
Restoring Natural Language as a Computerised

Mathematics Input Method

Fairouz Kamareddine, Robert Lamar, Manuel Maarek, and J. B. Wells

ULTRA group, Heriot-Watt University, http://www.macs.hw.ac.uk/ultra/

Abstract. Methods for computerised mathematics have found little ap-
peal among mathematicians because they call for additional skills which
are not available to the typical mathematician. We herein propose to
reconcile computerised mathematics to mathematicians by restoring nat-
ural language as the primary medium for mathematical authoring. Our
method associates portions of text with grammatical argumentation roles
and computerises the informal mathematical style of the mathematician.
Typical abbreviations like the aggregation of equations a = b > c, are not
usually accepted as input to computerised languages. We propose spe-
cific annotations to explicate the morphology of such natural language
style, to accept input in this style, and to expand this input in the com-
puter to obtain the intended representation (i.e., a = b and b > c). We
have named this method syntax souring in contrast to the usual syntax

sugaring. All results have been implemented in a prototype editor de-
veloped on top of TEXmacs as a GUI for the core grammatical aspect of
MathLang, a framework developed by the ULTRA group to computerise
and formalise mathematics.

1 Introduction

Over several millennia, the mathematical community has developed a prodigious
mass of knowledge. Effective communication of this knowledge has been essential
to its dissemination. As various results have arisen and circulated, patterns and
conventions have been developed for their sound and acceptable communication,
leading to a de facto style of recording mathematical concepts in natural lan-
guage. This style is sufficiently standardised to effectively communicate the most
esoteric of ideas, while being flexible enough to record the variety of mathemat-
ical topics which have been explored in the academy of yesteryear and today.

1.1 State of the field

Since the advent of computer-aided proof in the 1960s, mathematicians and
computer scientists have been seeking effective ways to encode mathematical
concepts in languages of varying structure. Some theorem provers are highly rigid
and distant from natural language, while others such as Mizar and Isar have a
syntax similar to the mathematician’s style. Each prover has its proponents and
favoured applications, but they are all stark and restrictive when compared with

the fluidity of natural language. None currently has an infrastructure to provide
a direct mapping from a typical natural language mathematical text to its own
language but they all have methodologies to offer natural language integration.
We group these methodologies into four categories.
1. Proof code with embedded natural language. In a typical formal proof

language—such as Isabelle [1] or Coq [2]—there are facilities to incorporate
natural language alongside formal definitions and proofs. Natural language
text parts are treated as commentary in a literate proof document and omitted
by the verification. This method uses structured comments, akin to program-
ming languages, for generating documentation out of programming code. In a
similar fashion, recent developments of intuitive text editors have permitted
plugin-interfacing with theorem provers [3–5].

2. Syntax à la natural language. Formal languages often suffer from rough
syntax and strict grammar. To soften the use of formal languages some efforts
have been made to adapt these syntaxis and grammars to mathematicians’
habits. Some developments have gone far in this direction to obtain formal
proof documents that look like natural language texts. The main examples
are Mizar [6] and Isar [7], but more recently some calculi [8, 9] were developed
pursuing the idea of a formal representation for pseudo-natural language.

3. Semantic Web data model. Mathematical natural language is a vague and
imprecise language which is unfriendly to computation. Web technologies offer
a compromise in the way they encapsulate natural language and extend it with
semantic tagging and hyperlinking. OMDoc [10] is a precursor in this domain.

4. Natural language generator. If the starting point is a formally defined
language then a natural language representation of the formal content can be
produced. The proof assistant HEΛM [11] has this capability. Furthermore,
[12] and [13] provide facilities to personalise the natural language generated.

We conclude that the primary input for a theorem prover is generally a formal
language and that the natural language of a theorem prover’s document is a
formalisation side effect. In case 2 the document is written in an altered and
restricted natural language while in case 4 the generated (natural) text is only
available after providing the input through a significantly restricted language.
These pseudo-natural languages are by no means the only legitimate representa-
tion of mathematics. Recent work—not pertaining to any particular system—has
explored the more general issue of comparing various formal representations [14],
demonstrating the importance of flexibility in establishing formal models and
providing concrete examples such as the formalisation of matrices [15].

1.2 Contributions

From the above it may be seen that for a semantically helpful computerisation of
mathematical knowledge, today’s systems require the use of a formal language
which differs in some way from the common, natural, mathematical language.
This paper proposes a method to restore natural language as the primary
input for computerised mathematics. The motivation is to provide mathe-

maticians with straightforward tools they can employ to use computers in their
everyday work. Efforts towards this goal fall into several categories.
1. An integrated system for natural-language text input and grammatical cate-

gorisation. A new approach to authoring natural language texts is presented
in Section 2. As the natural language text is composed, each word or phrase
is placed into a certain grammatical category as enumerated in Table 1. This
is achieved by annotating the original natural language text either during or
after its composition. A typical work pattern is presented in Section 2.4.

2. Tools for reconciling complex expressions to simple grammatical categories.
In Section 3 we give several transformations a user may apply to plain text
in order to cause the expression to cleanly fit a grammatical classification.
These tools are built on top of the aforementioned authoring approach and
work to reconcile varying natural writing styles to the stricter grammatical
rules. The effect is to duplicate, shuffle, and unfold natural language text so
that it is expressed in an explicit manner and strict order. These rewriting
rules constitute a “dual” of syntax sugaring which we call syntax souring.

