De Bruijn’s syntax and reductional equivalence of

Fairouz Kamareddine
Computing & Electrical Eng.
Heriot-Watt University
Riccarton
Edinburgh EH14 4AS
Scotland

fairouz@cee.hw.ac.uk

ABSTRACT

In this paper, a notation influenced by de Bruijn’s syntax of
the A-calculus is used to describe canonical forms of terms
and an equivalence relation which divides terms into classes
according to their reductional behaviour. We show that this
notation helps describe canonical forms more elegantly than
the classical notation and we establish the desirable proper-
ties of our reduction modulo equivalence classes rather than
single terms. Finally, we extend the cube consisting of eight
type systems with class reduction and show that this exten-
sion satisfies all the desirable properties of type systems.

Summary

In A-calculus, a (-redex (A\;.A)B is characterised by the
matching of A\, with the application argument B. We say
that A; and B match or that each has the other as a partner.
In a A-term however, there can occur \;’s and application
arguments which do not have any partners (i.e., are bache-
lor). In terms like ((Az.Ay.A)B)C, we see that Ay, and C are
bachelors. However, after a reduction matching A, and B, a
new redex based on the then matching Ay and C is created.
This has been noted by [12, 18] who provided for each term
a canonical form which shows which parts of the term are
certainly partnered and which are inherently bachelor, now
or in the future. This canonical form has the shape:

PYIRER)\xn()\yl()\yg(T .()\ym.zAl to Al)C’m) to)Cz)cl

where Az; and A; are bachelor for 1 <i<mand1<j </
and each Cj for 1 < i < m matches Ay;. In addition, [18]
provided the notion of o-equivalence which identifies terms
only differing by permutations of redexes, and showed that
none of the standard operational classification criteria on
A-calculus (e.g., length of longest reduction) can separate
two o-equivalent terms. [18] concluded by asking if there
existed a syntax that realises o-equivalence. In this paper,
we attempt to answer the question by using the item nota-
tion [5] inspired by de Bruijn’s notation of the A-calculus.

Roel Bloo
Mathematics & Computing Sc.
Eindhoven University
P.O.Box 513
5600 MB Eindhoven
The Netherlands

c.j.bloo@tue.nl

A-terms

Rob Nederpelt
Mathematics & Computing Sc.
Eindhoven University
P.O.Box 513
5600 MB Eindhoven
The Netherlands

r.p.nederpelt@tue.nl

Using item notation (where abstraction and application are
written respectively as (A;)A and (BJ)C with C the func-
tion and B the argument) to represent canonical forms and
reductional equivalence, we find that:

* (Aer) - (A)(CL0)(Ayy) - - (Crnd) Ay,) (Aid) - - - (A1) 2
becomes the canonical form is which is clearly divided
into a sequence of bachelor A-items (A;) followed by
a sequence of partnered pairs (C;0)(),;) followed by
a sequence of bachelor d-items (A;d) which is finally
followed by the heart of the term z. This is clearer
than the canonical form given in [12, 18].

e We are also able to define a decidable notion of reduc-
tional equivalence Roqui on terms which we show to be
equivalent to o-equivalence.

e Using the result of Regnier in [18], we show that two
terms have similar reduction paths and reductional be-
haviour if they have the same canonical forms up to a
permutation of partnered pairs (A,;, Ci) and (Ay;, Cj)
in the canonical form, provided that no bound vari-
ables become free during the permutation.

e We proceed beyond the results of Regnier to extend the
usual S-reduction —g on A-terms to ~+g on classes of
terms modulo reductional equivalence which is Church-
Rosser, which commutes with reductional equivalence
and preserves reductional paths, and where SN..., and
SNHB are equivalent.

Finally, we extend the Barendregt cube with ~»z and show
that this extension satisfies all the properties such as strong
normalisation and subject reduction (the latter depends on
allowing definitions in contexts). As far as we know this is
the first account of generalising reduction in the cube using
classes of terms.

1. INTRODUCTION

The last two decades have seen an explosion in new no-
tions of reductions which can be summarised by four axioms:

@) ((Aa-N)P)Q —¢ (A\z.NQ)P.

v) (A2 Ay.N)P =4 A\y.(Az.N)P.

(9 (Aa-Ay-N)P)Q =4 (Ao Ny := Q)P

(70) (e A-NP)Q —re (Ay-(a-N)P)Q.

Note that g is a combination of a #-step with a [3-step.
~vc makes sure that Ay, and @ form a redex even before the
redex based on A, and P is contracted. By compatibility, -y
implies y¢. Moreover, ((Az.A\y.N)P)Q —o (Az.(Ay.N)Q)P

and hence both 6 and y¢ put A, adjacently next to its
matching argument. € moves the argument next to its match-
ing A whereas yc moves the A next to its matching argument.
For a discussion of where these reductions (let’s call them
auziliary reductions) have been used see [11, 7]. We give
here a very brief summary.

[17] introduces the notion of a premier redex which is sim-
ilar to the redex based on Ay and @ in the rule (g) above
(which we call generalised redezr). [18] uses 6 and <y (and
calls the combination o) to show that the perpetual reduc-
tion strategy finds the longest reduction path when the term
is Strongly Normalizing (SN). [21] also introduces reductions
similar to those of [18]. Furthermore, [9] uses 6 (and other
reductions) to show that typability in ML is equivalent to
acyclic semi-unification. [19] uses a reduction which has
some common themes with 6. [16] and [4] use # whereas [12]
uses 7y to reduce the problem of [-strong normalization to
the problem of weak normalization (WN) for related reduc-
tions. [10] uses € and v to reduce typability in the rank-2
restriction of the 2nd order A-calculus to the problem of
acyclic semi-unification. [14, 22, 20, 13] use related reduc-
tions to reduce SN to WN and [8] uses similar notions in SN
proofs. [6] uses a more extended version of 6 (called term-
reshuffling) and of g (called generalised reduction) where Q
and N are not only separated by the redex (A;.—)P but by
many redexes (ordinary and generalised).

Looking at these attempts, one notes that auxiliary re-
duction can help relate A-terms according to their evalua-
tion behaviour. After all, auxiliary reductions turn redexes
that are not immediately visible into clearly visible ones:

EXAMPLE 1. Consider A = (Ag.\y.Af.fy)ax and B =
(Ag-(Ay.Af.fy)z)a. Both terms have the term Af.fx as a
reduct, so A =g B. However, B has two redezes whereas A
has only one. Here are the redezes of B:

o 1= (Ag.(\y.As.fy)x)a. Observe that B 53 (A, Af.fy)x.

o 1o = (A, As.fy)x. Observe that B 3 (\g.\s.fx)a.
In A, the only obvious redex is: i = (A\g.A\y.As.fy)a. Note

that A5 Ay . fy)z.
Note that r1 in B and r} in A are both based on the redex
(Ag.—)a and contracting r1 in B results in the same term
as contracting vy in A.

A closer look at A enables us to see that in A (as in B),
Ay will get matched with x resulting in a redex ry = (\y.—)x.
There are differences however between r2 in B and ry in A.
r2 in B is completely visible and may be contracted before ri
in B. r5 on the other hand is a future redez in A. In fact,
5 is not a redex of A itself but a redex of a contractum of
A, namely (A\y.As.fy)z, the result of contracting the redex
rhoin A.

We could guess from A itself the presence of the future
redez. That is, looking at A itself, we see that A\g is matched
with a and Ay is matched with x. This can be made visible
via rules like (0) above. Note that: A = (Ag. Ay Af.fy)ax
—0 (z\g.(Ay./\f.fy)x)a =B.

So, extending the A-calculus with auxiliary reductions may
lead to a better understanding of the reductional behaviour
of programs [15]. Why is this important? Because the A-
calculus plays a major role in the semantics of programming
languages through its mechanisms for modeling evaluation

strategies (e.g., call by name, call by value, etc.). Due to
this basic role, the A-calculus must be informative not only
of the final value of the program (the normal form of the
A-term representing the program), but also of the consecu-
tive values before the final value is reached. In particular,
if we have two programs P; and P> that return the same
final value, we want to know if these programs have equiva-
lent evaluation paths in the sense that each evaluation path
from P; to the final value (going through all the intermedi-
ate programs), corresponds (in a strong evaluation sense) to
an evaluation path from P; to the final value, and vice versa.
This will mean that P; and P» are equivalent programs even
though they are written differently. Each intermediate value
a1 along the evaluation path from one of these programs to
the final value corresponds to a unique intermediate value
a> along the evaluation path of the other program to the
final value, and the number of evaluation steps to reach a;
from the first program is equal to the number of evaluation
steps to reach a» from the second program. Of course this
does not constitute a formal definition of what we call re-
ductional equivalence. Reductional equivalence is difficult to
define and is also undecidable.

