
De Bruijn’s syntax and reductional equivalence of �-terms

Fairouz Kamareddine
Computing & Electrical Eng.

Heriot-Watt University
Riccarton

Edinburgh EH14 4AS
Scotland

fairouz@cee.hw.ac.uk

Roel Bloo
Mathematics & Computing Sc.

Eindhoven University
P.O.Box 513

5600 MB Eindhoven
The Netherlands

c.j.bloo@tue.nl

Rob Nederpelt
Mathematics & Computing Sc.

Eindhoven University
P.O.Box 513

5600 MB Eindhoven
The Netherlands

r.p.nederpelt@tue.nl

ABSTRACTIn this paper, a notation in
uen
ed by de Bruijn's syntax ofthe �-
al
ulus is used to des
ribe
anoni
al forms of termsand an equivalen
e relation whi
h divides terms into
lassesa

ording to their redu
tional behaviour. We show that thisnotation helps des
ribe
anoni
al forms more elegantly thanthe
lassi
al notation and we establish the desirable proper-ties of our redu
tion modulo equivalen
e
lasses rather thansingle terms. Finally, we extend the
ube
onsisting of eighttype systems with
lass redu
tion and show that this exten-sion satis�es all the desirable properties of type systems.
SummaryIn �-
al
ulus, a �-redex (�x:A)B is
hara
terised by themat
hing of �x with the appli
ation argument B. We saythat �x and B mat
h or that ea
h has the other as a partner.In a �-term however, there
an o

ur �x's and appli
ationarguments whi
h do not have any partners (i.e., are ba
he-lor). In terms like ((�x:�y:A)B)C, we see that �y and C areba
helors. However, after a redu
tion mat
hing �x and B, anew redex based on the then mat
hing �y and C is
reated.This has been noted by [12, 18℄ who provided for ea
h terma
anoni
al form whi
h shows whi
h parts of the term are
ertainly partnered and whi
h are inherently ba
helor, nowor in the future. This
anoni
al form has the shape:�x1 � � ��xn:(�y1:(�y2:(� � � :(�ym:zA1 � � �Al)Cm) � � �)C2)C1where �xi and Aj are ba
helor for 1 � i � n and 1 � j � land ea
h Ci for 1 � i � m mat
hes �yi. In addition, [18℄provided the notion of �-equivalen
e whi
h identi�es termsonly di�ering by permutations of redexes, and showed thatnone of the standard operational
lassi�
ation
riteria on�-
al
ulus (e.g., length of longest redu
tion)
an separatetwo �-equivalent terms. [18℄
on
luded by asking if thereexisted a syntax that realises �-equivalen
e. In this paper,we attempt to answer the question by using the item nota-tion [5℄ inspired by de Bruijn's notation of the �-
al
ulus.

Using item notation (where abstra
tion and appli
ation arewritten respe
tively as (�x)A and (BÆ)C with C the fun
-tion and B the argument) to represent
anoni
al forms andredu
tional equivalen
e, we �nd that:� (�x1) � � � (�xn)(C1Æ)(�y1) � � � (CmÆ)(�ym)(AlÆ) � � � (A1Æ)zbe
omes the
anoni
al form is whi
h is
learly dividedinto a sequen
e of ba
helor �-items (�xi) followed bya sequen
e of partnered pairs (CjÆ)(�yj) followed bya sequen
e of ba
helor Æ-items (AkÆ) whi
h is �nallyfollowed by the heart of the term z. This is
learerthan the
anoni
al form given in [12, 18℄.� We are also able to de�ne a de
idable notion of redu
-tional equivalen
e �equi on terms whi
h we show to beequivalent to �-equivalen
e.� Using the result of Regnier in [18℄, we show that twoterms have similar redu
tion paths and redu
tional be-haviour if they have the same
anoni
al forms up to apermutation of partnered pairs (�yi ; Ci) and (�yj ; Cj)in the
anoni
al form, provided that no bound vari-ables be
ome free during the permutation.� We pro
eed beyond the results of Regnier to extend theusual �-redu
tion !� on �-terms to ;� on
lasses ofterms modulo redu
tional equivalen
e whi
h is Chur
h-Rosser, whi
h
ommutes with redu
tional equivalen
eand preserves redu
tional paths, and where SN;� andSN!� are equivalent.Finally, we extend the Barendregt
ube with ;� and showthat this extension satis�es all the properties su
h as strongnormalisation and subje
t redu
tion (the latter depends onallowing de�nitions in
ontexts). As far as we know this isthe �rst a

ount of generalising redu
tion in the
ube using
lasses of terms.
1. INTRODUCTIONThe last two de
ades have seen an explosion in new no-tions of redu
tions whi
h
an be summarised by four axioms:(�) ((�x:N)P)Q!� (�x:NQ)P .(
) (�x:�y:N)P !
 �y:(�x:N)P .(g) ((�x:�y:N)P)Q!g (�x:N [y := Q℄)P .(
C) ((�x:�y:N)P)Q!
C (�y:(�x:N)P)Q.Note that g is a
ombination of a �-step with a �-step.
C makes sure that �y and Q form a redex even before theredex based on �x and P is
ontra
ted. By
ompatibility,
implies
C . Moreover, ((�x:�y:N)P)Q !� (�x:(�y:N)Q)P

and hen
e both � and
C put �y adja
ently next to itsmat
hing argument. � moves the argument next to its mat
h-ing � whereas
C moves the � next to its mat
hing argument.For a dis
ussion of where these redu
tions (let's
all themauxiliary redu
tions) have been used see [11, 7℄. We givehere a very brief summary.[17℄ introdu
es the notion of a premier redex whi
h is sim-ilar to the redex based on �y and Q in the rule (g) above(whi
h we
all generalised redex). [18℄ uses � and
 (and
alls the
ombination �) to show that the perpetual redu
-tion strategy �nds the longest redu
tion path when the termis Strongly Normalizing (SN). [21℄ also introdu
es redu
tionssimilar to those of [18℄. Furthermore, [9℄ uses � (and otherredu
tions) to show that typability in ML is equivalent toa
y
li
 semi-uni�
ation. [19℄ uses a redu
tion whi
h hassome
ommon themes with �. [16℄ and [4℄ use � whereas [12℄uses
 to redu
e the problem of �-strong normalization tothe problem of weak normalization (WN) for related redu
-tions. [10℄ uses � and
 to redu
e typability in the rank-2restri
tion of the 2nd order �-
al
ulus to the problem ofa
y
li
 semi-uni�
ation. [14, 22, 20, 13℄ use related redu
-tions to redu
e SN to WN and [8℄ uses similar notions in SNproofs. [6℄ uses a more extended version of � (
alled term-reshu�ing) and of g (
alled generalised redu
tion) where Qand N are not only separated by the redex (�x:�)P but bymany redexes (ordinary and generalised).Looking at these attempts, one notes that auxiliary re-du
tion
an help relate �-terms a

ording to their evalua-tion behaviour. After all, auxiliary redu
tions turn redexesthat are not immediately visible into
learly visible ones:Example 1. Consider A � (��:�y:�f :fy)�x and B �(��:(�y:�f :fy)x)�. Both terms have the term �f :fx as aredu
t, so A =� B. However, B has two redexes whereas Ahas only one. Here are the redexes of B:� r1 = (��:(�y:�f :fy)x)�. Observe that B r1! (�y:�f :fy)x.� r2 = (�y:�f :fy)x. Observe that B r2! (�� :�f :fx)�.In A, the only obvious redex is: r01 = (��:�y:�f :fy)�. Notethat A r01! (�y:�f :fy)x.Note that r1 in B and r01 in A are both based on the redex(��:�)� and
ontra
ting r1 in B results in the same termas
ontra
ting r01 in A.A
loser look at A enables us to see that in A (as in B),�y will get mat
hed with x resulting in a redex r02 = (�y:�)x.There are di�eren
es however between r2 in B and r02 in A.r2 in B is
ompletely visible and may be
ontra
ted before r1in B. r02 on the other hand is a future redex in A. In fa
t,r02 is not a redex of A itself but a redex of a
ontra
tum ofA, namely (�y:�f :fy)x, the result of
ontra
ting the redexr01 in A.We
ould guess from A itself the presen
e of the futureredex. That is, looking at A itself, we see that �� is mat
hedwith � and �y is mat
hed with x. This
an be made visiblevia rules like (�) above. Note that: A � (��:�y:�f :fy)�x!� (��:(�y:�f :fy)x)� � B.So, extending the �-
al
ulus with auxiliary redu
tions maylead to a better understanding of the redu
tional behaviourof programs [15℄. Why is this important? Be
ause the �-
al
ulus plays a major role in the semanti
s of programminglanguages through its me
hanisms for modeling evaluation