3. An abstract framework to assert the foundational reliability of the proposed
system. The narrative in Section 4 presents an operational system which pro-
vides a rigorous framework upon which the denotational meaning can rest.
It provides a data structure for mathematical documents, incorporating the
grammatical categorisation, syntax souring notions, and a set of rewriting
rules which achieve the souring functionality presented in the earlier sections.

Throughout the paper, we motivate our proposal on a supplement example of an
excerpt from a textbook [16, Ch. 12] which, due to space limitation, is available
as a supplement to this paper at this paper’s authors’ respective web pages.

1.3 Background: MathLang
term common mathematical objects like “a +
b” or “an additive identity 0”.

set Sets of mathematical objects such as “N”.

noun families of terms such as “ring”.

adjective defines new nouns from old ones.
E.g., “Abelian” is an adjective which modi-
fies the noun “ring” to create the new noun

“Abelian ring”.

statement Expressions like “a+0 = a” which
describe mathematical properties.

declaration the type signature of a new term,
set, noun, adjective, or statement.

definition defines new symbols in mathemat-
ical texts.

step A group of mathematical assertions.

context preliminary assertions prior to a step.

Table 1. MathLang’s grammatical cat-
egories

In the development of computer proof
aids, a major goal is to estab-
lish a correspondence between natu-
ral language mathematics and some
core language (e.g., Automath, Coq,
Mizar). The MathLang proposal [17]
is to analyse the text in terms of var-
ious aspects exhibited by the docu-
ment. [18] outlined the core grammat-
ical aspect (CGa). CGa is concerned
first with terminology, entities, and
modifiers which express the knowl-
edge and moreover their relationships
to one another. Table 1 lists in bold
face, the grammatical categories used
at the CGa aspect of MathLang together with the colour coding. In the current
paper we focus on a text and symbol aspect (TSa) of mathematical knowledge
which is able to flexibly represent natural language mathematics.

2 Box annotation, an explicit typing of expressions

We propose an authoring technique in which the mathematical text is input to
the computer exactly as it is written on paper by the mathematician. As an
author composes a document, it is desirable to truly derive any formal or sym-
bolic version from this original document. We propose to decorate the original
text with extra information. This extra content has to be more precise, complete
and computation-friendly than natural language. With such extra information
intermingled with the original text, it is possible to ensure that subsequent trans-
lations are consistent with and faithful to the natural language text.

2.1 Box annotation

The approach of this paper augments the original natural language text with
supplementary information. We do so by wrapping (at the screen), pieces of text
with annotation boxes. The background colour of an annotation box informs
about the MathLang-grammatical role of the wrapped text (following the colour
coding of Table 1). Notice that once we remove these annotation boxes we find
the text completely unchanged. Take from our supplement example the sentence
“There is an element 0 in R such that a + 0 = a”. The grammatical information
(in terms of MathLang’s grammatical constructions) can be easily inferred from
the original text as shown by the following annotation boxes. The boxes sur-
rounding “an element 0”, “a”, “0” and “a + 0” indicate that these expressions
are terms. “R” is wrapped in a set box and “an element 0 in R” in a decla-
ration box. The box surrounding “a + 0 = a” indicates that this equation is a
statement. The whole sentence is put in a step box.

There is an element 0 in R such that a + 0 = a

This expression would correspond to the pseudo-logic code eq(plus(a,0) ,a)

which differs from its box-annotated natural language equivalent by its names-
paces. The symbol “+” corresponds to the identifier plus. Accordingly, one
might argue that the symbols = and + could have been used with infix notation
and relevant symbols’ precedence. We would have obtained an expression a+0=a

which is similar to the natural language sentence’s equation. But imagine a situ-
ation where, instead of stating the equality between a+0 and a by an equation,

the verb “equal” is used: a + 0 equals a . The sentence would be printed dif-

ferently but would still mean that a+0=a . An equation and its natural language
equivalent should reflect the same meaning (a+0=a in our example). Similarly,
a natural language sentence and its equivalent formula should get similar box

annotations. Our sentence could look like: 0 ∈ R , a + 0 = a .

2.2 Interpretation
There is 0an element 0 in RR such that eq plus aa + 00 = aa

There is 0an element 0 in RR such that eq plus aa + 00 equals aa

00 ∈ RR , eq plus aa + 00 = aa

To establish the mean-
ing of the text con-
tained in each an-
notation box, we at-
tribute to each box its interpretation in our grammar (see Table 1). The boxes

surrounding “an element 0” and “0” get 0 as interpretation attribute. The box
surrounding “R”, “a”, “a + 0” and the equation get as interpretation attributes
R, a, plus and eq, respectively. Each interpretation attribute is printed in a
typewriter typeface on the left hand side of the annotation box.
With these examples we see that MathLang’s grammar is not a natural language
grammar but a mathematical justifications grammar (following de Bruijn [19]).

2.3 Nested annotations

In our example we see also that some boxes are inside other boxes. In the case
of our equation, each inner box is interpreted as an argument for its surround-
ing box. The nesting of boxes indicates that some annotated expressions are
sub-expressions of others. It is a straightforward automatic process to create a
MathLang grammatical expression out of a text with box annotations.

