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Abstract. Converting mathematical documents from a human-friendly
natural language to a form that can be readily processed by comput-
ers is often a tedious, manual task. Translating between varied comput-
erised forms is also a difficult problem. MathLang, a system of methods
and representations for computerising mathematics, tries to make these
tasks more tractable by breaking the translation down into manageable
portions. This paper presents a method for creating rules to translate
documents from MathLang’s internal representation of mathematics to
documents in the language of the Isabelle proof assistant. It includes a
set of example rules applicable for a particular document. The resulting
documents are not completely verifiable by Isabelle, but they represent
a point to which a mathematician may take a document without the
involvement of an Isabelle expert.

1 Introduction

When a mathematician describes a piece of mathematics in written form, it may
be of interest to use computers to process this text in a variety of ways. They
may use editing software to write the text as they are developing the ideas.
Similarly, it is very common for such a text to be typeset so it is pleasing to the
eye. It may also be useful to identify the semantics, for presentation to those with
disabilities, or there may exist in the document partial calculations which the
computer should process for the benefit of the original author or other readers.
These are a few ways in which a computer may be used to directly benefit a
human who wants to understand the mathematics.

In addition to providing output for humans, a computer may be useful for
verifying the correctness of a document, in a variety of ways. These include
checking of spelling and grammar in the natural language; syntax checking for
mathematical notation; checking soundness of the interrelations between defini-
tions, theorems, and proofs; and formally verifying the logical structure of the
document, at different levels of rigour. These are ways in which the computer
may provide evaluation and feedback on the document.

For mathematicians, systems falling at the formal end of that spectrum are
currently of limited use, as they require considerable investment to gain profi-
ciency. It is possible for a mathematician to author a paper and then pass it on
to an expert in some formal system, but this requires the expert to completely
comprehend each natural-language document received so as to ensure a faithful



translation. The current methods of translation are almost entirely manual. This
leaves a vast chasm between original and formalised documents, in which may
be introduced semantic discrepancies. Furthermore, if the original document is
changed, there is some risk that necessary changes in the formalised counterpart
will be overlooked when the time comes for revision.

1.1 Contributions

This paper describes developments in MathLang (a system for computerising
mathematics, described in Section 2) which may help close the gap between
natural language and formalised documents. MathLang is a system which tries
to give as much flexibility to the user as possible, trying to process any style that
a person may use to express their mathematics. The existing parts of MathLang,
which are assumed to be the starting point for the developments in this paper,
are overviewed in Section 2.1.

This paper offers a process for arriving at rules for translation. Our goal is
to produce, from the already-computerised MathLang document, a text in the
language of a formal system. Our chosen target language is Isabelle. To do this,
rules are created which operate recursively on a document. The nature of these
rules is described in Section 3.1, and is illustrated by a detailed example.

1.2 Related Work

In the context of the MathLang project, this work provides tools which provide
output which is closer to existing formal systems than ever before. Specifically, it
uses the facilities provided by [1, 2] to translate the bulk of a text to the syntax
of the proof assistant Isabelle. This is in parallel with [3], which was translating
the same kind of document to Mizar [4]. However, in that work the focus was
on identifying relevant theories from the Mizar Mathematical Library to include
in the environment of a new Mizar document, moreso than translating the main
text of a MathLang document to Mizar.

In the larger field, there are a number of projects which are attempting to
bridge the gap between human-friendly mathematical texts and easily-processed
and -verified computer documents. Most focus primarily on one side or another.
On the formal end of the spectrum are projects like Mizar [4], Theorema [5] and
Isar [6, 7]. These three computer proof systems are designed with syntax that is
constructed to be similar to the way that mathematicians write in natural En-
glish. A similar approach is being taken in the work of Muhammad Humayoun
on MathNat [8], in which he tries to express both mathematical proofs and natu-
ral language. In the cases of Mizar and Isar, the language is like natural English,
but does not provide the author with much flexibility. MathNat and Theorema
allow much greater flexibility – in MathNat’s case due to its incorporation of
GF [9] – but still force the user to employ a controlled language, which may
often be a subset of what an author would normally employ. MathLang endeav-
ours to accommodate any writing style through the use of flexible annotation,



accommodating documents that were never intended to be computerised, such
as Euclid’s Elements [10] and Landau’s Grundlagen der Analysis [11].