strategies (e.g.,
all by name,
all by value, et
.). Due tothis basi
 role, the �-
al
ulus must be informative not onlyof the �nal value of the program (the normal form of the�-term representing the program), but also of the
onse
u-tive values before the �nal value is rea
hed. In parti
ular,if we have two programs P1 and P2 that return the same�nal value, we want to know if these programs have equiva-lent evaluation paths in the sense that ea
h evaluation pathfrom P1 to the �nal value (going through all the intermedi-ate programs),
orresponds (in a strong evaluation sense) toan evaluation path from P2 to the �nal value, and vi
e versa.This will mean that P1 and P2 are equivalent programs eventhough they are written di�erently. Ea
h intermediate valuea1 along the evaluation path from one of these programs tothe �nal value
orresponds to a unique intermediate valuea2 along the evaluation path of the other program to the�nal value, and the number of evaluation steps to rea
h a1from the �rst program is equal to the number of evaluationsteps to rea
h a2 from the se
ond program. Of
ourse thisdoes not
onstitute a formal de�nition of what we
all re-du
tional equivalen
e. Redu
tional equivalen
e is diÆ
ult tode�ne and is also unde
idable.In order to dis
uss redu
tional equivalen
e between terms,redexes will be extended (
f. De�nition 25) so that a poten-tial future redex like (�y:�)x in A of Example 1 will betreated as a �rst
lass redex and will possibly be
ontra
tedin A even before the originator (��:�y:�f :fy)� has been
ontra
ted. Hen
e, with our extended notion of redexes andredu
tion we get in A another redex:r02 = (�y:�f :fy)x, whi
h when
ontra
ted in A results in(��:�f :fx)�.Note that r02 is �y mat
hed with x (exa
tly as r2 in B). Notemoreover that
ontra
ting r02 in A gives the same result as
ontra
ting r2 in B.With this notion of extended redex, we observe that thereis a bije
tive
orresponden
e between the (extended) redexesof A and B of Example 1. That is, r1
orresponds to r01 andr2
orresponds to r02. Moreover, if one redex is
ontra
tedin A, the redu
t is synta
ti
ally equal to the redu
t whi
hresults from
ontra
ting the
orresponding redex in B andvi
e versa. That is, r1 and r01 yield the same values; similarlyr2 and r02 yield the same values. This is seen as follows:Example 2. The redu
tion paths from A and B of Ex-ample 1 are as follows:A-Path1: (��:�y:�f :fy)�x!r01 (�y:�f :fy)x! �f :fxA-Path2: (��:�y:�f :fy)�x!r02 (��:�f :fx)�! �f :fxB-Path1: (��:(�y:�f :fy)x)�!r1 (�y:�f :fy)x! �f :fxB-Path2: (��:(�y:�f :fy)x)�!r2 (��:�f :fx)�! �f :fxIt is
lear that A and B have the same number of possiblepaths before rea
hing the normal form and that there is abije
tive
orresponden
e between the paths A-Path1 and B-Path1, and between A-Path2 and B-Path2.Su
h equivalen
es have been noted in history and in par-ti
ular [18℄ gives a ni
e
lassi�
ation of the
anoni
al form ofterms and provides a notion of �-equivalen
e whi
h identi�esterms only di�ering by permutations of redexes, and showsthat none of the standard operational
lassi�
ation
riteriaon �-
al
ulus (e.g., length of longest redu
tion)
an separatetwo �-equivalent terms. [18℄
on
luded by asking if thereexisted a syntax that realises �-equivalen
e. In this paper,we attempt to answer the question by using the item nota-tion [5℄ inspired by de Bruijn's notation of the �-
al
ulus.

Item notation enables us to dete
t more redexes in a termthan are immediately visible in the known \
lassi
al nota-tion" �-
al
ulus.In Se
tion 2 we introdu
e what is needed of the item no-tation and other formal ma
hinery in order to synta
ti
allydes
ribe the
anoni
al forms of terms.In Se
tion 3 we explain how one
an a
hieve the
anoni
alforms of terms so that the redu
tional behaviour is immedi-ately visible.In Se
tion 4 we give our de
idable notion of redu
tionalequivalen
e �equi whi
h we show that it
oin
ides with the�-equivalen
e of [18℄.In Se
tion 5 we extend the usual �-redu
tion !� on �-terms to ;� on
lasses of terms modulo redu
tional equiv-alen
e. We establish that ;� is Chur
h-Rosser; that ifA!� B then A;� B; and that if A;� B is based on a re-dex (�x:�)�, and if A0 �equi A, then there exists B0 �equi Bsu
h that A0 ;� B0 and is based on a
orresponding redex(�x:�)�. In other words, A and A0 have isomorphi
 re-du
tional paths. We also show that SN;� and SN!� areequivalent and that all redu
tionally equivalent terms havethe same normalisation behaviour.In Se
tion 6 we extend the
ube with
lass redu
tion andestablish the desirable properties.
2. SOME FORMAL MACHINERYThe
lassi
al notation
annot extend the notion of redexesor enable reshu�ing in an easy way. Item notation however
an ([5℄ dis
usses various advantages of this notation). Initem notation, one writes the argument before the fun
tionso ab be
omes (bÆ)a. Similarly, in item notation, one writes(�x)a instead of �x:a. This way, a term be
omes a sequen
eof �-items like (�x) and Æ-items like (bÆ) followed by a vari-able. Moreover, a �-redex be
omes in item notation a Æ�-pair: namely, a Æ-item adja
ent to a �-item. We leave itto the reader to
he
k this. Let V be an in�nite
olle
tionof variables over whi
h x; y; z; : : : range. In item notation,terms of the �-
al
ulus are: T ::= V j(T Æ)T j (�V)T . Wetake A;B;C; : : : to range over T . We
all (AÆ) a Æ-item, Athe body of the item and (AÆ)B means apply B to A (notethe order). (�x) is
alled a �-item. A redex starts with aÆ-item (i.e., (AÆ)) next to a �-item (i.e., (�x)).Here we repeat rules (�), (
), (g), (
C) but in item nota-tion:(�) (QÆ)(PÆ)(�x)N !� (PÆ)(�x)(QÆ)N .(
) (PÆ)(�x)(�y)N !
 (�y)(PÆ)(�x)N .(g) (QÆ)(PÆ)(�x)(�y)N !g (PÆ)(�x)fN [y := Q℄g.(
C) (QÆ)(PÆ)(�x)(�y)N !
C (QÆ)(�y)(PÆ)(�x)N .Note furthermore that the rules (�), (
), (g), (
C) arenot problemati
 be
ause we use the Barendregt Convention(see below) whi
h means that no free variable will be
omeunne
essarily bound after reshu�ing due to the fa
t thatnames of bound and free variables are distin
t.In item notation, ea
h term A is the
on
atenation ofzero or more items and a variable: A � s1s2 � � � snx whereea
h si is either a �-item or a Æ-item, and x 2 V . Theseitems s1; s2; : : : ; sn are
alled the main items of A, x is
alled the heart of A, notation ~(A).1 We use s; s1; si; : : :1Note that the term head variable used in [1℄ is a spe
ial
ase of our notion of heart. The head variable of a term inhead normal form is the heart of the term. It is not the
asehowever that the heart of a term is always a head variable.

to range over items. A
on
atenation of zero or more itemss1s2 � � � sn is
alled a segment. We use s; s1; si; : : : as meta-variables for segments. We write ; for the empty segment.The items s1; s2; : : : ; sn (if any) are
alled the main itemsof the segment. A Æ�-pair is a Æ-item immediately followedby a �-item.The weight of a segment s, weight(s), is the number ofmain items that
ompose the segment. Moreover, we de�neweight(sx) = weight(s) for x 2 V .In redu
tion, themat
hing of the Æ and the � in question isthe important thing. Well-balan
ed segments (w-b) are
onstru
ted from mat
hing Æ and �-items. W-b segmentsare given indu
tively by: (i) ; is w-b, (ii) if s is w-b then(AÆ)s(�x) is w-b, (iii) if s1, s2, : : : sn are w-b, then the
on
atenation s1 s2; � � � sn is w-b. In Figures 1 and 2, allsegments that o

ur under a hat are w-b.Bound and free variables and substitution are de�ned asusual. We write BV (A) and FV (A) to represent the boundand free variables of A respe
tively. Note that in item nota-tion, the s
ope of the x in a �-item (�x) is anything to theright of it. We write A[x := B℄ to denote the term whereall the free o

urren
es of x in A have been repla
ed by B.We take terms to be equivalent up to variable renaming anduse � to denote synta
ti
al equality of terms. We assumethe usual Barendregt variable
onvention BC (whi
h saysthat bound variables are always
hosen distin
t from freevariables) and the usual de�nition of
ompatibility (
f. [2℄).We say that A is strongly normalizing with respe
t to a re-du
tion relation ! (written SN!(A)) i� every!-redu
tionpath starting at A terminates.
3. TOWARDS CANONICAL FORMS

3.1 Making redexes visible via�Transformations like (�) are rather powerful in that they
an group together terms with equal redu
tional behavior.Let us give here this example in
lassi
al notation:Example 3. Consider E1; E2; E3; E4 as follows:E1 � (((�f :�x:�y:fxy)+)m)n;E2 � ((�f :(�x:�y:fxy)m)+)n;E3 � (�f :((�x:�y:fxy)m)n)+;E4 � (�f :(�x:(�y:fxy)n)m) + :Note that E1 =� E2 =� E3 =� E4. Moreover, the visibleredexes are as follows:In E1: (�f :�x:�y:fxy)+.In E2: (�f :(�x:�y:fxy)m)+ and (�x:�y:fxy)m.In E3: (�f :((�x:�y:fxy)m)n)+ and (�x:�y:fxy)m.In E4:(�f :(�x:(�y:fxy)n)m)+, (�x:(�y:fxy)n)m and (�y:fxy)n.Furthermore, one
an see potential future redexes as follows:In E1: �x:� will eventually be applied to m and �y:� willbe eventually be applied to n.In E2: �y:� will eventually be applied to n.In E3: �y:� will eventually be applied to n.Note that E1 !� E2 !� E3 !� E4 and that by �-redu
ingE1 to E2 (resp. E3 to E4), an extra redex be
omes visible.In E4 all redexes are visible and E4 is in �-normal form.Applying the item notation to Example 3 we get:Example 4. E1 of Example 3 reads in item notation:(nÆ)(mÆ)(+Æ)(�f)(�x)(�y)(yÆ)(xÆ)f . Here, the (
lassi
al)