There is 0an element 0 in RR such that eq plus aa + 00 = aa

{ 0 : R; eq (plus (a, 0), a); };

We show here the Math-
Lang grammatical expres-
sion corresponding to our
box-annotated text. This
expression is written us-
ing the abstract syntax we presented in [18]. Note that this syntax is not meant
to be used by the end-user of MathLang, it is only designed for theoretical
discussion on MathLang’s grammar. The MathLang end-user edits his natural
language text with annotation boxes, as shown in Section 2.4 and in the supple-
ment example. The internal syntax used in our implementations follows XML
recommendations.

2.4 Automatic grammatical analysis

This authoring method with annotation boxes was implemented as a plugin
for the scientific text editor TEXmacs. During or after the editing of a natu-
ral language text, an author is asked to wrap relevant pieces of text in Math-
Lang’s annotation boxes. Customised views are provided within the MathLang
plugin to toggle the display of several features of the document including the
coloured boxes resulting in this wrapping and the interpretations introduced in
Section 2.2. The user easily obtains the following views (once with annotation
boxes printed as coloured boxes and then with these boxes hidden):There is an element 0 in R such that a+0 = a There is an element 0 in R such that a+0 =a
The MathLang plugin communicates the content of the document to the Math-
Lang grammar checker given in [18], employing TEXmacs as an integrated graph-
ical environment for natural language input, annotation, and grammar checking.

Continuing with our sentence-example, let us assume that R, 0, = and +
were properly introduced in the larger document. When the user is satisfied
with his annotation of the sentence, the TEXmacs plugin is instructed to send
the entire document to the type checker. The checker analyses the grammatical
structure of the MathLang document and finds out that a has not been properly

introduced in our sentence. A set of errors1 with their locations in the TEXmacs

document are sent back to the plugin to be shown to the user. Here is a view
of the text with annotation boxes and their interpretations printed in between
angle brackets < and >, and errors’ labels printed in between stars *.< > There is < > < 0 > an element 0 in < R >R such that *e-6*< e q u a l > *e-3*< p l u s > *e-2 e-1*< a > a+ < 0 > 0 = *e-5 e-4*< a > a
Error (e-1): Anticipated instance of "a"

Error (e-2): Categories mismatch , Unspecified expected , not term.

Error (e-3): Types mismatch for "plus", (term,term):term expected , not (Unspecified ,term):term.

Error (e-4): Anticipated instance of "a"

Error (e-5): Categories mismatch , Unspecified expected , not term.

Error (e-6): Types mismatch for "equal ", (term,term):stat expected ,

not (term,Unspecified):stat.

To fix these errors we simply define a as it was done in the original text (see the
supplement example). The extra “for all a in R” text is wrapped in a context
box annotation which indicates that it forms the context of the equation.There is an element 0 in R such that a+0 = a for all a inR
3 Souring annotation

The grammatical box annotations of Section 2 are guided by the style in which
the original natural-language sentences were written. Mathematical writing styles
are uneven and do not always fit such simplistic annotations. To adapt to any
style, we need additional box annotations which help interpret the author’s style.
We believe it is necessary to separate grammatical and style annotations.

3.1 Syntax souring.

Mathematicians use mathematical natural language as a medium for communi-
cating mathematical knowledge, but this language is highly automation-unfriendly
for computer software. We showed in [12] that MathLang has constructions
that correspond to the way common mathematical justifications are structured.
MathLang is automation-friendly and mimics the mathematical natural lan-
guage structure of justification. Therefore MathLang authoring does not require
the user to alter or translate the document’s knowledge for computerisation, al-
though there is a need to adjust the writing style when encoding text directly
into the core MathLang language. Because we regard our starting language, nat-
ural language, to be the sweetest for human readers, we call this modification
syntax souring. This term describes the process of transforming natural language
into syntactically formalised language (the core grammatical MathLang of [18]).
The additives needed to describe how to perform a transformation of natural
language to a core formalised language are known as souring annotation.

Programming language
+

Syntactic sugar

de-sugaring
??y

Core programming language

Syntax sugaring. The notion of syntax sugaring is
well known by programmers. Syntactic sugar is added
to the syntax of programming languages to make it
easier to use by humans. Syntax sugaring lightens the
syntax without affecting expressiveness.

1
The high number of errors is due to the fact that the checking of the document does not stop
after one error is found but analyses the entire document. An error may point at several locations
in the document, this to cover all expression involved in a typing error.

Souring: dual of de-sugaring. Syntactic sugar is usually an additive for the
syntax of formal language. De-sugaring is the process of getting rid of the sugared
bits by replacing them with proper core syntax expressions.

Natural language
+

Grammatical annotations
+

Syntactic sour bits

souring
??y

Core sour language

In our case the primary input is the math-
ematician’s natural language which we want
to extend for computer software use. Souring
unfolds the sour bits to produce a sour docu-
ment, i.e. a document which is formal enough
to be understood by computer software. The
original document and the sour one do not belong to the same type of document.

The duality between syntax sugaring and syntax souring resides in the fact
that both are methods to humanise the authoring of rigid languages but have
a different starting point (i.e., programming language for syntax sugaring and
natural language for syntax souring). De-sugaring adapts rigid languages for
human consumption. Souring rigidifies natural language for software use.

3.2 Denotational representation

We give here the denotational representation which is formalised in Section 4.1.

