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ABSTRACT

A unification method based on the As.-style of explicit sub-
stitution is proposed. This method together with appropri-
ate translations, provide a Higher Order Unification (HOU)
procedure for the pure A-calculus. Our method is influenced
by the treatment introduced by Dowek, Hardin and Kirch-
ner using the Ao-style of explicit substitution. Correctness
and completeness properties of the proposed As.-unification
method are shown and its advantages, inherited from the
qualities of the As.-calculus, are pointed out. Our method
needs only one sort of objects: terms. And in contrast to
the HOU approach based on the Ao-calculus, it avoids the
use of substitution objects. This makes our method closer
to the syntax of the A-calculus. Furthermore, detection of
redices depends on the search for solutions of simple arith-
metic constraints which makes our method more operational
than the one based on the Ao-style of explicit substitution.

Keywords
Higher order unification, lambda-calculus, explicit substitu-
tion.

1. INTRODUCTION

After Robinson’s successful introduction of his well-known
first order Resolution Principle based on substitution, unifi-
cation and resolution [26], much work has been done in order
to formalize these basic notions in other settings. Such ex-
tensions are essential for amongst other things, automated
deduction in higher order logics. The first person to success-
fully formulate a unification method for the case of higher
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order logics, specifically for the typed A-calculus, was Huet
[13]. Since then several Higher Order Unification (HOU)
approaches have been developed and used in practical lan-
guages and theorem provers such as Aprolog and Isabelle
([20; 23]). In most of these approaches, the notion of sub-
stitution plays an important role. The importance of the
notion of substitution led to an explosion of work on mak-
ing substitutions explicit in recent years. Also, a number
of work has been devoted to establish the usefulness of ex-
plicit substitution to automated deduction, theorem proving
and proof synthesis [18; 19], to programming languages [6]
and to HOU [9]. The latter paper shows that in the HOU
framework, if substitution was made explicit, many benefits
can be obtained in computation. In particular, [9] presented
a HOU method based on the Ao-style of explicit substitu-
tion which was proved useful for deduction in the typed
A-calculus and subsequently generalized for treating higher
order equational unification problems [17] and restricted for
the case of higher order patterns [10]. Here we develop a
unification method based on the Asc-style of explicit sub-
stitution which jointly with adequate pre-cooking and back
translations between the languages of the A-calculus and
the As.-calculus, as presented in [3] give a HOU procedure,
which takes advantage of the qualities of the Ase calculus.
In particular, our approach avoids the use of two different
sorts of objects as in the Ao-calculus. Moreover, decidabil-
ity of the application of our unification rules (i.e., detection
of redices) depends on the search for natural solutions of
simple arithmetic constraints. This makes As.-HOU more
operational than the Ao-HOU.

1.1 Higher order unification

Higher order objects arise naturally in many fields of com-
puter science. For example, in the context of implementa-
tion of functional languages it is necessary to develop mech-
anisms for the treatment of higher order functions. For
instance, the following rewriting system specifies the well-
known MAP function, which applies a function to all the
elements of a list: MAP(f, NIL) — NIL; MAP(f, CONS(z,1)) —
conNs(f(x),MAP(f,l)), where NIL and CONS are the usual
LISP empty list and constructor list function. Observe that
f appears both as a variable and as a functional symbol.
From the point of view of first oder rewriting it is not pos-
sible to manipulate this kind of objects. In fact, for simple
rewriting based deduction processes, such as one-step re-
duction or critical pair deduction, first order matching and
unification do not apply. The solution of these problems, at
least in the rewriting context, is the A-calculus. Rewriting



could be performed modulo the rules of the A-calculus or
combining specifications with the rules of the A-calculus.

The function MAP is a typical example of a second-order
function, but functions of third-order or above have practical
interest too. In [22] useful third- until sixth-order functions
were presented in the context of combinator parsing.

A simple example of a HOU problem is the search for solu-
tions for the equality (F(f))(a) = f(F(a)). A solution is the
function identity {F/A..z}, but {F(z)/Ae.f"(z) | n € N}
are solutions too.

HOU is essential in higher order automated reasoning, where
it has formed the basis for generalizations of the Resolution
Principle in second-order logic.

Huet’s work [13] was relevant because he realized that to
generalize Robinson’s first order Resolution Principle [26]
to higher order theories, it is useful to verify the existence
of unifiers without computing them explicitly. Huet’s al-
gorithm is a semi-decision one that may never stop when
the input unification problem has no unifiers, but when the
problem has a solution it always presents an explicit unifier.
Unification for second-order logic was proved undecidable
in general by Goldfarb [12]. Goldfarb’s proof is based on a
reduction from Hilbert’s Tenth Problem. This result shows
that there are arbitrary higher order theories where unifica-
tion is undecidable, but there exist particular higher order
languages of practical interest that have a decidable uni-
fication problem. In particular, for the second-order case,
unification is decidable, when the language is restricted to
monadic functions [11]. Another problem of HOU is that
the notion of most general unifier does not apply and that
a more complex notion than that of complete set of unifiers
is necessary. Huet has shown that equations of the form
(Ae.F a) =7 (A\s.G 1) (called flez-flex) of third-order may
not have minimal complete sets of unifiers and that there
may exist an infinite chain of unifiers, one more general than
the other, without having a most general one (for references
see section 4.1 in [24]).

For a very simple presentation of HOU see [27] and for a
detailed introduction in the context of declarative program-
ming see [24].

1.2 Contribution of this work

The Ao-calculus [1] introduces two different sets of entities,
one for terms and one for substitutions. The As.-style [15]
calculus insists on remaining closer to the A-calculus and
uses a philosophy started by de Bruijn in his system AU-
TOMATH [21] and elaborated extensively through the new
item notation [14]. The philosophy states that terms of the
A-calculus are either application terms such as a function ap-
plied to an argument; abstraction terms such as a function;
or substitution terms or updating terms. Hence, substitu-
tion and updating are made explicit in item notation. The
advantages of this philosophy are listed in [14] and include
remaining as close as possible to the familiar A-calculus.
Therefore, we propose to study HOU in the As.-style of
explicit substitution, which makes our approach closer to
the syntax of the A-calculus than that of the Ao-approach
in that we avoid the use of two different sorts of objects. We

establish the following three properties of As.-unification:

1. Correctness: If P and P’ are unification problems such
that P reduces to P’ then every unifier of P’ is a unifier
of P.

2. Completeness: If P and P’ are unification problems
such that P reduces to P’ then every unifier of P is a
unifier of P’.

3. The search for unification redices and the detection of
flez-flex (i.e. implicitly solvable) equations is simpler
in our approach than in the Ao-approach.

After introducing the (typed) Ao- and Ase-calculi (section
2), and the unification approach in the Ao-calculus (section
3), we present our Ase-style based unification method in sec-
tion 4 and some arithmetic properties of the As.-unification
rules in section 5. We then conclude illustrating how to ap-
ply Asc-unification for solving HOU problems in the pure
A-calculus and discussing future work in section 6. Omitted
proofs and references can be found in [2].

