
A �-calculus �a la de Bruijn with explicitsubstitutions7th international conference on ProgrammingLanguages: Implementations, Logics and Programs,PLILP95, LNCS 982, pages 45-62Fairouz Kamareddine and Alejandro R��osDepartment of Computing Science, 17 Lilybank Gardens, University of Glasgow,Glasgow G12 8QQ, Scotland, fax: +44 41 330 4913,email: fairouz@dcs.gla.ac.uk and rios@dcs.gla.ac.ukAbstract. The aim of this paper is to present the �s-calculus which is avery simple �-calculus with explicit substitutions and to prove its con
uenceon closed terms and the preservation of strong normalisation of �-terms. Weshall prove strong normalisation of the corresponding calculus of substitutionby translating it into the ��-calculus [ACCL91], and therefore the relationbetween both calculi will be made explicit. The con
uence of the �s-calculusis obtained by the \interpretation method" ([Har89], [CHL92]). The proofof the preservation of normalisation follows the lines of an analogous resultfor the ��-calculus (cf. [BBLRD95]). The relation between �s and �� is alsostudied.1 IntroductionMost literature on the �-calculus considers substitution as an implicit operation.It means that the computations to perform substitution are usually described withoperators which do not belong to the language of the �-calculus. There has howeverbeen an interest in formalising substitution explicitly; various calculi including newoperators to denote substitution and new rules to handle these operators have beenproposed. Amongst these calculi we mention C��� (cf. [dB78b]); the calculi of cat-egorical combinators (cf. [Cur86]); ��, ��*, ��SP (cf. [ACCL91], [CHL92], [R��o93])referred to as the ��-family; �� (cf. [BBLRD95]), a descendant of the ��-familyand '�BLT (cf. [KN93]). The basic features of these systems of substitution de-part quite extensively from the classical �-calculus while in this paper we propose asystem which remains as close as possible to it.Furthermore, for the above systems either strong normalisation (SN) has notbeen studied (as for C��� and '�BLT) or negative results (cf. [Mel95]) have beenestablished concerning the preservation of SN (for the ��-family). In particular,these negative results imply that the simplest typed versions of these calculi are notSN. One positive and recent result concerning the preservation of SN is that for ��(cf. [BBLRD95]) for which, as far as we know, there is still work in progress.As stated in [ACCL91], the ��-calculi and the calculi of combinators give fullformal accounts of the process of computation and they make it easy to derive

machines for the �-calculus and to show the correctness of these machines. Hence,the ��-calculus is proposed as a step in closing the gap between the classical �-calculus and concrete implementations. We believe that the �s-calculus presentedin this paper o�ers another possibility for closing this gap and, being closer to the�-calculus, it preserves strong normalisation. Furthermore, we think that in thepresence of the negative results of [Mel95] calculi like �s are worth studying.The main interest in introducing the �s-calculus is to provide a calculus of explicitsubstitutions which would have both the property of preserving strong normalisationand a con
uent extension on open terms. As far as we know no such calculus has yetbeen proposed. There are calculi of explicit substitutions which are con
uent on openterms: the ��*- calculus (cf. [HL89] and [CHL92]), but, as mentioned above, the non-preservation of strong normalisation for ��* has recently been proved. There are alsocalculi which satisfy the preservation property: the ��-calculus (cf. [BBLRD95]), butthis calculus is not con
uent on open terms. Moreover, in order to get a con
uentextension, the introduction of a composition operator for substitutions seems un-avoidable, but precisely this operator is the cause of the non-preservation of strongnormalisation as shown in [Mel95]. We believe that the �s-calculus, while preservingstrong normalisation, could admit a con
uent extension on open terms thanks tothe fact that composition of substitutions (in the sense of the ��-calculi) could behandleld indirectly and in a very subtle way via a new family of rules mimicking thesubstitution lemma for the classical �-calculus (see lemma 4 below).Mention to a very close calculus to the �s-calculus can be already found in[Cur86], exercise 1.2.7.2, where reference to previous unpublished notes of Y. Lafontis given. The '�BLT -calculus is also of this kind but the essential di�erence is thatthe redex is preserved when the �-rule is applied. The calculus we are going tostudy, we call it �s, is obtained in a very natural way from the classical �-calculusin de Bruijn notation: we just orientate the equalities de�ning the meta-operatorsof substitution and include them as new operators of the language.We prove in this paper the con
uence (CR) of the �s-calculus on closed terms(these terms contain all terms of the classical �-calculus) and the preservation ofstrong normalisation (terms which are strongly normalising in the �-calculus arealso strongly normalising in �s). We also compare the �s-calculus to �� and �� viatranslation functions.2 PreliminariesWe begin by giving a quick presentation of the �-calculus �a la de Bruijn and the��-calculus.2.1 The classical �-calculus in de Bruijn notationWe shall assume the reader familiar with de Bruijn indices (see [dB72] and [dB78a])which can be explained via the following two examples: �x�y:xy is written using deBruijn indices as ��(21) and �x�y:(x(�z:zx))y is written as ��(2(�(13))1).Remark here that variables are removed and are replaced by natural numbers.These numbers are informative as to the � which binds the occurrence of the variable.

