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t. In proof 
he
kers and theorem provers (e.g. Coq [4℄ and Pro-Pre [13℄) re
ursive de�nitions of fun
tions are shown to terminate au-tomati
ally. In standard non-formalised termination proofs of re
ursivefun
tions, a de
reasing measure is sometimes used. Su
h a de
reasingmeasure is usually diÆ
ult to �nd.By observing the proof trees of the proofs of termination of re
ursivefun
tions in ProPre (the system used in Coq's proofs of termination), [14℄�nds a de
reasing measure whi
h 
ould be used to show termination inthe standard non-formalised way. This is important be
ause it establishesa method to �nd de
reasing measures that help in showing termination.As the ProPre system made heavy use of stru
tural rather than indu
tiverules, an extended more powerful version has been built with new prooftrees based on new rules.In this arti
le, we show that the ordinal measures found in [14℄ lose thede
reasing property in the extended ProPre system and then, set out toshow that the extended ProPre system will still be suitable for �ndingmeasures required by other systems (e.g. NQTHM). We do this by show-ing that exist other measures that 
an be asso
iated to the proof treesdeveloped in the extended ProPre system that respe
t the de
reasingproperty. We also show that the new parameterised measure fun
tionspreserve the de
reasing property up to a simple 
ondition.1 Introdu
tionIn the veri�
ation of programs de�ned on re
ursive data stru
tures, that useautomated dedu
tion, an important property is that of termination. A re
ur-sively de�ned fun
tion terminates if there is a well-founded order su
h that ea
hre
ursive 
all of the fun
tion de
reases with respe
t to this order. Though thetermination problem is unde
idable, several methods have been proposed forstudying the termination of fun
tional programs. For example, measures areused in the well-known NQTHM system of Boyer-Moore [2, 3℄, and in [6℄ thesystem 
an deal with measures based on polynomial norms. Though eÆ
ient,? Supported by EPSRC GR/L15685.



these methods need however the measures to be given by the user. Other auto-mated systems [18, 15, 19℄ have been developed, these are fully automated butthey use only �xed ordering or a lexi
ographi
 
ombinations of the ordering.Another approa
h has been developed in the termination pro
edure of theCoq prover [4℄ implemented in the ProPre system [11℄. The method is automatedand builds formal proofs be
ause it is based on the Curry-Howard isomorphismfrom whi
h lambda-terms are extra
ted whi
h 
ompute the algorithms. In 
on-trast with other methods as for instan
e in [3, 6℄, a notion of right terminal stateproperty for proof trees is introdu
ed in the pro
edure instead of measures. It hasbeen shown in [14℄ that on
e a termination proof is made, it is then possible to�nd a de
reasing measure related to ea
h proof tree. The measures 
hara
terizein some sense the orders found by the ProPre system (
alled rami�ed measure)whi
h di�er from the lexi
ographi
 
ombinations of one single �xed ordering.Moreover it has been shown that these measures 
ould be automati
ally givenfor the NQTHM system.However a diÆ
ult task for the system of [11℄ is to be able to establish thetermination of the automated 
onstru
tion of the proof trees. A drawba
k ofthat system is that it is not easy to derive eÆ
ient rules in a formal 
ontext.More parti
ularly, the method in [11℄ is restri
ted to one general stru
tural ruleand this implies the right terminal state property of proof trees to be limited.To 
ir
umvent these drawba
ks, the formal logi
al framework behind themethod in [11℄, has been extended to give rise to a new system [12℄ using otherrules and a

ommodated with a generalized indu
tion prin
iple. Furthermore anorder de
ision pro
edure on terms has been introdu
ed outside the proof treesthat alleviate the sear
h of right terminal state properties. As a 
onsequen
e, thetermination method 
an be used by the system in a far more eÆ
ient way andthe 
lass of formal termination proofs made in the system has been 
onsiderablyenlarged.The measures 
oming from the previous system 
an be also de�ned in the newsystem. But unfortunately they do not enjoy the de
reasing property anymore.Therefore, the method of [14℄ 
annot be used in the new ProPre system [12℄ to�nd suitable measures required by other systems su
h as NQTHM. We solve thisproblem in this paper by showing that there exist other measures that 
an beasso
iated to the proof trees developed in the system respe
ting the de
reasingproperty.Moreover, the order de
ision pro
edure mentioned above, that is external tothe formal proofs in the ProPre system, is based on the so-
alled size measure. So,this measure fun
tion 
ould be easily 
hanged or parameterised in the extendedProPre system. We also show that, up to a simple 
ondition (Property 4.11),the de
reasing property of measures will still hold.Our work has the following advantages:{ We establish a method to �nd the measures needed to establish termina-tion for re
ursive fun
tions. We extend the system to a more powerful ver-sion while retaining the de
reasing property of measures. This is important