In order to discuss reductional equivalence between terms,
redexes will be extended (cf. Definition 25) so that a poten-
tial future redex like (A\y.—)z in A of Example 1 will be
treated as a first class redex and will possibly be contracted
in A even before the originator (Ag.\y.As.fy)a has been
contracted. Hence, with our extended notion of redexes and
reduction we get in A another redex:

ry = (Ay.As.fy)z, which when contracted in A results in
(Mg Af.fz)a.

Note that 5 is A\, matched with z (exactly as r» in B). Note
moreover that contracting r5 in A gives the same result as
contracting 72 in B.

With this notion of extended redez, we observe that there
is a bijective correspondence between the (extended) redexes
of A and B of Example 1. That is, r1 corresponds to rj and
r2 corresponds to r5. Moreover, if one redex is contracted
in A, the reduct is syntactically equal to the reduct which
results from contracting the corresponding redex in B and
vice versa. That is, r1 and r} yield the same values; similarly
r2 and 75 yield the same values. This is seen as follows:

EXAMPLE 2. The reduction paths from A and B of Ei-
ample 1 are as follows:

A-Pathy: (Mg Ay-As-fy)ax = (AyAr-fy)z = Af.fa

A-Pathz: (Mg Ay-As-fy)ax = (Mg A fo)a = Ar.fa

B-Pathy: (Ag.(AyAf.fy)x)a = Ay Ap.fy)e = Ap.fx

B-Paths: (Ag.(AyAf.fy)z)a =y (Ag.Af.fr)a = Af. fx

It is clear that A and B have the same number of possible
paths before reaching the normal form and that there is a
bijective correspondence between the paths A-Path, and B-
Pathi, and between A-Paths and B-Path:.

Such equivalences have been noted in history and in par-
ticular [18] gives a nice classification of the canonical form of
terms and provides a notion of o-equivalence which identifies
terms only differing by permutations of redexes, and shows
that none of the standard operational classification criteria
on A-calculus (e.g., length of longest reduction) can separate
two o-equivalent terms. [18] concluded by asking if there
existed a syntax that realises o-equivalence. In this paper,
we attempt to answer the question by using the item nota-
tion [5] inspired by de Bruijn’s notation of the A-calculus.

Item notation enables us to detect more redexes in a term
than are immediately visible in the known “classical nota-
tion” A-calculus.

In Section 2 we introduce what is needed of the item no-
tation and other formal machinery in order to syntactically
describe the canonical forms of terms.

In Section 3 we explain how one can achieve the canonical
forms of terms so that the reductional behaviour is immedi-
ately visible.

In Section 4 we give our decidable notion of reductional
equivalence R.qui which we show that it coincides with the
o-equivalence of [18].

In Section 5 we extend the usual S-reduction —g on -
terms to ~+3 on classes of terms modulo reductional equiv-
alence. We establish that ~+g is Church-Rosser; that if
A —p B then A ~+3 Bj; and that if A ~-g B is based on a re-
dex (Az.—)—, and if A’ Requi A, then there exists B’ ~oqui B
such that A" ~»3 B’ and is based on a corresponding redex
(Az.—)—. In other words, A and A’ have isomorphic re-
ductional paths. We also show that SN.., and SN_,, are
equivalent and that all reductionally equivalent terms have
the same normalisation behaviour.

In Section 6 we extend the cube with class reduction and
establish the desirable properties.

2. SOME FORMAL MACHINERY

The classical notation cannot extend the notion of redexes
or enable reshuffling in an easy way. Item notation however
can ([5] discusses various advantages of this notation). In
item notation, one writes the argument before the function
so ab becomes (bd)a. Similarly, in item notation, one writes
(Az)a instead of A;.a. This way, a term becomes a sequence
of M-items like (A;) and d-items like (bd) followed by a vari-
able. Moreover, a B-redex becomes in item notation a d\-
pair: namely, a d-item adjacent to a A-item. We leave it
to the reader to check this. Let V' be an infinite collection
of variables over which z,y,z,... range. In item notation,
terms of the A-calculus are: T == V [(T)T | (Av)T. We
take A, B,C,... torange over 7. We call (Ad) a d-item, A
the body of the item and (Ad)B means apply B to A (note
the order). (\;) is called a A-item. A redex starts with a

d-item (i.e., (Ad)) next to a A-item (i.e., (Az)).

Here we repeat rules (6), (7), (¢9), (y¢) but in item nota-
tion:

(0) (QI)(PO)(Ae)N =4 (PO)(X:)(QO)N

(1) (POX)(A)N =+ (Xy)(P0)(Az)

(9) (QO)(PO)(Ae)(Ay)N =4 (PO)(Ax){Ny := Ql}.

(ye) (QO)(P)(Az)(Ay)N —c (Q6)(Ay)(PO)(Az) N

Note furthermore that the rules (), (v), (g9), (y¢) are
not problematic because we use the Barendregt Convention
(see below) which means that no free variable will become
unnecessarily bound after reshuffling due to the fact that
names of bound and free variables are distinct.

In item notation, each term A is the concatenation of
zero or more items and a variable: A = s;ss---s,z where
each s; is either a A-item or a d-item, and x € V. These
items si,82,...,8, are called the main items of A, z is
called the heart of A, notation V(A4).! We use s,s1,s5,...

!Note that the term head variable used in [1] is a special
case of our notion of heart. The head variable of a term in
head normal form is the heart of the term. It is not the case
however that the heart of a term is always a head variable.

to range over items. A concatenation of zero or more items
$182 - - Sy, is called a segment. We use 5,51,5;,... as meta-
variables for segments. We write) for the empty segment.
The items s1, s2, ... , s, (if any) are called the main items
of the segment. A d\-pair is a d-item immediately followed
by a A-item.

The weight of a segment 5, weight(3), is the number of
main items that compose the segment. Moreover, we define
weight(5z) = weight(s) for z € V.

In reduction, the matching of the é and the X in question is
the important thing. Well-balanced segments (w-b) are
constructed from matching ¢ and A-items. W-b segments
are given inductively by: (i) @ is w-b, (ii) if 5 is w-b then
(A0)3(Az) is w-b, (iil) if 57, S2, ... S, are w-b, then the
concatenation s1 S2,---5, is w-b. In Figures 1 and 2, all
segments that occur under a hat are w-b.

Bound and free variables and substitution are defined as
usual. We write BV (A) and FV(A) to represent the bound
and free variables of A respectively. Note that in item nota-
tion, the scope of the x in a A-item ()\;) is anything to the
right of it. We write A[z := B] to denote the term where
all the free occurrences of = in A have been replaced by B.
We take terms to be equivalent up to variable renaming and
use = to denote syntactical equality of terms. We assume
the usual Barendregt variable convention BC (which says
that bound variables are always chosen distinct from free
variables) and the usual definition of compatibility (cf. [2]).
We say that A is strongly normalizing with respect to a re-
duction relation — (written SN_, (A)) iff every —-reduction
path starting at A terminates.

3. TOWARDS CANONICAL FORMS

3.1 Making redexes visible via

Transformations like (f) are rather powerful in that they
can group together terms with equal reductional behavior.
Let us give here this example in classical notation:

ExampPLE 3. Consider E1, E», E3, E4 as follows:

Er = ((Ar-Ae Ay fry)+)m)n,
By = ((Ar.(Ae- Ay fry)m)+)n,
Ey = (Ar.((Ae >\ fry)m)n)+,
Ei=(Ar.(Ae (>\ fry)n)m) +

Note that E1 =g E» =g E3 =g E4. Moreover, the visible
redezes are as follows:

In Ey: (Af e Ay .fzy)+.

In Ex: (Af.(Aa Ay foy)m)+ and Az Ay.fry)m

In Es: (Ar.((Ae- Ay . fzy)m)n)+ and (Az.Ay.fzy)m

In Ey:
Ar-Qa.- Ay - fzy)n)m)+, (Ae.(Ay.fry)n)m and (A, fzy)n.
Furthermore, one can see potential future redezes as follows:

In E1: A\p.— will eventually be applied to m and \y.— will
be eventually be applied to n.

In Es: A\y.— will eventually be applied to n.

In E3: Ay.— will eventually be applied to n.
Note that E1 —¢ E2 —¢ Es —¢ E4 and that by 0-reducing
E: to E> (resp. E5 to Es), an extra redex becomes visible.
In E4 all redezes are visible and E4 is in 6-normal form.