Hence in the second example, the same x was translated into 2 and 3 according tothe di�erent positions, whereas z and y become the same de Bruijn index, 1.The interest in introducing de Bruijn indices is that they avoid clashes of variablenames and therefore neither �-conversion nor Barendregt's convention are needed.Here is the �-calculus �a la de Bruijn.De�nition 1 We de�ne �, the set of terms with de Bruijn indices, as follows:� ::= IN j (��) j (��)We use a; b; : : : to range over � and m;n; : : : to range over IN (positive natural num-bers). Furthermore, we assume the usual conventions about parentheses and avoidthem when no confusion occurs. Throughout the whole article, a = b is used to meanthat a and b are syntactically identical.When rewriting a term a with variable names into its de Bruijn version, we con-sider a to be a subterm of �x1 : : : xk:a where x1 : : : xk are all the free variables of a.For instance: �x:xyz becomes �123 (or �132) and (�x:xy)y becomes (�12)1. Inorder for this to work independently of the order in which the free variables appear,we assume that the set of variable names is ordered and call this ordered set the freevariable list. For example, if the list was � � � ; z; y; x then the term to be translatedshould be pre�xed with � � � ; �z; �y; �x before its translation. Thus, �x:yz translatesas �34 whereas �x:zy translates as �43. Now check that (�x�y:zxy)(�x:yx) trans-lates as (��521)(�31) and that �u:z(�x:yx)u translates to �4(�41)1.In order to de�ne �-reduction �a la de Bruijn, we must de�ne the substitution ofa variable by a term b in a term a. Therefore, we must identify amongst the numbersof a term a those that correspond to the variable that is being substituted for and weneed to update the term to be substituted in order to preserve the correct bindingsof its variables.For example, translating (�x�y:zxy)(�x:yx) !� �u:z(�x:yx)u to de Bruijn no-tation we get (��521)(�31)!� �4(�41)1. But if we simply replace 2 in �521 by �31we get �5(�31)1, which is not correct. We needed to decrease 5 as one � disappearedand to increment the free variables of �31 as they occur within the scope of one more�. For incrementing the free variables we need a family of updating functions:De�nition 2 The updating functions U ik : � ! � for k � 0 and i � 1 are de�nedinductively as follows:U ik(ab) = U ik(a)U ik(b)U ik(�a) = �(U ik+1(a)) U ik(n) = �n+ i� 1 if n > kn if n � k :The intuition behind U ik is the following: k tests for free variables and i � 1 isthe value by which a variable, if free, must be incremented.Now we de�ne the family of meta-substitution functions:De�nition 3 The meta-substitutions at level i , for i � 1 , of a term b 2 � in aterm a 2 � , denoted affi bgg , is de�ned inductively on a as follows:

(a1a2)ffi bgg = (a1ffi bgg) (a2ffi bgg)(�a)ffi bgg = �(affi+ 1 bgg) nffi bgg = 8<:n� 1 if n > iU i0(b) if n = in if n < i :Ultimately, the intention is to de�ne (�a)b !� aff1 bgg (see de�nition 4below). The �rst two equalities propagate the substitution through applications andabstractions and the last one carries out the substitution of the intended variable(when n = i) by the updated term. If the variable is not the intended one it mustbe decreased by 1 if it is free (case n > i) beacuse one � has disappeared, whereasif it is bound (case n < i) it must remain unaltered.It is easy to check that (�521)ff1 (�31)gg = �4(�41)1. This will mean(��521)(�31)!� �4(�41)1.The following lemmas establish the properties of the meta-substitutions andupdating functions. The Meta-substitution and Distribution lemmas are crucial toprove the con
uence of �s. The proofs of lemmas 1 - 6 are obtained by inductionon a. Furthermore, the proof of lemma 3 requires lemma 2 with p = 0; the proofof lemma 4 uses lemmas 1 and 3 both with k = 0; �nally, lemma 5 with p = 0 isneeded to prove lemma 6.Lemma 1 For k < n � k + i we have: U ik(a) = U i+1k (a)ffn bgg .Lemma 2 For p � k < j + p we have: U ik(U jp (a)) = U j+i�1p (a) :Lemma 3 For i � n� k we have: U ik(a)ffn bgg = U ik(affn� i+ 1 bgg) :Lemma 4 (Meta-substitution lemma) For 1 � i � n we have:affi bggffn cgg = affn+ 1 cggffi bffn� i+ 1 cggggLemma 5 For m � k + 1 we have: U ik+p(Ump (a)) = Ump (U ik+p+1�m(a)) .Lemma 6 (Distribution lemma) For n � k + 1 we have:U ik(affn bgg) = U ik+1(a)ffn U ik�n+1(b)gg :De�nition 4 �-reduction is the least compatible relation on � generated by:(�-rule) (�a) b!� aff1 bggThe �-calculus �a la de Bruijn, abbreviated �-calculus is the reduction system whoseonly rewriting rule is �.Theorem 1 The �-calculus �a la de Bruijn is con
uent.Proof: The �-calculus with de Bruijn indices and the classical �-calculus with vari-able names are isomorphic (cf. [Mau85]). The con
uence of the latter (cf. [Bar84]thm. 3.2.8) is hence transportable to the �-calculus �a la de Bruijn.A proof which does not use the mentioned isomorphism is given in [R��o93] (corol.3.6) as a corollary of a more general result concerning the ��-calculus. 2Finally, the following lemma ensures the good passage of the �-rule through themeta-substitutions and the U ik. It is crucial for the proof of the con
uence of �s.

Lemma 7 Let a; b; c; d 2 �.1. If c!� d then U ik(c)!� U ik(d) .2. If c!� d then affi cgg !!� affi dgg .3. If a!� b then affi cgg !� bffi cgg .Proof:1. Induction on c. We just check the interesting case which arises when c = c1c2 andthe reduction takes place at the root, i.e. c1 = (�a), c2 = b and d = aff1 bgg:U ik((�a)b) = (�(U ik+1(a)))U ik(b)!� U ik+1(a)ff1 U ik(b)gg L 6= U ik(aff1 bgg)2. Induction on a using 1 above.3. Induction on a. The interesting case is again a = (�d)e and b = dff1 egg:((�d)e)ffi cgg = (�(dffi+ 1 cgg))(effi cgg)!�(dffi+ 1 cgg)ff1 effi cgggg L 4= (dff1 egg)ffi cgg 22.2 The ��-calculusThe ��-calculus ([ACCL91]) is a formalism which enables explicit substitution. Itssyntax is two-sorted: the sort term of terms and the sort substitution of explicitsubstitutions. These can be interpreted as a sequence of terms and the result of exe-cuting a substitution in a term can be interpreted as the term obtained by replacingthe occurrences of the n-th index of de Bruijn in the term by the n-th term ofthe sequence. This intuitive interpretation is developped and illustrated with manyexamples in [ACCL91].Here are the syntax and the rules of the calculus:De�nition 5 The syntax of the ��-calculus is given by:Terms ��t ::= 1 j ��t��t j ���t j ��t[��s]Substitutions ��s ::= id j " j ��t � ��s j ��s � ��sThe set, denoted ��, of rules of the ��-calculus is the following:(Beta) (�a) b �! a [b � id](VarId) 1 [id] �! 1(VarCons) 1 [a � s] �! a(App) (a b)[s] �! (a [s]) (b [s])(Abs) (�a)[s] �! �(a [1 � (s � ")])(Clos) (a [s])[t] �! a [s � t](IdL) id � s �! s(ShiftId) " � id �! "(ShiftCons) " � (a � s) �! s(Map) (a � s) � t �! a [t] � (s � t)(Ass) (s1 � s2) � s3 �! s1 � (s2 � s3)