Document. Our starting point is the mathematician’s text (as he wrote it on
paper) which is composed by a mixture of natural language text and formulae
formed by symbols. This primary input corresponds to DF (formed by F in-
dividuals) in the abstract syntax of Section 4.1. We add to this primary input,
grammatical and souring annotations that wrap portions of the text. We already
saw in Section 2 how we represent grammatical annotations. In this section we
explain how we represent the souring annotations discussed in Section 3.1. We
denote by T a portion of text which may include formulae, grammatical anno-
tations and souring annotations. We denote by A an arbitrary annotation.

Grammatical annotations. A grammatical annotation is an instance of one
of the grammatical categories term, set, noun, adjective, statement, decla-
ration, definition, context, or step (see Table 1). Each instance of a gram-
matical annotation may get an attribute which corresponds to the grammatical
annotation’s interpretation given in Section 2. We represent grammatical anno-
tations by a box whose background colour—according to the colour coding of
Table 1—informs the grammatical category and whose interpretation is printed
on the upper left-hand side of the box using courier typeface. Here is for in-
stance the term a annotated with a term-box with "a" as interpretation: aa .
We use G, G′, G1, etc., to range over grammatical interpretations. Grammatical
annotations correspond to G labels in the formal system presented in Section 4.1.

Souring annotations. Sour bits correspond to souring annotations. We de-
note them by a distinguishable font colour and a thicker box for the annotation

they describe (i.e., lista, b, c). We define in the rest of this paper the following

syntax souring annotations (which correspond to the elements souring labels Su

of Section 4.1): position i, fold-right, fold-left, base, list, hook, loop,
shared and map (where i is a natural number).

In-order notation

T (A1T1 , . . . , Ak Tk)
or

T

0
BBB@

A1T1

.

.

.
Ak Tk

1
CCCA

Un-ordered, named notation

T
h

n1 : A1T1 , . . . , nk : AkTk

i

or

T

2
6664

n1 : A1T1

.

.

.

nk : Ak Tk

3
7775

Patterns. To describe the souring rules, we need
to reason about the annotation boxes contained in
a text. To do so, we add parameters to a text T

to identify the text patterns that could be trans-
formed. We use two different notations for these
parametrised texts: the in-order notation where ar-
guments should appear in T in the same order as
they appear in the pattern and the un-ordered nota-
tion where the order of arguments is unimportant.
We denote such parametrised notation, with A1T1 ,

. . . , AkTk being the arguments for T , as in the ac-
companying diagram. Sometimes, optional names
n1, . . . , nk are used as markers to determine the argument’s location in the text.
The behaviour of parametrised text is reflected in the de-formatting function (see
Definition 5) and compatibility property (see Definition 6) stated in Section 4.

3.3 Souring transformations

In this section we indicate how to use our souring annotations and describe the
result of a souring transformation where the souring notation is unfolded to
obtain a text where grammatical annotations are similar to those of Section 2.
Such a document could then be checked according to the MathLang grammatical
checker of [18] discussed briefly in Section 2.4.

T

2
6664

position 1T1

...
position nTn

3
7775

souring
−−−−−→ T (T1, . . . , Tn)

Re-ordering. position i When deal-
ing with a natural language mathe-
matical text, one regularly faces situ-
ations where two expressions holding
similar knowledge are ordered differ-
ently. The re-ordering transformation corresponds to →pos of Section 4.2. Con-
sidering the expression “a in R” from our supplement example, one can easily
imagine the author using “R contains a” instead. The position souring anno-
tation is meant for reordering inner-annotations. The souring rewriting function
reorders the elements according to their position indices.

in position 2 RR contains position 1 aa

in a R

The expressions “a in R” and “R contains
a” should both be interpreted as in(a,R) if
in is the set membership relation. To indicate
in the second expression that the order of the
argument is not the “reading” order, we an-
notate R and a with position 2 and position 1, respectively. It is common
for binary symbols like ⊂ to have a mirror twin like ⊃. The position souring
annotation usefully gives the same interpretation to twin symbols.

Sharing/chaining. shared hook loop Mathematicians have the habit of ag-
gregating equations which follow one another. This creates reading difficulties for
novices yet contributes to the aesthetic of mathematical writing. The shared and
hook/loop souring annotations are solutions which elucidate such expressions.

G1T1
sharedT G2T2

souring
−−−−−→ G1T1 T G2T T2

The shared annotation indi-
cates that an expression is to be
used by both its preceding and following expressions. The shared expression
is inlined at the end of the preceding expression and at the beginning of the
following one. This transformation corresponds to ։share of Section 4.2.

eq 0 + a0 = shared a0 eq = shared a(0 + 0) eq = a0 + a0

eq 0 + a0 a0 eq a0 a(0 + 0) eq a(0 + 0) a0 + a0

The full interpretation of this expression being:
eq(plus(0,times(a,0)),times(a,0));

eq(times(a,0),times(a,plus(0,0)));
eq(times(a,plus(0,0)),plus(times(a,0),times(a,0)))

The document example
we chose to computerise
(see our supplement exam-
ple) contains several sen-
tences which are made eas-
ier to computerise by the
use of sharing. The multiple
equation “0+a0 = a0 = a(0+0) = a0+a0” is certainly the best example as it
requires the use of two shared annotations. We can see that a0 and a(0+0) are
shared by two equations each. We annotate them as being shared to obtain an
unfolded result equivalent to “0+a0 = a0, a0 = a(0+0), a(0+0) = a0+a0”.

