
LSFA 2014

Skalpel: A Type Error Slicer for Standard ML

Vincent Rahli

Cornell University, Ithaca

Joe Wells and John Pirie and Fairouz Kamareddine

Heriot-Watt University, Edinburgh

Abstract

Compilers for languages with type inference algorithms produce confusing type error messages and give a
single error location which is often far away from the real location of the type error. Attempts at solving
this problem 1) fail to include the multiple program points which make up the type error, 2) often report
tree fragments which do not correspond to any place in the user program, and 3) give incorrect type
information/diagnosis which can be highly confusing. We present Skalpel, a type error slicing tool which
solves these problems by giving the programmer all and only the information involved with a type error
to significantly aid in diagnosis and repair of type errors. Skalpel consists of a sophisticated new constraint
generator which is linear in size and a new constraint solver which is terminating.

Keywords: Automated type inference, Automated error diagnosis, Improved error reports.

1 Introduction & Related Work

Programming languages like SML, Haskell, and OCaml rely on type systems which

allow automatic type inference, freeing programmers from explicitly writing types.

These type inference algorithms allow one to detect programming errors at an early

stage (at compile time). Unfortunately, these compilers give confusing type error

reports which waste users’ valuable time during error correction. We present Skalpel,

a type error slicing tool which helps programmers by isolating exactly the parts

(slice) of an ill-typed program contributing to an error. The produced slice contains

all and only the program parts related to the error.

The original type-checking algorithm for Standard ML is algorithm W

[Damas and Milner(1982)], which blames a single abstract syntax tree node when

unification fails. Variations on this algorithm such as M [O. Lee(1998)] and W’

[Mcadam(1998)], have been developed to solve the left-to-right bias of the W al-

gorithm. However, all these algorithms still blame a single node in the abstract

syntax tree for an error which is made up of multiple error locations. In addition,

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Rahli, Wells, Pirie and Kamareddine

the errors reported by existing compilers are confusing, as they often give incorrect

type information/diagnosis and report abstract syntax tree fragments which do not

correspond to the user program.

Automatically finding type errors in programming languages is a difficult task.

Successful attempts need to address constraint systems (systems which use a con-

straint based approach in order to locate errors, unlike compilers which use a

substitution-based approach) but these have only been built for toy-like languages in

[Müller(1994)] and [Hage and Heeren(2009)]. A more promising approach has been

taken in [Zhang and Myers(2014)], but again the supported portion of the languages

used to demonstrate the key ideas is small. Moreover, existing proposals to solve

poor type error reporting (e.g., [Braßel(2004)], [Lerner and Grossman(2006)], and

[Schilling(2012)]) simply repeat calls to the compiler and remove/add back in por-

tions of the untypable program to narrow the point of error. The problem of finding

type errors and of reporting possible solutions is very difficult and to solve it au-

tomatically is even more difficult. Every piece of syntax in the program must be

automatically labelled, constraints need to be automatically generated and solved

and finding solutions can lead to new constraints and a combinatorial constraints

size explosion.

We have developed a new method and tool (Skalpel) which solves the above

problems. Skalpel attaches program points (labels) to constraints that are gen-

erated, so that when unification fails, we can report the labels attributed to the

constraints which were generated, giving a full description of the error. We anno-

tate constraints with these labels to describe what set of program points a constraint

is involved with. When Skalpel is asked to check a program for type errors, it runs

its sophisticated constraint generator/solver (which is linear in size and terminat-

ing). If solving the constraints fails (i.e., if there is an error in the code), Skalpel

must automatically decide which parts (slice) of the program was responsible for the

error. Then, Skalpel generates a type error slice highlighting the minimum amount

of information responsible for the type error in the code. By looking at the high-

lighted regions, the user can be confident that the type error can be fixed in one of

the highlighted locations and that non-highlighted locations do not contribute to

any error. Our contributions include the following:

• Unlike other algorithms which use a substitution approach to solving, such as

M [O. Lee(1998)] and W’ [Mcadam(1998)], Skalpel will only show program frag-

ments which originate from the user program.

• Skalpel will show all the program locations that contribute to the error.

• Skalpel is general enough to deal not only with one file containing source code

with a single type error, but also type error slices that we pass to the user may

involve more than one file of source code and highlighting is given in all affected

files. Furthermore, if the source code fed to Skalpel contains multiple separate

type errors, Skalpel produces all the culprit multiple program slices.

• The constraint generator is linear in the size of the program and the constraint

solver is terminating (Lemmas 3.1 and 3.3).

2

Rahli, Wells, Pirie and Kamareddine

• Skalpel is the first attempt at handling an entire programming language using a

constraint approach, the core of which is given in this paper.

In Section 2 we discuss the basic notation used. In Section 3 we give the technical

core of Skalpel. In particular, we discuss our new constraint representation which

was vital for us overcoming the constraint size explosion challenge when dealing with

an entire programming language such as SML. We show that constraint generation

is linear and that constraint solving terminates. We conclude in Section 4.

2 Mathematical notations

Let i, j,m, n, p, q range over the set N of natural numbers. If v ranges over a class C ,

then vx (where x can be anything) and v′, v′′, etc., also range over C . Let s range

over sets. If v ranges over s, then let v range over P(s), the power set of s. Let

dj(s1, . . . , sn) (“disjoint”) hold iff for all i, j ∈ {1, . . . , n}, if i 6= j then si∩sj = ∅. Let
s1⊎s2 be s1∪s2 if dj(s1, s2) and undefined otherwise. Let Lx, yM be the pair of x and

y. If rel is a binary relation (a pair set), let (x rel y) iff Lx, yM ∈ rel , let the inverse

of rel be rel−1 defined as {Lx, yM | Ly, xM ∈ rel}, let dom(rel) = {x | ∃y.Lx, yM ∈ rel},
let ran(rel) = {y | ∃x.Lx, yM ∈ rel}, let s ⊳ rel = {Lx, yM ∈ rel | x ∈ s}, and let

s ⊲ rel = {Lx, yM ∈ rel | x 6∈ s}. Let f range over functions (a special case of

binary relations), let s → s′ = {f | dom(f) ⊆ s ∧ ran(f) ⊆ s′}, and let x 7→ y be

an alternative notation for Lx, yM used when writing some functions. A tuple t is

a function such that dom(t) ⊂ N and if 1 ≤ j ∈ dom(t) then j − 1 ∈ dom(t).

