
Generalised �-reduction and explicitsubstitutions8th international conference on ProgrammingLanguages: Implementations, Logics andPrograms, PLILP96, LNCS 1140, pages 378-392?Fairouz Kamareddine and Alejandro R��osDepartment of Computing Science, 17 Lilybank Gardens, University of Glasgow,Glasgow G12 8QQ, Scotland, fax: +44 41 330 4913,email: fairouz@dcs.gla.ac.uk and rios@dcs.gla.ac.ukAbstract. Extending the �-calculus with either explicit substitution orgeneralised reduction has been the subject of extensive research recentlywhich still has many open problems. Due to this reason, the propertiesof a calculus combining both generalised reduction and explicit substitu-tions have never been studied. This paper presents such a calculus �sgand shows that it is a desirable extension of the �-calculus. In partic-ular, we show that �sg preserves strong normalisation, is sound and itsimulates classical �-reduction. Furthermore, we study the simply typed�-calculus extended with both generalised reduction and explicit substi-tution and show that well-typed terms are strongly normalising and thatother properties such as subtyping and subject reduction hold.1 Introduction1.1 The �-calculus with generalised reductionIn ((�x:�y:N)P)Q, the function starting with �x and the argument P resultin the redex (�x:�y :N)P which when contracted will turn the function startingwith �y and Q into a redex. This fact has been exploited by many researchersand reduction has been extended so that the future redex based on the matching�y and Q is given the same priority as the other redex. Attempts at generalisingreduction can be summarized by three axioms:(�) ((�x:N)P)Q! (�x:NQ)P , () (�x:�y:N)P ! �y :(�x:N)P ,(C) ((�x:�y:N)P)Q! (�y :(�x:N)P)Q.These rules attempt to make more redexes visible. C e.g., makes sure that �yand Q form a redex even before the redex based on �x and P is contracted.By compatibility, implies C . Moreover, ((�x:�y :N)P)Q !� (�x:(�y:N)Q)Pand hence both � and C put � adjacently next to its matching argument. �? This work was carried out under EPSRC grant GR/K25014.

moves the argument next to its matching � whereas C moves the � next to itsmatching argument. � can be equally applied to explicitly and implicitly typedsystems. The transfer of or C to explicitly typed systems is not straightforwardhowever, since in these systems, the type of y may be a�ected by the reduciblepair �x; P . E.g., it is �ne to write ((�x:�:�y:x:y)z)u!� (�x:�:(�y:x:y)u)z but notto write ((�x:�:�y:x:y)z)u!C (�y:x:(�x:�:y)z)u. Hence, we study �-like rules inthis paper. Now, we discuss where generalised reduction has been used (cf. [24]).[32] introduces the notion of a premier redex which is similar to the redexbased on �y and Q above (which we call generalised redex). [33] uses � and (andcalls the combination �) to show that the perpetual reduction strategy �nds thelongest reduction path when the term is Strongly Normalising (SN). [37] alsointroduces reductions similar to those of [33]. Furthermore, [22] uses � (andother reductions) to show that typability in ML is equivalent to acyclic semi-uni�cation. [35] uses a reduction which has some common themes with �. [30] and[11] use � whereas [25] uses to reduce the problem of �-strong normalisationto the problem of weak normalisation (WN) for related reductions. [23] uses �and to reduce typability in the rank-2 restriction of the 2nd order �-calculusto the problem of acyclic semi-uni�cation. [27, 38, 36, 26] use related reductionsto reduce SN to WN and [21] uses similar notions in SN proofs. [2] uses � (called\let-C") as a part of an analysis of how to implement sharing in a real languageinterpreter in a way that directly corresponds to a formal calculus. [16] usesa more extended version of � where Q and N are not only separated by theredex (�x:N)P but by many redexes (ordinary and generalised). [16] shows thatgeneralised reduction makes more redexes visible allowing exibility in reducinga term. [6] shows that with generalised reduction one may indeed avoid sizeexplosion without the cost of a longer reduction path and that �-calculus canbe elegantly extended with de�nitions which result in shorter type derivations.Generalised reduction is strongly normalising (cf. [6]) for all systems of the cube(cf. [3]) and preserves strong normalisation of classical reduction (cf. [13]).1.2 The �-calculus with explicit substitutionFunctional programming and in particular partial evaluation may bene�t fromexplicit substitution. For example, given xx[x := y], we may not be interestedin having yy as the result of xx[x := y] but rather only yx[x := y]. In otherwords, we only substitute one occurrence of x by y and continue the substitutionlater. This issue of being able to follow substitution and decide how much to doand how much to postpone, has become a major one in functional languageimplementation (cf. [31]). Another wish is to execute substitutions only whennecessary. For this purpose one may decide to postpone substitutions as longas possible (\lazy evaluations"). This can yield pro�ts, since substitution is anine�cient, maybe even exploding, process by the many repetitions it causes.This is the ground for the so-called graph reduction (cf. [31]). Most theoremprovers (Nuprl [7], Coq [12]) use explicit substitutions in their implementationin order to replace locally (rather than globally) some abbreviated term. This