2. BACKGROUND

We assume familiarity with the A-calculus as presented in
[5] and with the notion of term algebra 7 (F,X) built on
a (countable) set of variables X and a set of operators F.
Variables in X’ are denoted by upper case last letters of the
Roman alphabet XY ... and for a term t € T(F, X), var(t)
denotes the set of variables occurring in ¢.

Additionally, we assume familiarity with the basic notions
of rewriting theory such as (local) confluence or (weakly)
Church Rosser property (for short, (W)CR), normal forms
and strong and weak normalization (for short, SN and W,
respectively) as presented in [4]. For a reduction relation R
over a set A, (A, —r), we denote with —% the reflezive and
transitive closure of —gr. The subscript R is usually omitted.
When a —* b we say that there exists a derivation from a
to b. Syntactical identity is denoted by a = b.

A valuation is a mapping from X to 7 (F,X). The home-
omorphic extension of a valuation, 6, from its domain X
to the domain 7 (F,X) is called the grafting of 6. As
usual, valuations and their corresponding grafting valua-
tions are denoted by the same Greek letter. Application
of a valuation 6 or its corresponding grafting to a term
t € T(F,X) will be written in postfix notation . The do-
main of a grafting 6, denoted dom(#) is defined by dom(6) =
{X | X0 # X,X € X}. Its range, denoted ran(f), is de-
fined by ran(0) = Uxegom(gyvar(X0). The set var(f) =
dom(0)Uran(0) is the set of variables involved in . A valu-
ation and its corresponding grafting € are explicitly denoted
by 6 = {X/X60 | X € dom(0)}.

The notion of grafting, usually called first order substitution,
corresponds to simple substitution without renaming.

2.1 The A-calculus with names and explicit

substitution
Let V be a (countable) set of variables (different from the
ones in X) denoted by lowercase last letters of the Roman
alphabet z, v, ....



Terms A(V), of the A-calculus with names are inductively
defined by a ==z | (¢ a) | Az.a. Terms of the forms \;.a
and (a b) are called abstractions and applications, respec-
tively. The notions of valuation and grafting from )V and
A(V) to A(V) are adapted in the obvious way. First order
substitution or grafting leads to problems in the A-calculus.
For example, applying the (first order) substitution {u/z}
t0 Az.(u x) results in A;.(z ) which is wrong. Therefore,
the A-calculus with names makes extensive use of wvariable
renaming via a-conversion. E.g., renaming x (say as y) in
(Az.(u x)){u/z} results in the correct term A,.(z y).

We denote by o (a) the a-conversion of a resulting by re-
naming the variables in V' C V occurring at a € A(V) with
fresh variables.

DEFINITION 2.1. Let 8 = {z1/a1,... ,xn/an} be a valua-
tion from V to A(V). 0", the substitution that extends 0
to A(V), is defined by structural induction as follows:

1. 6°"'(z) = x0;

2. 6°'((a b)) = (6°""(a) 6°"'(b));

2. 0%t (Ap.a) = A..0°t (o™ D=} (@) {z/2}), where z
is a fresh variable; i.e., z & var(f) and z does not
occur in Ag.a.

When no confusion arises, both a valuation 6 and its cor-
responding substitution will be denoted by 6. Ouly in this
section we will use prefixed and postfixed notation to remark
the difference between substitutions and valuations.

Since free variables are selected randomly, the result of ap-
plying a substitution can be conceived as a class of equiva-
lence terms rather than as a unique term.

Now we can define 3-reduction respectively n-reduction
as the rewriting relation of the rewrite rule: (Agz.a b) —
{x/b}°**(a) respectively Az.(a =) —>a, if ¢ & Fvar(a),
where Fuvar(a) denotes the set of free variables in a.

The notion of unification in A(V) differs from the first order
one, because bound variables in A()) are not affected by uni-
fication substitutions. Unification variables in the A-calculus
are free variables. Thus the free variables occurring in terms
of a unification problem can be partitioned into true unifi-
cation variables and constants, that cannot be bound by
the unifiers. Observe that constants, as free variables, can-
not be changed by the g-reduction process. However, from
the point of view of unification, both constants and bound
variables can be considered of the same syntactical category.

2.2 TheA-calculus in de Bruijn notation

To differentiate between unification and constant variables,
one can consider unification variables as meta-variables
in a set X'. Thus, A-calculus is defined as the term algebra,
A(V, X), over the set of operators {A;._ | z € VIU{(- )}UV
and the set of variables X'. In this setting, the previous no-
tion of substitution can be adapted for meta-variables pre-
serving the semantics of both 8- and n-reduction. But the
most appropriate setting to treat unification meta-variables
is the well-known A-calculus with de Bruijn indices [21], were

natural indices are used to denote both bounded variables
and constants. Bounded variables are related to their cor-
responding abstractors by their relative height, which is the
number of abstractors between them.

For instance, the A-term A;.(A..(z z) (x z)) is translated
into A.(A.(2 1) (1 4)). Indices for free variable are appro-
priately selected to avoid relating them with abstractors.

The set Agp(X) of A-terms in de Bruijn notation is
defined inductively as a ::=n | X | (a a) | A.a where X € X
and n € N\ {0}.

DerFINITION 2.2. Let a € Agp(X), i € N. The i-lift of a,
denoted by a™, is defined as:

o) XT"=X,for X€X b) (a1 as)™ = (af" ad?)

+i _ J n+1,ifn>q
d " _{ n, ifn <i
forneN.
The lift of a term a is its 0-lift, and is denoted by a™.

¢) (Aa)ti = )\.af—(iﬂ)

DEFINITION 2.3. The application of the substitution
withb of n € N\{0} on a term a in Aqp(X), denoted {n/b}a,
is defined inductively by:

1. {n/b}X =X, for X € X;

2. {n/b}(a1 a2) = ({n/b}ar {n/b}az);

3. {n/b}X.a1 = A{n+1/b*}a1;

m—1, ifm>n

b, ifm=n
m, ifm<n

4. {n/b}m = if m € N.

DEFINITION 2.4. Let 0 = {Xi/a1,... ,Xn/an} be a val-
uation from the set of meta-variables X to Aqp(X). The
corresponding substitution, also denoted by 0, is defined
inductively by:

a) O(m) =m for m € N
¢) 0(ar a2) = (6(a1) 6(a2))

b) 0(X) = X0, for X e X
d) 9)\.&1 = )\.9+(a1)

where 8% denotes both the valuation {Xi/a7,...
and its associated substitution.

