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Abstract. Due to a strict page limit for MKM 2007, it was necessary to
remove the appendix from the paper [3] and instead provide its contents
through an alternative medium. Distributed on the respective web sites
of the paper’s authors, the contents are reproduced in this document.
The reader will find herein an example in which the method of the above
mentioned paper is applied to a typical text. The example is given first
in a plain text, then as a version annotated according to the method
proposed in this paper.

A Ring theory example

In the following three sections, there are to be found three different views of
the same document. This example is a brief selection from [1], and provides a
definition of an algebraic ring with some brief corollaries. It was chosen because
it concisely exhibits most of our developments in a very accessible text. The
observant reader will note that, although the examples throughout the main
body of [3] were drawn from this example, the annotations chosen in the main
text of [3] are not in every case consistent with the corresponding annotations
in this supplement. In particular, such deviations usually pertain to the logical
interpretation. (E.g., “0” is annotated 00 in one example and zero0 in another.)

There are two essential observations to be made here. Firstly, while it is
essential to maintain consistency in the naming of logically equivalent entities
within a given document, the system is intended to be flexible. It is built in the
object-oriented paradigm, as explained in [2], and is intended to give much of
the same flexibility afforded to the users of modern programming languages.

The first of the views is completely without any grammatical or souring
annotation. This is the form in which one would enter the text before giving
any consideration to grammatical categorisation. The second view is after the
document has undergone a full annotation. The third view differs from the second
only inasmuch as a toggle has been switched to enable the display of the logical
interpretations (introduced in Section 2.2 of [3]) for each box.

The following examples have been selected for more careful consideration
within the body of [3]. To illustrate grammatical annotation, as introduced in
Section 2 of [3], the phrase “There is an element 0 in R such that a + 0 =
a” is used. For more specific instances of a kind of annotation introduced in



Section 3 of [3] called souring, a selection of specific examples is used, particularly
in Section 3.3 of that paper. The pair of expressions “R contains a” and “a in
R” elucidate the value of the rule known as reordering. The phrase “0 + a0 =
a0 = a(0 + 0) = a0 + a0” is used to exhibit sharing, as expressed in, while
“∀a ∈ R, a0 = 0a = 0” demonstrates a concept known as chaining. Two concepts
are introduced which operate to expand expressions, called mapping and folding.
They are respectively illustrated by operations on the expressions “Let a and b

belong to a ring R” and “∀a, b, c ∈ R, (a + b) + c = a + (b + c)”.

A.1 Original textRingsDe�nition 1 (Ring). A ring R is a nonempty set with two binary operations, addition(denoted by a+ b) and multiplication (denoted by ab), such that for all a; b; c in R:1. a+ b= b+ a.2. (a+ b) + c= a+(b+ c).3. There is an additive identity 0. That is, there is an element 0 in R such that a+0= afor all a in R.4. There is an element � a in R such that a+(� a)= 0.5. a(bc)= (ab)c.6. a(b+ c) =ab+ ac and (b+ c)a= ba+ ca.Theorem 2 (Rules of Multiplication). Let a, b, and c belong to a ring R. Then1. a0=0a=0.2. a(� b) = (�a)b= ab.Proof. Consider rule 1. Clearly,0+a0= a0= a(0+ 0)=a0+ a0.So, by cancellation, 0=a0. Similarly, 0a=0.To prove rule 2, we observe that a(� b) + ab= a(� b+ b) = a0 = 0. So, adding � (ab) to bothsides yields a(� b)=� (ab). The remainder of rule 2 is done analogously.