avoids explosion when it is necessary that a variable be replaced by a huge termonly in speci�c places so that a certain theorem can be proved.Most literature on the �-calculus considers substitution as an implicit op-eration: the computations to perform substitution are usually described withoperators which do not belong to the language of the �-calculus. The last �fteenyears have seen an interest in formalising substitution explicitly; various calculiincluding new operators to denote substitution have been proposed. Amongstthese calculi we mention C��� (cf. [10]); the calculi of categorical combinators(cf. [8]); ��, ��*, ��SP (cf. [1, 9, 34]) referred to as the ��-family; �� (cf. [4]), adescendant of the ��-family; '�BLT (cf. [15]), �exp (cf. [5]), �s (cf. [17]), �se(cf. [19]) and �� (cf. [29]). All these calculi (except �exp) are described in a deBruijn setting where natural numbers play the role of the classical variables.In [17], we extended the �-calculus with explicit substitutions by turning deBruijn's meta-operators into object-operators o�ering a style of explicit substi-tution that di�ers from that of ��. The resulting calculus �s remains as close aspossible to the �-calculus from an intuitive point of view. The main interest inintroducing the �s-calculus (cf. [17]) was to provide a calculus of explicit substi-tutions which would both preserve strong normalisation and have a conuent ex-tension on open terms (cf. [19]). There are calculi of explicit substitutions whichare conuent on open terms: the ��*-calculus (cf. [9]), but the non-preservationof strong normalisation for ��*, for the rest of the ��-family and for the categor-ical combinators, has been proved (cf. [28]). There are also calculi which satisfythe preservation property: the ��-calculus (cf. [4]), but this calculus is not con-uent on open terms. Recently, the ��-calculus (cf. [29]) has been proposed asa calculus which preserves strong normalisation and is itself conuent on openterms. It works with two new applications that allow the passage of substitu-tions within classical applications only if these applications have a head variable.This is done to cut the branch of the critical pair which is responsible for thenon-conuence of �� on open terms. Unfortunately, �� is not able to simulateone step �-reduction as shown in [29], it simulates only a \big step" �-reduction.This lack of the simulation property is an uncommon feature among calculi ofexplicit substitutions. On the other hand, �s has been extended to �se whichis conuent on open terms (cf. [19]) and simulates one step �-reduction but thepreservation of strong normalisation is still an open problem.1.3 Combining generalised reduction and explicit substitutionAll the research mentioned above is a living proof for the importance and use-fulness of generalised reduction and explicit substitutions. Moreover, a systemwhere reduction is generalised and substitution is explicit, gives a more exibleway of evaluating programs thanks to the advantages of step-wise substitutionand the ability of reducing more redexes.Before such a combination can be used as a powerful basis for programming,we need to check that this combination is sound and safe exactly like we checkedthat each of explicit substitutions and generalised reductions are sound and safe.

This paper shows that extending the �-calculus with both concepts results intheories that are conuent, preserve termination, and simulate �-reduction.Generalised reduction g�, has never been introduced in a de Bruijn setting.Explicit substitution, has almost always been presented in a de Bruijn setting.For this reason, we combine g�-reduction and explicit substitution in a de Bruijnsetting giving the �rst calculus of generalised reduction �a la de Bruijn. As weneed to describe generalised redexes in an elegant way, we use a notation suitablefor this purpose the item notation (cf. [14]).In Section 2 we introduce the calculus of generalised reduction, the �g-calculus, in item notation with de Bruijn indices and prove its conuence.In Section 3 we extend the �s-calculus with !g� into the �sg-calculus. Weshow that �sg is sound with respect to �g, simulates g� and is conuent.In Section 4 we prove that the �sg-calculus preserves �s-strong normalisationand conclude that a is �-SN , a is �s-SN , a is �g-SN , a is �sg-SN.In Section 5 the simply typed versions of the �s- and �sg-calculi are presentedand subject reduction, subtyping, and SN of well typed terms are proved.This article is an abridged version of [20], where more detailed proofs aregiven.2 The �g-calculusWe assume familiarity with de Bruijn notation. Since generalised �-reduction iseasily described in item notation, we adopt the item syntax (cf. [16, 14] for theadvantages of item notation) and write a b as (b �)a and �:a as (�)a.De�nition 1 The set of terms �, is de�ned as follows: � ::= INj(��)�j(�)�We let a; b; : : : range over � and m;n; : : : over IN (positive natural numbers).a = b means that a and b are syntactically identical. We write a / b when a is asubterm of b. We assume the usual de�nition of compatibility.(�x�y:zxy)(�x:yx) !� �u:z(�x:yx)u translates to (��521)(�31) !� �4(�41)1.Note that we did not simply replace 2 in �521 by �31. Instead, we decreased 5as one � disappeared, and incremented the free variables of �31 as they occurwithin the scope of one more �. For incrementing the free variables we needupdating functions U ik, where k tests for free variables and i� 1 is the value bywhich a variable, if free, must be incremented:De�nition 2 U ik : �! � for k � 0 and i � 1 are de�ned inductively:U ik((a �)b) = (U ik(a) �)U ik(b)U ik((�)a) = (�)(U ik+1(a)) U ik(n) = �n+ i� 1 if n > kn if n � kNow we de�ne meta-substitution. The last equality substitutes the intendedvariable (when n = j) by the updated term. If n is not the intended variable, itis decreased by 1 if it is free (case n > j) as one � has disappeared and if it isbound (case n < j) it remains unaltered.