The set of rules of the �-calculus is �� � f(Beta)g . We use a; b; c; : : : to rangeover ��t and s; t; : : : to range over ��s.Notation 1 For a given set of rules R we take !R to be the reduction relation ofthe R-calculus (i.e. the least compatible relation containing the rules of R).We take!!R to be the derivation relation of the R-calculus (i.e. the least re
exiveand transitive relation containing !R) and we denote by !+R the transitive closureof !R (i.e. the least transitive relation containing !R).For any two relations ! and !0, by a! :!0 b we mean (9c)(a! c!0 b).Finally, we write a !!nR b to mean that the derivation from a to b consists of nsteps of R-reduction.When it will be clear from the context, we may omit the subscript R.We recall that a is a R-normal form if there exists no b such that a !R b. Wesay that c is a R-normal form of d if c is a R-normal form and d!!R c.Notation 2 For every substitution s we de�ne the iteration of the composition ofs inductively as s1 = s and sn+1 = s � sn. We use the convention s0 = id .Note that the only de Bruijn index used is 1 , but we can code n by the term1["n�1] . By so doing, we have � � ��t .�-reduction of the �-calculus is interpreted in the ��-calculus in two steps. The�rst, obtained by the application of (Beta), consists in generating the substitution.The second step executes the propagation of this substitution, using the set of the�-rules, until the concerned variables are reached. The reader is invited to check that(��521)(�31)!!�� �4(�41)1.We summarize now the properties of the �- and ��-calculi:Theorem 2 The �-calculus is strongly normalising (SN) and con
uent (CR).Proof:We know three proofs of strong normalisation: [HL86], [CHR92] and [Zan94].Local con
uence (WCR) is ensured by analysis of critical pairs (cf. [R��o93], annex B),and the Knuth-Bendix theorem ([KB70] or [Hue80]). Now Newman's lemma, whichstates that SN+WCR yields CR ([Bar84], prop. 3.1.25), guarantees con
uence. 2Theorem 3 The ��-calculus is con
uent.Proof: See [ACCL91], theorem 3.2. This proof is based on the con
uence of � , thatof the �-calculus and the technique of interpretation. 23 The �s-calculus and its con
uenceThe idea is to handle explicitly the meta-operators de�ned in de�nitions 2 and 3.Therefore, the syntax of the �s-calculus is obtained by adding to the syntax of the�-calculus �a la de Bruijn two families of operators :{ f�igi�1 This family is meant to denote the explicit substitution operators. Each�i is an in�x operator of arity 2 and a �ib has as intuitive meaning the term awhere all free occurrences of the variable corresponding to the de Bruijn numberi are to be substituted by the term b.

{ f'ikgk�0 i�1 This family is meant to denote the updating functions necessarywhen working with de Bruijn numbers to �x the variables of the term to besubstituted.De�nition 6 The set of terms of the �s-calculus, noted �s is given as follows:�s ::= IN j �s�s j ��s j �s�i�s j 'ik�s where i � 1 ; k � 0 :We take a; b; c to range over �s. A term of the form a �ib is called a closure.Furthermore, a term containing neither �'s nor ''s is called a pure term.The �s-calculus should carry out, besides �-reduction, the computations of up-dating and substitution explicitly. For that reason we include, besides the rule mim-icking the �-rule (�-generation), a set of rules which are the equations in de�nitions2 and 3 oriented from left to right.De�nition 7 The �s-calculus is given by the following rewriting rules:�-generation (�a) b �! a �1 b�-�-transition (�a)�ib �! �(a �i+1 b)�-app-transition (a1 a2)�ib �! (a1 �ib) (a2 �ib)�-destruction n�ib �! 8<:n� 1 if n > i'i0 b if n = in if n < i'-�-transition 'ik(�a) �! �('ik+1 a)'-app-transition 'ik(a1 a2) �! ('ik a1) ('ik a2)'-destruction 'ik n �! �n+ i� 1 if n > kn if n � kWe use �s to denote this set of rules. The calculus of substitutions associated withthe �s-calculus is the rewriting system whose rules are �s � f�-generationg and wecall it s-calculus.In order to give the translation into the ��-calculus we give the following twode�nitions.De�nition 8 For k � 0 and i � 1 we de�ne sk i = 1 � 2 � : : : � k� "k+i�1 (we usethe convention s0 i ="i�1 and hence s0 1 = id).De�nition 9 Let b 2 ��t , we de�ne a family of substitutions (bk)k�1 as follows:b1 = b[id] � id b2 = 1 � b["]� " : : : bi+1 = 1 � 2 � : : : � i � b["i] � "i : : :Using the rules (Map), (Clos), (Ass) and (IdL) it is easy to verify that:Remark 1 1 � (bi� ")!!� bi+1 and 1 � (sk i� ")!!� sk+1 i.

