
Unification via �se-Style of Explicit Substitution �
Mauricio Ayala-Rincón

y
Departamento de Matemática, Universidade de

Brası́lia
70910-900 Brası́lia D.F., Brasil

ayala@mat.unb.br

Fairouz Kamareddine
Department of Computing and Electrical

Engineering, Heriot-Watt University
Riccarton, Edinburgh EH14 4AS, Scotland

fairouz@cee.hw.ac.uk

ABSTRACTA uni�
ation method based on the �se-style of expli
it sub-stitution is proposed. This method together with appropri-ate translations, provide a Higher Order Uni�
ation (HOU)pro
edure for the pure �-
al
ulus. Our method is in
uen
edby the treatment introdu
ed by Dowek, Hardin and Kir
h-ner using the ��-style of expli
it substitution. Corre
tnessand
ompleteness properties of the proposed �se-uni�
ationmethod are shown and its advantages, inherited from thequalities of the �se-
al
ulus, are pointed out. Our methodneeds only one sort of obje
ts: terms. And in
ontrast tothe HOU approa
h based on the ��-
al
ulus, it avoids theuse of substitution obje
ts. This makes our method
loserto the syntax of the �-
al
ulus. Furthermore, dete
tion ofredi
es depends on the sear
h for solutions of simple arith-meti

onstraints whi
h makes our method more operationalthan the one based on the ��-style of expli
it substitution.
KeywordsHigher order uni�
ation, lambda-
al
ulus, expli
it substitu-tion.
1. INTRODUCTIONAfter Robinson's su

essful introdu
tion of his well-known�rst order Resolution Prin
iple based on substitution, uni�-
ation and resolution [26℄, mu
h work has been done in orderto formalize these basi
 notions in other settings. Su
h ex-tensions are essential for amongst other things, automateddedu
tion in higher order logi
s. The �rst person to su

ess-fully formulate a uni�
ation method for the
ase of higher�Partially supported by EPSRC grant numbers GR/L36963and GR/L15685.yPartly supported by FEMAT and CAPES (BEX0384/99-2) Brazilian Foundations. Work
arried out during one yearvisit of this author at the ULTRA Group (Useful Logi
s,Type Theory, Rewriting Systems and Their Appli
ations),Heriot-Watt University.

order logi
s, spe
i�
ally for the typed �-
al
ulus, was Huet[13℄. Sin
e then several Higher Order Uni�
ation (HOU)approa
hes have been developed and used in pra
ti
al lan-guages and theorem provers su
h as �prolog and Isabelle([20; 23℄). In most of these approa
hes, the notion of sub-stitution plays an important role. The importan
e of thenotion of substitution led to an explosion of work on mak-ing substitutions expli
it in re
ent years. Also, a numberof work has been devoted to establish the usefulness of ex-pli
it substitution to automated dedu
tion, theorem provingand proof synthesis [18; 19℄, to programming languages [6℄and to HOU [9℄. The latter paper shows that in the HOUframework, if substitution was made expli
it, many bene�ts
an be obtained in
omputation. In parti
ular, [9℄ presenteda HOU method based on the ��-style of expli
it substitu-tion whi
h was proved useful for dedu
tion in the typed�-
al
ulus and subsequently generalized for treating higherorder equational uni�
ation problems [17℄ and restri
ted forthe
ase of higher order patterns [10℄. Here we develop auni�
ation method based on the �se-style of expli
it sub-stitution whi
h jointly with adequate pre-
ooking and ba
ktranslations between the languages of the �-
al
ulus andthe �se-
al
ulus, as presented in [3℄ give a HOU pro
edure,whi
h takes advantage of the qualities of the �se
al
ulus.In parti
ular, our approa
h avoids the use of two di�erentsorts of obje
ts as in the ��-
al
ulus. Moreover, de
idabil-ity of the appli
ation of our uni�
ation rules (i.e., dete
tionof redi
es) depends on the sear
h for natural solutions ofsimple arithmeti

onstraints. This makes �se-HOU moreoperational than the ��-HOU.
1.1 Higher order unificationHigher order obje
ts arise naturally in many �elds of
om-puter s
ien
e. For example, in the
ontext of implementa-tion of fun
tional languages it is ne
essary to develop me
h-anisms for the treatment of higher order fun
tions. Forinstan
e, the following rewriting system spe
i�es the well-known map fun
tion, whi
h applies a fun
tion to all theelements of a list: map(f;nil)! nil; map(f;
ons(x; l))!
ons(f(x);map(f; l)), where nil and
ons are the usualLISP empty list and
onstru
tor list fun
tion. Observe thatf appears both as a variable and as a fun
tional symbol.From the point of view of �rst oder rewriting it is not pos-sible to manipulate this kind of obje
ts. In fa
t, for simplerewriting based dedu
tion pro
esses, su
h as one-step re-du
tion or
riti
al pair dedu
tion, �rst order mat
hing anduni�
ation do not apply. The solution of these problems, atleast in the rewriting
ontext, is the �-
al
ulus. Rewriting

ould be performed modulo the rules of the �-
al
ulus or
ombining spe
i�
ations with the rules of the �-
al
ulus.The fun
tion map is a typi
al example of a se
ond-orderfun
tion, but fun
tions of third-order or above have pra
ti
alinterest too. In [22℄ useful third- until sixth-order fun
tionswere presented in the
ontext of
ombinator parsing.A simple example of a HOU problem is the sear
h for solu-tions for the equality (F (f))(a) = f(F (a)). A solution is thefun
tion identity fF=�x:xg, but fF (x)=�x:fn(x) j n 2 Ngare solutions too.HOU is essential in higher order automated reasoning, whereit has formed the basis for generalizations of the ResolutionPrin
iple in se
ond-order logi
.Huet's work [13℄ was relevant be
ause he realized that togeneralize Robinson's �rst order Resolution Prin
iple [26℄to higher order theories, it is useful to verify the existen
eof uni�ers without
omputing them expli
itly. Huet's al-gorithm is a semi-de
ision one that may never stop whenthe input uni�
ation problem has no uni�ers, but when theproblem has a solution it always presents an expli
it uni�er.Uni�
ation for se
ond-order logi
 was proved unde
idablein general by Goldfarb [12℄. Goldfarb's proof is based on aredu
tion from Hilbert's Tenth Problem. This result showsthat there are arbitrary higher order theories where uni�
a-tion is unde
idable, but there exist parti
ular higher orderlanguages of pra
ti
al interest that have a de
idable uni-�
ation problem. In parti
ular, for the se
ond-order
ase,uni�
ation is de
idable, when the language is restri
ted tomonadi
 fun
tions [11℄. Another problem of HOU is thatthe notion of most general uni�er does not apply and thata more
omplex notion than that of
omplete set of uni�ersis ne
essary. Huet has shown that equations of the form(�x:F a) =? (�x:G b) (
alled
ex-
ex) of third-order maynot have minimal
omplete sets of uni�ers and that theremay exist an in�nite
hain of uni�ers, one more general thanthe other, without having a most general one (for referen
essee se
tion 4.1 in [24℄).For a very simple presentation of HOU see [27℄ and for adetailed introdu
tion in the
ontext of de
larative program-ming see [24℄.
1.2 Contribution of this workThe ��-
al
ulus [1℄ introdu
es two di�erent sets of entities,one for terms and one for substitutions. The �se-style [15℄
al
ulus insists on remaining
loser to the �-
al
ulus anduses a philosophy started by de Bruijn in his system AU-TOMATH [21℄ and elaborated extensively through the newitem notation [14℄. The philosophy states that terms of the�-
al
ulus are either appli
ation terms su
h as a fun
tion ap-plied to an argument; abstra
tion terms su
h as a fun
tion;or substitution terms or updating terms. Hen
e, substitu-tion and updating are made expli
it in item notation. Theadvantages of this philosophy are listed in [14℄ and in
luderemaining as
lose as possible to the familiar �-
al
ulus.Therefore, we propose to study HOU in the �se-style ofexpli
it substitution, whi
h makes our approa
h
loser tothe syntax of the �-
al
ulus than that of the ��-approa
hin that we avoid the use of two di�erent sorts of obje
ts. We