De�nition 3 The meta-substitutions at level j , for j � 1 , of a term b 2 �in a term a 2 � , denoted affj bgg , is de�ned inductively on a as follows:((a1�)a2)ffj bgg = ((a1ffj bgg)�)(a2ffj bgg)((�)c)ffj bgg = (�)(cffj+1 bgg) nffj bgg = 8<:n� 1 if n > jU j0 (b) if n = jn if n < jThe following gives the properties of meta-substitution and updating (cf. [17]):Lemma 1 Let a; b; c 2 �. We have:1. for k < n < k + i : U i�1k (a) = U ik(a)ffn bgg .2. for l � k < l + j : U ik(U jl (a)) = U j+i�1l (a) :3. for k + i � n : U ik(a)ffn bgg = U ik(affn� i+ 1 bgg) :4. for i � n : affi bggffn cgg = affn+ 1 cggffi bffn� i+ 1 cgggg :5. for l + j � k + 1 : U ik(U jl (a)) = U jl (U ik+1�j(a)) .6. for n � k + 1 : U ik(affn bgg) = U ik+1(a)ffn U ik�n+1(b)gg :In order to introduce generalised �-reduction we need some de�ntions (cf. [14]).De�nition 4 Items, segments and well-balanced segments (w.b.) are de�nedrespectively by: I ::= (��) j (�) S ::= � j I S W ::= � j (��)W(�) j WWwhere � is the empty segment. Hence, a segment is a sequence of items. (a �)and (�) are called �- and �-item respectively. We let I, J , ... range over I;S, S0, ... over S and W , U , ... over W. For a segment S, lgS, is given by:lg � = 0, lg(I S) = 1 + lgS. The number of main �-items in S, N(S), is givenby: N(�) = 0, N((a �)S) = N(S) and N((�)S) = 1 +N(S).De�nition 5 �-calculus is the reduction system (�;!�), where !� is the leastcompatible reduction on � generated by the �-rule: (a�)(�)b! aff1 bgg.De�nition 6 Generalised �, !g� , is the least compatible reduction on � gen-erated by the g�-rule: (a�)W (�)b!W (bff1 UN(W)+10 (a)gg) where W is w.b.The �g-calculus is the reduction system (�;!g�).Remark 1 The �-rule is an instance of the g�-rule.Proof: Take W = � and check U10 (a) = a. 2Now, let us briey explain the relation between !g� and !�, ! , !Cgiven in the introduction. As ! implies !C , we ignore the latter. It would behelpful if we write !� and ! in item notation:(Q�)(P�)(�x)N !� (P�)(�x)(Q�)N (P�)(�x)(�y)N ! (�y)(P�)(�x)NNote how in !�, the start of a redex (P�)(�x) is moved (or reshu�ed) giving(Q�) the chance to �nd its matching (�) in N . In ! the same happens butnow it is (�y) which is given the chance to look for its matching (��). Only oncereshu�ing has taken place, can the newly found redex be contracted. !g� onthe other hand avoids reshu�ing and contracts the redex as soon as it sees thematching of � and �.We de�ne segments' updating and meta-substitution and prove some prop-erties.

De�nition 7 Let S 2 S, a; b 2 �, k � 0 and n; i � 1.We de�ne U ik(S) and Sffn agg by:U ik(�) = � �ffn agg = �U ik((b �)S) = (U ik(b) �)U ik(S) ((b �)S)ffn agg = (bffn agg �)(Sffn agg)U ik((�)S) = (�)(U ik+1(S)) ((�)S)ffn agg = (�)(Sffn+1 agg)Lemma 2 Let S; T be segments and a; b 2 �. The following hold:1. U ik(S T) = U ik(S)U ik+N(S)(T) and U ik(S a) = U ik(S)U ik+N(S)(a)2. lg(S) = lg(U ik(S)) , N(S) = N(U ik(S)) and if S w.b. then U ik(S) w.b.3. (S �)ffn agg = Sffn agg �ffn+N (S) agg for � a segment or a term4. If r 2 flg; Ng then r(S) = r(Sffn agg). If S w.b. then Sffn agg w.b.Proof: All by induction on S. For 2. and 4. use 1. and 3. respectively. 2Lemma 3 Let a; b 2 �. If a!!g� b then a =� b.Proof: First prove by induction on a that a!g� b implies a =� b. To show thecase (c�)W (�)d!g� W (dff1 UN(W)+10 (c)gg) use induction on lgW . 2Theorem 1 (Conuence of �g) The �g-calculus is conuent.Proof: Use Lemma 3 and Remark 1 (cf. [16]). 2Next, we ensure the good passage of g�-reduction through ff gg and U ik:Lemma 4 Let a; b; c; d 2 �. The following hold:1. If c!g� d then U ik(c)!g� U ik(d) .2. If c!g� d then affn cgg !!g� affn dgg .3. If a!g� b then affn cgg !g� bffn cgg .Proof: 1. By induction on c. 2. and 3. By induction on a. 23 The �s- and �sg-calculiThe idea is to handle explicitly the meta-operators of de�nitions 2 and 3. Hence,the syntax of the �s-calculus is obtained by adding two families of operators:1. Explicit substitution operators f�jgj�1 where (b �j)a stands for a where allfree occurrences of the variable representing j are to be substituted by b.2. Updating operators f'ikgk�0 i�1 needed for working with de Bruijn indices.De�nition 8 The set of terms, noted �s , of the �s-calculus is given as follows:�s ::= IN j (�s �)�s j (�)�s j (�s�j)�s j ('ik)�s where j; i � 1 ; k � 0.We let a; b; c range over �s. A term (a �j)b is called a closure. Furthermore, aterm containing neither �'s nor ''s is called a pure term. � denotes the set ofpure terms. ��-segments are those whose main items are either �- or �-items,i.e. DL ::= � j (�s �)DL j (�)DL. Compatibility is extended by adding:(a �j)c! (b �j)c, (c �j)a! (c �j)b and ('ik)a! ('ik)b whenever a! b.