-E1: (nÆ)(mÆ)(+Æ)(�f) (�x) (�y)(yÆ)(xÆ)f-E2: (nÆ) (+Æ)(�f) (mÆ)(�x) (�y)(yÆ)(xÆ)f-E3: (nÆ)(+Æ)(�f) (mÆ)(�x) (�y)(yÆ)(xÆ)fE4: (nÆ)(+Æ)(�f) (mÆ)(�x) (�y)(yÆ)(xÆ)fFigure 1: �-redu
tion on E1: E1 !� E2 !� E3 !� E4�E1: (nÆ) (mÆ) (+Æ)(�f) (�x) (�y)(yÆ)(xÆ)f�E02: (nÆ) (mÆ) (+Æ)(�f)(�x) (�y)(yÆ)(xÆ)f�E03: (nÆ) (mÆ) (+Æ)(�f)(�x) (�y) (yÆ)(xÆ)fE04: (nÆ) (mÆ) (+Æ)(�f)(�x)(�y) (yÆ)(xÆ)fFigure 2:
-redu
tion on E1: E1 !
 E02 !
 E03 !
 E04redex
orresponds to a `Æ�-pair', vis. (+Æ)(�f), followed bythe body of the abstra
tion, as follows:(�f :(�x:�y:fxy)m)+ be
omes (+Æ)(�f)(mÆ)(�x)(�y)(yÆ)(xÆ)f .Note that the Æ-item (+Æ) and the �-item (�f) are now ad-ja
ent, whi
h is
hara
teristi
 for the presen
e of a
lassi
alredex in item notation. (Cf. Figure 1). The se
ond and thirdredexes of E1 are obtained by mat
hing Æ and �-items whi
hare not adja
ent:� (�y:fxy)n is visible as it
orresponds to the mat
h-ing (nÆ)(�y) where (nÆ) and (�y) are separated by thesegment (mÆ)(+Æ)(�f)(�x) whi
h has the bra
ketingstru
ture [[℄ ℄.� (�x:�y:fxy)m is visible as it
orresponds to the mat
h-ing (mÆ)(�x) where (mÆ) and (�x) are separated by thesegment (+Æ)(�f).We will use obvious notions throughout like partner,mat
h,ba
helor, et
., as follows: in the term E1 of Figure 1, (+Æ)and (�f) mat
h or are partnered. So are the items (nÆ)and (�y). (yÆ) and (xÆ) on the other hand are ba
helor.The adja
ent item pair (+Æ)(�f) is
alled a Æ�-pair and thenon-adja
ent partnered items (mÆ)(�x) and (nÆ)(�y) formÆ�-
ouples.�-redu
tion amounts to moving Æ-items, from left to right,in the dire
tion of their mat
hing �-items, until they form apair. This is illustrated in Figure 1.As !� is Chur
h Rosser (CR) and Strongly Normalizing(SN), then the �-normal form �(M) of a term M is unique.

This paper will establish a method that shows that termslike E1; E2; E3 and E4 in Example 3 are redu
tionally equiv-alent. Obviously, we will use �-redu
tion for this purpose.Any two terms A and B su
h that A =� B will satisfyA �equi B.
3.2 Making redexes visible via
Looking ba
k at examples 3 and 4, it is possible to use
 instead of � in order to make more redexes visible. Thisis illustrated in Figure 2.
-redu
tion amounts to moving�-items from right to left, in the dire
tion of their mat
hingÆ-items until they form a pair. Also, similarly to !�, !
is Chur
h Rosser and Strongly Normalizing, and hen
e, the
-normal form
(M) of a term M is unique.However, using � alone or
 alone will not be
omprehen-sive enough to
apture as many
ases as possible of redu
-tional equivalen
e. We obviously want not only E1, E2, E3and E4 of Example 3 to be redu
tionally equivalent, butalso E1, E02, E03 and E04. But, how do we relate Ei to E0i for2 � i � 4? This is simple,
ombine the relations � and
 andaim to �nd a
anoni
al form of terms that helps establishredu
tional equivalen
e.
3.3 Reaching canonical forms ofM via CCF(M)So far, we de
ided that for any termA, all elementsB su
hthat A =� B or A =
 B are redu
tionally equivalent to A.But we want also that if B =� A and B0 =
 A then B andB0 are redu
tionally equivalent. It is obvious that B and B0will have the same redu
tional behaviour (persuade yourselfof this in the
ase of E4 and E04). In order to a
hieve this,and to obtain a more
omprehensive notion of redu
tionalequivalen
e, we
ombine � and
.Note that �(
(E1)) = E04 and
(�(E1)) = E4 and thatE4 6� E04. However, looking at E4 and E04, we see thatthey have the following shape whi
h we
all
anoni
al form:(�x1) : : : (�xn)(A1Æ)(�y1) : : : (AmÆ)(�ym)(B1Æ) : : : (BpÆ)xwhere (�xi) and (BjÆ) are ba
helor for 1 � i � n and 1 �j � p (see Table 1).The shape of
anoni
al forms will allow us to introdu
ea redu
tion relation !p on them whi
h will help us showthat terms like E4 and E04 are redu
tionally equivalent. Infa
t, note that E4 and E04 are equivalent up to the per-mutation of their Æ�-pairs. We follow this observation tode�ne the redu
tion relation !p on
anoni
al forms C1 andC2 as follows: C1 !p C2 i� C1 � C2 ex
ept for a segment(AÆ)(�x)(BÆ)(�y) in C1 whi
h appears as (BÆ)(�y)(AÆ)(�x)in C2, on the
ondition that x 62 FV (B).2 We de�ne =p asthe equivalen
e relation of!p. We then de�ne CCF(M) the
lass of
anoni
al forms of M as fM 0jM 0 =p �(
(M))g. Wewill show that CCF(M) is unique and is equal to fM 0jM 0 =p
(�(M))g.With this we give for ea
h term M the
lass of
anoni
alforms of M modulo =p, CCF(M) and satisfying Table 1.This is indeed elegant.Now, two terms are redu
tionally equivalent if they havethe same
anoni
al form modulo =p. We de�ne [M ℄, the
lass of terms that are redu
tionally equivalent to M , tobe fM 0 j �(
(M)) =p �(
(M 0))g. All elements of [M ℄ are�-equal and have in some sense the same redexes.2The
ondition that y =2 FV (A) is
overed by the Baren-dregt Convention (see Se
tion 2).

Table 1: The Canoni
al Form of termsba
helor �-items Æ�-pairs, Ai in
anon. form ba
helor Æ-items, Bi in
anon. form end var(�x1) : : : (�xn) (A1Æ)(�y1) : : : (AmÆ)(�ym) (B1Æ) : : : (BpÆ) xExample 5. Note that in Figures 1 and 2,
(E1) = �(
(E1)) � E04 and �(E1) =
(�(E1)) � E4. Notealso that E4 =p E04 and all Ei, for 1 � i � 4 and E0j, for2 � j � 4 belong to [E1℄. All Ei and E0j where 1 � i � 4 and2 � j � 4 are redu
tionally equivalent and have the same
anoni
al form (+Æ)(�f)(mÆ)(�x)(nÆ)(�y)(yÆ)(xÆ)f modulo=p. That is: (mÆ)(�x)(+Æ)(�f)(nÆ)(�y)(yÆ)(xÆ)f and(mÆ)(�x)(nÆ)(�y)(+Æ)(�f)(yÆ)(xÆ)f ,et
., are all
anoni
al forms. Note that the variable
ondi-tion for permutations of pairs holds be
ause +
ontains nofree variables.In this paper, we de�neA �equi B i�A 2 [B℄ (i.e., �(
(A)) =p�(
(B))). It makes sense to use �equi to represent a
lass ofredu
tional equivalen
e on terms. We will show that �equi isde
idable. We will extend the notion of �-redu
tion to applyto
lasses rather than terms. As
lasses
apture existing ex-tensions of redu
tions su
h as (�), (g), (
), et
., �-redu
tionover
lasses will
apture all these notions. We say A
lass-redu
es to A0 and we write A ;� A0 i� 9B 2 [A℄9B0 2 [A0℄su
h that B !� B0. We show (
f. Lemma 27) that !� is
aptured by ;� .
4. REDUCTIONAL EQUIVALENCEWe start by de�ning the
anoni
al forms (Table 1).Definition 6. We say that a term is in
anoni
al formif it has the form:(�x1) : : : (�xn)(C1Æ)(�y1) : : : (CmÆ)(�ym)(A1Æ) : : : (AlÆ)x.Note that here, (�xi) and (AjÆ) are ba
helor for 1 � i � nand 1 � j � l.Remark 7. Note that
anoni
al forms
orrespond in
las-si
al notation to the following:�x1 : : : �xn :(�y1 :(�y2 : : : (�ym :xAl : : : A1)Cm) : : :)C2)C1where again it
an be seen that �xi and Aj are ba
helor for1 � i � n and 1 � j � l. These are exa
tly the
anoni
alforms given in [18℄ and represented in [18℄ by Figure 3 be-low. Note that our item notation as is seen in De�nition 6permits a more elegant representation than the one given in
lassi
al notation in Figure 3.

