
De Bruijn’s syntax and reductional equivalence of �-terms

Fairouz Kamareddine
Computing & Electrical Eng.

Heriot-Watt University
Riccarton

Edinburgh EH14 4AS
Scotland

fairouz@cee.hw.ac.uk

Roel Bloo
Mathematics & Computing Sc.

Eindhoven University
P.O.Box 513

5600 MB Eindhoven
The Netherlands

c.j.bloo@tue.nl

Rob Nederpelt
Mathematics & Computing Sc.

Eindhoven University
P.O.Box 513

5600 MB Eindhoven
The Netherlands

r.p.nederpelt@tue.nl

ABSTRACTIn this paper, a notation inuened by de Bruijn's syntax ofthe �-alulus is used to desribe anonial forms of termsand an equivalene relation whih divides terms into lassesaording to their redutional behaviour. We show that thisnotation helps desribe anonial forms more elegantly thanthe lassial notation and we establish the desirable proper-ties of our redution modulo equivalene lasses rather thansingle terms. Finally, we extend the ube onsisting of eighttype systems with lass redution and show that this exten-sion satis�es all the desirable properties of type systems.
SummaryIn �-alulus, a �-redex (�x:A)B is haraterised by themathing of �x with the appliation argument B. We saythat �x and B math or that eah has the other as a partner.In a �-term however, there an our �x's and appliationarguments whih do not have any partners (i.e., are bahe-lor). In terms like ((�x:�y:A)B)C, we see that �y and C arebahelors. However, after a redution mathing �x and B, anew redex based on the then mathing �y and C is reated.This has been noted by [12, 18℄ who provided for eah terma anonial form whih shows whih parts of the term areertainly partnered and whih are inherently bahelor, nowor in the future. This anonial form has the shape:�x1 � � ��xn:(�y1:(�y2:(� � � :(�ym:zA1 � � �Al)Cm) � � � )C2)C1where �xi and Aj are bahelor for 1 � i � n and 1 � j � land eah Ci for 1 � i � m mathes �yi. In addition, [18℄provided the notion of �-equivalene whih identi�es termsonly di�ering by permutations of redexes, and showed thatnone of the standard operational lassi�ation riteria on�-alulus (e.g., length of longest redution) an separatetwo �-equivalent terms. [18℄ onluded by asking if thereexisted a syntax that realises �-equivalene. In this paper,we attempt to answer the question by using the item nota-tion [5℄ inspired by de Bruijn's notation of the �-alulus.

Using item notation (where abstration and appliation arewritten respetively as (�x)A and (BÆ)C with C the fun-tion and B the argument) to represent anonial forms andredutional equivalene, we �nd that:� (�x1) � � � (�xn)(C1Æ)(�y1) � � � (CmÆ)(�ym)(AlÆ) � � � (A1Æ)zbeomes the anonial form is whih is learly dividedinto a sequene of bahelor �-items (�xi) followed bya sequene of partnered pairs (CjÆ)(�yj ) followed bya sequene of bahelor Æ-items (AkÆ) whih is �nallyfollowed by the heart of the term z. This is learerthan the anonial form given in [12, 18℄.� We are also able to de�ne a deidable notion of redu-tional equivalene �equi on terms whih we show to beequivalent to �-equivalene.� Using the result of Regnier in [18℄, we show that twoterms have similar redution paths and redutional be-haviour if they have the same anonial forms up to apermutation of partnered pairs (�yi ; Ci) and (�yj ; Cj)in the anonial form, provided that no bound vari-ables beome free during the permutation.� We proeed beyond the results of Regnier to extend theusual �-redution !� on �-terms to ;� on lasses ofterms modulo redutional equivalene whih is Churh-Rosser, whih ommutes with redutional equivaleneand preserves redutional paths, and where SN;� andSN!� are equivalent.Finally, we extend the Barendregt ube with ;� and showthat this extension satis�es all the properties suh as strongnormalisation and subjet redution (the latter depends onallowing de�nitions in ontexts). As far as we know this isthe �rst aount of generalising redution in the ube usinglasses of terms.
1. INTRODUCTIONThe last two deades have seen an explosion in new no-tions of redutions whih an be summarised by four axioms:(�) ((�x:N)P )Q!� (�x:NQ)P .() (�x:�y:N)P ! �y:(�x:N)P .(g) ((�x:�y:N)P )Q!g (�x:N [y := Q℄)P .(C) ((�x:�y:N)P )Q!C (�y:(�x:N)P )Q.Note that g is a ombination of a �-step with a �-step.C makes sure that �y and Q form a redex even before theredex based on �x and P is ontrated. By ompatibility, implies C . Moreover, ((�x:�y:N)P )Q !� (�x:(�y:N)Q)P



and hene both � and C put �y adjaently next to itsmathing argument. � moves the argument next to its math-ing � whereas C moves the � next to its mathing argument.For a disussion of where these redutions (let's all themauxiliary redutions) have been used see [11, 7℄. We givehere a very brief summary.[17℄ introdues the notion of a premier redex whih is sim-ilar to the redex based on �y and Q in the rule (g) above(whih we all generalised redex). [18℄ uses � and  (andalls the ombination �) to show that the perpetual redu-tion strategy �nds the longest redution path when the termis Strongly Normalizing (SN). [21℄ also introdues redutionssimilar to those of [18℄. Furthermore, [9℄ uses � (and otherredutions) to show that typability in ML is equivalent toayli semi-uni�ation. [19℄ uses a redution whih hassome ommon themes with �. [16℄ and [4℄ use � whereas [12℄uses  to redue the problem of �-strong normalization tothe problem of weak normalization (WN) for related redu-tions. [10℄ uses � and  to redue typability in the rank-2restrition of the 2nd order �-alulus to the problem ofayli semi-uni�ation. [14, 22, 20, 13℄ use related redu-tions to redue SN to WN and [8℄ uses similar notions in SNproofs. [6℄ uses a more extended version of � (alled term-reshu�ing) and of g (alled generalised redution) where Qand N are not only separated by the redex (�x:�)P but bymany redexes (ordinary and generalised).Looking at these attempts, one notes that auxiliary re-dution an help relate �-terms aording to their evalua-tion behaviour. After all, auxiliary redutions turn redexesthat are not immediately visible into learly visible ones:Example 1. Consider A � (��:�y:�f :fy)�x and B �(��:(�y:�f :fy)x)�. Both terms have the term �f :fx as aredut, so A =� B. However, B has two redexes whereas Ahas only one. Here are the redexes of B:� r1 = (��:(�y:�f :fy)x)�. Observe that B r1! (�y:�f :fy)x.� r2 = (�y:�f :fy)x. Observe that B r2! (�� :�f :fx)�.In A, the only obvious redex is: r01 = (��:�y:�f :fy)�. Notethat A r01! (�y:�f :fy)x.Note that r1 in B and r01 in A are both based on the redex(��:�)� and ontrating r1 in B results in the same termas ontrating r01 in A.A loser look at A enables us to see that in A (as in B),�y will get mathed with x resulting in a redex r02 = (�y:�)x.There are di�erenes however between r2 in B and r02 in A.r2 in B is ompletely visible and may be ontrated before r1in B. r02 on the other hand is a future redex in A. In fat,r02 is not a redex of A itself but a redex of a ontratum ofA, namely (�y:�f :fy)x, the result of ontrating the redexr01 in A.We ould guess from A itself the presene of the futureredex. That is, looking at A itself, we see that �� is mathedwith � and �y is mathed with x. This an be made visiblevia rules like (�) above. Note that: A � (��:�y:�f :fy)�x!� (��:(�y:�f :fy)x)� � B.So, extending the �-alulus with auxiliary redutions maylead to a better understanding of the redutional behaviourof programs [15℄. Why is this important? Beause the �-alulus plays a major role in the semantis of programminglanguages through its mehanisms for modeling evaluation