,$n/a;t}

Consider the n-reduction rule in A(X): A\z.(a z) = a, if ¢ &
Fuvar(a). In Agp(X), the left side of this rule is written as
A.(a’" 1), where a’ stands for the corresponding translation
of a into the language of Agp(X). “z & Fvar(a)” means, in
Aqp(X), that there are neither occurrences in a’ of the index
1 at height zero nor of the index 2 at height one etc. This
means, in general, that there exists a term b such that b =
a. Thus the B-reduction is defined as (A.a b) — {1/b}a and
the n-reduction as \.(a 1) = bif I b+ = a.



Table 1: Ao Rewriting System of the Ao-calculus

(Beta) (Aa b)) — a[b-id]

(Id) alidfl — a

(VarCons) 1la-s] — a

(App) (a b)[s] — (a[s]) (b[s])
(Abs) Aa)[s] — Aa[l-(so?)]
(Clos) (alsD[t] — alsof]

(IdL) idos — s

(IdR) soid — s

(ShiftCons) to(a-s) — s

(Map) (a-s)ot — aft]-(sot)
(Ass) (sot)you —> so(tou)
(VarShift) 1.1 — id

(SCons) 1s] - (tos) — s

(Eta) A(a 1) — b if a=-0[1]

2.3 TheAo-calculus

DEFINITION 2.5. The Ao-calculus is defined as the calcu-
lus of the rewriting system Ao of Table 1 where TERMS a ::=
1| X |(a a)|Aa]a[s] andSuBs s == id| T |a.s|sos.

The equational theory associated to the rewriting system
Ao defines a congruence that we denote by =,,. The cor-
responding congruence obtained by dropping the Beta and
FEta rules is denoted with =,.

The rewriting system Ao is locally confluent [1], confluent on
substitution-closed terms (i.e., terms without substitution
variables) [25] and not confluent on open terms (i.e., terms
with term and substitution variables) [8].

PROPOSITION 2.6. ([25]) The Ao -normal form of any Ao -
term is of one of the following forms: a) Aa; b) (a b1 ...by),
where a is either 1, 1[1"], X or X[s] for s a substitution
term different from id in normal form; or c) ay...ap. 17,
where a1,...,ap are normal terms and ap # n.

In A(X) and Agp(X), the rule X{y/t} = X, where y is an
element of V or a de Bruijn index, respectively, is necessary
because there is no way to suspend the substitution {y/t}
until X is instantiated. In the Ao-calculi the application of
this substitution can be delayed, since the term X[s] does
not reduce to X. Observe that the condition a =, b[f] of the
FEta rule is stronger than the condition a =b" as X = X,
but there exists no term b such that X =, b[t]. The fact
that the application of a substitution to a meta-variable can
be suspended until the meta-variable is instantiated will be
used to code the substitution of variables in X by X'-grafting
and explicit lifting. Consequently a notion of X'-substitution
in Ao-calculi is unnecessary.

2.4 The)\s.-calculus
The Asc-calculus avoids introducing two different sets of en-
tities and insists on remaining close to the syntax of the

A-calculus. Next to A and application, the As.-calculus in-
troduces substitution (o) and updating () operators. In
the Asc-calculus, we let a,b,c, etc., range over the set of
terms. A term containing neither substitution nor updating
operators is called a pure term.

DEFINITION 2.7 (Ase-CALCULUS). The terms of the Ase-
calculus are given by: a == X|N|(a a)|Xa|ac’a|pla
where j, i > 1, k > 0. The set of rules As. is given in
Table 2. The Ase-calculus is the rewriting system generated
by the set of rules Ase. The calculus of substitutions
associated with the As.-calculus is the rewriting system
generated by the set of rules se = Ase — {o-generation, Eta}
and we call it the s.-calculus.

The equational theory associated with As. defines a con-
gruence denoted by =)s,. The congruence obtained by
dropping the o-generation and Eta rules is denoted by =, .
When we restrict the reduction to these rules, we will use
expressions such as s.-reduction, s.-normal form, etc, with
the obvious meaning.

Intuitively, the substitution operator initiates (o-generation)
one-step of F-reduction, from (A.a b), propagating the asso-
ciated substitution innermost (o-A- and o-app-transition).
Once this propagation is finished, when necessary, the up-
dating operator is introduced to make the appropriate lift
over b (o-destruction). Otherwise the free de Bruijn indices
are decremented by one.

Correspondence between the FEta rules of the Ase-calculus
and the Ao-calculus was proved in [2].

Similarly to the Ao-calculus we can describe operators of
the Ase-calculus over the signature of a first order sorted
term algebra Tys, (X) built on X, the set of variables of sort
TERM and its subsort NATCTERM. The set of variables of
sort TERM in a term a € Txs, (X) is denoted by T var(a).

THEOREM 2.8

([15]).

a) The sc-calculus is weakly normalizing and confluent.
b) The Asc-calculus simulates B-reduction.

c) The Asc-calculus is confluent on open terms.

As a corollary of the characterization of the s.-normal forms
in [15] (Theorem 8) we obtain a characterization of Ase-
normal forms.

COROLLARY 2.9  (Asc-NORMAL FORMS). Let a be a Asc-
term. a s in Asc-normal form iff:
1. ae XUN;

2. a = (b c), where b,c are Ase-normal forms and b is
not an abstraction of the form A.d;



Table 2: Rewriting System of the As.-calculus with 5-rule

(o-generation) (Aa b) —
(o-A-transition) (\a)o'b —
(o-app-transition) (a1 a2)od —
(o-destruction) no'b —
(p-A-transition) pi(da) —
(p-app-transition)  i(a1 az) —
(p-destruction) pin —
(Eta) A(a 1) —
(o-o-transition) (ac'b)oic —
(o-p-transition 1)  (pra)a’b —>
(o-p-transition 2)  (pha)o’b —
(p-o-transition) Yilac?b) —
(p-p-transition 1) o (np{ a) —
(p-p-transition 2) oL (np{ a) —

a

A
((a10'b) (az0'D))

(g ar) (pia2))

{n+i—1 if n>k

n if n<k

b if a=s, b

(ac?™c) o' (bo? ") if i<
pita if k<j<k+i

pilac? ™) if k4+i<j
(Prs1a) 0 (Pry1-;0) if j<k+1
Ol (Phyr-ja) if 1+j<k
et e if I<k<l+j

o'b

(ac®t'b)

if n>1
if n=1
if n<i

3. a = A\.b, where b is a Asc-normal form excluding appli-
cations of the form (¢ 1) such that there exists d with
‘Péd =se €

4. a = ba’c, where ¢ is a Asc-normal form and b is an
Ase-normal form of one of the following forms:
a) X, b)do'e, withj <i or c) prpd, with j < k;

5. a = pib, where b is a Asc-normal form of one of the
following forms: )
a) X, b)co’d, withj>k+1or c¢)ylc, withk <l.

2.5 TypedA-calculi

For the sake of clarity we include only the essential notation
of the typed Ao- and Ase-calculi. Typing rules for the two
calculi and additional properties can be found in [2].

