{ref} & \frac{\Phi_{1} \sqsubseteq \Phi_{2} \quad \Phi_{2} \sqsubseteq \Phi_{3}}{\Phi_{1} \sqsubseteq \Phi_{3}} \operatorname{tr} \\
\frac{U_{1} \sqcap U_{2} \sqsubseteq U_{1}}{\Pi_{e}} & \frac{U_{1} \sqsubseteq V_{1} \quad U_{2} \sqsubseteq V_{2}}{U_{1} \sqcap U_{2} \sqsubseteq V_{1} \sqcap V_{2}} \sqcap \\
\frac{U_{2} \sqsubseteq U_{1}}{U_{1} \rightarrow T_{1} \sqsubseteq U_{2} \leftrightarrows T_{2}} \rightarrow & \frac{U_{1} \sqsubseteq U_{2}}{\Gamma_{\leq i} \cdot U_{1} \cdot \Gamma_{>i} \sqsubseteq \Gamma_{\leq i} \cdot U_{2} \cdot \Gamma_{>i}} \sqsubseteq_{c} \\
\frac{U_{1} \sqsubseteq U_{2} \Gamma^{\prime} \sqsubseteq \Gamma}{\left\langle\Gamma \vdash U_{1}\right\rangle \sqsubseteq\left\langle\Gamma^{\prime} \vdash U_{2}\right\rangle} \sqsubseteq\rangle &
\end{array}
$$

$\Phi, \Phi^{\prime}, \Phi_{1}, \ldots$ are used to denote $U \in \mathbb{U}$, contexts Γ or typings $\langle\Gamma \vdash U\rangle$. Note that in $\Phi \sqsubseteq \Phi^{\prime}, \Phi$ and Φ^{\prime} belong to the same sort.

Type judgements will be of the form $M:\langle\Gamma \vdash U\rangle$, meaning term M has type U provided Γ for $F I(M)$. Briefly, M has type U in Γ.

The next lemmas states some properties about the shape of types and contexts, and their link with the subtyping relation defined by \sqsubseteq.
Lemma 7. 1. If $U \in \mathbb{U}$, then $U=\omega$ or $U=\square_{i=1}^{n} T_{i}$ where $n \geq 1$ and $\forall 1 \leq i \leq n$, $T_{i} \in \mathbb{T}$.
2. $U \sqsubseteq \omega$.
3. If $\omega \sqsubseteq U$, then $U=\omega$.

Proof. See [KN07]
Observe that, from $\underline{2}:\langle\omega \cdot T . n i l \vdash T\rangle$ and the \sqsubseteq relation we have that $\underline{2}$: \langle U.T.nil $\vdash T\rangle$, for any U. This allows some sort of weakening in the type system, which is not allowed in the type system given in [KN07]. This happens because ω 's are needed in the context first positions to give the proper type for some free index \underline{i}. Although, in lemma 10 we prove this weakening is limited by the term itself.

Lemma 8. Let $V \neq \omega$.

1. If $U \sqsubseteq V$, then $U=\sqcap_{j=1}^{k} T_{j}, V=\sqcap_{i=1}^{p} T_{i}^{\prime}$ where $p, k \geq 1, \forall 1 \leq j \leq k$, $1 \leq i \leq p, T_{j}, T_{i}^{\prime} \in \mathbb{T}$, and $\forall 1 \leq i \leq p, \exists 1 \leq j \leq k$ such that $T_{j} \sqsubseteq T_{i}^{\prime}$.
2. If $U \sqsubseteq V^{\prime} \sqcap a$, then $U=U^{\prime} \sqcap a$ and $U^{\prime} \sqsubseteq V^{\prime}$.
3. Let $p, k \geq 1$. If $\sqcap_{j=1}^{k}\left(U_{j} \rightarrow T_{j}\right) \sqsubseteq \sqcap_{i=1}^{p}\left(U_{i}^{\prime} \rightarrow T_{i}^{\prime}\right)$, then $\forall 1 \leq i \leq p$, $\exists 1 \leq j \leq k$ such that $U_{i}^{\prime} \sqsubseteq U_{j}$ and $T_{j} \sqsubseteq T_{i}^{\prime}$.
4. If $U \rightarrow T \sqsubseteq V$, then $V=\sqcap_{i=1}^{p}\left(U_{i} \rightarrow T_{i}\right)$ where $p \geq 1$ and $\forall 1 \leq i \leq p$, $U_{i} \sqsubseteq U$ and $T \sqsubseteq T_{i}$.
5. If $\sqcap_{j=1}^{k}\left(U_{j} \rightarrow T_{j}\right) \sqsubseteq V$ where $k \geq 1$, then $V=\sqcap_{i=1}^{p}\left(U_{i}^{\prime} \rightarrow T_{i}^{\prime}\right)$ where $p \geq 1$ and $\forall 1 \leq i \leq p, \exists 1 \leq j \leq k$ such that $U_{i}^{\prime} \sqsubseteq U_{j}$ and $T_{j} \sqsubseteq T_{i}^{\prime}$.

Proof. See [KN07]
Lemma 9. 1. If $\Gamma \sqsubseteq \Gamma^{\prime}$ and $U \sqsubseteq U^{\prime}$, then $U . \Gamma \sqsubseteq U^{\prime} . \Gamma^{\prime}$.
2. $\Gamma \sqsubseteq \Gamma^{\prime}$ iff $|\Gamma|=\left|\Gamma^{\prime}\right|=m$ and, if $m>0$ then $\forall 1 \leq i \leq m, \Gamma_{i} \sqsubseteq \Gamma_{i}^{\prime}$.
3. If $|\Gamma|=\sup (M)$, then $\Gamma \sqsubseteq e n v_{\omega}^{M}$.
4. If $e n v_{\omega}^{M} \sqsubseteq \Gamma$, then $\Gamma=e n v_{\omega}^{M}$.
5. $\langle\Gamma \vdash U\rangle \sqsubseteq\left\langle\Gamma^{\prime} \vdash U^{\prime}\right\rangle$ iff $\Gamma^{\prime} \sqsubseteq \Gamma$ and $U \sqsubseteq U^{\prime}$.
6. If $\Gamma \sqsubseteq \Gamma^{\prime}$ and $\Delta \sqsubseteq \Delta^{\prime}$, then $\Gamma \sqcap \Delta \sqsubseteq \Gamma^{\prime} \sqcap \Delta^{\prime}$.

Proof. 1. By induction on the derivation $\Gamma \sqsubseteq \Gamma^{\prime}$ we have that if $\Gamma \sqsubseteq \Gamma^{\prime}$, then $V . \Gamma \sqsubseteq V . \Gamma^{\prime}$. Using tr we have the result.
2. Only if) By induction on the derivation $\Gamma \sqsubseteq \Gamma^{\prime}$. If) By induction on m using 1.
3. By lemma 7.2 and 2 .
4. By $2,|\Gamma|=\sup (M)=m$. If $m=0$, them $e n v_{\omega}^{M}=\Gamma=n i l$. Otherwise, for every $1 \leq i \leq m, \omega \sqsubseteq \Gamma_{i}$. Hence, by lemma $7.3, \forall 1 \leq i \leq m, \Gamma_{i}=\omega$.
5. Only if) By induction on the derivation $\langle\Gamma \vdash U\rangle \sqsubseteq\left\langle\Gamma^{\prime} \vdash U^{\prime}\right\rangle$. If) By $\sqsubseteq_{\langle \rangle}$.
6. This is a corollary of 2 .