2



A.2 Brief TEXmacs documentdeclare = declare 2RingsDe�nition 1. A ring R is a nonempty set with two binary operations, addition (denoted by a + b)and multiplication (denoted by a b), such that for all a; b; c in R:1. a+ b= b+ a.2. (a+ b)+ c= a+(b+ c).3. There is an additive identity 0. That is, there is an element 0 in R such that a + 0 = a forall a in R.4. There is an element � a in R such that a+(� a)= 0.5. a(b c)= (a b)c.6. a(b+ c)= a b+ a c and (b+ c)a= b a+ c a.Theorem 2. Let a and b belong to a ring R. Then1. a0= 0a=0.2. a(� b)= (� a)b = a b.Proof.Consider rule 1.Clearly, 0+ a0= a0 = a(0+ 0)=a0+a0. (1)So, by cancellation, 0=a0. Similarly, 0a=0.To prove rule 2, we observe that a(� b)+ ab= a(� b+ b) = a0 =0.So, adding � (ab) to both sides yields a(� b) = � (ab).The remainder of rule 2 is done analogously. �
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A.3 TEXmacs with interpretations< >< e q u a l >declare < e q u a l > < # > = < # > < i n >declare < i n > < # > 2 < # >< >Rings< r i n g >< >< >De�nition 1. A < R > ring < R >R is a nonempty set with two binary operations, < p l u s >addition (denoted by< p l u s > < # >a+ < # > b) < t i m e s >and multiplication (denoted by < t i m e s > < # >a < # > b), such that for all < m a p > < > < l i s t > < a >a; < b > b; < c > cin < R >R:1. < r p r o p 1 > < e q u a l > < p l u s > < a >a+ < b > b= < p l u s > < b > b+ < a >a.2. < r p r o p 2 > < e q u a l > < p l u s > (< p l u s > < a >a+ < b > b)+ < c > c= < p l u s > < a >a+(< p l u s > < b > b+ < c > c).3. < r p r o p 3 >There is an additive identity 0. That is, there is an element < z e r o > < z e r o >0 in < R >R such that< e q u a l > < p l u s > < a >a+ < z e r o >0= < a >a for all < i n > < a >a in < R >R.4. < r p r o p 4 > < n e g a t i v e >There is an element < n e g a t i v e > � < # >a in R such that < e q u a l > < p l u s > < a >a + (< n e g a t i v e > � < a >a) =< z e r o >0.5. < r p r o p 5 > < e q u a l > < t i m e s > < a >a(< t i m e s > < b > b < c > c)= < t i m e s > (< t i m e s > < a >a < b > b)< c > c.6. < r p r o p 6 a > < e q u a l > < t i m e s > < a >a(< p l u s > < b > b+ < c > c) = < p l u s > < t i m e s > < a >a < b > b+ < t i m e s > < a >a < c > c < r p r o p 6 b >and < e q u a l > < t i m e s > (< p l u s > < b > b+< c > c)< a >a= < p l u s > < t i m e s > < b > b < a >a+ < t i m e s > < c > c < a >a.< m u l t - r u l e s >Theorem 2. < r > < r > < r i n g > < m a p > < >Let < l i s t > < a >a and < b > b belong to < r . R >a ring R. Then1. < m r u l e - 1 > < e q u a l > < r . t i m e s > < a >a< r . z e r o >0= < s h a r e d > < r . t i m e s > < r . z e r o >0< a >a < e q u a l > = < r . z e r o >0.2. < m r u l e - 2 > < e q u a l > < r . t i m e s > < a >a(< r . n e g a t i v e > � < b > b)= < h o o k > < r . t i m e s > (< r . n e g a t i v e > � < a >a)< b > b < e q u a l > < l o o p > = < r . t i m e s > < a >a < b > b.< >Proof.< >Consider rule 1.< >Clearly,< e q u a l > < r . p l u s > < r . z e r o >0 + < r . t i m e s > < r . a >a< r . z e r o >0 = < s h a r e d > < r . t i m e s > < r . a >a< r . z e r o >0 < e q u a l > =< s h a r e d > < r . t i m e s > < r . a >a(< r . p l u s > < r . z e r o >0+ < r . z e r o >0) < e q u a l >=< r . p l u s > < r . t i m e s > < a >a< r . z e r o >0+< r . t i m e s > < a >a< r . z e r o >0. (1)< >So, by cancellation, < e q u a l > < r . z e r o >0=< r . t i m e s > < a >a< r . z e r o >0. < >Similarly, < e q u a l > < r . t i m e s > < r . z e r o >0< a >a=< r . z e r o >0.< >To prove rule 2, we < >observe that < e q u a l > < r . p l u s > < r . t i m e s > < a >a(< r . n e g a t i v e > � < b > b) + < r . t i m e s > < a >a< b > b =< s h a r e d > < r . t i m e s > < a >a(< r . p l u s > < r . n e g a t i v e > � < b > b+ < b > b)< e q u a l > = < s h a r e d > < r . t i m e s > < a >a< r . z e r o >0 < e q u a l > = < r . z e r o >0.< >So, adding � (ab) to both sides yields < e q u a l > < r . t i m e s > < a >a(< r . n e g a t i v e > � < b > b) = < r . n e g a t i v e > � (< r . t i m e s > < a >a< b > b).< >The remainder of rule 2 is done analogously. �
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