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Abstract

Mathematical texts can be computerized in many ways that capture differing amounts of the mathematical
meaning. At one end, there is document imaging, which captures the arrangement of black marks on paper,
while at the other end there are proof assistants (e.g., Mizar, Isabelle, Coq, etc.), which capture the full
mathematical meaning and have proofs expressed in a formal foundation of mathematics. In between,
there are computer typesetting systems (e.g., LATEX and Presentation MathML) and semantically oriented
systems (e.g., Content MathML, OpenMath, OMDoc, etc.).

The MathLang project was initiated in 2000 by Fairouz Kamareddine and Joe Wells with the aim of
developing an approach for computerizing mathematical texts and knowledge which is flexible enough to
connect the different approaches to computerization, which allows various degrees of formalization, and
which is compatible with different logical frameworks (e.g., set theory, category theory, type theory, etc.)
and proof systems. The approach is embodied in a computer representation, which we call MathLang,
and associated software tools, which are being developed by ongoing work. Three Ph.D. students (Manuel
Maarek (2002/2007), Krzysztof Retel (since 2004), and Robert Lamar (since 2006)) and over a dozen
master’s degree and undergraduate students have worked on MathLang. The project’s progress and design
choices are driven by the needs for computerizing real representative mathematical texts chosen from various
branches of mathematics.

Currently, MathLang supports entry of mathematical text either in an XML format or using the TEX
MACS

editor. Methods are provided for adding, checking, and displaying various information aspects. One aspect is
a kind of weak type system that assigns categories (term, statement, noun (class), adjective (class modifier),
etc.) to parts of the text, deals with binding names to meanings, and checks that a kind of grammatical
sense is maintained. Another aspect allows weaving together mathematical meaning and visual presentation
and can associate natural language text with its mathematical meaning. Another aspect allows identifying
chunks of text, marking their roles (theorem, definition, explanation, example, section, etc.), and indicating
relationships between the chunks (A uses B, A contradicts B, A follows from B, etc.). Software tool support
can use this aspect to check and explain the overall logical structure of a text. Further aspects are being
designed to allow adding additional formality to a text such as proof structure and details of how a human-
readable proof is encoded into a fully formalized version (so far this has only been done for Mizar and started
for Isabelle). A number of mathematical texts have been computerized, helping with the development of
these aspects, and indicating what additional work is needed for the future. This paper surveys the past
and future work of the MathLang project.

Keywords: mathematical knowledge management, mathematical vernacular, mathematical typesetting,
logical foundations of mathematics, proof assistants, proof checkers, theorem provers

1 Background and motivation

The MathLang project is based on considering these two questions:

(i) What is the relationship between the logical foundations of mathematical rea-

soning and the actual practice of mathematicians?
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(ii) In what ways can computers support the development and communication of

mathematical knowledge?

1.1 Logical Foundations

Our first question, of the relationship between the practice of mathematics and

its logical foundations, has been an issue for at least two millennia. Logic was

already influential in the study and development of mathematics since the time of

the ancient Greeks. One of the main issues was already known by Aristotle, namely

that for a logical/mathematical proposition Φ,

• given a purported proof of Φ, it is not hard to check whether the argument really

proves Φ, but

• in contrast, if one is asked to find a proof of Φ, the search may take a very long

time (or even go forever without success) even if Φ is true.

Aristotle used logic to reason about everything (mathematics, law, farming, medicine,

etc.). A formal logical style of deductive reasoning about mathematics was intro-

duced in Euclid’s geometry [16].

The 1600s saw a increase in the importance of logic. Researchers like Leibniz

wanted to use logic to address not just mathematical questions but also more esoteric

questions like the existence of God. In the 1800s, the need for a more precise style

in mathematics arose, because controversial results had appeared in analysis [17].

Some controversies were solved by Cauchy’s precise definition of convergence in

his Cours d’Analyse [5], others benefitted from the more exact definition of real

numbers given by Dedekind [11], while at the same time Cantor was making a

tremendous contribution to the formalisation of set theory and number theory [3,4]

and Peano was making influential steps in formalized arithmetic [33] (albeit without

an extensive treatment of logic or quantification).

In the last decades of the 1800s, the contributions of Frege made the move toward

formalization much more serious. Frege found

“. . . the inadequacy of language to be an obstacle; no matter how unwieldy the

expressions I was ready to accept, I was less and less able, as the relations became

more and more complex, to attain precision”

Based on this understanding of a need for greater preciseness, Frege presented Be-

griffsschrift [12], the first formalization of logic giving logical concepts via symbols

rather than natural language. “Begriffsschrift” is the name both of the book and of

the formal system the book presents. Frege wrote this about the Begriffsschrift:

“Its first purpose, therefore, is to provide us with the most reliable test of the

validity of a chain of inferences and to point out every presupposition that tries

to sneak in unnoticed, so that its origin can be investigated.”

Later, Frege wrote the Die Grundlagen der Arithmetik and Grundgesetze der Arith-

metik [13,14,38] where he argued that mathematics is a branch of logic and described

arithmetic in the Begriffsschrift. Frege’s Grundgesetze was the culmination of his

work on building a formal foundation for mathematics.
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One of the major issues in the logical foundations of mathematics is that the

naive approach of Frege’s Grundgesetze (and Cantor’s earlier set theory) is incon-

sistent. Russell discovered a paradox in Frege’s system (and also Russell’s own

system) that allows proving a contradiction, from which everything can be proven,

including all the false statements [38,17]. The need to build logical foundations

for mathematics that do not suffer from such paradoxes has led to many diverging

approaches. Russell invented a form of type theory which he used in the famous

Principia Mathematica [39]. Others have subsequently introduced many kinds of

type theories and modern type theories are quite different from Russell’s. Brouwer

introduced a different direction, that of intuitionism. Later, ideas from intuitionism

and type theory were combined, and even extended to cover the power of classical

logic (which Brouwer’s intuitionism rejects). Zermelo followed a different direction

in introducing an axiomatization of set theory [41], later extended by Fraenkel and

Skolem to form the well known Zermelo/Fraenkel (ZF) system. In yet another di-

rection, it is possible to use category theory as a foundation. And there are other

proposed foundations, too many to discuss here.

Despite the variety of possible foundations for mathematics, in practice real

mathematicians do not express their work in terms of a foundation. It seems that

most modern mathematicians tend to think in terms that are compatible with ZFC

(which is ZF extended with the Axiom of Choice), but in practice they almost never

write the full formal details. And it is quite rare for mathematicians to do their

thinking while regarding a type theory as the foundation, even though type theories

are among the most thoroughly developed logical foundations (in particular with

well developed computer proof software systems). Instead, mathematicians write in

a kind of common mathematical language (CML) (sometimes called a mathematical

vernacular), for a number of reasons:

• Mathematicians have developed conventional ways of using nouns, adjectives,

verbs, sentences, and larger chunks of text to express mathematical meaning.

