
On Formalised Proofs of Termination ofReursive Funtions ?Fairouz Kamareddine and Fran�ois MoninDepartment of Computing and Eletrial Engineering,Heriot-Watt University,Edinburgh EH14 4AS, Sotland,fairouz�ee.hw.a.uk, monin�ee.hw.a.ukAbstrat. In proof hekers and theorem provers (e.g. Coq [4℄ and Pro-Pre [13℄) reursive de�nitions of funtions are shown to terminate au-tomatially. In standard non-formalised termination proofs of reursivefuntions, a dereasing measure is sometimes used. Suh a dereasingmeasure is usually diÆult to �nd.By observing the proof trees of the proofs of termination of reursivefuntions in ProPre (the system used in Coq's proofs of termination), [14℄�nds a dereasing measure whih ould be used to show termination inthe standard non-formalised way. This is important beause it establishesa method to �nd dereasing measures that help in showing termination.As the ProPre system made heavy use of strutural rather than indutiverules, an extended more powerful version has been built with new prooftrees based on new rules.In this artile, we show that the ordinal measures found in [14℄ lose thedereasing property in the extended ProPre system and then, set out toshow that the extended ProPre system will still be suitable for �ndingmeasures required by other systems (e.g. NQTHM). We do this by show-ing that exist other measures that an be assoiated to the proof treesdeveloped in the extended ProPre system that respet the dereasingproperty. We also show that the new parameterised measure funtionspreserve the dereasing property up to a simple ondition.1 IntrodutionIn the veri�ation of programs de�ned on reursive data strutures, that useautomated dedution, an important property is that of termination. A reur-sively de�ned funtion terminates if there is a well-founded order suh that eahreursive all of the funtion dereases with respet to this order. Though thetermination problem is undeidable, several methods have been proposed forstudying the termination of funtional programs. For example, measures areused in the well-known NQTHM system of Boyer-Moore [2, 3℄, and in [6℄ thesystem an deal with measures based on polynomial norms. Though eÆient,? Supported by EPSRC GR/L15685.



these methods need however the measures to be given by the user. Other auto-mated systems [18, 15, 19℄ have been developed, these are fully automated butthey use only �xed ordering or a lexiographi ombinations of the ordering.Another approah has been developed in the termination proedure of theCoq prover [4℄ implemented in the ProPre system [11℄. The method is automatedand builds formal proofs beause it is based on the Curry-Howard isomorphismfrom whih lambda-terms are extrated whih ompute the algorithms. In on-trast with other methods as for instane in [3, 6℄, a notion of right terminal stateproperty for proof trees is introdued in the proedure instead of measures. It hasbeen shown in [14℄ that one a termination proof is made, it is then possible to�nd a dereasing measure related to eah proof tree. The measures haraterizein some sense the orders found by the ProPre system (alled rami�ed measure)whih di�er from the lexiographi ombinations of one single �xed ordering.Moreover it has been shown that these measures ould be automatially givenfor the NQTHM system.However a diÆult task for the system of [11℄ is to be able to establish thetermination of the automated onstrution of the proof trees. A drawbak ofthat system is that it is not easy to derive eÆient rules in a formal ontext.More partiularly, the method in [11℄ is restrited to one general strutural ruleand this implies the right terminal state property of proof trees to be limited.To irumvent these drawbaks, the formal logial framework behind themethod in [11℄, has been extended to give rise to a new system [12℄ using otherrules and aommodated with a generalized indution priniple. Furthermore anorder deision proedure on terms has been introdued outside the proof treesthat alleviate the searh of right terminal state properties. As a