be
ause non-formalised termination proofs usually rely on the de
reasingproperty.{ As the extended version of ProPre used the advantageous order de
isionpro
edure whi
h was isolated from the formal proofs (in 
ontrast to beingintertwined with them as in the earlier version of ProPre), this implied thatthe measure fun
tions 
ould be easily parameterised or 
hanged. In this paperwe show that those measure fun
tions preserve the de
reasing property upto a simple 
ondition. This means that the measures (now in a larger 
lass)found by the method of this paper 
an be used by systems su
h as NQTHM.2 PreliminariesWe assume familiarity with basi
 notions of type theory and term rewriting. Thefollowing de�nition 
ontains some basi
 notions needed throughout the paper.De�nition 2.1.1. Sorts, Fun
tions, Sorted Signature We assume a set S of sorts and a�nite set F of fun
tion symbols (or fun
tions). We use s, s1, s2, : : : , s0, s00,: : : to range over sorts and f; f1; f2; : : : ; f 0; f 00; : : : to range over fun
tions.A sorted signature is a �nite set F of fun
tions and a set S of sorts.2. Types, Arities of fun
tions and Constants For every fun
tion f 2 F ,we asso
iate a type s1; : : : ; sn ! s with s; s1; : : : ; sn 2 S. The number n � 0denotes the arity of f . A fun
tion is 
alled 
onstant if its arity is 0.3. De�ned and Constru
tor SymbolsWe assume that the set of fun
tionsF is divided in two disjoint sets F
 and Fd. Fun
tions in F
 (whi
h alsoin
lude the 
onstants) are 
alled 
onstru
tor symbols or 
onstru
tors andthose in Fd are 
alled de�ned symbols or de�ned fun
tions.4. Variables Let X be a 
ountable set of variables disjoint from F . We assumethat for every variable is asso
iated a sort.5. Terms over F and X of sort s: T (F;X )s If s is a sort, F is a subset ofF and X is a 
ertain set of variables, then the set of terms over F and X(simply 
alled terms) of sort s denoted T (F;X )s, is the smallest set where:(a) every element of X of sort s is a term of sort s,(b) if t1; : : : ; tn are terms of sort s1; : : : ; sn respe
tively, and if f is a fun
tionof type s1; : : : ; sn ! s in F , then f(t1; : : : ; tn) is a term of sort s.We use t; l; r; u; v; t1; l1; r1; t2; : : : ; t0; l0; r0; t00; : : : to range over T (F;X )s. IfX is empty, we denote T (F;X )s by T (F )s. T (F;X ) = Ss2S T (F;X )s.6. Constru
tor Terms, Ground terms and Ground Constru
tor TermsRe
all the set of variables X and the set of fun
tions F = F
 [ Fd.(a) Elements of T (F
;X )s, i.e., terms su
h that every fun
tion symbol whi
ho

urs in them is a 
onstru
tor symbol, are 
alled 
onstru
tor terms.(b) Elements of T (F
 [ Fd)s, i.e., terms in whi
h no variable o

urs, are
alled ground terms.(
) Elements of T (F
)s i.e., terms whi
h do not have any variables and whereevery fun
tion symbol whi
h o

urs in them is a 
onstru
tor symbol, are
alled ground 
onstru
tor terms.



7. (Sorted) Equations A sorted equation is a pair (l; r)s of terms l and r ofa sort s. We always assume that the equation is sorted and hen
e, we maydrop the term sorted and speak only of equations. An equation (l; r)s givesrise to a rewrite rule l ! r. Although a pair (l; r)s is oriented it will also bewritten l =s r. When no 
onfusion o

urs, the sort may be dis
arded fromthe equation and we write (l; r), l ! r and l = r. l (resp. r) are 
alled theleft (resp. right) hand side of the equation.8. Left-Linear Equations An equation is left-linear i� ea
h variable o

ursonly on
e in the left-hand side of the equation.9. Non-Overlapping Equations A set of equations is non overlapping i� noleft-hand sides unify ea
h other.10. Spe
i�
ation or Constru
tor System A spe
i�
ation of a fun
tion f :s1; : : : ; sn ! s in Fd is a non overlapping set of left-linear equationsf(e1; e01)s; : : : ; (ep; e0p)sg su
h that for all 1 � i � p, ei is of the formf(t1; : : : ; tn) with tj 2 T (F
;X )sj , j = 1; : : : ; n; and e0i 2 T (F
 [ Fd;X )s.We use E , E 0, : : : to range over spe
i�
ations.11. fConstru
tor, Ground, Ground Constru
torg Substitution A sub-stitution � is a mapping from the set X of variables to the set of termsT (F ;X ), su
h that for every variable x, �(x) and x are of the same sort.A substitution � is 
alled a 
onstru
tor substitution (respe
tively groundsubstitution, ground 
onstru
tor substitution) if �(x) is a 
onstru
tor term(respe
tively ground term, ground 
onstru
tor term) for any variable x.12. Re
ursive Call Let E be a spe
i�
ation of a fun
tion f with type s1; : : : ;sn ! s. A re
ursive 
all of f is a pair (f(t1; : : : ; tn); f(u1; : : : ; un)) wheref(t1; : : : ; tn) is a left-hand side of an equation of f and f(u1; : : : ; un) is asubterm of the 
orresponding right-hand side.3 The extended ProPre systemThe extended ProPre system deals with indu
tive types that are de�ned withse
ond order formulas using �rst and se
ond order universal quanti�
ation, im-pli
ation and a general least �xed point operator on predi
ate variables. The last
onne
tive aims at improving the eÆ
ien
y of the extra
ted programs (see [16℄).Unlike the previous system [11℄, a 
onne
tor symbol � is added whose mean-ing is a 
onne
tive 
onjun
tion used with some restri
tions but without anyalgorithmi
 
ounterpart. The last property is interesting be
ause it �rst allowsthe programs not to 
arry out some unne
essary 
omputations, and se
ondly it
an easily support indu
tive methods (whi
h was not the 
ase in the previoussystem). Combined with the 
onne
tor �, a binary relation symbol � is added. It
orresponds to a well-founded ordering on terms whi
h is used for the indu
tiverule de�ned in the se
tion.De�nition 3.1. The language is de�ned as follows:1. Terms The terms of De�nition 2.1.6 
onstitute the �rst order part.



