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ABSTRACTA uni�ation method based on the �se-style of expliit sub-stitution is proposed. This method together with appropri-ate translations, provide a Higher Order Uni�ation (HOU)proedure for the pure �-alulus. Our method is inuenedby the treatment introdued by Dowek, Hardin and Kirh-ner using the ��-style of expliit substitution. Corretnessand ompleteness properties of the proposed �se-uni�ationmethod are shown and its advantages, inherited from thequalities of the �se-alulus, are pointed out. Our methodneeds only one sort of objets: terms. And in ontrast tothe HOU approah based on the ��-alulus, it avoids theuse of substitution objets. This makes our method loserto the syntax of the �-alulus. Furthermore, detetion ofredies depends on the searh for solutions of simple arith-meti onstraints whih makes our method more operationalthan the one based on the ��-style of expliit substitution.
KeywordsHigher order uni�ation, lambda-alulus, expliit substitu-tion.
1. INTRODUCTIONAfter Robinson's suessful introdution of his well-known�rst order Resolution Priniple based on substitution, uni�-ation and resolution [26℄, muh work has been done in orderto formalize these basi notions in other settings. Suh ex-tensions are essential for amongst other things, automateddedution in higher order logis. The �rst person to suess-fully formulate a uni�ation method for the ase of higher�Partially supported by EPSRC grant numbers GR/L36963and GR/L15685.yPartly supported by FEMAT and CAPES (BEX0384/99-2) Brazilian Foundations. Work arried out during one yearvisit of this author at the ULTRA Group (Useful Logis,Type Theory, Rewriting Systems and Their Appliations),Heriot-Watt University.

order logis, spei�ally for the typed �-alulus, was Huet[13℄. Sine then several Higher Order Uni�ation (HOU)approahes have been developed and used in pratial lan-guages and theorem provers suh as �prolog and Isabelle([20; 23℄). In most of these approahes, the notion of sub-stitution plays an important role. The importane of thenotion of substitution led to an explosion of work on mak-ing substitutions expliit in reent years. Also, a numberof work has been devoted to establish the usefulness of ex-pliit substitution to automated dedution, theorem provingand proof synthesis [18; 19℄, to programming languages [6℄and to HOU [9℄. The latter paper shows that in the HOUframework, if substitution was made expliit, many bene�tsan be obtained in omputation. In partiular, [9℄ presenteda HOU method based on the ��-style of expliit substitu-tion whih was proved useful for dedution in the typed�-alulus and subsequently generalized for treating higherorder equational uni�ation problems [17℄ and restrited forthe ase of higher order patterns [10℄. Here we develop auni�ation method based on the �se-style of expliit sub-stitution whih jointly with adequate pre-ooking and baktranslations between the languages of the �-alulus andthe �se-alulus, as presented in [3℄ give a HOU proedure,whih takes advantage of the qualities of the �se alulus.In partiular, our approah avoids the use of two di�erentsorts of objets as in the ��-alulus. Moreover, deidabil-ity of the appliation of our uni�ation rules (i.e., detetionof redies) depends on the searh for natural solutions ofsimple arithmeti onstraints. This makes �se-HOU moreoperational than the ��-HOU.
1.1 Higher order unificationHigher order objets arise naturally in many �elds of om-puter siene. For example, in the ontext of implementa-tion of funtional languages it is neessary to develop meh-anisms for the treatment of higher order funtions. Forinstane, the following rewriting system spei�es the well-known map funtion, whih applies a funtion to all theelements of a list: map(f;nil)! nil; map(f;ons(x; l))!ons(f(x);map(f; l)), where nil and ons are the usualLISP empty list and onstrutor list funtion. Observe thatf appears both as a variable and as a funtional symbol.From the point of view of �rst oder rewriting it is not pos-sible to manipulate this kind of objets. In fat, for simplerewriting based dedution proesses, suh as one-step re-dution or ritial pair dedution, �rst order mathing anduni�ation do not apply. The solution of these problems, atleast in the rewriting ontext, is the �-alulus. Rewriting



ould be performed modulo the rules of the �-alulus orombining spei�ations with the rules of the �-alulus.The funtion map is a typial example of a seond-orderfuntion, but funtions of third-order or above have pratialinterest too. In [22℄ useful third- until sixth-order funtionswere presented in the ontext of ombinator parsing.A simple example of a HOU problem is the searh for solu-tions for the equality (F (f))(a) = f(F (a)). A solution is thefuntion identity fF=�x:xg, but fF (x)=�x:fn(x) j n 2 Ngare solutions too.HOU is essential in higher order automated reasoning, whereit has formed the basis for generalizations of the ResolutionPriniple in seond-order logi.Huet's work [13℄ was relevant beause he realized that togeneralize Robinson's �rst order Resolution Priniple [26℄to higher order theories, it is useful to verify the existeneof uni�ers without omputing them expliitly. Huet's al-gorithm is a semi-deision one that may never stop whenthe input uni�ation problem has no uni�ers, but when theproblem has a solution it always presents an expliit uni�er.Uni�ation for seond-order logi was proved undeidablein general by Goldfarb [12℄. Goldfarb's proof is based on aredution from Hilbert's Tenth Problem. This result showsthat there are arbitrary higher order theories where uni�a-tion is undeidable, but there exist partiular higher orderlanguages of pratial interest that have a deidable uni-�ation problem. In partiular, for the seond-order ase,uni�ation is deidable, when the language is restrited tomonadi funtions [11℄. Another problem of HOU is thatthe notion of most general uni�er does not apply and thata more omplex notion than that of omplete set of uni�ersis neessary. Huet has shown that equations of the form(�x:F a) =? (�x:G b) (alled ex-ex) of third-order maynot have minimal omplete sets of uni�ers and that theremay exist an in�nite hain of uni�ers, one more general thanthe other, without having a most general one (for referenessee setion 4.1 in [24℄).For a very simple presentation of HOU see [27℄ and for adetailed introdution in the ontext of delarative program-ming see [24℄.
1.2 Contribution of this workThe ��-alulus [1℄ introdues two di�erent sets of entities,one for terms and one for substitutions. The �se-style [15℄alulus insists on remaining loser to the �-alulus anduses a philosophy started by de Bruijn in his system AU-TOMATH [21℄ and elaborated extensively through the newitem notation [14℄. The philosophy states that terms of the�-alulus are either appliation terms suh as a funtion ap-plied to an argument; abstration terms suh as a funtion;or substitution terms or updating terms. Hene, substitu-tion and updating are made expliit in item notation. Theadvantages of this philosophy are listed in [14℄ and inluderemaining as lose as possible to the familiar �-alulus.Therefore, we propose to study HOU in the �se-style ofexpliit substitution, whih makes our approah loser tothe syntax of the �-alulus than that of the ��-approahin that we avoid the use of two di�erent sorts of objets. We