T

0
@

hookT ′

loop

1
A souring

−−−−−→ T

„
T ′

T ′

«The tuple of souring annotations hook/loop
indicates the expression contained in the hook
should be repeated in the loop. We named this
concept chaining because it permits the separation of two expressions which are
effectively printed as one in a natural language text. Chaining provides results
similar to sharing (any sharing could be expressed in terms of chaining), but is
more expressive. This transformation corresponds to ։chain of Section 4.2.

forall∀ a∈ R , and and eq 0 + a0 = hook a0 eq loop = hook a(0 + 0) eq loop = a0 + a0

forall a ∈ R and and eq 0 + a0 a0 eq a0 a(0 + 0) eq a(0 + 0) a0 + a0

The full interpretation of this expression being:
forall(a:R, and(and(eq(plus(0,times(a,0)),times(a,0)),

eq(times(a,0),times(a,plus(0,0)))),
eq(times(a,plus(0,0)),plus(times(a,0),times(a,0)))))

Let us see an example where a shared souring annotation could not have been
used. If we consider the equation we used in the sharing example and decide to
quantify this equation over a, we would obtain “∀a ∈ R, 0+a0 = a0 = a(0+0) =
a0+a0” which is effectively a shortcut for “∀a ∈ R, 0+a0=a0 ∧ a0=a(0+0) ∧
a(0+0)=a0+a0”. We can see that in this example the individual equations are
combined using two binary operators and, the combination of whose annotation
boxes disallows the use of shared.

List manipulations. fold-right base list fold-left base list map list The list sour-

ing annotations indicate how lists of expressions have to be unfolded into Math-
Lang interpretations. We define two list folding annotations, fold-right and
fold-left, and a mapping annotation, map.

fold-right Tf

2
4 b : base Tb

l : list T1 . . . Tk

3
5 souring

−−−−−→ Tf

2
664

b : Tf

2
4 b : Tf

»
· · · Tf

»
b : Tb

l : Tk

–
· · ·

–

l : T2

3
5

l : T1

3
775

The fold-right souring annotation defines a pattern which is repeated for each
element of the list argument. For each repeated pattern, the list inner an-
notation is replaced by one element of the list and the base inner annotation
is replaced by the pattern with the next element of the list. fold-left works
similarly but starts with the last element of the list. These transformations cor-
respond to →fold of Section 4.2.
A major use of the fold-right souring annotation is to handle quantification
over multiple variables. Considering the sentence “for all a, b, c in R [...] (a+b)+
c = a+(b+c)”, we would like to use one single forall instance for each variable
a, b and c. We simply annotate the list of variables as such and the base equation
as base and the souring unfolding creates a fully expanded interpretation on our
behalf.

fold-right forall for all list a a , b b , c c in R R base eq (a + b) + c = a + (b + c)

forall a R forall b R forall c R eq (a + b) + c = a + (b + c)

The full interpretation of this expression being:
forall(a:R, forall(b:R, forall(c:R,eq(plus(plus(a,b),c),plus(a,plus(b,c))))))

map Tf

“
list T1 . . . Tn

”
souring
−−−−→ Tf (T1) . . . Tf (Tn)

The map souring annotation
also defines a pattern but
with only one argument being
list. This pattern is also repeated for each element of the list. The resulting
expression is a sequence. It corresponds to →map defined in Section 4.2.

map Let list aa and bb belong to Ra ring R

a R b R

Similarly to folding, this souring annota-
tion is useful for declarations, definitions
or statements over several things. In the
case of the sentence “Let a and b belong
to a ring R” taken from our supplement
example, the variables a and b are declared simultaneously.

4 Operational system

Having presented our method in an intuitive, denotational style, we now give
the formal system behind it and the foundation for MathLang documents.

4.1 Abstract syntax

Let N denote the natural numbers, use (−;−) to denote ordered pairs, and let
functions be sets ϕ of ordered pairs with a domain dom(ϕ) = {a | ∃b such that
(a; b) ∈ ϕ}. A sequence is a function s for which dom(s) = {n | 0 ≤ n < k}
for some k ∈ N. We write [] for the empty sequence and [x0, x1, . . . , xn] for the
sequence s such that s(i) = xi for each i ∈ dom(s) = {0, . . . , n}. Upon that

sequence is defined the metric |s| = n + 1. We define s1, s2, the concatenation of
sequences s1 and s2, as the new sequence s such that dom(s1, s2) = {0, . . . , |s1|+
|s2| − 1}, s(i) = s1(i) for i ∈ dom(s1) and s(i) = s2(i) for i − |s1| ∈ dom(s2).
Concatenation is associative. Moreover, [], s = s and s, [] = s.

Let L = F ∪G ∪S to be the set of labels over which ℓ ranges where elements
of F, resp. G, resp. S, are formatting, resp. grammatical, resp. souring labels.

F (over which f ranges, cf. Definition 4) consists of formatting instructions
and varies according to the typesetting system used.

G = C × I where C = {term, set,noun,adj, stat,decl,defn, step, cont},
and contains identifiers for the primitive grammatical categories of Table 1. The
set I consists of strings used for identifying abstract interpretations (e.g., 0, R,
eq, plus and a are the interpretation strings used in the examples throughout
Section 2). We let g, c and i range respectively over G, C and I.