However, the existing logical foundations do not address the convenient use of

natural language text to express mathematical meanings.

• Using a foundation requires picking one specific foundation, and any foundation

commits to some number of fixed choices. Such choices include what kinds of

mathematical objects to take as the primitives (e.g., sets, functions, types, cat-

egories, etc.), what kinds of logical rules to use (e.g., “natural deduction” vs.

“logical deduction”, whether to allow the full power of classical logic, etc.), what

kinds of syntax and semantics to allow for logical propositions (first-order vs.

higher-order), etc. Having made some initial choices, further choices follow, e.g.,

for a set theory one must then choose the axioms (Zermelo/Fraenkel, Tarski/-

Grothendieck, etc.), or for a type theory the kinds of types and the typing rules

(Calculus of Constructions, Martin-Löf, etc.). Fixed choices make logical foun-

dations undesirable to use for two reasons:

· Much of mathematics can be built on top of all of the different foundations.

Hence, committing to a particular foundation would seem to unnecessarily limit

the applicability of mathematical results.

· The details of how to build some mathematical concepts can vary quite a bit

from foundation to foundation. Issues that cause difficulty include how to han-
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dle “partial functions”, induction, reasoning modulo equations, etc. Because

these issues can be handled in all foundations, practicing mathematicians tend

to see the low-level details of these issues as inessential, irrelevant, and uninter-

esting, and are not willing to write the low-level details.

· Some mathematics only works for some foundations. Hence, for a mathemati-

cian to develop the specialized expertise needed to express mathematics in terms

of one particular foundation would seem to unnecessarily limit the scope of

mathematics the mathematician could address. An ordinary mathematician is

happy to be reassured by a mathematical logician that what they are doing can

be expressed in some foundation, but the ordinary mathematician usually does

not care to work out precisely how.

Furthermore there is no universal agreement as to which is the best logical foun-

dation.

• In practice, formalizing a mathematical text in any of the existing foundations

is an extremely time-consuming, costly, and mentally painful activity. Formal-

ization also requires special expertise in the particular foundation used that goes

far beyond the ordinary expertise of even extremely good mathematicians. Fur-

thermore, mathematical texts formalized in any of the existing foundations are

generally structured in a way which is radically different from what is optimal

for the human reader’s understanding, and which is difficult for ordinary math-

ematicians to use. (Some proof software systems like Mizar (which is based on

Tarski/Grothendieck set theory) attempt to reduce this problem, and partially

succeed.) What is a single step in a usual human-readable mathematical text

may turn into a multitude of smaller steps in a formalized version. New de-

tails completely missing from the human-readable version may need to be woven

throughout the entire text. The original text may need to be reorganized and re-

ordered so radically that it seems like it is almost turned inside out in the formal

version.

So, although mathematics was a driving force for the research in logic in the

19th and 20th century, mathematics and logic have kept a distance from each other.

Practicing mathematicians do not want to use formal mathematical logic and have

for centuries done most mathematical work outside of the strict boundaries of formal

logic.

1.2 Computerization of Mathematical Knowledge

Our second question, of how to use mechanical computers to support mathematical

knowledge, is more recent but is unavoidable since automation and computation can

provide tremendous services to mathematics. (There are also extensive opportuni-

ties for combining progress in logic and computerization not only in mathematics

but also in other areas: program verification, bio-informatics, chemistry, music, etc.)

Mechanical computers have been used from their beginning for mathematical

purposes. Starting in the 1960s, computers began to play a role in handling not

just computations, but abstract mathematical knowledge. Nowadays, computers

can represent mathematical knowledge in various ways:

• Pixel map images of pages of mathematical articles may be stored on the com-
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puter. While useful, it is extremely difficult for computer programs to access

the semantics of mathematical knowledge represented this way. Even keyword

searching is difficult, because first OCR (Optical Character Recognition) must

be performed and high quality OCR for mathematical material is still an area

with significant research challenges rather than a proven technology (e.g., there

is great difficulty with matrices [26]).

• Typesetting systems like LATEX or TEXMACS [37], can be used with mathematical

texts for editing them and formatting them for viewing or printing. The document

formats of these systems can also be used for storage and archiving. Such systems

provide good defaults for visual appearance and allow fine control when needed.

They support commonly needed document structures and allow custom structures

to be created, at least to the extent of being able to produce the correct visual

appearance.

Unfortunately, unless the mathematician is amazingly disciplined, the logical

structure of symbolic formulas is not directly represented. Furthermore, the log-

ical structure of mathematics as embedded in natural language text is not repre-

sented at all. This makes it difficult for computer programs to access document

semantics because fully automated discovery of the semantics of natural language

text still performs too poorly to use in practical systems. Even human-assisted

semi-automated semantic analysis of natural language is primitive, and we are

aware of no such systems with special support for mathematical text. As a con-

sequence, there is generally no computer support for checking the correctness of

mathematics represented this way or for doing searching based on semantics (as

opposed to keywords).

• Mathematical texts can be written in more semantically oriented document repre-

sentations like OpenMath [1] and OMDoc [27], Content MathML [6], etc. There is

generally support for converting from these representations to typesetting systems

like LATEX or Presentation MathML in order to produce readable and printable

versions of the mathematical text. These systems are better than the typesetting

systems at representing the knowledge in a computer-accessible way. Some as-

pects of the semantics of symbolic formulas can be represented in some of these

systems.

Unfortunately, in practice it is still difficult to have enough control over visual

presentation with representations like OMDoc, so practicing mathematicians still

prefer to use the typesetting systems.

Systems like OMDoc share the same difficulties with accessing the logical struc-

ture of mathematics embedded in natural language text as mentioned above for

typesetting systems. Although systems like OMDoc have ways to associate sym-

bolic formulas with uninterpreted chunks of natural language text, these chunks

are opaque to the computer and there is no method for checking that these asso-

ciations are correct.

A separate weakness is that although there is support for semantics, unlike

proof systems (see below), OMDoc and similar systems do not have good sup-

port for expressing the semantics in terms of a logical foundation of mathematics.

Also, type checking symbolic formulas (beyond mere arity checking), which is an

important tool for ensuring that symbolic formulas even have meaningful seman-
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tics, is not generally handled by these systems.

• There are software systems like proof assistants (sometimes called proof checkers,

these include Coq, Isabelle, Mizar, Isar, etc.) and automated theorem provers

(Boyer-Moore, Otter, etc.), which we collectively call proof systems. Each proof

system provides a formal languages for writing mathematics based on some foun-

dation of logic and mathematics. Work on computer support for formal founda-

tions began in the late 1960s with work by de Bruijn on Automath (AUTOmating

MATHematics) [32]. Automath supported automated checking of the full correct-

ness of a mathematical text written in Automath’s formal language. Since then,

many proof systems have been built to mechanically check logic, mathematics,

and computer software (e.g., Boyer-Moore, Isabelle, HOL, Coq, etc.). Generally,

these systems support checking of full correctness, and it is possible in theory

(although not necessarily easy) for computer programs to access and manipulate

the semantics of the mathematical statements.