The following lemma shows the strict relation in a type judgement between the length of a context Γ and the free indices of term M, where $M:\langle\Gamma \vdash U\rangle$ for some type U.

Lemma 10. 1. If $M:\langle\Gamma \vdash U\rangle$, then $|\Gamma|=\sup (M)$.
2. For every Γ and M such that $|\Gamma|=\sup (M)$, we have $M:\langle\Gamma \vdash \omega\rangle$.

Proof. 1. By induction on the derivation $M:\langle\Gamma \vdash U\rangle$.
2. By $\omega, M:\left\langle e n v_{\omega}^{M} \vdash \omega\right\rangle$. By lemma $9.3, \Gamma \sqsubseteq e n v_{\omega}^{M}$. Hence, by $\sqsubseteq_{\langle \rangle}$and \sqsubseteq, $M:\langle\Gamma \vdash \omega\rangle$.

Consequently, the weakening allowed in the system is limited by the maximum value of a free index occurring in a term.

The following lemma shows that another version of the var and Π_{i} rules, axiom and intersection introduction respectively, are derivable from the typing rules and subtyping relation, presented in definition 8 .

Lemma 11. 1. The rule $\frac{M:\left\langle\Gamma \vdash U_{1}\right\rangle \quad M:\left\langle\Delta \vdash U_{2}\right\rangle}{M:\left\langle\Gamma \sqcap \Delta \vdash U_{1} \sqcap U_{2}\right\rangle} \Pi_{i}^{\prime}$ is derivable.
2. The rule $\frac{\underline{1}:\langle U . n i l \vdash U\rangle}{v a r^{\prime}}$ is derivable.

Proof. 1. Let $M:\left\langle\Gamma \vdash U_{1}\right\rangle$ and $M:\left\langle\Delta \vdash U_{2}\right\rangle$. By lemma 10.1, $|\Gamma|=|\Delta|=m$. Thus, $|\Gamma \sqcap \Delta|=m$ and $(\Gamma \sqcap \Delta)_{i}=\Gamma_{i} \sqcap \Delta_{i}, \forall 1 \leq i \leq m$. By rule Π_{e} and lemma $9.2, \Gamma \sqcap \Delta \sqsubseteq \Gamma$ and $\Gamma \sqcap \Delta \sqsubseteq \Delta$. Hence, by rules $\sqsubseteq_{\langle \rangle}$ and $\sqsubseteq, M:\left\langle\Gamma \sqcap \Delta \vdash U_{1}\right\rangle$ and $M:\left\langle\Gamma \sqcap \Delta \vdash U_{2}\right\rangle$. Thus, by rule \sqcap_{i}, $M:\left\langle\Gamma \sqcap \Delta \vdash U_{1} \sqcap U_{2}\right\rangle$.
2. By lemma 7.1:

- Either $U=\omega$, then by rule ω the result holds.
- Or $U=\sqcap_{i=1}^{k} T_{i}$ where $\forall 1 \leq i \leq k, T_{i} \in \mathbb{T}$, then, by rule var, 1 : $\left\langle T_{i} . n i l \vdash T_{i}\right\rangle$ and, by $k-1$ applications of rule $\Pi_{i}^{\prime}, \underline{1}:\langle U . n i l \vdash U\rangle$.

4 The subject reduction property

4.1 Subject reduction for β

The subject reduction property is proved in the standard way, with a generation and substitutions lemmas (lemmas 12 and 14 , respectively) as the properties to be proved at first.

Lemma 12 (Generation). 1. If $\underline{n}:\langle\Gamma \vdash U\rangle$, then $\Gamma_{n}=V$ where $V \sqsubseteq U$.
2. If $\lambda . M:\langle\Gamma \vdash U\rangle$ and $\sup (M)>0$, then $U=\omega$ or $U=\sqcap_{i=1}^{k}\left(V_{i} \rightarrow T_{i}\right)$ where $k \geq 1$ and $\forall 1 \leq i \leq k, M:\left\langle V_{i} . \Gamma \vdash T_{i}\right\rangle$.
3. If $\lambda . M:\langle\Gamma \vdash U\rangle$ and $\sup (M)=0$, then $\Gamma=$ nil, $U=\omega$ or $U=\sqcap_{i=1}^{k}\left(V_{i} \rightarrow T_{i}\right)$ where $k \geq 1$ and $\forall 1 \leq i \leq k, M:\left\langle n i l \vdash T_{i}\right\rangle$.

Proof. 1. By induction on the derivation $\underline{n}:\langle\Gamma \vdash U\rangle$. By lemma 10.1, $|\Gamma|=n$.

- If $\frac{\underline{1}:\langle\text { T.nil } \vdash T\rangle}{}$, nothing to prove.
- If $\frac{\underline{n}:\left\langle e n v \frac{n}{\omega} \vdash \omega\right\rangle}{}$, nothing to prove.
- Let $\frac{\underline{n}:\langle\Gamma \vdash U\rangle}{\underline{n+1}:\langle\omega \cdot \Gamma \vdash U\rangle}$. One has that $(\omega \cdot \Gamma)_{n+1}=\Gamma_{n}$ and, by IH, $\Gamma_{n}=V$ where $V \sqsubseteq U$.
- Let $\frac{\underline{n}:\left\langle\Gamma \vdash U_{1}\right\rangle \underline{n}:\left\langle\Gamma \vdash U_{2}\right\rangle}{\underline{n}:\left\langle\Gamma \vdash U_{1} \sqcap U_{2}\right\rangle}$. By IH, $\Gamma_{n}=V$ where $V \sqsubseteq U_{1}$ and $V \sqsubseteq U_{2}$. Then, by rule $\sqcap, V \sqsubseteq U_{1} \sqcap U_{2}$.
- Let $\frac{\underline{n}:\langle\Gamma \vdash U\rangle\langle\Gamma \vdash U\rangle \sqsubseteq\left\langle\Gamma^{\prime} \vdash U^{\prime}\right\rangle}{\underline{n}:\left\langle\Gamma^{\prime} \vdash U^{\prime}\right\rangle}$. By IH, $\Gamma_{n}=V$ where $V \sqsubseteq U$.

By lemma 9.5, $\Gamma^{\prime} \sqsubseteq \Gamma$ and $U \sqsubseteq U^{\prime}$. Thus, by lemma 9.2, $\Gamma_{n}^{\prime}=V^{\prime} \sqsubseteq V$. By rule tr, $V^{\prime} \sqsubseteq U^{\prime}$.
2. By induction on the derivation $\lambda . M:\langle\Gamma \vdash U\rangle$.