De�nition 10 The translation function T : �s! ��t is de�ned by:T (n) = n T (a b) = T (a)T (b) T (a �ib) = T (a)[T (b)i]T (�a) = �(T (a)) T ('ika) = T (a)[sk i]Theorem 4 If a!s b then T (a) +!� T (b).Proof: Induction on a. We just check, as an example, the case a = n�ic when thereduction takes place at the root:T (n�ic) = n[T (c)i] +!� 8<:n� 1 = T (n� 1) if n > iT (c)["i�1] = T ('i0c) if n = in = T (n) if n < i 2Corollary 1 The reduction !s is strongly normalising.Proof: Use Theorem 2. 2Remark 2 The reduction !s is locally con
uent.Proof: There are no critical pairs and the theorem of Knuth-Bendix applies trivially.2Corollary 2 The reduction !s is con
uent.Proof: Newman's Lemma (see proof of thm. 2) yields CR. 2These corollaries guarantee the existence and unicity of s-normal forms (s-nf),which we shall use to interpret the �s-calculus in the �-calculus. We shall denotethe s-nf of a term a by s(a). The following lemma characterizes s-normal forms.Lemma 8 The set of s-normal forms is exactly �.Proof: Check �rst by induction on a that a �ib and 'ika are not normal forms. Thencheck by induction on a that if a is an s-nf then a 2 �. Conclude by observing thatevery term in � is in s-nf. 2As there are no s-rules whose left-hand side is an application or an abstraction,the following properties of s-normal forms (which will be used throughout withoutexplicit mention) are immediate.Lemma 9 For all a; b 2 �s: s(a b) = s(a)s(b) and s(�a) = �(s(a)) .We establish now the relation between the operators �i and 'ik and the meta-operators of the classical de Bruijn setting: ffi gg and U ik.Lemma 10 For all a; b 2 �s we have:s('ika) = U ik(s(a)) and s(a �ib) = s(a)ffi s(b)gg .

Proof: Prove the �rst equality for terms in s-nf, i.e. use an inductive argumenton c 2 � to show s('ikc) = U ik(s(c)). Let now a 2 �s, s('ika) = s('iks(a)) =U ik(s(s(a))) = U ik(s(a)).Prove the second claim similarly using the �rst claim. 2We give now the key result that allows us to use the Interpretation Method inorder to get con
uence: the good passage of the �-generation rule to the s-normalforms.Proposition 1 Let a; b 2 �s , if a!��gen b then s(a)!!� s(b) .Proof: Induction on a. We just study the interesting cases.a = c d : If the reduction takes place within c or d just use the inductive hypothesis(IH). The interesting case is when c = �e and hence b = e �1d:s((�e)d) = (�s(e))(s(d)) !� s(e)ff1 s(d)gg L 10= s(e �1d)a = c �id : If the reduction takes place within c, i.e. c !��gen e and b = e �id,then s(c �id) L 10= s(c)ffi s(d)gg IH & L 7:3!!� s(e)ffi s(d)gg L 10= s(e �id)If the reduction takes place within d, lemma 7.2 applies.a = 'ikc : The reduction must take place within c. Use lemma 10 and lemma 7.1.2Now, the following corollaries are immediate.Corollary 3 Let a; b 2 �s , if a!!�s b then s(a)!!� s(b) .Corollary 4 (Soundness) Let a; b 2 � , if a!!�s b then a!!� b .Finally, before proving con
uence, we verify that the �s-calculus is powerfulenough to simulate �-reduction.Lemma 11 (Simulation of �-reduction) Let a; b 2 �, if a!� b then a!!�s b .Proof: Induction on a. As usual the interesting case is when a = (�c)d and b =cff1 dgg:(�c)d!��gen c�1d!!s s(c�1d) L10= s(c)ff1 s(d)gg c;d2�= cff1 dgg 2Theorem 5 The �s-calculus is con
uent.Proof: We interpret the �s-calculus into the �-calculus via s-normalisation. Wehave:

a �����������s@@@@R@@@@R�s
b
c

--s
--s--s s(a) s(b)

s(c)�����������@@@@R@@@@R� @@@@R@@@@R������������ dThm. 1
The existence of the arrows s(a)!!� s(b) and s(a)!!� s(c) is guaranteed by corol-lary 3. We can close the diagram thanks to the con
uence of �-calculus and �nallylemma 11 ensures s(b)!!�s d and s(b)!!�s d proving thus CR for the �s-calculus.24 The �s-calculus preserves strong normalisationIn this section we shall prove that every term a which is strongly normalising (allits derivations are �nite) in the �-calculus (denoted a 2 � -SN) is also stronglynormalising in the �s-calculus (denoted a 2 �s -SN). In particular, pure simplytyped terms will be strongly normalising in �s.This result is not valid for the ��-calculus, neither for its con
uent version ��*,neither for the calculus of categorical combinators, as was recently proved by thecounterexamples of Melli�es (see [Mel95]). But there is work in progress to prove itfor the ��-calculus (cf. [BBLRD95]).The natural translation of �s into �� which we shall give in this section is goodenough to ensure the preservation of strong normalisation for �s as soon as the resultwill be obtained for ��. However, the general idea in [BBLRD95] can be adapted forthe preservation of strong normalisation of �s.We begin by presenting the ��-calculus and the translation.De�nition 11 The terms of the ��-calculus are given by the following syntax:Terms ��t ::= IN j ��t��t j ���t j ��t[��s]Substitutions ��s ::=" j * (��s) j ��t=The set, denoted ��, of rules of the ��-calculus is the following:

(Beta) (�a) b �! a [b=](App) (a b)[s] �! (a [s]) (b [s])(Abs) (�a)[s] �! �(a [* (s)])(FVar) 1 [a=] �! a(RVar) n+ 1 [a=] �! n(FVarLift) 1 [* (s)] �! 1(RVarLift) n+ 1 [* (s)] �! n[s]["](VarShift) n["] �! n+ 1We use a; b; c; : : : to range over ��t and s; t; : : : to range over ��s.This choice of operators and rules is based on the idea of expressing the (Beta)-rule as economically as possible. In the ��-calculus it reads (�a) b ! a[b � id] andrequires the introduction of the operators � and id. Just one unary operator can dothe job, this operator is denoted by = in the ��-syntax. Hence a= plays the role of the��-term a �id. Now the (Abs)-rule, which in �� reads (�a)[s]! �(a [1 �(s� ")]), mustbe modi�ed to avoid the use of � which is no longer available. Hence the introductionof * and the intuitive interpretation of * (s) as the ��-term 1 � (s � ").Notation 3 For a 2 ��t and s 2 ��s we denote:� *i (s) =* (* (::: * (s):::)) (i times). By *0 (s) we mean s.� a[s]i = a[s][s]:::[s] (i times). By a[s]0 we mean a.De�nition 12 The \natural" translation S : �s! ��t is given by:S(n) = n S(a b) = S(a)S(b) S(a �ib) = S(a)[*i�1 (S(b)=)]S(�a) = �(S(a)) S('ika) = S(a)[*k (")]i�1It is easy to check by induction on a that a !��gen b implies S(a) +!�� S(b)and that a!s b implies S(a)!!�� S(b). Therefore, preservation of SN for �� yieldspreservation of SN for �s.Notation 4 We write a!p b in order to denote that p is the occurrence of the redexwhich is contracted. Therefore a!� b means that the reduction takes place at the root.If no speci�cation is made the reduction must be understood as a �s-reduction.Furthermore, we denote by � the pre�x order between occurrences of a term.Therefore if p; q are occurrences of the term a such that p � q, and we write ap(resp. aq) for the subterm of a at occurrence p (resp. q), then aq is a subterm of ap.For example, if a = 2�3((�1)4), we have a1 = 2, a2 = (�1)4, a21 = �1, a211 = 1,a22 = 4. Since, for instance, 2 � 21, a21 is a subterm of a2.The aim of the three following lemmas is to assert that all the �'s in the last termof a derivation beginning with a �-term must have been created at some previousstep by a �-generation and to trace the history of these closures. The �rst of themexplains this situation for a one-step derivation where the redex is at the root:

Lemma 12 If a!� C[d�ie] then one of the following must hold:1. a = (�d)e, C = 2 (a hole) and i = 1.2. a = C 0[d0�je] for some context C 0, some term d0 and some natural j.Proof: We must check for every rule a ! b in �s that if d �ie occurs in b thena = (�d)e or d0�je occurs in a. We just check the interesting rules:(�-gen) : If b = d�ie then i = 1 and a = (�d)e. Otherwise b = b1�1b2 and d �ieoccurs either in b1 or in b2, both cases are immediate since now a = (�b1)b2.(�-�-trans) : If b = �(d�ie) then i > 1 and a = (�d)�i�1e; take d0 = �d andj = i�1. If the occurrence of d�ie is in a deeper position (i.e. if d�ie is a propersubterm of b), proceed as in the previous case.(�-app-trans) : If, for instance, b = (c �ie)(d�ie) then a = (c d)�ie; take d0 = c d.For deeper positions the result is straightforward. 2The second lemma generalizes the previous one.Lemma 13 If a! C[d�ie] then one of the following must hold:1. a = C[(�d)e] and i = 1.2. a = C 0[d0�je0] where e0 = e or e0 ! e.Proof: Induction on a, using lemma 12 for the reductions at the root. 2Finally, the third lemma gives the result for arbitrary derivations.Lemma 14 Let a1 ! : : : ! an ! an+1 = C[d�ie] then a1 = C 0[d0�je0] or thereexists k � n such that ak = C 0[(�d0)e0] and ak+1 = C 0[d0�1e0]. In both cases e0 !! e.Proof: Induction on n and use the previous lemma. 2We shall de�ne now the notions of internal and external reductions. The intuitivemeaning of an internal reduction is a reduction that takes place somewhere at theright of a �i operator. An external reduction is a reduction that is not internal.We give a de�nition by induction. Another possibility is to de�ne �rst the notionof internal and external position (occurrence) as is done in [BBLRD95].De�nition 13 The reduction int�!�s is de�ned by the following rules:a �!�s bc �ia int�!�s c �ib a int�!�s ba c int�!�s b c a int�!�s bc a int�!�s c ba int�!�s b�a int�!�s �b a int�!�s ba �ic int�!�s b �ic a int�!�s b'ika int�!�s 'ikbTherefore, int�!�s is the least compatible relation closed under a �!�s bc �ia int�!�s c �ib .

De�nition 14 The reduction ext�!s is de�ned by induction. The axioms are therules of the s-calculus and the inference rules are the following:a ext�!s ba c ext�!s b c a ext�!s bc a ext�!s c b a ext�!s b�a ext�!s �b a ext�!s ba �ic ext�!s b �ic a ext�!s b'ika ext�!s 'ikbAnalogously, an external �-generation is de�ned by the axiom (�a)b ext�!��gen a�1band the �ve inference rules stated above where ext�!s is replaced by ext�!��gen .Note that the inference rules a ext�!s bc �ia ext�!s c �ib and a ext�!��gen bc �ia ext�!��gen c �ib are ex-cluded from the de�nitions of external s-reduction and external �-generation, re-spectively. Thus, as we expected, external reductions will not occur at the right ofa �i operator. This will permit us to write +!� instead of !!� in proposition 2.Remark 3 By inspecting the inference rules one checks immediately that:1. If a int�!�s �b then a = �c and c int�!�s b .2. If a int�!�s b c then a = d e and ((d int�!�s b and e = c) or (e int�!�s c and d = b)).3. a int�!�s n is impossible.The following lemma is a slight but essential variation of proposition 1. A stepof external �-generation is studied now and the lemma ensures that we have at leastone step of �-reduction between the corresponding s-normal forms.Proposition 2 Let a; b 2 �s. If a ext�!��gen b then s(a) +!� s(b) .Proof: Induction on a. The lines of this proof follow the proof of proposition 1.Now, the point is that in the case a = c �id, the reduction cannot take place withind because it is external, and this is the only case that forced us to consider there
exive-transitive closure because of lemma 7.2. 2The following lemma plays a fundamental rôle in lemma 16 and hence in thePreservation theorem.Lemma 15 (Commutation lemma) Let a; b 2 �s such that s(a) 2 �-SN ands(a) = s(b). If a int�!�s : ext�!s b then a ext�!+s : int�!�!�s b .Proof: By a careful induction on a while analysing the positions of the redexes. Thedetailed proof is given in the appendix. 2Lemma 16 Let a be a strongly normalising term of the �-calculus. For every in�nite�s-derivation a!�s b1 !�s � � � !�s bn !�s � � �, there exists N such that for i � Nall the reductions bi !�s bi+1 are internal.