Unfortunately, there are great disadvantages in using these systems. First, all

of the problems mentioned for logical foundations in section 1.1 are incurred, e.g.,

the enormous expense of formalization. Furthermore, one must choose a specific

proof system (Isabelle, Coq, Mizar, PVS, etc.) and each software system has its

own advantages and pitfalls and takes quite some time to learn. In practice, some

of these systems are only ever learned from a “master” in an “apprenticeship”

setting. Most proof systems have no meaningful support for the mathematical use

of natural language text. A notable exception is Mizar, which however requires

the use of natural language in a rigid and somewhat inflexible way. Most proof

systems suffer from the use of proof tactics, which make it easier to construct

proofs and make proofs smaller, but obscure the reasoning for readers because

the meaning of each tactic is often ad hoc and implementation-dependent. As a

result of these and other disadvantages, ordinary mathematicians do not generally

read mathematics written in the language of a proof system, and are usually not

willing to spend the effort to formalize their own work in a proof system.

• Computer algebra systems (e.g., Maxima, Maple, Mathematica, etc.) are widely

used software environments designed for carrying out computations, primarily

symbolic but sometimes also numeric. Each CAS has a language for writing

mathematical expressions and statements and for describing computations. The

languages can also be used for representing mathematical knowledge. The main

advantage for such a language is integration with a CAS.

Typically, a CAS language is not tied to any specific foundation and has little

or no support for guaranteeing correctness of mathematical statements. A CAS

language also typically has little or no support for embedded natural language

text, or for precise control over typesetting. So a CAS is often used for calculating

results, but these results are usually converted into some other language or format

for dissemination or verification. Nonetheless, there are useful possibilities for

using a CAS for archiving and communicating mathematical knowledge.

We are gradually developing a system named MathLang which we hope will

eventually be usable as a bridge between more than one of the above categories of

ways of representing mathematical knowledge. We also aim for MathLang to make
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easier (without requiring) the partial or full formalization of mathematical texts in

some foundation.

2 An overview of MathLang

2.1 The goals of MathLang

Sections 1.1 and 1.2 described issues with the practice of mathematics: the diffi-

culty for the normal mathematician in directly using a formal foundation, and the

disadvantages of the various computer representations of mathematics. To learn

how to address these issues, in 2000 we (Kamareddine and Wells) began the Math-

Lang project to develop a new mathematical language called MathLang 1 , so that

texts usually written in CML (the common mathematical language, expressed ei-

ther with pen and paper, or LATEX) could be written instead in MathLang in a way

that satisfies these goals:

(i) A MathLang text should support the usual features of CML: natural language

text, symbolic formulas, images, document structures, control over visual pre-

sentation, etc. And the usual kind of computer support for editing such texts

should be available.

(ii) It should be possible to write a MathLang text precisely in a way that is sig-

nificantly less ambiguous than the corresponding CML text. A MathLang text

should somehow support representing the text’s mathematical semantics and

structure. The support for semantics should cover not just individual pieces of

text and symbolic formulas but also the entire document and the document’s

relationship to other documents (to allow building connected libraries). The

degree of formality in representing the mathematical semantics should be flex-

ible, and at least one choice of degree of formality should be both inexpensive

and useful. There should be some automated checking of the well-formedness

of the mathematical semantics.

(iii) The structure of a MathLang text should follow the structure of the correspond-

ing CML, so that the experience of reading and writing MathLang should be

close to that of reading and writing CML. This should make it easier for an

author to see and have confidence that a MathLang text correctly represents

their intentions. Thus, if any foundational formal systems are used in Math-

Lang, then MathLang should somehow adapt the formal systems to the needs

of the authors and readers, rather than requiring the authors and readers to

adapt their thinking to fit the rigid confines of any existing foundations.

(iv) The structure of a MathLang text should make it easier to support further post-

authorship computer manipulations that respect its mathematical structure

and meaning. Examples include semantics-based searches, computations via

computer algebra systems, extraction of proof sketches (to be completed into

a full formalization in a proof system), etc.

(v) A particular important case of the previous point is that MathLang should

1 We always named the project MathLang but initially named the proposed language NML (New Mathe-
matical Language).
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support (but not require) interfacing with proof systems so that a MathLang

text can contain full formal details in some foundation and the formalization

can be automatically verified.

(vi) Authoring of a MathLang text should not be significantly harder for the or-

dinary mathematician than authoring LATEX. Features of MathLang that the

author does not want (such as formalization in a proof system) should not

require any extra effort from an author.

(vii) The design of MathLang should be compatible with (as yet undetermined)

future extensions to support additional uses of mathematical knowledge. Also,

the design of MathLang should make it easy to combine with existing languages

(e.g., OMDoc, TEXMACS). In this sense, MathLang might end up being a

method for extending an existing language in addition to (or possibly instead

of) a language on its own.

None of the previously existing representations for mathematical texts satisfies our

goals, so we have been developing new techniques.

MathLang is intended to support different degrees of formalization. Further-

more, for those documents where full formalization is a goal, MathLang is intended

to allow this to be accomplished in gradual steps. Some of the motivations for vary-

ing degrees of formalization have already been discussed in sections 1.1 and 1.2. Full

formalization is sometimes desirable, but also is often undesirable due to its expense

and the requirement to commit to many inessential foundational details. Partial

but not full formalization can sometimes be desirable for various reasons; as exam-

ples, it has the potential to be helpful with automated checking, semantics-based

searching and querying, and interfacing with computer algebra systems (and other

mathematical computation environments). Partial formalization can be carried out

to different degrees:

• The abstract syntax trees of symbolic formulas can be represented accurately.

This is usually missing when using systems like LATEX or Presentation MathML,

while more semantically oriented systems usually provide this to some degree.

This can be used to provide editing support for algebraic rearrangements and

simplifications, and can help with interfacing with computer algebra systems.

• The mathematical structure of natural language text can be represented in a

way similar to how symbolic formulas are handled. Furthermore, mixed text

and symbols can be handled. This can help in the same way as capturing the

structure of symbolic formulas can help. Nearly all previous systems do not

support handling natural language text in this way.

• A weak type system can be used to check simple grammatical conditions without

checking full semantic sensibility.

• Justifications (inside proofs and between formal statements) can be linked (with-

out necessarily always indicating precisely how they are used). Some examples of

potential uses of this feature include the following:

· Extracting only those parts of a document that are relevant to specific results.

(This could be useful in educational systems.)

· Checking that each instance of apparently circular reasoning is actually handled
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Fig. 1. Iterative MathLang development process

via induction.

· Calculating proof gaps as a first step toward fuller formalization.