strategies (e.g., all by name, all by value, et.). Due tothis basi role, the �-alulus must be informative not onlyof the �nal value of the program (the normal form of the�-term representing the program), but also of the onseu-tive values before the �nal value is reahed. In partiular,if we have two programs P1 and P2 that return the same�nal value, we want to know if these programs have equiva-lent evaluation paths in the sense that eah evaluation pathfrom P1 to the �nal value (going through all the intermedi-ate programs), orresponds (in a strong evaluation sense) toan evaluation path from P2 to the �nal value, and vie versa.This will mean that P1 and P2 are equivalent programs eventhough they are written di�erently. Eah intermediate valuea1 along the evaluation path from one of these programs tothe �nal value orresponds to a unique intermediate valuea2 along the evaluation path of the other program to the�nal value, and the number of evaluation steps to reah a1from the �rst program is equal to the number of evaluationsteps to reah a2 from the seond program. Of ourse thisdoes not onstitute a formal de�nition of what we all re-dutional equivalene. Redutional equivalene is diÆult tode�ne and is also undeidable.In order to disuss redutional equivalene between terms,redexes will be extended (f. De�nition 25) so that a poten-tial future redex like (�y:�)x in A of Example 1 will betreated as a �rst lass redex and will possibly be ontratedin A even before the originator (��:�y:�f :fy)� has beenontrated. Hene, with our extended notion of redexes andredution we get in A another redex:r02 = (�y:�f :fy)x, whih when ontrated in A results in(��:�f :fx)�.Note that r02 is �y mathed with x (exatly as r2 in B). Notemoreover that ontrating r02 in A gives the same result asontrating r2 in B.With this notion of extended redex, we observe that thereis a bijetive orrespondene between the (extended) redexesof A and B of Example 1. That is, r1 orresponds to r01 andr2 orresponds to r02. Moreover, if one redex is ontratedin A, the redut is syntatially equal to the redut whihresults from ontrating the orresponding redex in B andvie versa. That is, r1 and r01 yield the same values; similarlyr2 and r02 yield the same values. This is seen as follows:Example 2. The redution paths from A and B of Ex-ample 1 are as follows:A-Path1: (��:�y:�f :fy)�x!r01 (�y:�f :fy)x! �f :fxA-Path2: (��:�y:�f :fy)�x!r02 (��:�f :fx)�! �f :fxB-Path1: (��:(�y:�f :fy)x)�!r1 (�y:�f :fy)x! �f :fxB-Path2: (��:(�y:�f :fy)x)�!r2 (��:�f :fx)�! �f :fxIt is lear that A and B have the same number of possiblepaths before reahing the normal form and that there is abijetive orrespondene between the paths A-Path1 and B-Path1, and between A-Path2 and B-Path2.Suh equivalenes have been noted in history and in par-tiular [18℄ gives a nie lassi�ation of the anonial form ofterms and provides a notion of �-equivalene whih identi�esterms only di�ering by permutations of redexes, and showsthat none of the standard operational lassi�ation riteriaon �-alulus (e.g., length of longest redution) an separatetwo �-equivalent terms. [18℄ onluded by asking if thereexisted a syntax that realises �-equivalene. In this paper,we attempt to answer the question by using the item nota-tion [5℄ inspired by de Bruijn's notation of the �-alulus.



Item notation enables us to detet more redexes in a termthan are immediately visible in the known \lassial nota-tion" �-alulus.In Setion 2 we introdue what is needed of the item no-tation and other formal mahinery in order to syntatiallydesribe the anonial forms of terms.In Setion 3 we explain how one an ahieve the anonialforms of terms so that the redutional behaviour is immedi-ately visible.In Setion 4 we give our deidable notion of redutionalequivalene �equi whih we show that it oinides with the�-equivalene of [18℄.In Setion 5 we extend the usual �-redution !� on �-terms to ;� on lasses of terms modulo redutional equiv-alene. We establish that ;� is Churh-Rosser; that ifA!� B then A;� B; and that if A;� B is based on a re-dex (�x:�)�, and if A0 �equi A, then there exists B0 �equi Bsuh that A0 ;� B0 and is based on a orresponding redex(�x:�)�. In other words, A and A0 have isomorphi re-dutional paths. We also show that SN;� and SN!� areequivalent and that all redutionally equivalent terms havethe same normalisation behaviour.In Setion 6 we extend the ube with lass redution andestablish the desirable properties.
2. SOME FORMAL MACHINERYThe lassial notation annot extend the notion of redexesor enable reshu�ing in an easy way. Item notation howeveran ([5℄ disusses various advantages of this notation). Initem notation, one writes the argument before the funtionso ab beomes (bÆ)a. Similarly, in item notation, one writes(�x)a instead of �x:a. This way, a term beomes a sequeneof �-items like (�x) and Æ-items like (bÆ) followed by a vari-able. Moreover, a �-redex beomes in item notation a Æ�-pair: namely, a Æ-item adjaent to a �-item. We leave itto the reader to hek this. Let V be an in�nite olletionof variables over whih x; y; z; : : : range. In item notation,terms of the �-alulus are: T ::= V j(T Æ)T j (�V )T . Wetake A;B;C; : : : to range over T . We all (AÆ) a Æ-item, Athe body of the item and (AÆ)B means apply B to A (notethe order). (�x) is alled a �-item. A redex starts with aÆ-item (i.e., (AÆ)) next to a �-item (i.e., (�x)).Here we repeat rules (�), (), (g), (C) but in item nota-tion:(�) (QÆ)(PÆ)(�x)N !� (PÆ)(�x)(QÆ)N .() (PÆ)(�x)(�y)N ! (�y)(PÆ)(�x)N .(g) (QÆ)(PÆ)(�x)(�y)N !g (PÆ)(�x)fN [y := Q℄g.(C) (QÆ)(PÆ)(�x)(�y)N !C (QÆ)(�y)(PÆ)(�x)N .Note furthermore that the rules (�), (), (g), (C) arenot problemati beause we use the Barendregt Convention(see below) whih means that no free variable will beomeunneessarily bound after reshu�ing due to the fat thatnames of bound and free variables are distint.In item notation, eah term A is the onatenation ofzero or more items and a variable: A � s1s2 � � � snx whereeah si is either a �-item or a Æ-item, and x 2 V . Theseitems s1; s2; : : : ; sn are alled the main items of A, x isalled the heart of A, notation ~(A).1 We use s; s1; si; : : :1Note that the term head variable used in [1℄ is a speialase of our notion of heart. The head variable of a term inhead normal form is the heart of the term. It is not the asehowever that the heart of a term is always a head variable.

to range over items. A onatenation of zero or more itemss1s2 � � � sn is alled a segment. We use s; s1; si; : : : as meta-variables for segments. We write ; for the empty segment.The items s1; s2; : : : ; sn (if any) are alled the main itemsof the segment. A Æ�-pair is a Æ-item immediately followedby a �-item.The weight of a segment s, weight(s), is the number ofmain items that ompose the segment. Moreover, we de�neweight(sx) = weight(s) for x 2 V .In redution, themathing of the Æ and the � in question isthe important thing. Well-balaned segments (w-b) areonstruted from mathing Æ and �-items. W-b segmentsare given indutively by: (i) ; is w-b, (ii) if s is w-b then(AÆ)s(�x) is w-b, (iii) if s1, s2, : : : sn are w-b, then theonatenation s1 s2; � � � sn is w-b. In Figures 1 and 2, allsegments that our under a hat are w-b.Bound and free variables and substitution are de�ned asusual. We write BV (A) and FV (A) to represent the boundand free variables of A respetively. Note that in item nota-tion, the sope of the x in a �-item (�x) is anything to theright of it. We write A[x := B℄ to denote the term whereall the free ourrenes of x in A have been replaed by B.We take terms to be equivalent up to variable renaming anduse � to denote syntatial equality of terms. We assumethe usual Barendregt variable onvention BC (whih saysthat bound variables are always hosen distint from freevariables) and the usual de�nition of ompatibility (f. [2℄).We say that A is strongly normalizing with respet to a re-dution relation ! (written SN!(A)) i� every!-redutionpath starting at A terminates.
3. TOWARDS CANONICAL FORMS