- If $\frac{\lambda . M:\left\langle e n v_{\omega}^{\lambda . M} \vdash \omega\right\rangle}{\lambda .}$, nothing to prove.
- If $\frac{M:\langle U . \Gamma \vdash T\rangle}{\lambda . M:\langle\Gamma \vdash U \rightarrow T\rangle}$, nothing to prove.
- Let $\frac{\lambda . M:\left\langle\Gamma \vdash U_{1}\right\rangle \quad \lambda . M:\left\langle\Gamma \vdash U_{2}\right\rangle}{\lambda . M:\left\langle\Gamma \vdash U_{1} \sqcap U_{2}\right\rangle}$. By IH, one has the following cases:
- If $U_{1}=U_{2}=\omega$, then $U_{1} \sqcap U_{2}=\omega$.
- If $U_{1}=\omega, U_{2}=\sqcap_{i=1}^{k}\left(V_{i} \rightarrow T_{i}\right)$ where $k \geq 1$ and $\forall 1 \leq i \leq k$, $M:\left\langle V_{i} . \Gamma \vdash T_{i}\right\rangle$, then, $U_{1} \sqcap U_{2}=U_{2}$
- If $U_{2}=\omega, U_{1}=\square_{i=1}^{k}\left(V_{i}^{\prime} \rightarrow T_{i}^{\prime}\right)$ where $k \geq 1$ and $\forall 1 \leq i \leq k$, $M:\left\langle V_{i}^{\prime} . \Gamma \vdash T_{i}^{\prime}\right\rangle$, then, $U_{1} \sqcap U_{2}=U_{1}$
- If $U_{1}=\sqcap_{i=1}^{k}\left(V_{i} \rightarrow T_{i}\right), U_{2}=\Pi_{i=k+1}^{k+l}\left(V_{i} \rightarrow T_{i}\right)$, where $k, l \geq 1$ and $\forall 1 \leq i \leq k+l, M:\left\langle V_{i} . \Gamma \vdash T_{i}\right\rangle$, then $U_{1} \sqcap U_{2}=\sqcap_{i=1}^{k+l}\left(V_{i} \rightarrow T_{i}\right)$.
- Let $\frac{\lambda . M:\langle\Gamma \vdash U\rangle \quad\langle\Gamma \vdash U\rangle \sqsubseteq\left\langle\Gamma^{\prime} \vdash U^{\prime}\right\rangle}{\lambda . M:\left\langle\Gamma^{\prime} \vdash U^{\prime}\right\rangle}$. By lemma 9.5, $\Gamma^{\prime} \sqsubseteq \Gamma$ and $U \sqsubseteq U^{\prime}$. By IH , one has the following:
- If $U=\omega$, then, by lemma $7.3, U^{\prime}=\omega$.
- Otherwise, $U=\sqcap_{i=1}^{k}\left(V_{i} \rightarrow T_{i}\right)$ where $k \geq 1$ and $\forall 1 \leq i \leq k$, $M:\left\langle V_{i} . \Gamma \vdash T_{i}\right\rangle$. By lemma 7.1, either $U^{\prime}=\omega$, and then nothing to prove, or, by lemma $8.5, U^{\prime}=\square_{i=1}^{p}\left(V_{i}^{\prime} \rightarrow T_{i}^{\prime}\right)$ where $p \geq 1$ and $\forall 1 \leq i \leq p, \exists 1 \leq j_{i} \leq k$ such that $V_{i}^{\prime} \sqsubseteq V_{j_{i}}$ and $T_{j_{i}} \sqsubseteq T_{i}^{\prime}$. By lemmas 9.1 and $9.5,\left\langle V_{j_{i}} . \Gamma \vdash T_{j_{i}}\right\rangle \sqsubseteq\left\langle V_{i}^{\prime} . \Gamma^{\prime} \vdash T_{i}^{\prime}\right\rangle$, for each $1 \leq i \leq p$, then, $M:\left\langle V_{i}^{\prime} . \Gamma^{\prime} \vdash T_{i}^{\prime}\right\rangle$.

3. By lemma $1.2, \sup (\lambda . M)=0$ and, by lemma $10.1,|\Gamma|=$ nil, thus, $\lambda . M$: $\langle n i l \vdash U\rangle$. The proof is same as for 2 , where \rightarrow_{i}^{\prime} is used on induction step, instead of $\rightarrow i$.

The following lemma is an auxiliary lemma for substitution lemma 14, stating a property relating type judgements and the index update mechanism.

Lemma 13. If $M:\langle\Gamma \vdash U\rangle$ and $0 \leq i<\sup (M)$, then $M^{+i}:\left\langle\Gamma_{\leq i} \cdot \omega \cdot \Gamma_{>i} \vdash U\right\rangle$.
Proof. By induction on the derivation $M:\langle\Gamma \vdash U\rangle$.

- Let $\frac{\underline{1}:\langle\text { T.nil } \vdash T\rangle}{}$. For $i=0, \underline{1}^{+}=\underline{2}$ and, by rule varn, $\underline{2}:\langle\omega \cdot T \cdot n i l \vdash T\rangle$.
- If $\overline{M:\left\langle e n v_{\omega}^{M} \vdash \omega\right\rangle}$, nothing to prove.
- Let $\frac{\underline{n}:\langle\Gamma \vdash U\rangle}{\underline{n+1}:\langle\omega \cdot \Gamma \vdash U\rangle}$. If $i=0$, then by rule varn $\underline{n+2}:\langle\omega \cdot \omega \cdot \Gamma \vdash U\rangle$. Otherwise, note that $\underline{n}^{+i}+1=\underline{n+1} \underline{1}^{(i+1)}=\underline{n+2}$. By IH one has $\underline{n}^{+i}:\left\langle\Gamma_{\leq i} \cdot \omega \cdot \Gamma_{>i} \vdash U\right\rangle$. By rule varn, $\underline{n+2}:\left\langle\omega \cdot \Gamma_{\leq i} \cdot \omega \cdot \Gamma_{>i} \vdash U\right\rangle$.
- Let $\frac{M:\langle U . \Gamma \vdash T\rangle}{\lambda . M:\langle\Gamma \vdash U \rightarrow T\rangle}$. By lemma 1.2 one has $\sup (M)>i+1$, hence, by $\mathrm{IH}, M^{+(i+1)}:\left\langle U \cdot \Gamma_{\leq i} \cdot \omega \cdot \Gamma_{>i} \vdash T\right\rangle$. Hence, by rule \rightarrow_{i} and i-lift definition, $(\lambda . M)^{+i}:\left\langle\Gamma_{\leq i} \cdot \omega \cdot \Gamma_{>i} \vdash U \rightarrow T\right\rangle$.
- Let $\frac{M_{1}:\langle\Gamma \vdash U \rightarrow T\rangle \quad M_{2}:\langle\Delta \vdash U\rangle}{M_{1} M_{2}:\langle\Gamma \sqcap \Delta \vdash T\rangle}$. By lemma 1.1 one has $\sup \left(M_{1}\right)>i$ or $\sup \left(M_{2}\right)>i$. Suppose w.l.o.g. that $i<\sup \left(M_{1}\right), \sup \left(M_{2}\right)$. By IH,
$M_{1}^{+i}:\left\langle\Gamma_{\leq i} \cdot \omega \cdot \Gamma_{>i} \vdash U \rightarrow T\right\rangle$ and $M_{2}^{+i}:\left\langle\Delta_{\leq i} \cdot \omega \cdot \Delta_{>i} \vdash U\right\rangle$. Thus, by \rightarrow_{e} and observing that $\left(\Gamma_{\leq i} \cdot \omega \cdot \Gamma_{>i}\right) \sqcap\left(\Delta_{\leq i} \cdot \omega \cdot \Delta_{>i}\right)=(\Gamma \sqcap \Delta)_{\leq i} \cdot \omega \cdot(\Gamma \sqcap \Delta)_{>i}$, $\left(M_{1} M_{2}\right)^{+i}:\left\langle(\Gamma \sqcap \Delta)_{\leq i} \cdot \omega .(\Gamma \sqcap \Delta)_{>i} \vdash T\right\rangle$.
- Let $\frac{M:\left\langle\Gamma \vdash U_{1}\right\rangle M:\left\langle\Gamma \vdash U_{2}\right\rangle}{M:\left\langle\Gamma \vdash U_{1} \sqcap U_{2}\right\rangle}$. By IH, $M^{+i}:\left\langle\Gamma_{\leq i} \cdot \omega \cdot \Gamma_{>i} \vdash U_{1}\right\rangle$ and M^{+i} : $\left\langle\Gamma_{\leq i} \cdot \omega \cdot \Gamma_{>i} \vdash U_{2}\right\rangle$. Thus, by rule $\sqcap_{i}, M^{+i}:\left\langle\Gamma_{\leq i} \cdot \omega \cdot \Gamma_{>i} \vdash U_{1} \sqcap U_{2}\right\rangle$.
- Let $\frac{M:\langle\Gamma \vdash U\rangle\langle\Gamma \vdash U\rangle \sqsubseteq\left\langle\Gamma^{\prime} \vdash U^{\prime}\right\rangle}{M:\left\langle\Gamma^{\prime} \vdash U^{\prime}\right\rangle}$. By IH, $M^{+i}:\left\langle\Gamma_{\leq i} \cdot \omega \cdot \Gamma_{>i} \vdash U\right\rangle$ and, by lemma $9.5, \Gamma^{\prime} \sqsubseteq \Gamma$ and $U \sqsubseteq U^{\prime}$. Hence, by lemma $9.2, \Gamma_{\leq i}^{\prime} \cdot \omega . \Gamma_{>i}^{\prime} \sqsubseteq$ $\Gamma_{\leq i} \cdot \omega \cdot \Gamma_{>i}$. Thus, by rules $\sqsubseteq_{\langle \rangle}$and $\sqsubseteq, M^{+i}:\left\langle\Gamma_{\leq i}^{\prime} \cdot \omega \cdot \Gamma_{>i}^{\prime} \vdash U^{\prime}\right\rangle$.