2. Data Symbols For ea
h sort si is asso
iated a unary se
ond order predi
atesaid also data symbol and denoted by Dsi or Di, whose meaning is: t 2T (F
)si i� Dsi(t) holds.3. Formulae A formula is built as follows:(a) if D is a data symbol and t is a term then D(t) is a formula,(b) if A is a formula and x is a variable, then 8xA is a formula,(
) if A is a formula and u; v are terms, then A � (u � v) is a formula,(d) if A and B are formulas, then A! B is a formula.We use A;B; P; F; F1; F2; : : : to range over formulae.Notation 3.2. We will use some 
onvenient 
onventions:1. Du�t is a shorthand for D(u) � (u � t),2. 8xA! B denotes 8x(A! B).3. F1; : : : ; Fn ! F denotes F1 ! (F2 ! : : :! (Fn ! F )) : : : ).4. Let P = F1; : : : ; Fk;8xD0(x); Fk+1; : : : ; Fm ! D(t) be a formula, thenP�D0(x) denotes the formula F1; : : : ; Fk; Fk+1; : : : ; Fm ! D(t).Note that the later notation is 
orre
t as it will be used with De�nition 3.4.De�nition 3.3. Let f : s1; : : : ; sn ! s 2 Fd. The termination statement forf is the formula: 8x1(Ds1(x1)! : : :! 8xn(Dsn(xn)! Ds(f(x1; : : : ; xn))) : : : ),also written by Notation 3.2 as: 8x1D1(x1); : : : ;8xnDn(xn)! D(f(x1; : : : ; xn)):In the previous ProPre system, the proofs relied on two fundamental notions:the distributing trees and the right terminal state property. In the extendedversion, the distributing trees now in
lude two new rules, said Stru
t and Indrules de�ned in the se
tion. The de�nition of the right terminal state property(De�nition 3.8) is now more sophisti
ated due to the introdu
tion of these rules.The ProPre prover makes termination proofs, said I-proofs, with the help ofsome ma
ro-rules (or ta
ti
s, or derived rules) of Natural Dedu
tion for Predi
ateCal
ulus (see [9℄). The set of the rules and the de�nition of I-proofs is des
ribedin [12℄. Due to Proposition 3.9 below, we will only need here to de�ne the Stru
t-rule and the Ind-rule whi
h 
onstitute the distributing trees in ProPre.Although the earlier ProPre system 
an prove the termination of many al-gorithms, there are numerous interesting algorithms for whose there exist noproof trees. For instan
e, the example below illustrates that the use Re
-rulede�ned in [11℄ 
an lead to loss of eÆ
ien
y. Let Tr be the sort tree, with theleave 
onstant le : Tr and the bran
h 
onstru
tor br : Tr; T r ! Tr. Considerthe spe
i�
ation of the 
atten fun
tion flat : Tr ! Tr given by the followingequations: flat(le) = leflat(br(le; a)) = br(le; f lat(a))flat(br(br(a1; a2); a)) = flat(br(a1; br(a2; a))):



While the spe
i�
ation 
annot be proven to terminate in the previous system [11℄,the termination proof is now easily done in the extended system due to the newrules presented below. Note that a single ordering using for instan
e the size mea-sure [18℄ is not suÆ
ient for the termination proof be
ause of the presen
e of these
ond re
ursive 
all. The flatten 
an be proved to terminate using polynomialordering [10℄, but these have to be given by the user [1℄. Therefore methods havebeen developed in [5, 17℄ that aim at synthesising polynomial orderings.We now introdu
e the rules that are used in the extended system. Let begiven a sort s. We then 
onsider all the 
onstants 
1; : : : ; 
p of type :! s, and allthe 
onstru
tor fun
tions Ci : si1 ; : : : ; sik ! s, (ik � 1), i � q, whose range iss. Note that the above distin
tion between 
onstants and the other 
onstru
torsjust 
orresponds to a question of presentation. Let also F (x) be a formula wherex, of sort s, is free in F . Then:1. �
i(F ) denotes F [
i=x℄; i � p;2. �Ci(F ) denotes 8xi1Di1(xi1 ); : : : ;8xikDik (xik )! F [Ci(xi1 ; : : : ; xik )=x℄,i � q, where xi1 ; : : : ; xik are not in F ,3. 	Ci(F ) denotes 8xi1Di1(xi1 ); : : : ;8xikDik(xik );8z(Dz�Ci(xi1 ;::: ;xik ) !F [z=x℄)! F [Ci(xi1 ; : : : ; xik )=x℄), i � q, where z; xi1 ; : : : ; xik are not in F .De�nition 3.4. Let P be of the form F1; : : : ; Fk;8xD(x); Fk+1; : : : ; Fm !D0(t). The indu
tion rule for the sort s is a 
hoi
e between the two followingrules: � ` �
i(P�D(x)) i � p; � ` �Cj (P�D(x)) j � q� ` P Stru
t(x)� ` �
i(P�D(x)) i � p; � ` 	Cj (P�D(x)) j � q� ` P Ind(x)For instan
e the indu
tion rule Ind on integers is:� ` P�N(x)(0) � ` 8yN(y);8z(Nz�sy ! P�N(x)(z))! P�N(x)(sy)� ` P Ind(x)The Stru
t has to be 
onsidered as a reasoning by 
ases. The above rules leadthe followingDe�nition 3.5. A formula F is 
alled an I-formula i� F is of the formH1; : : : ; Hm ! D(f(t1; : : :; tn)) with D a data symbol and f 2 Fd su
h thatfor all i = 1; : : : ;m, Hi is of the form either 8xD0(x) or 8z(D0z�u ! F 0), withD0 a data symbol, F 0 an I-formula and u a term.Furthermore a formula of the above form Hi = 8z(D0z�u ! F 0) is 
alled arestri
tive hypothesis of F .Note that the above de�nition is a re
ursive de�nition whose initial 
ase 
anbe obtained with \Hi = 8xD0(x)". The heart C(F ) of the formula F will denotethe term f(t1; : : :; tn).