3.1 Making redexes visible via�Transformations like (�) are rather powerful in that theyan group together terms with equal redutional behavior.Let us give here this example in lassial notation:Example 3. Consider E1; E2; E3; E4 as follows:E1 � (((�f :�x:�y:fxy)+)m)n;E2 � ((�f :(�x:�y:fxy)m)+)n;E3 � (�f :((�x:�y:fxy)m)n)+;E4 � (�f :(�x:(�y:fxy)n)m) + :Note that E1 =� E2 =� E3 =� E4. Moreover, the visibleredexes are as follows:In E1: (�f :�x:�y:fxy)+.In E2: (�f :(�x:�y:fxy)m)+ and (�x:�y:fxy)m.In E3: (�f :((�x:�y:fxy)m)n)+ and (�x:�y:fxy)m.In E4:(�f :(�x:(�y:fxy)n)m)+, (�x:(�y:fxy)n)m and (�y:fxy)n.Furthermore, one an see potential future redexes as follows:In E1: �x:� will eventually be applied to m and �y:� willbe eventually be applied to n.In E2: �y:� will eventually be applied to n.In E3: �y:� will eventually be applied to n.Note that E1 !� E2 !� E3 !� E4 and that by �-reduingE1 to E2 (resp. E3 to E4), an extra redex beomes visible.In E4 all redexes are visible and E4 is in �-normal form.Applying the item notation to Example 3 we get:Example 4. E1 of Example 3 reads in item notation:(nÆ)(mÆ)(+Æ)(�f)(�x)(�y)(yÆ)(xÆ)f . Here, the (lassial)



-E1: (nÆ)(mÆ)(+Æ)(�f ) (�x) (�y)(yÆ)(xÆ)f-E2: (nÆ) (+Æ)(�f ) (mÆ)(�x) (�y)(yÆ)(xÆ)f-E3: (nÆ)(+Æ)(�f ) (mÆ)(�x) (�y)(yÆ)(xÆ)fE4: (nÆ)(+Æ)(�f ) (mÆ)(�x) (�y)(yÆ)(xÆ)fFigure 1: �-redution on E1: E1 !� E2 !� E3 !� E4�E1: (nÆ) (mÆ) (+Æ)(�f) (�x) (�y)(yÆ)(xÆ)f�E02: (nÆ) (mÆ) (+Æ)(�f)(�x) (�y)(yÆ)(xÆ)f�E03: (nÆ) (mÆ) (+Æ)(�f)(�x) (�y) (yÆ)(xÆ)fE04: (nÆ) (mÆ) (+Æ)(�f)(�x)(�y) (yÆ)(xÆ)fFigure 2: -redution on E1: E1 ! E02 ! E03 ! E04redex orresponds to a `Æ�-pair', vis. (+Æ)(�f), followed bythe body of the abstration, as follows:(�f :(�x:�y:fxy)m)+ beomes (+Æ)(�f)(mÆ)(�x)(�y)(yÆ)(xÆ)f .Note that the Æ-item (+Æ) and the �-item (�f ) are now ad-jaent, whih is harateristi for the presene of a lassialredex in item notation. (Cf. Figure 1). The seond and thirdredexes of E1 are obtained by mathing Æ and �-items whihare not adjaent:� (�y:fxy)n is visible as it orresponds to the math-ing (nÆ)(�y) where (nÆ) and (�y) are separated by thesegment (mÆ)(+Æ)(�f )(�x) whih has the braketingstruture [ [ ℄ ℄.� (�x:�y:fxy)m is visible as it orresponds to the math-ing (mÆ)(�x) where (mÆ) and (�x) are separated by thesegment (+Æ)(�f ).We will use obvious notions throughout like partner,math,bahelor, et., as follows: in the term E1 of Figure 1, (+Æ)and (�f) math or are partnered. So are the items (nÆ)and (�y). (yÆ) and (xÆ) on the other hand are bahelor.The adjaent item pair (+Æ)(�f ) is alled a Æ�-pair and thenon-adjaent partnered items (mÆ)(�x) and (nÆ)(�y) formÆ�-ouples.�-redution amounts to moving Æ-items, from left to right,in the diretion of their mathing �-items, until they form apair. This is illustrated in Figure 1.As !� is Churh Rosser (CR) and Strongly Normalizing(SN), then the �-normal form �(M) of a term M is unique.

This paper will establish a method that shows that termslike E1; E2; E3 and E4 in Example 3 are redutionally equiv-alent. Obviously, we will use �-redution for this purpose.Any two terms A and B suh that A =� B will satisfyA �equi B.
3.2 Making redexes visible viaLooking bak at examples 3 and 4, it is possible to use instead of � in order to make more redexes visible. Thisis illustrated in Figure 2. -redution amounts to moving�-items from right to left, in the diretion of their mathingÆ-items until they form a pair. Also, similarly to !�, !is Churh Rosser and Strongly Normalizing, and hene, the-normal form (M) of a term M is unique.However, using � alone or  alone will not be omprehen-sive enough to apture as many ases as possible of redu-tional equivalene. We obviously want not only E1, E2, E3and E4 of Example 3 to be redutionally equivalent, butalso E1, E02, E03 and E04. But, how do we relate Ei to E0i for2 � i � 4? This is simple, ombine the relations � and  andaim to �nd a anonial form of terms that helps establishredutional equivalene.
3.3 Reaching canonical forms ofM via CCF(M)So far, we deided that for any termA, all elementsB suhthat A =� B or A = B are redutionally equivalent to A.But we want also that if B =� A and B0 = A then B andB0 are redutionally equivalent. It is obvious that B and B0will have the same redutional behaviour (persuade yourselfof this in the ase of E4 and E04). In order to ahieve this,and to obtain a more omprehensive notion of redutionalequivalene, we ombine � and .Note that �((E1)) = E04 and (�(E1)) = E4 and thatE4 6� E04. However, looking at E4 and E04, we see thatthey have the following shape whih we all anonial form:(�x1) : : : (�xn)(A1Æ)(�y1) : : : (AmÆ)(�ym)(B1Æ) : : : (BpÆ)xwhere (�xi) and (BjÆ) are bahelor for 1 � i � n and 1 �j � p (see Table 1).The shape of anonial forms will allow us to introduea redution relation !p on them whih will help us showthat terms like E4 and E04 are redutionally equivalent. Infat, note that E4 and E04 are equivalent up to the per-mutation of their Æ�-pairs. We follow this observation tode�ne the redution relation !p on anonial forms C1 andC2 as follows: C1 !p C2 i� C1 � C2 exept for a segment(AÆ)(�x)(BÆ)(�y) in C1 whih appears as (BÆ)(�y)(AÆ)(�x)in C2, on the ondition that x 62 FV (B).2 We de�ne =p asthe equivalene relation of!p. We then de�ne CCF(M) thelass of anonial forms of M as fM 0jM 0 =p �((M))g. Wewill show that CCF(M) is unique and is equal to fM 0jM 0 =p(�(M))g.With this we give for eah term M the lass of anonialforms of M modulo =p, CCF(M) and satisfying Table 1.This is indeed elegant.Now, two terms are redutionally equivalent if they havethe same anonial form modulo =p. We de�ne [M ℄, thelass of terms that are redutionally equivalent to M , tobe fM 0 j �((M)) =p �((M 0))g. All elements of [M ℄ are�-equal and have in some sense the same redexes.2The ondition that y =2 FV (A) is overed by the Baren-dregt Convention (see Setion 2).