• If one commits to a foundation (or in some cases, to a family of foundations), one

can start to use more sophisticated type systems in formulas and statements for

checking more aspects of well-formedness.

• And there are further possibilities.

2.2 The process of designing MathLang

We are gradually refining the design of MathLang based on experience testing the

use of MathLang for representative mathematical texts. This iterative process is

depicted in figure 1. We started from an initial design based on ideas from WTT

(see below). Each iteration of the overall procedure is to test the design by evalu-

ating encodings of real mathematical texts, during which issues and difficulties are

encountered, which lead to new needs being discovered and corresponding design

adjustments. The design includes not just formal rules for the representation of

mathematical texts, but also patterns and methodology for entering texts in this

representation, and supporting software.

Our choice of mathematical texts for testing is primarily oriented toward texts

that represent the variety of mathematical writing by ordinary mathematicians

rather than texts that represent the interests of formalists and mathematical lo-

gicians. Much of our testing has been with pre-existing texts. In some cases, we

have chosen texts that have previously been formalized by others so that we can

compare the representations, e.g., A Compendium of Continuous Lattices [15] of

which at least 60% has been formalized in Mizar [34], and Landau’s Foundations of

Analysis [29] which was fully formalized in Automath [36]. In some other cases, we

have chosen texts of historical importance which are known to have errors to ensure

that MathLang’s design will not exclude them, e.g., Euclid’s Elements [16]. And

we have chosen other texts to exercise other aspects of MathLang. In addition, we

have been testing the authoring of new texts.
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2.3 The original starting point: WTT

For purely historical reasons it is interesting to point out that the initial design

of MathLang was based heavily on ideas from the Weak Type Theory (WTT)

of Nederpelt and Kamareddine [25], which in turn was heavily inspired by the

Mathematical Vernacular (MV) of de Bruijn [10].

In the terminology of WTT, a document is a book which is a sequence of lines,

each of which is a pair of a sentence (a statement or a definition) and a context of

facts (declarations or statements) assumed in the sentence. WTT has four ways of

introducing names. A definition introduces a name whose scope is the rest of the

book and associates the name with its meaning. A name introduced by a definition

can have parameters whose scope is the body of the definition. A declaration in a

context introduces a name (with no parameters) whose scope is only the current

line. Finally, a preface gives names whose scope is the document; names introduced

by prefaces have parameters but unlike definitions their meanings are not provided

(and thus presumed to be given externally to the document). Declarations, defini-

tions, and statements can contain phrases which are built from terms, sets, nouns,

and adjectives. Using the terminology of object-oriented programming languages,

nouns act like classes and adjectives act like mixins (a special kind of function

from classes to classes). WTT uses a weak type system with types like noun, set,

term, adjective, statement definition, context, and book to check some basic

well-formedness conditions. Sets are used when something is definitely known to

be a set and the richer structure of a noun is not needed, and terms are used for

things that are not sets (and sometimes for sets in cases where the type system is

too weak).

Although WTT provides many useful ideas, the definition of WTT has many

limitations. The many different ways of introducing names are too complicated and

awkward. WTT provides no way to indicate which statements are used to justify

other statements and in general does not deal with proofs and logical correctness.

WTT provides no ways to present the structure of a text to human readers; there is

no way of grouping statements and identifying their mathematical/discourse roles

such as theorem, lemma, conjecture, proof, section, chapter. WTT provides no way

to give human names to statements (e.g., “Newman’s Lemma”). WTT provides no

way to use in one document concepts defined in another document.

2.4 The current MathLang design

The current MathLang design has developed through the experience of a large num-

ber of students, including both shorter projects (over a dozen projects by either 4th

year undergraduate students or M.Sc. students) and Ph.D. studies (by 3 students:

Maarek, Retel, and Lamar). Every student has done work to write in MathLang

some piece of mathematical text. The experience gained from this has led to the

current design of MathLang which is (currently) divided into three aspects:

• The Core Grammatical aspect (CGa) [23,24,30,19] takes the best features of

WTT [25] and MV [10], simplifies difficult aspects of WTT, and enhances the

nouns and adjectives of WTT with ideas from object-oriented programming so

that nouns are more like classes and adjectives are more like mixins. In CGa,
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the different kinds of name-introducing forms of WTT are unified; all definitions

by default have indefinite forward scope and a local scope operator is used to

allow local definitions. The basic unit becomes the step, which can be either

a definition, a statement (a phrase that asserts something), or a block which

is merely a grouping of steps. CGa keeps WTT’s notions of nouns, adjectives,

terms, sets, definitions, and statements. CGa provides a kind of grammar for

well-formed mathematics with grammatical categories and allows checking for

some basic well-formedness conditions (e.g., the origin of all names and symbols

can be tracked).

• The Text and Symbol aspect (TSa) [22,18,30,19] allows integrating normal type-

setting and authoring software with the mathematical structure represented with

CGa. TSa allows weaving together usual mathematical authoring representations

such as LATEX, XML, or TEXMACS with CGa data. Thanks to a notion of sour-

ing rules (called “souring” because it does the opposite of what is usually called

syntactic sugar), TSa allows the structure of the mathematical text to follow the

structure of the CML as conceived by the mathematician.

• The Document Rhetorical aspect (DRa) [21] supports identifying portions of a

text and expressing the relationships between them. Any portion of text (e.g., a

phrase, a step, a block, etc.) can be given an identity. Many kinds of relationships

can be expressed between identified pieces of text. For example, a chunk of text

can be identified as a “theorem”, and another can be identified as the “proof”

of that theorem. Similarly, one chunk of text can be a “subsection” or “chap-

ter” of another. Given these identified relationships, it becomes possible to do

computations to check whether all dependencies are identified, to check whether

the relationships are sensible or possibly problematic (and whether therefore the

author should be warned), and to extract and explain the logical structure of a

text. Dependencies identified this way have been used in generating formal proof

sketches and identifying the proof holes that remain to be filled.

In addition to the design of MathLang itself, there has been work on relating a

MathLang text to a fully formalized version of the text. Using the information in

the CGa and DRa aspects of a MathLang text, we have developed a procedure for

producing a corresponding Mizar document, first as a proof sketch with holes and

then as a fully completed proof [20]. We have recently begun to work also on doing

this with Isabelle in addition to Mizar.

Figure 2 (taken from [20]) diagrams the overall current situation of work on

MathLang. This figure refers to Mizar because this is the only proof system we have

completed documents with. In the rest of this paper, we discuss the aspects CGa,

TSa, and DRa in more detail, and also discuss the work on interfacing MathLang

with proof systems such as Mizar.

3 The aspects of MathLang

3.1 The Core Grammatical aspect (CGa)

CGa [23,24,30,19] is a formal language inspired initially by WTT [25] and MV [10],

and then later shaped by repeated experiences of entering mathematical texts in

11
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Fig. 2. Overall situation of work in MathLang

early versions of CGa.