On the other side of the natural–formal gap, Aarne Ranta’s system GF [9]
has a flexible system for defining grammars, and provides an API for interfacing
with other programs, but is not, itself, designed to process documents to further
formal states. We wish to process such documents in other interesting ways.

Finally, there are systems such as Isabelle [6] and Coq [12], which are systems
for computer proof, along with Logiweb [13], which is a system for document
processing that interfaces with arbitrary systems. Each of these allow natural
language text to be interleaved with formal expressions in a kind of literate
proof document in the manner of CWEB [14]. However, care during revision is
necessary to ensure that natural language and formalism remain consistent.

1.3 Conclusion

The rules presented in this document are very limited, but they represent a
pattern which may be used to develop a library of rules which may be useful in
translating a variety of documents to Isabelle syntax. The documents that result
from translation are very incomplete, but they may be a useful middle ground
between a mathematician who has little knowledge of proof systems, and an
Isabelle expert who is trying to formalise the mathematics that the original
author has written. The system needs to be extended and tested extensively,
but the current work shows a valuable proof-of-concept which merits further
investigation.

2 Relevant Systems

This section describes systems and theories that the current work relies upon,
but which the reader may not be familiar with. First it describes the system
called MathLang. It first provides an overview, then a detailed description of
the relevant portions of operational theory. A second section gives an example
Isabelle document, drawing the reader’s attention to relevant features of the
language.

2.1 System Aspects

The current MathLang system [16] is designed to computerise mathematical
texts like that seen in Fig. 1. By computerising, we mean operating on documents
which are easily accessed and modified by computers. We also mean processing
documents so they may be easily accessed and modified. Currently MathLang
provides several ways to achieve this. They are classified into domains called
aspects of MathLang. The current aspects are the Text and Symbol aspect [1, 17],
the Core Grammatical aspect [2, 17], and the Document Rhetorical aspect [3].
For the current paper we restrict our focus to the first two.



The Text and Symbol aspect The Text and Symbol aspect (TSa) is the as-
pect of MathLang which is directly concerned with the ways in which documents
present mathematics to a reader or author. A particular focus of the aspect is
the way in which mathematical concepts are abbreviated, such as combining a
pair of equations a = b and b = c into the single string a = b = c.

It also provides the details for sensible presentation of the fruits of other
aspects of MathLang: these others augment the text with information, but TSa
governs how this extra information is symbolised in relation to the original text.
The document in Fig. 1, for instance, has been enhanced in Fig. 2 to show the
extra information provided with the Core Grammatical aspect, below.

Table 1. Elements of C (primitive grammatical categories), with associated colour
(see Definition 4) and ontological meaning.

Cat. Colour Description

term blue common mathematical objects
set red collections of terms
noun orange families of terms
adj yellow adjectives used to construct new nouns from old
stat green statements which have some truth value
decl dk. gray declarations of new terms, sets, nouns, adjs, or stats
defn lt. gray definitions of new symbols
step salmon groups of mathematical assertions
cont purple contexts containing preliminaries prior to a step

The Core Grammatical aspect The Core Grammatical aspect (CGa) pro-
vides analysis for the sentence level of the document. It provides a type system
for objects, definitions, and assertions and a means for checking the document
for type correctness. The types of CGa are summarised in Table 1.

For instance, the variable x and number 1 could be declared as having the
type term. The operation + might have type term → term → term. Thus,
x+1 would also be considered a term. However, this expression can also perhaps
be considered as an instance of the noun polynomial. Furthermore, the adjective
linear can be used to modify polynomial to create a new noun, linear polynomial,
which also classifies x+1. The manner in which these types are shown to a reader
(as in Fig. 2) is defined in Section 2.2.

2.2 Operational System

In this section we define the operational system of MathLang. This definition is
covered more extensively in an earlier paper [1]. Portions are reproduced here for
the benefit of the reader. Some readers may find it beneficial to keep in mind the
definition of the XML XPath data model [18], as there exist strong conceptual
parallels with the following definition.