establish the following three properties of �se-uni�
ation:1. Corre
tness: If P and P 0 are uni�
ation problems su
hthat P redu
es to P 0 then every uni�er of P 0 is a uni�erof P .2. Completeness: If P and P 0 are uni�
ation problemssu
h that P redu
es to P 0 then every uni�er of P is auni�er of P 0.3. The sear
h for uni�
ation redi
es and the dete
tion of
ex-
ex (i.e. impli
itly solvable) equations is simplerin our approa
h than in the ��-approa
h.After introdu
ing the (typed) ��- and �se-
al
uli (se
tion2), and the uni�
ation approa
h in the ��-
al
ulus (se
tion3), we present our �se-style based uni�
ation method in se
-tion 4 and some arithmeti
 properties of the �se-uni�
ationrules in se
tion 5. We then
on
lude illustrating how to ap-ply �se-uni�
ation for solving HOU problems in the pure�-
al
ulus and dis
ussing future work in se
tion 6. Omittedproofs and referen
es
an be found in [2℄.
2. BACKGROUNDWe assume familiarity with the �-
al
ulus as presented in[5℄ and with the notion of term algebra T (F ;X) built ona (
ountable) set of variables X and a set of operators F .Variables in X are denoted by upper
ase last letters of theRoman alphabet X;Y; ::: and for a term t 2 T (F ;X), var(t)denotes the set of variables o

urring in t.Additionally, we assume familiarity with the basi
 notionsof rewriting theory su
h as (lo
al)
on
uen
e or (weakly)Chur
h Rosser property (for short, (W)CR), normal formsand strong and weak normalization (for short, SN andWN,respe
tively) as presented in [4℄. For a redu
tion relation Rover a set A, (A;!R), we denote with !�R the re
exive andtransitive
losure of!R. The subs
riptR is usually omitted.When a !� b we say that there exists a derivation from ato b. Synta
ti
al identity is denoted by a = b.A valuation is a mapping from X to T (F ;X). The home-omorphi
 extension of a valuation, �, from its domain Xto the domain T (F ;X) is
alled the grafting of �. Asusual, valuations and their
orresponding grafting valua-tions are denoted by the same Greek letter. Appli
ationof a valuation � or its
orresponding grafting to a termt 2 T (F ;X) will be written in post�x notation t�. The do-main of a grafting �, denoted dom(�) is de�ned by dom(�) =fX j X� 6= X;X 2 Xg. Its range, denoted ran(�), is de-�ned by ran(�) = [X2dom(�)var(X�). The set var(�) =dom(�)[ran(�) is the set of variables involved in �. A valu-ation and its
orresponding grafting � are expli
itly denotedby � = fX=X� j X 2 dom(�)g.The notion of grafting, usually
alled �rst order substitution,
orresponds to simple substitution without renaming.
2.1 The �-calculus with names and explicit

substitutionLet V be a (
ountable) set of variables (di�erent from theones in X) denoted by lower
ase last letters of the Romanalphabet x; y; :::.

Terms �(V), of the �-
al
ulus with names are indu
tivelyde�ned by a ::= x j (a a) j �x:a. Terms of the forms �x:aand (a b) are
alled abstra
tions and appli
ations, respe
-tively. The notions of valuation and grafting from V and�(V) to �(V) are adapted in the obvious way. First ordersubstitution or grafting leads to problems in the �-
al
ulus.For example, applying the (�rst order) substitution fu=xgto �x:(u x) results in �x:(x x) whi
h is wrong. Therefore,the �-
al
ulus with names makes extensive use of variablerenaming via �-
onversion. E.g., renaming x (say as y) in(�x:(u x))fu=xg results in the
orre
t term �y:(x y).We denote by �V (a) the �-
onversion of a resulting by re-naming the variables in V � V o

urring at a 2 �(V) withfresh variables.Definition 2.1. Let � = fx1=a1; : : : ; xn=ang be a valua-tion from V to �(V). �ext, the substitution that extends �to �(V), is de�ned by stru
tural indu
tion as follows:1. �ext(x) = x�;2. �ext((a b)) = (�ext(a) �ext(b));3. �ext(�x:a) = �z:�ext((�var(�)[fxg(a))fx=zg), where zis a fresh variable; i.e., z 62 var (�) and z does noto

ur in �x:a.When no
onfusion arises, both a valuation � and its
or-responding substitution will be denoted by �. Only in thisse
tion we will use pre�xed and post�xed notation to remarkthe di�eren
e between substitutions and valuations.Sin
e free variables are sele
ted randomly, the result of ap-plying a substitution
an be
on
eived as a
lass of equiva-len
e terms rather than as a unique term.Now we
an de�ne �-redu
tion respe
tively �-redu
tionas the rewriting relation of the rewrite rule: (�x:a b) !fx=bgext(a) respe
tively �x:(a x)!a; if x 62 Fvar(a),where Fvar (a) denotes the set of free variables in a.The notion of uni�
ation in �(V) di�ers from the �rst orderone, be
ause bound variables in �(V) are not a�e
ted by uni-�
ation substitutions. Uni�
ation variables in the �-
al
ulusare free variables. Thus the free variables o

urring in termsof a uni�
ation problem
an be partitioned into true uni�-
ation variables and
onstants, that
annot be bound bythe uni�ers. Observe that
onstants, as free variables,
an-not be
hanged by the �-redu
tion pro
ess. However, fromthe point of view of uni�
ation, both
onstants and boundvariables
an be
onsidered of the same synta
ti
al
ategory.
2.2 The�-calculus in de Bruijn notationTo di�erentiate between uni�
ation and
onstant variables,one
an
onsider uni�
ation variables as meta-variablesin a set X . Thus, �-
al
ulus is de�ned as the term algebra,�(V;X), over the set of operators f�x: j x 2 Vg[f()g[Vand the set of variables X . In this setting, the previous no-tion of substitution
an be adapted for meta-variables pre-serving the semanti
s of both �- and �-redu
tion. But themost appropriate setting to treat uni�
ation meta-variablesis the well-known �-
al
ulus with de Bruijn indi
es [21℄, were

natural indi
es are used to denote both bounded variablesand
onstants. Bounded variables are related to their
or-responding abstra
tors by their relative height, whi
h is thenumber of abstra
tors between them.For instan
e, the �-term �x:(�z:(x z) (x z)) is translatedinto �:(�:(2 1) (1 4)). Indi
es for free variable are appro-priately sele
ted to avoid relating them with abstra
tors.The set �dB(X) of �-terms in de Bruijn notation isde�ned indu
tively as a ::= n j X j (a a) j �:a where X 2 Xand n 2 N n f0g.Definition 2.2. Let a 2 �dB(X), i 2 N. The i-lift of a,denoted by a+i, is de�ned as:a) X+i = X , for X 2 X b) (a1 a2)+i = (a+i1 a+i2)
) (�:a1)+i = �:a+(i+1)1 d) n+i = � n+ 1; if n > in; if n � ifor n 2 N :The lift of a term a is its 0-lift, and is denoted by a+.Definition 2.3. The appli
ation of the substitutionwith b of n 2 Nnf0g on a term a in �dB(X), denoted fn=bga,is de�ned indu
tively by:1. fn=bgX = X, for X 2 X ;2. fn=bg(a1 a2) = (fn=bga1 fn=bga2);3. fn=bg�:a1 = �:fn + 1=b+ga1;4. fn=bgm = 8<: m� 1; if m > nb; ifm = nm; if m < n if m 2 N.Definition 2.4. Let � = fX1=a1; : : : ; Xn=ang be a val-uation from the set of meta-variables X to �dB(X). The
orresponding substitution, also denoted by �, is de�nedindu
tively by:a) �(m) = m for m 2 N b) �(X) = X�, for X 2 X
) �(a1 a2) = (�(a1) �(a2)) d) ��:a1 = �:�+(a1)where �+ denotes both the valuation fX1=a+1 ; : : : ; xn=a+n gand its asso
iated substitution.Consider the �-redu
tion rule in �(X): �x:(a x)! a; if x 62Fvar(a). In �dB(X), the left side of this rule is written as�:(a0 1), where a0 stands for the
orresponding translationof a into the language of �dB(X). \x 62 Fvar (a)" means, in�dB(X), that there are neither o

urren
es in a0 of the index1 at height zero nor of the index 2 at height one et
. Thismeans, in general, that there exists a term b su
h that b+ =a. Thus the �-redu
tion is de�ned as (�:a b)! f1=bga andthe �-redu
tion as �:(a 1)! b if 9b b+ = a.