Table 1: The Canonial Form of termsbahelor �-items Æ�-pairs, Ai in anon. form bahelor Æ-items, Bi in anon. form end var(�x1) : : : (�xn) (A1Æ)(�y1) : : : (AmÆ)(�ym) (B1Æ) : : : (BpÆ) xExample 5. Note that in Figures 1 and 2,(E1) = �((E1)) � E04 and �(E1) = (�(E1)) � E4. Notealso that E4 =p E04 and all Ei, for 1 � i � 4 and E0j, for2 � j � 4 belong to [E1℄. All Ei and E0j where 1 � i � 4 and2 � j � 4 are redutionally equivalent and have the sameanonial form (+Æ)(�f )(mÆ)(�x)(nÆ)(�y)(yÆ)(xÆ)f modulo=p. That is: (mÆ)(�x)(+Æ)(�f)(nÆ)(�y)(yÆ)(xÆ)f and(mÆ)(�x)(nÆ)(�y)(+Æ)(�f)(yÆ)(xÆ)f ,et., are all anonial forms. Note that the variable ondi-tion for permutations of pairs holds beause + ontains nofree variables.In this paper, we de�neA �equi B i�A 2 [B℄ (i.e., �((A)) =p�((B))). It makes sense to use �equi to represent a lass ofredutional equivalene on terms. We will show that �equi isdeidable. We will extend the notion of �-redution to applyto lasses rather than terms. As lasses apture existing ex-tensions of redutions suh as (�), (g), (), et., �-redutionover lasses will apture all these notions. We say A lass-redues to A0 and we write A ;� A0 i� 9B 2 [A℄9B0 2 [A0℄suh that B !� B0. We show (f. Lemma 27) that !� isaptured by ;� .
4. REDUCTIONAL EQUIVALENCEWe start by de�ning the anonial forms (Table 1).Definition 6. We say that a term is in anonial formif it has the form:(�x1) : : : (�xn)(C1Æ)(�y1) : : : (CmÆ)(�ym)(A1Æ) : : : (AlÆ)x.Note that here, (�xi) and (AjÆ) are bahelor for 1 � i � nand 1 � j � l.Remark 7. Note that anonial forms orrespond in las-sial notation to the following:�x1 : : : �xn :(�y1 :(�y2 : : : (�ym :xAl : : : A1)Cm) : : : )C2)C1where again it an be seen that �xi and Aj are bahelor for1 � i � n and 1 � j � l. These are exatly the anonialforms given in [18℄ and represented in [18℄ by Figure 3 be-low. Note that our item notation as is seen in De�nition 6permits a more elegant representation than the one given inlassial notation in Figure 3.
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We de�ne !!p and =p as the reexive, transitive respe-tively equivalene losures of !p.We de�ne !� to be !� [ ! and !�p to be !� [ ![ !p. !!� , !!�p, =� and =�p are de�ned similarly to!!p and =p.Intuitively,!p transposes two adjaent Æ�-pairs in a term ifthe variable bindings allow this. There is a nie orrespon-dene between !p, !� and ! .Lemma 9. Let A and B be two anonial forms. If A!pB then 9C[C !� A ^ C ! B℄.Proof. Indution on the struture of A. We take the aseA� (A1Æ)(�y1)(A2Æ)(�y2)A3 andB � (A2Æ)(�y2)(A1Æ)(�y1)A3.In this ase, take C � (A2Æ)(A1Æ)(�y1)(�y2)A3.Proposition 10. !� and ! are SN, CR and �=�.Proof. SN is a simple ombinatorial exerise. For CR wenote that !� as well as ! alone are orthogonal. !��=�and !�=� are easy.Corollary 11. For eah term M , �(M), the �-normalform of M and (M), the -normal form of M are unique.We take the �-normal form of A to mean �((A)) whih isunique. Similarly, we take the �-normal form of A to mean(�(A)) whih is also unique. Note that it is not neessarilythe ase that �((A)) = (�(A)) as Example 5 shows. How-ever, we will show in Lemma 17 that �((A)) =p (�(A)).The following two lemmas enable us to syntatially de-sribe �- and -normal forms.Lemma 12. Every term has one of the three forms:(i) (A1Æ) � � � (AnÆ)x, where x 2 V and n � 0,(ii) (�x)A, and(iii) (A1Æ) � � � (AnÆ)(BÆ)(�x)C, where n � 0.Proof. A term has either zero main �-items and ase(i) applies, or at least one of them. In the latter ase: the�rst main �-item an our in the �rst plae in the sequeneof all main items (ase (ii)) or not in the �rst plae (ase(iii)).Lemma 13. Every term has one of the four forms:(i) s(�x)A where s is w-b,(ii) (AÆ)B, where B has no bahelor main �-items,(iii) (AÆ)s(�x)B where s is w-b and B has no bahelor main�-items, and(iv) x.Proof. A term has at least one bahelor main �-item(ase (i)), or none at all. In the last ase, the term maystart with a bahelor Æ-item (ase (ii)), a partnered Æ-item(ase (iii)) or is only a variable (ase (iv)).



Now, we an syntatially haraterise �- and -normal formsvia the following two lemmas whose proof is by indution onthe de�nition of terms as given in Lemmas 12 and 13 resp.:Lemma 14. The �-normal form �(M) of a term M is:�((A1Æ) � � � (AnÆ)x) =df (�(A1)Æ) � � � (�(An)Æ)xif x 2 V and n � 0�((�x)A) =df (�x)�(A)�((A1Æ) � � � (AnÆ)(BÆ)(�x)C) =df(�(B)Æ)(�x)�((A1Æ) � � � (AnÆ)C)Lemma 15. The -normal form (M) of a term M is:(s(�x)A) =df (�x)(sA) if s is w-b;((AÆ)B) =df ((A)Æ)(B)if B has no bahelor main �-items;((AÆ)s(�x)B) =df ((A)Æ)(�x)(sB); where s is w-band B has no bahelor main �-items(x) =df xExample 16.If we take the term A to be:(�q) �(jÆ) �(�p) (�x)(wÆ) +(xÆ) �(yÆ) ( ��v) �(vÆ) 00(xÆ) 00(�w) �(�t) +(�s) (sÆ)tthen �(A) and (A) will be given respetively by:(�q) �(jÆ) �(�p) (�x) �(yÆ) ( ��v) 00(xÆ) 00(�w) �(vÆ) �(�t) +(xÆ) +(�s) (wÆ)(sÆ)tand(�q)(�x) �(jÆ) �(�p) (wÆ) +(xÆ) +(�s) �(yÆ) ( ��v) �(vÆ) �(�t) 00(xÆ) 00(�w) (sÆ)tThe following lemma shows that �-, -, and �-normalforms satisfy Table 2. In partiular, all �-normal forms arein anonial form. It is interesting to note how item nota-tion enables the lear lassi�ation of these various normalforms. Compare with [12, 18℄ where the lassial syntaxmakes these normal forms umbersome to desribe.Lemma 17. For a term A, we have:1. �(A) � s1 s2~(A), where s2 onsists of the �-normalforms of all bahelor main Æ-items of A and s1 is a se-quene of �-normal forms of main Æ�-pairs and bah-elor main �-items.2. (A) � s0 s1~(A) where s0 onsists of all bahelormain �-items of A and s1 is a sequene of -normalforms of main Æ�-pairs and bahelor main Æ-items in-normal form.3. �((A)) � s0 s1 s2~(A), where s0 onsists of all bah-elor main �-items of A and s1 is a sequene of �-normal forms of main Æ�-pairs and s2 onsists of the�-normal forms of all bahelor main Æ-items of A.4. (�(A)) has the same struture as �((A)) in item 3,exept that everywhere �-normal forms should hangeto �-normal forms5. �((A)) and (�(A)) are both in anonial form andwe have that �((A)) =p (�(A)).Proof. 1), 2) 3) and 4) are by indution on weight(A),distinguishing ases aording to Lemmas 12 and 13 usingLemmas 14 and 15. We only prove 1).� Case A � (�x)C, use IH on C.