Let N denote the natural numbers, use (−;−) to denote ordered pairs, and
let functions be sets ϕ of ordered pairs. Every function has a domain dom(ϕ) =
{a | ∃b 3 (a; b) ∈ ϕ} and a range ran(ϕ) = {b | ∃a 3 (a; b) ∈ ϕ}. A sequence
is a function σ for which dom(σ) = {n | 0 ≤ n < k} for some k ∈ N. We
write [] for the empty sequence and [x0, x1, . . . , xn] for the sequence σ such that
σ(i) = xi for each i ∈ dom(σ) = {0, . . . , n}. Upon that sequence is defined
the metric |σ| = n + 1. We define σ1, σ2 to concatenate σ1 and σ2 as the new
sequence σ such that dom(σ1, σ2) = {0, . . . , |σ1| + |σ2| − 1} where σ(i) = σ1(i)
for i ∈ dom(σ1) and σ(i) = σ2(i) for i − |σ1| ∈ dom(σ2). Concatenation is
associative. Moreover, [], σ = σ and σ, [] = σ. For any set S, say [S] denotes
{σ | ran(σ) ⊆ S}.

Let L = F∪G∪S be a set of labels such that elements of F, G and S are for-
matting, grammatical, and souring labels, respectively. The set F, of formatting
instructions, varies according to rendering system. We define G = C × I, where
C = {term, set,noun,adj, stat,decl,defn, step, cont}, and contains identi-
fiers for the primitive grammatical categories of Table 1. The set I consists of
strings used for identifying abstract interpretations. We let `, f , g, c and i range
over L, F, G, C and I, respectively.

We let s range over S = Su ∪ Si where Su contains souring identifiers to be
employed directly by the user while Si holds several identifiers used internally
for rewriting. Su and Si are disjoint, defined as follows:

Su={fold-left,fold-right,map,base,list,hook,loop,shared}∪({position}×N)

Si={hook-travel,head,tail,daeh,liat,right-travel,left-travel}∪({cursor}×N)

Definition 1 (Document). Let D be the smallest set such that:

1. [] ∈ D,
2. if d ∈ D and ` ∈ L then [(`; d)] ∈ D, and
3. if both d1 and d2 are elements of D then (d1, d2) ∈ D.

A MathLang document is an element of the set D. In addition, we denote by DF ,
DG, DF∪G, DG∪S and DF∪G∪S the sets of documents whose labels are restricted
to the respective subscripted set. The variables d, dn (where n ∈ N) denote mem-
bers of D, unless otherwise noted.

Remark 2 (Notational convention). We use `〈d 〉 to denote [(`; d)]. When not am-
biguous, ` denotes `〈[]〉. A box with black border and coloured background,
i d , is used to represent (c; i)〈d〉 (a document with grammatical label), where
the background colour of the box corresponds to c as shown in Table 1 (See Ex-
ample 6, below). Similarly, a box with thick pink border and white background,
s d , is used to represent s 〈d〉, documents with souring labels.

It is worth noting that these notations have been developed for ease of read-
ing, and particularly interactive annotation of texts. One of Mathlang’s biggest
motivations is for humans to be able to type a mathematical text in a natural



way on the computer, and then add the grammatical and souring information
with ease. The prototype based on TEXmacs is described in detail in [17].

Formatting systems are treated as a set of formatting instructions F, a blank
formatting instruction ε, a concatenation operator •, and a hole-filling function
fill : F × [F] → F, which takes two arguments, a formatting instruction f and
a sequence of instructions σ. Instruction f may have holes, denoted n , where
0 ≤ n < |σ|. The instruction f is rewritten so that each n is replaced by σ(n).

Definition 3 (Souring). Souring is a rewriting process that was described in [1].
The particulars of the procedure are not important to this paper. We may regard
the souring function as a black box function sour : D → DF∪G.

The motivation for souring is as follows: as syntactic sugar is added to a
formal document to make it easier to read for humans, syntax souring is added
to natural-language documents to make them easier for a computer to process.
Before processing a document with the rules in Section 3.1, we typically sour the
document by applying this function to the document, then further processing the
result. An example of a typical souring operation would be to convert a = b = c
to a = b, b = c.