Table 1: �� Rewriting System of the ��-
al
ulus(Beta) (�:a b) �! a [b � id℄(Id) a[id℄ �! a(VarCons) 1 [a � s℄ �! a(App) (a b)[s℄ �! (a [s℄) (b [s℄)(Abs) (�:a)[s℄ �! �:a [1 � (s Æ ")℄(Clos) (a [s℄)[t℄ �! a [s Æ t℄(IdL) id Æ s �! s(IdR) s Æ id �! s(ShiftCons) " Æ (a � s) �! s(Map) (a � s) Æ t �! a [t℄ � (s Æ t)(Ass) (s Æ t) Æ u �! s Æ (t Æ u)(VarShift) 1� " �! id(SCons) 1[s℄ � (" Æ s) �! s(Eta) �:(a 1) �! b if a =� b["℄
2.3 The��-calculusDefinition 2.5. The ��-
al
ulus is de�ned as the
al
u-lus of the rewriting system �� of Table 1 where terms a ::=1 j X j (a a) j �a j a[s℄ and subs s ::= id j " j a:s j s Æ s:The equational theory asso
iated to the rewriting system�� de�nes a
ongruen
e that we denote by =��. The
or-responding
ongruen
e obtained by dropping the Beta andEta rules is denoted with =�.The rewriting system �� is lo
ally
on
uent [1℄,
on
uent onsubstitution-
losed terms (i.e., terms without substitutionvariables) [25℄ and not
on
uent on open terms (i.e., termswith term and substitution variables) [8℄.Proposition 2.6. ([25℄) The ��-normal form of any ��-term is of one of the following forms: a) �a; b) (a b1 : : : bn),where a is either 1, 1["n℄, X or X[s℄ for s a substitutionterm di�erent from id in normal form; or
) a1 : : : ap: "n,where a1; : : : ; ap are normal terms and ap 6= n.In �(X) and �dB(X), the rule Xfy=tg = X, where y is anelement of V or a de Bruijn index, respe
tively, is ne
essarybe
ause there is no way to suspend the substitution fy=tguntil X is instantiated. In the ��-
al
uli the appli
ation ofthis substitution
an be delayed, sin
e the term X[s℄ doesnot redu
e to X. Observe that the
ondition a =� b["℄ of theEta rule is stronger than the
ondition a = b+ as X = X+,but there exists no term b su
h that X =� b["℄. The fa
tthat the appli
ation of a substitution to a meta-variable
anbe suspended until the meta-variable is instantiated will beused to
ode the substitution of variables in X by X -graftingand expli
it lifting. Consequently a notion of X -substitutionin ��-
al
uli is unne
essary.
2.4 The�se-calculusThe �se-
al
ulus avoids introdu
ing two di�erent sets of en-tities and insists on remaining
lose to the syntax of the

�-
al
ulus. Next to � and appli
ation, the �se-
al
ulus in-trodu
es substitution (�) and updating (') operators. Inthe �se-
al
ulus, we let a; b;
; et
., range over the set ofterms. A term
ontaining neither substitution nor updatingoperators is
alled a pure term.Definition 2.7 (�se-
al
ulus).The terms of the �se-
al
ulus are given by: a ::= X jN j (a a) j�:a j a �ja j'ikawhere j; i � 1 ; k � 0. The set of rules �se is given inTable 2. The �se-
al
ulus is the rewriting system generatedby the set of rules �se. The
al
ulus of substitutionsasso
iated with the �se-
al
ulus is the rewriting systemgenerated by the set of rules se = �se � f�-generation;Etagand we
all it the se-
al
ulus.The equational theory asso
iated with �se de�nes a
on-gruen
e denoted by =�se . The
ongruen
e obtained bydropping the �-generation and Eta rules is denoted by =se .When we restri
t the redu
tion to these rules, we will useexpressions su
h as se-redu
tion, se-normal form, et
, withthe obvious meaning.Intuitively, the substitution operator initiates (�-generation)one-step of �-redu
tion, from (�:a b), propagating the asso-
iated substitution innermost (�-�- and �-app-transition).On
e this propagation is �nished, when ne
essary, the up-dating operator is introdu
ed to make the appropriate liftover b (�-destru
tion). Otherwise the free de Bruijn indi
esare de
remented by one.Corresponden
e between the Eta rules of the �se-
al
ulusand the ��-
al
ulus was proved in [2℄.Similarly to the ��-
al
ulus we
an des
ribe operators ofthe �se-
al
ulus over the signature of a �rst order sortedterm algebra T�se(X) built on X , the set of variables of sortterm and its subsort nat�term. The set of variables ofsort term in a term a 2 T�se (X) is denoted by T var(a).Theorem 2.8 ([15℄).a) The se-
al
ulus is weakly normalizing and
on
uent.b) The �se-
al
ulus simulates �-redu
tion.
) The �se-
al
ulus is
on
uent on open terms.As a
orollary of the
hara
terization of the se-normal formsin [15℄ (Theorem 8) we obtain a
hara
terization of �se-normal forms.Corollary 2.9 (�se-normal forms). Let a be a �se-term. a is in �se-normal form i�:1. a 2 X [N;2. a = (b
), where b;
 are �se-normal forms and b isnot an abstra
tion of the form �:d;

Table 2: Rewriting System of the �se-
al
ulus with �-rule(�-generation) (�:a b) �! a �1 b(�-�-transition) (�:a)�ib �! �:(a �i+1 b)(�-app-transition) (a1 a2)�ib �! ((a1 �ib) (a2 �ib))(�-destru
tion) n�ib �! 8<: n� 1 if n > i'i0 b if n = in if n < i('-�-transition) 'ik(�:a) �! �:('ik+1 a)('-app-transition) 'ik(a1 a2) �! (('ik a1) ('ik a2))('-destru
tion) 'ik n �! � n+ i� 1 if n > kn if n � k(Eta) �:(a 1) �! b if a =se '20b(�-�-transition) (a�ib)�j
 �! (a�j+1
) �i (b �j�i+1
) if i � j(�-'-transition 1) ('ik a)�j b �! 'i�1k a if k < j < k + i(�-'-transition 2) ('ik a)�j b �! 'ik(a �j�i+1 b) if k + i � j('-�-transition) 'ik(a�j b) �! ('ik+1 a)�j ('ik+1�j b) if j � k + 1('-'-transition 1) 'ik ('jl a) �! 'jl ('ik+1�j a) if l+ j � k('-'-transition 2) 'ik ('jl a) �! 'j+i�1l a if l � k < l + j3. a = �:b, where b is a �se-normal form ex
luding appli-
ations of the form (
 1) su
h that there exists d with'20d =se
;4. a = b�j
, where
 is a �se-normal form and b is an�se-normal form of one of the following forms:a) X, b) d�ie, with j < i or
) 'ikd, with j � k;5. a = 'ikb, where b is a �se-normal form of one of thefollowing forms:a) X, b)
�jd, with j > k + 1 or
) 'jl
, with k < l.
2.5 Typed�-calculiFor the sake of
larity we in
lude only the essential notationof the typed ��- and �se-
al
uli. Typing rules for the two
al
uli and additional properties
an be found in [2℄.We re
all that an environment, �, in de Bruijn setting issimply a list of types and, in the
ase of the ��-
al
ulus,substitutions re
eive environments as types. For all the sys-tems we will
onsider, we take: types A ::= A j A ! Band envirs � ::= nil j A:�. The rewrite rules of the typed��- and �se-
al
uli are those of Tables 1 and 2 ex
ept thatrules involving abstra
tions are now typed. Thus, for thetyped ��-
al
ulus we have the typed rules:(Beta) (�A:a b) �! a [b � id℄(Abs) (�A:a)[s℄ �! �A:a [1 � (s Æ ")℄(Eta) �A:(a 1) �! b if a =� b["℄and for the typed �se-
al
ulus:

(�-generation) (�A:a b) �! a �1 b(�-�-transition) (�A:a)�ib �! �A:(a �i+1 b)('-�-transition) 'ik(�A:a) �! �A:('ik+1 a)(Eta) �A:(a 1) �! b if a =s '20bChara
terization of �-long normal forms in the typed ��-and �se-
al
uli is ne
essary to simplify the set of rules ofthe uni�
ation algorithms. Essentially, the use of �-longnormal forms guarantees that meta-variables of fun
tionaltype A ! B are instantiated with typed terms of the form�A:a.Definition 2.10 (�-long normal form in ��). Leta be a ��-term of type A1 ! : : :! An ! B in the environ-ment � and in ��-normal form. The �-long normal formof a, written a0, is de�ned by:a0=8<: �C :b0 if a=�C :b�A1 : : : �An(k+ n
1 : : :
p n0 : : : 10) if a=(k b1 : : : bp)�A1 : : : �An(X[s0℄
1 : : :
p n0 : : : 10) if a=(X[s℄ b1 : : : bp)where in the se
ond
lause,
i is the �-long normal form ofthe normal form of bi["n℄; and in the third
lause,
i is the �-long normal form of bi["n℄ and if s = d1 : : : dq : "k then s0 =e1 : : : eq : "k+n where ei is the �-long normal form of di["n℄.Definition 2.11 (�-long normal form in �se). Leta be a �se-term of type A1 ! : : : ! An ! B in the envi-ronment � and in �se-normal form. The �-long normalform of a, written a0, is de�ned by:a0 = 8><>: �C :b0 if a = �C :b�A1 : : : �An(
1: : :
p n0: : :10) if a = (b1 : : : bp)�A1 : : : �An(d0�i+ne0 n0 : : : 10) if a = b�i
�A1 : : : �An('ik
0 n0 : : : 10) if a = 'ikb

where in the se
ond
lause,
i is the �-long normal form ofthe normal form of 'n+10 bi; in the third
lause, d0; e0 arethe �-long normal forms of the normal forms of 'n+10 b and'n+10
, respe
tively; and in the fourth
lause,
0 is the �-longnormal form of the normal form of 'n+10 b.The set of uni�
ation rules of the two uni�
ation methodsare
onstru
ted by
ombining the di�erent types of �-longnormal forms enumerated in the previous two De�nitionsobtaining di�erent types of equational problems. For theuni�
ation setting based on the �se-style an additional
har-a
terization of �se-normal terms whose main operators areeither � or ' will be useful in order to
ombine dire
tly �-long normal forms of type 2 (See subse
tion 4.1) with theones of type 3. and 4. This simpli�es the
omparison ofboth uni�
ation approa
hes.Definition 2.12 (Long normal form). For both ��-and �se-terms, long normal forms are de�ned as the �-long normal form of the
orresponding ��-normal forms.In both typed ��- and �se-
al
uli we have that two termsare ��-equivalent i� they have the same long normal form.
3. UNIFICATION IN THE ��-CALCULUSIn this se
tion we present brie
y notions and results onhigher order uni�
ation in the ��-style of expli
it substi-tution given in [9℄. Equational problems are restri
ted tosubstitution-
losed terms (for whi
h �� is
on
uent), be-
ause �� is not
on
uent on substitution-open terms. Sin
ethe main goal is to provide a me
hanism to solve uni�
ationproblems in the �-
al
ulus this restri
tion is harmless.Let T (F ;X) be a term algebra over a set of fun
tion sym-bols F and a
ountable set of variables X and let A bean F-algebra. A uni�
ation problem over T (F ;X) is a�rst order formula without universal quanti�er or negation,whose atoms are of the form F; T or s =?A t. Uni�
ationproblems are written as disjun
tions of existentially quanti-�ed
onjun
tions of atomi
 equational uni�
ation problems:D = Wj2J 9 ~wj Vi2Ij si =?A ti. When jJ j = 1, the uni�
a-tion problem is
alled a uni�
ation system. Variables inthe set ~w of a uni�
ation system 9~wVi2I si =?A ti are boundand all other variables are free. T and F stand for the empty
onjun
tion and disjun
tion, respe
tively. Of
ourse, theempty disjun
tion
orresponds to an unsatis�able problem.A uni�er of a uni�
ation system 9~wVi2I si =?A ti is a graft-ing � su
h that A j= 9~wVi2I si�j~w = ti�j~w where �j~w de-notes the restri
tion of the grafting � to the domain X n ~w. Auni�er of Wj2J 9 ~wj Vi2Ij si =?A ti is a grafting � that uni�esat least one of the uni�
ation systems. The set of uni�ersof a uni�
ation problem, D, or system, P , is denoted byUA(D) or UA(P), respe
tively.Definition 3.1. A ��-uni�
ation problem P is a uni-�
ation problem in the algebra T��(X) modulo the equational

theory presented by ��. An equation of su
h a problem isdenoted a =?�� b, where a and b are substitution-
losed ��-terms of the same sort. An equation is
alled trivial when itis of the form a =?�� a. The set of variables of sort termin P is denoted by T var(P).We present a set of rewrite rule s
hemata used to simplifyuni�
ation problems. The obje
tive of applying the rules isto obtain a des
ription of the set of uni�ers. Basi
 de
om-position rules for uni�
ation should be applied modulo theusual boolean simpli�
ation rules as presented in [9℄.Definition 3.2. The set of ��-uni�
ation rules for thetyped ��-uni�
ation problems is de�ned as the set of rulesfDe
-�, De
-App, App-Fail, Exp-�, Repla
e, Normalizeg inTable 4, repla
ing the equality =?�se by =?��, in
luding therule Exp-App de�ned in Table 3.Sin
e �� satis�es CR and WN the sear
h
an be restri
tedto �-long normal solutions that are graftings of the formfX=(n a1 : : : ap)g and fX=(Z[s℄ a1 : : : ap)g or fX=�:ag, whenthe type of X is atomi
 or fun
tional, respe
tively.Equations of the form (n a1 : : : ap) =?�� (m b1 : : : bq) aretransformed by De
-App and App-Fail into the empty dis-jun
tion when n 6= m, as it has no solution, or into the
on-jun
tion Vi=1::p ai =?�� bi, when n = m. The rules Normalizeand De
-� normalize equations of the form �a =?�� �b intoequations of the form a0 =?�� b0. The rule Exp-� generatesthe grafting fX=�:Y g for a variable X of type A! B, whereY is a new variable of type B.For an equation X[a1 : : : ap: "n℄ =?�� (m b1 : : : bq), with Xatomi
, solutions
an only be grafting valuations of the formfX=(r
1 : : :
k)g, where r 2 f1; : : : ; pg [fm� n+ pg. Therule Exp-App advan
es in dire
tion towards the solution.The rule Repla
e simply propagates to the
urrent uni�-
ation problem the grafting fX=ag, whi
h
orresponds toequations X =?�� a previously added.Definition 3.3. A uni�
ation system P is a ��-solvedform if it is a
onjun
tion of non trivial equations of thefollowing forms:(Solved) X =?�� a, where the variable X does not o
-
ur anywhere else in P and a is in long nor-mal form. Su
h an equation and variable aresaid to be solved in P .(Flex-Flex) non solved equations of the formX[a1 : : : ap: "n℄ =?�� Y [a01 : : : a0p0 : "n0 ℄,where X[a1 : : : ap: "n℄ and Y [a01 : : : a0p0 : "n0 ℄are long normal terms with X and Y ofatomi
 type.In [9℄ it is shown that: any ��-solved form has ��-uni�ers;dedu
tion by the ��-uni�
ation rules of a well typed equa-tion gives rise only to well typed equations, T and F; solvedproblems are normalized for the ��-uni�
ation rules; and,

Table 3: Exp-App ��-uni�
ation rule(Exp-App) P ^X[a1 : : : ap: "n℄ =?�� (m b1 : : : bq) ! P ^X[a1 : : : ap: "n℄ =?�� (m b1 : : : bq) ^Wr2Rp[Ri 9H1 : : : Hk; X =?�� (r H1 : : : Hk)if X has an atomi
 type and is not solved where H1; : : : ; Hk are variables of appropriate types, noto