� Case A � (B1Æ) � � � (BnÆ)x, x 2 V , then s1 is empty.� A � (B1Æ) � � � (BnÆ)(CÆ)(�x)E. Then �(A) �(�(C)Æ)(�x)�((B1Æ) � � � (BnÆ)E). By the indution hy-pothesis �((B1Æ) � � � (BnÆ)E) is of the form s01 s2~(E)� s01 s2~(A). Now take s1 � (�(C)Æ)(�x)s01.For 5) use 1) : : : 4).Reall that both E4 and E04 of Example 1 are in anonialform. They both have the same anonial form as E1. Re-all also that �((E1)) � E04, that (�(E1)) � E4 and thatby Lemma 17.4, E4 =p E04. We group all anonial formsrelated by =p into one lass:Definition 18. We de�ne the lass of anonial forms ofM , CCF(M) as fM 0 in anonial form jM 0 =p �((M))g.Note that by Lemma 17,CCF(M) = fM 0 in anonial form jM 0 =p (�(M))g.For example, CCF(E1) = fE4; E04g.Now we are ready to de�ne redutional equivalene:Definition 19. For a term A, we de�ne:� [A℄, the lass of terms that are redutionally equivalentto A, by: fB j �((A)) =p �((B))g.� We say that B is redutionally equivalent to A, andwrite B �equi A, i� B 2 [A℄.The following lemma says that redutional-equivalene on-tains !� and ! .Lemma 20. !���equi and !��equi. Moreover, theseinlusions are strit.Proof. If A!� B or A! B then �((A)) =p �((B)).Example 5 gives terms E4 and E04 whih are �equi but whihare not related by !� or ! .Remark 21. Note that, as both !� and ! are SN, wean by applying !� and ! to any term A, reah a term A0whih is free of any �- and -redexes (it is easy to show thatthe ombination of �- and -redution is SN). The resultingterm A0 however depends on the order of applying � and .It is the ase nonetheless, by Lemma 20 that all terms A0,whih are obtained from A via arbitrary � and  redutions,are redutionally equivalent.The following proposition shows that �equi is deidableand that any redutionally equivalent terms are �-equal.Proposition 22. �equi is well-de�ned, deidable and isan equivalene relation. Moreover, = ;=�;=p��equi�=�,and these inlusions are strit.Proof. Well-de�nedness and equivalene relation are easy.Similarly, deidability is easy as � and  are SN and =p isdeidable. For the �rst �, note Lemmas 9 and 20. Theseond � follows from Proposition 10.We will now show the equivalene between the �-equivaleneof [18℄ and �equi. First, we give the de�nition of [18℄ of �-equivalene:Definition 23. [18℄ de�ned �-redution to be the small-est ompatible relation ontaining:



Table 2: �-, - and �-normal forms�-nf: Æ�-pairs in �-nf and bahelor �-items, bahelor Æ-items in �-nf end var(A1Æ)(�x)(�y)(�z)(A2Æ)(�p) : : : (B1Æ)(B2Æ) : : : x-nf: bahelor �-items Æ�-pairs and bahelor Æ-items in -nf end var(�x1)(�x2) : : : (B1Æ)(A1Æ)(�x)(B2Æ) : : : x�-nf: bahelor �-items Æ�-pairs in �-nf bahelor Æ-items in �-nf end var(�x1)(�x2) : : : (A1Æ)(�y1)(A2Æ)(�y2) : : : (AmÆ)(�ym) (B1Æ)(B2Æ) : : : x� (�) ((�x:N)P )Q!� (�x:NQ)P if x 62 Q� () (�x:�y:N)P ! �y:(�x:N)P if y 62 PWe say that A and B are �-equivalent if A =� B where =�is the equivalene relation assoiated to !�.The following lemma is needed to establish that �equi and=� are equivalent.Lemma 24. A �equi B i� A =�p B i� A =� B.Proof. =)) Note that�equi�=�p and that by Lemma 9,=�p�=� . (=) By Lemma 20, we have =���equi and so,also =�p��equiThis means that, sine �-equivalene is the same as =� , weget that �-equivalene is the same as �equi. Hene, we haveprovided a �ne grained notion of �-equivalene.
5. CLASS REDUCTIONIn this setion, we introdue lass-redution ;� , showthat it is Churh-Rosser; that if A !� B then A ;� B;and if A;� B is based on a redex (�Æ)(�x) then for everyA0 �equi A, there exists B0 �equi B suh that A0 ;� B0and this latter redution is also based on a orrespondingredex (�Æ)(�x). In other words, A and A0 have isomorphiredution paths. We also show that SN;� and SN!� areequivalent and that all redutionally equivalent terms havethe same normalisation behaviour.Definition 25.� One-step lass-redution ;� is the least ompatible re-lation generated by:A;� B i� 9A0 2 [A℄9B0 2 [B℄ suh that A0 !� B0Many-step lass-redution;;� is the reexive and tran-sitive losure of ;� and �� is the least equivalenerelation generated by ;;� .� An extended redex starts with the Æ-item of a Æ�-ouple(i.e. is of the form (CÆ)s(�x)A where s is well-balanedand non-empty).Example 26. Let A � (zÆ)(wÆ)(�x)(�y)y. Then[A℄ = fA; (wÆ)(�x)(zÆ)(�y)y; (zÆ)(�y)(wÆ)(�x)yg.Moreover, A;� (wÆ)(�x)z and A;� (zÆ)(�y)y.The following lemma shows that ;� aptures lassial �-redution.Lemma 27. !� �;�.Proof. It suÆes to show (AÆ)s(�x)C ;� sC[x := A℄.We know that (AÆ)s(�x)C 2 [s(AÆ)(�x)C℄, so by s(AÆ)(�x)C!� sC[x := A℄ we have (AÆ)s(�x)C ;� sC[x := A℄. It iseasy to show that these inlusions are strit. For example,if A1 � (AÆ)(BÆ)(�x)(CÆ)(DÆ)(�y)(�z)(�t)E and A2 �(CÆ)(BÆ)(�x)(DÆ)(�y)(�z)(E[t := A℄) (whih have respe-tively the braketing strutures [ [ ℄ [ [ ℄ ℄ ℄ and [ [ ℄ [ ℄ ℄), thenA1 ;� A2 but A1 6!� A2.

Corollary 28. !!� �;;� .Remark 29. It is not in general true that A ;;� B )9A0 2 [A℄9B0 2 [B℄ suh that A0 !!� B0. This an be seenby the following ounterexample:Let A � ((�u)(�v)vÆ)(�x)(wÆ)(wÆ)x and B � (wÆ)(�u)w.Then A;� (wÆ)(wÆ)(�u)(�v)v ;� B.But [A℄ has three elements: A, (wÆ)((�u)(�v)vÆ)(�x)(wÆ)xand (wÆ)(wÆ)((�u)(�v)vÆ)(�x)x.Moreover, [B℄ = fBg and if A0 2 [A℄ then the only !�-redut of A0 is (wÆ)(wÆ)(�u)(�v)v, whih 6!�-redue to B.The next lemma helps prove that ;� is Churh-Rosser:Lemma 30. If A;� B then A =� B.Proof. Say A0 2 [A℄, B0 2 [B℄, A0 !� B0. Now, byLemma 17 and Proposition 22, A =� �((A)) =� �((A0)) =�A0 =� B0 =� �((B0)) =� �((B)) =� B.Corollary 31.1. If A;;� B then A =� B. 2. A �� B i� A =� B.Theorem 32 (Churh Rosser theorem for ;;�).If A ;;� B and A ;;� C, then there exists D suh thatB ;;� D and C ;;� D.Proof. As A;;� B and A;;� C then by Corollary 31,A =� B and A =� C. Hene, B =� C and by CR for !!�,there exists D suh that B !!� D and C !!� D. But,M !!� N implies M ;;� N . Hene we are done.Now we are ready to establish the isomorphism of redu-tion paths (via ;�) of two redutionally equivalent terms.The following lemma shows that redutional equivalenepreserves the generalised redution ;� .Lemma 33. If A ;� B then for all A0 �equi A, for allB0 �equi B, A0 ;� B0.Proof. As A;� B then 9A1 2 [A℄9B1 2 [B℄ suh thatA1 !� B1. Let A0 �equi A and B0 �equi B. Then A0; B0 2[A℄; [B℄ respetively. Hene A1 2 [A0℄, B1 2 [B0℄, A1 !� B1.So A0 ;� B0.Corollary 34. A;� B i� �((A));� �((B)).The following remark points out that if we want to preserveredution paths, we need to work with the redution ;� .Remark 35. [3, 6℄ de�ned ,!� as the least ompatiblerelation generated by (B1Æ)s(�x)B2 ,!� s(B2[x := B1℄) for swell-balaned, that is, ,!�-redution ontrats an (extended)redex. ,!,!� is the reexive and transitive losure of ,!�.Note that A ,!� B 6) �((A)) ,!,!� �((B)) nor do wehave A !� B ) �((A)) !!� �((B)). E.g., take A �((�u)(�v)vÆ)(�x)(yÆ)(yÆ)x. It is obvious that A !� B �(yÆ)(yÆ)(�u)(�v)v (hene A ,!� B) yet �((A)) � A 6,!,!�nor 6!!� �((B)) � (yÆ)(�u)(yÆ)(�v)v.