Lemma 14 (Substitution). Let $M:\langle\Gamma \vdash U\rangle$, for $\sup (M)>0$, and $N:\left\langle\Delta \vdash \Gamma_{i}\right\rangle$:

1. If $\underline{i} \notin F I(M)$, then $\{\underline{i} / N\} M:\left\langle\Gamma_{<i} \cdot \Gamma_{>i} \vdash U\right\rangle$.
2. Otherwise, if $\sup (N) \geq i-1$, then $\{\underline{i} / N\} M:\left\langle\left(\Gamma_{<i} \cdot \Gamma_{>i}\right) \sqcap \Delta \vdash U\right\rangle$.

Proof. By induction on the derivation $M:\langle\Gamma \vdash U\rangle$.

1. Observe that $i<|\Gamma|=\sup (M)$:

- If $\frac{1}{\underline{1}:\langle T . n i l \vdash T\rangle}$, nothing to prove.
- Let $\overline{M:\left\langle e n v_{\omega}^{M} \vdash \omega\right\rangle}$. By lemma 4.1, $\sup (\{\underline{i} / N\} M)=\sup (M)-1$. Thus, $e n v_{\omega}^{\{\underline{i} / N\} M}=\left(e n v_{\omega}^{M}\right)_{<i} .\left(e n v_{\omega}^{M}\right)_{>i}$ and the result holds trivially by rule ω.
- Let $\frac{\underline{n}}{\frac{n+1}{}:\langle\Gamma \vdash U\rangle}$. $\langle\omega \cdot \Gamma \vdash U\rangle$. By lemma 10.1, $|\omega \cdot \Gamma|=n+1$, hence, $i<(n+1)$ and $\overline{\{\underline{i} / N\}} \underline{n+1}=\underline{n}$. Note that $(\omega \cdot \Gamma)_{i}=\Gamma_{(i-1)}$, thus, by IH one has $\{\underline{i-1} / N\} \underline{n}:\left\langle\Gamma_{<(i-1)} \cdot \Gamma_{>(i-1)} \vdash U\right\rangle$. Since $(i-1)<n,\{\underline{i-1} / N\} \underline{n}=$ $\underline{n-1}$, hence, by rule varn, $\underline{n}:\left\langle\omega \cdot \Gamma_{<(i-1)} \cdot \Gamma_{>(i-1)} \vdash U\right\rangle$.
- Let $\frac{M:\langle U . \Gamma \vdash T\rangle}{\lambda . M:\langle\Gamma \vdash U \rightarrow T\rangle}$. If $\sup (N)=0$, then, by lemma $2.1, N^{+} \equiv N$, otherwise, by lemma $13, N^{+}:\left\langle\omega . \Delta \vdash \Gamma_{i}\right\rangle$. By IH, $\left\{\underline{i+1} / N^{+}\right\} M$: $\left\langle U . \Gamma_{<i} . \Gamma_{>i} \vdash T\right\rangle$, thus, by $\rightarrow_{i}, \lambda .\left\{\underline{i+1} / N^{+}\right\} M:\left\langle\Gamma_{<i} . \Gamma_{>i} \vdash U \rightarrow T\right\rangle$.
- Let $\frac{M_{1}:\langle\Gamma \vdash U \rightarrow T\rangle \quad M_{2}:\left\langle\Gamma^{\prime} \vdash U\right\rangle}{M_{1} M_{2}:\left\langle\Gamma \sqcap \Gamma^{\prime} \vdash T\right\rangle}$. Suppose, w.l.o.g., $i<\sup \left(M_{1}\right)$ and $i<\sup \left(M_{2}\right)$, thus, $\left(\Gamma \sqcap \Gamma^{\prime}\right)_{i}=\Gamma_{i} \sqcap \Gamma_{i}^{\prime}$. By rules $\Pi_{e}, \sqsubseteq\langle \rangle$ and \sqsubseteq one has $N:\left\langle\Delta \vdash \Gamma_{i}\right\rangle$ and $N:\left\langle\Delta \vdash \Gamma_{i}^{\prime}\right\rangle$. Hence, by $\mathrm{IH},\{\underline{i} / N\} M_{1}$: $\left\langle\Gamma_{<i} . \Gamma_{>i} \vdash U \rightarrow T\right\rangle$ and $\{\underline{i} / N\} M_{2}:\left\langle\Gamma_{<i}^{\prime} . \Gamma_{>i}^{\prime} \vdash U\right\rangle$. Thus, by rule $\rightarrow_{e},\left(\{\underline{i} / N\} M_{1}\{\underline{i} / N\} M_{2}\right):\left\langle\left(\Gamma_{<i} \sqcap \Gamma_{<i}^{\prime}\right) .\left(\Gamma_{>i} \sqcap \Gamma_{>i}^{\prime}\right) \vdash T\right\rangle$.
- Let $\frac{M:\left\langle\Gamma \vdash U_{1}\right\rangle M:\left\langle\Gamma \vdash U_{2}\right\rangle}{M:\left\langle\Gamma \vdash U_{1} \sqcap U_{2}\right\rangle}$. By IH, $\{\underline{i} / N\} M:\left\langle\Gamma_{<i} . \Gamma_{>i} \vdash U_{1}\right\rangle$ and $\{\underline{i} / N\} M:\left\langle\Gamma_{<i} . \Gamma_{>i} \vdash U_{2}\right\rangle$. Thus, by rule \sqcap_{i}, one has that $\{\underline{i} / N\} M:\left\langle\Gamma_{<i} . \Gamma_{>i} \vdash U_{1} \sqcap U_{2}\right\rangle$.
- Let $\frac{M:\langle\Gamma \vdash U\rangle\langle\Gamma \vdash U\rangle \sqsubseteq\left\langle\Gamma^{\prime} \vdash U^{\prime}\right\rangle}{M:\left\langle\Gamma^{\prime} \vdash U^{\prime}\right\rangle}$. By lemma 9.5, $\Gamma^{\prime} \sqsubseteq \Gamma$ and $U \sqsubseteq U^{\prime}$, hence, by lemma $9.2, \Gamma_{i}^{\prime} \sqsubseteq \Gamma_{i}$ and $\Gamma_{<i}^{\prime} \cdot \Gamma_{>i}^{\prime} \sqsubseteq \Gamma_{<i} \cdot \Gamma_{>i}$. Thus, by rules $\sqsubseteq\left\rangle\right.$ and $\sqsubseteq, N:\left\langle\Delta \vdash \Gamma_{i}\right\rangle$, and, by $\mathrm{IH},\{\underline{i} / N\} M$: $\left\langle\Gamma_{<i} \cdot \Gamma_{>i} \vdash U\right\rangle$. By rules $\sqsubseteq\left\rangle\right.$ and $\sqsubseteq,\{\underline{i} / N\} M:\left\langle\Gamma_{<i}^{\prime} \cdot \Gamma_{>i}^{\prime} \vdash U^{\prime}\right\rangle$.