De�nition 9 Items, segments and well-balanced segments for �s are de�nedas follows: Is ::= (�s �) j (�) j (�s�j) j ('ik) Ss ::= � j IsSsWs ::= � j (�s �)Ws(�) j WsWsWe let I, J , ... range over Is; S, S0, ... over Ss and W , U , ... over Ws. We call(a �j) and ('ik), �- and '-item respectively. lg(S) is trivially extended to S 2 Ssand N(S) is extended by: N((a �j)S) = N(S) and N(('ik)S) = N(S).As the �s-calculus updates and substitutes explicitly, we include a set of ruleswhich are the equations in de�nitions 2 and 3 oriented from left to right.De�nition 10 The �s-calculus is the reduction system (�s;!�s), where !�sis the least compatible reduction on �s generated by the following rules:�-generation (b �)(�)a �! (b �1)a�-�-transition (b �j)(�)a �! (�)(b �j+1)a�-app-transition (b �j)(a1�)a2 �! ((b �j)a1�) (b �j)a2�-destruction (b �j)n �! 8<:n� 1 if n > j('j0)b if n = jn if n < j'-�-transition ('ik)(�)a �! (�)('ik+1)a'-app-transition ('ik)(a1�)a2 �! (('ik)a1�)('ik)a2'-destruction ('ik)n �! �n+ i� 1 if n > kn if n � kWe use �s to denote this set of rules. The calculus of substitutions associatedwith the �s-calculus is the reduction system generated by the set of rules s =�s� f�-generationg and we call it the s-calculus.The �sg-calculus is the calculus whose set of rules is �sg = �s+fg�-generationg:g�-generation (b �)W (�)a �! W (('N(W)+10)b �1)a W w.b, W 6= �Note that in the �sg-calculus we do not merge �-generation and g�-generation ina new g�-generation which admits W = � because in that case we would obtain,when W = �, the rule (b�)(�)a ! (('10b)�1)a, and this is not a generalisation ofthe original �-generation of the �s-calculus.�-generation starts �-reduction by generating a substitution operator (�1).�-app and �-� allow this operator to travel throughout the term until its arrivalto the variables. If a variable should be a�ected by the substitution, �-destruction(case j = n) carries out the substitution by the updated term, thus introducingthe updating operators. Finally the '-rules compute the updating. We state nowthe following theorem of the �s-calculus (cf. [19]).Theorem 2 The s-calculus is strongly normalising and conuent on �s, hences-normal forms are unique. The set of s-normal forms is exactly �. If s(a)

denotes the s-normal form of a, then for a; b 2 �s: s((a �)b) = (s(a) �)s(b),s((�)a) = (�)(s(a)), s(('ik)a) = U ik(s(a)) and s((b �j)a) = s(a)ffj s(b)gg.Lemma 5 Let a; b 2 �s , if a!(g)��gen b then s(a)!!(g)� s(b).Proof: Induction on a using Lemma 4 and Theorem. 2. For the case with g,note that if W is w.b then s(W a) = s(W)s(a), where the s-nf of a ��-segmentis given by: s(�) = �, s((a �)S) = (s(a) �)s(S) and s((�)S) = (�)s(S). 2Corollary 1 Let a; b 2 �s , if a!!�sg b then s(a)!!g� s(b).Corollary 2 (Soundness) Let a; b 2 � , if a!!�sg b then a!!g� b.Hence, the �sg-calculus is correct w.r.t. the �g-calculus, i.e. �sg-derivations ofpure terms ending with pure terms can also be derived in the �g-calculus.Moreover, the �sg-calculus is powerful enough to simulate g�-reduction.Lemma 6 (Simulation of !g�) Let a; b 2 �, if a!g� b then a!!�sg b.Proof: Induction on a using Lemma 4. 2Theorem 3 (Conuence of �sg) The �sg-calculus is conuent on �s.Proof: Use the interpretation method (cf. [9]), Corollary 1, conuence of the�g-calculus and Lemma 6. 24 The �sg-calculus preserves �s-SNThe technique used here to prove preservation of strong normalisation (PSN) isthe same used in [4] to prove PSN for �� and in [17] to prove PSN for �s.Notation 1 We write a 2 �-SN resp. a 2 �r-SN when a is strongly normalisingin the �-calculus resp. in the �r-calculus for r 2 fg; sg; sg. We write a!p b todenote that p is the occurrence of the redex which is contracted. Therefore a!� bmeans that the reduction takes place at the root. If no speci�cation is made thereduction must be understood as a �sg-reduction. We denote by � the pre�xorder between occurrences of a term. Hence if p; q are occurrences of the term asuch that p � q, and we write ap (resp. aq) for the subterm of a at occurrence p(resp. q), then aq is a subterm of ap. E.g., if a = 2�3((�1)4), we have a1 = 2,a2 = (�1)4, a21 = �1, a211 = 1, a22 = 4. Since 2 � 21, a21 is a subterm of a2.The following three lemmas assert that all the �'s in the last term of a deriva-tion beginning with a �-term must have been created at some previous step bya (generalised) �-generation and trace the history of these closures. The �rstlemma deals with one-step derivation where the redex is at the root; the secondgeneralises the �rst; the third treats arbitrary derivations.