urring in P , with the environments �Hi = �X , Rp is the subset of f1; : : : ; pg su
h that (r H1 : : : Hk)has the right type, Ri = if m � n+ 1 then fm� n+ pg else ;if a system is a
onjun
tion of equations that
annot be re-du
ed by the ��-uni�
ation rules then it is solved. Thesefa
ts enabled [9℄ to prove
ompleteness and
orre
tness ofthe ��-uni�
ation rules.
4. �se-UNIFICATIONNormal form
hara
terization of �se-terms jointly with WNand CR properties are the essential requirements to developa uni�
ation method for the �se-
al
ulus.
4.1 �se-normal formsWe present a
hara
terization of �se-normal forms whosemain operators are either � or ' (i.e. of type 3. and 4. inCorollary 2.9). This will help simplify our presentation ofthe uni�
ation rules and of the
ex-
ex equations.Observe that left arguments of the � operator or argumentsof the ' operator at �se-normal forms are neither appli
a-tions, nor abstra
tions, nor de Bruijn indi
es. For instan
e,'ji (a b)! ('ika 'ikb), (a b)�i
! (a�i
 b�i
). Hen
e, thesole possibility is to have a meta-variable as a left argument.Thus one has to
onsider terms with alternating sequen
esof operators ' and � whose left innermost argument is ameta-variable; for instan
e, (('j3i3 (('j1i1X)�i2a))�i4b)�i5
.Definition 4.1. Let t be a �se-normal term whose rootoperator is either � or ' and let X be its left innermostmeta-variable. Denote by jkik the operator at the kth posi-tion following the sequen
e of operators ' and �,
onsider-ing only left arguments of the � operators, in the innermostoutermost ordering. Additionally, if jkik
orresponds to anoperator ' then jk and ik denote its super and subs
ripts,respe
tively and if jkik
orresponds to an operator � thenjk = 0 and ik denotes its supers
ript. Let ak denote the
or-responding right argument of the kth operator if jkik = �ikand the empty argument if jkik = 'jkik . The skeleton of twritten sk(t) is jpip : : : j1i1 (X; a1; : : : ; ap).Example 4.2. Let t be a �se-normal term of the form(('j3i3 (('j1i1X)�i2a))�i4b)�i5
. Then its skeleton is sk(t) = 0i5 0i4 j3i3 0i2 j1i1 (X; a; b;
). �Lemma 4.3. Let t be a �se-normal term whose root opera-tor is either � or ' and let sk(t) = jpip : : : j1i1 (X; a1; : : : ; ap).Su

essive subs
ripts ik and ik+1 satisfy the following:1. ik > ik+1 if k and k+1 are both � operators or both' operators;

2. ik � ik+1 if k and k+1 are ' and � operators, re-spe
tively;3. ik > ik+1 + 1 if k and k+1 are � and ' operators,respe
tively.Proof. By simple analysis of the arithmeti

onstraintsat the �se rewrite rules.
4.2 Unification in the�se-calculusUni�
ation notions (su
h as an equation a =?�se b or a set ofuni�ers U�se(P)) are de�ned analogously to the �� uni�
a-tion setting of the previous se
tion.Definition 4.4. The set of �se-uni�
ation rules forthe typed �se-uni�
ation problems is de�ned as the set ofrules in Table 4.Sin
e �se is CR and WN, the sear
h
an be restri
ted to �-long normal solutions that are graftings that bind fun
tionalvariables to �-long normal terms of the form �:a and atomi
variables into �-long normal terms of the form (k b1 : : : bp)or a�ib or 'ika, where in the �rst
ase k
ould be omittedand p
ould be zero. The use of the � rule is important toredu
e the number of
ases (or uni�
ation rules) to be
on-sidered when de�ning the uni�
ation algorithm, but as forthe ��-
al
ulus, the �-rule
an be dropped [9℄. As for the��-uni�
ation, Normalize and De
-� use the fa
t that �se isCR and WN to normalize equations of the form �:a =?�se �:binto a0 =?�se b0 and the rule Repla
e propagates the graftingfX=ag
orresponding to equations X =?�se a. Exp-� gener-ates the grafting fX=�:Y g for a variable X of type A! B,where Y is a new variable of type B.Equations of the form (n a1 : : : ap) =?�se (m b1 : : : bq) aretransformed by the rules De
-App and App-Fail into theempty disjun
tion when n 6= m, as it has no solution, or intothe
onjun
tion Vi=1::p ai =?�se bi, when n = m. Rememberthat by terms of the form (n a1 : : : ap) we also mean thosewhere n is omitted or p = 0. Analogously, the rules De
-� and De
-' de
ompose equations with leading operators �and '. But, the
orresponding rules �-Fail and '-Fail shouldomit
ex-
ex equations as the following example shows.Example 4.5. Let (�:(�:(X 2) 1) Y)=?�se (�:(Z 1) U)be a uni�
ation problem, where X;Y; Z and U are meta-variables of types A! A;A;A! A and A, respe
tively.Then (�:(�:(X 2) 1) Y) !� ((X�2Y)�1('10Y) '10Y) and(�:(Z 1) U)!� (Z�1U '10U). Thus by applying the ruleNormalize to the original equation we obtain the equation

Table 4: �se-uni�
ation rules(De
-�) P ^ �A:a =?�se �A:b ! P ^ a =?�se b(De
-App) P ^ (n a1 : : : ap) =?�se (n b1 : : : bp) ! P Vi=1::p ai =?�se bi(App-Fail) P ^ (n a1 : : : ap) =?�se (m b1 : : : bq) ! Fif n 6= m(De
-�) P ^ a�ib =?�se
�id ! P ^ a =?�se
 ^ b =?�se d(�-Fail) P ^ a�ib =?�se
�jd ! Fif i 6= j and a�ib =?�se
�jd is not
ex-
ex(De
-') P ^ 'ika =?�se 'ikb ! P ^ a =?�se b('-Fail) P ^ 'ika =?�se 'jl b ! Fif i 6= j or k 6= l and 'ika =?�se 'jl b is not
ex-
ex(Exp-�) P ! 9(Y : A:� ` B); P ^X =?�se �A:Yif (X : � ` A! B) 2 T var(P); Y 62 T var(P), and X is a unsolved variable(Exp-App) P ^ jpip : : : j1i1 (X; a1; : : : ; ap) =?�se (m b1 : : : bq) ! P ^ jpip : : : j1i1 (X; a1; : : : ; ap) =?�se (m b1 : : : bq) ^Wr2Rp[Ri 9H1; : : : ; Hk; X =?�se (r H1 : : : Hk)if jpip : : : j1i1 (X; a1; : : : ; ap) is the skeleton of a �se-normal term and X has an atomi
 type and is notsolved where H1; : : : ; Hk are variables of appropriate types, not o

urring in P , with the environments�Hi = �X , Rp is the subset of fi1; : : : ; ipg of supers
ripts of the � operator su
h that (r H1 : : : Hk) hasthe right type, Ri = Spk=0 if ik � m+p�k�Ppl=k+1 jl > ik+1 then fm+p�k�Ppl=k+1 jlg else ;, wherei0 =1; ip+1 = 0(Repla
e) P ^X =?�se a ! fX=agP ^X =?�se aif X 2 T var (P);X 62 T var(a) and a 2 X) a 2 T var(P)(Normalize) P ^ a =?�se b ! P ^ a0 =?�se b0if a or b is not in long normal form where a0 is the long normal form of a if a is not a solved variable anda otherwise. b0 is de�ned from b identi
ally((X�2Y)�1('10Y) '10Y) =?�se (Z�1U '10U) whi
h
an bede
omposed into (X�2Y)�1('10Y) =?�se Z�1U ^ '10Y =?�se'10U and subsequently into (X�2Y) =?�se Z ^ '10Y =?�seU ^ Y =?�se U .Sin
e 8n 2 N, '10n ! n, the equation '10Y =?�se U al-ways has solutions and solutions of the last two equationsare graftings of the form fY=V; U=V g. Additionally, observethat the �rst equation has also a variety of solutions: takefX=ng; thus if n > 2, fZ=n� 1g else if n = 2, fZ='20Y gelse fZ=1g.Analogously, by normalization and de
omposition with the��-uni�
ation rules we have(�:(�:(X 2) 1) Y) =?�� (�:(Z 1) U)!Normalize(X[Y:Y:id℄ Y) =?�� (Z[U:id℄ U)whi
h
an be de
omposed into X[Y:Y:id℄ =?�� Z[U:id℄ ^Y =?�� U . A further step of repla
ement gives the
orre-sponding
ex-
ex equation in the language of the ��-
al
ulusX[Y:Y:id℄ =?�� Z[Y:id℄. �In the ��-
al
ulus, Exp-App advan
es in dire
tion towardssolutions for equations of the formX[a1 : : : ap: "n℄ =?�se (m b1 : : : bq)where X is an unsolved variable of an atomi
 type. The�se-uni�
ation rule Exp-App has the analogous role for �se-uni�
ation problems. Use of �se-normal forms in Exp-Appis not essential. This is done with the sole obje
tive of

simplifying the
ase analysis presented in the de�nition ofthe rule and its
ompleteness proof. In fa
t, this
an bedropped and be subsequently in
orporated as an eÆ
ientuni�
ation strategy, where before applying Exp-App �se-uni�
ation problems are normalized.Example 4.6. From the uni�
ation problem�:(�:(Y 1) �:(X 1)) =? �:(�:V �:W)we rea
h the two equations:� (Y [�:(X 1):id℄ �:(X 1)) =?�� V [�:W:id℄� (Y �1�:(X 1) �:('11 1)) =?�se V �1�:WAfter applying the
orresponding Exp-App rules, with V =?��(V1 V2) and V =?�se (V1 V2), additional equations ap-pear: �:(X 1) =?�� V2[�:(X 1):id℄ and �:('11X 1) =?�seV2�1�:(X 1). Solutions result by sele
ting the
ase V2 =?�� 1or
orrespondingly V2 =?�se 1. �Definition 4.7. A uni�
ation system P is a �se-solvedform if it is a
onjun
tion of non trivial equations of thefollowing forms:

(Solved) X =?�se a, where the variable X does noto

ur anywhere else in P and a is in longnormal form. Su
h an equation and variableare said to be solved in P .(Flex-Flex) non solved equations between long normalforms whose root operator is � or ' whi
h
an be represented as equations between theirskeleton: jpip : : : j1i1 (X; a1; : : : ; ap) =?�se lqkq : : : l1k1 (Y; b1; : : : ; bq).Remark 4.8. Consider a �se-normal form t whose rootoperator is either � or ' and with skeleton of the formsk(t) = jpip : : : j1i1 (X; a1; : : : ; ap). Then by binding X withn, n > i1, one obtains the normal form t!� n+Ppk=1 jk�p.This is a dire
t
onsequen
e of lemma 4.3. �Lemma 4.9. Any �se-solved form has �se-uni�ers.Proof. Sin
e solved forms appearing in a system P straight-forwardly de�ne bindings between variables that do not ap-pear anywhere else in P and in terms in long normal form,it is enough to prove that
ex-
ex equations have uni�ers.Let P be a system in �se-solved form in
luding a
ex-
exequation of the form jpip : : : j1i1 (X; a1; : : : ; ap) =?�se lqkq : : : l1k1(Y; b1; : : : ; bq)This equation has always solutions. Sele
t for instan
e bind-ings fX=n; Y=mg su
h that n > i1;m > l1 and n+Ppr=1 jr�p = m+Pqr=1 kr � q (see Remark 4.8).Now we show some properties of the �se-uni�
ation rules.Lemma 4.10 (Well-typedness). Dedu
tion by apply-ing the �se-uni�
ation rules of a well typed equation givesrise only to well typed equations, T and F.Proof. It is proved by analyzing, rule by rule, the typeof the resulting transformed equation.Lemma 4.11. Solved problems are normalized for the �se-uni�
ation rules and,
onversely, if a system is a
onjun
-tion of equations that
annot be redu
ed by applying the �se-uni�
ation rules then it is solved.Proof. Solved and
ex-
ex equations are normalized.Conversely, suppose P is a non solved system. Then P
on-tains an equation a =?�se b that is neither solved nor
ex-
ex. Supposing that neither Normalize nor Repla
e applyand a

ording to the
hara
terization of �se-normal formsat Corollary 2.9, we have:Firstly, if a if of the form �:a0 then, sin
e b is long normal,the sole possibility of having a well typed equation impliesb is of the form �:b0 and rule De
-� applies.

Se
ondly, suppose that a is of the form (k a1 : : : ap). Then ifb is of the form (l b1 : : : bq), then either De
-App or Fail-Appapply (remember here that both k and l
ould be omittedand p and q
ould be zero). If b has root operator � or 'then rule Exp-App applies.Cases of equations between terms with main operators � and' are either
ex-
ex or
an be redu
ed by the rules De
-�,De
-', �-Fail or '-Fail.Definition 4.12. Let P and P 0 be �se-uni�
ation prob-lems, let \rule" denote the name of a �se-uni�
ation ruleand \!rule" its
orresponding dedu
tion relation over uni�-
ation problems. We de�ne the following properties of rule:
orre
tness: 1 : P !rule P 0 implies U�se(P 0) � U�se(P).
ompleteness: P !rule P 0 implies U�se(P) � U�se(P 0).Theorem 4.13 (Corre
tness and Completeness).The �se-uni�
ation rules are
orre
t and
omplete.Proof. We present a sket
h of the interesting veri�
ationof
ompleteness of the Exp-App rule.Consider P^ jpip : : : j1i1 (X; a1; : : : ; ap) =?�se (m b1 : : : bq) anda �se-uni�er � of this uni�
ation problem. Then �(X) =(r
1 : : :
s) and sin
e jpip : : : j1i1 (X; a1; : : : ; ap) is the skele-ton of a �se-normal form, we have two
ases to
onsider:either r di�ers from all ik su
h that jkik
orresponds to a �operator or r = ik for some k su
h that jkik = �ik .In the �rst
ase, let i0 = 1 and ip+1 = 0 and supposethat ik+1 < r � ik for some 0 � k � p su
h that ei-ther k = p or jkik
orresponds to a � operator. Then jpip : : : j1i1 (r; a01; : : : ; a0p) !� r+Ppl=k+1 jl � (p� k).If r = ik for some 1 � j � p
orresponding to a � operator,then we have the following derivation: jpip : : : j1i1 (r; a01; : : : ; a0p)!� jpip : : : jkik (r; a0k; : : : ; a0p)! jpip : : : jk+1ik+1 ('ik0 a0k; : : : ; a0p)!� 'ik�p+k+Ppl=k+1 jl0 a0kIn both
ases � is
learly a solution of9H1; : : : ; Hk; X =?�se (rH1 : : : Hk)by sele
ting H1; : : : ; Hk appropriately and,
onsequently, itis solution of the original problem and_r2Rp[Ri 9H1; : : : ; Hk; X =?�se (r H1 : : : Hk)
5. ARITHMETIC PROPERTIES OF THE�se-UNIFICATION RULESThe arithmeti

onstraint that naturally has emerged whendeveloping the Exp-App �se-uni�
ation rule is more expres-sive than the one of the uni�
ation setting based on the ��-style. This, jointly with an eÆ
ient arithmeti
 dedu
tive

method, speed up the veri�
ation of possible splittings andthe sear
h for solutions in the
orresponding
ase analysis.For the
ase of the ��-
al
ulus, equations of the formX[a1 : : : ap: "n℄ =?�� (m b1 : : : bq)may have solutions of the form (rH1 : : : Hk), where r� p+n = m. In fa
t, 1["r�1℄[a1 : : : ap: "n℄!� 1["r�1�p+n℄.In [9℄ the ��-
al
ulus is presented using only the de Bruijnindex 1. Thus the dete
tion of the previous kind of solutionsis very ineÆ
ient. In fa
t, observe that sin
e "n abbreviates(n�1)-
ompositions of ", �nding the �rst
omponent 1["r�1℄of these possible solutions
an be done only after realizinga pro
ess of enumeration of the p ai
omponents and the(n�1) " of n � 1["n�1℄. Sin
e �se-terms are written using allthe natural indi
es, one
an state that sear
hing for redi
esof the uni�
ation rules and determining solved and
ex-
exequations in our uni�
ation setting are more eÆ
ient thanin the language of the ��-
al
ulus.We show that the �rst numeri

omponents of bindings fora meta-variable X of solutions of equations of the form jpkp : : : j1k1(X; a1; : : : ; ap) =?�se (m b1 : : : bq)are determined in a unique way.Lemma 5.1. Let jpkp : : : j1k1(X; a1; : : : ; ap) be a skeletonof a �se-normal term and suppose that n > k1 and m � kp.Then jpkp : : : j1k1(n; a1; : : : ; ap)!� n � p+Ppr=1 jr > m.Proof. Firstly, observe that sin
e k1; : : : ; kp is a de
reas-ing sequen
e, we have n > k1 � : : : � kp � m and thusk1 � kp < n �m whi
h implies m � n � (k1 � kp + 1).Se
ondly, observe thatPpr=1 jr � 0. Thus the sole possibil-ity to have n�p+Ppr=1 jr � n�(k1�kp+1) is p�1 � k1�kp.We
onsider two
ases:If p� 1 = k1�kp then jpkp : : : j1k1(n; a1; : : : ; ap)!� n� p+Ppr=1 jr � n�p = n� (k1�kp+1) � m. Moreover, observethat if there exists some operator ', say jiki in the sequen
eof the skeleton, thenPpr=1 jr � ji > 0 whi
h implies n�p+Ppr=1 jr > m. If the sequen
e
onsists only of � operators,then m < kp and also n � p+Ppr=1 jr > m.If p � 1 > k1 � kp then there exists at least one 1 � i < psu
h that jiki = 'jiki and ji+1ki+1 = �ki+1 being ki = ki+1.Thus ji+1ki+1 jiki(n; ai; ai+1)! ji+1ki+1(n+ ji � 1; ai+1)! n+ji � 2 � n � 1. For ea
h of these subsequen
es we havethe analogous situation, obtaining for the whole sequen
en � p+Ppr=1 jr > n� (k1 � kp + 1) � m.Lemma 5.2 (Uni
ity). Consider the equation jpkp : : : j1k1(X; a1; : : : ; ap) =?�se (m b1 : : : bq)where jpkp : : : j1k1(X; a1; : : : ; ap) is the skeleton of a �se-normal form. The �rst numeri
al
omponent of bindings forthe meta-variable X of solutions of this equations is unique.