We recall that an environment, I', in de Bruijn setting is
simply a list of types and, in the case of the Ao-calculus,
substitutions receive environments as types. For all the sys-
tems we will consider, we take: TYPES A A|lA—- B
and ENVIRS I' := nil | A.I'. The rewrite rules of the typed
Ao- and Asc-calculi are those of Tables 1 and 2 except that
rules involving abstractions are now typed. Thus, for the
typed Ao-calculus we have the typed rules:

(Beta)  (Aa.a b) — alb-id]
(Abs) (Aa.a)[s] — Aa.afl-(so1)]
(Eta) Aa.(a 1) — bifa =, b[f]

and for the typed Ase-calculus:

(Aa.a b)_—)aalb _
(Aa.a)o'b — Aa.(ac't'b)
Pr(Aa.a) — Aa(phi1a)
Aa.(a 1) — bif a =5 b

(o-generation)
(o-A-transition)
(p-A-transition)
(Eta)

Characterization of n-long normal forms in the typed Ao-
and Asc-calculi is necessary to simplify the set of rules of
the unification algorithms. Essentially, the use of n-long
normal forms guarantees that meta-variables of functional
type A — B are instantiated with typed terms of the form
Aa.a.

DEFINITION 2.10  (1-LONG NORMAL FORM IN Ao ). Let
a be a Ao-term of type A1 — ... - A,, = B in the environ-
ment I' and in Ao-normal form. The n-long normal form
of a, written a’, is defined by:

2

where in the second clause, c; is the n-long normal form of
the normal form of b;[t™]; and in the third clause, c; is the n-
long normal form of b;[1"] and if s = di...dg. % then s’ =
e1-..eq. TFt™ where e; is the n-long normal form of d;[1"].

Ao b if a=\c.b
)\Al...)\An(k—l—ncl...Cpn’...ll) ifa:(kbl...bp)
Aay - A4, (X[s'ler...epn’ .o 1) ifa=(X[s]b1...bp)

DEFINITION 2.11  (7-LONG NORMAL FORM IN As.). Let
a be a Asc-term of type Ay — ... — A, — B in the envi-
ronment I' and in Asc-normal form. The n-long normal
form of a, written a’, is defined by:

Ac.b ifa=MAc.b

o — AAI...AAn(Cl.._.Cpn’...ll) ifa:(bl_...bp)
T ) A4y Aa, (dottrea’ . 1) ifa=boic
AAI...AAH(kacln’...ll) ifa:ap}cb



where in the second clause, ¢; is the n-long normal form of
the normal form of ¢yt bi; in the third clause, d' e’ are
the n-long normal forms of the normal forms of cngb and
<p6’+1c, respectively; and in the fourth clause, ¢’ is the n-long
normal form of the normal form of pgt'b.

The set of unification rules of the two unification methods
are constructed by combining the different types of n-long
normal forms enumerated in the previous two Definitions
obtaining different types of equational problems. For the
unification setting based on the As.-style an additional char-
acterization of As.-normal terms whose main operators are
either o or ¢ will be useful in order to combine directly 7-
long normal forms of type 2 (See subsection 4.1) with the
ones of type 3. and 4. This simplifies the comparison of
both unification approaches.

DEFINITION 2.12  (LONG NORMAL FORM). For both Ao-
and Asc-terms, long normal forms are defined as the 7-
long normal form of the corresponding Bn-normal forms.

In both typed Ao- and As.-calculi we have that two terms
are n-equivalent iff they have the same long normal form.

3. UNIFICATION IN THE Ao-CALCULUS

In this section we present briefly notions and results on
higher order unification in the Ao-style of explicit substi-
tution given in [9]. Equational problems are restricted to
substitution-closed terms (for which Ao is confluent), be-
cause Ao is not confluent on substitution-open terms. Since
the main goal is to provide a mechanism to solve unification
problems in the A-calculus this restriction is harmless.

Let T(F,X) be a term algebra over a set of function sym-
bols F and a countable set of variables X and let A be
an F-algebra. A unification problem over 7(F, X) is a
first order formula without universal quantifier or negation,
whose atoms are of the form F, T or s =4 t. Unification
problems are written as disjunctions of existentially quanti-
fied conjunctions of atomic equational unification problems:
D =V, 3u; /\ite s; =4 t;, When [J| = 1, the unifica-
tion problem is called a unification system. Variables in
the set o of a unification system Jw /\iel Si 234 t; are bound
and all other variables are free. T and F stand for the empty
conjunction and disjunction, respectively. Of course, the
empty disjunction corresponds to an unsatisfiable problem.

A unifier of a unification system 3w /\iel Si 234 t; is a graft-
ing o such that A = 30 A, si0)5 = tio|g where oz de-
notes the restriction of the grafting o to the domain X\@. A
unifier of \/; . ; 3uj; /\ielj s; =4 t; is a grafting o that unifies
at least one of the unification systems. The set of unifiers
of a unification problem, D, or system, P, is denoted by
Ua(D) or U4(P), respectively.

DEFINITION 3.1. A Ao-unification problem P is a uni-
fication problem in the algebra Tho (X) modulo the equational

theory presented by Ao. An equation of such a problem is
denoted a =5, b, where a and b are substitution-closed Ao -
terms of the same sort. An equation is called trivial when it
is of the form a =%, a. The set of variables of sort TERM
in P is denoted by T var(P).

We present a set of rewrite rule schemata used to simplify
unification problems. The objective of applying the rules is
to obtain a description of the set of unifiers. Basic decom-
position rules for unification should be applied modulo the
usual boolean simplification rules as presented in [9].

DEFINITION 3.2. The set of Ao-unification rules for the
typed Ao -unification problems is defined as the set of rules
{Dec-\, Dec-App, App-Fail, Exp-\, Replace, Normalize} in
Table 4, replacing the equality :ise by =5, including the
rule Ezp-App defined in Table 3.

Since Ao satisfies CR and WN the search can be restricted
to n-long normal solutions that are graftings of the form
{X/(nai...ap)} and {X/(Z[s]a1...ap)} or {X/A.a}, when
the type of X is atomic or functional, respectively.

Equations of the form (n ai...ap) =%, (m bi...b,) are
transformed by Dec-App and App-Fail into the empty dis-
junction when n # m, as it has no solution, or into the con-
junction /\i:l..p ai =4, bi, when n = m. The rules Normalize
and Dec-\ normalize equations of the form \a =%, A\b into
equations of the form a’ =%, b'. The rule Ezp-)\ generates
the grafting { X/\.Y'} for a variable X of type A — B, where
Y is a new variable of type B.

For an equation Xl[ai...ap. 1] =4, (m bi...b;), with X
atomic, solutions can only be grafting valuations of the form
{X/(xer...ck)}, wherer € {1,... ,p} U {m —n+p}. The
rule Ezp-App advances in direction towards the solution.