Lemma 7 If a!� C[(e �i)d] then one of the following must hold:1. a = (e �)(�)d, C = 2 and i = 1.2. a = (e0 �)W (�)d, W 6= �, C =W2, e = ('N(W)+10)e0 and i = 1.3. a = C 0[(e �j)d0] for some context C 0, some term d0 and some natural j.Proof: Since the reduction is at the root, check for every rule a ! a0 in �sgthat if (e �i)d occurs in a0 then either 1. or 2. or 3. follows. 2Lemma 8 If a! C[(e �i)d] then one of the following must hold:1. a = C[(e �)(�)d] and i = 1.2. a = C 0[(e0 �)W (�)d], C = C 0[W2], e = ('N(W)+10)e0 and i = 1.3. a = C 0[(e0 �i)d0] where e0 = e or e0 ! e.Proof: Induction on a, using lemma 7 for the reductions at the root. 2Lemma 9 If a1! : : :!an+1=C[(e �i)d], there exist e0; d02�s with e0!!e and,either a1 = C 0[(e0 �j)d0] or for some k � n and W w.b., ak = C 0[(e0 �)W (�)d0]and ak+1 = C 0[W (('N(W)+10)e0 �1)d0] or, if W = �, ak+1 = C 0[(e0 �1)d0].Proof: Induction on n and use the previous lemma. 2We de�ne now internal and external reductions. An internal reduction takesplace at the left of a �i operator. An external reduction is a non-internal one.Our de�nition is inductive rather than starting from the notion of internal andexternal position as in [4].De�nition 11 The reduction int�!�sg is de�ned by the following rules:a �!�sg b(a �i)c int�!�sg (b �i)c a int�!�sg b(a �)c int�!�sg (b �)c a int�!�sg b(c �)a int�!�sg (c �)ba int�!�sg b(�)a int�!�sg (�)b a int�!�sg b(c �i)a int�!�sg (c �i)b a int�!�sg b('ik)a int�!�sg ('ik)bDe�nition 12 The reduction ext�!s is de�ned by induction. The axioms are therules of the s-calculus and the inference rules are the following:a ext�!s b(a �)c ext�!s (b �)c a ext�!s b(c �)a ext�!s (c �)b a ext�!s b(�)a ext�!s (�)ba ext�!s b(c �i)a ext�!s (c �i)b a ext�!s b('ik)a ext�!s ('ik)bAn external (generalised) �-generation is de�ned by the rule (g)�-generationand the �ve inference rules above where ext�!s is replaced by ext�!(g)��gen .Remark 2 By inspection of the inference rules, a int�!�sg n is impossible and:� If a int�!�sg (�)b then a = (�)c and c int�!�sg b .� If a int�!�sg (c �)b then a = (e �)d and((d int�!�sg b and e = c) or (e int�!�sg c and d = b)).

Note that a ext�!s b(a �i)c ext�!s (b �i)c and a ext�!(g)��gen b(a �i)c ext�!(g)��gen (b �i)c are excluded fromthe de�nitions of external s-reduction and external (generalised) �-generation,respectively. Thus external reductions will not occur at the left of a �i operatorand we write +!� instead of !!� in the following (compare with Lemma 5):Proposition 1 Let a; b 2 �s, if a ext�!(g)��gen b then s(a) +!(g)�s(b).Proof: Induction on a (as in Lemma 5). Note that when a = c �id, the reductioncannot take place within d because it is external, and this is the only case thatforced us to consider the reexive-transitive closure because of lemma 4.2. 2The following is needed in Lemma 11 and hence in the Preservation Theorem.Lemma 10 (Commutation Lemma) Let a; b 2 �s such that s(a) 2 �-SNand s(a) = s(b). If a int�!�sg : ext�!s b then a ext�!+s : int�!�!�sg b .Proof: By a careful induction on a analysing the positions of the redexes. Theproof is exactly the same as that of the Commutation Lemma in [17] 2Lemma 11 Let a 2 �g-SN\� and a !�sg b1 !�sg � � � !�sg bn !�sg � � �, anin�nite derivation. There exists N such that for every i � N , the reductionsbi !�sg bi+1 are internal.Proof: Analogous to the proof of the corresponding lemma in [17]. 2In order to prove the Preservation Theorem we need two de�nitions.De�nition 13 An in�nite �sg-derivation a1!� � �!an!� � � is minimal if forevery step ai!p ai+1, any derivation starting with ai!q a0i+1, if p � q, is �nite.The idea of a minimal derivation is that if one rewrites at least one of its stepswithin a subterm of the actual redex, then an in�nite derivation is impossible.De�nition 14 The syntax of skeletons and the skeleton of a term are as follows:Skeletons K ::= IN j (K �)K j (�)K j ([:]�j)K j ('ik)KSk(n) = n Sk((a �)b) = (Sk(a) �)Sk(b) Sk((b �i)a) = ([:]�i)Sk(a)Sk((�)a) = (�)Sk(a) Sk(('ik)a) = ('ik)Sk(a)Remark 3 Let a; b 2 �s. If a int�!�sg b then Sk(a) = Sk(b).Theorem 4 (Preservation of �s-SN) For every a 2 �, if a is strongly nor-malising in the �s-calculus then a is strongly normalising in the �sg-calculus.Proof: Assume a 2 �s-SN, a 62 �sg-SN and take a minimal in�nite �sg-derivationD : a! a1 ! � � � ! an ! � � � . Lemma 11 givesN such that for i � N ,ai ! ai+1 is internal. By Remark 3, Sk(ai) = Sk(ai+1) for i � N . As there areonly a �nite number of closures in Sk(aN) and as the reductions within these clo-sures are independent, an in�nite subderivation D0 of D must take place within