Definition 4 (Rendering functions). Let r : D → F be defined as

r([]) = ε (REN1)
r(f〈d〉) = fill(f, [r(d(0)), . . . , r(d(|d|−1))]) (REN2)

r((c; i)〈d〉) = i r(d) (REN3)

r(s〈d〉) = s r(d) (REN4)

r(d1, d2) = r(d1) • r(d2) (REN5)

where the background colour of the box given by (REN3) is the colour from Ta-
ble 1 (i.e., r((term; i)〈d〉) = i r(d) , r((set; i)〈d〉) = i r(d) , etc.)

Definition 5 (Extract original document). Usually, some d ∈ D consists
of a “typical” mathematical text plus some information which is stored in the
labels from G ∪S. For any document which has this property, it may be useful to
filter d with the function od : D → DF , defined as

od([]) = [] (OD1)

od(`〈d〉) =
{

`〈od(d)〉 if ` ∈ F
d otherwise (OD2)

od(d1, d2) = od(d1), od(d2). (OD3)

It is then possible to obtain the mathematician’s original text as r(od(d)).



Example 6. In this example, formatting instructions are taken to be from the
LATEX typesetting system. Consider the document d given as

x$0$q〈(stat; equal)〈x0=1q〈[(term; times)〈
[(term; zero)〈0〉, (term; a)〈a〉]〉, (term; a)〈a〉]〉〉〉.

The document will be rendered, r(d), as
equal

times zero 0 a a = a a , while the
filtered document od(d), x$0$q〈x0=1 q〈[x0=1q〈0, a, a]〉〉〉, would be rendered
as 0a = a.

2.3 Overview of Isabelle

For the benefit of the reader, the following provides a brief overview of pertinent
parts of the proof assistant Isabelle. Isabelle/HOL was chosen as a target for
translation from MathLang because it is a popular, mature system with extensive
documentation. The authors of the current paper do not consider themselves to
be Isabelle experts, but it was straightforward to learn the basics of the system
in order to begin making basic proof documents. Isabelle [6] allows a user to
express and record formulae and reasoning steps. It is designed to work with a
variety of logical foundations, the most popular being HOL. Isar [7] enhances
the language of Isabelle for a more declarative proof style.

What follows is a summary of certain Isabelle features which may be useful
in understanding the remainder of this document, referencing Figure 3.

In Isabelle, formal developments are organised into theories, which are given
unique names and stored in separate text files. The theory in Figure 3, for in-
stance, is stored in Groebner Basis.thy and begins with the indicated line 7
(The previous lines in the file are all comments). Line 8 of this example shows
that the current theory may need to use results formalised in the Isabelle the-
ory NatBin. This imports directive allows access to definitions and results of
the other theory. The rest of the file, which will develop new formalisations, is
enclosed with the keywords begin (line 14) and end (line 440).

A locale is an Isabelle construct which defines a local scope in which assump-
tions and symbols are declared. Theorems may then depend on locales for the
premises on which they are proved. Line 259 starts the declaration of a locale,
which in this case has the name gb field and inherits the properties of locale
gb ring. It starts by declaring (fixing) a pair of constants with type signatures
and stating two axioms for the locale. This is followed by a lemma and proof.

3 Rules for Translating Documents

Section 2.2 described the operational representation of MathLang documents.
The documents are stored as an assembly of labels, each of which has a particular
role (formatting, grammatical, or souring). It may be of interest to reformat
the document into another form. In this section, we give a set of translation



rules which could be recursively applied to a MathLang document, and easily
extended to be applied to other documents. This set of rules converts some of
the information of the document to Isabelle syntax.

3.1 Example Rules for Translating to Isabelle

In this section, we describe a set of rules which are sufficient to translate the
document in Figure 2 to the language of Isabelle. These are given to show how
rules can be created to cover different cases in MathLang documents. Suppose
that d is a document which has been soured (see Definition 3). Then we apply
mutually recursive translation rules T : DG → DF as partial translations of d
into the syntax of Isabelle. These are defined from the top down: each rule may
rely on other rules which are defined later in the section. Figure 4, in Section 3.2,
shows the translation given by the rules.