establish the following three properties of �se-uni�ation:1. Corretness: If P and P 0 are uni�ation problems suhthat P redues to P 0 then every uni�er of P 0 is a uni�erof P .2. Completeness: If P and P 0 are uni�ation problemssuh that P redues to P 0 then every uni�er of P is auni�er of P 0.3. The searh for uni�ation redies and the detetion ofex-ex (i.e. impliitly solvable) equations is simplerin our approah than in the ��-approah.After introduing the (typed) ��- and �se-aluli (setion2), and the uni�ation approah in the ��-alulus (setion3), we present our �se-style based uni�ation method in se-tion 4 and some arithmeti properties of the �se-uni�ationrules in setion 5. We then onlude illustrating how to ap-ply �se-uni�ation for solving HOU problems in the pure�-alulus and disussing future work in setion 6. Omittedproofs and referenes an be found in [2℄.
2. BACKGROUNDWe assume familiarity with the �-alulus as presented in[5℄ and with the notion of term algebra T (F ;X ) built ona (ountable) set of variables X and a set of operators F .Variables in X are denoted by upper ase last letters of theRoman alphabet X;Y; ::: and for a term t 2 T (F ;X ), var(t)denotes the set of variables ourring in t.Additionally, we assume familiarity with the basi notionsof rewriting theory suh as (loal) onuene or (weakly)Churh Rosser property (for short, (W)CR), normal formsand strong and weak normalization (for short, SN andWN,respetively) as presented in [4℄. For a redution relation Rover a set A, (A;!R), we denote with !�R the reexive andtransitive losure of!R. The subsriptR is usually omitted.When a !� b we say that there exists a derivation from ato b. Syntatial identity is denoted by a = b.A valuation is a mapping from X to T (F ;X ). The home-omorphi extension of a valuation, �, from its domain Xto the domain T (F ;X ) is alled the grafting of �. Asusual, valuations and their orresponding grafting valua-tions are denoted by the same Greek letter. Appliationof a valuation � or its orresponding grafting to a termt 2 T (F ;X ) will be written in post�x notation t�. The do-main of a grafting �, denoted dom(�) is de�ned by dom(�) =fX j X� 6= X;X 2 Xg. Its range, denoted ran(�), is de-�ned by ran(�) = [X2dom(�)var(X�). The set var(�) =dom(�)[ ran(�) is the set of variables involved in �. A valu-ation and its orresponding grafting � are expliitly denotedby � = fX=X� j X 2 dom(�)g.The notion of grafting, usually alled �rst order substitution,orresponds to simple substitution without renaming.
2.1 The �-calculus with names and explicit

substitutionLet V be a (ountable) set of variables (di�erent from theones in X ) denoted by lowerase last letters of the Romanalphabet x; y; :::.



Terms �(V), of the �-alulus with names are indutivelyde�ned by a ::= x j (a a) j �x:a. Terms of the forms �x:aand (a b) are alled abstrations and appliations, respe-tively. The notions of valuation and grafting from V and�(V) to �(V) are adapted in the obvious way. First ordersubstitution or grafting leads to problems in the �-alulus.For example, applying the (�rst order) substitution fu=xgto �x:(u x) results in �x:(x x) whih is wrong. Therefore,the �-alulus with names makes extensive use of variablerenaming via �-onversion. E.g., renaming x (say as y) in(�x:(u x))fu=xg results in the orret term �y:(x y).We denote by �V (a) the �-onversion of a resulting by re-naming the variables in V � V ourring at a 2 �(V) withfresh variables.Definition 2.1. Let � = fx1=a1; : : : ; xn=ang be a valua-tion from V to �(V). �ext, the substitution that extends �to �(V), is de�ned by strutural indution as follows:1. �ext(x) = x�;2. �ext((a b)) = (�ext(a) �ext(b));3. �ext(�x:a) = �z:�ext((�var(�)[fxg(a))fx=zg), where zis a fresh variable; i.e., z 62 var (�) and z does notour in �x:a.When no onfusion arises, both a valuation � and its or-responding substitution will be denoted by �. Only in thissetion we will use pre�xed and post�xed notation to remarkthe di�erene between substitutions and valuations.Sine free variables are seleted randomly, the result of ap-plying a substitution an be oneived as a lass of equiva-lene terms rather than as a unique term.Now we an de�ne �-redution respetively �-redutionas the rewriting relation of the rewrite rule: (�x:a b) !fx=bgext(a) respetively �x:(a x)!a; if x 62 Fvar(a),where Fvar (a) denotes the set of free variables in a.The notion of uni�ation in �(V) di�ers from the �rst orderone, beause bound variables in �(V) are not a�eted by uni-�ation substitutions. Uni�ation variables in the �-alulusare free variables. Thus the free variables ourring in termsof a uni�ation problem an be partitioned into true uni�-ation variables and onstants, that annot be bound bythe uni�ers. Observe that onstants, as free variables, an-not be hanged by the �-redution proess. However, fromthe point of view of uni�ation, both onstants and boundvariables an be onsidered of the same syntatial ategory.
2.2 The�-calculus in de Bruijn notationTo di�erentiate between uni�ation and onstant variables,one an onsider uni�ation variables as meta-variablesin a set X . Thus, �-alulus is de�ned as the term algebra,�(V;X ), over the set of operators f�x: j x 2 Vg[f( )g[Vand the set of variables X . In this setting, the previous no-tion of substitution an be adapted for meta-variables pre-serving the semantis of both �- and �-redution. But themost appropriate setting to treat uni�ation meta-variablesis the well-known �-alulus with de Bruijn indies [21℄, were

natural indies are used to denote both bounded variablesand onstants. Bounded variables are related to their or-responding abstrators by their relative height, whih is thenumber of abstrators between them.For instane, the �-term �x:(�z:(x z) (x z)) is translatedinto �:(�:(2 1) (1 4)). Indies for free variable are appro-priately seleted to avoid relating them with abstrators.The set �dB(X ) of �-terms in de Bruijn notation isde�ned indutively as a ::= n j X j (a a) j �:a where X 2 Xand n 2 N n f0g.Definition 2.2. Let a 2 �dB(X ), i 2 N. The i-lift of a,denoted by a+i, is de�ned as:a) X+i = X , for X 2 X b) (a1 a2)+i = (a+i1 a+i2 )) (�:a1)+i = �:a+(i+1)1 d) n+i = � n+ 1; if n > in; if n � ifor n 2 N :The lift of a term a is its 0-lift, and is denoted by a+.Definition 2.3. The appliation of the substitutionwith b of n 2 Nnf0g on a term a in �dB(X ), denoted fn=bga,is de�ned indutively by:1. fn=bgX = X, for X 2 X ;2. fn=bg(a1 a2) = (fn=bga1 fn=bga2);3. fn=bg�:a1 = �:fn + 1=b+ga1;4. fn=bgm = 8<: m� 1; if m > nb; ifm = nm; if m < n if m 2 N.Definition 2.4. Let � = fX1=a1; : : : ; Xn=ang be a val-uation from the set of meta-variables X to �dB(X ). Theorresponding substitution, also denoted by �, is de�nedindutively by:a) �(m) = m for m 2 N b) �(X) = X�, for X 2 X) �(a1 a2) = (�(a1) �(a2)) d) ��:a1 = �:�+(a1)where �+ denotes both the valuation fX1=a+1 ; : : : ; xn=a+n gand its assoiated substitution.Consider the �-redution rule in �(X ): �x:(a x)! a; if x 62Fvar(a). In �dB(X ), the left side of this rule is written as�:(a0 1), where a0 stands for the orresponding translationof a into the language of �dB(X ). \x 62 Fvar (a)" means, in�dB(X ), that there are neither ourrenes in a0 of the index1 at height zero nor of the index 2 at height one et. Thismeans, in general, that there exists a term b suh that b+ =a. Thus the �-redution is de�ned as (�:a b)! f1=bga andthe �-redution as �:(a 1)! b if 9b b+ = a.



