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Abstract. The aim of this paper is to present the As-calculus which is a
very simple A-calculus with explicit substitutions and to prove its confluence
on closed terms and the preservation of strong normalisation of A-terms. We
shall prove strong normalisation of the corresponding calculus of substitution
by translating it into the Ao-calculus [ACCL91], and therefore the relation
between both calculi will be made explicit. The confluence of the As-calculus
is obtained by the “interpretation method” ([Har89], [CHL92]). The proof
of the preservation of normalisation follows the lines of an analogous result
for the Av-calculus (cf. [BBLRD95]). The relation between As and Av is also
studied.

1 Introduction

Most literature on the A-calculus considers substitution as an implicit operation.
It means that the computations to perform substitution are usually described with
operators which do not belong to the language of the A-calculus. There has however
been an interest in formalising substitution explicitly; various calculi including new
operators to denote substitution and new rules to handle these operators have been
proposed. Amongst these calculi we mention CAE¢p (cf. [dB78b]); the calculi of cat-
egorical combinators (cf. [Cur86]); Ao, Aoy, Aosp (cf. [ACCLI1], [CHL92], [Ri093])
referred to as the Ao-family; Av (cf. [BBLRD95]), a descendant of the Ao-family
and @oBLT (cf. [KN93]). The basic features of these systems of substitution de-
part quite extensively from the classical A-calculus while in this paper we propose a
system which remains as close as possible to it.

Furthermore, for the above systems either strong normalisation (SN) has not
been studied (as for CA{p and o BLT) or negative results (cf. [Mel95]) have been
established concerning the preservation of SN (for the Ao-family). In particular,
these negative results imply that the simplest typed versions of these calculi are not
SN. One positive and recent result concerning the preservation of SN is that for Av
(cf. [BBLRDY5]) for which, as far as we know, there is still work in progress.

As stated in [ACCL91], the Ao-calculi and the calculi of combinators give full
formal accounts of the process of computation and they make it easy to derive



machines for the A-calculus and to show the correctness of these machines. Hence,
the Ao-calculus is proposed as a step in closing the gap between the classical A-
calculus and concrete implementations. We believe that the As-calculus presented
in this paper offers another possibility for closing this gap and, being closer to the
A-calculus, it preserves strong normalisation. Furthermore, we think that in the
presence of the negative results of [Mel95] calculi like As are worth studying.

The main interest in introducing the As-calculus is to provide a calculus of explicit
substitutions which would have both the property of preserving strong normalisation
and a confluent extension on open terms. As far as we know no such calculus has yet
been proposed. There are calculi of explicit substitutions which are confluent on open
terms: the Aoy~ calculus (cf. [HL89] and [CHL92]), but, as mentioned above, the non-
preservation of strong normalisation for Aoy has recently been proved. There are also
calculi which satisfy the preservation property: the Av-calculus (cf. [BBLRD95]), but
this calculus is not confluent on open terms. Moreover, in order to get a confluent
extension, the introduction of a composition operator for substitutions seems un-
avoidable, but precisely this operator is the cause of the non-preservation of strong
normalisation as shown in [Mel95]. We believe that the As-calculus, while preserving
strong normalisation, could admit a confluent extension on open terms thanks to
the fact that composition of substitutions (in the sense of the Ao-calculi) could be
handleld indirectly and in a very subtle way via a new family of rules mimicking the
substitution lemma for the classical A-calculus (see lemma 4 below).

Mention to a very close calculus to the As-calculus can be already found in
[Cur86], exercise 1.2.7.2, where reference to previous unpublished notes of Y. Lafont
is given. The o BLT-calculus is also of this kind but the essential difference is that
the redex is preserved when the (-rule is applied. The calculus we are going to
study, we call it As, is obtained in a very natural way from the classical A-calculus
in de Bruijn notation: we just orientate the equalities defining the meta-operators
of substitution and include them as new operators of the language.

We prove in this paper the confluence (CR) of the As-calculus on closed terms
(these terms contain all terms of the classical A-calculus) and the preservation of
strong normalisation (terms which are strongly normalising in the A-calculus are
also strongly normalising in As). We also compare the As-calculus to Ao and Av via
translation functions.

2 Preliminaries

We begin by giving a quick presentation of the A-calculus a la de Bruijn and the
Ao-calculus.

2.1 The classical A-calculus in de Bruijn notation

We shall assume the reader familiar with de Bruijn indices (see [dB72] and [dB78a])
which can be explained via the following two examples: AzAy.zy is written using de
Bruijn indices as A\(21) and AzAy.(z(\z.zz))y is written as AA(2(A(13))1).
Remark here that variables are removed and are replaced by natural numbers.
These numbers are informative as to the A which binds the occurrence of the variable.



Hence in the second example, the same = was translated into 2 and 3 according to
the different positions, whereas z and y become the same de Bruijn index, 1.

The interest in introducing de Bruijn indices is that they avoid clashes of variable
names and therefore neither a-conversion nor Barendregt’s convention are needed.
Here is the A-calculus a la de Bruijn.

Definition 1 We define A, the set of terms with de Bruijn indices, as follows:
Az=N| (A4) | (A\A)

We use a,b, ... to range over A and m,n, ... to range over N (positive natural num-
bers). Furthermore, we assume the usual conventions about parentheses and avoid
them when no confusion occurs. Throughout the whole article, a = b is used to mean
that a and b are syntactically identical.