In the first rule, (*name*) is an Isabelle comment which should be replaced
with a name for the theory. Similarly, (*theories*) is a list of other theories
which contain required prior knowledge. Constructing this list of theories is
outside the scope of this paper. For the current work, we leave this task to an
Isabelle expert, to fill in the blanks. The root document tree may be translated
by the following rule.

Troot(d) = fill(xtheory (*name*) imports (*theories*)

begin 1 endq, [Tmain(d)]) (ROOT1)

This inserts the main frame for the theory and then invokes Tmain, as defined
below. Note that the aforementioned (*theories*) list would likely depend on
the contents of any preface, but that is outside of the scope of this paper, so
(MAIN1) returns an empty string, ignoring its contents.

Tmain

(
preface d

)
= xq (MAIN1)

Tmain

(
definition d

)
= Tdef(d) (MAIN2)

Tmain

(
theorem

i [] i′ [] , d

)
= Tthm(i′, d) (MAIN3)

Tmain

(
proof d

)
= Tpf(d) (MAIN4)

Tmain(d1, d2) = Tmain(d1) • Tmain(d2) (MAIN5)

When the main text contains a definition annotation surrounding nouns,
this kind of annotation may be translated with the following rule.



Tdef

(
i

i []
i′ props d

)
= fill (xlocale 0=1q, [i, Tdef(d)]) (D1)

Tdef

(
i [] i′ []

)
= fill (xfixes 0::"’r" assumes "0:1"q, [i, i′]) (D2)

Tdef

(
i d
)

= fill
(
xfixes 0::"1"q,

[
i, Tty

(
i d
)])

(D3)

Tdef

(
i []
)

= fill (xfixes 0::"’r set"q, [i]) (D4)

Tdef

(
i d
)

= fill
(
xassumes "1"q,

[
Tpfx

(
i d
)])

(D5)

Tdef(d1, d2) = Tdef(d1) • Tdef(d2) (D6)

For Tty, for i ∈ I, d ∈ D we have i d ∈
{

i d , i d , i d
}

(term, set, or statement).
This rule extracts the type signature for the given expression.

Tty

(
i d
)

= fill (x0=>1q, [Tty(d) , i]) (TY2)

Tty

(
i d , d′

)
= fill

(
x0=>1 q,

[
Tty(d′) , Tty

(
i d
)])

(TY3)

Tty

(
i []
)

= x’rq Tty

(
i []
)

= x’r setq Tty

(
i []
)

= xboolq (TY1)

Example 7. When (D3) is applied to the annotated expression

addition (denoted by
plus

# a+ # b )

the result of the translation is

8 f ixes plus : : "’r => ’r => ’r"

where all three of the symbols in the type signature are ’r because the three
inner boxes were all terms.

If, on the other hand, we want to convert several boxes – again, for i ∈ I, d ∈
D we have i d ∈

{
i d , i d , i d

}
(term, set, or statement) – the following rules

turn the boxes into a prefix notation that is Isabelle-friendly, although it is not
perfect (See Note 9, below).

Tpfx

(
i []
)

= i (PFX1)

Tpfx

(
i d
)

= fill (x0 1q, [i, Tpfx-inner(d)]) (PFX2)

Tpfx-inner

(
i [] , d′

)
= fill (x0 1q, [i, Tpfx-inner(d)]) (PFX3)

Tpfx-inner

(
i d , d′

)
= fill (x(0 1) 2q, [i, Tpfx-inner(d) , Tpfx-inner(d′)]) (PFX4)



Example 8. We see that the annotated expression

not
set-equal

R a non emptyset empty set

which may then be manipulated to

7 assumes "not (set-equal R emptyset)"

Note 9. It is possible, on a case-by-case basis, to translate expressions such
as emptyset to the more Isabelle-friendly {}, or even equals zero (times a
zero) to zero = a * zero, but this kind of automated translation may not be
useful or even desirable for the user. We leave it, for the moment, to future work.