Proof: An in�nite �s-derivation must contain in�nite �-generations, since the s-calculus is SN. The �rst rule must also be a �-generation beacuse a is a pure term.We can thus write the derivation as follows:a = a1 !��gen a01 !!s a2 !��gen a02 !!s � � � !!s an !��gen a0n !!s � � �By proposition 2, there must be only a �nite number of external �-generations(otherwise we can construct an in�nite �-derivation contradicting the hypothesisa 2 �-SN). Therefore there exists P such that for i � P we have ai int�!��gen a0i.Furthermore, by proposition 1, s(ai)!!� s(a0i) for all i, and thereforea = s(a) = s(a1)!!� s(a01) = s(a2)!!� s(a02) = � � � = s(an)!!� s(a0n) = � � �Since a is �-SN, we conclude that s(ai) is �-SN for all i and that therefore thereexists M � P such that for i �M we have s(ai) = s(a0i). We claim that there existsN � M such that for i � N all the s-rewrites are also internal. Otherwise, therewould be an in�nity of external s-rewrites and at least one copy of each of theseexternal rewrites can be brought, by the Commutation Lemma, in front of aM , andso generate an in�nite s-derivation beginning at aM , which is a contradiction. Thisintuitive idea can be formally stated as:Fact: If there exists an in�nite derivation aM ext�!�!ns b �!�!m c ext�!s d �! � � �where all the rewrites in b �!�! c are either ext�!s or int�!�s , then there exists anin�nite derivation aM ext�!�!n+1s b0 �!�! d �! � � � .Proof of Fact: The fact is easily proved by induction onm, using the Commuta-tion lemma. We remark thatM has been so chosen in order to satisfy the hypothesisof this lemma. 2In order to prove the Preservation Theorem we need two de�nitions.De�nition 15 An in�nite �s-derivation a1 ! � � � ! an ! � � � is minimal if forevery step of reduction ai!p �sai+1, every other derivation beginning with ai!q �sa0i+1where p � q, is �nite.The intuitive idea of a minimal derivation is that if one rewrites at least one of itssteps within a subterm of the actual redex, then an in�nite derivation is impossible.De�nition 16 Skeletons are de�ned by the following syntax:Skeletons K ::= IN j K K j �K j K �i[:] j 'ikKThe skeleton of a term a is de�ned by induction as follows:Sk(n) = n Sk(a b) = Sk(a)Sk(b) Sk(a �ib) = Sk(a)�i[:]Sk(�a) = �Sk(a) Sk('ika) = 'ikSk(a)Remark 4 (Properties of the skeleton)1. Each occurrence of [:] in the skeleton of a corresponds to an external closure ofthe term a (by external closure, we mean a closure that is not at the right of anyother closure), and this correspondence is a bijection.

2. Internal closures (those which are at the right of another closure) vanish in theskeleton.3. If a int�!�s b then Sk(a) = Sk(b).Theorem 6 (Preservation of strong normalisation) If a pure term is stronglynormalising in the �-calculus, then it is strongly normalising in the �s-calculus.Proof: Suppose a is a strongly normalising term in the �-calculus, but not �s-SN.Let us consider a minimal in�nite �s-derivation D : a! a1 ! � � � ! an ! � � � . Bylemma 16, there exists N , such that for i � N , ai ! ai+1 is internal. Therefore, bythe previous remark, Sk(ai) = Sk(ai+1) for i � N . As there are only a �nite numberof closures in Sk(aN) and as the reductions within these closures are independent,an in�nite subderivation of D must take place within the same and unique closurein Sk(aN) and , evidently, this subderivation is also minimal. Let us call it D0 andlet C be the context such that aN = C[c �id] and c �id is the closure where D0 takesplace. Therefore we have:D0 : aN = C[c �id] int�!�s C[c �id1] int�!�s � � � int�!�s C[c �idn] int�!�s � � �Since a is a pure term, lemma 14 ensures the existence of I � N such thataI = C 0[(�c0)d0]! aI+1 = C 0[c0�1d0] and d0 !! d:But let us consider the following derivation:D00 : a!! aI = C 0[(�c0)d0]!! C 0[(�c0)d]! C 0[(�c0)d1]! � � � ! C 0[(�c0)dn]! � � �In this in�nite derivation the redex in aI is within d0 which is a proper subterm of(�c0)d0, whereas in D the redex in aI is (�c0)d0 and this contradicts the minimalityof D. 25 ConclusionThere are two unsolved problems concerning �s which we want to discuss brie
y.The �rst of them is the con
uence of �s on open terms. We remind that by openterms we mean terms which admit variables of sort term, namely open terms aregiven by the following syntax:�sop ::= V j IN j�sop�sop j ��sop j�sop �i�sop j 'ik�sop where i � 1 ; k � 0and where V stands for a set of variables, over which X , Y , ... range.Working with open terms one loses con
uence as shown by:((�X)Y)�11! (X�1Y)�11 ((�X)Y)�11! ((�X)�11)(Y �11)Moreover, local con
uence is lost. Since ((�X)�11)(Y �11) !! (X�21)�1(Y �11),the solution to the problem seems easy: add to �s rules obtained by orienting theequalities given by the lemmas 1 - 6. For instance, the rule corresponding to the Meta-substitution lemma (lemma 4) would solve the critical pair in our counterexample.We believe that by adding these rules to �s we could get local con
uence. Butthe problem of con
uence of the extended system seems a di�cult one. As a matterof fact it was one of the open questions in Lafont's notes.