When rewriting a term a with variable names into its de Bruijn version, we con-
sider a to be a subterm of Azj ...x,.a where z; ...z, are all the free variables of a.
For instance: Az.xzyz becomes A123 (or A132) and (Az.zy)y becomes (A12)1. In
order for this to work independently of the order in which the free variables appear,
we assume that the set of variable names is ordered and call this ordered set the free
variable list. For example, if the list was ---,z,y,x then the term to be translated
should be prefixed with - - -, Az, Ay, Az before its translation. Thus, Az.yz translates
as A34 whereas Az.zy translates as A\43. Now check that (Az\y.zzy)(Az.yz) trans-
lates as (AA521)(A31) and that Au.z(Az.yz)u translates to A\4(A\41)1.

In order to define S-reduction & la de Bruijn, we must define the substitution of
a variable by a term b in a term a. Therefore, we must identify amongst the numbers
of a term a those that correspond to the variable that is being substituted for and we
need to update the term to be substituted in order to preserve the correct bindings
of its variables.

For example, translating (AzA\y.zzy)(Az.yz) =5 Au.z(Az.yz)u to de Bruijn no-
tation we get (AA521)(A31) —3 A4(A41)1. But if we simply replace 2 in A521 by A31
we get AB(A31)1, which is not correct. We needed to decrease 5 as one A disappeared
and to increment the free variables of A31 as they occur within the scope of one more
A

For incrementing the free variables we need a family of updating functions:

Definition 2 The updating functions U; : A — A for k > 0 and i > 1 are defined
inductively as follows:
Ui = U@ U {Hi_uf 0>k
: ; - f n<k.
Ui(Aa) = AU, (@) " yons

The intuition behind U} is the following: k tests for free variables and i — 1 is
the value by which a variable, if free, must be incremented.
Now we define the family of meta-substitution functions:

Definition 3 The meta-substitutions at level i, for i > 1, of a term b€ A in a
term a € A, denoted a{i « b}, is defined inductively on a as follows:



(ara2){i < b} = (a1 {i < b}) (a2f{i « b}) n—1 z:f n>i
nfi« b} = S ULb) if n=1
Aa){i+ b} = Mafi+1+b}) n if n<i.

Ultimately, the intention is to define (Aa)b —g a{{l < b} (see definition 4
below). The first two equalities propagate the substitution through applications and
abstractions and the last one carries out the substitution of the intended variable
(when n = @) by the updated term. If the variable is not the intended one it must
be decreased by 1 if it is free (case n > i) beacuse one A has disappeared, whereas
if it is bound (case n < ) it must remain unaltered.

It is easy to check that (A521){1 « (A31)} = A4(M\41)1. This will mean
(AXB21)(A31) =5 A4(A41)1.

The following lemmas establish the properties of the meta-substitutions and
updating functions. The Meta-substitution and Distribution lemmas are crucial to
prove the confluence of As. The proofs of lemmas 1 - 6 are obtained by induction
on a. Furthermore, the proof of lemma 3 requires lemma 2 with p = 0; the proof
of lemma 4 uses lemmas 1 and 3 both with £ = 0; finally, lemma 5 with p = 0 is
needed to prove lemma 6.

Lemma 1 For k <n <k+i we have: Ui(a) = U (a){n « b} .
Lemma 2 For p <k < j+p we have: Ui (U] (a)) = Uit~ (a).
Lemma 3 For i <n—k we have: U} (a)f{n < b} = Ui(afn —1i+ 1+ b}).
Lemma 4 (Meta-substitution lemma) For 1 <i <n we have:
afi+—b}f{n+cl=afn+1+c}{i+bf{n—1i+1+c}}
Lemma 5 For m < k+1 we have: Ui, ,(U;*(a)) = U (Ui 4 i1 (@) -
Lemma 6 (Distribution lemma) For n < k+ 1 we have:
U,i(a{{n —bf) = U,i+1(a){{n « UlfzfnJrl Qe

Definition 4 S-reduction is the least compatible relation on A generated by:
(B-rule) (Aa)b —p afl + b}

The A-calculus a la de Bruijn, abbreviated A-calculus is the reduction system whose

only rewriting rule is (3.

Theorem 1 The A-calculus d la de Bruijn is confluent.

Proof: The A-calculus with de Bruijn indices and the classical A-calculus with vari-
able names are isomorphic (cf. [Mau85]). The confluence of the latter (cf. [Bar84]
thm. 3.2.8) is hence transportable to the A-calculus a la de Bruijn.

A proof which does not use the mentioned isomorphism is given in [Rio93] (corol.
3.6) as a corollary of a more general result concerning the Ao-calculus. a

Finally, the following lemma ensures the good passage of the J-rule through the
meta-substitutions and the Uj. It is crucial for the proof of the confluence of As.



Lemma 7 Leta, b, c,d € A.