onsequene, thetermination method an be used by the system in a far more eÆient way andthe lass of formal termination proofs made in the system has been onsiderablyenlarged.The measures oming from the previous system an be also de�ned in the newsystem. But unfortunately they do not enjoy the dereasing property anymore.Therefore, the method of [14℄ annot be used in the new ProPre system [12℄ to�nd suitable measures required by other systems suh as NQTHM. We solve thisproblem in this paper by showing that there exist other measures that an beassoiated to the proof trees developed in the system respeting the dereasingproperty.Moreover, the order deision proedure mentioned above, that is external tothe formal proofs in the ProPre system, is based on the so-alled size measure. So,this measure funtion ould be easily hanged or parameterised in the extendedProPre system. We also show that, up to a simple ondition (Property 4.11),the dereasing property of measures will still hold.Our work has the following advantages:{ We establish a method to �nd the measures needed to establish termina-tion for reursive funtions. We extend the system to a more powerful ver-sion while retaining the dereasing property of measures. This is important



beause non-formalised termination proofs usually rely on the dereasingproperty.{ As the extended version of ProPre used the advantageous order deisionproedure whih was isolated from the formal proofs (in ontrast to beingintertwined with them as in the earlier version of ProPre), this implied thatthe measure funtions ould be easily parameterised or hanged. In this paperwe show that those measure funtions preserve the dereasing property upto a simple ondition. This means that the measures (now in a larger lass)found by the method of this paper an be used by systems suh as NQTHM.2 PreliminariesWe assume familiarity with basi notions of type theory and term rewriting. Thefollowing de�nition ontains some basi notions needed throughout the paper.De�nition 2.1.1. Sorts, Funtions, Sorted Signature We assume a set S of sorts and a�nite set F of funtion symbols (or funtions). We use s, s1, s2, : : : , s0, s00,: : : to range over sorts and f; f1; f2; : : : ; f 0; f 00; : : : to range over funtions.A sorted signature is a �nite set F of funtions and a set S of sorts.2. Types, Arities of funtions and Constants For every funtion f 2 F ,we assoiate a type s1; : : : ; sn ! s with s; s1; : : : ; sn 2 S. The number n � 0denotes the arity of f . A funtion is alled onstant if its arity is 0.3. De�ned and Construtor SymbolsWe assume that the set of funtionsF is divided in two disjoint sets F and Fd. Funtions in F (whih alsoinlude the onstants) are alled onstrutor symbols or onstrutors andthose in Fd are alled de�ned symbols or de�ned funtions.4. Variables Let X be a ountable set of variables disjoint from F . We assumethat for every variable is assoiated a sort.5. Terms over F and X of sort s: T (F;X )s If s is a sort, F is a subset ofF and X is a ertain set of variables, then the set of terms over F and X(simply alled terms) of sort s denoted T (F;X )s, is the smallest set where:(a) every element of X of sort s is a term of sort s,(b) if t1; : : : ; tn are terms of sort s1; : : : ; sn respetively, and if f is a funtionof type s1; : : : ; sn ! s in F , then f(t1; : : : ; tn) is a term of sort s.We use t; l; r; u; v; t1; l1; r1; t2; : : : ; t0; l0; r0; t00; : : : to range over T (F;X )s. IfX is empty, we denote T (F;X )s by T (F )s. T (F;X ) = Ss2S T (F;X )s.6. Construtor Terms, Ground terms and Ground Construtor TermsReall the set of variables X and the set of funtions F = F [ Fd.(a) Elements of T (F;X )s, i.e., terms suh that every funtion symbol whihours in them is a onstrutor symbol, are alled onstrutor terms.(b) Elements of T (F [ Fd)s, i.e., terms in whih no variable ours, arealled ground terms.() Elements of T (F)s i.e., terms whih do not have any variables and whereevery funtion symbol whih ours in them is a onstrutor symbol, arealled ground onstrutor terms.