Applying the item notation to Example 3 we get:

EXAMPLE 4. E: of Ezample 8 reads in item notation:
(nd)(md)(+0)(Ar)(Az)(Ny) (yd)(xd)f. Here, the (classical)

() (u8) (@) f
| |

B @) Aol wlool) e
| |

By: A @ Enel) () wd s

Eq: ool o)l ()) wa) o) 1

Figure 1: f-reduction on E: Ei —y E» —¢ E3 —¢ E4

E;: (nd) (md)

N
(+mf) (Ae) (Ay)(y0) (d) f

|
ool oo s

By (m0) (o))

vl A v
E3: (nd) (md)(Xe) (Ay) (+6) (Xy) (y0)(xd) f
B ())l oly ()l (y9)(zd) f

Figure 2: vy-reduction on E;: E; —, E5 —, E3 —, E,

redez corresponds to a ‘9X-pair’, vis. (+8)(Af), followed by
the body of the abstraction, as follows:

(As-(Aa- Ay fry)m)+ becomes (+6)(A) (md) (Az) (Ay) (y0) (26) f -

Note that the d-item (+0) and the A-item (Ay) are now ad-
jacent, which is characteristic for the presence of a classical
redez in item notation. (Cf. Figure 1). The second and third
redexes of E1 are obtained by matching § and X\-items which
are not adjacent:

o (N\y.fzy)n is visible as it corresponds to the match-
ing (nd)(\y) where (nd) and (\y) are separated by the
segment (md)(+0)(Ar)(Ae) which has the bracketing
structure [[]].

o (Az.Ay.fzy)m is visible as it corresponds to the match-
ing (md)(Ay) where (md) and (A\;) are separated by the
segment (+6)(Ay).

We will use obvious notions throughout like partner, match,
bachelor, etc., as follows: in the term E; of Figure 1, (40)
and (Af) match or are partnered. So are the items (nd)
and (Ay). (y0) and (xd) on the other hand are bachelor.
The adjacent item pair (+J)(Af) is called a dA\-pair and the
non-adjacent partnered items (md)(Az) and (nd)(A,) form
dA-couples.

f-reduction amounts to moving d-items, from left to right,
in the direction of their matching A-items, until they form a
pair. This is illustrated in Figure 1.

As —¢ is Church Rosser (CR) and Strongly Normalizing
(SN), then the f-normal form (M) of a term M is unique.

This paper will establish a method that shows that terms
like E1, E>, E3 and E4 in Example 3 are reductionally equiv-
alent. Obviously, we will use f-reduction for this purpose.
Any two terms A and B such that A =y B will satisfy
A zequi B.

3.2 Making redexes visible viay

Looking back at examples 3 and 4, it is possible to use
v instead of € in order to make more redexes visible. This
is illustrated in Figure 2. ~-reduction amounts to moving
A-items from right to left, in the direction of their matching
0-items until they form a pair. Also, similarly to —4, —
is Church Rosser and Strongly Normalizing, and hence, the
~v-normal form y(M) of a term M is unique.

However, using 6 alone or ~ alone will not be comprehen-
sive enough to capture as many cases as possible of reduc-
tional equivalence. We obviously want not only E:, E>, E3
and F4 of Example 3 to be reductionally equivalent, but
also E1, E), Ef and E}. But, how do we relate E; to E. for
2 <4 < 47 This is simple, combine the relations § and v and
aim to find a canonical form of terms that helps establish
reductional equivalence.

3.3 Reaching canonical forms ofis via cCF(ar)

So far, we decided that for any term A, all elements B such
that A =¢ B or A =, B are reductionally equivalent to A.
But we want also that if B =y A and B’ =, A then B and
B’ are reductionally equivalent. It is obvious that B and B’
will have the same reductional behaviour (persuade yourself
of this in the case of E4 and E}). In order to achieve this,
and to obtain a more comprehensive notion of reductional
equivalence, we combine € and .

Note that 8(y(E1)) = Ej and v(0(E1)) = E4 and that
E, # Ej. However, looking at E4 and Ej, we see that
they have the following shape which we call canonical form:
Ae1) - e) (A1) (Ayy) - - (Amd) Ay,) (B19) ... (Bpd)w
where (\z;) and (B;d) are bachelor for 1 < ¢ < n and 1 <
j < p (see Table 1).

The shape of canonical forms will allow us to introduce
a reduction relation —, on them which will help us show
that terms like E4 and E) are reductionally equivalent. In
fact, note that E4 and Ej are equivalent up to the per-
mutation of their JA-pairs. We follow this observation to
define the reduction relation —, on canonical forms C; and
C> as follows: C1 —, C2 iff C1 = C> except for a segment
(Ad)(A2)(Bd)(Ay) in Cy which appears as (Bd)(Ay)(Ad)(Az)
in Cs, on the condition that z ¢ FV(B).? We define =, as
the equivalence relation of —,. We then define CCF (M) the
class of canonical forms of M as {M'|M' =, 6(y(M))}. We
will show that CCF(M) is unique and is equal to {M'|M' =,
A(6(M))}.

With this we give for each term M the class of canonical
forms of M modulo =,, CCF(M) and satisfying Table 1.
This is indeed elegant.

Now, two terms are reductionally equivalent if they have
the same canonical form modulo =,. We define [M], the
class of terms that are reductionally equivalent to M, to
be {M' | 8(v(M)) =, 6(yv(M'))}. All elements of [M] are
(B-equal and have in some sense the same redexes.

’The condition that y ¢ FV(A) is covered by the Baren-
dregt Convention (see Section 2).

Table 1: The Canor

nical Form of terms

bachelor M-items | dA-pairs, A; in canon. form

bachelor ¢-items, B; in canon. form | end var

Aer) - Aan) | (A10)(Ayy) - (Amd)Ayom)

(B13)...(B,0) z

EXAMPLE 5. Note that in Figures 1 and 2,
v(E1) = 0(v(E1)) = E} and 0(E1) = v(6(E1)) = Es. Note
also that E4 =, E} and all E;, for 1 <i < 4 and E;, for
2 < j < 4 belong to [E1]. All E; and Ej where 1 <4 <4 and
2 < j < 4 are reductionally equivalent and have the same
canonical form (+0)(Ar)(md)(Az)(nd)(Ay)(yd)(xd) f modulo
=p. That is: (md)(Az)(+0)(Ar)(nd)(Ay)(yd)(zd)f and
(m8)(As) (m8)(A,) (+0) (A7) (46) (w0)
etc., are all canonical forms. Note that the variable condi-
tion for permutations of pairs holds because + contains no
free variables.
In this paper, we define A ~equ: Biff A € [B] (i.e., 8(v(4)) =
6(v(B))). It makes sense to use ~equi t0 represent a class of
reductional equivalence on terms. We will show that Requs is
decidable. We will extend the notion of S-reduction to apply
to classes rather than terms. As classes capture existing ex-
tensions of reductions such as (8), (g9), (7), etc., B-reduction
over classes will capture all these notions. We say A class-
reduces to A" and we write A ~5 A" iff 3B € [A]3B’ € [4']
such that B —5 B’. We show (cf. Lemma 27) that —3 is
captured by ~+3.

4. REDUCTIONAL EQUIVALENCE
We start by defining the canonical forms (Table 1).

DEFINITION 6. We say that a term is in canonical form
if it has the form:

Azr) -+ (A2,)(CLO)(Ayy) - - - (Cmd) (Mg,) (A1D) - .. (Aid).
Note that here, (Az;) and (A;0) are bachelor for 1 <i<n
and 1 <5< 1.

REMARK 7. Note that canonical forms correspond in clas-
sical notation to the following:
Aoy - Azn -y -(Ags oo Ay @Ar .. ANC) ..)C2)Cy
where again it can be seen that A\, and A; are bachelor for
1<i<nandl <j<I. These are exactly the canonical
forms given in [18] and represented in [18] by Figure 3 be-
low. Note that our item notation as is seen in Definition 6
permits a more elegant representation than the one given in
classical notation in Figure 3.

Figure 3: Canonical forms in classical notation

DEFINITION 8. We define =, on canonical forms as the
compatible closure on canonical forms of the rule:

(A16) (Ay1)(A20)(Ay2) B —p (A20)(Ay2)(A416)(Ay1)B
if y1 ¢ FV(A»)

We define =¥, and =, as the reflexive, transitive respec-
tively equivalence closures of —p.

We define =9, to be =9 U = and —,p to be =g U =,
U —=p. =0y, —Poyp, =04 and =g¢4p are defined similarly to
—p and =p.