1. If ¢ =g d then Uj(c) = Ui(d) .

2. If c—>pd then af{i « c} »pafi <+ d}.
3. If a—pb then af{i < c}} =5 i+ c}.
Proof:

1. Induction on c. We just check the interesting case which arises when ¢ = ¢1c2 and
the reduction takes place at the root, i.e. ¢4 = (Aa), co =band d = af{1 < b}:

Ui((Aa)b) = (A(Uj,, (@)U (b) =5 Uiy, (@)1 « UL(D)} Z Uj(aff1  b})

2. Induction on a using 1 above.
3. Induction on a. The interesting case is again a = (Ad)e and b = d{{1 « e}:

(M)e){i « c} = Adfi+ 1+ c}))(efi< c}) =5
(@fi+1 ¢ i1 efli & )} 2 (@1« e} i« e} o

2.2 The Ao-calculus

The Ao-calculus (JACCLI1)) is a formalism which enables explicit substitution. Its
syntax is two-sorted: the sort term of terms and the sort substitution of explicit
substitutions. These can be interpreted as a sequence of terms and the result of exe-
cuting a substitution in a term can be interpreted as the term obtained by replacing
the occurrences of the n-th index of de Bruijn in the term by the n-th term of
the sequence. This intuitive interpretation is developped and illustrated with many
examples in [ACCL91].
Here are the syntax and the rules of the calculus:

Definition 5 The syntaz of the Ao-calculus is given by:

Terms Aot u=1| ActAct | AMat | Ac'[Ac?]
Substitutions Ac® :=1id | T | Ao’ - Ao® | Ac® o Ao?®

The set, denoted Ao, of rules of the Ao-calculus is the following:

(Beta) (Aa)b — alb-id]
(Varld) 1fid] — 1
(VarCons) lla-s] —a

(App) (ab)[s] — (als]) (b[s])
(Abs) (Aa)fs] — AlalL- (s o 1))
(Clos) (a[s])[t] — a[sot]
(IdL) idos — s

(Shiftld) toid — 1
(ShiftCons) to(a-s) — s

(Map) (a-s)ot —ralt]-(sot)
(Ass) (s1082) 083 —» 510 (s3083)




The set of rules of the o-calculus is Ao — {(Beta)} . We use a,b,c,... to range
over Aot and s,t,... to range over Ao®.

Notation 1 For a given set of rules R we take —x to be the reduction relation of
the R-calculus (i.e. the least compatible relation containing the rules of R ).

We take —»x to be the derivation relation of the R-calculus (i.e. the least reflexive
and transitive relation containing — ) and we denote by —)ji the transitive closure
of =r (i.e. the least transitive relation containing —x ).

For any two relations — and —', by a — . =’ b we mean (3c)(a — ¢ =" b).

Finally, we write a =%, b to mean that the derivation from a to b consists of n
steps of R-reduction.

When it will be clear from the context, we may omit the subscript R.

We recall that a is a R-normal form if there exists no b such that a —-r b. We
say that ¢ is a R-normal form of d if ¢ is a R-normal form and d —»x c.

Notation 2 For every substitution s we define the iteration of the composition of
s inductively as s* = s and s"T! = s o0 s™. We use the convention s° =id.

Note that the only de Bruijn index used is 1, but we can code n by the term
1[t"~1]. By so doing, we have A C Ao*.

(B-reduction of the A-calculus is interpreted in the Ao-calculus in two steps. The
first, obtained by the application of (Beta), consists in generating the substitution.
The second step executes the propagation of this substitution, using the set of the
o-rules, until the concerned variables are reached. The reader is invited to check that
(AX521)(A31) —»x, A4(N41)1.

We summarize now the properties of the o- and Ao-calculi:

Theorem 2 The o-calculus is strongly normalising (SN) and confluent (CR).

Proof: We know three proofs of strong normalisation: [HL86], [CHR92] and [Zan94].
Local confluence (WCR) is ensured by analysis of critical pairs (cf. [Ri093], annex B),
and the Knuth-Bendix theorem ([KB70] or [Hue80]). Now Newman’s lemma, which
states that SN+WCR yields CR ([Bar84], prop. 3.1.25), guarantees confluence. O

Theorem 3 The Ao-calculus is confluent.

Proof: See [ACCL91], theorem 3.2. This proof is based on the confluence of o, that
of the A-calculus and the technique of interpretation. a

3 The As-calculus and its confluence

The idea is to handle explicitly the meta-operators defined in definitions 2 and 3.
Therefore, the syntax of the As-calculus is obtained by adding to the syntax of the
A-calculus & la de Bruijn two families of operators :

— {Ui}i21 This family is meant to denote the explicit substitution operators. Each
o' is an infix operator of arity 2 and ao'b has as intuitive meaning the term a
where all free occurrences of the variable corresponding to the de Bruijn number
1 are to be substituted by the term b.



— {cp};}kzo i>1 This family is meant to denote the updating functions necessary
when working with de Bruijn numbers to fix the variables of the term to be
substituted.

Definition 6 The set of terms of the As-calculus, noted As is given as follows:
As =N | AsAs | AMAs | Aso'As | piAs  where i>1, k>0.

We take a, b, ¢ to range over As. A term of the form ac'b is called a closure.
Furthermore, a term containing neither o’s nor ’s is called a pure term.

The As-calculus should carry out, besides [-reduction, the computations of up-
dating and substitution explicitly. For that reason we include, besides the rule mim-
icking the (-rule (o-generation), a set of rules which are the equations in definitions
2 and 3 oriented from left to right.