2. - If $\frac{\underline{1}:\langle T . n i l \vdash T\rangle}{}$, nothing to prove.

- Let $\frac{M:\left\langle e n v_{\omega}^{M} \vdash \omega\right\rangle}{}$. One has the following cases:
- If $F I(M)=\{\underline{i}\}$, then $\left|e n v_{\omega}^{M}\right|=i$, thus, $\left(e n v_{\omega}^{M}\right)_{<i} .\left(e n v_{\omega}^{M}\right)_{>i}=$ $e n v_{\omega}^{M^{\prime}}$, where M^{\prime} is any term such that $\sup \left(M^{\prime}\right)=i-1$. Hence, $e n v_{\omega}^{M^{\prime}} \sqcap \Delta=\Delta$. By lemmas 4.3 and 10.1, $\sup (\{\underline{i} / N\} M)=$ $\sup (N)=|\Delta|$, hence, by lemma $10.2,\{\underline{i} / N\} M:\langle\Delta \vdash \omega\rangle$.
- Otherwise, by lemma 4.3 and $10.1, \sup (\{\underline{i} / N\} M)$ is given by $\max (\sup (N), \sup (M)-1)=\max \left(|\Delta|,\left|e n v_{\omega}^{M}\right|-1\right)$, which is equivalent to $\left|\Delta \sqcap\left(\left(e n v_{\omega}^{M}\right)_{<i} \cdot\left(e n v_{\omega}^{M}\right)_{>i}\right)\right|$. Thus, by lemma 10.2, $\{\underline{i} / N\} M:\left\langle\Delta \sqcap\left(\left(e n v_{\omega}^{M}\right)_{<i} .\left(e n v_{\omega}^{M}\right)_{>i}\right) \vdash \omega\right\rangle$.
- Let $\frac{\underline{n}:\langle\Gamma \vdash U\rangle}{\underline{n+1}:\langle\omega \cdot \Gamma \vdash U\rangle}$. For $i=n+1,\{\underline{n+1} / N\} \underline{n+1}=N$ and, by lemma 10.1, $|\Gamma|=n$. By lemma $12, \Gamma_{n}=V$, where $V \sqsubseteq U$. Thus, by rule Π_{e} and lemma $9.2,\left(\omega . \Gamma_{<n} . n i l\right) \sqcap \Delta \sqsubseteq \Delta$ and, by rules $\sqsubseteq_{\langle \rangle}$and \sqsubseteq, $N:\left\langle\left(\omega . \Gamma_{<n} . n i l\right) \sqcap \Delta \vdash U\right\rangle$.
- Let $\frac{M:\langle U \cdot \Gamma \vdash T\rangle}{\lambda . M:\langle\Gamma \vdash U \rightarrow T\rangle}$. Note that $(U . \Gamma)_{(i+1)}=\Gamma_{i}$. If $\sup (N)=0$, then, by lemma 2.1, $N^{+} \equiv N$, otherwise, by lemma $13, N^{+}:\langle\omega . \Delta \vdash$ $\left.\Gamma_{i}\right\rangle$. By IH, $\left\{\underline{i+1} / N^{+}\right\} M:\left\langle\left(U \cdot \Gamma_{<i} \cdot \Gamma_{>i}\right) \sqcap \Delta^{\prime} \vdash T\right\rangle$, where Δ^{\prime} is either nil or $\omega . \overline{\Delta . \text { If }} \Delta^{\prime} \equiv \omega \cdot \Delta$, then $\left(U \cdot \Gamma_{<i} \cdot \Gamma_{>i}\right) \sqcap \Delta^{\prime}=U .\left(\left(\Gamma_{<i} \cdot \Gamma_{>i}\right) \sqcap\right.$ $\Delta)$. Thus, by rule $\rightarrow_{i}, \lambda .\left\{\underline{i+1} / N^{+}\right\} M:\left\langle\left(\Gamma_{<i} \cdot \Gamma_{>i}\right) \sqcap \Delta \vdash U \rightarrow T\right\rangle$. The case where $\Delta^{\prime} \equiv n i l$ is trivial.
- Let $\frac{M_{1}:\langle\Gamma \vdash U \rightarrow T\rangle \quad M_{2}:\left\langle\Gamma^{\prime} \vdash U\right\rangle}{M_{1} M_{2}:\left\langle\Gamma \sqcap \Gamma^{\prime} \vdash T\right\rangle}$. If $\underline{i} \in F I\left(M_{1}\right)$ and $\underline{i} \in F I\left(M_{2}\right)$, then, $\left(\Gamma \sqcap \Gamma^{\prime}\right)_{i}=\Gamma_{i} \sqcap \Gamma_{i}^{\prime}$, and, by rules $\Pi_{e}, \sqsubseteq_{\langle \rangle}$and $\sqsubseteq, N:\left\langle\Delta \vdash \Gamma_{i}\right\rangle$ and $N:\left\langle\Delta \vdash \Gamma_{i}^{\prime}\right\rangle$. By IH, $\{\underline{i} / N\} M_{1}:\left\langle\left(\Gamma_{<i} \cdot \Gamma_{>i}\right) \sqcap \Delta \vdash U \rightarrow T\right\rangle$ and $\{\underline{i} / N\} M_{2}:\left\langle\left(\Gamma_{<i}^{\prime}, \Gamma_{>i}^{\prime}\right) \sqcap \Delta \vdash U\right\rangle$. Note that $\left(\Gamma_{<i} \cdot \Gamma_{>i}\right) \sqcap \Delta \sqcap$ $\left(\Gamma_{<i}^{\prime} \cdot \Gamma_{>i}^{\prime}\right) \sqcap \Delta=\left(\left(\Gamma \sqcap \Gamma^{\prime}\right)_{<i} .\left(\Gamma \sqcap \Gamma^{\prime}\right)_{>i}\right) \sqcap \Delta$. Thus, by rule \rightarrow_{e}, $\{\underline{i} / N\}\left(M_{1} M_{2}\right):\left\langle\left(\left(\Gamma \sqcap \Gamma^{\prime}\right)_{<i} .\left(\Gamma \sqcap \Gamma^{\prime}\right)_{>i}\right) \sqcap \Delta \vdash T\right\rangle$. The cases $\underline{i} \notin$ $F I\left(M_{1}\right)$ and $\underline{i} \notin F I\left(M_{2}\right)$ are similar, using 1 on the induction step whenever necessary.
- Let $\frac{M:\left\langle\Gamma \vdash U_{1}\right\rangle M:\left\langle\Gamma \vdash U_{2}\right\rangle}{M:\left\langle\Gamma \vdash U_{1} \sqcap U_{2}\right\rangle}$. By IH one has that $\{\underline{i} / N\} M$: $\left\langle\left(\Gamma_{<i} \cdot \Gamma_{>i}\right) \sqcap \Delta \vdash U_{1}\right\rangle$ and $\{\underline{i} / N\} M:\left\langle\left(\Gamma_{<i} \cdot \Gamma_{>i}\right) \sqcap \Delta \vdash U_{2}\right\rangle$. Thus, by rule $\sqcap_{i},\{\underline{i} / N\} M:\left\langle\left(\Gamma_{<i} . \Gamma_{>i}\right) \sqcap \Delta \vdash U_{1} \sqcap U_{2}\right\rangle$.
- Let $\frac{M:\langle\Gamma \vdash U\rangle\langle\Gamma \vdash U\rangle \sqsubseteq\left\langle\Gamma^{\prime} \vdash U^{\prime}\right\rangle}{M:\left\langle\Gamma^{\prime} \vdash U^{\prime}\right\rangle}$. By lemma 9.5, $\Gamma^{\prime} \sqsubseteq \Gamma$ and $U \sqsubseteq U^{\prime}$, hence, by lemma $9.2, \Gamma_{i}^{\prime} \sqsubseteq \Gamma_{i}$ and $\Gamma_{<i}^{\prime} . \Gamma_{>i}^{\prime} \sqsubseteq \Gamma_{<i} . \Gamma_{>i}$. Thus, by rules $\sqsubseteq\left\rangle\right.$ and $\sqsubseteq, N:\left\langle\Delta \vdash \Gamma_{i}\right\rangle$ and, by IH, one has $\{\underline{i} / N\} M$: $\left\langle\left(\Gamma_{<i} \cdot \Gamma_{>i}\right) \sqcap \Delta \vdash U\right\rangle$. By lemma 9.6, $\left(\Gamma_{<i}^{\prime} \cdot \Gamma_{>i}^{\prime}\right) \sqcap \Delta \sqsubseteq\left(\Gamma_{<i} \cdot \Gamma_{>i}\right) \sqcap \Delta$, thus, by rules $\sqsubseteq_{\langle \rangle}$and $\sqsubseteq,\{\underline{i} / N\} M:\left\langle\left(\Gamma_{<i}^{\prime} \cdot \Gamma_{>i}^{\prime}\right) \sqcap \Delta \vdash U^{\prime}\right\rangle$.