Intuitively, —, transposes two adjacent d\-pairs in a term if
the variable bindings allow this. There is a nice correspon-
dence between —,, —¢ and —,.

LEMMA 9. Let A and B be two canonical forms. If A —,
B then 3C[C —¢ ANC —, BJ.

ProoOF. Induction on the structure of A. We take the case
A= (A10)(M\y1)(A20)(N\y,)As and B =
In this case, take C' = (A20)(A410)(Ay,)(Ayy)As. O

ProposiTION 10. —¢ and —, are SN, CR and C=3.

PRrROOF. SN is a simple combinatorial exercise. For CR we
note that —¢ as well as —+, alone are orthogonal. —¢C=g
and —,C=g are easy. [l

COROLLARY 11. For each term M, (M), the 8-normal
form of M and y(M), the y-normal form of M are unique.

We take the 0y-normal form of A to mean 6(y(A)) which is
unique. Similarly, we take the v8-normal form of A to mean
~v(A(A)) which is also unique. Note that it is not necessarily
the case that 6(y(A4)) = 7(6(A)) as Example 5 shows. How-
ever, we will show in Lemma 17 that 0(y(A4)) =, v(6(A)).

The following two lemmas enable us to syntactically de-
scribe #- and y-normal forms.

LEMMA 12. Every term has one of the three forms:
(i) (A1d)---
(i) (A\z)A, and
(i3i) (A10)---(And)(BS)(

PROOF. A term has either zero main A-items and case
(i) applies, or at least one of them. In the latter case: the
first main A-item can occur in the first place in the sequence
of all main items (case (ii)) or not in the first place (case

(iii)). O

(Apd)x, where x €V and n > 0,

Xz)C, where n > 0.

LEMMA 13. Ewvery term has one of the four forms:

(1) s(A

(i3) (Ad

(iii) (Ad)S(Ay)B where s is w-b and B has no bachelor main
A-items, and

(iv) x.

PROOF. A term has at least one bachelor main A-item
(case (i)), or none at all. In the last case, the term may
start with a bachelor d-item (case (ii)), a partnered J-item
(case (iil)) or is only a variable (case (iv)). O

2)A where 5 is w-b,

)B, where B has no bachelor main A-items,

(A26)(Ay5) (A16)(Ay,) As.

Now, we can syntactically characterise - and y-normal forms
via the following two lemmas whose proof is by induction on
the definition of terms as given in Lemmas 12 and 13 resp.:

LEMMA 14. The 0-normal form (M) of a term M is:
O((A10)--- (And)x) =ar (0(AL)I) - (0(An)d)x
freV andn>0
0((Az)A) =i (A)0(A)

0((A10) - - (A20)(B6)(Ae)C) =ay
(0(B)8)(A2)0((A19) - - - (A20)C)

LeEMMA 15. The y-normal form v(M) of a term M is:

Y(5(Az)A) =4 (A2)7(54)
WANB) =y ((A)d)(B)

if B has no bachelor main \-items,
Y((A8)s(A2)B) =ar (v(A)d)(Ae)v(sB), where s is w-b
and B has no bachelor main A-items
v(2) =4 @

if 5 is w-b,

ExAMPLE 16.
If we take the term A to be:

" "

(M) () (Ap) (o) (w8) (;5)(?;5) (/\.v) (UX‘S)(HJ‘S)(/\w)(/{(t)(/ts) (sd)t
then 0(A) and v(A) will be given respectively by:

" "
X

(Aa) (1)(Ap) (Aa) (¥8) (o) (x5)(/\w)(v5)(/\xt)(;5)(/\+s) (wo)(sd)t
and

(Ag)(Az) (8)(Ap) (wb) (;S)Ots)(yf?) (Ao) (09)(Ae)(28)(Aw) (s)t

The following lemma shows that 6-, y-, and #vy-normal
forms satisfy Table 2. In particular, all #y-normal forms are
in canonical form. It is interesting to note how item nota-
tion enables the clear classification of these various normal
forms. Compare with [12, 18] where the classical syntax
makes these normal forms cumbersome to describe.

LEMMA 17. For a term A, we have:

1. 8(A) = 51 520(A), where 53 consists of the 6-normal
forms of all bachelor main §-items of A and 357 is a se-
quence of @-normal forms of main dA-pairs and bach-
elor main X\-items.

2. v(A) = 350 519(A) where 59 consists of all bachelor
main A-items of A and 31 is a sequence of y-normal
forms of main d\-pairs and bachelor main 6-items in
v-normal form.

3. 6(v(A)) = 5051 52V(A), where 5o consists of all bach-
elor main A-items of A and 31 is a sequence of 0~y-
normal forms of main dA-pairs and sz consists of the
0~v-normal forms of all bachelor main §-items of A.

4. v(0(A)) has the same structure as 0(vy(A)) in item 8,
except that everywhere 8y-normal forms should change
to v8-normal forms

5. 6(y(A4)) and v(0(A)) are both in canonical form and
we have that 8(v(A)) =p v(0(A)).

PrOOF. 1), 2) 3) and 4) are by induction on weight(A),
distinguishing cases according to Lemmas 12 and 13 using
Lemmas 14 and 15. We only prove 1).

e Case A= (A;)C, use IH on C.

e Case A= (B10)---(Bnd)z, z € V, then 57 is empty.

o A= (B1d)--(Brd)(Cd)(A\z)E. Then §(A) =
(6(C)0)(A2)0((B19d) - - - (Bnd)E). By the induction hy-
pothesis ((B10) - - - (B,d)E) is of the form s} 5V (E)
= 5] 52Q(A). Now take 57 = (8(C)d)(\;)s}.

For 5) use1) ... 4). O

Recall that both E4 and E} of Example 1 are in canonical
form. They both have the same canonical form as E;. Re-
call also that 8(y(E1)) = Ej}, that v(#(E1)) = E4 and that
by Lemma 17.4, E4 =, Ej. We group all canonical forms
related by =, into one class:

DerFINITION 18. We define the class of canonical forms of
M, CCF(M) as {M' in canonical form | M' =, 0(y(M))}.
Note that by Lemma 17,
CCF(M) = {M' in canonical form | M' =, ~(6(M))}.

For example, CCF(E,) = {E4, E4}.
Now we are ready to define reductional equivalence:

DEFINITION 19. For a term A, we define:

e [A], the class of terms that are reductionally equivalent
to A, by: {B[0(v(A)) =p 6(y(B))}

o We say that B is reductionally equivalent to A, and
write B Requi A, iff B € [A].

The following lemma says that reductional-equivalence con-
tains —¢ and —,.

LEMMA 20. —=¢CRequi and —>, CRequi- Moreover, these
inclusions are strict.

Proor. If A —¢ B or A —, B then 6(y(A)) =, 6(y(B)).
Example 5 gives terms F4 and E} which are Requi but which
are not related by —¢ or —,. O

REMARK 21. Note that, as both —¢ and —., are SN, we
can by applying —¢ and — to any term A, reach a term A’
which is free of any 0- and y-redezes (it is easy to show that
the combination of 0- and vy-reduction is SN). The resulting
term A’ however depends on the order of applying 6 and ~.
It is the case nonetheless, by Lemma 20 that all terms A’,
which are obtained from A wvia arbitrary 6 and v reductions,
are reductionally equivalent.

The following proposition shows that ~equ is decidable
and that any reductionally equivalent terms are 3-equal.

PROPOSITION 22. Requi @5 well-defined, decidable and ts
an equivalence relation. Moreover, =, =0, =pCRequiC=3,
and these inclusions are strict.

PRrROOF. Well-definedness and equivalence relation are easy.
Similarly, decidability is easy as § and v are SN and =, is
decidable. For the first C, note Lemmas 9 and 20. The
second C follows from Proposition 10. [

We will now show the equivalence between the o-equivalence
of [18] and Requi. First, we give the definition of [18] of o-
equivalence:

DEFINITION 23. [18] defined o-reduction to be the small-
est compatible relation containing:

Table 2: 6-, y- and fvy-normal forms

0-nf: dA-pairs in f-nf and bachelor A-items, | bachelor -items in -nf | end var
(A10) (M) (Ay)(A2)(A20)(Ap) - - (B10)(B29) ... x

~v-nf: | bachelor A-items | dA-pairs and bachelor d-items in y-nf end var
(Az1)(Azy) - . (B10)(A10)(Az)(B29) . .. x

0v-nf: | bachelor A-items | JA-pairs in fy-nf bachelor J-items in #y-nf | end var
Au)) oo | (A1)) (A2) (M) o - (And)) | (B10)(Bad) ... z

e (0) ((Ae.N)P)Q —¢ (A\.NQ)P if 2 € Q
e (1) (AeAy.N)P =, A\y.(Ae.N)P ify & P

We say that A and B are o-equivalent if A =, B where =4
is the equivalence relation associated to — .