Though a restri
tive hypothesis is not an I-formula, we will also say that H 0 isa restri
tive hypothesis of another restri
tive hypothesis 8z(D0z�s ! F 0) if H 0is a restri
tive hypothesis of the I-formula F 0. Finally C(8z(D0z�s ! F 0)) willbe C(F 0).De�nition 3.6. Let E be a spe
i�
ation of a fun
tion f of type s1; : : : ; sn ! s:A is a distributing tree for E i� A is a proof tree built only with the Stru
t ruleand Ind rule su
h that:1. its root is ` 8x1D1(x1); : : : ;8xnDn(xn) ! D(f(x1; : : : ; xn)) (terminationstatement).2. if L = f�1 ` �1; : : : ; �q ` �qg is the set of A's leaves, then there exists a oneto one appli
ation b: L ,! E su
h that b(L) = (t; u) if and only if L = (� ` �)where � is an I-formula with C(�) = t.One 
an see that the ante
edents remain un
hanged in the de�nition of the rulesStru
t and Ind in the ProPre system. Though this is not so usual, it turns outthat the ante
edent formulas are embedded in the 
onsequents. So, as the 
ontext(i.e. the set of ante
edents) is empty in the root of a distributing tree, there isno ante
edent in ea
h node of the tree. Therefore we will use the notation � bothfor ` � and for the formula itself. One notes that any formula in a distributingtree is an I-formula.Before stating the right terminal state property that enjoy the distributingtrees in the I-proofs developed in the ProPre system, we assume that there isa well founded ordering � on term 
orresponding to the interpretation of therelation symbol � de�ned in the language. This ordering is made expli
it in thenext se
tion. We also need theDe�nition 3.7. We say that an I-formula or restri
tive hypothesis P 
an beapplied to a term t if C(P ) mat
hes t a

ording to a substitution � su
h thatfor ea
h variable x o

urring free in P we have �(x) = x.De�nition 3.8. Let E be a spe
i�
ation of a fun
tion f and A be a distributingtree for E . We say that A satis�es the right terminal state property (r.t.s.p.) i�for all leaves L = � of A with e 2 E the equation su
h that b(L) = e (b givenin De�nition 3.6) and for all re
ursive 
alls (t; v) of e, there exists a restri
tivehypothesis P = 8zDz�s; H1; : : : ; Hk ! D(w) of � and a su
h that P 
an beapplied to v a

ording to a substitution � with:1. �(z) � s and2. for all restri
tive hypothesis H of P of the form 8yD0y�s0 ! K there is arestri
tive hypothesis H0 of � of the form 8yD0y�s0 ! K su
h that �(s0) vs0.This 
hara
terization is due to the following proposition (see [12℄ for proof).Proposition 3.9. There exists an I-proof for f i� there exists a distributingtree for f with the right terminal state.



Proposition 3.9 says that one 
an only fo
us on distributing trees that satisfy theright terminal state. So, as already mentioned, we do not expli
it I-proofs herebut we only 
onsider distributing trees and the right terminal state properties.4 Synthesising ordinal measuresThe earlier system built proof trees whi
h have the right terminal state propertyde�ned in [13℄. It has been shown in [14℄ that one 
an extra
t an ordinal measure,whi
h will be 
alled R-measure, from ea
h proof tree. The R-measure has thede
reasing property if the proof tree satis�es the right terminal state property.This measure 
an be also de�ned against a proof tree with the new 
ontext. Butthe de
reasing property of the R-measure is not valid anymore. A reason is that,as the system ProPre 
orresponds to an extension of the Re
ursive Definitionof the Coq system, the existen
e of suitable measures does not 
orrespond anylonger to the R-measures. It turns out that if we want to retrieve the de
reasingproperty, we need to extend the 
lass of measures to other measures.In this se
tion we re
all the de�nition of the R-measures but in the 
ontextof the extended system, and we present the theorem on the de
reasing propertyof the measures that fails but whi
h will be re-established. We then introdu
ethe extended measures for whi
h Theorem 1 holds again.4.1 The R-measuresBefore giving the ordinal measures we �rst introdu
e some de�nitions 
on
erningthe judgments in distributing trees.De�nition 4.1. Let A be a distributing tree. A bran
h B from the root �1 toa leaf �k will be denoted by (�1; x1); : : : ; (�k�1; xk�1); �k where xi (1 � i < k),is the variable for whi
h either the rule Stru
t or Ind is applied on �i.De�nition 4.2. Let A be a tree and � a node of A. The height of � in A,denoted by H(�;A), is the height of the subtree of A whose root is � minus one.A

ording to the de�nition of a distributing tree A, we have the two followingstraightforward fa
ts.Fa
t 4.3. Let E be a spe
i�
ation of a fun
tion f of type s1; : : : ; sn ! s andA be a distributing tree. For ea
h (t1; : : : ; tn) 2 T (F
)s1 � : : : � T (F
)sn thereexists one and only one leaf � of A and a ground 
onstru
tor substitution � su
hthat �(C(�)) = f(t1; : : : ; tn).Fa
t 4.4. For every bran
h ofA from the root to a leaf (�1; x1); : : : ; (�k�1; xk�1);�k and for all i � j � k, there exists a 
onstru
tor substitution �j;i su
h that�j;i(C(�i)) = C(�j):De�nition 4.5. The re
ursive length of a term t of sort s is de�ned by:



1. if t is a 
onstant 
, then lg(
) = 0,2. if t = C(t1; : : : ; tn) with C : s1; : : : ; sn ! s 2 F
 then lg(t) = 1+Xsj=s lg(tj).De�nition 4.6. Let E be a spe
i�
ation of a fun
tion f : s1; : : : ; sn ! s su
hthat there exists a distributing tree A for E . The R-measure
R : T (F
)s1 � : : : � T (F
)sn ! !!, where ! is the least in�nite ordinal, isde�ned as follows:Let t = (t1; : : : ; tn) be an element of the domain and � be the leaf of A su
h thatthere is a substitution � with �(C(�)) = f(t) (Fa
t 4.3). Let B be the bran
h(�1; x1); : : : ; (�k�1; xk�1); � of A from the root to �, let �r;s be the substitutionsof Fa
t 4.4. Then 
R(t) is de�ned as the following ordinal sum:
R(t) = k�1Xi=1 !H(�i;A) � lg(�(�k;i(xi))) ;We now need some de�nitions before giving Theorem 1.De�nition 4.7. A �nite sequen
e of positive integers q will be 
alled a position,� will denote the empty sequen
e and � the 
on
atenation operation on sequen
es.For ea
h position q and sort s, we will assume there is a new variable of sort sindexed by q distin
t from those of X . The following de�nition allows us to stateTheorem 1 below.De�nition 4.8. Let be a term t and q be a position, the term [[t℄℄q is de�ned asfollows: [[
℄℄q = 
 if 
 is a 
onstant, [[x℄℄q = x if x is a variable, [[C(t1; : : : ; tn)℄℄q =C([[t1℄℄q�1; : : : ; [[tn℄℄q�n) if C 2 F
, and [[f(t1; : : : ; tn)℄℄q = xq if f 2 Fd.Theorem 1. Let E be a spe
i�
ation of a fun
tion f : s1; : : : ; sn ! s and A be adistributing tree A for E having the right terminal state property. The asso
iatedmeasure 
R then satis�es the de
reasing property. That is to say, for ea
h re-
ursive 
all (f(t1; : : : ; tn); f(u1; : : : ; un)) of E and for every ground 
onstru
torsubstitution ' we have: 
R('(t1); : : : ; '(tn)) > 
R('([[u1℄℄1); : : : ; '([[un℄℄n))Unfortunately, though Theorem 1 holds in the 
ontext of R-proofs (see [14℄),examples show that it fails in the 
urrent 
ontext. Consider, for instan
e, thesimple example of the spe
i�
ation of the addition fun
tion add : nat; nat! nat,de�ned with an unusual way illustrating our purpose.add(s(x); s(y)) = add(s(s(x)); y)add(0; y) = yadd(s(x); 0) = s(x)There exists a tree whi
h enjoys the right terminal state property that leads tothe following measure: 
R(u; v) = ! � lg(u) + lg(v). Obviously the de
reasingproperty does not hold.In the remaining of the se
tion, we introdu
e new measures that enable thetheorem to be restored.



4.2 The new rami�ed measuresAs already mentioned, an ordering relation � on term is introdu
ed in the ex-tended system. In 
ontrast to the previous system, this relation 
an be 
he
kedoutside of the formal proofs and so 
an be easily modi�ed independently of thelogi
al framework of the system. The ordering relation is related to a measureon terms in the following way.De�nition 4.9. Assume a measure m on the terms ranging over natural num-bers. Let u; v 2 T (F
;X )s for a given sort s. We say that u � v i�:1)m(u) < m(v); 2) Var(u) � Var(v); 3) u is linearA spe
ial measure, the so 
alled size measure lgi, is used in the system and isde�ned as follows:De�nition 4.10. The size measure of a term t of sort s is given by:1. if t is a 
onstant or a variable, then lgi(t) = 1,2. if t = C(t1; : : : ; tn) with C : s1; : : : ; sn ! s 2 F
 then lgi(t) = 1 + lgi(t1) +: : :+ lgi(tn)Note that De�nition 4.13 uses only the value on 
onstru
tor ground terms forthe measure m, but this one is also de�ned on 
onstru
tor terms be
ause it isneeded for the termination proofs of the ProPre system.In order to be able to prove the de
reasing property of the new ordinal measuresde�ned below, we will only need to assume a property on the measure m.Property 4.11. Let u; v 2 T (F;X )s su
h that u � v: Then for all 
onstru
torsubstitutions �; we have m(�(u)) < m(�(v)):Note that the lemma obviously holds for lgi. For that, it is enough to remarkthat lgi(t)�1 � 0 and lgi(�(t)) = lgi(t)+#(x; t)� Xx2Var(t)(lgi(�(x))� 1) for anyterm t, where Var(t) denotes the set of variables whi
h o

ur in t and #(x; t) isthe number of the o

urren
es of the variable x in t.It is now ne
essary to distinguish the sequents 
oming respe
tively from an appli-
ation of the Stru
t-rule and the Ind-rule. Therefore we introdu
e the following:De�nition 4.12. Let � be a judgment in a distributing tree A and �0 animmediate 
hildren of �. We say that � is de
reasing and �0 is an Ind-judgmentif one 
omes from the other using the Ind rule. The test fun
tion � is de�ned onea
h node as follows: �(�) is 1 if � is a de
reasing judgment and 0 if not.De�nition 4.13. Let E be a spe
i�
ation of a fun
tion f : s1; : : : ; sn ! ssu
h that there exists a distributing tree A for E . The new rami�ed measure
I : T (F
)s1 � : : : � T (F
)sn ! !! , is de�ned as follows:Let t = (t1; : : : ; tn) be an element of the domain and � be the leaf of A su
h that