As a consequence of lemma 10 and the possibility of some free indices be eliminated during a β-reduction, we need the following definition.

Definition 9. Let M be a term and $\sup (M)=m$. For a context Γ, let $\left.\Gamma\right|_{M}$ be the restriction of Γ to $F I(M)$, given by $\Gamma_{\leq m}$.nil.

The definition above will allow us to type the resulting term from a β reduction in a shorter context, related to the original one. First, we prove some properties about the restriction on contexts.

Lemma 15. 1. If $\sup (N) \leq \sup (M)$, then $e n v_{\omega}^{M} l_{N}=e n v_{\omega}^{N}$.
2. If $|\Gamma| \leq \sup (M)$, then $\left.(\Gamma \sqcap \Delta)\right|_{M}=\left.\Gamma \sqcap \Delta\right|_{M}$.
3. If $\sup (N)>0$, then $\left.(U . \Gamma)\right|_{N}=\left.U \cdot \Gamma\right|_{(\lambda . N)}$.

Proof. 1. Straightforward from definition 9 and the definition of $e n v_{\omega}^{M}$.
2. Let $\sup (M)=m$. Thus, $\left.(\Gamma \sqcap \Delta)\right|_{M}=(\Gamma \sqcap \Delta)_{\leq m}$.nil $=\left(\Gamma_{\leq m} \sqcap \Delta_{\leq m}\right)$. nil $=$ $\left(\Gamma_{\leq m} . n i l\right) \sqcap\left(\Delta_{\leq m} . n i l\right)=\Gamma \sqcap\left(\Delta_{\leq m} . n i l\right)=\left.\Gamma \sqcap \Delta\right|_{M}$.
3. If $\sup (N)>0$, by lemma $1.2, \sup (\lambda . N)=\sup (N)-1$. Thus, $\left.(U . \Gamma)\right|_{N}=$ $(U . \Gamma)_{\leq \sup (N)} . n i l=U . \Gamma_{\leq(\sup (N)-1)} . n i l=\left.U \cdot \Gamma\right|_{(\lambda . N)}$.

Finally, we have theorem 2 stating the proof for β-redices and then theorem 3 for any β-contraction.

Theorem 2. If $(\lambda . M N):\langle\Gamma \vdash U\rangle$ then $\{\underline{1} / N\} M:\left\langle\left.\Gamma\right|_{\{\underline{1} / N\} M} \vdash U\right\rangle$
Proof. By induction on the derivation $(\lambda . M N):\langle\Gamma \vdash U\rangle$.

- Let $\frac{}{(\lambda . M N):\left\langle e n v_{\omega}^{(\lambda . M N)} \vdash \omega\right\rangle}$. By lemma 5, one has $\sup (\{\underline{1} / N\} M) \leq$ $\sup (\lambda . M N)$, hence, by lemma 15.1, env $v_{\omega}^{\lambda . M}{ }^{N} L_{\{\underline{1} / N\} M}=e n v_{\omega}^{\{\underline{1} / N\} M}$. By rule ω the result is obtained, trivially.
- Let $\frac{\lambda . M:\langle\Delta \vdash U \rightarrow T\rangle \quad N:\left\langle\Delta^{\prime} \vdash U\right\rangle}{(\lambda . M N):\left\langle\Delta \sqcap \Delta^{\prime} \vdash T\right\rangle}$. One has the following cases.

If $\sup (M)=0$, then, by lemma $12.3, \Delta=$ nil and $M:\langle n i l \vdash T\rangle$. By lemma 3.3, $\{\underline{1} / N\} M \equiv M$, thus, $\Delta \sqcap \Delta^{\prime}=\Delta^{\prime}$ and $\left.\Delta^{\prime}\right|_{\{\underline{1} / N\} M}=\left.\Delta^{\prime}\right|_{M}=$ nil.