Definition 7 The As-calculus is given by the following rewriting rules:

o-generation (Ma)b — aold
o-\-transition (Aa) 0'b — Aa o1 )
o-app-transition  (ay as) o'b — (ay o'b) (az o'b)
o-destruction no'b — ¢ hb if n=i
n if n<i
p-A-transition o1 (Aa) — A, a)
@-app-transition ¢} (a1 az) — (pi a1) (¢} az)

) ) i n+i—-14f n>k
p-destruction <pkn—>{n if n<k

We use As to denote this set of rules. The calculus of substitutions associated with
the As-calculus is the rewriting system whose rules are As — {o-generation} and we
call it s-calculus.

In order to give the translation into the Ao-calculus we give the following two
definitions.

Definition 8 For k>0 and i > 1 we define sp; = 1-2-... -k tFH~1 (ye use
the convention sy; =1~ and hence sg1 = id ).

Definition 9 Let b € Ao, we define a family of substitutions (bi)r>1 as follows:
by =blid]-id  by=1-b[1]-1T ... bgi=1-2-...-i-b[1] -1
Using the rules (Map), (Clos), (Ass) and (IdL) it is easy to verify that:

Remark 1 1- (biO T) P bi+1 and 1- (Skio T) P Sk+1i-



Definition 10 The translation function T : As — Aot is defined by:

T(n)=n T(ab)=T(a)T(b) T(ac'd)=T(a)[T(b)i]
T(Aa) =AT(a))  T(pia) =T(a)[sk]

Theorem 4 If a —, b then T(a) <, T(b).
Proof: Induction on a. We just check, as an example, the case a = no'c when the
reduction takes place at the root:

n—1=T(n—-1) if n>i

T(no'c) =n[T(c)i] Bs { T()1 ] =T(pic)if n=i O
n="T(n) it n<i

Corollary 1 The reduction — s is strongly normalising.
Proof: Use Theorem 2. a
Remark 2 The reduction — 5 is locally confluent.

Proof: There are no critical pairs and the theorem of Knuth-Bendix applies trivially.
O

Corollary 2 The reduction — 4 is confluent.

Proof: Newman’s Lemma (see proof of thm. 2) yields CR. O

These corollaries guarantee the existence and unicity of s-normal forms (s-nf),
which we shall use to interpret the As-calculus in the A-calculus. We shall denote
the s-nf of a term a by s(a). The following lemma characterizes s-normal forms.

Lemma 8 The set of s-normal forms is exactly A.

Proof: Check first by induction on a that a o’b and ¢} a are not normal forms. Then
check by induction on a that if a is an s-nf then a € A. Conclude by observing that
every term in A is in s-nf. a

As there are no s-rules whose left-hand side is an application or an abstraction,
the following properties of s-normal forms (which will be used throughout without
explicit mention) are immediate.

Lemma 9 For all a, b € As: s(ab) = s(a)s(b) and s(Aa) = A(s(a)) .

We establish now the relation between the operators o’ and ¢} and the meta-
operators of the classical de Bruijn setting: - {i < _ } and U}.

Lemma 10 For all a, b € As we have:

s(pia) = Uji(s(a)) and s(ao'd) = s(a){i < s(b)} .



Proof: Prove the first equality for terms in s-nf, i.e. use an inductive argument
on ¢ € A to show s(pic) = Ui(s(c)). Let now a € As, s(pia) = s(pis(a)) =

Ui (s(s(a))) = Ui(s(a)).
Prove the second claim similarly using the first claim. |

We give now the key result that allows us to use the Interpretation Method in
order to get confluence: the good passage of the o-generation rule to the s-normal
forms.

Proposition 1 Let a, b € As, if a =o_gen b then s(a) -3 s(b).
Proof: Induction on a. We just study the interesting cases.

a =cd : If the reduction takes place within ¢ or d just use the inductive hypothesis
(IH). The interesting case is when ¢ = \e and hence b = eo'd:

s((Ae)d) = (As(e))(s5(d) —p s(e)f1 « s(d)} "= s(eotd)
a=co'd : If the reduction takes place within ¢, i.e. ¢ —,_gen € and b = eo'd,
then

s(eoid) L0 s(o)fi « s(d)} TS se) i « s(d)} 2° s(eaid)
If the reduction takes place within d, lemma 7.2 applies.
a = pic: The reduction must take place within c. Use lemma 10 and lemma 7.1.
O

Now, the following corollaries are immediate.
Corollary 3 Let a, b € As, if a —»xs b then s(a) —»g s(b) .
Corollary 4 (Soundness) Let a,be A, if a —»x; b then a - b.

Finally, before proving confluence, we verify that the As-calculus is powerful
enough to simulate g-reduction.

Lemma 11 (Simulation of S-reduction) Leta, b€ A, if a =3 b then a —»xs b.
Proof: Induction on a. As usual the interesting case is when a = (A¢)d and b =
1+ d}:

(A —o—gen cotd =y s(cotd) 2 s(c) {1 « s(d)} “E' eft «d} O

Theorem 5 The As-calculus is confluent.

Proof: We interpret the As-calculus into the A-calculus via s-normalisation. We
have:



)

b 5 s(b
a ——2—— s(a) Thm. 1 d
c A s(c

)

The existence of the arrows s(a) —»g s(b) and s(a) —»3 s(c) is guaranteed by corol-
lary 3. We can close the diagram thanks to the confluence of A-calculus and finally
lemma 11 ensures s(b) —»xs d and s(b) —»»s d proving thus CR for the As-calculus.
O

4 The As-calculus preserves strong normalisation

In this section we shall prove that every term a which is strongly normalising (all
its derivations are finite) in the A-calculus (denoted a € (-SN) is also strongly
normalising in the As-calculus (denoted a € As-SN). In particular, pure simply
typed terms will be strongly normalising in As.