The following lemma is needed to establish that mequ: and
=, are equivalent.

LEMMA 24. A Requi B iff A =4,y B iff A =6, B.

PROOF. =) Note that Xequi C=0+, and that by Lemma 9,
=04pC=¢,. <=) By Lemma 20, we have =g, C=equi and so,
also =gypCRequi [

This means that, since o-equivalence is the same as =g, we
get that o-equivalence is the same as ~.qi. Hence, we have
provided a fine grained notion of o-equivalence.

5. CLASS REDUCTION

In this section, we introduce class-reduction ~+g, show
that it is Church-Rosser; that if A —3 B then A ~+3 B;
and if A~ B is based on a redex (—d)(A;) then for every
A" moqui A, there exists B Nequ B such that A" ~+5 B’
and this latter reduction is also based on a corresponding
redex (—60)(\z). In other words, A and A’ have isomorphic
reduction paths. We also show that SNMB and SNHB are
equivalent and that all reductionally equivalent terms have
the same normalisation behaviour.

DEFINITION 25.

o One-step class-reduction ~+g is the least compatible re-
lation generated by:
A~+g B iff A" € [A]3B’ € [B] such that A" —3 B’
Many-step class-reduction ~+g is the reflezive and tran-
sttwve closure of ~p and =g s the least equivalence
relation generated by ~p.

o An extended redex starts with the 6-item of a 6 \-couple
(i.e. is of the form (C0)5(Ay)A where 5 is well-balanced
and non-empty).

EXAMPLE 26. Let A = (20)(wd)(Ae)(Ay)y. Then

[A] = {A, (w) (A=) (26) (Ay)y, (26) (Ay) (wd) (Az)y} .
Moreover, A~ (wd)(Ae)z and A ~p (20)(A\y)y.

The following lemma shows that ~+-g captures classical (-
reduction.

LEMMA 27. =5 C~p.

Proor. It suffices to show (Ad)5(A.)C ~p 5C[z := Al
We know that (A6)5(A:)C € [S(Ad)(A:)C], so by 5(Ad)(A)C
—3 5C[z := A] we have (A0)5(A)C ~p sClx := A]. It is
easy to show that these inclusions are strict. For example,
it A1 = (A6)(Bd)(A2)(CO)(DI)(Ay)(A2)(A)E and Ay =
(Co)(BS)(Aa)(DS)(Ay)(A)(E[t := A]) (which have respec-
tively the bracketing structures [[][[]]] and [[][]]), then
A, ~ g As but A, 7L)5 A,. O

COROLLARY 28. —g C~»g.

REMARK 29. It is not in general true that A ~»3 B =
A" € [A]3B’ € [B] such that A" =33 B'. This can be seen
by the following counterezample:

Let A = (M) (Ao)vd)(Az) (wd)(wd)x and B = (wd)(Ay)w.
Then A ~+g (wd)(wd)(Au)(Av)v ~p5 B.

But [A] has three elements: A, (wd)((Au)(Av)vd)(Az)(wd)x
and (wd)(wd)((Au)(Ao)vd)(Az)x.

Moreover, [B] = {B} and if A" € [A] then the only —3-
reduct of A" is (wd)(wd) (M) (Av)v, which /5-reduce to B.

The next lemma helps prove that ~-3 is Church-Rosser:

LemMmA 30. If A~sp B then A =3 B.

Proor. Say A’ € [A], B' € [B], A’ -3 B'. Now, by
Lemma 17 and Proposition 22, A =3 6(v(A)) =g 0(v(4")) =
A'=5 B' =3 0(y(B")) =3 0(y(B)) =s B. O

COROLLARY 31.

1. If A~+g B then A =3 B. 2. A=3 B iff A=3 B.

THEOREM 32 (CHURCH ROSSER THEOREM FOR ~&g).
If A ~»3 B and A ~»g C, then there exists D such that
B ~»3 D and C ~+5 D.

PROOF. As A ~»g B and A ~~ C then by Corollary 31,
A =g B and A =3 C. Hence, B =g C and by CR for —»g3,
there exists D such that B =g D and C —+3 D. But,
M —3 N implies M ~»3 N. Hence we are done. []

Now we are ready to establish the isomorphism of reduc-
tion paths (via ~»g) of two reductionally equivalent terms.
The following lemma shows that reductional equivalence
preserves the generalised reduction ~+3.

LEMMA 33. If A ~+5 B then for all A’ Sequ A, for all
B' Requ B, A' ~5 B'.

PRrROOF. As A ~+3 B then 3A; € [A]3dB; € [B] such that
A1 =3 Bi. Let A’ mequi A and B’ ®equi B. Then A, B’ €
[A], [B] respectively. Hence A; € [A'], B, € [B'], A1 —3 Bi.
So A'~s B'. O

COROLLARY 34. A~-3 B iff 6(7v(A)) ~5 0(v(B)).

The following remark points out that if we want to preserve
reduction paths, we need to work with the reduction ~+3.

REMARK 35. [8, 6] defined <3 as the least compatible
relation generated by (B16)S(Ay) B2 < $(Bz[x := Bi]) fors
well-balanced, that is, — g-reduction contracts an (extended)
redex. <»g is the reflexive and transitive closure of —g.
Note that A —g B % 6(y(A4)) «»s 0(y(B)) nor do we
have A —3 B = 0(y(A)) =3 0(v(B)). E.g., take A =
(M) (X)) (A2)(yd)(yd)z. It is obvious that A —3 B =
(40)(y0)(Au)(Ao)v (hence A —p B) yet 6(7(A)) = A #+5
nor #rg 0(7(B)) = (y0)(Au) (y0) (Ao)v.

Finally, here is the theorem that establishes the isomorphism
of reduction paths of two reductionally equivalent terms. We
write A —)éE(S)(A”) B for the S-reduction based on a -redex
starting with (Ed)(A;) in A. We write A «»(BE‘;)(A’”) B for

34’ € [4], 3B’ € [B], 3F' € [E] such that A’ »{7) B'.

THEOREM 36. If A Requi C and A «»EE‘S)(/\””) B then
there ezists a D and an E' such that B Neqi D, E' Sequi
E, and C —{V?<) D,

In other words, the following diagram commutes:

E§)(Az
(E6)(As) s B
zequi zequi
E'§)(\y
_wooy

PROOF. Note that A Requi C and A ~-g B implies by
Lemma 33 that for all D =equi B, C ~3 D. What we
want is to find a D Requi B and an E' Requ: E such that
O~ 000

As A~ B then 34" € [4], 3B’ € [B), 3E” € [E]
such that A’ —)E?E”‘;)(X’”) B'. Now C '\»E?E”(S)(A”) B’ due to
the facts that A’ —>E,E”5)(/\””) B', A" Requi C, B’ Requi B’ and
E" ~.qi E". Hence, we have found a D = B’ and E' = E”
such that B Xequi D, E' Neqi E and C '\»g,E D) D and
we are done. []

The following two lemmas show that reductional equiv-
alence preserves both ~-g-strong normalization and —g-
strong normalization:

LEMMA 37. IfA€ SN, and A’ € [A] then A" € SN, .

PROOF. If A’ € [A] then A’ Requi A. Hence, by Lemma 24,
A" =, A. Now, we use a result of [18] which says that if
A =, A’ then the length of the longest reduction sequence
starting from A is equal to the length of the longest reduc-
tion sequence starting from A’. []

LemMA 38. IfA€ SN.., and A’ € [A] then A" € SN,

Proor. VB, A" ~+3 B implies A ~»3 B by Lemma 33.
Hence, A" is in SN..,. O

Finally, we show that ~»g-strong normalization and —g-
strong normalization are equivalent:

LemMma 39. A€ SN, iff A€ SNo,,.

PROOF. As —3gC~rg, = is immediate. <= is by in-
duction on M(A) where M(A) = max{maxredg(A4’) | A" €
[A]}; maxredg(A’) is the maximal length of —g-reduction
paths starting from A’. Note that M(A) is well-defined if
A€ SN, by Lemma 37.