Finally, here is the theorem that establishes the isomorphismof redution paths of two redutionally equivalent terms. Wewrite A!(EÆ)(�x)� B for the �-redution based on a �-redexstarting with (EÆ)(�x) in A. We write A ;(EÆ)(�x)� B for9A0 2 [A℄, 9B0 2 [B℄, 9E0 2 [E℄ suh that A0 !(E0Æ)(�x)� B0.Theorem 36. If A �equi C and A ;(EÆ)(�x)� B thenthere exists a D and an E0 suh that B �equi D;E0 �equiE; and C !(E0Æ)(�x)� D.In other words, the following diagram ommutes:CA �equiDB(E0Æ)(�x) ;�(EÆ)(�x) ;��equiProof. Note that A �equi C and A ;� B implies byLemma 33 that for all D �equi B, C ;� D. What wewant is to �nd a D �equi B and an E0 �equi E suh thatC ;(E0Æ)(�x)� D.As A ;(EÆ)(�x)� B then 9A0 2 [A℄, 9B0 2 [B℄, 9E00 2 [E℄suh that A0 !(E00Æ)(�x)� B0. Now C ;(E00Æ)(�x)� B0 due tothe fats that A0 !(E00Æ)(�x)� B0, A0 �equi C, B0 �equi B0 andE00 �equi E00. Hene, we have found a D � B0 and E0 � E00suh that B �equi D, E0 �equi E and C ;(E0Æ)(�x)� D andwe are done.The following two lemmas show that redutional equiv-alene preserves both ;�-strong normalization and !�-strong normalization:Lemma 37. If A 2 SN!� and A0 2 [A℄ then A0 2 SN!� .Proof. If A0 2 [A℄ thenA0 �equi A. Hene, by Lemma 24,A0 =� A. Now, we use a result of [18℄ whih says that ifA =� A0 then the length of the longest redution sequenestarting from A is equal to the length of the longest redu-tion sequene starting from A0.Lemma 38. If A 2 SN;� and A0 2 [A℄ then A0 2 SN;� .Proof. 8B;A0 ;� B implies A ;� B by Lemma 33.Hene, A0 is in SN;� .Finally, we show that ;�-strong normalization and !�-strong normalization are equivalent:Lemma 39. A 2 SN;� i� A 2 SN!� .Proof. As !��;� , =) is immediate. (= is by in-dution on M(A) where M(A) = maxfmaxred�(A0) j A0 2[A℄g; maxred�(A0) is the maximal length of !�-redutionpaths starting from A0. Note that M(A) is well-de�ned ifA 2 SN!� by Lemma 37.Suppose A ;� A0 and A 2 SN!� . It is suÆient toprove that A0 2 SN;� . Take A1 2 [A℄ and A01 2 [A0℄ suhthat A1 !� A01. Then also A0 2 [A01℄, so by Lemma 38it is suÆient to prove that A01 2 SN;� . By Lemma 37,A1 2 SN!� , and sine A1 !� A01 we have A01 2 SN!� .Then also M(A01) < M(A1) = M(A), so by the indutionhypothesis: A01 2 SN;� .

6. THE CUBE WITH CLASS REDUCTIONOur study of lass redution has been disussed up to nowfor the type free �-alulus. But, for suh redution to beuseful in pratie, we need to study it within type theory.Alas, when attempting to build lass redution on the sys-tems of the Barendregt ube of [2℄, we �nd that the subjetredution property whih states that if A;� B then B hasthe same type as A, no longer holds for six of the systems ofthe ube, although it holds for the systems �! and �!. Thisproblem however an be solved by extending the ube notonly with lass redution, but also with de�nitions whihavoid the loss of information in the ontexts needed to typeterms. With this extension the subjet redution propertyholds for all the systems of the ube.We show in Setion 6.1 that subjet redution fails for6 systems of the ube, but holds for �! and �! with ;;�(without de�nitions). We show furthermore that redution-ally equivalent terms have the same type in the sense that if� ` A : B and A0 2 [A℄ then � ` A0 : B (see Corollary 49).Then, we add de�nitions in Setion 6.2 and show that all thedesirable properties inluding SR hold for all the systems ofthe extended ube.
6.1 Extending the cube with;;�Let us start by introduing lass-redution to the ube of[2℄. This means that our redution relation now is not !�but ;� and that our extended ube of this subsetion isexatly that of Barendregt in [2℄ with the only di�erenethat we use ;� instead of !�.Definition 40 (The ube in item notation).The systems of the �-ube are based on a set of pseudo-expressions T (also alled terms) de�ned by (for O 2 f�;�g):T = � j 2 j V j (T Æ)T j (T OV )T . We take A;B;C; a; b; : : : ,resp. S; S1; S2 to range over T resp. f�;2g. The typing rulesare as follows:(axiom) <> ` � : 2(start) � ` A : S�(A�x) ` x : A if x is fresh(weak) � ` A : S � ` D : E�(A�x) ` D : E if x is fresh(app) � ` F : (A�x)B � ` a : A� ` (aÆ)F : B[x := a℄(abs) �(A�x) ` b : B � ` (A�x)B : S� ` (A�x)b : (A�x)B(onv) � ` A : B � ` B0 : S B =� B0� ` A : B0(form) � ` A : S1 �(A�x) ` B : S2� ` (A�x)B : S2 (S1; S2) ruleA ontext or a term is alled legal with respet to a type sys-tem if it ours as suh in a type-derivation in that system.Bound and free variables and substitution are de�ned asusual. We write BV (A) and FV (A) to represent the boundand free variables of A respetively. We write A[x := B℄to denote the term where all the free ourrenes of x in Ahave been replaed by B. We take terms to be equivalent upto variable renaming and use � to denote syntatial equal-ity of terms. We assume moreover, the usual Barendregt



variable onvention BC [2℄.Eah system of the ube is obtained by taking the (S1; S2)rules from a subset R of f(�; �); (�;2); (2; �); (2;2)g. Thebasi system is the one where (S1; S2) = (�; �) is the onlypossible hoie. All other systems have this version of theformation rules, plus one or more other ombinations of(�;2), (2; �) and (2;2) for (S1; S2). Table 3 presents theeight systems of the �-ube.The next two examples show that if our type derivationrules are those of De�nition 40 and our redution relationis ;;� instead of !!�, then we lose the subjet redutionproperty (SR) whih states that if � ` A : B and A;;� A0then � ` A0 : B.Example 41 (SR fails in �2, �P2; �! and �C).(���)(��y0) `�2 (y0Æ)(�Æ)(���)(��y)(yÆ)(��x)x : � but,(y0Æ)(�Æ)(���)(��y)(yÆ)(��x)x;� (�Æ)(���)(y0Æ)(��x)x.Yet, (���)(��y0) 6`�2 (�Æ)(���)(y0Æ)(��x)x : �.Even, (���)(��y0) 6`�2 (�Æ)(���)(y0Æ)(��x)x : � for any � .This is beause (��x)x : (��x)� and y : � yet � and � areunrelated and hene we fail in �ring the appliation rule to�nd the type of (y0Æ)(��x)x. Looking loser however, one�nds that (�Æ)(���) is de�ning � to be �, yet no suh infor-mation an be used to ombine (��x)� with �. De�nitionstake suh information into aount. Finally note that failureof SR in �2, means its failure in �P2; �! and �C.Example 42 (SR fails in �P , �P2; �P! and �C).Let � � (���)(��t)((��q) � �Q)((tÆ)Q�N),A � (NÆ)(tÆ)(��x)((xÆ)Q�y)(yÆ)((xÆ)Q�Z)Z andB � (tÆ)(��x)(NÆ)((xÆ)Q�Z)Z. Then, � `�P A : (tÆ)Qand A ;;� B but as N : (tÆ)Q; y : (xÆ)Q; (tÆ)Q 6= (xÆ)Q,� 6`�P B : � for any � .Here again the reason of failure is similar to the above ex-ample. At one stage, we need to math (xÆ)Q with (tÆ)Qbut this is not possible even though we do have the de�nitionsegment: (tÆ)(��x) whih de�nes x to be t. All this alls forthe need to use these de�nitions. Finally note that failure ofSR in �P , means its failure in �P2; �P! and �C.However, subjet redution holds for �! and �!. In the restof this subsetion, L ranges over �! and �! and ` rangesover type derivations in these two systems. The rest of thissetion proves subjet redution for �! and �!.The �rst three lemmas and orollary are exatly those ofthe ube of [2℄ beause ;;� does not play any role in them.Only �� (whih is the same as =�) is involved.Lemma 43 (Thinning for `). Let � and � be legalontexts suh that � �0 �. Then � ` A : B ) � ` A : B.Proof. Indution on length of derivations � ` A : B.Lemma 44 (Generation Lemma for `).1. � ` x : C ) 9S1; S2 2 S 9B =� C[� ` B : S1 ^(B�x) 20 � ^ � ` C : S2℄.2. � ` (A�x)B : C ) 9S1; S2 2 S [� ` A : S1^�(A�x) `B : S2 ^ (S1; S2) is a rule ^C =� S2 ^ [C 6� S2 ) 9S[� ` C : S℄℄℄3. � ` (A�x)b : C ) 9S;B [� ` (A�x)B : S ^ �(A�x) `b : B ^ C =� (A�x)B^C 6� (A�x)B ) 9S 2 S[� ` C : S℄℄.