7. (Sorted) Equations A sorted equation is a pair (l; r)s of terms l and r ofa sort s. We always assume that the equation is sorted and hene, we maydrop the term sorted and speak only of equations. An equation (l; r)s givesrise to a rewrite rule l ! r. Although a pair (l; r)s is oriented it will also bewritten l =s r. When no onfusion ours, the sort may be disarded fromthe equation and we write (l; r), l ! r and l = r. l (resp. r) are alled theleft (resp. right) hand side of the equation.8. Left-Linear Equations An equation is left-linear i� eah variable oursonly one in the left-hand side of the equation.9. Non-Overlapping Equations A set of equations is non overlapping i� noleft-hand sides unify eah other.10. Spei�ation or Construtor System A spei�ation of a funtion f :s1; : : : ; sn ! s in Fd is a non overlapping set of left-linear equationsf(e1; e01)s; : : : ; (ep; e0p)sg suh that for all 1 � i � p, ei is of the formf(t1; : : : ; tn) with tj 2 T (F;X )sj , j = 1; : : : ; n; and e0i 2 T (F [ Fd;X )s.We use E , E 0, : : : to range over spei�ations.11. fConstrutor, Ground, Ground Construtorg Substitution A sub-stitution � is a mapping from the set X of variables to the set of termsT (F ;X ), suh that for every variable x, �(x) and x are of the same sort.A substitution � is alled a onstrutor substitution (respetively groundsubstitution, ground onstrutor substitution) if �(x) is a onstrutor term(respetively ground term, ground onstrutor term) for any variable x.12. Reursive Call Let E be a spei�ation of a funtion f with type s1; : : : ;sn ! s. A reursive all of f is a pair (f(t1; : : : ; tn); f(u1; : : : ; un)) wheref(t1; : : : ; tn) is a left-hand side of an equation of f and f(u1; : : : ; un) is asubterm of the orresponding right-hand side.3 The extended ProPre systemThe extended ProPre system deals with indutive types that are de�ned withseond order formulas using �rst and seond order universal quanti�ation, im-pliation and a general least �xed point operator on prediate variables. The lastonnetive aims at improving the eÆieny of the extrated programs (see [16℄).Unlike the previous system [11℄, a onnetor symbol � is added whose mean-ing is a onnetive onjuntion used with some restritions but without anyalgorithmi ounterpart. The last property is interesting beause it �rst allowsthe programs not to arry out some unneessary omputations, and seondly itan easily support indutive methods (whih was not the ase in the previoussystem). Combined with the onnetor �, a binary relation symbol � is added. Itorresponds to a well-founded ordering on terms whih is used for the indutiverule de�ned in the setion.De�nition 3.1. The language is de�ned as follows:1. Terms The terms of De�nition 2.1.6 onstitute the �rst order part.



2. Data Symbols For eah sort si is assoiated a unary seond order prediatesaid also data symbol and denoted by Dsi or Di, whose meaning is: t 2T (F)si i� Dsi(t) holds.3. Formulae A formula is built as follows:(a) if D is a data symbol and t is a term then D(t) is a formula,(b) if A is a formula and x is a variable, then 8xA is a formula,() if A is a formula and u; v are terms, then A � (u � v) is a formula,(d) if A and B are formulas, then A! B is a formula.We use A;B; P; F; F1; F2; : : : to range over formulae.Notation 3.2. We will use some onvenient onventions:1. Du�t is a shorthand for D(u) � (u � t),2. 8xA! B denotes 8x(A! B).3. F1; : : : ; Fn ! F denotes F1 ! (F2 ! : : :! (Fn ! F )) : : : ).4. Let P = F1; : : : ; Fk;8xD0(x); Fk+1; : : : ; Fm ! D(t) be a formula, thenP�D0(x) denotes the formula F1; : : : ; Fk; Fk+1; : : : ; Fm ! D(t).Note that the later notation is orret as it will be used with De�nition 3.4.De�nition 3.3. Let f : s1; : : : ; sn ! s 2 Fd. The termination statement forf is the formula: 8x1(Ds1(x1)! : : :! 