We note here that the same problem for �� leads to the introduction of ��SP , thelatter being locally con
uent on open terms but con
uent only on semi-closed terms(terms with variables of sort term but without variables of sort substitution)(cf.[R��o93]).The second problem we wish to present is the strong normalisation of the typedversion of �s. We believe, as suggested by P.-L. Curien, that a translation, say T ,similar to the one presented in [CR91] would allow us to use the preservation of SNobtained in this paper to get the desired result. But this translation should have theadditional property T (a) !!�s a, and this is not the case, but possibly could be ifthe system considered is the extension of �s suggested by the �rst problem. Thiswould permit to get SN for this extended calculus, and get as a corollary SN for thesimply typed �s.Acknowledgements. We thank Pierre-Louis Curien for his useful discussionsand comments. We are also grateful for the interactions we had with Pierre Lescanne,Roel Bloo and Antonio Bucciarelli. Last but not least, we would like to thank JeroenKrabbendam and the anonymous referees for their useful remarks.This work was carried out under EPSRC grant GR/K25014.References[ACCL91] M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. L�evy. Explicit Substitutions.Journal of Functional Programming, 1(4):375{416, 1991.[Bar84] H. Barendregt. The Lambda Calculus : Its Syntax and Semantics (revised edi-tion). North Holland, 1984.[BBLRD95] Z. Benaissa, D. Briaud, P. Lescanne, and J. Rouyer-Degli. ��, a calculus ofexplicit substitutions which preserves strong normalisation. Personal commu-nication, 1995.[CHL92] P.-L. Curien, T. Hardin, and J.-J. L�evy. Con
uence properties of weak andstrong calculi of explicit substitutions. Technical Report RR 1617, INRIA,Rocquencourt, 1992. To appear in the JACM.[CHR92] P.-L. Curien, T. Hardin, and A. R��os. Strong Normalization of Substitutions inProceedings of MFCS'92. In I.M. Havel and V. Koubek, editors, Lecture Notesin Computer Science 629, pages 209{217, Prague, 1992. Springer-Verlag.[CR91] P.-L. Curien and A. R��os. Un r�esultat de Compl�etude pour les substitutionsexplicites. Comptes Rendus de l'Acad�emie des Sciences, 312, I:471{476, 1991.[Cur86] P.-L. Curien. Categorical Combinators, Sequential Algorithms and FunctionalProgramming. Pitman, 1986. Revised edition : Birkh�auser (1993).[dB72] N. de Bruijn. Lambda-Calculus notation with nameless dummies, a tool forautomatic formula manipulation, with application to the Church-Rosser The-orem. Indag. Mat., 34(5):381{392, 1972.[dB78a] N. de Bruijn. Lambda-Calculus notation with namefree formulas involvingsymbols that represent reference transforming mappings. Indag. Mat., 40:348{356, 1978.[dB78b] N. G. de Bruijn. A namefree lambda calculus with facilities for internal de�-nition of expressions and segments. Technical Report TH-Report 78-WSK-03,Department of Mathematics, Eindhoven University of Technology, 1978.[Har89] T. Hardin. Con
uence Results for the Pure Strong Categorical Logic CCL :�-calculi as Subsystems of CCL. Theoretical Computer Science, 65(2):291{342,1989.

[HL86] T. Hardin and A. Laville. Proof of Termination of the Rewriting SystemSUBST on CCL. Theoretical Computer Science, 46:305{312, 1986.[HL89] T. Hardin and J.-J. L�evy. A Con
uent Calculus of Substitutions. France-JapanArti�cial Intelligence and Computer Science Symposium, December 1989.[Hue80] G. Huet. Con
uent Reductions: Abstract Properties and Applications to TermRewriting Systems. Journal of the Association for Computing Machinery,27:797{821, October 1980.[KB70] D. Knuth and P. Bendix. Simple Word Problems in Universal Algebras. InJ. Leech, editor, Computational Problems in Abstract Algebra, pages 263{297.Pergamon Press, 1970.[KN93] F. Kamareddine and R. P. Nederpelt. On stepwise explicit substitution. In-ternational Journal of Foundations of Computer Science, 4(3):197{240, 1993.[Mau85] M. Mauny. Compilation des langages fonctionnels dans les combinateurs cat�e-goriques. Application au langage ML. PhD thesis, Universit�e Paris VII, Paris,France, 1985.[Mel95] P.-A. Melli�es. Typed �-calculi with explicit substitutions may not terminatein Proceedings of TLCA'95. Lecture Notes in Computer Science, 902, 1995.[R��o93] A. R��os. Contribution �a l'�etude des �-calculs avec substitutions explicites. PhDthesis, Universit�e de Paris 7, 1993.[Zan94] H. Zantema. Termination of term rewriting: interpretation and type elimina-tion. J. Symbolic Computation, 17(1):23{50, 1994.AppendixProof of lemma 15 : By induction on a. The basic case which is a = n is trivial.a = a1a2 : Since we are dealing with an internal reduction there are only two possibilities:a1 int�!�s a01 or a2 int�!�s a02. Let us study, for instance, the �rst one. Since the externalreduction cannot take place at the root (because no s-rule contracts an application),there are only two cases left:{ a = a1a2 int�!�s a01a2 ext�!s a001a2 and a1 int�!�s a01 ext�!s a001 . Let us verify that thehypotheses are valid for a1 and a001 in order to use the IH.1. If s(a1a2) = s(a1)s(a2) is �-SN, so is s(a1).2. If s(a1a2) = s(a001a2) then s(a1)s(a2) = s(a001)s(a2) and so s(a1) = s(a001).Therefore, by IH a1 ext�!+s : int�!�!�s a001 , and then a1a2 ext�!+s : int�!�!�s a001a2 .{ a = a1a2 int�!�s a01a2 ext�!s a01a02 with a1 int�!�s a01 and a2 ext�!s a02. We can simplycommute the reductions: a = a1a2 ext�!s a1a02 int�!�s a01a02.a = �a1 : The reduction must take place within a1. There is no di�culty in checking thehypotheses and then using the IH.a = a1 �ia2 : Again, as we are analysing an internal reduction, two cases arise:a1 int�!�s a01 : The external reduction can only take place within a1 or at the root:{ a = a1 �ia2 int�!�s a01 �ia2 ext�!s a001 �ia2 and a1 int�!�s a01 ext�!s a001 . Let us verifythat the hypotheses are valid for a1 and a001 in order to use the IH.1. We know that s(a1 �ia2) is �-SN. If we suppose that s(a1) is not �-SN,there exists an in�nite derivation s(a1) !� c1 !� : : : !� cn !� : : : in�, i.e. with ck = s(ck) for all k. Now, by lemma 7.3 we obtain an in�nitederivation:s(a1 �ia2) = s(a1)ffi s(a2)gg !� s(c1)ffi s(a2)gg !� : : :which is a contradiction. Therefore s(a1) is �-SN.