Proof. Observe �rstly the three possible
ases for bind-ings fX=(n : : :)g:1. n � kp: jpkp : : : j1k1(n; a1; : : : ; ap) !� jpkp(n; ap). Sin
e
ase n = kp thus jpkp = 'jpkp , we have jpkp(n; ap)! n.2. ki+1 < n � ki: we have jpkp : : : j1k1(n; a1; : : : ; ap) !� jpkp : : : jiki(n; ai; : : : ; ap). Sin
e
ase n = ki we have jiki ='jiki , then in the two
ases: n = ki and n < ki, we have jpkp : : : jiki(n; ai; : : : ; ap)! jpkp : : : ji+1ki+1 (n; ai+1; : : : ; ap)!�n� (p� i) +Ppr=i+1 jr.3. k1<n: jpkp : : : j1k1(n; a1; : : : ; ap)!� n� p+Ppr=1 jr.We analyze the more general
ase of natural numbers be-tween subs
ripts k. Sele
t ki+1 < n1 � ki and kl+1 <n2 � kl, for i > l. Then jpkp : : : j1k1 (n1; a1; : : : ; ap) !�n1 � (p� i) +Ppr=i+1 jr and jpkp : : : j1k1(n2; a1; : : : ; ap)!�n2 � (p� l) +Ppr=l+1 jr.Sin
e k1; : : : ; kp is a de
reasing sequen
e we have n1 < n2.By the previous Lemma we obtain: jiki : : : jl+1kl+1 : : : j1k1(n2; a1; : : : ; ai)!� jiki : : : jl+1kl+1(n2; al+1; : : : ; ai)!� n2� (i� l)+Pir=l+1 jr >n1.Then n2 � (p� l) +Ppr=l+1 jr > n1 � (p� i) +Ppr=i+1 jr,whi
h
on
ludes the proof.Observe that when sear
hing for solutions of jpkp : : : j1k1(X; a1; : : : ; ap) =?�se (m b1 : : : bq)a binding for X to an appli
ation should be sele
ted, whose�rst
omponent is a natural number n su
h that for somei, ki+1 < n � ki and n � (p � i) +Ppr=i+1 jr = m. This
orresponds to sear
hing for solutions of an integer linearproblem.
6. CONCLUSIONSAdvantages of the here proposed uni�
ation method, withrespe
t to the one formulated by Dowek, Hardin and Kir
h-ner in [9℄, are mainly
onsequen
es of the inherent di�eren
esbetween both styles of expli
it substitution of the two
al
uliin question: the �se- and ��-
al
uli.1. In our uni�
ation setting we remain
lose to the �-
al
ulus be
ause we don't need to use more than one kindof obje
ts: the obje
ts of the �-
al
ulus. We don't use sub-stitution obje
ts as is done in the ��-uni�
ation approa
h.From this point of view, we think that our approa
h is more
lear semanti
ally; mainly, be
ause the prin
ipal intentionand obvious appli
ation of any uni�
ation via expli
it sub-stitution in some version of the �-
al
ulus is, of
ourse, tosolve uni�
ation problems in the pure �-
al
ulus.2. Be
ause of the fa
t that for both methods, the Nor-malize uni�
ation rule depends on the subja
ent properties

of the �se and �� rewrite rules,
orrespondingly, and thatthe underlying redu
tion pro
esses based on the �se- and��-
al
uli are in
omparable (see for instan
e [16℄), one
an-not say that �se-uni�
ation is more (or less) eÆ
ient thanthe uni�
ation setting proposed in [9℄. But at least one
anstate that sear
hing for redi
es of the uni�
ation rules (anddetermining solved and
ex-
ex equations) is more eÆ
ient,sin
e �se terms are written using natural indi
es. Of
ourse,in the praxis, this problem
an be easily solved in the ��setting by overloading the notation n to represent the
orre-sponding ��-term (1["n�1℄) in
orporating to the uni�
ationme
hanism the ne
essary built-in linear arithmeti
 dedu
-tive method.Additionally, we think that the arithmeti

onstraint thatnaturally results when de�ning the Exp-App uni�
ation rulein the �se setting is more expressive than the one of the ��.This, jointly with an eÆ
ient arithmeti
 dedu
tive method,speed up the veri�
ation of possible splittings and the sear
hfor solutions in the
orresponding
ase analysis.As pointed out in [9℄, the use of expli
it substitution en-ables us to translate HOU problems into �rst order ones.This results in a simpler development and analysis of HOUmethods. The proposed uni�
ation method and its furtherdevelopments are not only relevant be
ause of the obviousne
essity of analyzing, developing and implementing HOUpro
edures to improve performan
e (and expressiveness) ofthe
urrent higher order dedu
tive systems and languages.We think that our work is also important be
ause of thene
essity of
omparing the advantages, disadvantages andappropriateness of both the �se- and ��-style of expli
itsubstitution in a pra
ti
al and relevant setting in
rementingin this way the theoreti
 knowledge about the properties ofthe involved
al
uli.In order to obtain a HOU pro
edure useful in pra
ti
e, aneÆ
ient and
omplete uni�
ation strategy was developed in[3℄. In [9℄ the rules for uni�
ation of ��-terms are relatedto HOU on the pure �-
al
ulus by the pre-
ooking and ba
ktranslations. This was also done for the �se-
al
ulus in [3℄.In the sequel we present in an informal way one example onhow to apply our uni�
ation method to HOU problems inthe �-
al
ulus. For a formal presentation see [3℄.Observe that unifying two terms a and b in the �-
al
ulus
onsists in �nding a substitution � su
h that �(a) =�� �(b).But in the �-
al
ulus (and in the ��-
al
ulus) as well asin the �se-
al
ulus the notion of substitution is di�erentfrom the �rst order one or grafting, as was shown in Se
-tion 2. Thus using the notation of substitution in De�ni-tions 2.3 and 2.4 a uni�er in the �-
al
ulus of the problem�:X =?�� �:2 is not a term t = �X su
h that �:t =?�� �:2but a term t = �X su
h that �(�:X) = �:�+(X) = �:2as fX=tg�:X = �:fX=t+gX = �:t+ and not �:t. This ob-servation
an be extended to any uni�er and by translat-ing appropriately �-terms a; b 2 �dB(X), the HOU problema =?�� b
an be redu
ed to equational uni�
ation. In [9℄ atranslation
alled pre-
ooking from �dB(X) terms into thelanguage of the ��-
al
ulus is given su
h that sear
hing forsolutions of the
orresponding ��-uni�
ation problem
orre-sponds to sear
hing for solutions of the higher order problem