This result is not valid for the Ao-calculus, neither for its confluent version Aoy,
neither for the calculus of categorical combinators, as was recently proved by the
counterexamples of Mellies (see [Mel95]). But there is work in progress to prove it
for the Av-calculus (cf. [BBLRD95]).

The natural translation of As into Av which we shall give in this section is good
enough to ensure the preservation of strong normalisation for As as soon as the result
will be obtained for Av. However, the general idea in [BBLRD95] can be adapted for
the preservation of strong normalisation of As.

We begin by presenting the Av-calculus and the translation.

Definition 11 The terms of the Av-calculus are given by the following syntaz:

Terms Avt =N | AvtAvt | Aot | Avt[Av®]
Substitutions Av® =1 | 1} (Av®) | Avt/

The set, denoted Av, of rules of the Av-calculus is the following:



(Beta) Aa)b — alb/]
(App) (ab)[s] — (a[s]) (b[s])
)

(Abs) (Aa)[s] — Ala[fr (s)])
(FVar) 1la/] — a
(RVar) +1fa/] —
(F'VarLift) [ﬂ ()] —1
(RVarLift) n+ 1[{ (s)] — n[s][1]
(VarShift) nf] —n+1

We use a,b,c, ... to range over Avt and s,t,... to range over Av®.

This choice of operators and rules is based on the idea of expressing the (Beta)-
rule as economically as possible. In the Ao-calculus it reads (Aa)b — a[b - id] and
requires the introduction of the operators - and id. Just one unary operator can do
the job, this operator is denoted by / in the Av-syntax. Hence a/ plays the role of the
Ao-term a-id. Now the (Abs)-rule, which in Ao reads (Aa)[s] = A(a[1-(so 1)]), must
be modified to avoid the use of - which is no longer available. Hence the introduction
of f} and the intuitive interpretation of {} (s) as the Ao-term 1 - (s o 1).

Notation 3 For a € Avt and s € Av® we denote:
o 1 (s) =N ( (... 7 (5)...)) (i times). By 1\° (s) we mean s.

e a[s]' = a[s][s]...[s] (i times). By a[s]® we mean a.
Definition 12 The “natural” translation S : As — Avt is given by:

Sm)=n S(ab)=S(a)S®) S(ao'd)=S(a)"" (S()/)]
S(Aa) = A(S(a))  S(pja) = S(@M* (DI

It is easy to check by induction on a that a —,_ge, b implies S(a) i),\v S(b)
and that a =, b implies S(a) —»x, S(b). Therefore, preservation of SN for \v yields
preservation of SN for As.

Notation 4 We write a —> b in order to denote that p is the occurrence of the redex
which s contracted. Therefore a—6>b means that the reduction takes place at the root.
If no specification is made the reduction must be understood as a As-reduction.
Furthermore, we denote by < the prefiz order between occurrences of a term.
Therefore if p, q are occurrences of the term a such that p < q, and we write a,
(resp. aq) for the subterm of a at occurrence p (resp. q), then a, is a subterm of a,.

For example, if a = 203((A1)4), we have a; = 2, as = (A\1)4, as; = A1, az;; = 1,
asy = 4. Since, for instance, 2 < 21, as; is a subterm of as.

The aim of the three following lemmas is to assert that all the ¢’s in the last term
of a derivation beginning with a A-term must have been created at some previous
step by a o-generation and to trace the history of these closures. The first of them
explains this situation for a one-step derivation where the redex is at the root:



Lemma 12 Ifa > C[dote] then one of the following must hold:

1. a=(Md)e, C =0 (a hole) and i = 1.
2. a= C'[d'o%€] for some context C', some term d' and some natural j.

Proof: We must check for every rule a — b in As that if do’e occurs in b then
a = (Ad)e or d'oe occurs in a. We just check the interesting rules:

(0-gen) : If b = do'e then i = 1 and a = (Ad)e. Otherwise b = byolby and do'e
occurs either in by or in by, both cases are immediate since now a = (Aby)bs.
(o-A-trans) : If b = A(do'e) then i > 1 and a = (A\d)o’ le; take d' = Ad and
j = i— 1. If the occurrence of do'e is in a deeper position (i.e. if do'e is a proper
subterm of b), proceed as in the previous case.

(c-app-trans) : If, for instance, b = (co’e)(do'e) then a = (cd) o'e; take d' = cd.
For deeper positions the result is straightforward. O

The second lemma generalizes the previous one.

Lemma 13 If a — C|[do'e] then one of the following must hold:

1. a=CJ[(A\d)e] and i = 1.
2. a=C'[d'oi€'] wheree' =€ ore — e.

Proof: Induction on a, using lemma 12 for the reductions at the root. a

Finally, the third lemma gives the result for arbitrary derivations.

Lemma 14 Let a; — ... = a, — any1 = Cldo'e] then a; = C'[d'c7€] or there
exists k < n such that a, = C'[(Ad')e'] and ap1 = C'[d'ote']. In both cases €' —» e.

Proof: Induction on n and use the previous lemma. a

We shall define now the notions of internal and external reductions. The intuitive
meaning of an internal reduction is a reduction that takes place somewhere at the
right of a ¢! operator. An external reduction is a reduction that is not internal.