Let t range over tuples. If v ranges over s then let −→v range over tuple(s) = {t |
ran(t) ⊆ s}. We write the tuple {0 7→ x0, . . . , n 7→xn} as 〈x0, . . . , xn〉. Let @ append

tuples: 〈x1, . . . , xi〉@〈y1, . . . , yj〉 = 〈x1, . . . , xi, y1, . . . , yj〉. Given n sets s1, . . . , sn,

let s1, ..., sn be {〈x1, . . . , xn〉 | ∀i ∈ {1, . . . , n}.xi ∈ si}. Note that s1, ..., sn ⊆
tuple(s1 ∪ · · · ∪ sn). For some reduction relation R we write R∗ for its reflexive and

transitive closure.

3 Technical Core of Skalpel

We refer to the system which is defined in this section as the Skalpel core, comprising

of the constraint generator and solver which are defined in this section.

We begin by introducing the external labelled syntax given in Figure 1 which

describes a subset of the SML language, chosen to present the core ideas. 1 Most

syntactic forms have labels (l), which are generated to track blame for errors. We

surround some terms such as function application with ⌈ ⌉ in order to provide a

visually convenient place for labels.

We will present a running example throughout this paper. The SML program

1 We do not enforce all the syntactic restrictions of the SML syntax e.g. in val rec pat
l
= exp, the expression

exp must be an fn-expression (which we do not enforce in this paper).

3

Rahli, Wells, Pirie and Kamareddine

Fig. 1 External labelled syntax: The subset of SML that Skalpel handles
l ∈ Label (labels) ∈ (Union of below sets)

tv ∈ TyVar (type variables)

tc ∈ TyCon (type constructors)

strid ∈ StrId (structure identifiers)

vvar ∈ ValVar (value variables)

dcon ∈ DatCon (datatype constructors)

vid ∈ VId ::= vvar | dcon

ltc ∈ LabTyCon ::= tcl

ldcon ∈ LabDatCon ::= dcon l

dn ∈ DatName ::= ⌈tv tc⌉l

atpat ∈ AtPat ::= vid l
p

cb ∈ ConBind ::= dcon l
c | dcon of l ty

atexp ∈ AtExp ::= vid l
e | letl dec in exp end

pat ∈ Pat ::= atpat | ⌈ldcon atpat⌉lab

ty ∈ Ty ::= tv l | ty1

l
→ ty2 | ⌈ty ltc⌉l

strdec ∈ StrDec ::= dec | structure strid
l
= strexp

strexp ∈ StrExp ::= strid l | structl strdec1 · · · strdecn end

dec ∈ Dec ::= val rec pat
l
= exp | openl strid | datatype dn

l
= cb

exp ∈ Exp ::= atexp | fn pat
l
⇒ exp | ⌈exp atexp⌉l

id ∈ Id ::= vid | strid | tv | tc

term ∈ Term ::= ltc | ldcon | ty | cb | dn | exp | pat | strdec | strexp

we will use as an example is shown below. We present this here in order to show

how syntax is annotated with labels.

fn yl2
l
⇒ letl3 val rec fl8 =l7 fn xl9

l10⇒ ⌈xl12 yl13 ⌉l11 in ⌈fl4 yl5⌉l6 end

In Figure 1, value identifiers (vid) are subscripted to disambiguate rules for

expressions (vid l
e), datatype constructor definitions (dcon l

c), and pattern (vid l
p) oc-

currences. The non-ambiguous (hence non-subscripted) value identifiers occur at

unary positions in patterns and datatype declarations.

Although SML distinguishes value variables and datatype constructors by as-

signing statuses in the type system, we distinguish them by defining two disjoint sets

ValVar and DatCon. As opposed to the Skalpel core, for fully correct minimal error

slices, Section 14.1 of [Rahli(2010)] handles identifier statuses. Also, to simplify the

presentation of the Skalpel core for this paper, datatypes have been restricted to

one constructor and one type argument.

3.1 Constraint syntax

In this section we give in Figure 2 our constraint syntax for the Skalpel core. This

syntax is used to represent constraints, for example in the constraint generator

where we build the constraints that will be used to establish whether a program

is typable or is erroneous (Section 3.2) and in the constraint solver (Section 3.3)

which locates errors.

Sections 3.1.1 . . . 3.1.3 explain the various parts of this syntax. The

motivation is to build environments that avoid duplication at initial con-

straint generation or during constraint solving. Note that earlier systems (e.g.

[Di Cosmo et al.(2005)Di Cosmo, Pottier, and Rémy]) are too restrictive to repre-

sent module systems because they only support very limited cases of our binders.

With our constraints, we can easily define a compositional constraint generation

4

Rahli, Wells, Pirie and Kamareddine

algorithm.

Fig. 2 Syntax of constraint terms

∈ (Union of below sets and Label)

ev ∈ EnvVar (environment variables)

δ ∈ TyConVar (type constructor variables)

γ ∈ TyConName (type constructor names)

α ∈ ITyVar (internal type variables)

µ ∈ ITyCon ::= δ | γ | arr | 〈µ, l〉

τ ∈ ITy ::= α | τ µ | τ1 � τ2 | 〈τ, l〉

tcs ∈ ITyConScheme ::= ∀v . µ

es ∈ EnvScheme ::= ∀v . e

ts ∈ ITyScheme ::= ∀v . τ c ∈ EqCs ::= µ1 = µ2 | e1 = e2 | τ1 = τ2

bind ∈ Bind ::= �tc=tcs | �strid=es | �tv=ts | �vid=ts

acc ∈ Accessor ::= �tc=δ | �strid=ev | �tv=α | �vid=α

e ∈ Env ::= ⊤ | ev | bind | acc | c | poly(e) | ∃a.e | e2;e1 | 〈e, l〉

extra metavariables

ct ∈ CsTerm ::= τ | µ | e

σ ∈ Scheme ::= ts | tcs | es

v ∈ Var ::= α | δ | ev

a ∈ Atom ::= v | γ | l

dep ∈ Dependent ::= 〈ct , l〉

During analysis, a dependent form 〈, l〉 depends on the program nodes with labels

in l e.g. the dependent equality constraint 〈τ1=τ2, l∪{l}〉 might be generated for the

labelled function application ⌈exp atexp⌉l, indicating the equality constraint τ1 = τ2
need only be true if node l has not been sliced out. In order to manipulate our

labels, we define two functions strip and collapse below, which respectively allow us

to take all labels off any given term, and to union nested labels of terms. Note that

dom(strip) = dom(collapse) =, and ran(strip) is any piece of syntax which is not a

dependent form, while ran(collapse) =.

strip() =

{

strip(y) if = 〈y, l〉

otherwise
collapse() =











collapse(〈y, l ∪ l
′
〉)

if = 〈(〈y, l〉), l
′
〉

otherwise

Note that we sometimes write 〈ct , l〉 for 〈ct , {l}〉. Given a label or a set of labels

y, we write cty to abbreviate 〈ct , y〉, and ct1
y
= ct2 for 〈ct1 = ct2, y〉.