The rule Replace simply propagates to the current unifi-
cation problem the grafting {X/a}, which corresponds to
equations X =5 _ a previously added.

DEFINITION 3.3. A wunification system P is a Ao-solved
form if it is a conjunction of non trivial equations of the
following forms:

(Solved) X =}, a, where the variable X does not oc-
cur anywhere else in P and a s in long nor-
mal form. Such an equation and variable are
said to be solved in P.

(Flex-Flex) mnon solved equations of the form
Xla1...ap. 1"] =i, Yla!. Sy T"’],
where Xai ...ap. "] and Ya} ... a,. !
are long normal terms with X and Y of
atomic type.

In [9] it is shown that: any Ao-solved form has Ao-unifiers;
deduction by the Ao-unification rules of a well typed equa-
tion gives rise only to well typed equations, T and F; solved
problems are normalized for the Ao-unification rules; and,



Table 3: Ezp-App Ao-unification rule

ny __7?
- e Gp. =30
(Ezp-App) PAXlar...ap. 1"] =5, (mb1...by)

— PAX[a1...ap. t"] =5, (mbi...by) A

if X has an atomic type and is not solved where Hi,...,H; are variables of appropriate types, not
occurring in P, with the environments I'y; = I'x, R, is the subset of {1,...
has the right type, R; = if m > n + 1 then {m —n + p} else )

Veeryur, 3H1 - Hi, X =3, (x Hi ... Hy)

,p} such that (r Hy ... Hy)

if a system is a conjunction of equations that cannot be re-
duced by the Ao-unification rules then it is solved. These
facts enabled [9] to prove completeness and correctness of
the Ao-unification rules.

4. ASo-UNIFICATION

Normal form characterization of As.-terms jointly with WN
and CR properties are the essential requirements to develop
a unification method for the A\s.-calculus.

4.1 MAs.-normal forms

We present a characterization of As.-normal forms whose
main operators are either o or ¢ (i.e. of type 3. and 4. in
Corollary 2.9). This will help simplify our presentation of
the unification rules and of the flez-flexr equations.

Observe that left arguments of the o operator or arguments
of the ¢ operator at Ase-normal forms are neither applica-
tions, nor abstractions, nor de Bruijn indices. For instance,
©l(a b) = (pha ¢ib), (a b)o'c — (ac’c boic). Hence, the
sole possibility is to have a meta-variable as a left argument.
Thus one has to consider terms with alternating sequences
of operators ¢ and o whose left innermost argument is a
meta-variable; for instance, (((pfg((cpﬁX)aiza))a”b)a“c.

DEFINITION 4.1. Let t be a Asc-normal term whose root
operator is either o or ¢ and let X be its left innermost
meta-variable. Denote by 1/){1’: the operator at the k™ posi-
tion following the sequence of operators ¢ and o, consider-
ing only left arguments of the o operators, in the innermost
outermost ordering. Additionally, if d)fl’: corresponds to an
operator ¢ then jr and ix denote its super and subscripts,
respectively and if 1/){1’: corresponds to an operator o then
Jx =0 and iy denotes its superscript. Let ar denote the cor-
responding right arqgument of the k** operator if 1/13: =gk
and the empty arqument if 1/17’“ = @{: The skeleton of t

. . Yk
written sk(t) is 1,/}35 (X an, . ap).

EXAMPLE 4.2. Let t be a Asc-normal term of the form
(P2 (¢l X)o'2a))a"*b)o'oc. Then its skeleton is sk(t) =

0,0 j 0 j
7/’15"/%'4 ‘Zsz/)lz 311(X,a:byc)- 4

LEMMA 4.3. Lett bea )\se-normal_ term whose root opera-
tor is either o or ¢ and let sk(t) = z/JZ;’ ~ (X an, ., ap).
Successive subscripts ir and tx4+1 satisfy the following:

1. ik > tk+1 of Yr and Yry1 are both o operators or both
p operators;

2. ik 2 tky1 of Y and Yr41 are @ and o operators, re-
spectively;

8. ik > ik+1 + 1 if Y and Yr41 are o and ¢ operators,
respectively.

ProoOF. By simple analysis of the arithmetic constraints
at the As. rewrite rules. [

4.2 Unification in the As.-calculus

Unification notions (such as an equation a :;Se b or a set of
unifiers Uxs, (P)) are defined analogously to the Ao unifica-
tion setting of the previous section.

DEFINITION 4.4. The set of As.-unification rules for
the typed Asc-unification problems is defined as the set of
rules in Table 4.

Since Ase is CR and WN, the search can be restricted to 7-
long normal solutions that are graftings that bind functional
variables to n-long normal terms of the form A.a and atomic
variables into 7-long normal terms of the form (k bi...bp)
or ac’b or pia, where in the first case k could be omitted
and p could be zero. The use of the 7 rule is important to
reduce the number of cases (or unification rules) to be con-
sidered when defining the unification algorithm, but as for
the Ao-calculus, the n-rule can be dropped [9]. As for the
Ao-unification, Normalize and Dec-A use the fact that As. is
CR and WN to normalize equations of the form A\.a =3, \.b
into a’ :ise b’ and the rule Replace propagates the grafting
{X/a} corresponding to equations X :;se a. Ezp-\ gener-
ates the grafting {X/\.Y'} for a variable X of type A — B,
where Y is a new variable of type B.

Equations of the form (n ai...ap) =x,, (m bi...b;) are
transformed by the rules Dec-App and App-Fail into the
empty disjunction when n # m, as it has no solution, or into
the conjunction /\i:l..p a; :;Se b;, when n = m. Remember
that by terms of the form (n a1...ap) we also mean those
where n is omitted or p = 0. Analogously, the rules Dec-
o and Dec-p decompose equations with leading operators o
and ¢. But, the corresponding rules o-Fail and p-Fail should
omit flez-flex equations as the following example shows.

ExampLe 4.5. Let (A.(A\.(X 2) 1) V)=, (\.(Z 1) U)
be a unification problem, where X,Y,Z and U are meta-
variables of types A — A, A; A — A and A, respectively.