Suppose A ~p5 A" and A € SN, ,. It is sufficient to
prove that A" € SN..,. Take A; € [A] and A} € [A'] such
that A1 —s A]. Then also A’ € [A]], so by Lemma 38
it is sufficient to prove that A} € SN..,. By Lemma 37,
A1 € SN, and since A1 —g A} we have A] € SN_,.
Then also M(A}) < M(A1) = M(A), so by the induction
hypothesis: A} € SN..,. O

6. THE CUBE WITH CLASS REDUCTION

Our study of class reduction has been discussed up to now
for the type free A-calculus. But, for such reduction to be
useful in practice, we need to study it within type theory.
Alas, when attempting to build class reduction on the sys-
tems of the Barendregt cube of [2], we find that the subject
reduction property which states that if A ~-3 B then B has
the same type as A, no longer holds for six of the systems of
the cube, although it holds for the systems A_, and Aw. This
problem however can be solved by extending the cube not
only with class reduction, but also with definitions which
avoid the loss of information in the contexts needed to type
terms. With this extension the subject reduction property
holds for all the systems of the cube.

We show in Section 6.1 that subject reduction fails for
6 systems of the cube, but holds for A, and Aw with ~»g
(without definitions). We show furthermore that reduction-
ally equivalent terms have the same type in the sense that if
'~ A:Band A" € [A] then T'+ A’ : B (see Corollary 49).
Then, we add definitions in Section 6.2 and show that all the
desirable properties including SR hold for all the systems of
the extended cube.

6.1 Extending the cube with~.;

Let us start by introducing class-reduction to the cube of
[2]. This means that our reduction relation now is not —g
but ~+5 and that our extended cube of this subsection is
exactly that of Barendregt in [2] with the only difference
that we use ~+3 instead of —4.

DEFINITION 40 (THE CUBE IN ITEM NOTATION).
The systems of the A-cube are based on a set of pseudo-
expressions T (also called terms) defined by (for O € {\,I1}):
T=x|0|V|(TOT |(TOv)T. We take A,B,C,a,b,...,
resp. S, S1,S2 to range over T resp. {*,0}. The typing rules
are as follows:

(aziom) <>k x:0

(start) Id};)% if © 1is fresh

(weak) I'F Alz“igA/\z) I— DI:‘E‘D B if « is fresh
(app) DFF:(AIL)B Pha:A

app T F (ad)F : B[z = a]

(abs) DA Fb:B [k (AIL)B: S

avs TF (AN.)b : (AlL,)B

(cony) DEA:B r-B:S B=3 B
cone TFA:B

(form) LFA:S AN F B 2S5 6 60 e

TF (All,)B : 5,

A context or a term is called legal with respect to a type sys-
tem if it occurs as such in a type-derivation in that system.
Bound and free variables and substitution are defined as
usual. We write BV (A) and FV (A) to represent the bound
and free variables of A respectively. We write A[z := B]
to denote the term where all the free occurrences of x in A
have been replaced by B. We take terms to be equivalent up
to variable renaming and use = to denote syntactical equal-
ity of terms. We assume moreover, the usual Barendregt

variable convention BC' [2].

Each system of the cube is obtained by taking the (S, S2)
rules from a subset R of {(x, x), (x,0), (0, *),(0,0)}. The
basic system is the one where (S1,S2) = (%, *) is the only
possible choice. All other systems have this version of the
formation rules, plus one or more other combinations of
(%,0), (O,%) and (O, 0) for (S1,S2). Table 3 presents the
eight systems of the A-cube.

The next two examples show that if our type derivation
rules are those of Definition 40 and our reduction relation
is ~»g instead of —3, then we lose the subject reduction
property (SR) which states that if ' A: B and A ~»5 A’
then '+ A’ : B

ExXAMPLE 41 (SR FAILS IN A2, AP2, A\w AND AC).

(*Ag)(BAy) Fas (?/5)(5)(#Aa) (A,) (y3)(@As)z : 3 but,
(y'0)(B9) (xAa) (aAy) (yd)(OM)&~ (B3)(xXa) (3 6) (@Ae).
Yet, (+Xg)(BAy7) a2 (B9) (+Aa)(y'0)(ade)z : B.
Buen, (xAg)(BAy1) ¥z (B9)(xXa)(y'(f)(a/\z)mf,= : T for any T.
This is because (adz)z : (ally)a and y : B yet a and B are
unrelated and hence we fail in firing the application rule to
find the type of (y'8)(adz)x. Looking closer however, one
finds that (8)(xAa) is defining « to be B, yet no such infor-
mation can be used to combine (ally)a with 8. Definitions
take such information into account. Finally note that failure
of SR in A2, means its failure in AP2, \w and \C.

EXAMPLE 42 (SR FAILS IN AP, AP2, \Pw AND \C).

Let T' = (xA)(0>\t)(()*AQ)((tJ)Q/\N)
A= (No)(t)(2)((26)QAy) (y0)((20)QAz)Z and
= (t0)(oXa) (NO)((20)QA2)Z. Then, T Fap A : (t0)Q

and A ~»g B but as N : (t0)Q,y : (x0)Q, (t0)Q # (20)Q,
L'ap B: 7 for any 7.

Here again the reason of failure is similar to the above ex-
ample. At one stage, we need to match (xd)Q with (t0)Q
but this is not possible even though we do have the definition
segment: (t0)(ocAz) which defines x to be t. All this calls for
the need to use these definitions. Finally note that failure of
SR in AP, means its failure in AP2, \Pw and \C'.

However, subject reduction holds for A, and Aw. In the rest
of this subsection, £ ranges over Aw and A_, and F ranges
over type derivations in these two systems. The rest of this
section proves subject reduction for A_, and Aw.

The first three lemmas and corollary are exactly those of
the cube of [2] because ~»g does not play any role in them.
Only =4 (which is the same as =p) is involved.

LEMMA 43 (THINNING FOR). Let I' and A be legal
contexts such that ' C' A. ThenT'FA: B= A+ A: B.

Proor. Induction on length of derivationsI' - A: B. [
LEMMA 44 (GENERATION LEMMA FOR).

I.TFax:C = 35,5 € §3IB = C[F
(BX:) € TATEC:Sy].

FB:S A

2.0F (AIL,)B : C = 351,52 € S'FA: SiAT(AX) F
B : S3 A (S1,S2) is a rule A
C=3S2N[C#S>=3S['FC:5]]

3. TF(AX)b:C = 3S,B[I'F (AlL;)B : SAT(AX,)
b:BANC =3 (AHZ)B/\
C # (All;)B=3S e S[I'+C : 9]].

4. TF (ad)F : C = 3A,B,z[l' - F : (AIl,)BAT Fa:
ANC =3 B[z :=a]A
(Blz:=a]ZC =35 SI'+C:89)).
PRrROOF. Induction on derivation rules using thinning. []
COROLLARY 45 (GENERATION COROLLARY FOR |).
1. Correctness of Types: If T' v A : B then 3S[B
SorkB:S].

3. If A is a T" -term, then A is O, a I -kind or a I-
element.

LEMMA 46 (SUBSTITUTION FOR F). IfI'(BA:)AF C:
D andT'F A: B, then DAlx := A]*F Clz := A] : D[z := A].

Proor. By induction to the derivation rules, using the
thinning lemma. [

Because our reduction relation ~=z is defined in terms of
classes instead of terms, we cannot use the usual methods for
establishing SR. For this, we need the following two lemmas
which inform us that classes preserve types.

LEMMA 47 (SHUFFLE LEMMA FOR Aw AND AL,).

1. T k¢ 51(A6)§2B 0 <—=T+t,g glgz(AJ)B : C' where
52 is well-balanced and the binding variables in 52 are
not free in A.

2.0 Fr 35(A2)A : B <= T Fr (A)SA : B where 3 is

well-balanced and x is not free in's.

ProOOF. Sketch. The reason for this lemma to be true
for A, and Mw is that in these systems, for any legal term
of the form (PII,)Q, z ¢ FV(Q) (this is not true for the
other systems of the cube because of the mixing of levels
that comes with the rules (x,0) and (O, %)). Therefore in
1., none of the variables of dom(sz) can occur free in the
type of B which means that B must have a type of the form
(CII;)D and hence B can be applied directly to A. [

LEMMA 48 (CLASSES PRESERVE TYPES). If '+ A : B

and A" € [A], TV results from T' by substituting some main
items (CAg) by (C'A\y) where C' € [C], then '+ A" : B
Proor. By induction on the derivation rules. []

COROLLARY 49
I.THFA: B<TFCCF(A) : B.
2. IfT-A:B and A €[A], B € [B] thenT A" : B,

Proor. By Lemma 49, correctness of types and conver-
sion. [

(EQUIVALENT TERMS HAVE SAME TYPES).