We give a definition by induction. Another possibility is to define first the notion
of internal and external position (occurrence) as is done in [BBLRD95].

Definition 13 The reduction ﬂb\s is defined by the following rules:

int int

a—b\sb a—>>\sb a—>>\sb
i int i int int
cota —>ys cotb ac—sbc ca—)scb
int int int
a—))\sb a—>>\sb a—>>\sb
int . int . :  int ;
Aa =555 Ab acic =%, boic vLa s )

in . . . a —r b
Therefore, 1Y s is the least compatible relation closed under As

- int . .
cota —>y s co'b



Definition 14 The reduction =5, is defined by induction. The axioms are the
rules of the s-calculus and the inference rules are the following:

ext ext ext ext ext
a—sb a—sb a—sb a—sb a—sb

ext

t t . t . . t .
ac.be ca-S,cb a5, acic =5, boic @2(11)34,0}66

ext

Analogously, an external o-generation is defined by the aziom (Aa)b —,_gen ac'b

. t . t
and the five inference rules stated above where ==, is replaced by i)a,gen .

ext ext

. a—sb A —5_gen b
Note that the inference rules — — and —— g — are ex-
cota —>,; co'b co'a —rs_gen CO'b

cluded from the definitions of external s-reduction and external o-generation, re-
spectively. Thus, as we expected, external reductions will not occur at the right of

a o' operator. This will permit us to write i)g instead of —#3 in proposition 2.

Remark 3 By inspecting the inference rules one checks immediately that:

1. If aﬂb\s Ab then a = Ac and cﬂb\sb.
int

2. If aX5,,bc then a=de and ((d—xsbande=c) or (eﬂb\sc andd=1")).

int .. .
3. a —>xsn is impossible.

The following lemma is a slight but essential variation of proposition 1. A step
of external o-generation is studied now and the lemma ensures that we have at least
one step of B-reduction between the corresponding s-normal forms.

ext

Proposition 2 Let a, b€ As. If a —35_gen b then s(a) i>5 s(b) .

Proof: Induction on a. The lines of this proof follow the proof of proposition 1.
Now, the point is that in the case a = co’d, the reduction cannot take place within
d because it is external, and this is the only case that forced us to consider the
reflexive-transitive closure because of lemma 7.2. |

The following lemma plays a fundamental role in lemma 16 and hence in the
Preservation theorem.

Lemma 15 (Commutation lemma) Let a, b € As such that s(a) € 5-SN and

int ext ext T int

s(a) =s(b). If a—s.—>sb then a—>, . —»)sb.
Proof: By a careful induction on a while analysing the positions of the redexes. The
detailed proof is given in the appendix. a

Lemma 16 Let a be a strongly normalising term of the \-calculus. For every infinite
As-derivation a —xs b1 —xs + - —xs bn —as - -, there exists N such that for i > N
all the reductions b; —xs biy1 are internal.



Proof: An infinite As-derivation must contain infinite o-generations, since the s-
calculus is SN. The first rule must also be a o-generation beacuse a is a pure term.
We can thus write the derivation as follows:

! ! !
a = a _>o'—gen @y —»s A2 _)J—gen Ay st s Qn _>o'—gen [£2% —Ps

By proposition 2, there must be only a finite number of external o-generations
(otherwise we can construct an infinite [-derivation contradicting the hypothesis
a € [(-SN). Therefore there exists P such that for i > P we have a; itn,_gen as.
Furthermore, by proposition 1, s(a;) —»3 s(a;) for all i, and therefore

a =s(a) = s(a1) g s(ar) = s(az) »p s(ay) = -+ = s(an) »p s(a,) =

Since a is $-SN, we conclude that s(a;) is 8-SN for all ¢ and that therefore there
exists M > P such that for i > M we have s(a;) = s(a}). We claim that there exists
N > M such that for ¢ > N all the s-rewrites are also internal. Otherwise, there
would be an infinity of external s-rewrites and at least one copy of each of these
external rewrites can be brought, by the Commutation Lemma, in front of a,s, and
so generate an infinite s-derivation beginning at a,;, which is a contradiction. This
intuitive idea can be formally stated as:

ext

Fact: If there exists an infinite derivation ap; E—Xt»? b—»"ec—sd — -
where all the rewrites in b —» ¢ are either Q—Xt)s or ﬂb\s , then there exists an
infinite derivation ap; <™t b —sd —s - -,

Proof of Fact: The fact is easily proved by induction on m, using the Commuta-
tion lemma. We remark that M has been so chosen in order to satisfy the hypothesis
of this lemma. a

In order to prove the Preservation Theorem we need two definitions.

Definition 15 An infinite As-derivation a; — -+ — a, — --- is minimal if for
every step of reduction ai;b\s a;11, every other derivation beginning with ai?xs a;H
where p < q, is finite.

The intuitive idea of a minimal derivation is that if one rewrites at least one of its
steps within a subterm of the actual redex, then an infinite derivation is impossible.

Definition 16 Skeletons are defined by the following syntax:
Skeletons K :=N | K K | AK | Kd'[] | piK
The skeleton of a term a is defined by induction as follows:

Sk(n) =n Sk(ab) = Sk(a)Sk(b) Sk(ac'd) = Sk(a)c'[]
Sk(\a) = ASk(a) Sk(pia) = piSk(a)

Remark 4 (Properties of the skeleton)

1. Each occurrence of [.] in the skeleton of a corresponds to an external closure of
the term a (by external closure, we mean a closure that is not at the right of any
other closure), and this correspondence is a bijection.