2. We know that s(a1 �ia2) = s(a001 �ia2) and, by corollary 3, s(a1)!!� s(a001).If s(a1) +!!� s(a001), then by lemma 7.3 we haves(a1)ffi s(a2)gg +!!� s(a001)ffi s(a2)gg :But this is a contradiction sinces(a1)ffi s(a2)gg = s(a1 �ia2) = s(a001 �ia2) = s(a001)ffi s(a2)ggand we are assuming that s(a1 �ia2) is �-SN. Therefore, s(a1) = s(a001).We can now apply the IH to a1 int�!�s a01 ext�!s a001 to obtain a1 ext�!+s : int�!�!�s a001 ,and hence a1 �ia2 ext�!+s : int�!�!�s a001 �ia2.{ a = a1 �ia2 int�!�s a01 �ia2 ext�!s b , a1 int�!�s a01 , and the external reduction takesplace at the root. We study the three possible rules:� (�-�-trans) : We have a01 = �c0 and b = �(c0�i+1a2). Remark 3.1 ensuresthat a1 = �c and c int�!�s c0. We can then commute:a = a1 �ia2 = (�c)�ia2 ext�!s �(c�i+1a2) int�!�s �(c0�i+1a2) = b� (�-app-trans) : We have a01 = c0d0 and b = (c0 �ia2)(d0 �ia2). Remark 3.2ensures that a1 = c d and, either c int�!�s c0 and d = d0, or d int�!�s d0 andc = c0. In both cases we can commute as in the previous case.� (�-dest) : We have a01 = n and this is impossible by remark 3.3.a2 !�s a02 : As in the previous case, the external reduction can take place within a1or at the root:{ a = a1 �ia2 int�!�s a1 �ia02 ext�!s a01 �ia02 , a2 !�s a02 and a1 ext�!s a01 . We cancommute to obtain: a = a1 �ia2 ext�!s a01 �ia2 int�!�s a01 �ia02.{ a = a1 �ia2 int�!�s a1 �ia02 ext�!s b , a2 !�s a02 and the external reduction takesplace at the root. We study the three possible rules:� (�-�-trans) : We have a1 = �c and b = �(c�i+1a02). We can commute:a = a1 �ia2 = (�c)�ia2 ext�!s �(c�i+1a2) int�!�s �(c�i+1a02) = b� (�-app-trans) : We have a1 = c d and b = (c �ia02)(d�ia02). We can com-mute generating two internal steps:a = a1 �ia2 = (c d)�ia2 ext�!s (c �ia2)(d�ia2) int�!�s(c �ia02)(d�ia2) int�!�s (c �ia02)(d �ia02) = b� (�-dest) : We have a1 = n.If n > i then b = n� 1. But n�ia2 ext�!s n� 1.If n < i then b = n. But n�ia2 ext�!s n.If n = i then b = 'i0a02. We must now consider wether a2 !�s a02 isexternal or internal. If it is internal we can commute to obtain:a = a1 �ia2 = n�ia2 ext�!s 'i0a2 int�!�s 'i0a02 = b :But if it is external we must check that it is in fact an s-reduction toconclude: a = a1 �ia2 = n�ia2 ext�!s 'i0a2 ext�!s 'i0a02 = b

giving us a ext�!+s b int�!�!�s b . So we must prove that a2 ext�!��gen a02 is im-possible. It is for the treatment of this case that our additional hypothesesare necessary.Suppose that a2 ext�!��gen a02, then 'i0a2 ext�!��gen 'i0a02. By proposition 2,s('i0a2) +!� s('i0a02). But by hypothesis, s(n�ia2) = s(a) = s(b) = s('i0a02)and, since n = i, s(n�ia2) = s('i0a2). This contradicts the hypothesis s(a)is �-SN.Therefore a2 ext�!s a02 and we are done.a = 'ika1 : Two possibilities according to the position of the external reduction.{ 'ika1 int�!�s 'ika01 ext�!s 'ika001 and a1 int�!�s a01 ext�!s a001 . Let us check the hypotheses:1. We know that s('ika1) = U ik(s(a1)) is �-SN. To prove that s(a1) is �-SN,suppose it is not, and use lemma 7.1 to �nd an in�nite derivation for s('ika1).2. We know that s('ika1) = s('ika001), hence U ik(s(a1)) = U ik(s(a001)). We also know,by corollary 3, that s(a1)!!� s(a001). If s(a1) +!� s(a001), then by lemma 7.1 wehave U ik(s(a1)) +!� U ik(s(a001)). But this is a contradiction since U ik(s(a1)) =s('ika1) = s('ika001) = U ik(s(a001)) and we are assuming that s('ika1) is �-SN.Therefore, s(a1) = s(a001).We can then apply IH and conclude easily.{ 'ika1 int�!�s 'ika01 ext�!s b , a1 int�!�s a01 and the external reduction takes place at theroot. Three rules are possible:� ('-�-trans) : We have a01 = �c0 and b = �('ik+1c0). Remark 3.1 ensures thata1 = �c and c int�!�s c0. We can then commute:a = 'ika1 = 'ik(�c) ext�!s �('ik+1c) int�!�s �('ik+1c0) = b :� ('-app-trans) : We have a01 = c0d0 and b = ('ikc0)('ikd0). Remark 3.2 ensuresthat a1 = c d and, either c int�!�s c0 and d = d0, or d int�!�s d0 and c = c0. Inboth cases we can commute as in the previous case.� ('-dest) : We have a01 = n and this is impossible by remark 3.3. 2

This article was processed using the LATEX macro package with LLNCS style