Table 1: �� Rewriting System of the ��-alulus(Beta) (�:a b) �! a [b � id℄(Id) a[id℄ �! a(VarCons) 1 [a � s℄ �! a(App) (a b)[s℄ �! (a [s℄) (b [s℄)(Abs) (�:a)[s℄ �! �:a [1 � (s Æ ")℄(Clos) (a [s℄)[t℄ �! a [s Æ t℄(IdL) id Æ s �! s(IdR) s Æ id �! s(ShiftCons) " Æ (a � s) �! s(Map) (a � s) Æ t �! a [t℄ � (s Æ t)(Ass) (s Æ t) Æ u �! s Æ (t Æ u)(VarShift) 1� " �! id(SCons) 1[s℄ � (" Æ s) �! s(Eta) �:(a 1) �! b if a =� b["℄
2.3 The��-calculusDefinition 2.5. The ��-alulus is de�ned as the alu-lus of the rewriting system �� of Table 1 where terms a ::=1 j X j (a a) j �a j a[s℄ and subs s ::= id j " j a:s j s Æ s:The equational theory assoiated to the rewriting system�� de�nes a ongruene that we denote by =��. The or-responding ongruene obtained by dropping the Beta andEta rules is denoted with =�.The rewriting system �� is loally onuent [1℄, onuent onsubstitution-losed terms (i.e., terms without substitutionvariables) [25℄ and not onuent on open terms (i.e., termswith term and substitution variables) [8℄.Proposition 2.6. ([25℄) The ��-normal form of any ��-term is of one of the following forms: a) �a; b) (a b1 : : : bn),where a is either 1, 1["n℄, X or X[s℄ for s a substitutionterm di�erent from id in normal form; or ) a1 : : : ap: "n,where a1; : : : ; ap are normal terms and ap 6= n.In �(X ) and �dB(X ), the rule Xfy=tg = X, where y is anelement of V or a de Bruijn index, respetively, is neessarybeause there is no way to suspend the substitution fy=tguntil X is instantiated. In the ��-aluli the appliation ofthis substitution an be delayed, sine the term X[s℄ doesnot redue to X. Observe that the ondition a =� b["℄ of theEta rule is stronger than the ondition a = b+ as X = X+,but there exists no term b suh that X =� b["℄. The fatthat the appliation of a substitution to a meta-variable anbe suspended until the meta-variable is instantiated will beused to ode the substitution of variables in X by X -graftingand expliit lifting. Consequently a notion of X -substitutionin ��-aluli is unneessary.
2.4 The�se-calculusThe �se-alulus avoids introduing two di�erent sets of en-tities and insists on remaining lose to the syntax of the

�-alulus. Next to � and appliation, the �se-alulus in-trodues substitution (�) and updating (') operators. Inthe �se-alulus, we let a; b; ; et., range over the set ofterms. A term ontaining neither substitution nor updatingoperators is alled a pure term.Definition 2.7 (�se-alulus).The terms of the �se-alulus are given by: a ::= X jN j (a a) j�:a j a �ja j'ikawhere j; i � 1 ; k � 0. The set of rules �se is given inTable 2. The �se-alulus is the rewriting system generatedby the set of rules �se. The alulus of substitutionsassoiated with the �se-alulus is the rewriting systemgenerated by the set of rules se = �se � f�-generation;Etagand we all it the se-alulus.The equational theory assoiated with �se de�nes a on-gruene denoted by =�se . The ongruene obtained bydropping the �-generation and Eta rules is denoted by =se .When we restrit the redution to these rules, we will useexpressions suh as se-redution, se-normal form, et, withthe obvious meaning.Intuitively, the substitution operator initiates (�-generation)one-step of �-redution, from (�:a b), propagating the asso-iated substitution innermost (�-�- and �-app-transition).One this propagation is �nished, when neessary, the up-dating operator is introdued to make the appropriate liftover b (�-destrution). Otherwise the free de Bruijn indiesare deremented by one.Correspondene between the Eta rules of the �se-alulusand the ��-alulus was proved in [2℄.Similarly to the ��-alulus we an desribe operators ofthe �se-alulus over the signature of a �rst order sortedterm algebra T�se(X ) built on X , the set of variables of sortterm and its subsort nat�term. The set of variables ofsort term in a term a 2 T�se (X ) is denoted by T var(a).Theorem 2.8 ([15℄).a) The se-alulus is weakly normalizing and onuent.b) The �se-alulus simulates �-redution.) The �se-alulus is onuent on open terms.As a orollary of the haraterization of the se-normal formsin [15℄ (Theorem 8) we obtain a haraterization of �se-normal forms.Corollary 2.9 (�se-normal forms). Let a be a �se-term. a is in �se-normal form i�:1. a 2 X [ N;2. a = (b ), where b;  are �se-normal forms and b isnot an abstration of the form �:d;



Table 2: Rewriting System of the �se-alulus with �-rule(�-generation) (�:a b) �! a �1 b(�-�-transition) (�:a)�ib �! �:(a �i+1 b)(�-app-transition) (a1 a2)�ib �! ((a1 �ib) (a2 �ib))(�-destrution) n�ib �! 8<: n� 1 if n > i'i0 b if n = in if n < i('-�-transition) 'ik(�:a) �! �:('ik+1 a)('-app-transition) 'ik(a1 a2) �! (('ik a1) ('ik a2))('-destrution) 'ik n �! � n+ i� 1 if n > kn if n � k(Eta) �:(a 1) �! b if a =se '20b(�-�-transition) (a�ib)�j  �! (a�j+1 ) �i (b �j�i+1 ) if i � j(�-'-transition 1) ('ik a)�j b �! 'i�1k a if k < j < k + i(�-'-transition 2) ('ik a)�j b �! 'ik(a �j�i+1 b) if k + i � j('-�-transition) 'ik(a�j b) �! ('ik+1 a)�j ('ik+1�j b) if j � k + 1('-'-transition 1) 'ik ('jl a) �! 'jl ('ik+1�j a) if l+ j � k('-'-transition 2) 'ik ('jl a) �! 'j+i�1l a if l � k < l + j3. a = �:b, where b is a �se-normal form exluding appli-ations of the form ( 1) suh that there exists d with'20d =se ;4. a = b�j, where  is a �se-normal form and b is an�se-normal form of one of the following forms:a) X, b) d�ie, with j < i or ) 'ikd, with j � k;5. a = 'ikb, where b is a �se-normal form of one of thefollowing forms:a) X, b) �jd, with j > k + 1 or ) 'jl , with k < l.
2.5 Typed�-calculiFor the sake of larity we inlude only the essential notationof the typed ��- and �se-aluli. Typing rules for the twoaluli and additional properties an be found in [2℄.We reall that an environment, �, in de Bruijn setting issimply a list of types and, in the ase of the ��-alulus,substitutions reeive environments as types. For all the sys-tems we will onsider, we take: types A ::= A j A ! Band envirs � ::= nil j A:�. The rewrite rules of the typed��- and �se-aluli are those of Tables 1 and 2 exept thatrules involving abstrations are now typed. Thus, for thetyped ��-alulus we have the typed rules:(Beta) (�A:a b) �! a [b � id℄(Abs) (�A:a)[s℄ �! �A:a [1 � (s Æ ")℄(Eta) �A:(a 1) �! b if a =� b["℄and for the typed �se-alulus:

(�-generation) (�A:a b) �! a �1 b(�-�-transition) (�A:a)�ib �! �A:(a �i+1 b)('-�-transition) 'ik(�A:a) �! �A:('ik+1 a)(Eta) �A:(a 1) �! b if a =s '20bCharaterization of �-long normal forms in the typed ��-and �se-aluli is neessary to simplify the set of rules ofthe uni�ation algorithms. Essentially, the use of �-longnormal forms guarantees that meta-variables of funtionaltype A ! B are instantiated with typed terms of the form�A:a.Definition 2.10 (�-long normal form in ��). Leta be a ��-term of type A1 ! : : :! An ! B in the environ-ment � and in ��-normal form. The �-long normal formof a, written a0, is de�ned by:a0=8<: �C :b0 if a=�C :b�A1 : : : �An(k+ n 1 : : : p n0 : : : 10) if a=(k b1 : : : bp)�A1 : : : �An(X[s0℄ 1 : : : p n0 : : : 10) if a=(X[s℄ b1 : : : bp)where in the seond lause, i is the �-long normal form ofthe normal form of bi["n℄; and in the third lause, i is the �-long normal form of bi["n℄ and if s = d1 : : : dq : "k then s0 =e1 : : : eq : "k+n where ei is the �-long normal form of di["n℄.Definition 2.11 (�-long normal form in �se). Leta be a �se-term of type A1 ! : : : ! An ! B in the envi-ronment � and in �se-normal form. The �-long normalform of a, written a0, is de�ned by:a0 = 8><>: �C :b0 if a = �C :b�A1 : : : �An(1: : :p n0: : :10) if a = (b1 : : : bp)�A1 : : : �An(d0�i+ne0 n0 : : : 10) if a = b�i�A1 : : : �An('ik0 n0 : : : 10) if a = 'ikb



where in the seond lause, i is the �-long normal form ofthe normal form of 'n+10 bi; in the third lause, d0; e0 arethe �-long normal forms of the normal forms of 'n+10 b and'n+10 , respetively; and in the fourth lause, 0 is the �-longnormal form of the normal form of 'n+10 b.The set of uni�ation rules of the two uni�ation methodsare onstruted by ombining the di�erent types of �-longnormal forms enumerated in the previous two De�nitionsobtaining di�erent types of equational problems. For theuni�ation setting based on the �se-style an additional har-aterization of �se-normal terms whose main operators areeither � or ' will be useful in order to ombine diretly �-long normal forms of type 2 (See subsetion 4.1) with theones of type 3. and 4. This simpli�es the omparison ofboth uni�ation approahes.Definition 2.12 (Long normal form). For both ��-and �se-terms, long normal forms are de�ned as the �-long normal form of the orresponding ��-normal forms.In both typed ��- and �se-aluli we have that two termsare ��-equivalent i� they have the same long normal form.
3. UNIFICATION IN THE ��-CALCULUSIn this setion we present briey notions and results onhigher order uni�ation in the ��-style of expliit substi-tution given in [9℄. Equational problems are restrited tosubstitution-losed terms (for whih �� is onuent), be-ause �� is not onuent on substitution-open terms. Sinethe main goal is to provide a mehanism to solve uni�ationproblems in the �-alulus this restrition is harmless.Let T (F ;X ) be a term algebra over a set of funtion sym-bols F and a ountable set of variables X and let A bean F-algebra. A uni�ation problem over T (F ;X ) is a�rst order formula without universal quanti�er or negation,whose atoms are of the form F; T or s =?A t. Uni�ationproblems are written as disjuntions of existentially quanti-�ed onjuntions of atomi equational uni�ation problems:D = Wj2J 9 ~wj Vi2Ij si =?A ti. When jJ j = 1, the uni�a-tion problem is alled a uni�ation system. Variables inthe set ~w of a uni�ation system 9~wVi2I si =?A ti are boundand all other variables are free. T and F stand for the emptyonjuntion and disjuntion, respetively. Of ourse, theempty disjuntion orresponds to an unsatis�able problem.A uni�er of a uni�ation system 9~wVi2I si =?A ti is a graft-ing � suh that A j= 9~wVi2I si�j~w = ti�j~w where �j~w de-notes the restrition of the grafting � to the domain X n ~w. Auni�er of Wj2J 9 ~wj Vi2Ij si =?A ti is a grafting � that uni�esat least one of the uni�ation systems. The set of uni�ersof a uni�ation problem, D, or system, P , is denoted byUA(D) or UA(P ), respetively.Definition 3.1. A ��-uni�ation problem P is a uni-�ation problem in the algebra T��(X ) modulo the equational

theory presented by ��. An equation of suh a problem isdenoted a =?�� b, where a and b are substitution-losed ��-terms of the same sort. An equation is alled trivial when itis of the form a =?�� a. The set of variables of sort termin P is denoted by T var(P ).We present a set of rewrite rule shemata used to simplifyuni�ation problems. The objetive of applying the rules isto obtain a desription of the set of uni�ers. Basi deom-position rules for uni�ation should be applied modulo theusual boolean simpli�ation rules as presented in [9℄.Definition 3.2. The set of ��-uni�ation rules for thetyped ��-uni�ation problems is de�ned as the set of rulesfDe-�, De-App, App-Fail, Exp-�, Replae, Normalizeg inTable 4, replaing the equality =?�se by =?��, inluding therule Exp-App de�ned in Table 3.Sine �� satis�es CR and WN the searh an be restritedto �-long normal solutions that are graftings of the formfX=(n a1 : : : ap)g and fX=(Z[s℄ a1 : : : ap)g or fX=�:ag, whenthe type of X is atomi or funtional, respetively.Equations of the form (n a1 : : : ap) =?�� (m b1 : : : bq) aretransformed by De-App and App-Fail into the empty dis-juntion when n 6= m, as it has no solution, or into the on-juntion Vi=1::p ai =?�� bi, when n = m. The rules Normalizeand De-� normalize equations of the form �a =?�� �b intoequations of the form a0 =?�� b0. The rule Exp-� generatesthe grafting fX=�:Y g for a variable X of type A! B, whereY is a new variable of type B.For an equation X[a1 : : : ap: "n℄ =?�� (m b1 : : : bq), with Xatomi, solutions an only be grafting valuations of the formfX=(r 1 : : : k)g, where r 2 f1; : : : ; pg [ fm� n+ pg. Therule Exp-App advanes in diretion towards the solution.The rule Replae simply propagates to the urrent uni�-ation problem the grafting fX=ag, whih orresponds toequations X =?�� a previously added.Definition 3.3. A uni�ation system P is a ��-solvedform if it is a onjuntion of non trivial equations of thefollowing forms:(Solved) X =?�� a, where the variable X does not o-ur anywhere else in P and a is in long nor-mal form. Suh an equation and variable aresaid to be solved in P .(Flex-Flex) non solved equations of the formX[a1 : : : ap: "n℄ =?�� Y [a01 : : : a0p0 : "n0 ℄,where X[a1 : : : ap: "n℄ and Y [a01 : : : a0p0 : "n0 ℄are long normal terms with X and Y ofatomi type.In [9℄ it is shown that: any ��-solved form has ��-uni�ers;dedution by the ��-uni�ation rules of a well typed equa-tion gives rise only to well typed equations, T and F; solvedproblems are normalized for the ��-uni�ation rules; and,