The basic constructs of CGa are the step and the expression. The tasks handled

in WTT by books, prefaces, lines, declarations, definitions, and statements are all

represented as steps in CGa. A step can be a block {s1 , . . . , sn}, which is merely a

sequence of steps. A step can be a local scoping s1⊲s2, which is a pair of steps s1 and

s2 where the definitions and declarations of s1 are restricted in scope to s2 and the

assertions of s1 are assumptions of s2. A step can also be a definition, a declaration,

or an expression (which asserts a truth). Expressions are also used for the bodies

of definitions and inside the types in declarations. The possibilities for expressions

include uses of defined identifiers, identifier declarations, and noun descriptions. A

noun description allows specifying characteristics of a class of entities.

Here is an example. Consider this (silly) CML text:

“Given that M is a set, y and x are natural numbers, and x belongs to M, it

holds that x + y = y + x.”

A straightforward encoding of the above text in CGa would be the following:

{M : set; y : natural number; x : natural number; ∈(x, M)}

⊲ =(+(x, y),+(y, x))

This example assumes that somewhere earlier in the document there will be decla-

rations like these:

. . . ; ∈(term, set) : stat; =(term, term) : stat; natural number : noun;

+ (natural number, natural number) : natural number; . . .

12
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Here, M, y, x, ∈, =, and + are identifiers 2 while term, set, stat, and noun are key-

words of CGa. The semicolon, colon, comma, parentheses, braces, and right triangle

(⊲) symbols are part of the syntax of CGa. The statements like ∈(term, set) : stat

are declarations; this example declares ∈ to be an operator that takes two argu-

ments, one of type term and one of type set, and yields a result of type stat

(statement). The statement M : set is an abbreviation for M() : set which declares

the identifier M to have zero parameters.

CGa uses grammatical/linguistic/syntactic categories (also called types) to make

explicit the grammatical role played by the elements of a mathematical text. In

the above example, we see the category expressions term, set, stat, noun, and

natural number. In fact, the category expression natural number acts as an ab-

breviation for term(natural number), and term, set, and noun are abbreviations

for term(Noun {}), set(Noun {}), and noun(Noun {}), which all use the uncharac-

terized noun description Noun {}. A noun description is of the form Noun s and

describes a class of entities with characteristics (declared operations and true facts)

defined by the step s. The arguments of the category constructors term, set, and

noun are expressions which evaluate to noun descriptions. The category term(e)

describes individual entities belonging to the class described by the noun expres-

sion e, and the category set(e) describes any set of such entities. The category

noun(e) describes any noun which defines all the operations described by e with

the same types. So in the above example, the abbreviation term is the type of

all mathematical entities, the abbreviation set is the type of any set, noun is the

type of any noun (and specifies no characteristics for it), and natural number is

the type of any mathematical entity having the characteristics described by the

noun natural number. 3 The behavior of nouns in CGa is similar to that of classes

in object-oriented programming languages. CGa also has adjectives which are like

object-oriented mixins and act as functions from nouns to nouns.

Here are some further examples of categories (see also [25]), where we put parts

that do not determine the indicated category inside boxes:

Terms: the triangle ABC; the center of ABC ; d( x , y ).

Nouns: a triangle; an edge of ABC ; a group.

Adjectives: equilateral triangle ; prime number ; Abelian group .

Statements: P lies between Q and R ; 5 ≥ 3 ; AB is an edge of ABC .

Definition: a number p is prime whenever · · · .

These categories are all inspired from WTT. Full details of the rules of CGa are in

other papers [24,30].

The types of CGa are more sophisticated than the weak types of WTT and

allow tracking which operations are meaningful in some additional cases. Although

CGa’s types are more powerful than WTT’s, there are still significant limitations.

One limitation is that higher-order types are not allowed. For example, although

CGa allows the type (term, term) → term, which is the type of an operator that

takes two arguments of type term and returns a result of type term, CGa does not

2 Our current implementation only allows ASCII characters in identifiers, but we plan to support any
graphic Unicode characters.
3 CGa has other mechanisms that allow specifying additional characteristics of the noun natural number
separate from its declaration, and we assume in this example that this is done.
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∃ There is 0an element 0 in RR such that = + aa + 00 = aa

∃( 0 : R, = ( + ( a, 0 ), a ) )

Fig. 3. Example of CGa encoding of CML text

allow using the type ((term) → term, term) → term, which would be the type of an

operator that takes another operator as its first argument. Higher-order types can

be awkwardly and crudely emulated in CGa by encapsulation with noun types, but

this emulation does not work well due to the fact that CGa’s type polymorphism

is shallow, which is another significant limitation. To work around the weakness

of CGa’s type polymorphism, in practice we find ourselves often giving entities the

type term instead of a more precise type. We continue to work on making the type

system more flexible without making it too complex. It is important to understand

that the goal of CGa’s type system is not to ensure full correctness, but merely to

check whether the reasoning parts of a document are coherently built in a sensible

way.

The design of CGa is due to Kamareddine, Maarek and Wells [24]. The imple-

mentation of CGa is due to Maarek [30].

3.2 The Text and Symbol aspect (TSa)

TSa [22,18,30,19] is a representation that allows interleaving pieces of CGa with

pieces of CML in the form of mixtures of natural language, symbolic formulas, and

formatting instructions for visual presentation. The interleaving can be at any level

of granularity: meanings can be associated at a coarse grain with entire paragraphs

or sections, or at a fine grain with individual words, phrases, and symbols. Ar-

bitrary amounts of mathematically uninterpreted text can be included. The TSa

representation is inspired by the XQuery/XPath Data Model (XDM) [8] used for

representing the information content of XML documents. In TSa, a document d is

built from the empty document ([ ]) by sequencing (d1, d2) and labeling (ℓ〈d〉).

As an example of TSa, consider the piece of CML text and its CGa representation

given in figure 3. 4 The example could be represented in TSa by the following fine-

grained interleaving of CGa 5 and LATEX:

“There is #1 such that #2.”
〈∃〈“#1 in #2”〈:〈“an element $0$”〈0〉, “$R$”〈R〉〉〉,

“$#1 = #2$”〈=〈“#1 + #2”〈+〈“a”〈a〉, “0”〈0〉〉〉, “a”〈a〉〉〉〉

This example uses the abbreviation that ℓ stands for ℓ〈[ ]〉. For example, “a”〈a〉
actually stands for “a”〈a〈[ ]〉〉.