Example 10. To illustrate the way that Tdef, Tty, and Tpfx work together, note

ring
ring

Definition 1. A
R
ring R R is

carriernonempty not
set-equal

R a non emptyset empty set with two

binary operations,
plus

addition (denoted by
plus

# a+ # b ) . . .

would be translated into

5 locale ring =
6 f ixes R : : "’r set"

7 assumes "not (set-equal R emptyset)"

8 f ixes plus : : "’r => ’r => ’r"

Tthm

(
p,

i [] i d

)
=

fill(xtheorem (in 0) 1: "2"q, [p, i, Tpfx

(
i d
)
]) (THM1)

Tthm(p, (d1, d2)) = Tthm(p, d1) • Tthm(p, d2) (THM2)

Example 11. If the above rule is applied to the theorem in Figure 2,

mrule1
mrule1

and
equal

times a a zero 0 = times zero 0 a a
equal

times zero 0 a a = zero 0

it would result in the output



28 theorem ( in ring ) mrule1 :
29 shows "and (equal (times a zero) (times zero a))

30 (equal (times zero a) zero)"

The final rules are filled in as follows. We note that in Isabelle, theorems
pass their locale information on to their associated proof. Thus, although we
see the declaration of a ring as context for both theorems and definitions (as

denoted r ring in Figure 2), and this is necessary for MathLang’s internal
type checking, we do not need this information in the translation. Thus, (PF1)
returns an empty string.

Tpf

(
d
)

= xq (PF1)

Tpf

(
i d
)

= fill
(
xhave "0"q,

[
Tpfx

(
i d
)])

(PF2)

Example 12. This will translate
equal

zero 0 = times a a zero 0 to the code

40 have "equal zero (times a zero)"

3.2 Resulting Code

With the aid of the rules from Section 3, the Isabelle code in Figure 4 may be
constructed (again based on the annotations of the small ring theory in Figure 2).
The rules described in this section are sufficient to translate the document given
in Figure 2 to Isabelle syntax, and even to get the user very close to a formal proof
sketch, but the rules as defined are only sufficient for an extremely small subset
of examples. It is not difficult to find a new document for which the translation
rules give us an Isabelle-like text which is an insufficient representation of the
original mathematics.

The translation shown in Figure 4 shows several specific drawbacks: First,
the document does not successfully pass through the Isabelle system for several
reasons. There are some trivial things, like the theory name on Line 1, which
are simple to add but are not easily provided by an intelligent system. Providing
the list of imported theories, also, is difficult for a person who does not know
the existing libraries nor how to search them for relevant information. The main
failure of the resulting locale definition is the form of expressions such as equality.
On a case-by-case basis, such things could be converted (in the case of equal
and set-equal, an infix ‘=’ would satisfy Isabelle nicely), but it is hard to
say that such transformations would be generally useful without being highly
context-sensitive.

In addition to these shortcomings, the relationship between theorems and
proofs is not ordered well. In the original text, it makes perfect sense for the
author to write what are essentially two theorems, then prove them in the same
order. However, Isabelle prefers proofs to directly follow their assertions, and the
fact that lines 36–41 should be moved just before line 35 is not addressed well.



It may not even immediately evident to the human eye that it is these lines,
exactly, which should be associated with theorem mrule1. There is the smaller
matter that these proofs should be surrounded with proof . . . qed pairs, but this
issue goes hand-in-hand with the aforementioned problem of discerning which
proof lines ago with which theorem.

The major hurdle, however, is that for Isabelle to find this theory correct,
it requires much more information. None of the proof claims (have "...") are
justified, and there are significant holes in the reasoning. This is largely due to the
fact that the original author simply left many holes which would be evident to a
human reader, considering them unnecessary. When this theory file is developed
to a point at which Isabelle is completely satisfied, it is approximately 10 times
longer.

While these problems are significant, we believe that the current end-result
has merit. One of the major benefits is that this can be performed by a math-
ematician who knows little-to-nothing about Isabelle. The (very incomplete)
theory in Figure 4 can then be given to an Isabelle expert for development into
a robust theory. This way, they have a starting point in Isabelle syntax, which
may save them time in understanding the intent of the document.
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Domaine universitaire, Grenoble, France, 2008.

9. Aarne Ranta. Grammatical framework: A type-theoretical grammar formalism.
J. Funct. Programming, 14(2):145–189, 2004.



10. Thomas L. Heath. The 13 Books of Euclid’s Elements. Dover, 1956. In 3 volumes.
Sir Thomas Heath originally published this in 1908.