3.1.1 Internal types (τ) and their constructors (µ)

The ITy and ITyCon sets contain internal types and internal type constructors re-

spectively. In order to maintain some simplicity for the core, only unary type con-

structors are supported. 2 We have a special kind of type constructor arr, which is

used to create a constraint in the constraint solving process between a unary type

constructor and an arrow (→) type.

3.1.2 Schemes (σ)

There are three kinds of universally quantified schemes: type schemes (similar to

those in [Neubauer and Thiemann(2003)]), type constructor schemes, and environ-

ment schemes. All schemes are subject to alpha-conversion (e.g. the schemes ∀α1. α1

2 Section 14.10 in [Rahli(2010)] presents a solution whereby type constructors can have any arity.

5

Rahli, Wells, Pirie and Kamareddine

and ∀α2. α2 are equivalent).

3.1.3 The constraint/environment form (e)

The form e should be considered as both a constraint and an environment. Such a

form can be any of the following:

(i) The empty environment/satisfied constraint. This is represented by ⊤.

(ii) An environment variable. We write [e] to abbreviate (∃ev .ev = e), where

ev does not occur in e. This is a constraint which enforces the logical constraint

nature of e while limiting the scope of its bindings. Note that the bindings can

still have an effect if e constrains an environment variable.

(iii) A composition environment. We use the operator ’;’ to compose environ-

ments, which is associative. Note that e;⊤, ⊤;e, and e are equivalent.

(iv) A binder/accessor. A binder is of the form �id=σ, and an accessor is of

the form �id=v . Binders represent program occurrences of an identifier id

that are being bound, and accessors represent a place where that binding is

used e.g., in the environment �vid=x;�vid=α the internal type variable α is

constrained through the binding of vid to be an instance of x. In this case, we

say that the binder and the accessor of vid are connected. Moreover, binders

and accessors can often be connected without being next to each other e.g., in

the environment �vid=x;...;�vid=α it is possible that the binder and accessor

of vid are connected. There are some environment forms that can be in the

omitted (...) section which will mean that the accessor and the binder will be

disconnected. Section 3.1.5 describes shadowing, which specifies which forms

would cause this.

We abbreviate �vid=∀∅. ct by �vid=ct and abbreviate a dependent form

〈�vid=ct , y〉 by �vid
y
= ct . Similarly for accessors.

(v) An equality constraint. A constraint where two pieces of constraint syntax

are made to be equal.

(vi) Existential environment. The form ∃x.e, binds all free occurrences of

x that occur free in e. We use the notation ∃〈x1. · · · , xn〉.e to abbreviate

∃x1. · · · ∃xn.e.

(vii) A polymorphic environment. This promotes the binders in the argument

to poly to be polymorphic.

(viii) Dependent form. Label-annotated environments.

3.1.4 Atomic forms and Semantics of constraints/environments

Let atoms() be the syntactic form set belonging to Var∪Label and occurring in . In

addition, we define the forms as shown below.

vars() = atoms() ∩ Var labs() = atoms() ∩ Label

6

Rahli, Wells, Pirie and Kamareddine

Note that dom(atoms) = dom(labs) = dom(vars) =, ran(atoms) = Var ∪
Label, ran(labs) = Label, and ran(vars) = Var.

Checking parts of the program for mismatch requires substitution, unification,

renaming, and accessing shadowed hidden information. These notions are defined

in this section.

We define the sets of renamings Ren and substitutions Sub. Note Ren ⊂ Sub.

ren ∈ Ren = {ITyVar → ITyVar | ren is injective ∧ dj(dom(ren), ran(ren))}

sub ∈ Sub = {f1 ∪ f2 | f1 ∈ Unifier ∧ f2 ∈ TyConName → TyConName}

We also define our unifier set as a directed acyclic graph U ∈ Unifier = {, } where

= ITyVar ∪ ITy ∪ ITyCon and = P(×) which specify directional edges. Note that for

each Vx ∈, the edge Vx 7→ V ′
x occurs at most once, and so we also consider U as a

function. When using an application U(Vx), vertex V ′
x will be returned where a path

from Vx to V ′
x exists (if it does not, Vx = V ′

x) and V ′
x 7→ V ′′

x does not exist e.g., where

U = {{V1, V2, V3, V4, V5, V6}, {V1 7→ V3, V3 7→ V2, V4 7→ V5, V2 7→ V6}},U(V1) = V6.

During application, if U(v) =x and vars() 6= {}, then for each v ′ ∈ vars() if U(v ′) 6= v ′

then it is replaced by U(v ′).

Environments contain information on external identifiers. We also need infor-

mation on internal type variables which we get through our unifiers. Renamings are

used to instantiate type schemes. The Unifier set consists of unifiers generated by

our constraint solver (see Section 3.3). Substitution is defined in Figure 3, where

given a constraint term and a substitution, a resulting constraint term is produced.

Fig. 3 Substitution semantics on constraint terms (from constraint terms to con-

straint terms)

a[sub] =

{

x, if sub(a) = x

a, otherwise

(τ µ)[sub] = τ [sub]µ[sub]

(τ1 � τ2)[sub] = τ1[sub] � τ2[sub]

ct l [sub] = ct [sub]l

(ct1 = ct2)[sub] = (ct1[sub] = ct2[sub])

(e1;e2)[sub] = e1[sub];e2[sub]

(∀v . ct)[sub] = ∀v . ct [sub] s.t. dj(v , atoms(sub))

(∃a.e)[sub] = ∃a.e[sub] s.t. dj({a}, atoms(sub))

(�id=v)[sub] =

{

(�id=v [sub]), if v [sub] ∈ Var

undefined, otherwise

(�id=σ)[sub] = (�id=σ[sub])

poly(e)[sub] = poly(e[sub])

x[sub] = x, otherwise

3.1.5 Shadowing, Accessing and Instance

Finding the source of errors in a program is all about accessing and getting to know

every bit of the program, so that any mismatches are identified. Error finding is

elusive because in an environment it may be the case that some parts are shadowed

and so inaccessible. Consider the environment bind1; ev ; bind2. In the event that

ev /∈ dom(U), we say that ev shadows bind1 because ev could potentially be bound

to an environment which rebinds bind1. We define shadowsAll by:

• shadowsAll(〈U , e〉) ⇐⇒

7

Rahli, Wells, Pirie and Kamareddine































(e = ev ∧ (shadowsAll(〈U , U(ev)〉) ∨ ev 6∈ dom(U)))

∨ (e = (e1;e2) ∧ (shadowsAll(〈U , e1〉) ∨ shadowsAll(〈U , e2〉)))

∨ (e = 〈e ′, l〉 ∧ shadowsAll(〈U , e ′〉))

∨ (e = ∃a.e ′ ∧ shadowsAll(〈U , e ′〉) ∧ a 6∈ dom(U))

• shadowsAll(e) ⇐⇒ shadowsAll(〈∅, e〉)

Note that dom(shadowsAll) = tuple(U × e) and ran(shadowsAll) is either true or

false. We now present how to access the semantics of an identifier in an environment

below, in the context where we have access to a unifier set U during constraint

solving.