there is a substitution � with �(C(�)) = f(t) (Fa
t 4.3). Let B be the bran
h(�1; x1); : : : ; (�k�1; xk�1); � of A from the root to �, let �r;s be the substitutionsof Fa
t 4.4. Then
I(t) = k�1Xi=1 !H(�i;A) � �(�i) �m(�(�k;i(xi))) :The intuition would suggest to substitute only the measure m instead of there
ursive lg in De�nition 4.6. But on
e again, examples show that Theorem 1fails in that 
ase. It is now far from obvious that the new ordinal measures enjoythe de
reasing property. However Theorem 1 now holds with the new measures.whose version is given below with Theorem 2Theorem 2. Let E be a spe
i�
ation of a fun
tion f : s1; : : : ; sn ! s and A be adistributing tree A for E having the right terminal state property. The asso
iatedmeasure 
I then satis�es the de
reasing property. That is to say, for ea
h re-
ursive 
all (f(t1; : : : ; tn); f(u1; : : : ; un)) of E and for every ground 
onstru
torsubstitution ' we have: 
I('(t1); : : : ; '(tn)) > 
I('([[u1℄℄1); : : : ; '([[un℄℄n))Proof: The proof is long but it 
an be derived from the main Proposition 5.25below. The reader is referred to [8℄ for a detailed proof of Theorem 2. 2Now that we have Theorem 2, we 
an extra
t from an automated terminationproof of the 
atten fun
tion de�ned at Se
tion 3 the following ordinal measurewhi
h has the de
reasing property:
I (le) = ! 
I(br(le; a)) = ! � (1 + lgi(a))
I(br(br(a; b); 
) = ! � (2 + lgi(a) + lgi(b) + lgi(
)) + 1 + lgi(a) + lgi(b).5 The analysis of the I-formulasThis se
tion is devoted to the analysis of the I-formulas. Due to the shape ofthe distributing trees and the I-formula that appear in the bran
hes, we need tointrodu
e some de�nitions and to establish several lemmas whi
h will is used forthe proof of Theorem 2 and Proposition 5.25 .De�nition 5.1. For a term t and a subterm u of t that has only one o

urren
ein t, u . t will denote the position of u in t.De�nition 5.2. RH(F ) denotes the set of the restri
tive hypotheses of anI-formula F and for P = 8z(Dz�s ! F 0) with F 0 an I-formula, we de�neRH(P ) = RH(F 0). For Pi and Pj in RH(F ) we say that Pi is before Pj if F 
anbe written P1; : : : ; Pk ! D(t) with 1 � j < i � k. Moreover, for a restri
tivehypothesis P of F , then #(P; F ) = 1 + 
ardfP 0 2 R(F ); P 0 before Pg.One 
an easily see that, if �0 is an immediate ante
edent of � in a distributingtree, then ea
h restri
tive hypothesis of � 
orresponds to a restri
tive hypothesisin �0. A new restri
tive hypothesis is also in �0 if the rule is Ind. Formally wehave the following de�nition.



De�nition 5.3. Let � be a judgment in a distributing tree and �0 an immediateante
edent of �. We de�ne an inje
tive appli
ation Res�0;� : R(�) ,! R(�0) withRes�0;�(P ) the restri
tive hypothesis P 0 in R(�0) su
h that #(P 0; �0) = #(P; �).Res�0;�(P ) 
an be seen as the residual of P in �0 and therefore the appli
ation
an be generalized to any ante
edent �0 of � using 
omposition of appli
ations.De�nition 5.4. For an Ind-judgment �0 in a distributing tree, the restri
tivehypothesis P in � su
h that #(P; �0) = 
ard(R(�0)) is 
alled the new hypothesis,denoted by N (�0). In parti
ular, it is su
h that all restri
tive hypotheses in �0are before P .Remark 5.5. We 
an remark that if � is a de
reasing judgment with x theindu
tion variable and �0 an immediate ante
edent then x .C(�) = z . C(N (�))where the new hypothesis N (�) is of the form 8z(Dz�s ! H). This will be usedfor the proof of Proposition 5.25.If �0 is an immediate ante
edent of a de
reasing judgment �, we know that �0is of the form: 8x1D1(x1); : : : ;8xkDk(xk);N (�0)! ��D(x)[w=x℄, with N (�0) =z(Dz�w ! ��D(x)[z=x℄). So, for a Ind-judgment �0, we 
an easily de�ne theappli
ation D�0 : R(N (�0)) ,! R(�0) where D�0(Q) is the restri
tive hypothesisQ0 of ��D(x)[w=x℄ with #(Q0; ��D(x)[w=x℄) = #(Q; ��D(x)[z=x℄). We 
an saythat D is a dupli
ation of restri
tive hypotheses.Lemma 5.6. Let P = 8z(Dz�s; H1; : : : ; Hk ! D(t)) be a restri
tive hypothesis� of a judgment in a distributing tree then1) the variables of s are free in P and have no other o

urren
es in P;2) the variables in P distin
t of those in s are bounded in P .3) s is a subterm of C(�) and s . C(�) = z . C(P ).Proof: See [12℄. 2De�nition 5.7. Let G and F be two restri
tive hypotheses. We de�ne a 
on-gruen
e relation as follows: F and G are said similar, denoted by F � G if theyare respe
tively of the form 8z(D(z)�s ! H) and 8z(D(z)�t ! H).Lemma 5.8. Given an Ind-judgment � in a distributing tree and P a restri
tivehypothesis of N (�). Then D�(P ) � P .Proof: A

ording to the form of N (�) (see the de�nition of D�0), we know thatP and D�(P ) are of the form 8y(D0(y)�s0 ! H 0)[z=x℄ and 8y(D0(y)�s0 !H 0)[w=x℄. Lemma 5.6 says that x does not o

ur in H (and may not possibly o
-
ur in s0). Therefore P = 8y(D0(y)�s0[z=x℄ ! H 0) and D�(P ) = 8y(D0(y)�s0[w=x℄! H 0), thus P � D�(P ). 2Lemma 5.9. Let P be a restri
tive hypothesis of � in a distributing tree, and�0 an ante
edent of �. Then Res�0;�(P ) � P .Proof: By indu
tion on the bran
h between � and �0. 2