Table 3: Exp-App ��-uni�ation rule(Exp-App) P ^X[a1 : : : ap: "n℄ =?�� (m b1 : : : bq) ! P ^X[a1 : : : ap: "n℄ =?�� (m b1 : : : bq) ^Wr2Rp[Ri 9H1 : : : Hk; X =?�� (r H1 : : : Hk)if X has an atomi type and is not solved where H1; : : : ; Hk are variables of appropriate types, notourring in P , with the environments �Hi = �X , Rp is the subset of f1; : : : ; pg suh that (r H1 : : : Hk)has the right type, Ri = if m � n+ 1 then fm� n+ pg else ;if a system is a onjuntion of equations that annot be re-dued by the ��-uni�ation rules then it is solved. Thesefats enabled [9℄ to prove ompleteness and orretness ofthe ��-uni�ation rules.
4. �se-UNIFICATIONNormal form haraterization of �se-terms jointly with WNand CR properties are the essential requirements to developa uni�ation method for the �se-alulus.
4.1 �se-normal formsWe present a haraterization of �se-normal forms whosemain operators are either � or ' (i.e. of type 3. and 4. inCorollary 2.9). This will help simplify our presentation ofthe uni�ation rules and of the ex-ex equations.Observe that left arguments of the � operator or argumentsof the ' operator at �se-normal forms are neither applia-tions, nor abstrations, nor de Bruijn indies. For instane,'ji (a b)! ('ika 'ikb), (a b)�i! (a�i b�i). Hene, thesole possibility is to have a meta-variable as a left argument.Thus one has to onsider terms with alternating sequenesof operators ' and � whose left innermost argument is ameta-variable; for instane, (('j3i3 (('j1i1X)�i2a))�i4b)�i5.Definition 4.1. Let t be a �se-normal term whose rootoperator is either � or ' and let X be its left innermostmeta-variable. Denote by  jkik the operator at the kth posi-tion following the sequene of operators ' and �, onsider-ing only left arguments of the � operators, in the innermostoutermost ordering. Additionally, if  jkik orresponds to anoperator ' then jk and ik denote its super and subsripts,respetively and if  jkik orresponds to an operator � thenjk = 0 and ik denotes its supersript. Let ak denote the or-responding right argument of the kth operator if  jkik = �ikand the empty argument if  jkik = 'jkik . The skeleton of twritten sk(t) is  jpip : : :  j1i1 (X; a1; : : : ; ap).Example 4.2. Let t be a �se-normal term of the form(('j3i3 (('j1i1X)�i2a))�i4b)�i5. Then its skeleton is sk(t) = 0i5 0i4 j3i3 0i2 j1i1 (X; a; b; ). �Lemma 4.3. Let t be a �se-normal term whose root opera-tor is either � or ' and let sk(t) =  jpip : : : j1i1 (X; a1; : : : ; ap).Suessive subsripts ik and ik+1 satisfy the following:1. ik > ik+1 if  k and  k+1 are both � operators or both' operators;

2. ik � ik+1 if  k and  k+1 are ' and � operators, re-spetively;3. ik > ik+1 + 1 if  k and  k+1 are � and ' operators,respetively.Proof. By simple analysis of the arithmeti onstraintsat the �se rewrite rules.
4.2 Unification in the�se-calculusUni�ation notions (suh as an equation a =?�se b or a set ofuni�ers U�se(P )) are de�ned analogously to the �� uni�a-tion setting of the previous setion.Definition 4.4. The set of �se-uni�ation rules forthe typed �se-uni�ation problems is de�ned as the set ofrules in Table 4.Sine �se is CR and WN, the searh an be restrited to �-long normal solutions that are graftings that bind funtionalvariables to �-long normal terms of the form �:a and atomivariables into �-long normal terms of the form (k b1 : : : bp)or a�ib or 'ika, where in the �rst ase k ould be omittedand p ould be zero. The use of the � rule is important toredue the number of ases (or uni�ation rules) to be on-sidered when de�ning the uni�ation algorithm, but as forthe ��-alulus, the �-rule an be dropped [9℄. As for the��-uni�ation, Normalize and De-� use the fat that �se isCR and WN to normalize equations of the form �:a =?�se �:binto a0 =?�se b0 and the rule Replae propagates the graftingfX=ag orresponding to equations X =?�se a. Exp-� gener-ates the grafting fX=�:Y g for a variable X of type A! B,where Y is a new variable of type B.Equations of the form (n a1 : : : ap) =?�se (m b1 : : : bq) aretransformed by the rules De-App and App-Fail into theempty disjuntion when n 6= m, as it has no solution, or intothe onjuntion Vi=1::p ai =?�se bi, when n = m. Rememberthat by terms of the form (n a1 : : : ap) we also mean thosewhere n is omitted or p = 0. Analogously, the rules De-� and De-' deompose equations with leading operators �and '. But, the orresponding rules �-Fail and '-Fail shouldomit ex-ex equations as the following example shows.Example 4.5. Let (�:(�:(X 2) 1) Y )=?�se (�:(Z 1) U)be a uni�ation problem, where X;Y; Z and U are meta-variables of types A! A;A;A! A and A, respetively.Then (�:(�:(X 2) 1) Y ) !� ((X�2Y )�1('10Y ) '10Y ) and(�:(Z 1) U)!� (Z�1U '10U). Thus by applying the ruleNormalize to the original equation we obtain the equation