(�id=σ)(id) = σ

(e l)(id) = ∀v . ct l , if (e)(id) = ∀v . ct

(e1;e2)(id) =



















(e2)(id), if (e2)(id) is defined

undefined, if (e2)(id) is undefined

and shadowsAll(〈U , e2〉)

(e1)(id), otherwise

(ev)(id) =

{

(e)(id), if U(ev) = e

undefined, otherwise

(〈e〉)(id) = e(id)

(〈e1〉@〈e2〉)(id) = (e1; e2)(id)

Since an existential environment represents incomplete information, its applica-

tion to an identifier is undefined. Finally, we define two instance relations here, the

use of which can be seen in constraint solving.

∀v . ct , sub −instance−−−−→ ct [sub] if dom(sub) = v σ −e−→ ct if ∃sub.σ, sub −instance−−−−→ e, ct

3.2 Constraint generation

In this section we introduce our constraint generator, which generates constraints

between parts of the user program which affect each other in some way. Our con-

straint generator is defined in Figure 4. Note that there are other types of con-

straints during the solving process.

Let v be a function with two arguments, the first a labelled piece of user program

, and the second a set of free variables occurring in . Each of the constraint gen-

eration rules is written either as JK = e (which abbreviates {} = e) or as J, vK = e

(which abbreviates {v} = e). Let = {}

It can be seen that datatype declarations only have one constructor by looking

at rules (G17), (G14), and (G16). We have defined the core in this manner in order

to reduce the complexity of the core. In rule (G13) we define the datatype names

to have exactly one type variable argument.

Structure declarations are handled in rule (G20). To reduce complexity, we do

not handle signatures in the core but this theory can be seen in [Pirie(2014)].

To allow us to slice out environments correctly, we annotate environment vari-

ables with labels, such as in rule (G4). We must annotate such environment variables

8

Rahli, Wells, Pirie and Kamareddine

with a label, otherwise we would not be able to slice it out, and that environment

variable would then shadow any following environment.

In order to generate constraints for our running example, we must apply rule

(G4) to the program we labelled for the fn-expression, and rule (G6) to handle the

pattern of the anonymous function. These two rules are used to produce the below:

[∃〈α1, α2, ev〉.(ev = �y
l2= α1); ev l ; Jexp, α2K; (α

l
= α1 → α2)]

The exp here represents the body of the function, which we can see is a let

statement. For this we use rule (G2) to produce:

[∃α3.JdecK; Jexp, α3K; (α2

l3= α3)]

where dec represents the declarations and exp represents the expression of the let

statement. We deal with the declarations first, applying rules (G17) to create con-

straints for the val rec statement and (G6) to handle the name of the function (f)

to give:

∃〈α4, α5, ev2〉.(ev2 = poly(�f
l8= α4; Jexp, α5K; (α4

l7= α5))); ev
l7

2

Constraints continue to be generated in this way, until we reach the final gener-

ated constraints for this program, which are shown below.

[∃〈α1, α2, ev〉.(ev = �y
l2= α1); ev l ; [∃α3.∃〈α4, α5, ev2〉.(ev2 =

poly(�f
l8= α4; [∃〈α6, α7, ev3〉.(ev3 = �x

l9= α6); ev
l10

3
; ∃〈α8, α9〉.�x

l12= α8; �y
l13= α9; (α8

l11= α9 → α7);α5

l10=

α6 → α7]; (α4

l7= α5))); ev
l7

2
;∃〈α′, α′′〉.�f

l4= α′; �y
l5= α′′; (α′ l6= α′′ → α2); (α2

l3= α3)]; (α
l
= α1 → α2)]

Next, we show that constraint generation is linear in size, and that our constraint

generation algorithm terminates.

Lemma 3.1 (Size of Constraint Generation)

Constraint generation is linear in the program’s size.

Proof. By inspection of the rules. For a polymorphic (let-bound) function (rules

(G2), (G6), and (G17)) we do not eagerly copy constraints for the function body.

Instead, we generate poly and composition environments, and binders force solving

the constraints for the body before copying its type for each use of the function. 2

Lemma 3.2 (Termination of Constraint Generation Algorithm) The con-

straint generator shown in Figure 4 terminates.

Proof. Let us define an atomic constraint generation rule as constraint generation

rule which does not create a recursive call e.g., the atomic constraint generation rules

in Figure 4 are (G1), (G5), (G6), (G7) (G9), (G10), (G13), (G14), (G19), and (G21).

For a constraint generation run v either will be atomic in nature or it will not. If not,

we recurse with ′v ′, on some ′ inside , such that ′ is strictly smaller than . Rules which

recurse with strictly smaller parts of external syntax are rules (G2) (let syntax

9

Rahli, Wells, Pirie and Kamareddine

Fig. 4 Constraint generator (→ Env)
Expressions (exp)

(G1) Jvid l
e, αK = �vid

l
= α (G2) Jletl dec in exp end, αK = [∃α2.JdecK;Jexp, α2K;(α

l
=α2)]

(G3) J⌈exp atexp⌉l , αK = ∃〈α1, α2〉.Jexp, α1K;Jatexp, α2K;(α1

l
=α2 � α)

(G4) Jfn pat
l
⇒ exp, αK = [∃〈α1, α2, ev〉.(ev = Jpat , α1K);ev l ;Jexp, α2K;(α

l
=α1 � α2)]

Labelled datatype constructors (ldcon)

(G5) Jdcon l , αK = �dcon
l
= α

Patterns (pat)

(G6) Jvvar lp, αK = �vvar
l
= α (G7) Jdcon l

p, αK = �dcon
l
= α

(G8) J⌈ldcon atpat⌉l , αK = ∃〈α1, α2〉.Jldcon , α1K;Jatpat , α2K;(α1

l
=α2 � α)

Labelled type constructors (ltc)