2. Internal closures (those which are at the right of another closure) vanish in the

skeleton.
3. If a 5, b then Sk(a) = Sk(b).

Theorem 6 (Preservation of strong normalisation) If a pure term is strongly
normalising in the \-calculus, then it is strongly normalising in the As-calculus.

Proof: Suppose a is a strongly normalising term in the A-calculus, but not As-SN.
Let us consider a minimal infinite As-derivation D : ¢ -+ a; — -+ - a, — ---. By
lemma 16, there exists N, such that for i > N, a; — a;41 is internal. Therefore, by
the previous remark, Sk(a;) = Sk(ai+1) for i > N. As there are only a finite number
of closures in Sk(an) and as the reductions within these closures are independent,
an infinite subderivation of D must take place within the same and unique closure
in Sk(an) and , evidently, this subderivation is also minimal. Let us call it D' and
let C' be the context such that ay = C[co'd] and co'd is the closure where D’ takes
place. Therefore we have:

int int

D :ay = Cleoid] 25,5, Cleo'dy] 25, -+ 255, Cleotdn] 255 - -
Since a is a pure term, lemma 14 ensures the existence of I < N such that
ar = C'[(\)d'] = arp1 = C'[do'd'] and d' —» d.
But let us consider the following derivation:
D" i a—»ar=C'[(\)d] —» C'[(A)d] = C'[(A)di] = -+ = C'[(A)d,] — - -

In this infinite derivation the redex in aj is within d’' which is a proper subterm of
(Ac')d', whereas in D the redex in ay is (Ac¢')d’ and this contradicts the minimality
of D. m|

5 Conclusion

There are two unsolved problems concerning As which we want to discuss briefly.

The first of them is the confluence of As on open terms. We remind that by open
terms we mean terms which admit variables of sort term, namely open terms are
given by the following syntax:

Asop := V| IN| AsopAsop | AAsep | Asop 0t Asep | phAs,, —where i>1, k>0

and where V stands for a set of variables, over which X, Y, ... range.
Working with open terms one loses confluence as shown by:

(AX)Y)otl — (XolY)ott (AX)Y)olt = (AX)o'1)(Yol1)
Moreover, local confluence is lost. Since ((AX)o'1)(Yol1l) — (Xo?1)o!(Yo'l),
the solution to the problem seems easy: add to As rules obtained by orienting the
equalities given by the lemmas 1 - 6. For instance, the rule corresponding to the Meta-
substitution lemma (lemma 4) would solve the critical pair in our counterexample.

We believe that by adding these rules to As we could get local confluence. But
the problem of confluence of the extended system seems a difficult one. As a matter
of fact it was one of the open questions in Lafont’s notes.



We note here that the same problem for Ao leads to the introduction of Aogp, the
latter being locally confluent on open terms but confluent only on semi-closed terms
(terms with variables of sort term but without variables of sort substitution)(cf.
[Ri093)).

The second problem we wish to present is the strong normalisation of the typed
version of As. We believe, as suggested by P.-L. Curien, that a translation, say 7T,
similar to the one presented in [CR91] would allow us to use the preservation of SN
obtained in this paper to get the desired result. But this translation should have the
additional property 7 (a) —»xs a, and this is not the case, but possibly could be if
the system considered is the extension of As suggested by the first problem. This
would permit to get SN for this extended calculus, and get as a corollary SN for the
simply typed As.
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Appendix

Proof of lemma 15 : By induction on a. The basic case which is a = n is trivial.

a=aiaz

Since we are dealing with an internal reduction there are only two possibilities:

ay Eb\s a) or as Eb\s a%. Let us study, for instance, the first one. Since the external
reduction cannot take place at the root (because no s-rule contracts an application),
there are only two cases left:
—a = atas =5, diaz =5, allas and a1 5y, @) =5, @, Let us verify that the
hypotheses are valid for a; and af in order to use the IH.
1. If s(a1a2) = s(a1)s(a2) is B-SN, so is s(a1).
2. If s(a1az2) = s(afa2) then s(a1)s(as) = s(af)s(az2) and so s(a1) = s(a¥).
Therefore, by IH a; it)j .22y s al , and then aja» e—“)j 2 e alas .
int ’ ext I . int ’ ext ’ .
— @ = a1a2 —>)s A102 —>s a1a5 with a1 — s a] and a2 —>s ay. We can simply

. ext int
commute the reductions: a = a1as — s a1ay —xs alasb.

a = Aa1 : The reduction must take place within a:. There is no difficulty in checking the

hypotheses and then using the IH.

a =ai10'az : Again, as we are analysing an internal reduction, two cases arise:

ar . a} : The external reduction can only take place within a; or at the root:

i int ; ext ; int ext .
— a=a10'a2 —»s ay 0'ar —, af o'az and a1 — s a] — af. Let us verify

that the hypotheses are valid for a1 and af in order to use the TH.
1. We know that s(a10'asz) is B-SN. If we suppose that s(a1) is not 3-SN,

there exists an infinite derivation s(ai1) =g c1 =3 ... =g o =g ... In
A, i.e. with ¢, = s(cx) for all k. Now, by lemma 7.3 we obtain an infinite
derivation:

s(a1 O'iaz) = s(a1){i ¢ s(a2)} —=p s(c1){i < s(a2)} —5 ...

which is a contradiction. Therefore s(a;) is 8-SN.