Table 4: �se-uni�ation rules(De-�) P ^ �A:a =?�se �A:b ! P ^ a =?�se b(De-App) P ^ (n a1 : : : ap) =?�se (n b1 : : : bp) ! P Vi=1::p ai =?�se bi(App-Fail) P ^ (n a1 : : : ap) =?�se (m b1 : : : bq) ! Fif n 6= m(De-�) P ^ a�ib =?�se �id ! P ^ a =?�se  ^ b =?�se d(�-Fail) P ^ a�ib =?�se �jd ! Fif i 6= j and a�ib =?�se �jd is not ex-ex(De-') P ^ 'ika =?�se 'ikb ! P ^ a =?�se b('-Fail) P ^ 'ika =?�se 'jl b ! Fif i 6= j or k 6= l and 'ika =?�se 'jl b is not ex-ex(Exp-�) P ! 9(Y : A:� ` B); P ^X =?�se �A:Yif (X : � ` A! B) 2 T var(P ); Y 62 T var(P ), and X is a unsolved variable(Exp-App) P ^  jpip : : :  j1i1 (X; a1; : : : ; ap) =?�se (m b1 : : : bq) ! P ^  jpip : : :  j1i1 (X; a1; : : : ; ap) =?�se (m b1 : : : bq) ^Wr2Rp[Ri 9H1; : : : ; Hk; X =?�se (r H1 : : : Hk)if  jpip : : :  j1i1 (X; a1; : : : ; ap) is the skeleton of a �se-normal term and X has an atomi type and is notsolved where H1; : : : ; Hk are variables of appropriate types, not ourring in P , with the environments�Hi = �X , Rp is the subset of fi1; : : : ; ipg of supersripts of the � operator suh that (r H1 : : : Hk) hasthe right type, Ri = Spk=0 if ik � m+p�k�Ppl=k+1 jl > ik+1 then fm+p�k�Ppl=k+1 jlg else ;, wherei0 =1; ip+1 = 0(Replae) P ^X =?�se a ! fX=agP ^X =?�se aif X 2 T var (P );X 62 T var(a) and a 2 X ) a 2 T var(P )(Normalize) P ^ a =?�se b ! P ^ a0 =?�se b0if a or b is not in long normal form where a0 is the long normal form of a if a is not a solved variable anda otherwise. b0 is de�ned from b identially((X�2Y )�1('10Y ) '10Y ) =?�se (Z�1U '10U) whih an bedeomposed into (X�2Y )�1('10Y ) =?�se Z�1U ^ '10Y =?�se'10U and subsequently into (X�2Y ) =?�se Z ^ '10Y =?�seU ^ Y =?�se U .Sine 8n 2 N, '10n ! n, the equation '10Y =?�se U al-ways has solutions and solutions of the last two equationsare graftings of the form fY=V; U=V g. Additionally, observethat the �rst equation has also a variety of solutions: takefX=ng; thus if n > 2, fZ=n� 1g else if n = 2, fZ='20Y gelse fZ=1g.Analogously, by normalization and deomposition with the��-uni�ation rules we have(�:(�:(X 2) 1) Y ) =?�� (�:(Z 1) U)!Normalize(X[Y:Y:id℄ Y ) =?�� (Z[U:id℄ U)whih an be deomposed into X[Y:Y:id℄ =?�� Z[U:id℄ ^Y =?�� U . A further step of replaement gives the orre-sponding ex-ex equation in the language of the ��-alulusX[Y:Y:id℄ =?�� Z[Y:id℄. �In the ��-alulus, Exp-App advanes in diretion towardssolutions for equations of the formX[a1 : : : ap: "n℄ =?�se (m b1 : : : bq)where X is an unsolved variable of an atomi type. The�se-uni�ation rule Exp-App has the analogous role for �se-uni�ation problems. Use of �se-normal forms in Exp-Appis not essential. This is done with the sole objetive of

simplifying the ase analysis presented in the de�nition ofthe rule and its ompleteness proof. In fat, this an bedropped and be subsequently inorporated as an eÆientuni�ation strategy, where before applying Exp-App �se-uni�ation problems are normalized.Example 4.6. From the uni�ation problem�:(�:(Y 1) �:(X 1)) =? �:(�:V �:W )we reah the two equations:� (Y [�:(X 1):id℄ �:(X 1)) =?�� V [�:W:id℄� (Y �1�:(X 1) �:('11 1)) =?�se V �1�:WAfter applying the orresponding Exp-App rules, with V =?��(V1 V2) and V =?�se (V1 V2), additional equations ap-pear: �:(X 1) =?�� V2[�:(X 1):id℄ and �:('11X 1) =?�seV2�1�:(X 1). Solutions result by seleting the ase V2 =?�� 1or orrespondingly V2 =?�se 1. �Definition 4.7. A uni�ation system P is a �se-solvedform if it is a onjuntion of non trivial equations of thefollowing forms:



(Solved) X =?�se a, where the variable X does notour anywhere else in P and a is in longnormal form. Suh an equation and variableare said to be solved in P .(Flex-Flex) non solved equations between long normalforms whose root operator is � or ' whihan be represented as equations between theirskeleton:  jpip : : :  j1i1 (X; a1; : : : ; ap) =?�se lqkq : : :  l1k1 (Y; b1; : : : ; bq).Remark 4.8. Consider a �se-normal form t whose rootoperator is either � or ' and with skeleton of the formsk(t) =  jpip : : :  j1i1 (X; a1; : : : ; ap). Then by binding X withn, n > i1, one obtains the normal form t!� n+Ppk=1 jk�p.This is a diret onsequene of lemma 4.3. �Lemma 4.9. Any �se-solved form has �se-uni�ers.Proof. Sine solved forms appearing in a system P straight-forwardly de�ne bindings between variables that do not ap-pear anywhere else in P and in terms in long normal form,it is enough to prove that ex-ex equations have uni�ers.Let P be a system in �se-solved form inluding a ex-exequation of the form jpip : : :  j1i1 (X; a1; : : : ; ap) =?�se  lqkq : : :  l1k1(Y; b1; : : : ; bq)This equation has always solutions. Selet for instane bind-ings fX=n; Y=mg suh that n > i1;m > l1 and n+Ppr=1 jr�p = m+Pqr=1 kr � q (see Remark 4.8).Now we show some properties of the �se-uni�ation rules.Lemma 4.10 (Well-typedness). Dedution by apply-ing the �se-uni�ation rules of a well typed equation givesrise only to well typed equations, T and F.Proof. It is proved by analyzing, rule by rule, the typeof the resulting transformed equation.Lemma 4.11. Solved problems are normalized for the �se-uni�ation rules and, onversely, if a system is a onjun-tion of equations that annot be redued by applying the �se-uni�ation rules then it is solved.Proof. Solved and ex-ex equations are normalized.Conversely, suppose P is a non solved system. Then P on-tains an equation a =?�se b that is neither solved nor ex-ex. Supposing that neither Normalize nor Replae applyand aording to the haraterization of �se-normal formsat Corollary 2.9, we have:Firstly, if a if of the form �:a0 then, sine b is long normal,the sole possibility of having a well typed equation impliesb is of the form �:b0 and rule De-� applies.