Now with Corollary 49, we can establish SR using F and
~»g, via SR of F and —+3.

COROLLARY 50 (SUBJECT REDUCTION FOR F AND ~»g).
IfT-A:Band A~s5 A" then T+ A" : B.

Proor. We prove ' - A: B, A~y A =T+ A : B.
By definition of ~»4, there are A, A} such that A; € [A],
A} € [A] and A; —3 A]. By Corollary 49, I' - A, : B
By subject reduction for the usual —g we have I' - A} : B
Again by Corollary 49, T+ A’ : B. O

Note that although SR fails for the six remaining systems
of the cube with I of Definition 40 and ~»g, strong nor-
malisation holds for all the systems of the cube with F of
Definition 40 and ~+3. We will not prove this here and we
move immediately to the version that indeed satisfies SR
and all other properties.

Table 3: Systems of the cube

System Set of specific rules System Set of specific rules

/\H (*7*) /\g (*’*) (D7D)
A2 (*,%) | (8,%) Aw (*,%) | (8,%) (B,0)
AP (*,%) (*,0) AP2 (x,%) | (,%) | (x,0)

APw (*7*) (*7D) (D7D) APw = AC (*:*) (D7*) (*7D) (D7D)

6.2 Extendingthe cube with..; and definitions

Looking back at, for instance, Example 41, one notices
that when reducing using ~+4, the information that y' has
replaced y of type « is lost. All we know after the reduc-
tion is that 4" has type 8. But we need y’ of type o to be
able to type the subterm (y'd)(a\;)z of the reduct. Adding
definitions to our type system enables us to have extra infor-
mation in our contexts such as “a and 8 can be identified”.
We do this by writing in our context: (80)(*A) which ex-
presses that « is defined to be 8 and is of type *. We define
now this notion of definitions and how definitions can be
unfolded:

DEFINITION 51 (DEFINITIONS, UNFOLDING).

o Ifs is a well-balanced segment not containing dI1-couples,

then a segment (B6)S(CA:) occurring in a context is
called a definition.

e For 5 well-balanced segment, we define the unfolding
of 5 in A, [Als, inductively as follows: [A]ly = A,
[Al(ssyst(co.) = [Alx := Bllsy and [Alsy 55 = [[Alszlst-
Note that substitution takes place from right to left.

That is, a definition identifies a variable with a whole term.
The unfolding of the definition, undoes this identification
and the variable will be replaced everywhere it occurs free
by the term it identifies.

DEFINITION 52.

1. A declaration d is a A-item (AX;). In this case, we
define subj(d), pred(d) and d to be x, A and 0 resp.

2. For a definition d = (B6)S(AXz) we define subj(d),
pred(d), d and def(d) to be x, A, s and B respectively.

3. A pseudocontert is a concatenation of declarations and
definitions such that if (AXz) and (BXy) are two dif-
ferent main items of the pseudocontert, then x % y.
We use I', A, TV, T'1,T2,... to range over pseudocon-
texts and d,d1,d2,... to range over declarations and
definitions.

4. For T a pseudocontext we define dom(T') = {z € V |
(AXz) is a main A-item in I for some A},
I-decl = {s | s is a bachelor main \-item of I'},

D-def = {5 |5 = (Ad)51(BA:) is a main segment of I’
where 31 is well-balanced },

Note that dom(T') = {subj(d) | d € ['-decl UT'-def}.

5. For all conterts I' we define the binary relation I'
- =qet - to be the equivalence relation generated by

[] ’LfA:BB thenFl—A:defB

e ifd € T'-def and A,B € T such that B arises
from A by substituting one particular occurrence
of subj(d) in A by def(d), then ' - A =q4e¢ B.

6. For I' a pseudocontert and d € I'-def U I'-decl, I" in-
vites d, notation I' < d, iff

e I'd is a pseudocontext
e I'd - pred(d) : S for some sort S.

e ifd is a definition then I'd F def(d) : pred(d) and
FV(def(d)) C dom(I")

Now we will in the definition below present the rules of Defi-
nition 40 differently. Note that in Definition 53, if one takes
d to be a meta-variable for declarations only, =4 the same
as =p (which is independent of) and the reduction rela-
tion as —g, then one gets the known cube of [2] given in

Definition 40. We invite the reader to check this.
DEFINITION 53 (AXIOMS AND RULES OF THE CUBE).

(aziom) <>k x:0

r<d
(start) I'd F subj(d) : pred(d)
r<d Td-D:E
(weak) TdFD: E
(app) I+ F: (AIL)B 'Fa:A
app I'F (ad)F : Bz := q]
(abs) DAN)FD:B Ik (AIL)B: S
avs TF (AX\)b : (AlL,)B
TFA:B TFB:S T'FB=y B
(conv) THA:B
(form) LraA:S LA\)FB: S if (S1,S2) s a rule

'k (AlL;)B: S,

In order to solve the SR problem for the six remaining sys-
tems of the cube, we extend the A-cube with definitions,
~»g and equivalence classes modulo CCF. Contexts now
consist of declarations (A)\;) as well as definitions. We take
the typing rules F° to be exactly those of - of Definition 53
with the addition of the definition rule:
Ldec C: D
(def rule) W{D]d
With this definition, the problem of subject reduction is
solved, and all the other desirable properties hold too. The
reason that subject reduction holds now whereas it did not
hold in Examples 41 and 42 can be intuitively seen by show-
ing that the counterexample given in Example 41 no longer
holds. Table 4 shows how the reduct of Example 41 can now
be typed.
The following lemma tells us that the use of nested def-
initions such as (Ad)(BJ)(CAz)(DAy) can be replaced by

if d is a definition

Table 4: Definitions solve subject reduction

(xAg)(BAy) ey B2 O

(xAg) (BAy) (BO) (xXa) F° 9" : By = %

(¥A8) (BAy) (B) (¥Xa) F° @ =aer B
() (BAy) (BO) (xXa) F* 3/ :

(xAg) (BAy) (BO) (xAa) (y'0) (aXe) F° @ :

() (BAy) F° (BO)(xAa) (4 0) (aXe) : oz := y][or

using linear definitions such as (BJ)(CA;)(Ad)(DAy) and
that abstractions can be postponed.

LEMMA 54. Let d be a definition.

1. IfTdA F° C =aus D then
I'd(def(d)d)(pred(d)Asw;j(a)) A F* C =qer D.

2. If DdA F° C : D then
I'd(def(d)d)(pred(d)Asuw;ay)A F° C : D.

3. If T(AX,)dA F° C =4¢ D then
Td(AN,)A F° C =aee D if x ¢ FV(d).

4. IfT(AX,)dA ¢ C : D then
Td(AN,)A F° C : D if x ¢ FV(d).

Proor. Note that (A\;) does not need to be bachelor.
1. & 3. are by induction on the generation of =g:. 2. &
4. are by induction on the derivation, using 1. & 3. for
conversion. [

The following three lemmas and corollary are familiar from [2],
but here we take also definitions into account.

LeEMMA 55 (THINNING FOR F°).

1. If 1T F° A =4 B, I'1AT's is a legal context, then
FlAFQ l_c A —def B

2. IfT and A are legal contexts such thatT' C' A and T ¢
A: B, then A+ A: B. (C' is context inclusion with
side effects like a bachelor A-item becoming partnered.)

LEMMA 56

1. If 0%z : A then for some B: (BA\;) €', ' B: S,
P A=4s Band T F A: S for some sort S'.

(GENERATION LEMMA FOR F°).

2. If T +° (AXN;)B : C then for some D and sort S:
D(AXN;)FS B:D,T'F° (AlL,)D : S, ' ° (AIL;) D =gt
C and if (All;)D # C then T +° C : S’ for a sort S'.

3. If T F° (AIL,)B : C then for some sorts Si,S»2: T F°
A:S1,TF B: Sy, (51,52) is a rule, ' F° C =q4e¢ S
and if So ZC then T'+° C : S for some sort S.

4. IfT F° (A8)B : C, (Ad) bachelor in B, then for some
terms D, E, variablex: T A: D, T'+° B : (DIL,)E,
' +° Elx := A] =4t C and if Elx := A] # C then
L' C: S for some sort S.

5. IfT'+F°SA: B, then's+° A: B.

Proor. 1., 2., 3. and 4. follow by a tedious but straight-
forward induction on the derivations (use the thinning lemma).
As to 5., use induction on weight(s). O

(weakening resp. start)

(use the definition in the context)
(conversion)
(
(

definition rule)

LEMMA 57 (SUBSTITUTION LEMMA FOR +°).