We let s range over S = Su ∪ Si where Su contains souring identifiers to be
employed directly by the user while Si holds several identifiers used internally
for rewriting. Su and Si are disjoint and are as follows:
Su = {fold-left,fold-right,map,base,list,hook,loop,shared} ∪ ({position} × N)

Si = {hook-travel,head,tail,daeh,liat,right-travel,left-travel} ∪ ({cursor} × N)

Definition 1 (Document). Let D be the smallest set such that:
1. [] ∈ D,
2. if d ∈ D and ℓ ∈ L then [(ℓ; d)] ∈ D, and
3. if both d1 and d2 are elements of D then (d1, d2) ∈ D.
A MathLang document is an element of the set D. In addition, we denote by
DF , DG, DF∪G, DG∪S and DF∪G∪S the sets of documents for which labels are
in F, G, F ∪ G, G ∪ S and F ∪ G ∪ S, respectively.

Remark 1 (Notational convention). For convenience, [(ℓ; d)] abbreviates to ℓ〈d〉. Fur-

thermore, when not ambiguous ℓ〈[]〉 abbreviates to ℓ. In the case of grammatical labels

ordered pairs, we denote the interpretation (second element of the pair) by an ad-

joined superscript. A pair (c; i) from G is denoted by ci. Similarly, an ordered pair

from {position}× N (respectively {cursor}× N) is denoted by a superscript number

(second element of the pair) adjoined to position (respectively cursor).

Definition 2 (Sub-document). We define sub-document, and we denote by
⊏G , the binary relation between documents such that:

d ⊏G d (SUB1)

d ⊏G g〈d1〉 if d ⊏G d1 (SUB2)

d ⊏G (d1, d2) if d ⊏G d1 or d ⊏G d2 (SUB3)

Remark 2. It is important to notice that our sub-document property (SUB2) is
restricted to grammatical labels which means that for any label ℓ 6∈ G and any
documents d1 and d2 such that d1 ⊏G d2, we have that d1 6⊏G ℓ〈d2〉.

Definition 3 (Label inclusion). We define label inclusion, and we denote by
∈̃G , the binary relation between a label and a document such that:

ℓ e∈G ℓ〈d〉 (INC1)

ℓ e∈G g〈d〉 if ℓ 6= g and ℓ e∈G d (INC2)

ℓ e∈G (d1, d2) if ℓ e∈G d1 or ℓ e∈G d2 (INC3)

Remark 3. Note that our label inclusion property (INC2) is restricted to gram-
matical labels, which means that for any labels ℓ1 6∈ G and ℓ2 ∈ L such that
ℓ1 6= ℓ2, and any document d such that ℓ2 ∈̃G d, we have that ℓ2

˜6∈G ℓ1〈d〉.

Definition 4 (Rendering functions). Let f : D → DF be a function where:

f([]) = [] (FORM1)

f(ℓ〈d〉) =

ℓ〈f(d)〉 if ℓ ∈ F
f(d) otherwise

(FORM2)

f(d1, d2) = f(d1), f(d2) (FORM3)

Thus, f flattens a given document d at any label from G or S, removing all such
labels. Once this is achieved, it will be possible to use r : DF → F, where:

r([]) = ε (REN1)

r(f〈d〉) = fill(f, [r(d(0)), . . . , r(d(|d|−1))]) (REN2)

r(d1, d2) = r(d1) • r(d2) (REN3)

Where, in a specific typesetting system, ε is the blank formatting instruction, •
is the composition operator and fill is a formatting-system-specific function. The
function fill interprets a formatting instruction (first argument) with a sequence
of rendered documents passed as argument. One can imagine a formatting in-
struction to be a template with holes and fill to simply fill these holes. The number
of vacancies exhibited by the first argument of fill should be equal to the length
of the sequence, which is the second argument of fill. The function fill returns an
element of the set F which is a formatting instruction requiring no argument.

Definition 5 (De-formatting function). To prepare a document for souring,
we strip it of all formatting elements using the function df : D → DG∪S where:

df([]) = [] (DF1)

df(ℓ〈d〉) =

d if ℓ ∈ F
ℓ〈df(d)〉 otherwise

(DF2)

df(d1, d2) = df(d1), df(d2) (DF3)

4.2 Souring rewriting rules

Definition 6 (Compatibility, Reflexive transitive closure, Normal form).
We define the following compatibility property for a rewriting rule →n.

d1, d, d2 →n d1, d
′, d2 if d →n d′ (COMP1)

g〈d〉 → g〈d′〉 if d →n d′ (COMP2)

We denote by ։n the reflexive transitive closure of →n.

We define the n-normal form relatively to →n and we denote by NFn the property
on a document d such that no ։n rewriting can be applied to d.

Note that our compatibility rule (COMP2) is restricted to grammatical labels.