11. Edmund Landau. Grundlagen der Analysis. Chelsea, 1930.
12. LogiCal Project, INRIA, Rocquencourt, France. The Coq Proof Assistant Reference

Manual – Version 8.0, June 2004. Available at ftp://ftp.inria.fr/INRIA/coq/

V8.0/doc/.
13. Klaus Grue. The layers of logiweb. In MKM ’07 [20], pages 250–264.
14. Donald Ervin Knuth and Silvio Levy. The CWEB System of Structured Documen-

tation: Version 3.0. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1994.

15. Joseph A. Gallian. Contemporary Abstract Algebra. Houghton Mifflin Company,
5th edition, 2002.

16. Fairouz Kamareddine and J. B. Wells. Computerizing mathematical text with
MathLang. In Mauricio Ayala-Rincon and Heusler, editors, Proc. Second Workshop
on Logical and Semantic Frameworks, with Applications, pages 5–30, Ouro Preto,
Minas Gerais, Brazil, 2008. Elsevier. The LSFA ’07 (post-event) proceedings is
published as vol. 205 (2008-04-06) of Elec. Notes in Theoret. Comp. Sci.

17. Manuel Maarek. Mathematical Documents Faithfully Computerised: the Gram-
matical and Text & Symbol Aspects of the MathLang Framework. PhD thesis,
Heriot-Watt University, Edinburgh, Scotland, June 2007.

18. James Clark and Steve DeRose. XML Path Language (XPath) Version 1.0. W3C
(World Wide Web Consortium), http://www.w3.org/TR/xpath, 1999.

19. Amine Chaieb. Semiring normalization and groebner bases. File Groeb-
ner Basis.thy, in Isabelle2007 distribution, October 2007.

20. Towards Mechanized Mathematical Assistants (Calculemus 2007 and MKM 2007
Joint Proceedings), volume 4573 of Lecture Notes in Artificial Intelligence.
Springer, 2007.



Rings

Definition 1. A ring R is a nonempty set with two binary operations, addition (denoted by a + b) and

multiplication (denoted by a b), such that for all a, b, c in R:

1. a + b = b +a.

2. (a + b) + c = a + (b + c).

3. There is an additive identity 0. That is, there is an element 0 in R such that a + 0 = a for all a

in R.

4. There is an element − a in R such that a + (− a)= 0.

5. a(b c)= (a b)c.

6. a(b + c)= a b + a c and (b + c)a = b a + c a.

Theorem 2.

1. a0= 0a =0.

2. a(− b) = (− a)b = − a b.

Proof.

Consider rule 1.

Clearly,

0+ a0 = a0 = a(0+ 0) =a0+a0. (1)

So, by cancellation, 0=a0. Similarly, 0a=0.

To prove rule 2, we observe that a(− b)+ ab =a(− b + b)= a0 = 0.

Adding − (ab) to both sides yields a(− b)= − (ab). The remainder of rule 2 is done analogously.
�

Fig. 1. Ring theory text as taken from Contemporary Abstract Algebra [15].



preface

equal # # set-equal # # in # # and # # not # emptyset

Rings

definition

ring

Definition 1. A ring RR is not set-equal Ra non emptysetempty set with two binary operations, addition

(denoted by plus #a + #b) and multiplication (denoted by times #a #b), such that for all map list aa, bb, c c in

RR:

1. equal plus aa + bb = plus bb + aa.

2. equal plus( plus aa + b b)+ cc = plus aa + ( plus bb + cc).

3. There is an additive identity 0. That is, there is an element zero0 in RR such that equal plus aa +
zero0 = aa for all a in R.

4. There is an element negative
−

#a in R such that equal plus aa +( negative
−

aa) = zero0.

5. equal times aa( times bb c c) = times( times aa b b) cc.

6. equal times aa( plus bb + c c) = plus times aa b b + times aa cc and equal times( plus b b + cc) aa = plus times bb aa +

times cc aa.

theorem

Theorem 2. r ring

1. mrule1 and equal r.times r.aa r.zero0 = shared r.times r.zero0 r.aa equal = r.zero0.

2. mrule2 and equal r.times r.aa( r.negative
−

r.b b) = hook r.times( r.negative
−

r.aa) r.b b equal loop = r.negative
−

r.times r.aa r.bb.

proof

Proof. r ring

mrule1Consider rule 1.