Then (A (M\.(X 2) 1) V) =" (Xo?Y)o! (p§Y) @iY) and
(A\.(Z 1) U)=* (Zo'U @iU). Thus by applying the rule
Normalize to the original equation we obtain the equation



Table 4: \s.-unification rules

(Dec-\) PAXsa=3, Aab — PAa=;, b

(Dec-App) PA(nai...ap) =5, (nbi...by) — PA_ ai =1, bi

(App-Fail)  PA(mai...ap) =4, mbi...by) — F
ifn#m

(Dec-o) PAac'b=}, co'd — PAa=}, cAb=}, d

(o-Fail) PAac'b=}, co’ld — F
if i # j and ac'’d :?/\Se co’d is not flez-flex

(Dec—np) P A Sdca :?Ass Soib — PAa :?Ase b

(p-Fail) PAgia :I?)\se @{b - F _
if i # j or k #1 and pja =},, ¢lbis not flez-flex

(Ezp-\) P - 3(Y : ATFB),PAX =}, MY
if(X : '+ A— B) € Toar(P),Y ¢ Tvar(P), and X is a unsolved variable

(Ezp-App) P/\1,/}g;’ le(X,al,... ,Gp) :;56 (mby...by) — P/\d){j le(X,al,... ,ap) :Z\SE (mb1...bg) A

Veeryor, 3H1, .. Hi, X =%, (r Hi...Hy)

if z/JZ;’ fll (X,ai1,...,ap) is the skeleton of a Asc.-normal term and X has an atomic type and is not
solved where Hi,... ,H} are variables of appropriate types, not occurring in P, with the environments
'y, = I'x, R, is the subset of {i1,...,ip} of superscripts of the o operator such that (r H; ... H}) has
the right type, R; = Ji_, if ix > m+p—k—31_, 1 ji > ir+1 then {m+p—k—377_, 5} else , where
1o = 00,%p4+1 =0

(Replace) PAX :?Ase a — {X/a}PANX :;Se a
if X € Tvar(P),X ¢ Tvar(a) and a € X = a € Tvar(P)

(Normalize) P Aa :I?)\se b — PAd :I?)\se v
if @ or b is not in long normal form where a’ is the long normal form of a if a is not a solved variable and
a otherwise. b is defined from b identically

Xa?Y)ot(@bY) @dY) =i, (Zo'U @sU) which can be
P P Ase P

decomposed into (XY )o! (ppY) :;Se Zo'U N p§Y :Z\se

woU and subsequently into (Xo?Y) :I?)\se Z N @Y :Z\SE

U A Y=}, U.

Since Yn € N, p¢n — n, the equation @Y :?Ase U al-
ways has solutions and solutions of the last two equations
are graftings of the form {Y/V,U/V'}. Additionally, observe
that the first equation has also a variety of solutions: take
{X/n}; thus if n > 2, {Z/n—1} else if n = 2, {Z/p%Y}
else {Z/1}.

Analogously, by normalization and decomposition with the
Ao -unification rules we have

AA(X 2) 1) V) =% (A(Z 1) U) = Normalize

(X[Y.Y.id] Y) =3, (Z[U.id] U)

which can be decomposed into X[Y.Y.id] =5, Z[U.id] A
Y :?/\U U. A further step of replacement gives the corre-

sponding flez-flex equation in the language of the Ao -calculus
X[Y.Yid] =%, Z[Y.id). .

In the Ao-calculus, Ezp-App advances in direction towards
solutions for equations of the form

Xar .. ap. "] =5s. (mb1...by)

where X is an unsolved variable of an atomic type. The
ASe-unification rule Ezp-App has the analogous role for As.-
unification problems. Use of Asc-normal forms in Ezp-App
is not essential. This is done with the sole objective of

simplifying the case analysis presented in the definition of
the rule and its completeness proof. In fact, this can be
dropped and be subsequently incorporated as an efficient
unification strategy, where before applying Ezp-App Ase-
unification problems are normalized.

EXAMPLE 4.6. From the unification problem
ALY 1) AX 1) =" AV AW)

we reach the two equations:

o (Y[A(X 1).id] M(X 1)) =%, VIAW.id]

o (Yo'A(X 1) A(pi 1) =L, VoA W

After applying the corresponding Exp-App rules, with V :Z\a
Vi Va) and V :;se (Vi Va), additional equations ap-
pear: A.(X 1) =5, Vo[A(X 1).dd] and \.(p1X 1) =J,.
Voo \.(X 1). Solutions result by selecting the case Va =4, 1
or correspondingly Va2 :;se 1. )

DEFINITION 4.7. A unification system P is a Ase-solved
form if it is a conjunction of non trivial equations of the
following forms:



(Solved) X =J.. a, where the variable X does not
occur anywhere else in P and a is in long
normal form. Such an equation and variable
are said to be solved in P.

non solved equations between long normal
forms whose root operator is o or ¢ which
can be represented as equations between their

J j ?
skeleton: ;" ... H(X,an, . ,ap) =a,

l
Gyt Pt (Yobe, . by).

(Flez-Flex)

REMARK 4.8. Consider a Ase-normal form t whose root
operator 1is either o or ¢ and with skeleton of the form
sk(t) = 1[){1’; fll (X,a1,...,ap). Then by binding X with
n, n > i1, one obtains the normal formt —" n+Y ¥ _, jx—p-
This is a direct consequence of lemma 4.35. °

LeEmMA 4.9. Any Asc-solved form has Asc-unifiers.

PrOOF. Since solved forms appearing in a system P straight-

forwardly define bindings between variables that do not ap-
pear anywhere else in P and in terms in long normal form,
it is enough to prove that flez-flex equations have unifiers.

Let P be a system in Asc-solved form including a flez-flex
equation of the form

Jp J1
ip t il(X,al,...

7 l
:ap) :;se /‘l)kz‘; s 1/}1211 (Y: bly Y :bQ)
This equation has always solutions. Select for instance bind-
ings {X/n,Y/m} such that n > i;,m >l and n+>"_, j. —
p=m+Y 2 k —q (see Remark 4.8). [

Now we show some properties of the As.-unification rules.

LEMMA 4.10 (WELL-TYPEDNESS). Deduction by apply-
ing the Ase-unification rules of a well typed equation gives
rise only to well typed equations, T and F.

Proor. It is proved by analyzing, rule by rule, the type
of the resulting transformed equation. [

LEMMA 4.11. Solved problems are normalized for the Asc-
unification rules and, conversely, if a system is a conjunc-
tion of equations that cannot be reduced by applying the Ase-
unification rules then it is solved.

PRrOOF. Solved and flez-flex equations are normalized.
Conversely, suppose P is a non solved system. Then P con-
tains an equation a :I?)\se b that is neither solved nor flez-
flex. Supposing that neither Normalize nor Replace apply
and according to the characterization of As.-normal forms
at Corollary 2.9, we have:

Firstly, if a if of the form A.a’ then, since b is long normal,
the sole possibility of having a well typed equation implies
b is of the form \.b' and rule Dec-\ applies.

Secondly, suppose that a is of the form (k a1 ...ap). Then if
b is of the form (1 b:1 ... bg), then either Dec-App or Fail-App
apply (remember here that both k and 1 could be omitted
and p and ¢ could be zero). If b has root operator o or ¢
then rule Ezp-App applies.

Cases of equations between terms with main operators o and
@ are either flez-flex or can be reduced by the rules Dec-o,
Dec-p, o-Fail or p-Fail. [

DEFINITION 4.12. Let P and P’ be \sc-unification prob-
lems, let “rule” denote the mame of a Asc-unification rule
and “=™ 7 its corresponding deduction relation over unifi-
cation problems. We define the following properties of rule:
correctness: 1. P —"™ P' implies Uys, (P') C Uns. (P).
completeness: P —™ P’ implies Uns, (P) C Uxs, (P').