λ

λ

λ

@

@

λ

@

@

z

C1

Cm

y1

ym

x1

xn

A1

AlFigure 3: Canoni
al forms in
lassi
al notationDefinition 8. We de�ne !p on
anoni
al forms as the
ompatible
losure on
anoni
al forms of the rule:(A1Æ)(�y1)(A2Æ)(�y2)B !p (A2Æ)(�y2)(A1Æ)(�y1)Bif y1 =2 FV (A2)

We de�ne !!p and =p as the re
exive, transitive respe
-tively equivalen
e
losures of !p.We de�ne !�
 to be !� [!
 and !�
p to be !� [!
[!p. !!�
 , !!�
p, =�
 and =�
p are de�ned similarly to!!p and =p.Intuitively,!p transposes two adja
ent Æ�-pairs in a term ifthe variable bindings allow this. There is a ni
e
orrespon-den
e between !p, !� and !
 .Lemma 9. Let A and B be two
anoni
al forms. If A!pB then 9C[C !� A ^ C !
 B℄.Proof. Indu
tion on the stru
ture of A. We take the
aseA� (A1Æ)(�y1)(A2Æ)(�y2)A3 andB � (A2Æ)(�y2)(A1Æ)(�y1)A3.In this
ase, take C � (A2Æ)(A1Æ)(�y1)(�y2)A3.Proposition 10. !� and !
 are SN, CR and �=�.Proof. SN is a simple
ombinatorial exer
ise. For CR wenote that !� as well as !
 alone are orthogonal. !��=�and !
�=� are easy.Corollary 11. For ea
h term M , �(M), the �-normalform of M and
(M), the
-normal form of M are unique.We take the �
-normal form of A to mean �(
(A)) whi
h isunique. Similarly, we take the
�-normal form of A to mean
(�(A)) whi
h is also unique. Note that it is not ne
essarilythe
ase that �(
(A)) =
(�(A)) as Example 5 shows. How-ever, we will show in Lemma 17 that �(
(A)) =p
(�(A)).The following two lemmas enable us to synta
ti
ally de-s
ribe �- and
-normal forms.Lemma 12. Every term has one of the three forms:(i) (A1Æ) � � � (AnÆ)x, where x 2 V and n � 0,(ii) (�x)A, and(iii) (A1Æ) � � � (AnÆ)(BÆ)(�x)C, where n � 0.Proof. A term has either zero main �-items and
ase(i) applies, or at least one of them. In the latter
ase: the�rst main �-item
an o

ur in the �rst pla
e in the sequen
eof all main items (
ase (ii)) or not in the �rst pla
e (
ase(iii)).Lemma 13. Every term has one of the four forms:(i) s(�x)A where s is w-b,(ii) (AÆ)B, where B has no ba
helor main �-items,(iii) (AÆ)s(�x)B where s is w-b and B has no ba
helor main�-items, and(iv) x.Proof. A term has at least one ba
helor main �-item(
ase (i)), or none at all. In the last
ase, the term maystart with a ba
helor Æ-item (
ase (ii)), a partnered Æ-item(
ase (iii)) or is only a variable (
ase (iv)).

Now, we
an synta
ti
ally
hara
terise �- and
-normal formsvia the following two lemmas whose proof is by indu
tion onthe de�nition of terms as given in Lemmas 12 and 13 resp.:Lemma 14. The �-normal form �(M) of a term M is:�((A1Æ) � � � (AnÆ)x) =df (�(A1)Æ) � � � (�(An)Æ)xif x 2 V and n � 0�((�x)A) =df (�x)�(A)�((A1Æ) � � � (AnÆ)(BÆ)(�x)C) =df(�(B)Æ)(�x)�((A1Æ) � � � (AnÆ)C)Lemma 15. The
-normal form
(M) of a term M is:
(s(�x)A) =df (�x)
(sA) if s is w-b;
((AÆ)B) =df (
(A)Æ)
(B)if B has no ba
helor main �-items;
((AÆ)s(�x)B) =df (
(A)Æ)(�x)
(sB); where s is w-band B has no ba
helor main �-items
(x) =df xExample 16.If we take the term A to be:(�q) �(jÆ) �(�p) (�x)(wÆ) +(xÆ) �(yÆ) (��v) �(vÆ) 00(xÆ) 00(�w) �(�t) +(�s) (sÆ)tthen �(A) and
(A) will be given respe
tively by:(�q) �(jÆ) �(�p) (�x) �(yÆ) (��v) 00(xÆ) 00(�w) �(vÆ) �(�t) +(xÆ) +(�s) (wÆ)(sÆ)tand(�q)(�x) �(jÆ) �(�p) (wÆ) +(xÆ) +(�s) �(yÆ) (��v) �(vÆ) �(�t) 00(xÆ) 00(�w) (sÆ)tThe following lemma shows that �-,
-, and �
-normalforms satisfy Table 2. In parti
ular, all �
-normal forms arein
anoni
al form. It is interesting to note how item nota-tion enables the
lear
lassi�
ation of these various normalforms. Compare with [12, 18℄ where the
lassi
al syntaxmakes these normal forms
umbersome to des
ribe.Lemma 17. For a term A, we have:1. �(A) � s1 s2~(A), where s2
onsists of the �-normalforms of all ba
helor main Æ-items of A and s1 is a se-quen
e of �-normal forms of main Æ�-pairs and ba
h-elor main �-items.2.
(A) � s0 s1~(A) where s0
onsists of all ba
helormain �-items of A and s1 is a sequen
e of
-normalforms of main Æ�-pairs and ba
helor main Æ-items in
-normal form.3. �(
(A)) � s0 s1 s2~(A), where s0
onsists of all ba
h-elor main �-items of A and s1 is a sequen
e of �
-normal forms of main Æ�-pairs and s2
onsists of the�
-normal forms of all ba
helor main Æ-items of A.4.
(�(A)) has the same stru
ture as �(
(A)) in item 3,ex
ept that everywhere �
-normal forms should
hangeto
�-normal forms5. �(
(A)) and
(�(A)) are both in
anoni
al form andwe have that �(
(A)) =p
(�(A)).Proof. 1), 2) 3) and 4) are by indu
tion on weight(A),distinguishing
ases a

ording to Lemmas 12 and 13 usingLemmas 14 and 15. We only prove 1).� Case A � (�x)C, use IH on C.

� Case A � (B1Æ) � � � (BnÆ)x, x 2 V , then s1 is empty.� A � (B1Æ) � � � (BnÆ)(CÆ)(�x)E. Then �(A) �(�(C)Æ)(�x)�((B1Æ) � � � (BnÆ)E). By the indu
tion hy-pothesis �((B1Æ) � � � (BnÆ)E) is of the form s01 s2~(E)� s01 s2~(A). Now take s1 � (�(C)Æ)(�x)s01.For 5) use 1) : : : 4).Re
all that both E4 and E04 of Example 1 are in
anoni
alform. They both have the same
anoni
al form as E1. Re-
all also that �(
(E1)) � E04, that
(�(E1)) � E4 and thatby Lemma 17.4, E4 =p E04. We group all
anoni
al formsrelated by =p into one
lass:Definition 18. We de�ne the
lass of
anoni
al forms ofM , CCF(M) as fM 0 in
anoni
al form jM 0 =p �(
(M))g.Note that by Lemma 17,CCF(M) = fM 0 in
anoni
al form jM 0 =p
(�(M))g.For example, CCF(E1) = fE4; E04g.Now we are ready to de�ne redu
tional equivalen
e:Definition 19. For a term A, we de�ne:� [A℄, the
lass of terms that are redu
tionally equivalentto A, by: fB j �(
(A)) =p �(
(B))g.� We say that B is redu
tionally equivalent to A, andwrite B �equi A, i� B 2 [A℄.The following lemma says that redu
tional-equivalen
e
on-tains !� and !
 .Lemma 20. !���equi and !
��equi. Moreover, thesein
lusions are stri
t.Proof. If A!� B or A!
 B then �(
(A)) =p �(
(B)).Example 5 gives terms E4 and E04 whi
h are �equi but whi
hare not related by !� or !
 .Remark 21. Note that, as both !� and !
 are SN, we
an by applying !� and !
 to any term A, rea
h a term A0whi
h is free of any �- and
-redexes (it is easy to show thatthe
ombination of �- and
-redu
tion is SN). The resultingterm A0 however depends on the order of applying � and
.It is the
ase nonetheless, by Lemma 20 that all terms A0,whi
h are obtained from A via arbitrary � and
 redu
tions,are redu
tionally equivalent.The following proposition shows that �equi is de
idableand that any redu
tionally equivalent terms are �-equal.Proposition 22. �equi is well-de�ned, de
idable and isan equivalen
e relation. Moreover, =
 ;=�;=p��equi�=�,and these in
lusions are stri
t.Proof. Well-de�nedness and equivalen
e relation are easy.Similarly, de
idability is easy as � and
 are SN and =p isde
idable. For the �rst �, note Lemmas 9 and 20. These
ond � follows from Proposition 10.We will now show the equivalen
e between the �-equivalen
eof [18℄ and �equi. First, we give the de�nition of [18℄ of �-equivalen
e:Definition 23. [18℄ de�ned �-redu
tion to be the small-est
ompatible relation
ontaining:

Table 2: �-,
- and �
-normal forms�-nf: Æ�-pairs in �-nf and ba
helor �-items, ba
helor Æ-items in �-nf end var(A1Æ)(�x)(�y)(�z)(A2Æ)(�p) : : : (B1Æ)(B2Æ) : : : x
-nf: ba
helor �-items Æ�-pairs and ba
helor Æ-items in
-nf end var(�x1)(�x2) : : : (B1Æ)(A1Æ)(�x)(B2Æ) : : : x�
-nf: ba
helor �-items Æ�-pairs in �
-nf ba
helor Æ-items in �
-nf end var(�x1)(�x2) : : : (A1Æ)(�y1)(A2Æ)(�y2) : : : (AmÆ)(�ym) (B1Æ)(B2Æ) : : : x� (�) ((�x:N)P)Q!� (�x:NQ)P if x 62 Q� (
) (�x:�y:N)P !
 �y:(�x:N)P if y 62 PWe say that A and B are �-equivalent if A =� B where =�is the equivalen
e relation asso
iated to !�.The following lemma is needed to establish that �equi and=� are equivalent.Lemma 24. A �equi B i� A =�
p B i� A =�
 B.Proof. =)) Note that�equi�=�
p and that by Lemma 9,=�
p�=�
 . (=) By Lemma 20, we have =�
��equi and so,also =�
p��equiThis means that, sin
e �-equivalen
e is the same as =�
 , weget that �-equivalen
e is the same as �equi. Hen
e, we haveprovided a �ne grained notion of �-equivalen
e.
5. CLASS REDUCTIONIn this se
tion, we introdu
e
lass-redu
tion ;� , showthat it is Chur
h-Rosser; that if A !� B then A ;� B;and if A;� B is based on a redex (�Æ)(�x) then for everyA0 �equi A, there exists B0 �equi B su
h that A0 ;� B0and this latter redu
tion is also based on a
orrespondingredex (�Æ)(�x). In other words, A and A0 have isomorphi
redu
tion paths. We also show that SN;� and SN!� areequivalent and that all redu
tionally equivalent terms havethe same normalisation behaviour.Definition 25.� One-step
lass-redu
tion ;� is the least
ompatible re-lation generated by:A;� B i� 9A0 2 [A℄9B0 2 [B℄ su
h that A0 !� B0Many-step
lass-redu
tion;;� is the re
exive and tran-sitive
losure of ;� and �� is the least equivalen
erelation generated by ;;� .� An extended redex starts with the Æ-item of a Æ�-
ouple(i.e. is of the form (CÆ)s(�x)A where s is well-balan
edand non-empty).Example 26. Let A � (zÆ)(wÆ)(�x)(�y)y. Then[A℄ = fA; (wÆ)(�x)(zÆ)(�y)y; (zÆ)(�y)(wÆ)(�x)yg.Moreover, A;� (wÆ)(�x)z and A;� (zÆ)(�y)y.The following lemma shows that ;�
aptures
lassi
al �-redu
tion.Lemma 27. !� �;�.Proof. It suÆ
es to show (AÆ)s(�x)C ;� sC[x := A℄.We know that (AÆ)s(�x)C 2 [s(AÆ)(�x)C℄, so by s(AÆ)(�x)C!� sC[x := A℄ we have (AÆ)s(�x)C ;� sC[x := A℄. It iseasy to show that these in
lusions are stri
t. For example,if A1 � (AÆ)(BÆ)(�x)(CÆ)(DÆ)(�y)(�z)(�t)E and A2 �(CÆ)(BÆ)(�x)(DÆ)(�y)(�z)(E[t := A℄) (whi
h have respe
-tively the bra
keting stru
tures [[℄ [[℄ ℄ ℄ and [[℄ [℄ ℄), thenA1 ;� A2 but A1 6!� A2.

Corollary 28. !!� �;;� .Remark 29. It is not in general true that A ;;� B)9A0 2 [A℄9B0 2 [B℄ su
h that A0 !!� B0. This
an be seenby the following
ounterexample:Let A � ((�u)(�v)vÆ)(�x)(wÆ)(wÆ)x and B � (wÆ)(�u)w.Then A;� (wÆ)(wÆ)(�u)(�v)v ;� B.But [A℄ has three elements: A, (wÆ)((�u)(�v)vÆ)(�x)(wÆ)xand (wÆ)(wÆ)((�u)(�v)vÆ)(�x)x.Moreover, [B℄ = fBg and if A0 2 [A℄ then the only !�-redu
t of A0 is (wÆ)(wÆ)(�u)(�v)v, whi
h 6!�-redu
e to B.The next lemma helps prove that ;� is Chur
h-Rosser:Lemma 30. If A;� B then A =� B.Proof. Say A0 2 [A℄, B0 2 [B℄, A0 !� B0. Now, byLemma 17 and Proposition 22, A =� �(
(A)) =� �(
(A0)) =�A0 =� B0 =� �(
(B0)) =� �(
(B)) =� B.Corollary 31.1. If A;;� B then A =� B. 2. A �� B i� A =� B.Theorem 32 (Chur
h Rosser theorem for ;;�).If A ;;� B and A ;;� C, then there exists D su
h thatB ;;� D and C ;;� D.Proof. As A;;� B and A;;� C then by Corollary 31,A =� B and A =� C. Hen
e, B =� C and by CR for !!�,there exists D su
h that B !!� D and C !!� D. But,M !!� N implies M ;;� N . Hen
e we are done.Now we are ready to establish the isomorphism of redu
-tion paths (via ;�) of two redu
tionally equivalent terms.The following lemma shows that redu
tional equivalen
epreserves the generalised redu
tion ;� .Lemma 33. If A ;� B then for all A0 �equi A, for allB0 �equi B, A0 ;� B0.Proof. As A;� B then 9A1 2 [A℄9B1 2 [B℄ su
h thatA1 !� B1. Let A0 �equi A and B0 �equi B. Then A0; B0 2[A℄; [B℄ respe
tively. Hen
e A1 2 [A0℄, B1 2 [B0℄, A1 !� B1.So A0 ;� B0.Corollary 34. A;� B i� �(
(A));� �(
(B)).The following remark points out that if we want to preserveredu
tion paths, we need to work with the redu
tion ;� .Remark 35. [3, 6℄ de�ned ,!� as the least
ompatiblerelation generated by (B1Æ)s(�x)B2 ,!� s(B2[x := B1℄) for swell-balan
ed, that is, ,!�-redu
tion
ontra
ts an (extended)redex. ,!,!� is the re
exive and transitive
losure of ,!�.Note that A ,!� B 6) �(
(A)) ,!,!� �(
(B)) nor do wehave A !� B) �(
(A)) !!� �(
(B)). E.g., take A �((�u)(�v)vÆ)(�x)(yÆ)(yÆ)x. It is obvious that A !� B �(yÆ)(yÆ)(�u)(�v)v (hen
e A ,!� B) yet �(
(A)) � A 6,!,!�nor 6!!� �(
(B)) � (yÆ)(�u)(yÆ)(�v)v.

Finally, here is the theorem that establishes the isomorphismof redu
tion paths of two redu
tionally equivalent terms. Wewrite A!(EÆ)(�x)� B for the �-redu
tion based on a �-redexstarting with (EÆ)(�x) in A. We write A ;(EÆ)(�x)� B for9A0 2 [A℄, 9B0 2 [B℄, 9E0 2 [E℄ su
h that A0 !(E0Æ)(�x)� B0.Theorem 36. If A �equi C and A ;(EÆ)(�x)� B thenthere exists a D and an E0 su
h that B �equi D;E0 �equiE; and C !(E0Æ)(�x)� D.In other words, the following diagram
ommutes:CA �equiDB(E0Æ)(�x) ;�(EÆ)(�x) ;��equiProof. Note that A �equi C and A ;� B implies byLemma 33 that for all D �equi B, C ;� D. What wewant is to �nd a D �equi B and an E0 �equi E su
h thatC ;(E0Æ)(�x)� D.As A ;(EÆ)(�x)� B then 9A0 2 [A℄, 9B0 2 [B℄, 9E00 2 [E℄su
h that A0 !(E00Æ)(�x)� B0. Now C ;(E00Æ)(�x)� B0 due tothe fa
ts that A0 !(E00Æ)(�x)� B0, A0 �equi C, B0 �equi B0 andE00 �equi E00. Hen
e, we have found a D � B0 and E0 � E00su
h that B �equi D, E0 �equi E and C ;(E0Æ)(�x)� D andwe are done.The following two lemmas show that redu
tional equiv-alen
e preserves both ;�-strong normalization and !�-strong normalization:Lemma 37. If A 2 SN!� and A0 2 [A℄ then A0 2 SN!� .Proof. If A0 2 [A℄ thenA0 �equi A. Hen
e, by Lemma 24,A0 =� A. Now, we use a result of [18℄ whi
h says that ifA =� A0 then the length of the longest redu
tion sequen
estarting from A is equal to the length of the longest redu
-tion sequen
e starting from A0.Lemma 38. If A 2 SN;� and A0 2 [A℄ then A0 2 SN;� .Proof. 8B;A0 ;� B implies A ;� B by Lemma 33.Hen
e, A0 is in SN;� .Finally, we show that ;�-strong normalization and !�-strong normalization are equivalent:Lemma 39. A 2 SN;� i� A 2 SN!� .Proof. As !��;� , =) is immediate. (= is by in-du
tion on M(A) where M(A) = maxfmaxred�(A0) j A0 2[A℄g; maxred�(A0) is the maximal length of !�-redu
tionpaths starting from A0. Note that M(A) is well-de�ned ifA 2 SN!� by Lemma 37.Suppose A ;� A0 and A 2 SN!� . It is suÆ
ient toprove that A0 2 SN;� . Take A1 2 [A℄ and A01 2 [A0℄ su
hthat A1 !� A01. Then also A0 2 [A01℄, so by Lemma 38it is suÆ
ient to prove that A01 2 SN;� . By Lemma 37,A1 2 SN!� , and sin
e A1 !� A01 we have A01 2 SN!� .Then also M(A01) < M(A1) = M(A), so by the indu
tionhypothesis: A01 2 SN;� .