the same and unique closure in Sk(aN) and D0 is also minimal. Let C be thecontext such that aN = C[(d �i)c] and (d �i)c is the closure where D0 takes place:D0 : aN = C[(d �i)c] int�!�sg C[(d1 �i)c] int�!�sg � � � int�!�sg C[(dn �i)c] int�!�sg � � �Since a is a pure term, Lemma 9 ensures the existence of I � N such that eitheraI = C 0[(d0 �)(�)c0]! aI+1 = C 0[(d0�1)c0] and d0 !! d oraI = C 0[(d0 �)W (�)c0]! aI+1 = C 0[W (('N(W)+10)d0�1)c0] and d0 !! d.Let us consider in the �rst and second cases respectively, the in�nite derivations:D00 : a!! aI !! C 0[(d�)(�)c0]! C 0[(d1�)(�)c0]!� � �! C 0[(dn�)(�)c0] � � �D000 : a!! aI !! C 0[(d�)W (�)c0]! C 0[(d1�)W (�)c0]!� � �! C 0[(dn�)W (�)c0] � � �In D00 andD000, the redex in aI is within d0 which is a proper subterm of (d0 �)(�)c0(of (d0 �)W (�)c0 in the second case), whereas in D the redex in aI is (d0 �)(�)c0(in the second case (d0 �)W (�)c0) and this contradicts the minimality of D. 2Corollary 3 For every a 2 �, the following equivalences hold:a 2 �g-SN i� a 2 �sg-SN i� a 2 �-SN i� a 2 �s-SNProof: By Remark 1 and Theorem 4, a 2 �s-SN i� a 2 �sg-SN. Due to [13],a 2 �-SN i� a 2 �g-SN. Due to [17], a 2 �-SN i� a 2 �s-SN. 25 The typed �s- and �sg-calculiWe prove �sg-SN of well typed terms using the technique developped in [18] toprove �s-SN and suggested to us by P.-A. Melli�es as a successful technique toprove ��-SN (personal communication). We recall the syntax and typing rulesfor the simply typed �-calculus in de Bruijn notation. The types are generatedfrom a set of basic types T with the binary type operator !. Environments arelists of types. Typed terms di�er from the untyped ones only in the abstractionswhich are now marked with the type of the abstracted variable.De�nition 15 The syntax for the simply typed �-terms is given as follows:Types T ::= T j T ! TEnvironments E ::= nil j T ; ETerms �t ::= n j (�t �)�t j (T �)�tWe let A, B, ... range over T ; E, E1, ... over E and a, b, ... over �t.The typing rules are given by the typing system L1 as follows:(L1� var) A;E ` 1 : A (L1� �) A;E ` b : BE ` (A�)b : A! B(L1� varn) E ` n : BA;E ` n+ 1 : B (L1� app) E ` b : A! B E ` a : AE ` (a �)b : BIf E is the environment E1; E2; : : : ; En, we shall use the notation E�i for theenvironment Ei; Ei+1; : : : ; En, analogously E�i stands for E1; : : : ; Ei, etc.

De�nition 16 The syntax for the simply typed �s-terms is given as follows:�st ::= IN j (�st �)�st j (T �)�st j (�st �i)�st j ('ik)�st i � 1 ; k � 0.Types and environments are as above. The typing rules of the system Ls1 are:The rules Ls1-var, Ls1-varn, Ls1-� and Ls1-app are exactly the same as L1-var, L1-varn, L1-� and L1-app, respectively. The new rules are:(Ls1� �) E�i ` b : B E<i; B;E�i ` a : AE ` (b �i)a : A (Ls1� ') E�k; E�k+i ` a : AE ` ('ik)a : AThe simply typed �s- and �sg-calculi are de�ned by the same rules of the untypedversions, except that abstractions in the typed versions are marked with types.De�nition 17 a 2 �st is a well typed term if for some environment E andtype A, E `Ls1 a : A. We note �swt the set of well typed terms.The aim of this section is to prove that every well typed �s-term a is �sg-SN(and hence �s-SN). To do so, we show �swt � � � �sg-SN, where� = fa 2 �st : for every subterm b of a; s(b) 2 �g-SNg.To prove �swt � � (Proposition 2) we need to establish some useful results suchas subject reduction, soundness of typing and typing of subterms:Lemma 12 Let S be a segment, A; B types and a; b; c 2 �st. We have:1. E ` S(('i0)a �)(c �)(B �)b : A i� E ` S(c �)(B �)(('i+10)a �)b : A2. E ` S(('i0)('j0)a �)b : A i� E ` S(('i+j�10)a �)b : A3. E ` S(a �)(B �)b : A i� E ` S(a �1)b : AProof: All by induction on S. 2Lemma 13 (Shu�e Lemma) Let S be an arbitrary segment, W a w.b. seg-ment and a; b 2 �st, then E ` S(a �)W b : A i� E ` SW (('N(W)+10)a �) b : A .Proof: By induction on W using Lemma 12. If W = �, it is immediate sinceE0 ` d : D i� E0 ` ('10)d : D. Let us assume W = (c �)U(B �)V , with U; V w.b..E ` S(a �)(c �)U(B �)V b : A i� (IH)E ` S(a �)U(('N(U)+10)c �)(B �)V b : A i� (IH)E ` SU(('N(U)+10)a �)(('N(U)+10)c �)(B �)V b : A i� (Lemma 12.1)E ` SU(('N(U)+10)c �)(B �)(('N(U)+20)a �)V b : A i� (IH, twice)E ` S(c �)U(B �)V (('N(V)+10)('N(U)+20)a �)b : A i� (Lemma 12.2)E ` S(c �)U(B �)V (('N(V)+N(U)+20)a �)b : A 2Lemma 14 (Subject reduction) If E `Ls1 a :A, a!�sg b then E `Ls1 b :A.Proof: Induction on a. If the reduction is not at the root, use IH. Else, showfor every rule a ! b that E `Ls1 a : A implies E `Ls1 b : A. Case �-gen,use Lemma 12.3. Case g�-gen: If E ` (a �)W (B �)b : A then, by Lemma 13,we have E ` W (('N(W)+10)a �)(B �)b : A and, by Lemma 12.3, we concludeE `W (('N(W)+10)a �1)b : A . 2