THEOREM 4.13 (CORRECTNESS AND COMPLETENESS).
The Asc-unification rules are correct and complete.

ProOF. We present a sketch of the interesting verification
of completeness of the Ezp-App rule.

Consider P/\'g[)f;’ o fll (X,a1,...,ap) =4,, (mby...b,) and
a Asc-unifier § of this unification problem. Then 6(X) =
(rei...cs) and since 977 ... ¢! (X, a1,. .. ,ap) is the skele-
ton of a Asc.-normal form, we have two cases to consider:
either r differs from all ix such that ¢* corresponds to a o

operator or 7 = ix for some k such that ¢j* =g'*.

In the first case, let 3o = oo and ip+1 = 0 and suppose
that ég41 < r < i for some 0 > k > p such that ei-
ther k¥ = p or 1/1{}’: corresponds to a o operator. Then

Q/Jf: H(r,al,..,ap) = e+ 30 di— (p—k).
If r = 44 for some 1 < j < p corresponding to a o operator,
then we have the following derivation:
Jp J1
AR o

,a;,) —" 1,/}35 ]v’“(r,a;“... ,a'p)—>

(r,al,... i

B AL DV R
93

J J ik ! /
7/)1'; wz:::(soé)kak7 )a’p) - ¥o

In both cases 6 is clearly a solution of
3H,,... ,Hy, X =5, (cHy ... Hy)

by selecting Hi, ... , Hj appropriately and, consequently, it
is solution of the original problem and

\/ 3H:,...,Hy, X =, (r Hi.. Hy)
rERpUR;

O

5. ARITHMETIC PROPERTIES OF THE
AS¢-UNIFICATION RULES

The arithmetic constraint that naturally has emerged when
developing the Ezp-App Asc-unification rule is more expres-
sive than the one of the unification setting based on the Ao-
style. This, jointly with an efficient arithmetic deductive



method, speed up the verification of possible splittings and
the search for solutions in the corresponding case analysis.

For the case of the Ao-calculus, equations of the form
Xlai...ap. "] =0 (mby...b,)

may have solutions of the form (r Hi ... H}), where r —p +
n=m. In fact, 1[t" " J[a1 ... ap. "] == L[{" 177"

In [9] the Ao-calculus is presented using only the de Bruijn
index 1. Thus the detection of the previous kind of solutions
is very inefficient. In fact, observe that since 1" abbreviates
(n—1)-compositions of 1, finding the first component 1[1" "]
of these possible solutions can be done only after realizing
a process of enumeration of the p a; components and the
(n—1) 1 of n = 1[t"7!]. Since As.-terms are written using all
the natural indices, one can state that searching for redices
of the unification rules and determining solved and flez-flex
equations in our unification setting are more efficient than
in the language of the Ao-calculus.

We show that the first numeric components of bindings for
a meta-variable X of solutions of equations of the form

, , ’
d)]k’;... i (Xyar, ... ap) =5, (mbi...by)

are determined in a unique way.

LEMMA 5.1. Let d’ﬁ, {c11 (X,a1,...,ap) be a skeleton
of a Asc-normal term and suppose that n > k1 and m < kp.
Then d)]k’; ill(n,al,... sap) > n—p+>P_ i >m.

Proor. Firstly, observe that since ki, . .. , kp is a decreas-
ing sequence, we have n > ki > ... > k, > m and thus
k1 — kp < n —m which implies m < n — (k1 — kp + 1).

Secondly, observe that Y ¥_, j» > 0. Thus the sole possibil-
ity to have n—p+>-7_ jr < n—(ki—kp+1)isp—1 > k1 —k,.
We consider two cases:

Ifp—1=Fki —kp then Q/ch‘; ill(n,al,... Jap) = n—p+
> jr >2n—p=n—(ki—kp+1) > m. Moreover, observe
that if there exists some operator ¢, say 1[){5@ in the sequence
of the skeleton, then >-?_, j, > j; > 0 which implies n—p+
>k _, jr > m. If the sequence consists only of o operators,
then m < kp and also n —p+ >_F_, j, > m.

If p—1 > ki — kp then there exists at least one 1 <7 < p

such that 1/;{;@ = <p{;l and 1/1%’::1 = oFit+ being k;
Thus 1/%:111,% (n, i aier) = Pt (n+ ji = Laiy) = n+
ji —2 > n — 1. For each of these subsequences we have
the analogous situation, obtaining for the whole sequence

n—p+yl jpp>n—(ki—kp,+1)>m. O

ki+1.

LEmMmA 5.2 (Unicity). Consider the equation
G (X, ap) =5, (@b by)
where 1/}@ i (X an, ..y ap) ds the skeleton of a Ase-

normal form. The first numerical component of bindings for
the meta-variable X of solutions of this equations is unique.

ProOF. Observe firstly the three possible cases for bind-
ings {X/(n...)}:

1. n<kp: d’ﬁ ...1/)3,;11(n,a1,... ,ap) —~ ¢i§(n,ap). Since
case n =k, thus z/ﬂk‘; = npic:, we have z/ﬂk‘; (n,ap) = n.

2. kiy1 <n < ki: we have W,g; . .
e i (na,
cp{ji, then in the two cases: n = k; and n < k;, we have
wi’; ...Q/Ji’;(n,ai,... ,Gp) —H/Jff; ...'l/)iii-:ll(n,ai+1,...
n—(p—i)+ 37 i

. ill(n,al,... ,ap) —

ap). Since case n = k; we have ¢y} =

*

7ap)_)

3. ki1 <n: z/ﬂk‘; ill(n,al,... Jap) =" n—p+ P g
We analyze the more general case of natural numbers be-
tween subscripts k. Select kiv1 < m1 < ki and ki1 <

ny < ki, for i > 1. Then 47 .. / Lap) —

= (p—i)+ X0 dr and P . 1L (nayai,. .. ,ap) =
n2 — (p - l) + Zf:l.l,_l Jr-

J1 *
. 1(77,1,(11,...

*

Since ki, ... ,kp is a decreasing sequence we have n; < na.
By the previous Lemma we obtain:

. j )
’(,[)]kzld}kll:ll Jkll(ng,al,...,ai) -

y . ] . i .
’(l)Jk’l . ..1,/}kl:rll(’n2,al+1,... ,ai) —* nz—(l—l)+21=l+ljr >
ni

Then ny — (p—1) + Z£=l+1 Jr>m—(p—i)+ Z£=i+1 Jr
which concludes the proof. [

Observe that when searching for solutions of
. ) 2
wi‘;... i (Xyan, ... ap) =5, (mbi...by)

a binding for X to an application should be selected, whose
first component is a natural number n such that for some
i, kit1 <n < kjand n—(p—i)+ >V . jr = m. This
corresponds to searching for solutions of an integer linear
problem.