(G9) Jtcl , δK = �tc
l
= δ

Types (ty)

(G10) Jtv l , αK = �tv
l
= α (G11) J⌈ty ltc⌉l , α′K = ∃〈α, δ〉.Jty , αK;Jltc, δK;(α′ l

=α δ)

(G12) Jty1

l
→ ty2, αK = ∃〈α1, α2〉.Jty1, α1K;Jty2, α2K;(α

l
=α1 � α2)

Datatype names (dn)

(G13) J⌈tv tc⌉l , α′K = ∃〈α, γ〉.(α′ l
=αγ);(�tc

l
= γ);(�tv

l
= α)

Constructor bindings (cb)

(G14) Jdcon l
c, αK = �dcon

l
= α (G16) Jdcon of l ty , αK = ∃〈α′, α1〉.Jty , α1K;(α′ l

=α1 � α);(�dcon
l
= α′)

Declarations (dec)

(G17) Jval rec pat
l
= expK = ∃〈α1, α2, ev〉.(ev = poly(Jpat , α1K;Jexp, α2K;(α1

l
=α2)));ev l

(G18) Jdatatype dn
l
= cbK = ∃〈α1, α2, ev〉.(ev = ((α1

l
=α2);Jdn , α1K;poly(Jcb, α2K)));ev l

(G19) Jopenl stridK = ∃ev .(�strid
l
= ev);ev l

Structure declarations (strdec)

(G20)Jstructure strid
l
= strexpK=∃〈ev , ev ′〉.[Jstrexp, evK];(ev ′ = (�strid

l
= ev));ev ′l

Structure expressions (strexp)

(G21)Jstrid l , evK = �strid
l
= ev

(G22)Jstructl strdec1 · · · strdecn end, evK=∃ev ′.(ev
l
= ev ′);(ev ′ = (Jstrdec1K; · · · ;JstrdecnK))

removed in recursive call), (G3) (application syntax removed), (G4) (fn syntax

removed), (G8) (application removed), (G11) (application removed), (G12) (arrow

removed), (G16) (of syntax removed), (G17) (val rec removed), (G18) (datatype

syntax removed), (G20) (structure syntax removed), and (G22) (struct syntax

removed). When we inevitably reach an atomic , we halt and return our generated

e form. 2

3.3 Constraint solving

In this section we present our new constraint solver, which solves the constraints

that were generated by the constraint generator in the previous section. It is in this

process where we will determine if the program the user submitted is erroneous, and

will return all relevant parts of the program involved in the error if that is indeed

the case. Additional syntactic forms that are used by the constraint solver (defined

in Figure 6) are given in Figure 5. The symbol
−→
st is defined in Section 3.3.2, and is

used to keep track of future environments that we have yet to solve.

10

Rahli, Wells, Pirie and Kamareddine

Fig. 5 Extra syntactic forms for constraint solving

m ∈ Monomorphic ::= 〈α, l〉

er ∈ Error ::= 〈ek , l〉

ek ∈ ErrKind ::= clash(µ1, µ2) | circularity

state ∈ State ::= slv(−→e , l,m,
−→
st , e′) | succ | err(er)

Constraint solving starts by slv(〈⊤〉,∅,∅, 〈〉, e), and ends either by succ (for

success), or in the state err(er) where er is either a type constructor clash or

a circularity error. The relations isErr and solvable are defined below, where →
indicates a constraint solving step.

e
isErr
→ er ⇔ slv(⊤, l ,∅,∅, e) →∗ err(er)

solvable(e) ⇔ slv(⊤, l ,∅,∅, e) →∗ succ

solvable(strdec) ⇔ ∃e.strdec → e ∧ solvable(e)

3.3.1 Unifiers

When constraint solving starts, the set of unifiers U is initialised to the empty set

(U = ∅). During constraint solving, nothing is ever subtracted from U , we only

add to this set. The set of unifiers is used during constraint solving only (e.g. see

rule (U3) of Figure 6).

Fig. 6 Constraint solver (1 of 2) : State\{succ, err(Error)} → state

equality constraint reversing

(R) slv(−→e , l ,m,
−→
st , ct = ct ′) → slv(−→e , l ,m,

−→
st , ct ′ = ct), if s = Var ∪ Dependent ∧ ct ′ ∈ s ∧ ct 6∈ s

equality simplification

(S1) slv(−→e , l ,m,
−→
st , ct = ct) → isSucc(−→e ,m,

−→
st)

(S2) slv(−→e , l ,m,
−→
st , ct l

′

= ct′) → slv(−→e , l ∪ l
′
,m,

−→
st , ct = ct ′)

(S3) slv(−→e , l ,m,
−→
st , τ1 µ1 = τ2 µ2) → slv(−→e , l ,m,

−→
st , (µ1 = µ2);(τ1 = τ2))

(S4) slv(−→e , l ,m,
−→
st , τ1 � τ2 = τ3 � τ4) → slv(−→e , l ,m,

−→
st , (τ1 = τ3);(τ2 = τ4))

(S5) slv(−→e , l ,m,
−→
st , τ1 = τ2) → slv(−→e , l ,m,

−→
st , µ= arr), if {τ1, τ2} = {τ µ, τ3 � τ4}

(S6) slv(−→e , l ,m,
−→
st , µ1 = µ2) → err(〈clash(µ1, µ2), l〉), if{µ1, µ2} ∈ {{γ, γ′}, {γ, arr}} ∧γ 6= γ′

unifier access

Rules (U1) through (U4) have also the common side condition v 6= ct ∧ y = U(xl) ∧ v /∈ dom(U)

(U1) slv(−→e , l ,m,
−→
st , v = ct) → err(〈circularity, deps(y)〉), if v ∈ vars(y)\Env ∧ strip(y) 6= v

(U2) slv(−→e , l ,m,
−→
st , v = ct) → isSucc(−→e ,m,

−→
st), if v /∈ Env∧ strip(y) = v

(U3) slv(−→e , l ,m,
−→
st , v = ct) → isSucc(−→e ,m,

−→
st), if v /∈ vars(y) ∪ Env ∧ U = U ⊕ {v 7→ y}

(U4) slv(−→e , l ,m,
−→
st , v = ct) → slv(−→e @〈⊤〉, l,m,

−→
st@

−→
st ′, ct), if v ∈ Env ∧

−→
st ′ = 〈〈new, l ,m, v〉〉

(U6) slv(−→e , l ,m,
−→
st , v = ct) → slv(−→e , l ,m,

−→
st , z = ct), if U(v) = z

composition environments

(C1) slv(−→e , l ,m,
−→
st , e1;e2) → slv(−→e , l ,m,

−→
st@〈〈new, l , new, e2〉〉, e1)