6. THE CUBE WITH CLASS REDUCTIONOur study of
lass redu
tion has been dis
ussed up to nowfor the type free �-
al
ulus. But, for su
h redu
tion to beuseful in pra
ti
e, we need to study it within type theory.Alas, when attempting to build
lass redu
tion on the sys-tems of the Barendregt
ube of [2℄, we �nd that the subje
tredu
tion property whi
h states that if A;� B then B hasthe same type as A, no longer holds for six of the systems ofthe
ube, although it holds for the systems �! and �!. Thisproblem however
an be solved by extending the
ube notonly with
lass redu
tion, but also with de�nitions whi
havoid the loss of information in the
ontexts needed to typeterms. With this extension the subje
t redu
tion propertyholds for all the systems of the
ube.We show in Se
tion 6.1 that subje
t redu
tion fails for6 systems of the
ube, but holds for �! and �! with ;;�(without de�nitions). We show furthermore that redu
tion-ally equivalent terms have the same type in the sense that if� ` A : B and A0 2 [A℄ then � ` A0 : B (see Corollary 49).Then, we add de�nitions in Se
tion 6.2 and show that all thedesirable properties in
luding SR hold for all the systems ofthe extended
ube.
6.1 Extending the cube with;;�Let us start by introdu
ing
lass-redu
tion to the
ube of[2℄. This means that our redu
tion relation now is not !�but ;� and that our extended
ube of this subse
tion isexa
tly that of Barendregt in [2℄ with the only di�eren
ethat we use ;� instead of !�.Definition 40 (The
ube in item notation).The systems of the �-
ube are based on a set of pseudo-expressions T (also
alled terms) de�ned by (for O 2 f�;�g):T = � j 2 j V j (T Æ)T j (T OV)T . We take A;B;C; a; b; : : : ,resp. S; S1; S2 to range over T resp. f�;2g. The typing rulesare as follows:(axiom) <> ` � : 2(start) � ` A : S�(A�x) ` x : A if x is fresh(weak) � ` A : S � ` D : E�(A�x) ` D : E if x is fresh(app) � ` F : (A�x)B � ` a : A� ` (aÆ)F : B[x := a℄(abs) �(A�x) ` b : B � ` (A�x)B : S� ` (A�x)b : (A�x)B(
onv) � ` A : B � ` B0 : S B =� B0� ` A : B0(form) � ` A : S1 �(A�x) ` B : S2� ` (A�x)B : S2 (S1; S2) ruleA
ontext or a term is
alled legal with respe
t to a type sys-tem if it o

urs as su
h in a type-derivation in that system.Bound and free variables and substitution are de�ned asusual. We write BV (A) and FV (A) to represent the boundand free variables of A respe
tively. We write A[x := B℄to denote the term where all the free o

urren
es of x in Ahave been repla
ed by B. We take terms to be equivalent upto variable renaming and use � to denote synta
ti
al equal-ity of terms. We assume moreover, the usual Barendregt

variable
onvention BC [2℄.Ea
h system of the
ube is obtained by taking the (S1; S2)rules from a subset R of f(�; �); (�;2); (2; �); (2;2)g. Thebasi
 system is the one where (S1; S2) = (�; �) is the onlypossible
hoi
e. All other systems have this version of theformation rules, plus one or more other
ombinations of(�;2), (2; �) and (2;2) for (S1; S2). Table 3 presents theeight systems of the �-
ube.The next two examples show that if our type derivationrules are those of De�nition 40 and our redu
tion relationis ;;� instead of !!�, then we lose the subje
t redu
tionproperty (SR) whi
h states that if � ` A : B and A;;� A0then � ` A0 : B.Example 41 (SR fails in �2, �P2; �! and �C).(���)(��y0) `�2 (y0Æ)(�Æ)(���)(��y)(yÆ)(��x)x : � but,(y0Æ)(�Æ)(���)(��y)(yÆ)(��x)x;� (�Æ)(���)(y0Æ)(��x)x.Yet, (���)(��y0) 6`�2 (�Æ)(���)(y0Æ)(��x)x : �.Even, (���)(��y0) 6`�2 (�Æ)(���)(y0Æ)(��x)x : � for any � .This is be
ause (��x)x : (��x)� and y : � yet � and � areunrelated and hen
e we fail in �ring the appli
ation rule to�nd the type of (y0Æ)(��x)x. Looking
loser however, one�nds that (�Æ)(���) is de�ning � to be �, yet no su
h infor-mation
an be used to
ombine (��x)� with �. De�nitionstake su
h information into a

ount. Finally note that failureof SR in �2, means its failure in �P2; �! and �C.Example 42 (SR fails in �P , �P2; �P! and �C).Let � � (���)(��t)((��q) � �Q)((tÆ)Q�N),A � (NÆ)(tÆ)(��x)((xÆ)Q�y)(yÆ)((xÆ)Q�Z)Z andB � (tÆ)(��x)(NÆ)((xÆ)Q�Z)Z. Then, � `�P A : (tÆ)Qand A ;;� B but as N : (tÆ)Q; y : (xÆ)Q; (tÆ)Q 6= (xÆ)Q,� 6`�P B : � for any � .Here again the reason of failure is similar to the above ex-ample. At one stage, we need to mat
h (xÆ)Q with (tÆ)Qbut this is not possible even though we do have the de�nitionsegment: (tÆ)(��x) whi
h de�nes x to be t. All this
alls forthe need to use these de�nitions. Finally note that failure ofSR in �P , means its failure in �P2; �P! and �C.However, subje
t redu
tion holds for �! and �!. In the restof this subse
tion, L ranges over �! and �! and ` rangesover type derivations in these two systems. The rest of thisse
tion proves subje
t redu
tion for �! and �!.The �rst three lemmas and
orollary are exa
tly those ofthe
ube of [2℄ be
ause ;;� does not play any role in them.Only �� (whi
h is the same as =�) is involved.Lemma 43 (Thinning for `). Let � and � be legal
ontexts su
h that � �0 �. Then � ` A : B) � ` A : B.Proof. Indu
tion on length of derivations � ` A : B.Lemma 44 (Generation Lemma for `).1. � ` x : C) 9S1; S2 2 S 9B =� C[� ` B : S1 ^(B�x) 20 � ^ � ` C : S2℄.2. � ` (A�x)B : C) 9S1; S2 2 S [� ` A : S1^�(A�x) `B : S2 ^ (S1; S2) is a rule ^C =� S2 ^ [C 6� S2) 9S[� ` C : S℄℄℄3. � ` (A�x)b : C) 9S;B [� ` (A�x)B : S ^ �(A�x) `b : B ^ C =� (A�x)B^C 6� (A�x)B) 9S 2 S[� ` C : S℄℄.

4. � ` (aÆ)F : C) 9A;B; x[� ` F : (A�x)B ^ � ` a :A ^ C =� B[x := a℄^(B[x := a℄ 6� C) 9S 2 S[� ` C : S℄)℄.Proof. Indu
tion on derivation rules using thinning.Corollary 45 (Generation Corollary for `).1. Corre
tness of Types: If � ` A : B then 9S[B �S or � ` B : S℄.2. � ` A : (B1�x)B2) 9S[� ` (B1�x)B2 : S℄.3. If A is a �`-term, then A is 2, a �`-kind or a �-element.Lemma 46 (Substitution for `). If �(B�x)� ` C :D and � ` A : B, then ��[x := A℄ ` C[x := A℄ : D[x := A℄.Proof. By indu
tion to the derivation rules, using thethinning lemma.Be
ause our redu
tion relation ;;� is de�ned in terms of
lasses instead of terms, we
annot use the usual methods forestablishing SR. For this, we need the following two lemmaswhi
h inform us that
lasses preserve types.Lemma 47 (Shuffle Lemma for �! and �!).1. � `L s1(AÆ)s2B : C () � `L s1s2(AÆ)B : C wheres2 is well-balan
ed and the binding variables in s2 arenot free in A.2. � `L s(�x)A : B () � `L (�x)sA : B where s iswell-balan
ed and x is not free in s.Proof. Sket
h. The reason for this lemma to be truefor �! and �! is that in these systems, for any legal termof the form (P�x)Q, x =2 FV (Q) (this is not true for theother systems of the
ube be
ause of the mixing of levelsthat
omes with the rules (�;2) and (2; �)). Therefore in1., none of the variables of dom(s2)
an o

ur free in thetype of B whi
h means that B must have a type of the form(C�x)D and hen
e B
an be applied dire
tly to A.Lemma 48 (Classes preserve types). If � ` A : Band A0 2 [A℄, �0 results from � by substituting some mainitems (C�x) by (C0�x) where C0 2 [C℄, then �0 ` A0 : B.Proof. By indu
tion on the derivation rules.Corollary 49 (Equivalent terms have same types).1. � ` A : B () � ` CCF(A) : B.2. If � ` A : B and A0 2 [A℄, B0 2 [B℄ then � ` A0 : B0.Proof. By Lemma 49,
orre
tness of types and
onver-sion.Now with Corollary 49, we
an establish SR using ` and;;� , via SR of ` and !!�.Corollary 50 (Subje
t Redu
tion for ` and ;;�).If � ` A : B and A;;� A0 then � ` A0 : B.Proof. We prove � ` A : B, A ;� A0 =) � ` A0 : B.By de�nition of ;� , there are A1, A01 su
h that A1 2 [A℄,A01 2 [A0℄ and A1 !� A01. By Corollary 49, � ` A1 : B.By subje
t redu
tion for the usual !� we have � ` A01 : B.Again by Corollary 49, � ` A0 : B.Note that although SR fails for the six remaining systemsof the
ube with ` of De�nition 40 and ;;� , strong nor-malisation holds for all the systems of the
ube with ` ofDe�nition 40 and ;;� . We will not prove this here and wemove immediately to the version that indeed satis�es SRand all other properties.