If $\sup (M)>0$, then, by lemma $12.2, M:\langle U . \Delta \vdash T\rangle$:

- If $\underline{1} \notin F I(M)$, then, by lemma 14.1, $\{\underline{1} / N\} M:\langle\Delta \vdash T\rangle$. By lemma 15.2, $\left.\left(\Delta \sqcap \Delta^{\prime}\right)\right|_{\{1 / N\} M}=\Delta \sqcap\left(\left.\Delta^{\prime}\right|_{\{1 / N\} M}\right)$, hence, by rule Π_{e} and lemma $9.2,\left.\left(\Delta \sqcap \Delta^{\prime}\right)\right|_{\{\underline{1} / N\} M} \sqsubseteq \Delta$. Thus, by rules $\sqsubseteq_{\langle \rangle}$and \sqsubseteq, $\{\underline{1} / N\} M:\left\langle\left.\left(\Delta \sqcap \Delta^{\prime}\right)\right|_{\{\underline{1} / N\} M} \vdash T\right\rangle$.
- Otherwise, by lemma 14.2, $\{\underline{1} / N\} M:\left\langle\Delta \sqcap \Delta^{\prime} \vdash T\right\rangle$. By lemma 10.1, $\left|\Delta \sqcap \Delta^{\prime}\right|=\sup (\{\underline{1} / N\} M)$, thus, $\left.\left(\Delta \sqcap \Delta^{\prime}\right)\right|_{\{\underline{1} / N\} M}=\Delta \sqcap \Delta^{\prime}$.
- Let $\frac{(\lambda . M N):\left\langle\Gamma \vdash U_{1}\right\rangle(\lambda . M N):\left\langle\Gamma \vdash U_{2}\right\rangle}{(\lambda . M N):\left\langle\Gamma \vdash U_{1} \sqcap U_{2}\right\rangle}$. By IH one has $\{\underline{1} / N\} M$: $\left\langle\left.\Gamma\right|_{\{\underline{1} / N\} M} \vdash U_{1}\right\rangle$ and $\{\underline{1} / N\} M:\left\langle\left.\Gamma\right|_{\{\underline{1} / N\} M} \vdash U_{2}\right\rangle$. Thus, by rule \sqcap_{i}, $\{\underline{1} / N\} M:\left\langle\left.\Gamma\right|_{\{\underline{1} / N\} M} \vdash U_{1} \sqcap U_{2}\right\rangle$.
- Let $\frac{(\lambda . M N):\langle\Gamma \vdash U\rangle\langle\Gamma \vdash U\rangle \sqsubseteq\left\langle\Gamma^{\prime} \vdash U^{\prime}\right\rangle}{(\lambda . M N):\left\langle\Gamma^{\prime} \vdash U^{\prime}\right\rangle}$. By IH, one has $\{\underline{1} / N\} M$: $\left\langle\left.\Gamma\right|_{\{\underline{1} / N\} M} \vdash U\right\rangle$. By lemma $9.5, \Gamma^{\prime} \sqsubseteq \Gamma$ and $U \sqsubseteq U^{\prime}$, hence, by lemma $9.2,\left.\Gamma^{\prime} \downharpoonright_{\{\underline{1} / N\} M} \sqsubseteq \Gamma\right|_{\{\underline{1} / N\} M}$. Thus, by rules $\sqsubseteq\rangle$ and $\sqsubseteq,\{\underline{i} / N\} M$: $\left\langle\left.\Gamma^{\prime}\right|_{\{\underline{1} / N\} M} \vdash U^{\prime}\right\rangle$.

Theorem 3 (SR for β-contraction). If $M:\langle\Gamma \vdash U\rangle$ and $M \longrightarrow_{\beta} N$, then $N:\left\langle\left.\Gamma\right|_{N} \vdash U\right\rangle$.

Proof. Induction on the derivation $M:\langle\Gamma \vdash U\rangle$

- Let $\frac{}{M:\left\langle e n v_{\omega}^{M} \vdash \omega\right\rangle}$. One has that $F I(N) \subseteq F I(M)$, hence, $\sup (N) \leq$ $\sup (M)$. By lemma 15.1, env $\left.v_{\omega}^{M}\right|_{N}=e n v_{\omega}^{N}$, thus, by rule $\omega, N:\left\langle e n v_{\omega}^{N} \vdash \omega\right\rangle$.
- Let $\frac{M^{\prime}:\langle V \cdot \Gamma \vdash T\rangle}{\lambda . M^{\prime}:\langle\Gamma \vdash V \rightarrow T\rangle}$. By IH, $N^{\prime}:\left\langle\left.(V \cdot \Gamma)\right|_{N^{\prime}} \vdash T\right\rangle$, where $M^{\prime} \longrightarrow_{\beta} N^{\prime}$.

If $\sup \left(N^{\prime}\right)=0$, then $N^{\prime}:\langle n i l \vdash T\rangle$. By $\rightarrow_{i}^{\prime}, \lambda . N^{\prime}:\langle n i l \vdash \omega \rightarrow T\rangle$, hence, by rules \rightarrow, $\sqsubseteq_{\langle \rangle}$and $\sqsubseteq, \lambda . N^{\prime}:\langle n i l \vdash V \rightarrow T\rangle$.
If $\sup \left(N^{\prime}\right)>0$, then, by lemma $15.3,\left.(V . \Gamma)\right|_{N^{\prime}}=V .\left.\Gamma\right|_{\lambda . N^{\prime}}$. Thus, by rule $\rightarrow{ }_{i}, \lambda . N^{\prime}:\left\langle\left.\Gamma\right|_{\lambda . N^{\prime}} \vdash V \rightarrow T\right\rangle$.