2. We know that s(a1 o'az) = s(a} o'az) and, by corollary 3, s(a1) -5 s(a).
If s(a1) <4 s(a}), then by lemma 7.3 we have

s(a){i < s(as)} S»s s(a){i < s(a2)} .
But this is a contradiction since
s(a1){i < s(a2)} = s(a1 aiag) = s(ay aiag) = s(a}){i + s(a2)}

and we are assuming that s(a; 0’az2) is 8-SN. Therefore, s(a1) = s(a}).
int t . t T int
We can now apply the TH to a1 —»xs a] — af to obtain a1 —, . —$xs af,
i ext T int "o
and hence a1 0'az —>, . —»rs a1 o' as.
; int i t int .
—a=ai0'as =, a) olar 5. b, a1 —>xsa}, and the external reduction takes
place at the root. We study the three possible rules:
o (o-A-trans) : We have a} = X¢ and b = A(c'c' " az). Remark 3.1 ensures

int
that a1 = Ac and ¢ —>,, ¢’. We can then commute:
i i t ; int i
a=aioc'as = (\c)o'as RN )\(calﬂag) Sl A(c'a‘“(m) =b

o (o-app-trans) : We have a} = ¢/d’ and b = (¢ 0'a2)(d’ o'az). Remark 3.2
. int int
ensures that a1 = cd and, either ¢ =5, ¢ and d = d', or d =, d’ and
¢ =c . In both cases we can commute as in the previous case.
o (o-dest) : We have a} = n and this is impossible by remark 3.3.
as —xs a5 ¢ As in the previous case, the external reduction can take place within a;
or at the root:
i int i 1 ext i ’ ext ’
— a4 =0a10"a2 —xs A1 0'Ay —>s A1 0'ay, a2 —xs @ and a1 — s ay . We can
. I ext AR int i
commute to obtain: a = a1 0'az —>s a] 0'az —xs a1 0 Ay.
i int i t .
—a=a10% —>xs a10'ah =5, b, az —s ah and the external reduction takes
place at the root. We study the three possible rules:
o (o-A-trans) : We have a; = Ac and b = A\(co*t1a}). We can commute:

a=aio'ar = (Ac)o'as = Aco T az) 2 e Mo ah) =b

o (o-app-trans) : We have a; = ¢d and b = (co'ab)(do’ab). We can com-
mute generating two internal steps:

a=aio'ay = (cd) olas it>s (caia2)(d0ia2) ﬁb\s

(co'ab)(do'as) =5y (co'ab)(do'ah) =b

o (o-dest) : We have a1 =n.
Ifn>ithen b=n— 1. But nolas 5, n — 1.
If n <ithen b =n. But nolas =5, n.
If n = i then b = piah. We must now consider wether as —. a} is
external or internal. If it is internal we can commute to obtain:

i i ext i int i1
a=a10 a2 =N0 a2 —>s Poa2 —>>\s<Poa2=b-

But if it is external we must check that it is in fact an s-reduction to
conclude:

1 1 ext 7 ext P
a=a100a2 =00 a2 —s Poaz —s Poaz = b



int

giving us a e—Xt):_ b —xs b . So we must prove that a» it)a_gm ay is im-
possible. It is for the treatment of this case that our additional hypotheses
are necessary.
Suppose that a2 e—n>g_gen ab, then pias e—nm_gm pbabh. By proposition 2,
s(phaz) S35 s(phab). But by hypothesis, s(no'as) = s(a) = s(b) = s(pbab)
and, since n = i, s(no'as) = s(phaz). This contradicts the hypothesis s(a)
is 3-SN.
Therefore as =5, a}, and we are done.
a = pia1 : Two possibilities according to the position of the external reduction.
— play LN pial i pial and a; LN a) i ay . Let us check the hypotheses:
1. We know that s(pia1) = Uj(s(a1)) is 3-SN. To prove that s(a;) is 8-SN,
suppose it is not, and use lemma 7.1 to find an infinite derivation for s(p%a1).
2. We know that s(pia1) = s(phal), hence U} (s(a1)) = Ui (s(a})). We also know,
by corollary 3, that s(ai) —»s s(a). If s(a1) <54 s(a}), then by lemma 7.1 we
have Uj (s(a1)) i)g Ui (s(a})). But this is a contradiction since U} (s(a1)) =
s(pha1) = s(piay) = Ui(s(a})) and we are assuming that s(@ka1) is 3-SN.
Therefore, s(a1) = s(ay).
We can then apply IH and conclude easily.
— lar s pial 250, a1 5. a) and the external reduction takes place at the
root. Three rules are possible:
o (p-A-trans) : We have a} = A¢’ and b = A(p},4,¢). Remark 3.1 ensures that

a1 = Ac and ¢ ﬂns ¢. We can then commute:
a = @Zm = @L(AC) e—Xt>s >\(<P;;+1C) l—nths /\(‘P2+10,) =b.
o (p-app-trans) : We have a} = ¢/d’ and b = (pic')(pLd’). Remark 3.2 ensures

int

that a; = cd and, either ¢ it ¢ and d = d,ord—\sd and c = ¢. In
both cases we can commute as in the previous case.
o (p-dest) : We have a] = n and this is impossible by remark 3.3. m|
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