3.3.2 The environment stack

The fourth argument to the slv function of the constraint solver in Figure 6, de-

noted as
−→
st , is used as a stack of environments or other tasks which are still to be

solved/completed. Below, we introduce some metavariables needed to define the

stack:

11

Rahli, Wells, Pirie and Kamareddine

Fig. 7 Constraint solver (2 of 2)

binders/empty/dependent/variables

(B) slv(−→e , l ,m,
−→
st , �vid=α) → isSucc(−→e ; �vid

l
= α,m ∪ {αl},

−→
st)

(B2) slv(−→e , l ,m,
−→
st , bind) → isSucc(−→e ; bindl ,m,

−→
st), if bind 6= �vid=α

(X) slv(−→e , l ,m,
−→
st , ∃a.e′) → slv(−→e , l ∪ l

′
,m,

−→
st , e′[{a 7→ a′}]), if a′ /∈ atoms(〈U , e′〉)

(E) slv(−→e , l ,m,
−→
st ,⊤) → isSucc(−→e ,m,

−→
st)

(D) slv(−→e , l ,m,
−→
st , e′l

′

) → slv(−→e , l ∪ l
′
,m,

−→
st , e′)

(V) slv(−→e , l ,m,
−→
st , ev) → isSucc(−→e ; ev d̄,m,

−→
st)

accessors

(A1) slv(−→e , l ,m,
−→
st , �id=v) → slv(−→e , l ∪ l

′
,m,

−→
st , v = τ),

if −→e (id), ren −instance−−−−→ τ, l
′
∧ dj(vars(〈−→e , v〉), ran(ren))

(A3) slv(−→e , l ,m,
−→
st , �id=v) → isSucc(−→e ,m,

−→
st), if −→e (id) undefined

polymorphic environments

(P1) slv(−→e , l ,m,
−→
st , poly(�vid

l
′

= α)) → isSucc(−→e ;σ,m,
−→
st),

if α = ityvars(U(α))\
⋃

{ityvars(U(x)) | x ∈ m}

∧ l
′′
= l

′
∪ deps(vars(U(α)) ⊳ {U(x) | x ∈ m})

∧ σ = �vid=〈∀α.U(α), l
′′
〉

(P2) slv(−→e , l ,m,
−→
st , poly(bind;e′)) → slv(−→e , l,m,

−→
st@〈〈−→e , l ,m, poly(bind)〉〉, bind; e′)

(P3) slv(−→e , l ,m,
−→
st , poly(e l

1
)) → slv(−→e @〈⊤〉, l,m,

−→
st@〈〈new, l , new, l〉〉, poly(e1))

(P4) slv(−→e , l ,m,
−→
st , poly(e1;e2)) → slv(−→e , l ,m,

−→
st@〈〈new, l, new, poly(e2)〉〉, poly(e1)), if ∧e1 6= bind

(P5) slv(−→e , l ,m,
−→
st , poly(e′)) → slv(−→e , l ,m,

−→
st@〈〈−→e ; e′, l ,m, done〉〉, e′), if e′ 6= ∃a.e′′

(P6) slv(−→e , l ,m,
−→
st , poly(∃a.e′)) → slv(−→e , l,m,

−→
st , poly(e′[{a 7→ a′}])) if a′ /∈ atoms(〈U , e′〉)

stackEv ∈ StackEv = e | new

stackMono ∈ StackMono = m | new

stackAction ∈ StackAction = e | v | l | done

This stack is a tuple where each element is itself a tuple which has four compo-

nents: stackEv , l , stackMono, and stackAction . stackEv is used to represent which

environment we should use when taking action on the stackAction parameter. This

can either be the symbol new, in which case we use the environment of the constraint

solver when the isSucc function was called which deals with handling stack items,

or instead it can be a specified environment e, in which case we use the environment

pushed to the stack at the time when this stack item was created. l is a set of de-

pendencies. stackMono is the same as stackEv , but with monomorphic variable sets

instead of environments. stackAction contains operations to be performed. What

we do in cases of stackAction can be seen in the declaration of isSucc′ in Figure 8,

which checks for success.

When we have finished with solving the environment in the last position of the

slv argument tuple, isSucc is called which solves the argument at the top of
−→
st

stack, (the constraint solver terminates in the success state if it is empty). The

definition of isSucc is given in Figure 8, where given a tuple of environments, a set

of monomorphic variables and a stack of remaining environments still to process,

will either recurse, return the constraint solver success state, or run the constraint

solver on some environment.

Let us now continue our example. We now show the start form of the constraint

generator and proceed from there. We start with the function call:

12

Rahli, Wells, Pirie and Kamareddine

slv(〈⊤〉,∅,∅, 〈〉, e1) where e1 is the environment returned from the initial constraint generator,

shown below.

[∃〈α1, α2, ev〉.(ev = �y
l2= α1); ev l ; [∃α3.∃〈α4, α5, ev2〉.(ev2 =

poly(�f
l8= α4; [∃〈α6, α7, ev3〉.(ev3 = �x

l9= α6); ev
l10
3

; ∃〈α8, α9〉.�x
l12= α8; �y

l13= α9; (α8

l11= α9 → α7);α5

l10=

α6 → α7]; (α4

l7= α5))); ev
l7

2
;∃〈α′, α′′〉.�f

l4= α′; �y
l5= α′′; (α′ l6= α′′ → α2); (α2

l3= α3)]; (α
l
= α1 → α2)]

In this step we apply rules (U4) and (X) to remove the [] notation and existential

quantification, renaming α1, α2, and ev to α0, α1, and ev ′ respectively. We now

apply rules (C1) to break up the environment composition, then rules (U4), (D) to

strip off the dependency on the binder, and (B) to handle the binder. Rules (C1),

(D), and (V) are applied to handle the ev ′l expression, and we are then in the state

shown below.

slv(〈ev ′{l,l2}〉, {l, l2}, {α0}, 〈〉, e3) where the set of unifiers U is {ev ′ 7→ �y
l
= α0} and e3 is

[∃α3.∃〈α4, α5, ev2〉.(ev2 =

poly(�f
l8= α4; [∃〈α6, α7, ev3〉.(ev3 = �x

l9= α6); ev
l10

3
; ∃〈α8, α9〉.�x

l12= α8; �y
l13= α9; (α8

l11= α9 → α7);α5

l10=

α6 → α7]; (α4

l7= α5))); ev
l7
2
;∃〈α′, α′′〉.�f

l4= α′; �y
l5= α′′; (α′ l6= α′′ → α1); (α1

l3= α3)]; (α
l
= α0 → α1)

Application of the constraint solving rules continue in this way until either the

program is deemed typable, or an error is determined. A complete description

of all steps used is too verbose to give here but can be seen in Section 8.2.2 of

[Pirie(2014)]. The constraint solver terminates with the circularity error, and

the gathered labels (program points) are used to highlight all the relevant parts of

the program to the user. Such an error report is a significant benefit from what the

compiler reports which is merely one program point where unification failed. With

our errors, as shown in Figure 9, the user sees all of the information they need to

solve a type error, and not just a small portion of that information.