Clearly,

equal r.plus r.zero0 + r.times r.aa r.zero0 = shared r.times r.aa r.zero0 equal = shared r.times r.aa( r.plus r.zero0 +

r.zero0) equal= r.plus r.times r.aa r.zero0+ r.times r.aa r.zero0. (1)

So, by cancellation, equal r.zero0= r.times r.aa r.zero0. Similarly, equal r.times r.zero0 r.aa= r.zero0.

To mrule2prove rule 2, we observe that equal r.plus r.times r.aa( r.negative
−

r.b b) + r.times r.aa r.bb =

shared r.times r.aa( r.plus r.negative
−

r.b b + r.b b) equal = shared r.times r.aa r.zero0 equal = r.zero0.

Adding − (ab) to both sides yields equal r.times r.aa( r.negative
−

r.b b) = r.negative
− ( r.times r.aa r.bb). The

remainder of rule 2 is done analogously.

�

Fig. 2. Ring theory text (Fig. 1) enhanced with CGa information (See Sec. 2.1).



7 theory Groebner_Basis
8 imports NatBin

· · ·
14 begin

· · ·
259 locale gb_field = gb_ring +
260 f ixes divide : : " ’a \< Rightarrow > ’a \< Rightarrow > ’a"
261 and inverse : : " ’a \< Rightarrow > ’a"
262 assumes divide : " divide x y = mul x ( inverse y)"
263 and inverse : " inverse x = divide r1 x"

· · ·
338 lemma no_zero_divirors_neq0 :
339 assumes az : "(a :: ’ a :: no_zero_divisors ) \< noteq > 0"
340 and ab : "a*b = 0" shows "b = 0"
341 proof −
342 { assume bz : "b \< noteq > 0"
343 from no_zero_divisors [ OF az bz ] ab have False by blast }
344 thus "b = 0" by blast
345 qed

· · ·
440 end

Fig. 3. Excerpts of code [19] from Isabelle/HOL distribution.



theory (* name *)
imports (* theories *)
begin

5 locale ring =
f ixes R : : " ’r set "
assumes " not ( set - equal R emptyset )"
f ixes plus : : " ’r => ’r => ’r"
f ixes times : : " ’r => ’r => ’r"

10 f ixes a : : " ’r"
assumes "a : R"
f ixes b : : " ’r"
assumes "b : R"
f ixes c : : " ’r"

15 assumes "c : R"
assumes " equal ( plus a b) ( plus b a)"
assumes " equal ( plus ( plus a b) c) ( plus a ( plus b c )) "
f ixes zero : : " ’r"
assumes " zero : R"

20 assumes " equal ( plus a zero ) a"
f ixes negative : : " ’r => ’r"
assumes " equal ( plus a ( negative a )) zero "
assumes " equal ( times a ( times b c )) ( times ( times a b) c)"
assumes " equal ( times a ( plus b c )) ( plus ( times a b) ( times a c )) "

25 assumes "( times ( plus b c) a) ( plus ( times b a) ( times c a )) "

theorem ( in ring ) mrule1 :
shows " and ( equal ( times a zero ) ( times zero a ))

30 ( equal ( times zero a) zero )"

theorem ( in ring ) mrule2 :
shows " and ( equal ( times a ( negative b )) ( times ( negative a) b ))

( equal ( times ( negative a) b) ( negative ( times a b )) "
35

have " equal ( plus zero ( times a zero )) ( times a zero )"
have " equal ( times a zero ) ( times a ( plus zero zero )) "
have " equal ( times a ( plus zero zero ))

( plus ( times a zero ) ( times a zero )) "
40 have " equal zero ( times a zero )"

have " equal ( times zero a) zero "

have " equal ( plus ( times a ( negative b )) ( times a b ))
( times a ( plus ( negative b) b )) "

45 have " equal ( times a ( plus ( negative b) b )) ( times a zero )"
have " equal ( times a zero ) zero "
have " equal ( times a ( negative b )) ( negative ( times a b )) "

end

Fig. 4. Isabelle code created using rules from Section 3 on annotations in Figure 2.