Corollary 4 Let E `Ls1 a : A, if a!!�sg b then E `Ls1 b : A.Lemma 15 (Typing of subterms) If a 2 �swt and b / a then b 2 �swt.Proof: By induction on a. If b is not an immediate subterm of a, use IH. Else,the last rule used to type a has a premise in which b is typed. 2Lemma 16 (Soundness of typing) If a2�t, E `Ls1 a :A then E `L1 a :A.Proof: Easy induction on a. 2Proposition 2 �swt � � .Proof: Let a 2 �swt and b a subterm of a. By Lemma 15, b 2 �swt and byCorollary 4, s(b) 2 �swt. Since s(b) 2 � (Thm. 2), Lemma 16 gives s(b) is L1-typable. But classical typable �-terms are strongly normalising in the �-calculus.Hence, s(b) 2 �-SN and, by Corollary 3, s(b) 2 �g-SN. Therefore a 2 �. 2We prove now � � �sg-SN.Lemma 17 Let a 2� and a !�s b1 !�s � � � !�s bn !�s � � �, an in�nite �s-derivation. There exists N such that for i � N all the reductions bi !�s bi+1are internal.Proof: The proof is almost the same as the proof of lemma 11. 2Proposition 3 For every a 2 �st, if a 2 � then a 2 �sg-SN.Proof: Assume a0 2� and a0 62 �sg-SN, then there exists a term a of minimalsize such that a2� and a 62 �sg-SN. Let D : a ! a1 ! � � � ! an ! � � � be aminimal in�nite �sg-derivation and follow the proof of Theorem 4 to obtain:D0 : aN = C[(d �i)c] int�!�sgC[(d1 �i)c] int�!�sg � � � int�!�sgC[(dn �i)c] int�!�sg � � �Now three possibilities arise from lemma 9. Two of them have been considered inthe proof of Theorem 4 and contradicted the minimality of D. Take the third one:a = C 0[(d0 �i)c0] where d0 !! d. Now we have d0 !! d ! d1 ! � � � ! dn ! � � � .As d0 is a subterm of a, d0 2 �, contradicting that a has minimal size. 2Therefore we conclude, using Propositions 2 and 3 and Corollary 3:Theorem 5 Well typed �s-term are strongly normalising in the �sg-calculus.Corollary 5 Well typed �s-term are strongly normalising in the �s-calculus.6 ConclusionIn this paper, we started from the fact that generalised reduction and explicitsubstitution play a vital role in useful extensions of the �-calculus but have neverbeen combined together. We commented that the combination might indeed joinboth bene�ts and hence a �-calculus extended with both needs to be studied.

We presented such a calculus and showed that it possesses the important prop-erties that have been the center of research for each concept on its own. Inparticular, we showed that the resulting calculus is conuent, sound and simu-lates �-reduction. We showed moreover that it preserves strong normalisation ofthe unextended �-calculus and of the �-calculus extended with each of the twoconcepts independently. We studied furthermore, the simply typed version ofour calculus of explicit substitution and generalised reduction and showed thatit has again the important properties such as subject reduction, soundness ofsubtyping, typing of subterms and strong normalisation of well typed terms.Now that a calculus combining both concepts have been shown to be theo-retically correct, it would be interesting to extend our calculus �sg to one that isconuent on open terms as is the tradition with calculi of explicit substitution.It would be also interesting to study the polymorphically (rather than the sim-ply) typed version of �sg. These are issues we are investigating at the moment.We are also investigating the correspondence of our calculus to methods thatimplement sharing and parallelism to test if the analysis of sharing given in [2]can be recast in an elegant fashion in our calculus.References1. M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. L�evy. Explicit Substitutions. Jour-nal of Functional Programming, 1(4):375{416, 1991.2. Z.M. Ariola, M. Felleisen, J. Maraist, M. Odersky, and P. Wadler. A call by needlambda calculus. Conf. Rec. 22nd Ann. ACM Symp. Princ. Program. Lang. ACM,1995.3. H. Barendregt. �-calculi with types. Handbook of Logic in Computer Science, II,1992.4. Z. Benaissa, D. Briaud, P. Lescanne, and J. Rouyer-Degli. ��, a calculus of ex-plicit substitutions which preserves strong normalisation. Personal communica-tion, 1995.5. R. Bloo. Preservation of Strong Normalisation for Explicit Substitution. TechnicalReport 95-08, Department of Mathematics and Computing Science, EindhovenUniversity of Technology, 1995.6. R. Bloo, F. Kamareddine, and R. Nederpelt. The Barendregt Cube with De�ni-tions and Generalised Reduction. Information and Computation, 126 (2):123{143,1996.7. R. Constable et al. Implementing Mathematics with the NUPRL DevelopmentSystem. Prentice-Hall, 1986.8. P.-L. Curien. Categorical Combinators, Sequential Algorithms and Functional Pro-gramming. Pitman, 1986. Revised edition : Birkh�auser (1993).9. P.-L. Curien, T. Hardin, and J.-J. L�evy. Conuence properties of weak and strongcalculi of explicit substitutions. Technical Report RR 1617, INRIA, Rocquencourt,1992.10. N. G. de Bruijn. A namefree lambda calculus with facilities for internal de�nitionof expressions and segments. Technical Report TH-Report 78-WSK-03, Depart-ment of Mathematics, Eindhoven University of Technology, 1978.11. P. de Groote. The conservation theorem revisited. Int'l Conf. Typed Lambda Cal-culi and Applications LNCS, 664, 1993.