Fig. 8 Success definition (isSucc : tuple(Env) × Monomorphic × tuple(Env) →
state\err(Error))

isSucc(−→e ,m, 〈〉) → succ

isSucc(−→e ,m,
−→
st@〈〈new, l , new, x〉〉) → isSucc′(−→e , l ,m,

−→
st , x)

isSucc(−→e ,m,
−→
st@〈〈−→e 1, l , new, x〉〉) → isSucc′(−→e 1, l,m,

−→
st , x)

isSucc(−→e ,m,
−→
st@〈〈new, l ,m′, x〉〉) → isSucc′(−→e , l ,m′,

−→
st , x)

isSucc(−→e ,m,
−→
st@〈〈−→e 1, l ,m′, x〉〉) → isSucc′(−→e 1, l ,m′,

−→
st , x)

isSucc′(−→e @〈e1, e2〉, l ,m,
−→
st , v) → isSucc(−→e @〈e1;e2〉,m,

−→
st), if U = U⊕{v 7→ e2}

isSucc′(−→e @〈e1, e2〉, l ,m,
−→
st , l) → isSucc(−→e @〈e1;e l2〉,m,

−→
st)

isSucc′(−→e , l,m,
−→
st , done) → isSucc(−→e ,m,

−→
st)

isSucc′(−→e , l,m,
−→
st , e′) → slv(−→e , l,m,

−→
st , e′)

We further analyze some interesting constraint solving rules. Rule (C1) demon-

strates how we handle our composition environments. We take the first environment

and recurse on that first to solve the constraints inside, and only after they are han-

dled we inspect the second environment. Polymorphism is handled in rule (P1),

where we make a binder polymorphic by quantifying over the type variables which

are to be made polymorphic, and creating a new binder with this information.

Lemma 3.3 (Constraint Solving Terminates)

13

Rahli, Wells, Pirie and Kamareddine

It holds that either slv(−→e , l ,m,
−→
st , e) →∗ succ or slv(−→e , l ,m,

−→
st , e) →∗ err(er).

Proof. By inspection of the rules. We only summarize the proof for the important

rules ([Pirie(2014)] contains a more thorough treatment). (R) flips constraints and

flipped constraints can never be re-flipped. (S1) Throws away argument/adds to

environment or unifier, and checks for success. (S3)/(S4) Break two applications

(resp. arrow types) into two equality constraint terms. We never build new appli-

cations of constraints (resp. arrow types), so we cannot return to this point. The

only rules which can be the final rules to be executed and raise error are rules U1

and S6 which terminate in the form err(er), otherwise, the constraint solver will

terminate in the succ state shown in Figure 8. 2

3.4 Comprehensive errors

A crucial property of Skalpel is that it must present to the user all of the possible

points where the user may fix the error. Skalpel must not present any program

points which are irrelevant to the error. In order to ensure that this is always the

case, we perform minimisation. When the constraint solver terminates with an

error (which contains the program points, l) the minimisation algorithm tests that

all of the labels present in the reported error. It does this by removing a program

point l from the program, replacing it with a dummy expression, and running the

constraint solver again. If this run terminates in success, then the label was crucial

to the error, and so it must be presented to the user. If the constraint solver

terminates with the same error, then we know that this program point is actually

irrelevant, and so we discard it from l . We do this process for all labels in l reported

as part of an error output from the constraint solver. A formal treatment of this

algorithm can be seen in Section 6.5 of [Pirie(2014)]. We then present these regions

to the user as shown in Figure 9. Note that a standard SML compiler, such as

PolyML [POL(web)], will only report line 20 as the source of the error, which in

a larger program, could cause a great deal of confusion (especially if the error is

spread across multiple files - which Skalpel also handles by highlighting all areas in

affected files).

Naturally, Skalpel is at its most effective in large codebases. If global changes

to an entire project are needed to fix a type error, Skalpel will highlight where the

problem may be fixed in all areas of the project. Furthermore, when large code

bases are used, and the type error is limited to a few small functions, Skalpel will

eliminate the rest of the program for the user, which is irrelevant, as opposed to

existing compilers which do not rule out anything, as they only present the point

where unification failed. This is achieved as a) determining which program parts

to highlight (labels involved in the error) is calculated accurately by our constraint

solver, as label sets are attached to each constraint, so we know which parts of the

user program include conditions on other parts of the program, and b) the process

of minimisation also ensures that no irrelevant part of the program is highlighted

to the user.

14

Rahli, Wells, Pirie and Kamareddine

Fig. 9 Skalpel highlighting

1 fun average weight list =

2 let fun iterator (x,(sum ,length)) = (sum + weight x,
3 length + 1)
4 val (sum ,length) = foldl iterator (0,0) list
5 in sum div length
6 end
7
8 fun find best weight lists =
9 let val average1 = average weight

10 fun iterator (list ,(best ,max)) =
11 let val avg_list = average1 list
12 in if avg_list > max
13 then (list ,avg_list)
14 else (best ,max)
15 end
16 val (best ,_) = foldl iterator (nil ,0) lists
17 in best
18 end
19
20 val find_best_simple = find best 1

Note that Skalpel does not merely just find one error, but can find all distinct

errors. We do not present the details of this mechanism here, but they can be found

in Section 6.5 of [Pirie(2014)].

4 Conclusion

Automatically finding type errors in programming languages is a difficult task. Suc-

cessful attempts need to address constraint systems but these have only been built

for toy-like languages. Moreover, existing proposals to solve poor type error re-

porting simply repeat calls to the compiler and remove/add back portions of the

untypable program to narrow the point of error.

In this paper we present Skalpel, which:

(i) Takes an SML program and returns exactly the erroneous parts of the program;

(ii) Does not report any portion of internally modified syntax, as can be presented

by the available compilers for the language;

(iii) Will display all parts of an error to the user;

(iv) Is completely unbiased in its analysis as compilers are;

(v) Handles errors which occur across multiple modules and/or source files.