- Let $\frac{M^{\prime}:\langle n i l \vdash T\rangle}{\lambda . M^{\prime}:\langle n i l \vdash \omega \rightarrow T\rangle}$. Thus, $M^{\prime} \longrightarrow{ }_{\beta} N^{\prime}$ and, by theorem 1, $\sup \left(N^{\prime}\right) \leq$ $\sup \left(M^{\prime}\right)=0$. By IH, $N^{\prime}:\langle n i l \vdash T\rangle$, hence, by rule $\rightarrow_{i}^{\prime}, \lambda . N^{\prime}:\langle n i l \vdash \omega \rightarrow T\rangle$.
- Let $\frac{M_{1}:\langle\Delta \vdash U \rightarrow T\rangle \quad M_{2}:\left\langle\Delta^{\prime} \vdash U\right\rangle}{M_{1} M_{2}:\left\langle\Delta \sqcap \Delta^{\prime} \vdash T\right\rangle}$. Suppose that $N \equiv\left(N_{1} M_{2}\right)$, where $M_{1} \longrightarrow_{\beta} N_{1}$, hence, by IH, $N_{1}:\left\langle\left.\Delta\right|_{N_{1}} \vdash U \rightarrow T\right\rangle$. By rule $\rightarrow_{e},\left(N_{1} M_{2}\right):$ $\left\langle\left.\Delta\right|_{N_{1}} \sqcap \Delta^{\prime} \vdash T\right\rangle$.
- If $\sup \left(N_{1}\right) \geq \sup \left(M_{2}\right)$, then $\sup (N)=\sup \left(N_{1}\right)$ and, by lemma 15.2, $\left.\left(\Delta \sqcap \Delta^{\prime}\right)\right|_{N_{1}}=\left.\Delta\right|_{N_{1}} \sqcap \Delta^{\prime}$.
- If $\sup \left(M_{2}\right)>\sup \left(N_{1}\right)$, then $\sup (N)=\sup \left(M_{2}\right)$ and, by lemma 15.2, $\left.\left(\Delta \sqcap \Delta^{\prime}\right)\right|_{M_{2}}=\left.\Delta\right|_{M_{2}} \sqcap \Delta^{\prime}$. By rule \sqcap_{e} and lemma 9.2, one has that $\left(\left.\Delta\right|_{M_{2}}\right)_{>\sup \left(N_{1}\right)} \sqcap \Delta_{>\sup \left(N_{1}\right)}^{\prime} \sqsubseteq \Delta_{>\sup \left(N_{1}\right)}^{\prime}$, thus, by lemma 9.2, ($\Delta \sqcap$ $\left.\Delta^{\prime}\right)\left.\left.\right|_{N_{1}} \cdot\left(\left(\left.\Delta\right|_{M_{2}}\right)_{>\sup \left(N_{1}\right)} \sqcap \Delta_{>\sup \left(N_{1}\right)}^{\prime}\right) \sqsubseteq\left(\Delta \sqcap \Delta^{\prime}\right)\right|_{N_{1}} . \Delta_{>\sup \left(N_{1}\right)}^{\prime}$. Observe, by lemma 6.4 and definition 9 , that $\left.\left(\Delta \sqcap \Delta^{\prime}\right)\right|_{N_{1}} . \Delta_{>\sup \left(N_{1}\right)}^{\prime}=$ $\left.\Delta\right|_{N_{1}} \sqcap \Delta^{\prime}$ and that $\left.\left(\Delta \sqcap \Delta^{\prime}\right)\right|_{N_{1}} \cdot\left(\left(\left.\Delta\right|_{M_{2}}\right)_{>\sup \left(N_{1}\right)} \sqcap \Delta_{>\sup \left(N_{1}\right)}^{\prime}\right)=$ $\left.\Delta\right|_{M_{2}} \sqcap \Delta^{\prime}$. Thus, by rules $\sqsubseteq \zeta_{\langle }$and $\sqsubseteq, N:\left\langle\left.\Delta\right|_{M_{2}} \sqcap \Delta^{\prime} \vdash T\right\rangle$.
- Let $\frac{M:\left\langle\Gamma \vdash U_{1}\right\rangle M:\left\langle\Gamma \vdash U_{2}\right\rangle}{M:\left\langle\Gamma \vdash U_{1} \sqcap U_{2}\right\rangle}$. By IH, one has $N:\left\langle\left.\Gamma\right|_{N} \vdash U_{1}\right\rangle$ and $N:\left\langle\left.\Gamma\right|_{N} \vdash U_{2}\right\rangle$, thus, by rule $\sqcap_{i}, N:\left\langle\left.\Gamma\right|_{N} \vdash U_{1} \sqcap U_{2}\right\rangle$.
- Let $\frac{M:\left\langle\Gamma^{\prime} \vdash U^{\prime}\right\rangle\left\langle\Gamma^{\prime} \vdash U^{\prime}\right\rangle \sqsubseteq\langle\Gamma \vdash U\rangle}{M:\langle\Gamma \vdash U\rangle}$. By IH, $N:\left\langle\left.\Gamma^{\prime}\right|_{N} \vdash U^{\prime}\right\rangle$ and, by lemma 9.5, $\Gamma \sqsubseteq \Gamma^{\prime}$ and $U^{\prime} \sqsubseteq U$. Thus, by lemma $9.2,\left.\left.\Gamma\right|_{N} \sqsubseteq \Gamma^{\prime}\right|_{N}$ and, by rules $\sqsubseteq_{\langle \rangle}$and $\sqsubseteq, N:\left\langle\left.\Gamma\right|_{N} \vdash U\right\rangle$.

5 Conclusions and Future Work

We introduced an intersection type system in de Bruijn notation and proved it to preserve subject reduction. One particular difference between the type system presented in definition 8 and the one in [KN07] is that the former allows some kind of weakening, while the latter does not. This characteristic may be relevant while investigating the principal typing property [Wel02]. A type inference algorithm for it might need Expansions to be performed [CW04.2].

Apparently, the way to achieve it is adding expansion variables to the type system [CW04, CW04.2].

The investigation of type inference, principal types, principal typings and other relevant properties in this system of intersection types as well as its adaptation for explicit substitution calculi in de Bruijn notation is an interesting work to be done.

References

[ACCL91] M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy. Explicit Substitutions. J. of Func. Programming, 1(4):375-416, 1991.
[ARK01] M. Ayala-Rincón and F. Kamareddine. Unification via the λs_{e}-Style of Explicit Substitution. The Logical Journal of the Interest Group in Pure and Applied Logics, 9(4):489-523, 2001.
[BCDC83] H. Barendregt, M. Coppo, and M. Dezani-Ciancaglini. A filter lambda model and the completeness of type assignment. J. Symbolic Logic, 48:931-940, 1983.
[CDC78] M. Coppo and M. Dezani-Ciancaglini. A new type assignment for lambda-terms. Archiv für Mathematische Logik und Grundlagenforschung, 19:139-156, 1978.
[CDC80] M. Coppo and M. Dezani-Ciancaglini. An Extension of the Basic Functionality Theory for the λ-Calculus. Notre Dame Journal of Formal Logic, 21(4):685-693, 1980.
[CF58] H. B. Curry and R. Feys. Combinatory Logic, volume 1. North Holland, 1958.
[CW04] S. Carlier and J. B. Wells. Type Inference with Expansion Variables and Intersection Types in System E and an Exact Correspondence with β-reduction. In PPDP '04: Proceedings of the $6{ }^{\text {th }}$ ACM SIGPLAN international conference on Principles and practice of declarative programming, pages 132-143. ACM, 2004.
[CW04.2] S. Carlier and J. B. Wells. Expansion: the Crucial Mechanism for Type Inference with Intersection Types: a Survey and Explanation. In ITRS '04 workshop, 2004.
[dB72] N.G. de Bruijn. Lambda-Calculus Notation with Nameless Dummies, a Tool for Automatic Formula Manipulation, with Application to the Church-Rosser Theorem. Indag. Mat., 34(5):381-392, 1972.
[dB78] N.G. de Bruijn. A namefree lambda calculus with facilities for internal definition of expressions and segments. T.H.-Report 78-WSK-03, Technische Hogeschool Eindhoven, Nederland, 1978.
[Kam03] F. Kamareddine, editor. Thirty Five Years of Automating Mathematics. Kluwer, 2003.
[KN07] F. Kamareddine and K. Nour. A completeness result for a realisability semantics for an intersection type system. Annals of Pure and Applied Logic, 146:180-198, 2007.
[KR95] F. Kamareddine and A. Ríos. A λ-calculus à la de Bruijn with Explicit Substitutions. In Proc. of PLILP'95, volume 982 of $L N C S$, pages 45-62. Springer, 1995.
[Mil78] Robin Milner. A theory of type polymorphism in programming. Journal of computer and System Science, 17(3):348-375, 1978.
[NGdV94] R. P. Nederpelt, J. H. Geuvers, and R. C. de Vrijer. Selected papers on Automath. North-Holland, 1994.
[Pot80] G. Pottinger. A type assignment for the strongly normalizable λ-terms. In J.P. Seldin and J. R. Hindley, editors, To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, pages 561-578. Academic Press, 1980.
[Wel02] J.B. Wells. The essence of principal typings. In Proc. 29th International Colloquium on Automata, Languages and Programming, ICALP 2002, volume 2380 of $L N C S$, pages $913-925$. Springer, 2002.

[^0]: * Corresponding author, currently supported by a PhD sandwich scholarship of the CNPq at the Heriot-Watt University.
 ${ }^{\dagger}$ Partially supported by the CNPq.