Associated with TSa are methods for extracting separately the CGa and the

typesetting instructions or other visual representation. For the example, from the

4 This example comes from [18].
5 The representation shown here omits type/category annotations that we usually include with the CGa
identifiers used in the TSa representation.
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= 0 + a0= shared a0 = = shared a(0 + 0) = = a0 + a0

eq 0 + a0 a0 eq a0 a(0 + 0) eq a(0 + 0) a0 + a0

Fig. 4. Example of using souring in TSa to support sharing

TSa above can be extracted the following TSa representation of just the CGa por-

tion:

∃〈:〈0, R〉,=〈+〈a, 0〉, a〉〉

The CGa portion of this text can be type checked and used for processing that needs

to know the mathematical meaning of the text. Similarly, the following pieces of

LATEX can also be extracted:

“There is #1 such that #2.”
〈“#1 in #2”〈“an element $0$”, “$R$”〉,
“$#1 = #2$”〈“#1 + #2”〈“a”, “0”〉, “a”〉〉

This tree of LATEX typesetting instructions can be further flattened for actual pro-

cessing by LATEX into a string such as:

“There is an element $0$ in $R$ such that $a + 0 = a$.”

The idea of the TSa representation is independent of the visual formatting language

used. Although we use LATEX in our example here, in our implementations so far

we have used the TEXMACS internal representation and also XML.

As part of the task of using TSa to interleave CGa and more traditional natural

language and typesetting information, we have needed to develop techniques for

handling certain challenging CML formations where the mathematical structure

and the CML representation do not nicely match. For example, in the text 0+a0 =

a0 = a(0 + 0) = a0 + a0, the terms a0 and a(0 + 0) are each shared between

two equations. Most formal representations would require either duplicating these

shared terms, like for example 0 + a0 = a0 ∧ a0 = a(0 + 0) ∧ a(0 + 0) = a0 + a0, or

explicitly abstracting the shared terms. To allow the TSa representation to be as

close to CML as possible, we instead solve this issue by using “souring” annotations

in the TSa representation [18]. These annotations are a third kind of node label

used in TSa, in addition to the CGa and formatting labels. We have developed

methods using souring annotations for extracting both the correct mathematical

meaning and the nice visual presentation in the CML style. For the above example

this is depicted in figure 4.

We have developed more sophisticated annotations that can handle more com-

plicated cases of sharing of terms between equations. Souring annotations have also

been developed to support several other common CML formulations. Support for

folding and mapping over lists allows using forms like ∀a, b, c ∈ S.P as shorthand

for ∀a ∈ S.∀b ∈ S.∀c ∈ S.P and {a, b, c} as shorthand for {a}∪ ({b}∪ ({c}∪∅)). We

have not yet developed folding that is sophisticated enough to handle ellipsis (. . .)
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as in CML formulations like the following example (from [35]):

f [x, . . . , x
︸ ︷︷ ︸

n + 1 arguments

] =
f (n)(x)

n!

We have implemented a user interface as an extension of the TEXMACS editor

for entering the TSa MathLang representation. The author can use mouse and

keyboard commands to annotate CML text entered in TEXMACS with boxes rep-

resenting the CGa grammatical categories in order to assign CGa identifiers and

thereby explicitly indicate mathematical meanings. The user interface allows dis-

playing either a pure CML view which hides the TSa and CGa information, a pure

CGa view, or various combined views including a view like the one depicted in fig-

ure 3. The same interface allows adding souring annotations like those depicted in

figure 4.

In future work, we would like to develop techniques for not just pairing a sin-

gle CML presentation with its CGa meaning, but also allowing multiple parallel

visual presentations such as multiple natural languages (not just English), both

natural language and symbolic formula presentations, and presentations in differ-

ent symbolic notations. We would like to develop better software support to aid

in semi-automatically converting existing CML texts into MathLang via TSa and

CGa.

The design of TSa is due to Kamareddine, Maarek, and Wells with contribu-

tions by Lamar to the souring rules [18,30]. The implementation is primarily by

Maarek [30].

3.3 The Document Rhetorical aspect (DRa)

DRa [21,20] is a system for attaching annotations to mathematical documents that

indicate the roles played by different parts of a document. DRa assumes the un-

derlying mathematical representation (which can be the MathLang aspects CGa or

TSa) has some mechanism for identifying document parts.

Some DRa annotations can be unary predicates on parts; these include annota-

tions indicating ordinary document sectioning roles such as part, chapter, section,

etc. (like the sectioning supported by LATEX, OMDoc, DocBook, etc.) and others

indicating special mathematical roles such as theorem, lemma, proof, etc. Document

parts can have multiple annotations if appropriate.

Other DRa annotations can be binary predicates on parts; these include such

relationships between parts as “justified by”, “uses”, “part of ”, and “example of ”.

Regarding the annotation of justifications, remember that a CML text is usually

incomplete: a mathematical thought process makes jumps from one interesting

point to the next, skipping over details. This does not mean that many mistakes

can occur; these details are usually so obvious for the mathematician that a couple

of words are enough (e.g., “apply theorem 35”). The mathematician knows that too

many details hinder concentration. To allow MathLang text to be close to CML

text, DRa allows informal justifications, which can be seen as hints about which

statements would be used in the proof of another statement.
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Lemma 1

For m, n ∈ N one has:
m2 = 2n2 =⇒ m = n = 0 A

Proof.

Define on N the predicate:
P (m) ⇐⇒ ∃n.m2 = 2n2 & m > 0. E

Claim.

P (m) =⇒ ∃m′ < m.P (m′).F

Indeed suppose m2 = 2n2 and m > 0. It follows that m2 is even, but
then m must be even, as odds square to odds. So m = 2k and we have
2n2 = m2 = 4k2 =⇒ n2 = 2k2 Since m > 0, if follows that m2 > 0, n2 > 0
and n > 0. Therefore P (n). Moreover, m2 = n2 + n2 > n2, so m2 > n2

and hence m > n. So we can take m′ = n.

G

By the claim ∀m ∈ N.¬P (m), since there are no infinite descending sequences of natural
numbers.

Now suppose m2 = 2n2

with m 6= 0. Then m > 0 and hence P (m). Contradiction.H

Therefore m = 0. But then also n = 0. I
2

B

Corollary 2
√

2 /∈ QC

Proof. Suppose
√

2 ∈ Q, i.e.
√

2 = p/q with p ∈ Z, q ∈ Z − {0}. Then
√

2 = m/n with
m = |p|, n = |q| 6= 0. It follows that m2 = 2n2. But then n = 0 by the lemma. Contradiction

shows that
√

2 /∈ Q. 2

D

justifies

justifies

uses

uses

justifies

uses

uses

subpartOf

subpartOf

Fig. 5. Example of wrapping/naming chunks of text and marking relationships in DRa

(A, hasMathematicalRhetoricalRole, lemma) (B, justifies, A)

(E, hasMathematicalRhetoricalRole, definition) (D, justifies, C)

(F , hasMathematicalRhetoricalRole, claim) (D, uses, A)

(G, hasMathematicalRhetoricalRole, proof) (G, uses, E)

(B, hasMathematicalRhetoricalRole, proof) (F , uses, E)

(H, hasOtherMathematicalRhetoricalRole, case) (H, uses, E)

(I, hasOtherMathematicalRhetoricalRole, case) (H, subpartOf , B)

(C, hasMathematicalRhetoricalRole, corollary) (H, subpartOf , I)

(D, hasMathematicalRhetoricalRole, proof)

Fig. 6. Example of DRa relationships between chunks of text in figure 5

Figure 5 gives an example (taken from [20] and implemented by Retel) where

the mathematician has identified parts of the text (indicated by letters A through I

in the figure). Figure 6, shows the underlying mathematical representation of some

example DRa annotations for the example in figure 5. Here, the mathematician has

given each identified part a structural (e.g., chapter, section, etc.) and/or mathe-
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matical (e.g., lemma, corollary, proof, etc.) rhetorical role, and has indicated the

relation between wrapped chunks of texts (e.g., justifies, uses, etc.). Note that all

the DRa annotations are represented as triples; this allows using the machinery of

RDF [7] (a W3C standard that is aimed at the “semantic web”) to represent and

manipulate them.