4. � ` (aÆ)F : C ) 9A;B; x[� ` F : (A�x)B ^ � ` a :A ^ C =� B[x := a℄^(B[x := a℄ 6� C ) 9S 2 S[� ` C : S℄)℄.Proof. Indution on derivation rules using thinning.Corollary 45 (Generation Corollary for `).1. Corretness of Types: If � ` A : B then 9S[B �S or � ` B : S℄.2. � ` A : (B1�x)B2 ) 9S[� ` (B1�x)B2 : S℄.3. If A is a �`-term, then A is 2, a �`-kind or a �-element.Lemma 46 (Substitution for `). If �(B�x)� ` C :D and � ` A : B, then ��[x := A℄ ` C[x := A℄ : D[x := A℄.Proof. By indution to the derivation rules, using thethinning lemma.Beause our redution relation ;;� is de�ned in terms oflasses instead of terms, we annot use the usual methods forestablishing SR. For this, we need the following two lemmaswhih inform us that lasses preserve types.Lemma 47 (Shuffle Lemma for �! and �!).1. � `L s1(AÆ)s2B : C () � `L s1s2(AÆ)B : C wheres2 is well-balaned and the binding variables in s2 arenot free in A.2. � `L s(�x)A : B () � `L (�x)sA : B where s iswell-balaned and x is not free in s.Proof. Sketh. The reason for this lemma to be truefor �! and �! is that in these systems, for any legal termof the form (P�x)Q, x =2 FV (Q) (this is not true for theother systems of the ube beause of the mixing of levelsthat omes with the rules (�;2) and (2; �)). Therefore in1., none of the variables of dom(s2) an our free in thetype of B whih means that B must have a type of the form(C�x)D and hene B an be applied diretly to A.Lemma 48 (Classes preserve types). If � ` A : Band A0 2 [A℄, �0 results from � by substituting some mainitems (C�x) by (C0�x) where C0 2 [C℄, then �0 ` A0 : B.Proof. By indution on the derivation rules.Corollary 49 (Equivalent terms have same types).1. � ` A : B () � ` CCF(A) : B.2. If � ` A : B and A0 2 [A℄, B0 2 [B℄ then � ` A0 : B0.Proof. By Lemma 49, orretness of types and onver-sion.Now with Corollary 49, we an establish SR using ` and;;� , via SR of ` and !!�.Corollary 50 (Subjet Redution for ` and ;;�).If � ` A : B and A;;� A0 then � ` A0 : B.Proof. We prove � ` A : B, A ;� A0 =) � ` A0 : B.By de�nition of ;� , there are A1, A01 suh that A1 2 [A℄,A01 2 [A0℄ and A1 !� A01. By Corollary 49, � ` A1 : B.By subjet redution for the usual !� we have � ` A01 : B.Again by Corollary 49, � ` A0 : B.Note that although SR fails for the six remaining systemsof the ube with ` of De�nition 40 and ;;� , strong nor-malisation holds for all the systems of the ube with ` ofDe�nition 40 and ;;� . We will not prove this here and wemove immediately to the version that indeed satis�es SRand all other properties.



Table 3: Systems of the ubeSystem Set of spei� rules System Set of spei� rules�! (�; �) �! (�; �) (2;2)�2 (�; �) (2; �) �! (�; �) (2; �) (2;2)�P (�; �) (�;2) �P2 (�; �) (2; �) (�;2)�P! (�; �) (�;2) (2;2) �P! = �C (�; �) (2; �) (�;2) (2;2)
6.2 Extending the cube with;;� and definitionsLooking bak at, for instane, Example 41, one notiesthat when reduing using ;� , the information that y0 hasreplaed y of type � is lost. All we know after the redu-tion is that y0 has type �. But we need y0 of type � to beable to type the subterm (y0Æ)(��x)x of the redut. Addingde�nitions to our type system enables us to have extra infor-mation in our ontexts suh as \� and � an be identi�ed".We do this by writing in our ontext: (�Æ)(���) whih ex-presses that � is de�ned to be � and is of type �. We de�nenow this notion of de�nitions and how de�nitions an beunfolded:Definition 51 (definitions, unfolding).� If s is a well-balaned segment not ontaining Æ�-ouples,then a segment (BÆ)s(C�x) ourring in a ontext isalled a de�nition.� For s well-balaned segment, we de�ne the unfoldingof s in A, [A℄s, indutively as follows: [A℄; � A,[A℄(BÆ)s1(COx) � [A[x := B℄℄s1 and [A℄s1 s2 � [[A℄s2 ℄s1 .Note that substitution takes plae from right to left.That is, a de�nition identi�es a variable with a whole term.The unfolding of the de�nition, undoes this identi�ationand the variable will be replaed everywhere it ours freeby the term it identi�es.Definition 52.1. A delaration d is a �-item (A�x). In this ase, wede�ne subj(d), pred(d) and d to be x, A and ; resp.2. For a de�nition d � (BÆ)s(A�x) we de�ne subj(d),pred(d), d and def(d) to be x, A, s and B respetively.3. A pseudoontext is a onatenation of delarations andde�nitions suh that if (A�x) and (B�y) are two dif-ferent main items of the pseudoontext, then x 6� y.We use �;�;�0;�1;�2; : : : to range over pseudoon-texts and d; d1; d2; : : : to range over delarations andde�nitions.4. For � a pseudoontext we de�ne dom(�) = fx 2 V j(A�x) is a main �-item in � for some Ag,�-del = fs j s is a bahelor main �-item of �g,�-def = fs j s � (AÆ)s1(B�x) is a main segment of �where s1 is well-balaned g,Note that dom(�) = fsubj(d) j d 2 �-del [ �-defg.5. For all ontexts � we de�ne the binary relation � `� =def � to be the equivalene relation generated by� if A =� B then � ` A =def B

� if d 2 �-def and A;B 2 T suh that B arisesfrom A by substituting one partiular ourreneof subj(d) in A by def(d), then � ` A =def B.6. For � a pseudoontext and d 2 �-def [ �-del, � in-vites d, notation � � d, i�� �d is a pseudoontext� �d ` pred(d) : S for some sort S.� if d is a de�nition then �d ` def(d) : pred(d) andFV (def(d)) � dom(�)Now we will in the de�nition below present the rules of De�-nition 40 di�erently. Note that in De�nition 53, if one takesd to be a meta-variable for delarations only, =def the sameas =� (whih is independent of `) and the redution rela-tion as !�, then one gets the known ube of [2℄ given inDe�nition 40. We invite the reader to hek this.Definition 53 (Axioms and rules of the ube).(axiom) <> ` � : 2(start) � � d�d ` subj(d) : pred(d)(weak) � � d �d ` D : E�d ` D : E(app) � ` F : (A�x)B � ` a : A� ` (aÆ)F : B[x := a℄(abs) �(A�x) ` b : B � ` (A�x)B : S� ` (A�x)b : (A�x)B(onv) � ` A : B � ` B0 : S � ` B =def B0� ` A : B0(form) � ` A : S1 �(A�x) ` B : S2� ` (A�x)B : S2 if (S1; S2) is a ruleIn order to solve the SR problem for the six remaining sys-tems of the ube, we extend the �-ube with de�nitions,;;� and equivalene lasses modulo CCF. Contexts nowonsist of delarations (A�x) as well as de�nitions. We takethe typing rules ` to be exatly those of ` of De�nition 53with the addition of the de�nition rule:(def rule) �d ` C : D� ` dC : [D℄d if d is a de�nitionWith this de�nition, the problem of subjet redution issolved, and all the other desirable properties hold too. Thereason that subjet redution holds now whereas it did nothold in Examples 41 and 42 an be intuitively seen by show-ing that the ounterexample given in Example 41 no longerholds. Table 4 shows how the redut of Example 41 an nowbe typed.The following lemma tells us that the use of nested def-initions suh as (AÆ)(BÆ)(C�x)(D�y) an be replaed by