Below are the formal rewriting rules for souring transformations from Section 3.1.

head〈d1,d2〉→listd1,head〈d2〉 where list e6∈G d1

tail〈d1,d2〉→listd1,tail〈d2〉 where list e6∈G d1

daeh〈d1,d2〉→listd1,daeh〈d2〉 where list e6∈G d1

liat〈d1,d2〉→listd1,liat〈d2〉 where list e6∈G d1

head〈g〈d1〉,d2〉→listg〈head〈d1〉〉,d2

where list e∈G d1

tail〈g〈d1〉,d2〉→listg〈tail〈d1〉〉,d2

where list e∈G d1

daeh〈g〈d1〉,d2〉→listg〈daeh〈d1〉〉,d2

where list e∈G d1

liat〈g〈d1〉,d2〉→listg〈liat〈d1〉〉,d2

where list e∈G d1

head〈list〈g〈d1〉,d2〉,d3〉→listg〈d1〉,d3

tail〈list〈g〈d1〉,d2〉,d3〉→listd2,d3

daeh〈list〈d1,g〈d2〉〉,d3〉→listg〈d2〉,d3

liat〈list〈d1,g〈d2〉〉,d3〉→listd1,d3

g1〈d1〉,shared〈d〉,g2〈d2〉→shareg1〈d1,d〉,g2〈d,d2〉

hook〈d〉→chaind,hook-travel〈d〉

hook-travel〈d〉,loop→chaind

hook-travel〈d0〉,d1,d2→chaind1,hook-travel〈d0〉,d2

where loop e6∈G d1

hook-travel〈d0〉,g〈d1〉→chaing〈hook-travel〈d0〉,d1〉

g〈d1,hook-travel〈d0〉〉→chaing〈d1〉,hook-travel〈d0〉

positioni〈d1〉,position
j〈d2〉→pos

positionj〈d2〉,position
i〈d1〉

where j<i

ℓ〈position1〈d1〉,d2〉→posℓ〈d1,cursor1,d2〉

cursori,positioni+1〈d1〉,d2→posd1,cursori+1,d2

ℓ〈d,cursori〉→posℓ〈d〉

fold-right〈d0〉→foldright-travel〈d2〉,d1

where d0։souringd′
0, head〈d′

0〉։listd1

and tail〈d′
0〉։listd2

right-travel〈d1,d2〉→foldd1,right-travel〈d2〉

where base e6∈G d1

right-travel〈g〈d1〉,d2〉→fold

g〈right-travel〈d1〉〉,d2

where g 6=base and base e∈G d1

right-travel〈d1〉,base〈d2〉→fold

d2,right-travel〈d2〉

where list ⊏G d1

right-travel〈d1〉,base〈d2〉→foldfold-right〈d1〉

fold-left〈d0〉→foldleft-travel〈d2〉,d1

where d0։souring d′
0, daeh〈d′

0〉։listd1

and liat〈d′
0〉։listd2

left-travel〈d1,d2〉→foldd1,left-travel〈d2〉

where base e6∈G d1

left-travel〈g〈d1〉,d2〉→foldg〈left-travel〈d1〉〉,d2

where g 6=base and base e∈G d1

left-travel〈d1〉,base〈d2〉→foldd2,left-travel〈d2〉

where list ⊏G d1

left-travel〈d1〉,base〈d2〉→foldfold-left〈d1〉

map〈d〉→map [] where list ⊏G d

map〈d0〉→mapd1,map〈d2〉

where d0։souringd′
0, head〈d′

0〉։listd1

and tail〈d′
0〉։listd2

Definition 7 (Souring rewriting rule). The souring rewriting rule, denoted
by →souring is defined as d0 →souring d4 where d0 ։share d1 (d1being in a
NF share), d1 ։chain d2(d2being in a NF chain),d2 ։pos d3(d3being in a NF pos),
d3 ։lists d4(d4being in a NF lists).
The souring a document is the application of ։souring until NF souring is reached.

5 Related work
The natural-to-abstract work pattern which has been presented in this paper will
be useful in a wide variety of settings. One possible area of application is work
being done with optical character recognition of mathematics. In the work of
the Infty Project [20, 21], for example, it is desirable to automate the process of
extracting information from printed material. As MathLang becomes capable of
being automated, it will provide further aid to extracting semantic information
from a document with as little hand-translation as possible.

The TEXmacs plugin environment and method of editing causes MathLang
to be a visual language. Using visual languages for knowledge representation is
becoming more popular, and its benefits are obvious. By displaying and editing

the logical structure of a mathematical document, the categorisation of various
portions of text is made more clear and the structure more lucid. This could
certainly lead to a new generation of literate programming [22].

In Computational linguistics, transformational grammars [23, Ch.5] provide
a morphism method similar to souring. Nevertheless they are a natural language
grammar and do not provide this separation between the original human-medium
(natural language) and the software-medium (MathLang core language).

6 Conclusion and future work

We demonstrate in this paper the feasibility of restoring natural language as
the primary input for mathematical authoring on computers. This method will
benefit mathematicians as it permits the use of computer-assisted authoring
without requiring skills in computer-based formalisation. Thus, this method will
benefit the mathematical knowledge community as it makes the bridge between
traditional and computerised mathematics. Since the souring rewriting rules are
defined on top of a generic document format, it should be straightforward to
adapt the rules to some specific formatting system and core “sour” language.

The work in [12] established a language and a system for encoding math-
ematical texts with transformations which permitted viewing the document in
various useful forms, especially natural language. The current development im-
proves on this by allowing the user to work directly in natural language while
making use of a number of automated features to do the rest. Even so, the set
of souring rules with which the system has been augmented is almost certainly
incomplete. There are some known mathematical constructs (mentioned below)
for which a satisfactory annotation has not yet been found, and there are surely
others which have not yet come to the attention of this development team.