a =?�� b. In the following example, we illustrate informallythe analogous situation in the �se-
al
ulus.Example 6.1. Consider the higher order uni�
ation prob-lem �:(X 2) =?�� �:2, where 2 and X are of type A andA ! A, respe
tively. Observe that applying a substitutionsolution � to the �dB(X)-term �:(X 2) gives �(�:(X 2)) =�:(�+(X) 2). Then in the �se-
al
ulus we are sear
hing fora grafting �0 su
h that �0(�:('20(X) 2)) =�se �:2. Corre-spondingly, in the ��-
al
ulus the term �:(X 2) is trans-lated or pre-
ooked into �:(X["℄ 2). Then we should sear
hfor uni�ers for the problem �:('20(X) 2) =?�se �:2.Now we apply �se-uni�
ation rules to the former problem.By applying De
-� and Exp-� we get ('20(X) 2) =?�se 2 andsubsequently 9Y ('20(X) 2) =?�se 2 ^ X =?�se �:Y . Then byapplying Repla
e and Normalize we obtain 9Y ('20(�:Y) 2)=?�se 2^X =?�se �:Y and 9Y ('21Y)�12 =?�se 2^X =?�se �:Y .Now, by applying rule Exp-app we obtain(9Y ('21Y)�12 =?�se 2 ^X =?�se �:Y) ^(Y =?�se 1 _ Y =?�se 2)whi
h by Repla
e gives(('211)�12 =?�se 2 ^X =?�se �:1) _(('212)�12 =?�se 2 ^X =?�se �:2)and, �nally, by Normalize(2 =?�se 2 ^X =?�se �:1) _ (2 =?�se 2 ^X =?�se �:2)In this way substitution solutions fX=�:1g and fX=�:2g arefound.To
omplete the analysis observe that by de�nition of substi-tution (De�nitions 2.3, 2.4) and beta redu
tion in �dB(X)we have fX=�:1g(�:(X 2)) = �:(fX=(�:1)+g(X) 2) =�:(�:1+1 2) = �:(�:1 2) =� �:2 and fX=�:2g(�:(X 2)) =�:(fX=(�:2)+g(X) 2) = �:(�:2+1 2) = �:(�:3 2) =� �:2.Observe that the last appli
ation of beta redu
tion is as fol-lows: (�:3 2) =� f1=2g(3) = 2. �In general, before the uni�
ation pro
ess, a �-term a shouldbe translated into the �se-term a0 resulting by simultane-ously repla
ing ea
h o

urren
e of a meta-variable X at po-sition i in a with 'k+10 X, where k is the number of abstra
-tors between the root position of a, ", and position i. Ifk = 0 then the o

urren
e of X remains un
hanged.In [7℄ it was shown that for an eÆ
ient implementationof the ��-HOU approa
h, the use of terms de
orated withtheir
orresponding types and environments is useful. Forinstan
e, observe that for applying uni�
ation rules su
has Exp-App and Exp-�, it is ne
essary to know the typesand the environments of subterms of the
urrent uni�
ationproblem. In relation with that implementation, where re-peated exe
ution of a type-
he
king algorithm is avoided byde
orating terms, our HOU approa
h has the
lear advan-tage of having less expensive de
orations than the ones ofthe ��-HOU. This is a
onsequen
e of the fa
t that de
ora-tions of substitution obje
ts are more expensive than thoseof term obje
ts.

7. REFERENCES[1℄ M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. L�evy.Expli
it Substitutions. Journal of Fun
tionalProgramming, 1(4):375{416, 1991.[2℄ M. Ayala-Rin
�on and F. Kamareddine. Higher OrderUni�
ation via �s-Style of Expli
it Substitution.Te
hni
al report, Computer and Ele
tri
alEngineering, Heriot-Watt University, Edinburgh,De
ember 1999. Available athttp://www.
ee.hw.a
.uk/ultra.[3℄ M. Ayala-Rin
�on and F. Kamareddine. Strategies forSimply-Typed Higher Order Uni�
ation via �se-Styleof Expli
it Substitution. In R. Kennaway, editor, ThirdInternational Workshop on Expli
it SubstitutionsTheory and Appli
ations to Programs and Proofs(WESTAPP 2000), Norwi
h, England, July 2000.[4℄ F. Baader and T. Nipkow. Term Rewriting and AllThat. Cambridge University Press, 1998.[5℄ H. Barendregt. The Lambda Cal
ulus : Its Syntax andSemanti
s (revised edition). North Holland, 1984.[6℄ Z.-e.-A. Benaissa, P. Les
anne, and K. H. Rose.Modeling Sharing and Re
ursion for Weak Redu
tionStrategies using Expli
it Substitution. InProgramming Languages: Implementations, Logi
s andPrograms PLILP'96, volume 1140 of LNCS, pages393{407. Springer, 1996.[7℄ P. Borovansk�y. Implementation of Higher-OrderUni�
ation Based on Cal
ulus of Expli
itSubstitutions. In M. Barto�sek, J. Staudek, andJ. Wiedermann, editors, Pro
eedings of theSOFSEM'95: Theory and Pra
ti
e of Informati
s,volume 1012 of Le
ture Notes on Computer S
ien
e,pages 363{368. Springer Verlag, 1995.[8℄ P.-L. Curien, T. Hardin, and J.-J. L�evy. Con
uen
eProperties of Weak and Strong Cal
uli of Expli
itSubstitutions. Journal of the ACM, 43(2):362{397,1996. Also as Rapport de Re
her
he INRIA 1617, 1992.[9℄ G. Dowek, T. Hardin, and C. Kir
hner. Higher-orderUni�
ation via Expli
it Substitutions. Informationand Computation, 157(1/2):183{235, 2000.[10℄ G. Dowek, T. Hardin, C. Kir
hner, and F. Pfenning.Uni�
ation via Expli
it Substitutions: The Case ofHigher-Order Patterns. In M. Maher, editor, Pro
. ofthe 1996 Joint International Conferen
e andSymposium on Logi
 Programming, Logi
Programming, pages 259{273, Bonn, Germany, Sept.1996. MIT press.[11℄ W. Farmer. A Uni�
ation Algorithm for Se
ond-OrderMonadi
 Terms. Annals of Pure and Applied Logi
,39:131{174, 1988.[12℄ W. Goldfarb. The Unde
idability of the Se
ond-OrderUni�
ation Problem. Theoreti
al Computer S
ien
e,13(2):225{230, 1981.[13℄ G. P. Huet. A Uni�
ation Algorithm for Typed�-Cal
ulus. Theoreti
al Computer S
ien
e, 1:27{57,1975.

[14℄ F. Kamareddine and R. P. Nederpelt. A useful�-notation. Theoreti
al Computer S
ien
e, 155:85{109,1996.[15℄ F. Kamareddine and A. R��os. Extending a �-
al
uluswith Expli
it Substitution whi
h Preserves StrongNormalisation into a Con
uent Cal
ulus on OpenTerms. Journal of Fun
tional Programming,7:395{420, 1997.[16℄ F. Kamareddine and A. R��os. Relating the ��- and�s-Styles of Expli
it Substitutions. Journal of Logi
and Computation, 10(3):399{431, 2000.[17℄ C. Kir
hner and C. Ringeissen. Higher-orderEquational Uni�
ation via Expli
it Substitutions. InPro
. Algebrai
 and Logi
 Programming, volume 1298of LNCS, pages 61{75. Springer, 1997.[18℄ L. Magnusson. The implementation of ALF - a proofeditor based on Martin L�of's Type Theory with expli
itsubstitutions. PhD thesis, Chalmers, 1995.[19℄ C. Mu~noz. Proof-Term Synthesis on Dependent-TypeSystems via Expli
it Substitution. Te
hni
al report,ICASE, Institute for Computer Appli
ations inS
ien
e and Engineering, MS 132C, NASA LangleyResear
h Center, Hampton, VA 23681-2199, USA,O
tober 1999.[20℄ G. Nadathur and D. S. Wilson. A representation oflambda terms suitable for operations on theirintentions. Pro
eedings of the 1990 ACM Conferen
eon Lisp and Fun
tional Programming, pages 341{348,1990.[21℄ R. P. Nederpelt, J. H. Geuvers, and R. C. de Vrijer.Sele
ted papers on Automath. North-Holland,Amsterdam, 1994.[22℄ C. Okasaki. FUNCTIONAL PEARL EvenHigher-Order Fun
tions for Parsing or Why WouldAnyone Ever Want to Use a Sixth-Order Fun
tion?Journal of Fun
tional Programming, 8(2):195{199,Mar
h 1999.[23℄ L. Paulson. Isabelle: The next 700 Theorem Provers.Logi
 and Computer S
ien
e, pages 361{386, 1990.[24℄ C. Prehofer. Progress in Theoreti
al ComputerS
ien
e. In R. V. Book, editor, Solving Higher-OrderEquations: From Logi
 to Programming. Birkh�auser,1997.[25℄ A. R��os. Contribution �a l'�etude des �-
al
uls ave
substitutions expli
ites. PhD thesis, Universit�e deParis 7, 1993.[26℄ J. A. Robinson. A Ma
hine-oriented Logi
 Based onthe Resolution Prin
iple. Journal of the ACM,12(1):23{41, Jan. 1965.[27℄ W. Snyder and J. Gallier. Higher-Order Uni�
ationRevisited: Complete Sets of Transformations. Journalof Symboli
 Computation, 8:101{140, 1989.