Table 4: De�nitions solve subjet redution(���)(��y0) ` y0 : � : � : 2(���)(��y0)(�Æ)(���) ` y0 : �; � : � (weakening resp. start)(���)(��y0)(�Æ)(���) ` � =def � (use the de�nition in the ontext)(���)(��y0)(�Æ)(���) ` y0 : � (onversion)(���)(��y0)(�Æ)(���)(y0Æ)(��x) ` x : � (start)(���)(��y0) ` (�Æ)(���)(y0Æ)(��x)x : �[x := y℄[� := �℄ � � (de�nition rule)using linear de�nitions suh as (BÆ)(C�x)(AÆ)(D�y) andthat abstrations an be postponed.Lemma 54. Let d be a de�nition.1. If �d� ` C =def D then�d(def(d)Æ)(pred(d)�subj(d))� ` C =def D.2. If �d� ` C : D then�d(def(d)Æ)(pred(d)�subj(d))� ` C : D.3. If �(A�x)d� ` C =def D then�d(A�x)� ` C =def D if x =2 FV (d).4. If �(A�x)d� ` C : D then�d(A�x)� ` C : D if x =2 FV (d).Proof. Note that (A�x) does not need to be bahelor.1. & 3. are by indution on the generation of =def. 2. &4. are by indution on the derivation, using 1. & 3. foronversion.The following three lemmas and orollary are familiar from [2℄,but here we take also de�nitions into aount.Lemma 55 (Thinning for `).1. If �1�2 ` A =def B, �1��2 is a legal ontext, then�1��2 ` A =def B.2. If � and � are legal ontexts suh that � �0 � and � `A : B, then � ` A : B. (�0 is ontext inlusion withside e�ets like a bahelor �-item beoming partnered.)Lemma 56 (Generation Lemma for `).1. If � ` x : A then for some B: (B�x) 2 �, � ` B : S,� ` A =def B and � ` A : S0 for some sort S0.2. If � ` (A�x)B : C then for some D and sort S:�(A�x) ` B : D, � ` (A�x)D : S, � ` (A�x)D =defC and if (A�x)D 6� C then � ` C : S0 for a sort S0.3. If � ` (A�x)B : C then for some sorts S1; S2: � `A : S1, � ` B : S2, (S1; S2) is a rule, � ` C =def S2and if S2 6� C then � ` C : S for some sort S.4. If � ` (AÆ)B : C, (AÆ) bahelor in B , then for someterms D;E, variable x: � ` A : D, � ` B : (D�x)E,� ` E[x := A℄ =def C and if E[x := A℄ 6� C then� ` C : S for some sort S.5. If � ` sA : B, then �s ` A : B.Proof. 1., 2., 3. and 4. follow by a tedious but straight-forward indution on the derivations (use the thinning lemma).As to 5., use indution on weight(s).

Lemma 57 (Substitution Lemma for `).1. If �(A�x)� ` B : C, � ` D : A and (A�x) bahelorin �(A�x)� then ��[x := D℄ ` B[x := D℄ : C[x :=D℄.2. If �(DÆ)s(A�x)� ` B : C and s well-balaned then�s�[x := D℄ ` B[x := D℄ : C[x := D℄.Proof. Indution on the derivations (straightforward).Corollary 58 (Corretness of Types).If � ` A : B then B � 2 or � ` B : S for some sort S.Proof. By indution to the derivation rules.Now, �rstly we prove SR for ` using!!� rather than ;;� .Theorem 59 (Subjet Redution for ` and !!�).If � ` A : B and A!!� A0 then � ` A0 : B.Proof. For � !� �0 de�ned in the expeted way, weshow by simultaneous indution on the derivation rules that:1. If � ` A : B and �!� �0 then �0 ` A : B and2. If � ` A : B and A!� A0 then � ` A0 : Busing Lemmas 56.5 and 57 when redution is at the root.Similarly to Lemma 48, we have by indution on the deriva-tion rules that:Lemma 60 (Classes preserve types). If � ` A : Band A0 2 [A℄, �0 results from � by substituting some mainitems (C!) by (C0!) where C0 2 [C℄, then �0 ` A0 : B.Corollary 61 (Equivalent terms have same types).1. � ` A : B () � ` CCF(A) : B.2. If � ` A : B and A0 2 [A℄, B0 2 [B℄ then � ` A0 : B0.Proof. By Lemma 60, onversion and orretness of types.Here is now the proof of SR using ` and ;;� , via the SRof ` and !!�.Corollary 62 (Subjet Redution for ` and ;;�).If � ` A : B and A;;� A0 then � ` A0 : B.Proof. We prove similarly to Corollary 50 that: � `A : B, A;� A0 =) � ` A0 : B.Lemma 63 (Uniity of Types for `).1. � ` A : B ^ � ` A : B0 ) � ` B =def B02. � ` A : B ^� ` A0 : B0 ^A =� A0 ) � ` B =def B0



Proof. 1. By indution on the struture of A using theGeneration Lemma. 2. By Churh-Rosser and Subjet Re-dution using 1.Finally, one an establish Strong Normalisation for the �-ube with de�nitions and lass-redution by using the proofof Strong Normalisation of the �-ube extended with de�-nitions and ,!,!� as in [3℄ (whih is related to �-redution)and mimiking that proof for -redution.Theorem 64 (Strong Normalisation of ;;�).Every legal term is strongly normalising with respet to ;;� .
7. CONCLUSIONIn this paper, we attempted to understand the redutionalbehaviour of alulations (or programs). We looked at twoalulations and be able to tell whether there is an isomor-phism between the two orresponding redution paths. Weprovided a notion of redutional equivalene where we de-�ne a lassi�ation of terms so that elements that belongto the same lass an be said to have the same redutionalbehaviour.[18℄ already gave a notion of redutional equivalene alled�-equivalene for whih it showed that none of the stan-dard lassi�ation riteria on �-alulus (e.g., length of thelongest redution) an separate two �-equivalent terms. Ourpaper presented a �ne grained redution relation whose on-gruene is �-equivalene.Another attrative feature of our work is that we man-aged to give a lear representation of the anonial forms ofterms given in [18℄ whih learly show where redexes ourand where they do not. Table 1 shows that every �-terman be written in anonial form. Suh a anonial forman be onsidered as a well-organised variant of the originalterm, yet having a similar redutional behaviour. A anoni-al form of a termM lists the overall (bahelor) abstrationsof M , followed by a permutable list of redex-heads (whihan also be onsidered as possible substitutions), followedby a list of \idle" or bahelor arguments for a single variablex. The idle arguments an however beome ative in newredex-heads after a substitution of some term for x, e.g., by�-redution. Furthermore, although anonial forms are notunique, we an still �nd for eah �-term, the unique lass ofits anonial forms whih are all equal modulo some simplepermutation.Finally, we extended the ube of eight type systems withlass redution and showed that subjet redution fails forsix of the eight extended systems. We then established thatsubjet redution an be regained by adding de�nitions. Theimportane of de�nitions (also known as \let expressions") iswitnessed by their extensive use in programming languagesand theorem provers. Intuitively, de�nitions repair the prob-lem of subjet redution beause they save the type infor-mation that will be lost as a result of redution.
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