12. G. Dowek et al. The coq proof assistant version 5.6, users guide. Technical Report134, INRIA, 1991.13. F. Kamareddine. A reduction relation for which postponement of k-contractions,conservation and preservation of strong normalisation hold. Technical report, Glas-gow University, 1996.14. F. Kamareddine and R. Nederpelt. A useful �-notation. Theoretical ComputerScience, 155:85{109, 1996.15. F. Kamareddine and R. P. Nederpelt. On stepwise explicit substitution. Interna-tional Journal of Foundations of Computer Science, 4(3):197{240, 1993.16. F. Kamareddine and R. P. Nederpelt. Generalising reduction in the �-calculus.Journal of Functional Programming, 5(4):637{651, 1995.17. F. Kamareddine and A. R��os. A �-calculus �a la de Bruijn with explicit substitu-tions. Proceedings of PLILP'95. LNCS, 982:45{62, 1995.18. F. Kamareddine and A. R��os. The �s-calculus: its typed and its extended versions.Technical report, Department of Computing Science, University of Glasgow, 1995.19. F. Kamareddine and A. R��os. Extending a �-calculus with Explicit Substitutionwhich preserves Strong Normalisation into a Conuent Calculus on Open Terms.Journal of Functional Programming, 1996. To appear.20. F. Kamareddine and A. R��os. Generalised �-reduction and explicit substitutions.Technical Report TR-1996-21, Department of Computing Science, University ofGlasgow, 1996.21. M. Karr. Delayability in proofs of strong normalizability in the typed �-calculus.Mathematical Foundations of Computer Software, LNCS, 185, 1985.22. A.J. Kfoury, J. Tiuryn, and P. Urzyczyn. An analysis of ML typability. ACM,41(2):368{398, 1994.23. A.J. Kfoury and J.B. Wells. A direct algorithm for type inference in the rank-2 fragment of the second order �-calculus. Proc. 1994 ACM Conf. LISP Funct.Program., 1994.24. A.J. Kfoury and J.B. Wells. Addendum to new notions of reduction and non-semantic proofs of �-strong normalisation in typed �-calculi. Technical report,Boston University, 1995.25. A.J. Kfoury and J.B. Wells. New notions of reductions and non-semantic proofsof �-strong normalisation in typed �-calculi. LICS, 1995.26. Z. Khasidashvili. The longest perpetual reductions in orthogonal expression reduc-tion systems. Proc. of the 3rd International Conference on Logical Foundations ofComputer Science, Logic at St Petersburg, 813, 1994.27. J. W. Klop. Combinatory Reduction Systems. Mathematical Center Tracts, 27,1980.28. P.-A. Melli�es. Typed �-calculi with explicit substitutions may not terminate inProceedings of TLCA'95. LNCS, 902, 1995.29. C. A. Mu~noz Hurtado. Conuence and preservation of strong normalisation inan explicit substitutions calculus. Technical Report 2762, INRIA, Rocquencourt,December 1995.30. R. P. Nederpelt, J. H. Geuvers, and R. C. de Vrijer. Selected papers on Automath.North-Holland, Amsterdam, 1994.31. S.L. Peyton-Jones. The Implementation of Functional Programming Languages.Prentice-Hall, 1987.32. L. Regnier. Lambda calcul et r�eseaux. PhD thesis, Paris 7, 1992.33. L. Regnier. Une �equivalence sur les lambda termes. Theoretical Computer Science,126:281{292, 1994.

34. A. R��os. Contribution �a l'�etude des �-calculs avec substitutions explicites. PhDthesis, Universit�e de Paris 7, 1993.35. A. Sabry and M. Felleisen. Reasoning about programs in continuation-passingstyle. Proc. 1992 ACM Conf. LISP Funct. Program., pages 288{298, 1992.36. M. S�rensen. Strong normalisation from weak normalisation in typed �-calculi.Submitted.37. D. Vidal. Nouvelles notions de r�eduction en lambda calcul. PhD thesis, Universit�ede Nancy 1, 1989.38. H. Xi. On weak and strong normalisations. Technical Report 96-187, CarnegieMellon University, 1996.

This article was processed using the LATEX macro package with LLNCS style