Seondly, suppose that a is of the form (k a1 : : : ap). Then ifb is of the form (l b1 : : : bq), then either De-App or Fail-Appapply (remember here that both k and l ould be omittedand p and q ould be zero). If b has root operator � or 'then rule Exp-App applies.Cases of equations between terms with main operators � and' are either ex-ex or an be redued by the rules De-�,De-', �-Fail or '-Fail.Definition 4.12. Let P and P 0 be �se-uni�ation prob-lems, let \rule" denote the name of a �se-uni�ation ruleand \!rule" its orresponding dedution relation over uni�-ation problems. We de�ne the following properties of rule:orretness: 1 : P !rule P 0 implies U�se(P 0) � U�se(P ).ompleteness: P !rule P 0 implies U�se(P ) � U�se(P 0).Theorem 4.13 (Corretness and Completeness).The �se-uni�ation rules are orret and omplete.Proof. We present a sketh of the interesting veri�ationof ompleteness of the Exp-App rule.Consider P^ jpip : : :  j1i1 (X; a1; : : : ; ap) =?�se (m b1 : : : bq) anda �se-uni�er � of this uni�ation problem. Then �(X) =(r 1 : : : s) and sine  jpip : : :  j1i1 (X; a1; : : : ; ap) is the skele-ton of a �se-normal form, we have two ases to onsider:either r di�ers from all ik suh that  jkik orresponds to a �operator or r = ik for some k suh that  jkik = �ik .In the �rst ase, let i0 = 1 and ip+1 = 0 and supposethat ik+1 < r � ik for some 0 � k � p suh that ei-ther k = p or  jkik orresponds to a � operator. Then jpip : : :  j1i1 (r; a01; : : : ; a0p) !� r+Ppl=k+1 jl � (p� k).If r = ik for some 1 � j � p orresponding to a � operator,then we have the following derivation: jpip : : :  j1i1 (r; a01; : : : ; a0p)!�  jpip : : :  jkik (r; a0k; : : : ; a0p)! jpip : : :  jk+1ik+1 ('ik0 a0k; : : : ; a0p)!� 'ik�p+k+Ppl=k+1 jl0 a0kIn both ases � is learly a solution of9H1; : : : ; Hk; X =?�se (rH1 : : : Hk)by seleting H1; : : : ; Hk appropriately and, onsequently, itis solution of the original problem and_r2Rp[Ri 9H1; : : : ; Hk; X =?�se (r H1 : : : Hk)
5. ARITHMETIC PROPERTIES OF THE�se-UNIFICATION RULESThe arithmeti onstraint that naturally has emerged whendeveloping the Exp-App �se-uni�ation rule is more expres-sive than the one of the uni�ation setting based on the ��-style. This, jointly with an eÆient arithmeti dedutive



method, speed up the veri�ation of possible splittings andthe searh for solutions in the orresponding ase analysis.For the ase of the ��-alulus, equations of the formX[a1 : : : ap: "n℄ =?�� (m b1 : : : bq)may have solutions of the form (rH1 : : : Hk), where r� p+n = m. In fat, 1["r�1℄[a1 : : : ap: "n℄!� 1["r�1�p+n℄.In [9℄ the ��-alulus is presented using only the de Bruijnindex 1. Thus the detetion of the previous kind of solutionsis very ineÆient. In fat, observe that sine "n abbreviates(n�1)-ompositions of ", �nding the �rst omponent 1["r�1℄of these possible solutions an be done only after realizinga proess of enumeration of the p ai omponents and the(n�1) " of n � 1["n�1℄. Sine �se-terms are written using allthe natural indies, one an state that searhing for rediesof the uni�ation rules and determining solved and ex-exequations in our uni�ation setting are more eÆient thanin the language of the ��-alulus.We show that the �rst numeri omponents of bindings fora meta-variable X of solutions of equations of the form jpkp : : :  j1k1(X; a1; : : : ; ap) =?�se (m b1 : : : bq)are determined in a unique way.Lemma 5.1. Let  jpkp : : :  j1k1(X; a1; : : : ; ap) be a skeletonof a �se-normal term and suppose that n > k1 and m � kp.Then  jpkp : : :  j1k1(n; a1; : : : ; ap)!� n � p+Ppr=1 jr > m.Proof. Firstly, observe that sine k1; : : : ; kp is a dereas-ing sequene, we have n > k1 � : : : � kp � m and thusk1 � kp < n �m whih implies m � n � (k1 � kp + 1).Seondly, observe thatPpr=1 jr � 0. Thus the sole possibil-ity to have n�p+Ppr=1 jr � n�(k1�kp+1) is p�1 � k1�kp.We onsider two ases:If p� 1 = k1�kp then  jpkp : : :  j1k1(n; a1; : : : ; ap)!� n� p+Ppr=1 jr � n�p = n� (k1�kp+1) � m. Moreover, observethat if there exists some operator ', say  jiki in the sequeneof the skeleton, thenPpr=1 jr � ji > 0 whih implies n�p+Ppr=1 jr > m. If the sequene onsists only of � operators,then m < kp and also n � p+Ppr=1 jr > m.If p � 1 > k1 � kp then there exists at least one 1 � i < psuh that  jiki = 'jiki and  ji+1ki+1 = �ki+1 being ki = ki+1.Thus  ji+1ki+1 jiki(n; ai; ai+1)!  ji+1ki+1(n+ ji � 1; ai+1)! n+ji � 2 � n � 1. For eah of these subsequenes we havethe analogous situation, obtaining for the whole sequenen � p+Ppr=1 jr > n� (k1 � kp + 1) � m.Lemma 5.2 (Uniity). Consider the equation jpkp : : :  j1k1(X; a1; : : : ; ap) =?�se (m b1 : : : bq)where  jpkp : : :  j1k1(X; a1; : : : ; ap) is the skeleton of a �se-normal form. The �rst numerial omponent of bindings forthe meta-variable X of solutions of this equations is unique.

Proof. Observe �rstly the three possible ases for bind-ings fX=(n : : : )g:1. n � kp:  jpkp : : :  j1k1(n; a1; : : : ; ap) !�  jpkp(n; ap). Sinease n = kp thus  jpkp = 'jpkp , we have  jpkp(n; ap)! n.2. ki+1 < n � ki: we have  jpkp : : :  j1k1(n; a1; : : : ; ap) !� jpkp : : :  jiki(n; ai; : : : ; ap). Sine ase n = ki we have  jiki ='jiki , then in the two ases: n = ki and n < ki, we have jpkp : : :  jiki(n; ai; : : : ; ap)!  jpkp : : :  ji+1ki+1 (n; ai+1; : : : ; ap)!�n� (p� i) +Ppr=i+1 jr.3. k1<n:  jpkp : : :  j1k1(n; a1; : : : ; ap)!� n� p+Ppr=1 jr.We analyze the more general ase of natural numbers be-tween subsripts k. Selet ki+1 < n1 � ki and kl+1 <n2 � kl, for i > l. Then  jpkp : : :  j1k1 (n1; a1; : : : ; ap) !�n1 � (p� i) +Ppr=i+1 jr and  jpkp : : :  j1k1(n2; a1; : : : ; ap)!�n2 � (p� l) +Ppr=l+1 jr.Sine k1; : : : ; kp is a dereasing sequene we have n1 < n2.By the previous Lemma we obtain: jiki : : :  jl+1kl+1 : : :  j1k1(n2; a1; : : : ; ai)!� jiki : : :  jl+1kl+1(n2; al+1; : : : ; ai)!� n2� (i� l)+Pir=l+1 jr >n1.Then n2 � (p� l) +Ppr=l+1 jr > n1 � (p� i) +Ppr=i+1 jr,whih onludes the proof.Observe that when searhing for solutions of jpkp : : :  j1k1(X; a1; : : : ; ap) =?�se (m b1 : : : bq)a binding for X to an appliation should be seleted, whose�rst omponent is a natural number n suh that for somei, ki+1 < n � ki and n � (p � i) +Ppr=i+1 jr = m. Thisorresponds to searhing for solutions of an integer linearproblem.
6. CONCLUSIONSAdvantages of the here proposed uni�ation method, withrespet to the one formulated by Dowek, Hardin and Kirh-ner in [9℄, are mainly onsequenes of the inherent di�erenesbetween both styles of expliit substitution of the two aluliin question: the �se- and ��-aluli.1. In our uni�ation setting we remain lose to the �-alulus beause we don't need to use more than one kindof objets: the objets of the �-alulus. We don't use sub-stitution objets as is done in the ��-uni�ation approah.From this point of view, we think that our approah is morelear semantially; mainly, beause the prinipal intentionand obvious appliation of any uni�ation via expliit sub-stitution in some version of the �-alulus is, of ourse, tosolve uni�ation problems in the pure �-alulus.2. Beause of the fat that for both methods, the Nor-malize uni�ation rule depends on the subjaent properties