Corollary 5.10. If � is a judgment in a distributing tree, �0 an immediateante
edent of �, and P a restri
tive hypothesis of �, thenR(Res�0;�(P )) = R(P ).Proof: By Lemma 5.9, we have P = 8z(D(z)�s1 ! F ) and Res�0;�(P ) =8z(D(z)�s2 ! F ). Thus R(P ) = F = R(Res�0;�(P )). 2Lemma 5.11. For all judgments � in a distributing tree, then there does notexist two restri
tive hypotheses similar in �.Proof: See [8℄ 2De�nition 5.12. Let � be a judgment in a distributing tree and �1, : : : ,�n = � the 
onse
utive judgments from the root �1 to �. Let P be a restri
tivehypothesis of �. We note J (P ) the �rst integer j su
h that there is Q 2 R(�j)with P = Res�;�j (Q), whi
h is 
orre
t sin
e R�;�(P ) = P .Sin
e every appli
ationRes�0;� is inje
tive,Res�1�0;�(P ) will denote the ante
edentof P with the assumption that P is in the image of the appli
ation.Lemma 5.13. In the 
ontext of the previous de�nition, the rule between �J (P )and �J (P )�1 is the Ind-rule, and Res�1�;�J(P )(P ) = N (�J (P )).Proof: The opposite leads to a 
ontradi
tion with the de�nition of J (P ). 2Corollary 5.14. Let P be a restri
tive hypothesis of a judgment � in a dis-tributing tree. Then, using also Corollary 5.10, we haveR(P ) = R(Res�1�;�J (P )(P )) = R(N (�J (P ))):De�nition 5.15. Let � be a judgment in a distributing tree and P be a re-stri
tive hypothesis of �. Then we 
an now etasblish the following diagram andthereby de�ne the appli
ation �P;� : R(P ) ,! R(�), with �P;� = Res�;�J(P ) ÆD�J (P ) : R(P ) -�P;� R(�)6?R(Res�1�;�J (P )(P )| {z }N (�J (P )) ) - R(�J (P ))Id o Res�;�J(P )
D�J (P )� �6

In the 
ase where � is an Ind-judgment and P = N (�), then �J (P ) = � and�P;� = D�. So, � 
an be seen as a generalization ofD for all restri
tive hypothesesof any �.



Fa
t 5.16. We remark that �P;� is inje
tive by 
omposition of inje
tive ap-pli
ations. Moreover, a

ording to Lemmas 5.8 and 5.9, �P;�(Q) � Q for allQ 2 R(P ).Lemma 5.17. For a restri
tive hypothesis P of a judgment � in a distributingtree and Q a restri
tive hypothesis of P , we have J (P ) > J (�P;�(Q)):Proof: See [8℄ 2Lemma 5.18. Let A be a distributing tree for a spe
i�
ation of a fun
tion,having the right terminal state property. Let � be a leaf of A and (t; v) be are
ursive 
all of C(�). In this 
ontext, if P is the restri
tive hypothesis of �holding De�nition 3.8 of the r.t.s.p of A and H and H0 holding the point 2) ofDe�nition 3.8 with the same notations, then �P;�(H) = H0 and J (P ) > J (H0).Proof: A

ording to the point 2) of De�nition 3.8, we haveH � H0: Furthermore,by Fa
t 5.16, �P;�(H) � H: Hen
e Lemma 5.11 gives us that �P;�(Q) = H0 andthen J (P ) > J (H0) with Lemma 5.17. 2De�nition 5.19. For any � in a distributing tree and an ante
edent �0 of �,then [�; �0℄D (respe
tively [�; �0[I) will denote the set of the de
reasing judgments(respe
tively Ind-judgments) between � and �0 (respe
tively without �0).Fa
t 5.20. Let E be a spe
i�
ation of a fun
tion f and A be a distributing treefor E . If �1 is the root of A, that is to say the termination statement of f , andif � is an Ind-judgment in A; then 
ard(R(N (�))) = 
ard([�1; �[R):Proof: Sin
e 
ard(R(�)) = 
ard(R(N (�)))+1; it is a
tually enough to show that
ard(R(�)) = 
ard([�1; �℄R) whi
h is then straightforward by indu
tion on thenumber of judgments �1; : : : ; �. 2Fa
t 5.21. Let P and P 0 be two distin
t restri
tive hypotheses of a judgment�, then J (P ) 6= J (P 0).Proof: The opposite leads to a 
ontradi
tion thanks to Lemma 5.13. 2Lemma 5.22. Let A be a distributing tree having the r.t.s.p. with the root �1:Let P be the restri
tive hypothesis of a leaf �k in the de�nition of the r.s.t.p.,then for all � 2 [�1; �J (P )[I ; there is one and only one H 2 R(P ) su
h that� = �J (�P;�k (H)):Proof: By Lemma 5.13, for all H 2 R(P ); �J (�P;�k (H)) is an Ind-judgment.Furthermore Lemma 5.18 says that J (P ) > J (�P;�k (H)) and so �J (�P;�k (H))2 [�1; �J (P )[I : Let U = [H2R(P )f�J (�P;�k (H))g in
luded in [�1; �J (P )[I . As �P;�kis inje
tive, then, using Fa
t 5.21, we get 
ard(U) = 
ard(R(P )). NowCard([�1; �J (P )[I) = 
ard(R(N (�J (P )))) (Fa
t 5.20)= 
ard(R(Res�1�;k�J (P )(P ))) (Lemma 5.13)= 
ard(R(P )) (Corollary 5.14)Hen
e U = [�1; �J (P )[I . 2