Skalpel automatically achieves all of the above by first labelling all parts of

the program generating constraints annotated with these labels, solving these con-

straints and if errors are found, performing minimisation to verify the integrity of

the error that we present to the user.

Skalpel is based on a novel constraint syntax, generator and solver which is ter-

minating and avoids a combinatorial explosion in the number of constraints. We

retain a compositional generation of constraints but solve constraints in a strict

left-to-right order. This solution is related to earlier constraint systems for ML let

15

Rahli, Wells, Pirie and Kamareddine

bindings [Di Cosmo et al.(2005)Di Cosmo, Pottier, and Rémy] however these ear-

lier ideas are unsuitable for module systems which is why we needed a new con-

straint representation. Furthermore, in order to scale constraints while also handling

module system features, we introduced a novel representation of hybrid constrain-

t/environments. This allows for environments that avoid duplication at constraint

generation and during constraint solving.

To our knowledge, no work exists that attempts to handle an entire programming

language using a constraint system approach such as ours, the core of which is

presented in this paper.

References

[POL(web)] , web. PolyML compiler. www.polyml.org/, last accessed 20th January 2014.

[Braßel(2004)] Braßel, B., 2004. Typehope: There is hope for your type errors. In: In 16th International
Workshop on Implementation and Application of Functional Languages (IFL’04). Lübeck, Germany,
September 8-10 2004. University of Kiel. Report 0408.

[Damas and Milner(1982)] Damas, L., Milner, R., 1982. Principal type-schemes for functional programs.
In: Proceedings of the 9th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages. POPL ’82. ACM, New York, NY, USA, pp. 207–212.
URL http://doi.acm.org/10.1145/582153.582176

[Di Cosmo et al.(2005)Di Cosmo, Pottier, and Rémy] Di Cosmo, R., Pottier, F., Rémy, D., Apr. 2005.
Subtyping recursive types modulo associative commutative products. In: Seventh International
Conference on Typed Lambda Calculi and Applications (TLCA’05). Vol. 3461 of Lecture Notes
in Computer Science. Springer, Nara, Japan, pp. 179–193.
URL http://gallium.inria.fr/~fpottier/publis/dicosmo-pottier-remy-tlca05.ps.gz

[Hage and Heeren(2009)] Hage, J., Heeren, B., Apr. 2009. Strategies for solving constraints in type and
effect systems. Electron. Notes Theor. Comput. Sci. 236, 163–183.
URL http://dx.doi.org/10.1016/j.entcs.2009.03.021

[Lerner and Grossman(2006)] Lerner, B., Grossman, 2006. Seminal: searching for ML type-error messages.
In: Proceedings of the 2006 workshop on ML. ML ’06. ACM, New York, NY, USA, pp. 63–73.
URL http://doi.acm.org/10.1145/1159876.1159887

[Mcadam(1998)] Mcadam, B. J., 1998. On the unification of substitutions in type inference. In:
Implementation of Functional Languages (IFL ’98). Springer-Verlag, pp. 139–154.

[Müller(1994)] Müller, M., Jun.23–25 1994. A constraint-based recast of ML-polymorphism. In: Lugiez, D.
(Ed.), 8th International Workshop on Unification. Technical Report, Université de Nancy, to appear.

[Neubauer and Thiemann(2003)] Neubauer, M., Thiemann, P., 2003. Discriminative sum types locate the
source of type errors. In: Proceedings of the Eighth ACM SIGPLAN International Conference on
Functional Programming. ICFP ’03. ACM, New York, NY, USA, pp. 15–26.
URL http://doi.acm.org/10.1145/944705.944708

[O. Lee(1998)] O. Lee, K. Y., 1998. Proofs about a folklore let-polymorphic type inference algorithm.
ACM Transactions on Programming Languages and Systems (TOPLAS) 20, 707–723.

[Pavlinovic et al.(2014)Pavlinovic, King, and Wies] Pavlinovic, Z., King, T., Wies, T., 2014. Finding
minimum type error sources. In: OOPSLA 2014. ACM, pp. 525–542.
URL http://doi.acm.org/10.1145/2660193.2660230

[Pirie(2014)] Pirie, J., 2014. New Developments to Skalpel: A Type
Error Slicing Method for Explaining Errors in Type and Effect Systems. Ph.D. Thesis. Available
at http://www.macs.hw.ac.uk/~jp95/jpirie-thesis.pdf .

[Rahli(2010)] Rahli, V., 2010. Investigations in intersection types: Confluence and semantics of expansion
in the lamba-calculus, and a type
error slicing method. http://www.macs.hw.ac.uk/~rahli/articles/thesis.pdf, ph.D. Thesis. Last
accessed Monday 16th July 2012.

16

www.polyml.org/
http://doi.acm.org/10.1145/582153.582176
http://gallium.inria.fr/~fpottier/publis/dicosmo-pottier-remy-tlca05.ps.gz
http://dx.doi.org/10.1016/j.entcs.2009.03.021
http://doi.acm.org/10.1145/1159876.1159887
http://doi.acm.org/10.1145/944705.944708
http://doi.acm.org/10.1145/2660193.2660230
http://www.macs.hw.ac.uk/~jp95/jpirie-thesis.pdf
http://www.macs.hw.ac.uk/~rahli/articles/thesis.pdf

Rahli, Wells, Pirie and Kamareddine

[Schilling(2012)] Schilling, T., 2012. Constraint-free type error slicing. In: Trends in Functional
Programming. Vol. 7193 of Lecture Notes in Computer Science. Springer Berlin Heidelberg, pp.
1–16.
URL http://dx.doi.org/10.1007/978-3-642-32037-8_1

[Zhang and Myers(2014)] Zhang, D., Myers, A. C., 2014. Toward general diagnosis of static errors. In:
POPL ’14. ACM, pp. 569–582.
URL http://doi.acm.org/10.1145/2535838.2535870

[Zhang et al.(2015)Zhang, Myers, Vytiniotis, and Peyton-Jones] Zhang, D., Myers, A. C., Vytiniotis,
D., Peyton-Jones, S., 2015. Diagnosing type errors with class, PLDI’2015, available at
http://www.cs.cornell.edu/~zhangdf/pub/pldi15.pdf.

17

http://dx.doi.org/10.1007/978-3-642-32037-8_1
http://doi.acm.org/10.1145/2535838.2535870
http://www.cs.cornell.edu/~zhangdf/pub/pldi15.pdf

	Introduction & Related Work
	Mathematical notations
	Technical Core of Skalpel
	Constraint syntax
	Constraint generation
	Constraint solving
	Comprehensive errors

	Conclusion
	References