6. CONCLUSIONS

Advantages of the here proposed unification method, with
respect to the one formulated by Dowek, Hardin and Kirch-
ner in [9], are mainly consequences of the inherent differences
between both styles of explicit substitution of the two calculi
in question: the As.- and Ao-calculi.

1. In our unification setting we remain close to the A-
calculus because we don’t need to use more than one kind
of objects: the objects of the A-calculus. We don’t use sub-
stitution objects as is done in the Ac-unification approach.
From this point of view, we think that our approach is more
clear semantically; mainly, because the principal intention
and obvious application of any unification via explicit sub-
stitution in some version of the A-calculus is, of course, to
solve unification problems in the pure A-calculus.

2. Because of the fact that for both methods, the Nor-
malize unification rule depends on the subjacent properties



of the As. and Ao rewrite rules, correspondingly, and that
the underlying reduction processes based on the As.- and
Ao-calculi are incomparable (see for instance [16]), one can-
not say that As.-unification is more (or less) efficient than
the unification setting proposed in [9]. But at least one can
state that searching for redices of the unification rules (and
determining solved and flez-flex equations) is more efficient,
since As. terms are written using natural indices. Of course,
in the praxis, this problem can be easily solved in the Ao
setting by overloading the notation n to represent the corre-
sponding Ao-term (1[1"7']) incorporating to the unification
mechanism the necessary built-in linear arithmetic deduc-
tive method.

Additionally, we think that the arithmetic constraint that
naturally results when defining the Ezp-App unification rule
in the As. setting is more expressive than the one of the Ao.
This, jointly with an efficient arithmetic deductive method,
speed up the verification of possible splittings and the search
for solutions in the corresponding case analysis.

As pointed out in [9], the use of explicit substitution en-
ables us to translate HOU problems into first order ones.
This results in a simpler development and analysis of HOU
methods. The proposed unification method and its further
developments are not only relevant because of the obvious
necessity of analyzing, developing and implementing HOU
procedures to improve performance (and expressiveness) of
the current higher order deductive systems and languages.
We think that our work is also important because of the
necessity of comparing the advantages, disadvantages and
appropriateness of both the As.- and Ao-style of explicit
substitution in a practical and relevant setting incrementing
in this way the theoretic knowledge about the properties of
the involved calculi.

In order to obtain a HOU procedure useful in practice, an
efficient and complete unification strategy was developed in
[3]. In [9] the rules for unification of Ao-terms are related
to HOU on the pure A-calculus by the pre-cooking and back
translations. This was also done for the As.-calculus in [3].

In the sequel we present in an informal way one example on
how to apply our unification method to HOU problems in
the A-calculus. For a formal presentation see [3].

Observe that unifying two terms a and b in the A-calculus
consists in finding a substitution 6 such that 6(a) =g, 6(b).
But in the A-calculus (and in the Ao-calculus) as well as
in the As.-calculus the notion of substitution is different
from the first order one or grafting, as was shown in Sec-
tion 2. Thus using the notation of substitution in Defini-
tions 2.3 and 2.4 a unifier in the A-calculus of the problem
A.X =j, A2 is not a term ¢ = 6X such that \.t =}, A\.2
but a term t = X such that H(A.X) = AT (X) = .2
as {X/tJAX = A{X/tT}X = A\tT and not A\.t. This ob-
servation can be extended to any unifier and by translat-
ing appropnately A-terms a,b € Agp(X), the HOU problem
a —5" b can be reduced to equational unification. In [9] a

translation called pre-cooking from Agzp(X) terms into the
language of the Ao-calculus is given such that searching for
solutions of the corresponding Ao-unification problem corre-
sponds to searching for solutions of the higher order problem

a :Z;" b. In the following example, we illustrate informally
the analogous situation in the As.-calculus.

ExaMPLE 6.1. Consider the higher order unification prob-
lem A.(X 2) :Z;" A.2, where 2 and X are of type A and
A — A, respectively. Observe that applying a substitution
solution 0 to the Agp(X)-term A.(X 2) gives O(A.(X 2)) =
X (0T (X) 2). Then in the \s.-calculus we are searching for
a grafting 8 such that 8'(M.(p3(X) 2)) =rs, A.2. Corre-
spondingly, in the Ao-calculus the term A.(X 2) is trans-
lated or pre-cooked into A.(X[1] 2). Then we should search
for unifiers for the problem A.(p3(X) 2) =1.. \.2.

Now we apply Ase-unification rules to the former problem.
By applying Dec-A and Ezp-\ we get (05(X) 2) :I?)\se 2 and
subsequently Y (p3(X) 2) =a,, 2A X =3,. \.Y. Then by
applymg Replace and Normalzze we obtam EIY(ch()\ Y) 2)
=1, 2AX =%, AY and 3V (p3Y)0'2 =], 2AX =L, AY.
Now, by applymg rule Ezp-app we obtain

AY (piY)o'2 =5, 2A X =5,, AY) A

(Y =5, 1VY =, 2)
which by Replace gives
(pin)o'2 =1, 2A X =}, A1) V

(pi2)0'2 =5, 2A X =5,. A.2)
and, finally, by Normalize
(2=3s. 2AX =1,, A1)V (2=%,. 2A X =4,, \.2)

In this way substitution solutions {X/A\.1} and {X/X.2} are
found.

To complete the analysis observe that by definition of substi-
tution (Definitions 2.3, 2.4) and beta reduction in Agp(X)
we have {X/A1}A(X 2)) = A{X/ODTHX) 2) =
A1 2) = A(A1 2) =5 A2 and {X/A2}(A(X 2)) =
A{X/(A2)THX) 2) = A (A2 2) = A (A3 2) =5 A.2.
Observe that the last application of beta reduction is as fol-
lows: (A\.3 2) =g {1/2}(3) = 2. .

In general, before the unification process, a A-term a should
be translated into the As.-term a’ resulting by simultane-
ously replacing each occurrence of a meta-variable X at po-
sition i in a with ¢f ™' X, where k is the number of abstrac-
tors between the root position of a, e, and position ¢. If
k = 0 then the occurrence of X remains unchanged.

In [7] it was shown that for an efficient implementation
of the A\o-HOU approach, the use of terms decorated with
their corresponding types and environments is useful. For
instance, observe that for applying unification rules such
as Frp-App and Ezp-A, it is necessary to know the types
and the environments of subterms of the current unification
problem. In relation with that implementation, where re-
peated execution of a type-checking algorithm is avoided by
decorating terms, our HOU approach has the clear advan-
tage of having less expensive decorations than the ones of
the Ao-HOU. This is a consequence of the fact that decora-
tions of substitution objects are more expensive than those
of term objects.
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