The DRa implementation can automatically extract a dependency graph (as

seen in figure 5) that represents knowledge about how the parts of a document are

related. The dependency graph can be used to check whether the logical reasoning

of the text is coherent and consistent (e.g., no loops in the reasoning, except when

supported by induction).

Future work with DRa will include more experience-driven tests on real CML

texts, improvement of features for using the DRa structure of a text to checking it is

sensibly constructed, better integration with TSa, and better support for recording

different kinds of informal justifications.

The design of DRa is due to Kamareddine, Retel, and Wells with contributions

by Maarek [21]. The implementation is primarily due to Retel.

4 Connecting MathLang to formal foundations

4.1 Goals for formalization

Current approaches to formalizing CML texts generally involve rewriting the text

from scratch; there is no clear methodology in which the text can gradually change

in small steps into its formal version. One of MathLang’s goals is to support for-

malizing a text in small steps that do not require radically reorganizing the text.

Also, a text with fully formal content should continue to be able to be presented

in the same way as a less formal version originally developed by a mathematician.

We envision formalization as working by adding additional layers of information to

a MathLang document to support embedding formal proofs. Ideally, there should

be flexible control over how much of the additional information is presented to the

reader; the additional information could form part of the visual presentation, or

could exist “behind the scenes” to provide assurance of correctness.

As part of the goal of supporting formalization in MathLang, we desire to keep

MathLang independent of any particular formal foundation. However, as proofs

embedded in a MathLang document become more formal, it will be necessary to tie

them more closely to a particular proof system. It might be possible that fully formal

documents could be kept independent of any particular foundation by allowing the

most formal parts of a document to be expressed redundantly in multiple proof

systems. (This is similar in spirit to the way the natural language portion of a

document might be expressed simultaneously in multiple natural languages.)

Following the general MathLang development/design strategy in figure 1, we

have been developing methodology and software for connecting a MathLang docu-

ment with formal versions of its content.
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Lemma 1

For m, n ∈ N one has:
m2 = 2n2 =⇒ m = n = 0 A

Proof.

Define on N the predicate:
P (m) ⇐⇒ ∃n.m2 = 2n2 & m > 0. E

Claim.

P (m) =⇒ ∃m′ < m.P (m′).F

Indeed suppose m2 = 2n2 and m > 0. It follows that m2 is even, but
then m must be even, as odds square to odds. So m = 2k and we have
2n2 = m2 = 4k2 =⇒ n2 = 2k2 Since m > 0, if follows that m2 > 0, n2 > 0
and n > 0. Therefore P (n). Moreover, m2 = n2 + n2 > n2, so m2 > n2

and hence m > n. So we can take m′ = n.
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By the claim ∀m ∈ N.¬P (m), since there are no infinite descending sequences of natural
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Now suppose m2 = 2n2

with m 6= 0. Then m > 0 and hence P (m). Contradiction.H
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shows that
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18Lemma:

19 proof

21 defpred

22 Claim:

23 proof

54 end;

63 per cases;
64 suppose

71 end;
72 suppose

77 end;
78 end;

80Corollary:

81 proof

95 end;

Fig. 7. Example of generating a Mizar Text-Proper skeleton from MathLang DRa and CGa

4.2 Initial exploratory work using Mizar

When the MathLang project started, we planned to start with Coq for our initial

development of support for formalization, but because Krzysztof Retel joined us

with his previous Mizar experience, we started with Mizar instead. Our work so

far with Retel on extending MathLang documents into Mizar formalizations [20]

involves constructing a skeleton of a Mizar document from a MathLang document,

and then completing the Mizar skeleton separately. A Mizar document consists

of an Environment-Declaration and a Text-Proper. In Mizar, the Environment-

Declaration is used to generate the Environment which has the needed knowledge

from MML (Mizar’s Mathematical Library). The Text-Proper is checked for cor-

rectness using the knowledge in the Environment.

Our work on creating a Mizar document skeleton from a MathLang document

uses the information in the CGa and DRa MathLang aspects. As an example,

a DRa relationship (B, justifies, A) requires that some portion of the Text-Proper

portion of the Mizar skeleton must look like this, where E and D must be filled in

appropriately (and the word “theorem” may need to be “lemma” or similar instead,

19



Kamareddine and Wells

as determined by the role of A):

Theorem:

E

proof

D

end;

Each DRa relationship and each portion of the CGa information contributes one

or more constraints toward the formation of the Mizar skeleton. Assuming these

constraints are solvable (which will usually be the case unless the mathematics is

horribly wrong), a Mizar skeleton is produced. If enough information is present,

the Mizar skeleton qualifies as a Mizar Formal Proof Sketch (FPS) [40]. Figure 7

(taken from [20]) illustrates this process for our example document given in figures 5

and 6. Given a Mizar FPS, a Mizar expert can complete the FPS by filling in the

remaining gaps in the reasoning.

4.3 Toward practicality and multiple proof systems

There is much work still left to be done so that connecting MathLang to a founda-

tional proof system can be practical. For the work we have done so far with Mizar,

once the Mizar skeleton has been generated, completing the formalization is done

in Mizar. It would fit the goals of MathLang better if the information needed to

complete a formal proof in some proof system were instead stored in the MathLang

document and manipulated using the same software tools that are used for editing

MathLang documents. It is desired that MathLang texts can contain enough in-

formation to generate fully formal proofs (or equivalent proof scripts) that can be

verified without further human interaction by a proof system.

The precise details of how to include this information in a MathLang text are still

being designed. The current design of CGa and DRa is deliberately far too weak to

fully formalize a text in any mathematical foundation, and TSa is solely concerned

with connecting mathematical content to its visual appearance. Because we want to

keep the core mathematical aspects of MathLang (currently these are CGa and DRa)

independent of particular foundations, in these aspects some mathematical tools

(e.g., induction, partial functions, etc.) are best treated as “black boxes” because

they are formalized differently in different foundations. Also, it is intended that

many aspects of a MathLang text will be largely independent of the choice of proof

system (like Mizar) or mathematical foundation (like the Tarski/Grothendieck set

theory used by Mizar), so that MathLang texts will be reusable in more situations.