of the �se and �� rewrite rules, orrespondingly, and thatthe underlying redution proesses based on the �se- and��-aluli are inomparable (see for instane [16℄), one an-not say that �se-uni�ation is more (or less) eÆient thanthe uni�ation setting proposed in [9℄. But at least one anstate that searhing for redies of the uni�ation rules (anddetermining solved and ex-ex equations) is more eÆient,sine �se terms are written using natural indies. Of ourse,in the praxis, this problem an be easily solved in the ��setting by overloading the notation n to represent the orre-sponding ��-term (1["n�1℄) inorporating to the uni�ationmehanism the neessary built-in linear arithmeti dedu-tive method.Additionally, we think that the arithmeti onstraint thatnaturally results when de�ning the Exp-App uni�ation rulein the �se setting is more expressive than the one of the ��.This, jointly with an eÆient arithmeti dedutive method,speed up the veri�ation of possible splittings and the searhfor solutions in the orresponding ase analysis.As pointed out in [9℄, the use of expliit substitution en-ables us to translate HOU problems into �rst order ones.This results in a simpler development and analysis of HOUmethods. The proposed uni�ation method and its furtherdevelopments are not only relevant beause of the obviousneessity of analyzing, developing and implementing HOUproedures to improve performane (and expressiveness) ofthe urrent higher order dedutive systems and languages.We think that our work is also important beause of theneessity of omparing the advantages, disadvantages andappropriateness of both the �se- and ��-style of expliitsubstitution in a pratial and relevant setting inrementingin this way the theoreti knowledge about the properties ofthe involved aluli.In order to obtain a HOU proedure useful in pratie, aneÆient and omplete uni�ation strategy was developed in[3℄. In [9℄ the rules for uni�ation of ��-terms are relatedto HOU on the pure �-alulus by the pre-ooking and baktranslations. This was also done for the �se-alulus in [3℄.In the sequel we present in an informal way one example onhow to apply our uni�ation method to HOU problems inthe �-alulus. For a formal presentation see [3℄.Observe that unifying two terms a and b in the �-alulusonsists in �nding a substitution � suh that �(a) =�� �(b).But in the �-alulus (and in the ��-alulus) as well asin the �se-alulus the notion of substitution is di�erentfrom the �rst order one or grafting, as was shown in Se-tion 2. Thus using the notation of substitution in De�ni-tions 2.3 and 2.4 a uni�er in the �-alulus of the problem�:X =?�� �:2 is not a term t = �X suh that �:t =?�� �:2but a term t = �X suh that �(�:X) = �:�+(X) = �:2as fX=tg�:X = �:fX=t+gX = �:t+ and not �:t. This ob-servation an be extended to any uni�er and by translat-ing appropriately �-terms a; b 2 �dB(X ), the HOU problema =?�� b an be redued to equational uni�ation. In [9℄ atranslation alled pre-ooking from �dB(X ) terms into thelanguage of the ��-alulus is given suh that searhing forsolutions of the orresponding ��-uni�ation problem orre-sponds to searhing for solutions of the higher order problem

a =?�� b. In the following example, we illustrate informallythe analogous situation in the �se-alulus.Example 6.1. Consider the higher order uni�ation prob-lem �:(X 2) =?�� �:2, where 2 and X are of type A andA ! A, respetively. Observe that applying a substitutionsolution � to the �dB(X )-term �:(X 2) gives �(�:(X 2)) =�:(�+(X) 2). Then in the �se-alulus we are searhing fora grafting �0 suh that �0(�:('20(X) 2)) =�se �:2. Corre-spondingly, in the ��-alulus the term �:(X 2) is trans-lated or pre-ooked into �:(X["℄ 2). Then we should searhfor uni�ers for the problem �:('20(X) 2) =?�se �:2.Now we apply �se-uni�ation rules to the former problem.By applying De-� and Exp-� we get ('20(X) 2) =?�se 2 andsubsequently 9Y ('20(X) 2) =?�se 2 ^ X =?�se �:Y . Then byapplying Replae and Normalize we obtain 9Y ('20(�:Y ) 2)=?�se 2^X =?�se �:Y and 9Y ('21Y )�12 =?�se 2^X =?�se �:Y .Now, by applying rule Exp-app we obtain(9Y ('21Y )�12 =?�se 2 ^X =?�se �:Y ) ^(Y =?�se 1 _ Y =?�se 2)whih by Replae gives(('211)�12 =?�se 2 ^X =?�se �:1) _(('212)�12 =?�se 2 ^X =?�se �:2)and, �nally, by Normalize(2 =?�se 2 ^X =?�se �:1) _ (2 =?�se 2 ^X =?�se �:2)In this way substitution solutions fX=�:1g and fX=�:2g arefound.To omplete the analysis observe that by de�nition of substi-tution (De�nitions 2.3, 2.4) and beta redution in �dB(X )we have fX=�:1g(�:(X 2)) = �:(fX=(�:1)+g(X) 2) =�:(�:1+1 2) = �:(�:1 2) =� �:2 and fX=�:2g(�:(X 2)) =�:(fX=(�:2)+g(X) 2) = �:(�:2+1 2) = �:(�:3 2) =� �:2.Observe that the last appliation of beta redution is as fol-lows: (�:3 2) =� f1=2g(3) = 2. �In general, before the uni�ation proess, a �-term a shouldbe translated into the �se-term a0 resulting by simultane-ously replaing eah ourrene of a meta-variable X at po-sition i in a with 'k+10 X, where k is the number of abstra-tors between the root position of a, ", and position i. Ifk = 0 then the ourrene of X remains unhanged.In [7℄ it was shown that for an eÆient implementationof the ��-HOU approah, the use of terms deorated withtheir orresponding types and environments is useful. Forinstane, observe that for applying uni�ation rules suhas Exp-App and Exp-�, it is neessary to know the typesand the environments of subterms of the urrent uni�ationproblem. In relation with that implementation, where re-peated exeution of a type-heking algorithm is avoided bydeorating terms, our HOU approah has the lear advan-tage of having less expensive deorations than the ones ofthe ��-HOU. This is a onsequene of the fat that deora-tions of substitution objets are more expensive than thoseof term objets.
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