Current known shortcomings in the system include good handling of ex-

pressions with omitted terms, such as

n times
︷ ︸︸ ︷
x + . . . + x, 22..

.2

, and 1
1+ 1

1+···

. Proper

treatment of proof by induction is under active investigation, as well as satisfac-
tory treatment of relations such as modular equivalence e.g., −1 ≡ 2(mod 3).
Other priorities are developing/integrating methods to automate the annotation
process, which at present can be redundant and tedious, and gathering data on
use and work patterns by mathematicians to guide further tool and interface
development. Anecdotal tests have indicated that the system is very easy to use,
but further investigation will be necessary to ensure that the present—or any
future—implementation provides maximal assistance to the mathematical user.

References

1. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL — A Proof Assistant for
Higher-Order Logic. Volume 2283 of LNCS. Springer-Verlag (2002)

2. LogiCal Project, INRIA Rocquencourt, France: The Coq Proof Assistant Reference
Manual – Version 8.0. (2004) At ftp://ftp.inria.fr/INRIA/coq/V8.0/doc/.

3. Audebaud, P., Rideau, L.: TeXmacs as authoring tool for publication and dissem-
ination of formal developments. Volume 103 of ENTCS., Rome (2003) 27–48

4. Autexier, S., Benzmüller, C., Fiedler, A., Lesourd, H.: Integrating proof assistants
as reasoning and verification tools into a scientific WYSIWIG editor. In: User
Interfaces for Theorem Provers (UITP ’05) [Workshop], Edinburgh (2005)

5. Mamane, L.E., Geuvers, H.: A document-oriented Coq plugin for TeXmacs. In:
Mathematical User-Interfaces Workshop 2006 [Workshop], Workingham (2006)

6. Rudnicki, P.: An overview of the Mizar project. In: Proceedings of the 1992
Workshop on Types for Proofs and Programs. (1992)

7. Wenzel, M.: Isar – a generic interpretative approach to readable formal proof docu-
ments. In: Theorem Proving in Higher Order Logics: 12th Int’l Conf., Proceedings.
Volume 1690 of Lecture Notes in Computer Science., Springer (1999) 167–184

8. Autexier, S., Sacerdoti Coen, C.: A formal correspondence between OMDoc with
alternative proofs and the λ̄µµ̃-calculus. [24] 67–81

9. Brown, C.E.: Verifying and invalidating textbook proofs using Scunak. [24] 110–
123

10. Kohlhase, M.: An open markup format for mathematical documents, OMDoc
(Version 1.2). Volume 4180 of Lecture Notes in Artificial Intelligence. Springer
(2006)

11. Asperti, A., Padovani, L., Sacerdoti Coen, C., Schena, I.: HELM and the semantic
math-web. In: Volume 2152 of LNCS, Springer (2001) 59–74

12. Kamareddine, F., Maarek, M., Wells, J.B.: Flexible encoding of mathematics on the
computer. In: Mathematical Knowledge Management, 3rd Int’l Conf., Proceedings.
Volume 3119 of Lecture Notes in Computer Science., Springer (2004) 160–174

13. Padovani, L., Zacchiroli, S.: From notation to semantics: There and back again.
[24] 194–207

14. Kerber, M., Pollet, M.: A tough nut for mathematical knowledge management.
In Kohlhase, M., ed.: Mathematical Knowledge Management – 4th International
Conference, MKM 2005, Bremen, Germany, Springer, LNAI 3863 (2006) 81–95

15. Pollet, M., Sorge, V., Kerber, M.: Intuitive and formal representations: The case of
matrices. In Asperti, A., Bancerek, G., Trybulec, A., eds.: Mathematical Knowl-
edge Management. Third International Conference, MKM, Bia lowieza, Poland,
September 19-21, Springer, LNCS 3119 (2004)

16. Gallian, J.A.: Contemporary Abstract Algebra. 5th edn. Houghton Mifflin Com-
pany (2002)

17. Kamareddine, F., Wells, J.: MathLang: A new language for mathematics, logic,
and proof checking. A research proposal to UK funding body (2001)

18. Kamareddine, F., Maarek, M., Wells, J.B.: Toward an object-oriented structure
for mathematical text. In Kohlhase, M., ed.: Mathematical Knowledge Manage-
ment, 4th Int’l Conf., Proceedings. Volume 3863 of Lecture Notes in Artificial
Intelligence., Springer (2006) 217–233

19. de Bruijn, N.G.: Checking mathematics with computer assistance. Notices of the
American Mathematical Society 38 (1991) 8–15

20. Kanahori, T., Sexton, A., Sorge, V., Suzuki, M.: Capturing abstract matrices from
paper. [24] 124–138

21. Raja, A., Rayner, M., Sexton, A., Sorge, V.: Towards a parser for mathematical
formula recognition. [24] 139–151

22. Knuth, D.E.: Literate programming. The Computer Journal 27 (1984) 97–111
23. Farrell, P.: Grammatical Relations. Oxford Surveys in Syntax and Morphology.

Oxford Linguistics (2005)
24. Borwein, J.M., Farmer, W.M., eds.: Mathematical Knowledge Management, 5th

Int’l Conf., Proceedings. Volume 4108 of LNCS, Springer (2006)