We expect that embedding formal proof content will require some combination of

strengthening CGa and DRa and adding one or more additional MathLang aspects.

We do not yet know the full requirements of what extensions will be needed. The

ideas in Barendregt’s MPL (Mathematical Proof Language) [2] may be useful. We

expect to investigate whether a system like Automath can be used conveniently as

a meta-system for encoding other proof systems. Notions like the Mizar concepts of

“Environment” and “Text-Proper” are needed, which can then be easily transformed

into the format of a real proof system like Mizar FPS, while at the same time

remaining as independent of any proof system as possible. Special support may be

20



Kamareddine and Wells

needed for holes as part of incremental proof completion, because the meta-theory

of holes for some proof systems remains problematic. A question that we will be

continually asking is where commitment to a particular foundation or proof system

is needed and where such commitment can be avoided. An overriding concern is

that the structure of a MathLang text should correspond to the human conception,

rather than the contortions usually required by a foundation.

Our self evaluation will continue to use the test documents we have already iden-

tified and may in the future involve choosing additional CML documents. When

complete, we will compare the resulting formalizations in MathLang for A Com-

pendium of Continuous Lattices [15] and Landau’s Foundations of Analysis [29] with

the already-existing fully proof-checked formalizations in Mizar and Automath. We

also plan to evaluate MathLang using additional foundations. We have started us-

ing Isabelle (due to Robert Lamar’s previous Isabelle experience) in work that is

similar to the work done with Mizar. Another foundation we also plan to target is

the Calculus of Constructions (CoC) [9], which is the core of what is implemented

by the Coq proof system.

5 Conclusion

5.1 Work and accomplishments so far

The work on MathLang has been led by Kamareddine and Wells, has involved the

hard work of 3 Ph.D. students (Maarek, Retel, and Lamar), and has benefited from

implementation and evaluation work by numerous undergraduate and master’s de-

gree students. This work has led to a number of publications [23,22,24,18,19,20,21]

and Maarek’s Ph.D. thesis [30]. Retel’s Ph.D. thesis is expected imminently, while

Lamar’s Ph.D. studies are nearing the halfway point. A new Ph.D. student Christoph

Zengler is starting soon.

To compare our initial plans and our actual achievements, figure 8 contains

a project planning dependency diagram from an early MathLang project plan

that shows the tasks and the dependencies between them as we imagined them

in 2001. 6 Six years later, we can see that the development of CGa [23,24,30,19],

TSa [22,18,30,19], and DRa [21,20] represent substantial progress on tasks 1, 2, 3,

and 4, although more remains to be done on these tasks. The work on learning how

to use CGa and DRa to generate Mizar proofs represents partial progress on task 7.

All of our work so far has included work on parts of task 9.

We have not yet worked on task 5, which envisioned altering the structure of a

specific mathematical foundation to make it more suitable for embedding in ordinary

mathematical documents. We might still do this, but we are now more likely to work

on techniques that can be used with more than one foundation and that can avoid

altering the foundation. Also, we have not used for MathLang a proof system based

on CoC. Although we are currently working on connecting MathLang documents

with formalizations in Mizar and Isabelle, we plan to connect with at least one more

proof system, most likely Coq (which is based on CoC).

6 The only change from our original diagram is that in addition to calling the project “MathLang” (as
we always have), we now also call the language “MathLang” instead of the older name of “NML” (New
Mathematical Language).
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1: Develop
MathLang
foundation.

2: Enhance
MathLang with

flexible
formal/natural-

language
correspondence.

3: Enhance
MathLang with

mixed
formal/informal

text (e.g.,
explanations

and examples).

4: Enhance
MathLang for
representing
justification

links and
(unchecked)

proofs.

5: Enhance CoC
with features

(e.g., definitions
and parametric
constants) to

make it
convenient for

integration into
MathLang.
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semi-automated

support for
converting

natural language
into MathLang.

7: Develop
methodology for

obtaining the
formal proof

burden for an
MathLang text
and completing

the
formalization.

8: Develop
MathLang
completion
levels with

features of real
logics.

9: Complete
encoding 3
books as

examples of how
to use

MathLang and
assess overall

results.

Fig. 8. MathLang project planning diagram from the year 2001

Our initial plans for task 8 have replaced a concept we called “completion lev-

els” by our notion of “aspects”. The semi-automatic extraction of mathematical

structure from CML proposed in task 6 remains for future work.

5.2 Future work and planned results

MathLang is a long-term project and we expect there will be years of design, imple-

mentation, and evaluation, followed by repeated redesign, reimplementation, and

re-evaluation. There are many areas which we have identified as needing more work

and investigation. One area is improvements to the MathLang software (currently

based on the TEXMACS editor) to make it easier to enter information for the core

MathLang aspects (currently CGa and DRa). This is likely to include work on semi-

automatically recognizing the mathematical meaning of natural language text. A

second area is further designing and developing the portions of MathLang needed

for better support of formalization. An issue here is how much expertise in any
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particular target proof system will be needed for authoring. It may be possible to

arrange things in MathLang to make it easy for an expert in a proof system to

collaborate with an ordinary mathematician in completing a formalization. A third

area where work is needed is in the overall evaluation process needed to ensure

MathLang meets actual needs. This will require testing MathLang with ordinary

mathematicians, mathematics students, and other users. And there are additional

areas where work will be needed, including areas we have not yet anticipated.

The MathLang project aims for a number of outcomes. MathLang aims to

support mathematics as practiced by the ordinary mathematician, which is generally

not formalized, as well as work toward full formalization. We expect that after

further improvements on the MathLang design and software, writing MathLang

documents (without formalizing them) will be easy for ordinary mathematicians.

MathLang will support various kinds of consistency checking even for non-formalized

mathematics. MathLang will be independent of any particular logical foundation

of mathematics; individual documents will be able to be formal in one or more

particular foundations, or not formalized.

MathLang hopes to open a new useful era of collaboration between ordinary

mathematicians, logicians (who ordinarily stay apart from other mathematicians),

and computer science researchers working in such areas as theorem proving and

mathematical knowledge management who can develop tools to link them together.

The MathLang project’s outputs will include a document representation, software

suitable for manipulating this representation, and documentation and guidance for

how to use the representation and the software. MathLang’s document representa-

tion is intended to help with various kinds of automated computerized processing

of mathematical knowledge. It should be possible to link MathLang documents to-

gether to form a public library of reusable mathematics. MathLang aims to better

support translation between natural languages of mathematical texts and multi-

lingual texts. MathLang aims to better support the differing uses of mathematical

knowledge by different kinds of people, including ordinary practicing mathemati-

cians, students, computer scientists, logicians, linguists, etc.
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