Table 3: Systems of the
ubeSystem Set of spe
i�
 rules System Set of spe
i�
 rules�! (�; �) �! (�; �) (2;2)�2 (�; �) (2; �) �! (�; �) (2; �) (2;2)�P (�; �) (�;2) �P2 (�; �) (2; �) (�;2)�P! (�; �) (�;2) (2;2) �P! = �C (�; �) (2; �) (�;2) (2;2)
6.2 Extending the cube with;;� and definitionsLooking ba
k at, for instan
e, Example 41, one noti
esthat when redu
ing using ;� , the information that y0 hasrepla
ed y of type � is lost. All we know after the redu
-tion is that y0 has type �. But we need y0 of type � to beable to type the subterm (y0Æ)(��x)x of the redu
t. Addingde�nitions to our type system enables us to have extra infor-mation in our
ontexts su
h as \� and �
an be identi�ed".We do this by writing in our
ontext: (�Æ)(���) whi
h ex-presses that � is de�ned to be � and is of type �. We de�nenow this notion of de�nitions and how de�nitions
an beunfolded:Definition 51 (definitions, unfolding).� If s is a well-balan
ed segment not
ontaining Æ�-
ouples,then a segment (BÆ)s(C�x) o

urring in a
ontext is
alled a de�nition.� For s well-balan
ed segment, we de�ne the unfoldingof s in A, [A℄s, indu
tively as follows: [A℄; � A,[A℄(BÆ)s1(COx) � [A[x := B℄℄s1 and [A℄s1 s2 � [[A℄s2 ℄s1 .Note that substitution takes pla
e from right to left.That is, a de�nition identi�es a variable with a whole term.The unfolding of the de�nition, undoes this identi�
ationand the variable will be repla
ed everywhere it o

urs freeby the term it identi�es.Definition 52.1. A de
laration d is a �-item (A�x). In this
ase, wede�ne subj(d), pred(d) and d to be x, A and ; resp.2. For a de�nition d � (BÆ)s(A�x) we de�ne subj(d),pred(d), d and def(d) to be x, A, s and B respe
tively.3. A pseudo
ontext is a
on
atenation of de
larations andde�nitions su
h that if (A�x) and (B�y) are two dif-ferent main items of the pseudo
ontext, then x 6� y.We use �;�;�0;�1;�2; : : : to range over pseudo
on-texts and d; d1; d2; : : : to range over de
larations andde�nitions.4. For � a pseudo
ontext we de�ne dom(�) = fx 2 V j(A�x) is a main �-item in � for some Ag,�-de
l = fs j s is a ba
helor main �-item of �g,�-def = fs j s � (AÆ)s1(B�x) is a main segment of �where s1 is well-balan
ed g,Note that dom(�) = fsubj(d) j d 2 �-de
l [�-defg.5. For all
ontexts � we de�ne the binary relation � `� =def � to be the equivalen
e relation generated by� if A =� B then � ` A =def B

� if d 2 �-def and A;B 2 T su
h that B arisesfrom A by substituting one parti
ular o

urren
eof subj(d) in A by def(d), then � ` A =def B.6. For � a pseudo
ontext and d 2 �-def [�-de
l, � in-vites d, notation � � d, i�� �d is a pseudo
ontext� �d ` pred(d) : S for some sort S.� if d is a de�nition then �d ` def(d) : pred(d) andFV (def(d)) � dom(�)Now we will in the de�nition below present the rules of De�-nition 40 di�erently. Note that in De�nition 53, if one takesd to be a meta-variable for de
larations only, =def the sameas =� (whi
h is independent of `) and the redu
tion rela-tion as !�, then one gets the known
ube of [2℄ given inDe�nition 40. We invite the reader to
he
k this.Definition 53 (Axioms and rules of the
ube).(axiom) <> ` � : 2(start) � � d�d ` subj(d) : pred(d)(weak) � � d �d ` D : E�d ` D : E(app) � ` F : (A�x)B � ` a : A� ` (aÆ)F : B[x := a℄(abs) �(A�x) ` b : B � ` (A�x)B : S� ` (A�x)b : (A�x)B(
onv) � ` A : B � ` B0 : S � ` B =def B0� ` A : B0(form) � ` A : S1 �(A�x) ` B : S2� ` (A�x)B : S2 if (S1; S2) is a ruleIn order to solve the SR problem for the six remaining sys-tems of the
ube, we extend the �-
ube with de�nitions,;;� and equivalen
e
lasses modulo CCF. Contexts now
onsist of de
larations (A�x) as well as de�nitions. We takethe typing rules `
 to be exa
tly those of ` of De�nition 53with the addition of the de�nition rule:(def rule) �d `
 C : D� `
 dC : [D℄d if d is a de�nitionWith this de�nition, the problem of subje
t redu
tion issolved, and all the other desirable properties hold too. Thereason that subje
t redu
tion holds now whereas it did nothold in Examples 41 and 42
an be intuitively seen by show-ing that the
ounterexample given in Example 41 no longerholds. Table 4 shows how the redu
t of Example 41
an nowbe typed.The following lemma tells us that the use of nested def-initions su
h as (AÆ)(BÆ)(C�x)(D�y)
an be repla
ed by

Table 4: De�nitions solve subje
t redu
tion(���)(��y0) `
 y0 : � : � : 2(���)(��y0)(�Æ)(���) `
 y0 : �; � : � (weakening resp. start)(���)(��y0)(�Æ)(���) `
 � =def � (use the de�nition in the
ontext)(���)(��y0)(�Æ)(���) `
 y0 : � (
onversion)(���)(��y0)(�Æ)(���)(y0Æ)(��x) `
 x : � (start)(���)(��y0) `
 (�Æ)(���)(y0Æ)(��x)x : �[x := y℄[� := �℄ � � (de�nition rule)using linear de�nitions su
h as (BÆ)(C�x)(AÆ)(D�y) andthat abstra
tions
an be postponed.Lemma 54. Let d be a de�nition.1. If �d� `
 C =def D then�d(def(d)Æ)(pred(d)�subj(d))� `
 C =def D.2. If �d� `
 C : D then�d(def(d)Æ)(pred(d)�subj(d))� `
 C : D.3. If �(A�x)d� `
 C =def D then�d(A�x)� `
 C =def D if x =2 FV (d).4. If �(A�x)d� `
 C : D then�d(A�x)� `
 C : D if x =2 FV (d).Proof. Note that (A�x) does not need to be ba
helor.1. & 3. are by indu
tion on the generation of =def. 2. &4. are by indu
tion on the derivation, using 1. & 3. for
onversion.The following three lemmas and
orollary are familiar from [2℄,but here we take also de�nitions into a

ount.Lemma 55 (Thinning for `
).1. If �1�2 `
 A =def B, �1��2 is a legal
ontext, then�1��2 `
 A =def B.2. If � and � are legal
ontexts su
h that � �0 � and � `
A : B, then � `
 A : B. (�0 is
ontext in
lusion withside e�e
ts like a ba
helor �-item be
oming partnered.)Lemma 56 (Generation Lemma for `
).1. If � `
 x : A then for some B: (B�x) 2 �, � `
 B : S,� `
 A =def B and � `
 A : S0 for some sort S0.2. If � `
 (A�x)B : C then for some D and sort S:�(A�x) `
 B : D, � `
 (A�x)D : S, � `
 (A�x)D =defC and if (A�x)D 6� C then � `
 C : S0 for a sort S0.3. If � `
 (A�x)B : C then for some sorts S1; S2: � `
A : S1, � `
 B : S2, (S1; S2) is a rule, � `
 C =def S2and if S2 6� C then � `
 C : S for some sort S.4. If � `
 (AÆ)B : C, (AÆ) ba
helor in B , then for someterms D;E, variable x: � `
 A : D, � `
 B : (D�x)E,� `
 E[x := A℄ =def C and if E[x := A℄ 6� C then� `
 C : S for some sort S.5. If � `
 sA : B, then �s `
 A : B.Proof. 1., 2., 3. and 4. follow by a tedious but straight-forward indu
tion on the derivations (use the thinning lemma).As to 5., use indu
tion on weight(s).