Lemma 5.23. Let � and �0 be two judgments in a distributing tree of a spe
i-�
ation then C(�) and C(�0) mat
h the same term i� � and �0 are in the samebran
h.Proof: Fa
t 4.4 gives one sense, the other one is made assuming the opposite andusing the fa
t that if a judgment does not mat
h a term, then its ante
edent donot neither. 2Lemma 5.24. Let � be a judgment in a distributing tree of a spe
i�
ation and�0 an ante
edent of �: If P is a restri
tive hypothesis of �0 su
h that �J (P )�1 2[�; �0[R then C(�) mat
hes C(P ).Proof: by the previous lemma C(�) mat
hes C(�J (P )�1). Furthermore, let Q0denotes Res�0;�J (P )(P ), then Q � P with Lemma 5.9 and so C(Q) = C(P ):Now, sin
e Q is the new hypothesis of �J (P ), it is easy to see that C(�J (P )�1)mat
hes C(Q): Hen
e C(�) mat
hes C(P ): 2We now state the main Proposition below that enables Theorem 2 to hold.Proposition 5.25. Let A be a distributing tree of a spe
i�
ation E withthe right terminal state property and (t; u) be an indu
tive 
all of E : Let alsoB = (�1; x1); : : : ; (�k�1; xk�1); �k be a bran
h of A with C(�k) = t. Let P be arestri
tive hypothesis of �k and �u be the substitution su
h that �u(C(P )) = uwith respe
t the r.t.s.p.. Then for ea
h de
reasing judgment �i in B whi
h is astri
t des
endent of �J (P )�1 (i.e. i < J (P )�1), C(�i) (respe
tively C(�J (P )�1))mat
hes u a

ording to a substitution �ui (respe
tively �uJ (P )�1) andm(' Æ �ui (xi)) � m(' Æ �k;i(xi)),m(' Æ �uJ (P )�1(xJ (P )�1)) < m(' Æ �k;J (P )�1(xJ (P )�1))for all ground 
onstru
tor substitution ' (where �k;j are given in Fa
t 4.4).Proof: Let �i be a de
reasing judgment with i < J (P ) � 1: By Fa
t 4.4, weknow that C(�i) mat
hes C(�J (P )�1) whi
h mat
hes also C(P ) a

ording toLemma 5.24 (with � = �J (P )�1; �0 = �k), and so C(�i) mat
hes u.Now, we are going to show the �rst inequality. Sin
e �i+1 is an Ind-judgment,by Lemma 5.22, there is a restri
tive Q of P su
h that J�P;�k (Q)= i + 1. LetN (�i+1) = 8z(Dz�s ! G) be the new hypothesis of �i+1 and let Q0 be �P;�k (Q):We know that Q � Q0, likewise Q0 � Res�1�k;�J (Q0)(Q0) = N (�J (Q0)): Hen
eQ � N (�i+1) and we 
an write Q = 8z(Dz�s0 ! G) and Q0 = 8z(Dz�s0 ! G):Nowxi . C(�i) = z . C(N (�i+1)) (Remark 5.5)= z . C(Q) (Q � N (�i+1))= s0 . C(P ) (Lemma 5.6).Moreover C(�i) mat
hes C(P ) whi
h mat
hes u. Then, with the previous equal-ities, we have �ui (xi) = �u(s0):Furthermore:



z . C(Q) = z . C(�P;�k(Q)) (Q � �P;�k(Q))= s0 . C(�k) (Lemma 5.6)= s0 . t (C(�k) = t).With the inequalities we have xi . C(�i) = s0 . t. Hen
e, sin
e C(�i) mat
hesC(�k) = t, we get �k;i(xi) = s0.Finally, point 2) of the right terminal state property says that �u(s0) v s0, andso, by Property 4.11, m(' Æ �u(s0)) � m('(s0)). That is to say m(' Æ �ui (xi)) �m(' Æ �k;i(xi))It remains to show the se
ond inequality. We re
all that �J (P ) is an Ind-judgment whose new hypothesis is N (�J (P )) = Res�1�J (P );�k(P ) � P . ThenxJ (P )�1 . C(�J (P )�1) = z . C(N (�J (P ))) (Remark 5.5)= z . C(P ) (C(N (�J (P )) = C(P ))= s . C(�k) (Lemma 5.6)= s . t (C(�k) = t).Thus �k;J (P )�1(xJ (P )�1) = s.Furthermore, we have seen for the �rst inequality that C(�J (P )�1) mat
hes Pwhi
h mat
hes u, then by a previous equality, �uJ (P )�1(xJ (P )�1) = �u(z): Nowusing point 1) of the right terminal state property, we have �u(z) � s whi
h gives,by Property 4.11,m('Æ�u(z)) < m('(s)): Thereforem('Æ�uJ (P )�1(xJ (P )�1)) <m(' Æ �k;J (P )�1(xJ (P )�1)): 26 Con
lusionWhile the measures found from the termination proofs of the re
ursive de�nition
ommand of Coq were shown in [14℄ to be suitable for other systems su
h as theNQTHM of [2, 3℄, they 
annot be de�ned in the extended termination systemwithout losing the de
reasing property. We have solved the problem by showingthe existen
e of other de
reasing measures in the extended termination systemin question (the new ProPre of [12℄). Moreover, the new measures we found inthis paper, enlarge the 
lass of suitable measures in the sense that ea
h re
ursivealgorithm proven to terminate in the previous system ProPre [11℄ is also provento terminate in the extended ProPre system [12℄.The orders 
hara
terised by the measures di�er from the lexi
ographi
 
ombi-nations of one �xed ordering [18, 15, 19℄. We 
an also mention the work of [7℄whi
h supports the use of term orderings 
oming from the rewriting systemsarea espe
ially those methods of [5, 17℄ whi
h aim at automati
ally synthesisingsuitable polynomial orderings for termination of fun
tional programs.There is now no more obsta
le to provide the measures to other systems thatrequire su
h measures. The investigations of formal proofs in this paper highlightnew measures and advo
ate as in [14℄ a termination method based on ordinalmeasures.
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