1. IfT(AX) AR B:C, T F° D : A and (AX;) bachelor
in D(AXz)A then I'Afz := D] +° Blx := D] : Clx :=
DJ.

2. If T(D&)s(AX)A F° B : C and 5 well-balanced then
I'sA[z := D] +° Bz := D] : C[z := D].

PROOF. Induction on the derivations (straightforward). [

COROLLARY 58 (CORRECTNESS OF TYPES).
IfTH° A: B then B=0O or ' F° B : S for some sort S.

Proor. By induction to the derivation rules. [

Now, firstly we prove SR for F° using —+3 rather than ~3.

THEOREM 59 (SUBJECT REDUCTION FOR F° AND —3).
IfTHF A:B and A —»p A" then T'H° A" : B.

Proor. For T' =4 I' defined in the expected way, we
show by simultaneous induction on the derivation rules that:
1. A:Band I =4 I then I +° A : B and
2.IfT+H A: Band A —»p A" then T A" : B
using Lemmas 56.5 and 57 when reduction is at the root. [

Similarly to Lemma 48, we have by induction on the deriva-
tion rules that:

LeEMMA 60 (CLASSES PRESERVE TYPES). IfI'+° A: B
and A" € [A], T results from ' by substituting some main
items (Cw) by (C'w) where C' € [C], then T' ¢ A : B.

COROLLARY 61 (EQUIVALENT TERMS HAVE SAME TYPES).

1.TFA: B<TF CCF(A) : B.
2. IfTF A:Band A' € [A], B' € [B] then T ¢ A" : B'.
Proor. By Lemma 60, conversion and correctness of types. [

Here is now the proof of SR using ¢ and ~~g, via the SR
of F¢ and —4.

COROLLARY 62 (SUBJECT REDUCTION FOR k¢ AND ~+3).
IfTF A:B and A~»p5 A" then T A" : B.

PRrOOF. We prove similarly to Corollary 50 that: I' °
A:B/A~p AA=TFr A:B. O

LEmMMA 63 (UNICITY OF TYPES FOR F°).
I.TFA:BATF A:B' =T+ B=¢: B

2.TFA:BATH A" :BANA=3 A =T+ B=4s B

Proor. 1. By induction on the structure of A using the
Generation Lemma. 2. By Church-Rosser and Subject Re-
duction using 1. [

Finally, one can establish Strong Normalisation for the A-
cube with definitions and class-reduction by using the proof
of Strong Normalisation of the A-cube extended with defi-
nitions and «<»g as in [3] (which is related to @-reduction)
and mimicking that proof for y-reduction.

THEOREM 64 (STRONG NORMALISATION OF ~g3).
Every legal term is strongly normalising with respect to ~»g.

7. CONCLUSION

In this paper, we attempted to understand the reductional
behaviour of calculations (or programs). We looked at two
calculations and be able to tell whether there is an isomor-
phism between the two corresponding reduction paths. We
provided a notion of reductional equivalence where we de-
fine a classification of terms so that elements that belong
to the same class can be said to have the same reductional
behaviour.

[18] already gave a notion of reductional equivalence called
o-equivalence for which it showed that none of the stan-
dard classification criteria on A-calculus (e.g., length of the
longest reduction) can separate two o-equivalent terms. Our
paper presented a fine grained reduction relation whose con-
gruence is o-equivalence.

Another attractive feature of our work is that we man-
aged to give a clear representation of the canonical forms of
terms given in [18] which clearly show where redexes occur
and where they do not. Table 1 shows that every A-term
can be written in canonical form. Such a canonical form
can be considered as a well-organised variant of the original
term, yet having a similar reductional behaviour. A canoni-
cal form of a term M lists the overall (bachelor) abstractions
of M, followed by a permutable list of redex-heads (which
can also be considered as possible substitutions), followed
by a list of “idle” or bachelor arguments for a single variable
z. The idle arguments can however become active in new
redex-heads after a substitution of some term for z, e.g., by
B-reduction. Furthermore, although canonical forms are not
unique, we can still find for each A-term, the unique class of
its canonical forms which are all equal modulo some simple
permutation.

Finally, we extended the cube of eight type systems with
class reduction and showed that subject reduction fails for
six of the eight extended systems. We then established that
subject reduction can be regained by adding definitions. The
importance of definitions (also known as “let expressions”) is
witnessed by their extensive use in programming languages
and theorem provers. Intuitively, definitions repair the prob-
lem of subject reduction because they save the type infor-
mation that will be lost as a result of reduction.

8. ACKNOWLEDGEMENTS

We are grateful for enlightening discussions and useful
feedback and comments received from Henk Barendregt,
Twan Laan and Joe Wells. We are also grateful for the
useful comments received from the anonymous referees. Ka-
mareddine is grateful to the support received from EPSRC
grants EPSRC GR/L36963 and EPSRC GR/L15685.

9. REFERENCES

[1] H. P. Barendregt. The Lambda Calculus: Its Syntaz
and Semantics. North-Holland, revised edition, 1984.

[2] H.P. Barendregt. A-calculi with types. In
S. Abramsky, D. Gabbay, and T. Maibaum, editors,
Handbook of Logic in Computer Science, volume II,
pages 118-310. Oxford University Press, 1992.

[3] R. Bloo, F. Kamareddine, and R. P. Nederpelt. The
Barendregt Cube with Definitions and Generalised
Reduction. Information and Computation, 126
(2):123-143, 1996.

[4] P. de Groote. The conservation theorem revisited. In
International Conference on Typed Lambda Calculi
and Applications, LNCS 664. Springer-Verlag, 1993.

[6] F. Kamareddine and R. Nederpelt. A useful
A-notation. Theoretical Computer Science, 155:85-109,
1996.

[6] F. Kamareddine and R. P. Nederpelt. Refining
reduction in the A-calculus. Journal of Functional
Programming, 5(4):637-651, 1995.

[7] F. Kamareddine, A. Rios, and J.B. Wells. Calculi of
generalised Sc-reduction and explicit substitution:
Type free and simply typed versions. Journal of
Functional and Logic Programming, 1998.

[8] M. Karr. Delayability in proofs of strong
normalizability in the typed A-calculus. In
Mathematical Foundations of Computer Software,
LNCS, 185. Springer-Verlag, 1985.

[9] A.J. Kfoury, J. Tiuryn, and P. Urzyczyn. An analysis
of ML typability. ACM, 41(2):368-398, 1994.

[10] A.J. Kfoury and J.B. Wells. A direct algorithm for
type inference in the rank-2 fragment of the second
order A-calculus. Proceedings of the 1994 ACM
Conference on LISP and Functional Programming,
1994.

[11] A.J. Kfoury and J.B. Wells. Addendum to new
notions of reduction and non-semantic proofs of
[B-strong normalisation in typed A-calculi. Technical
report, Boston University, 1995.

[12] A.J. Kfoury and J.B. Wells. New notions of reductions
and non-semantic proofs of 3-strong normalisation in
typed A-calculi. LICS, 1995.

[13] Z. Khasidashvili. The longest perpetual reductions in

orthogonal expression reduction systems. 37¢
International Conference on Logical Foundations of
Computer Science, Logic at St Petersburg, 813, 1994.

[14] J. W. Klop. Combinatory Reduction Systems.
Mathematical Center Tracts, 27, 1980. CWI.

[15] J.-J. Lévy. Optimal reductions. In J. Hindley and
J. Seldin, editors, To H.B. Curry: Essays on
combinatory logic, lambda-calculus and formalism,
pages 159-191. Academic Press, 1980.

[16] R. P. Nederpelt, J. H. Geuvers, and R. C. de Vrijer.
Selected papers on Automath. North-Holland,
Amsterdam, 1994.

[17] L. Regnier. Lambda calcul et réseauz. PhD thesis,
University Paris 7, 1992.

[18] L. Regnier. Une équivalence sur les lambda termes.
Theoretical Computer Science, 126:281-292, 1994.

[19] A. Sabry and M. Felleisen. Reasoning about programs
in continuation-passing style. Proceedings of the 1992
ACM Conference on LISP and Functional
Programming, pages 288-298, 1992.

[20] M. H. Sgrensen. Strong normalisation from weak
normalisation in typed A-calculi. Information and
Computation, 133(1), 1997.

[21] D. Vidal. Nouvelles notions de réduction en lambda
calcul. PhD thesis, Université de Nancy 1, 1989.

[22] H. Xi. On weak and strong normalisations. Technical
Report 96-187, Carnegie Mellon University, 1996.