Lemma 57 (Substitution Lemma for `
).1. If �(A�x)� `
 B : C, � `
 D : A and (A�x) ba
helorin �(A�x)� then ��[x := D℄ `
 B[x := D℄ : C[x :=D℄.2. If �(DÆ)s(A�x)� `
 B : C and s well-balan
ed then�s�[x := D℄ `
 B[x := D℄ : C[x := D℄.Proof. Indu
tion on the derivations (straightforward).Corollary 58 (Corre
tness of Types).If � `
 A : B then B � 2 or � `
 B : S for some sort S.Proof. By indu
tion to the derivation rules.Now, �rstly we prove SR for `
 using!!� rather than ;;� .Theorem 59 (Subje
t Redu
tion for `
 and !!�).If � `
 A : B and A!!� A0 then � `
 A0 : B.Proof. For � !� �0 de�ned in the expe
ted way, weshow by simultaneous indu
tion on the derivation rules that:1. If � `
 A : B and �!� �0 then �0 `
 A : B and2. If � `
 A : B and A!� A0 then � `
 A0 : Busing Lemmas 56.5 and 57 when redu
tion is at the root.Similarly to Lemma 48, we have by indu
tion on the deriva-tion rules that:Lemma 60 (Classes preserve types). If � `
 A : Band A0 2 [A℄, �0 results from � by substituting some mainitems (C!) by (C0!) where C0 2 [C℄, then �0 `
 A0 : B.Corollary 61 (Equivalent terms have same types).1. � `
 A : B () � `
 CCF(A) : B.2. If � `
 A : B and A0 2 [A℄, B0 2 [B℄ then � `
 A0 : B0.Proof. By Lemma 60,
onversion and
orre
tness of types.Here is now the proof of SR using `
 and ;;� , via the SRof `
 and !!�.Corollary 62 (Subje
t Redu
tion for `
 and ;;�).If � `
 A : B and A;;� A0 then � `
 A0 : B.Proof. We prove similarly to Corollary 50 that: � `
A : B, A;� A0 =) � `
 A0 : B.Lemma 63 (Uni
ity of Types for `
).1. � `
 A : B ^ � `
 A : B0) � `
 B =def B02. � `
 A : B ^� `
 A0 : B0 ^A =� A0) � `
 B =def B0

Proof. 1. By indu
tion on the stru
ture of A using theGeneration Lemma. 2. By Chur
h-Rosser and Subje
t Re-du
tion using 1.Finally, one
an establish Strong Normalisation for the �-
ube with de�nitions and
lass-redu
tion by using the proofof Strong Normalisation of the �-
ube extended with de�-nitions and ,!,!� as in [3℄ (whi
h is related to �-redu
tion)and mimi
king that proof for
-redu
tion.Theorem 64 (Strong Normalisation of ;;�).Every legal term is strongly normalising with respe
t to ;;� .
7. CONCLUSIONIn this paper, we attempted to understand the redu
tionalbehaviour of
al
ulations (or programs). We looked at two
al
ulations and be able to tell whether there is an isomor-phism between the two
orresponding redu
tion paths. Weprovided a notion of redu
tional equivalen
e where we de-�ne a
lassi�
ation of terms so that elements that belongto the same
lass
an be said to have the same redu
tionalbehaviour.[18℄ already gave a notion of redu
tional equivalen
e
alled�-equivalen
e for whi
h it showed that none of the stan-dard
lassi�
ation
riteria on �-
al
ulus (e.g., length of thelongest redu
tion)
an separate two �-equivalent terms. Ourpaper presented a �ne grained redu
tion relation whose
on-gruen
e is �-equivalen
e.Another attra
tive feature of our work is that we man-aged to give a
lear representation of the
anoni
al forms ofterms given in [18℄ whi
h
learly show where redexes o

urand where they do not. Table 1 shows that every �-term
an be written in
anoni
al form. Su
h a
anoni
al form
an be
onsidered as a well-organised variant of the originalterm, yet having a similar redu
tional behaviour. A
anoni-
al form of a termM lists the overall (ba
helor) abstra
tionsof M , followed by a permutable list of redex-heads (whi
h
an also be
onsidered as possible substitutions), followedby a list of \idle" or ba
helor arguments for a single variablex. The idle arguments
an however be
ome a
tive in newredex-heads after a substitution of some term for x, e.g., by�-redu
tion. Furthermore, although
anoni
al forms are notunique, we
an still �nd for ea
h �-term, the unique
lass ofits
anoni
al forms whi
h are all equal modulo some simplepermutation.Finally, we extended the
ube of eight type systems with
lass redu
tion and showed that subje
t redu
tion fails forsix of the eight extended systems. We then established thatsubje
t redu
tion
an be regained by adding de�nitions. Theimportan
e of de�nitions (also known as \let expressions") iswitnessed by their extensive use in programming languagesand theorem provers. Intuitively, de�nitions repair the prob-lem of subje
t redu
tion be
ause they save the type infor-mation that will be lost as a result of redu
tion.
8. ACKNOWLEDGEMENTSWe are grateful for enlightening dis
ussions and usefulfeedba
k and
omments re
eived from Henk Barendregt,Twan Laan and Joe Wells. We are also grateful for theuseful
omments re
eived from the anonymous referees. Ka-mareddine is grateful to the support re
eived from EPSRCgrants EPSRC GR/L36963 and EPSRC GR/L15685.

9. REFERENCES[1℄ H. P. Barendregt. The Lambda Cal
ulus: Its Syntaxand Semanti
s. North-Holland, revised edition, 1984.[2℄ H.P. Barendregt. �-
al
uli with types. InS. Abramsky, D. Gabbay, and T. Maibaum, editors,Handbook of Logi
 in Computer S
ien
e, volume II,pages 118{310. Oxford University Press, 1992.[3℄ R. Bloo, F. Kamareddine, and R. P. Nederpelt. TheBarendregt Cube with De�nitions and GeneralisedRedu
tion. Information and Computation, 126(2):123{143, 1996.[4℄ P. de Groote. The
onservation theorem revisited. InInternational Conferen
e on Typed Lambda Cal
uliand Appli
ations, LNCS 664. Springer-Verlag, 1993.[5℄ F. Kamareddine and R. Nederpelt. A useful�-notation. Theoreti
al Computer S
ien
e, 155:85{109,1996.[6℄ F. Kamareddine and R. P. Nederpelt. Re�ningredu
tion in the �-
al
ulus. Journal of Fun
tionalProgramming, 5(4):637{651, 1995.[7℄ F. Kamareddine, A. R��os, and J.B. Wells. Cal
uli ofgeneralised �e-redu
tion and expli
it substitution:Type free and simply typed versions. Journal ofFun
tional and Logi
 Programming, 1998.[8℄ M. Karr. Delayability in proofs of strongnormalizability in the typed �-
al
ulus. InMathemati
al Foundations of Computer Software,LNCS, 185. Springer-Verlag, 1985.[9℄ A.J. Kfoury, J. Tiuryn, and P. Urzy
zyn. An analysisof ML typability. ACM, 41(2):368{398, 1994.[10℄ A.J. Kfoury and J.B. Wells. A dire
t algorithm fortype inferen
e in the rank-2 fragment of the se
ondorder �-
al
ulus. Pro
eedings of the 1994 ACMConferen
e on LISP and Fun
tional Programming,1994.[11℄ A.J. Kfoury and J.B. Wells. Addendum to newnotions of redu
tion and non-semanti
 proofs of�-strong normalisation in typed �-
al
uli. Te
hni
alreport, Boston University, 1995.[12℄ A.J. Kfoury and J.B. Wells. New notions of redu
tionsand non-semanti
 proofs of �-strong normalisation intyped �-
al
uli. LICS, 1995.[13℄ Z. Khasidashvili. The longest perpetual redu
tions inorthogonal expression redu
tion systems. 3rdInternational Conferen
e on Logi
al Foundations ofComputer S
ien
e, Logi
 at St Petersburg, 813, 1994.[14℄ J. W. Klop. Combinatory Redu
tion Systems.Mathemati
al Center Tra
ts, 27, 1980. CWI.[15℄ J.-J. L�evy. Optimal redu
tions. In J. Hindley andJ. Seldin, editors, To H.B. Curry: Essays on
ombinatory logi
, lambda-
al
ulus and formalism,pages 159{191. A
ademi
 Press, 1980.[16℄ R. P. Nederpelt, J. H. Geuvers, and R. C. de Vrijer.Sele
ted papers on Automath. North-Holland,Amsterdam, 1994.[17℄ L. Regnier. Lambda
al
ul et r�eseaux. PhD thesis,University Paris 7, 1992.[18℄ L. Regnier. Une �equivalen
e sur les lambda termes.Theoreti
al Computer S
ien
e, 126:281{292, 1994.[19℄ A. Sabry and M. Felleisen. Reasoning about programsin
ontinuation-passing style. Pro
eedings of the 1992ACM Conferen
e on LISP and Fun
tionalProgramming, pages 288{298, 1992.[20℄ M. H. S�rensen. Strong normalisation from weaknormalisation in typed �-
al
uli. Information andComputation, 133(1), 1997.[21℄ D. Vidal. Nouvelles notions de r�edu
tion en lambda
al
ul. PhD thesis, Universit�e de Nan
y 1, 1989.[22℄ H. Xi. On weak and strong normalisations. Te
hni
alReport 96-187, Carnegie Mellon University, 1996.