8xn(Dsn(xn)! Ds(f(x1; : : : ; xn))) : : : ),also written by Notation 3.2 as: 8x1D1(x1); : : : ;8xnDn(xn)! D(f(x1; : : : ; xn)):In the previous ProPre system, the proofs relied on two fundamental notions:the distributing trees and the right terminal state property. In the extendedversion, the distributing trees now inlude two new rules, said Strut and Indrules de�ned in the setion. The de�nition of the right terminal state property(De�nition 3.8) is now more sophistiated due to the introdution of these rules.The ProPre prover makes termination proofs, said I-proofs, with the help ofsome maro-rules (or tatis, or derived rules) of Natural Dedution for PrediateCalulus (see [9℄). The set of the rules and the de�nition of I-proofs is desribedin [12℄. Due to Proposition 3.9 below, we will only need here to de�ne the Strut-rule and the Ind-rule whih onstitute the distributing trees in ProPre.Although the earlier ProPre system an prove the termination of many al-gorithms, there are numerous interesting algorithms for whose there exist noproof trees. For instane, the example below illustrates that the use Re-rulede�ned in [11℄ an lead to loss of eÆieny. Let Tr be the sort tree, with theleave onstant le : Tr and the branh onstrutor br : Tr; T r ! Tr. Considerthe spei�ation of the atten funtion flat : Tr ! Tr given by the followingequations: flat(le) = leflat(br(le; a)) = br(le; f lat(a))flat(br(br(a1; a2); a)) = flat(br(a1; br(a2; a))):



While the spei�ation annot be proven to terminate in the previous system [11℄,the termination proof is now easily done in the extended system due to the newrules presented below. Note that a single ordering using for instane the size mea-sure [18℄ is not suÆient for the termination proof beause of the presene of theseond reursive all. The flatten an be proved to terminate using polynomialordering [10℄, but these have to be given by the user [1℄. Therefore methods havebeen developed in [5, 17℄ that aim at synthesising polynomial orderings.We now introdue the rules that are used in the extended system. Let begiven a sort s. We then onsider all the onstants 1; : : : ; p of type :! s, and allthe onstrutor funtions Ci : si1 ; : : : ; sik ! s, (ik � 1), i � q, whose range iss. Note that the above distintion between onstants and the other onstrutorsjust orresponds to a question of presentation. Let also F (x) be a formula wherex, of sort s, is free in F . Then:1. �i(F ) denotes F [i=x℄; i � p;2. �Ci(F ) denotes 8xi1Di1(xi1 ); : : : ;8xikDik (xik )! F [Ci(xi1 ; : : : ; xik )=x℄,i � q, where xi1 ; : : : ; xik are not in F ,3. 	Ci(F ) denotes 8xi1Di1(xi1 ); : : : ;8xikDik(xik );8z(Dz�Ci(xi1 ;::: ;xik ) !F [z=x℄)! F [Ci(xi1 ; : : : ; xik )=x℄), i � q, where z; xi1 ; : : : ; xik are not in F .De�nition 3.4. Let P be of the form F1; : : : ; Fk;8xD(x); Fk+1; : : : ; Fm !D0(t). The indution rule for the sort s is a hoie between the two followingrules: � ` �i(P�D(x)) i � p; � ` �Cj (P�D(x)) j � q� ` P Strut(x)� ` �i(P�D(x)) i � p; � ` 	Cj (P�D(x)) j � q� ` P Ind(x)For instane the indution rule Ind on integers is:� ` P�N(x)(0) � ` 8yN(y);8z(Nz�sy ! P�N(x)(z))! P�N(x)(sy)� ` P Ind(x)The Strut has to be onsidered as a reasoning by ases. The above rules leadthe followingDe�nition 3.5. A formula F is alled an I-formula i� F is of the formH1; : : : ; Hm ! D(f(t1; : : :; tn)) with D a data symbol and f 2 Fd suh thatfor all i = 1; : : : ;m, Hi is of the form either 8xD0(x) or 8z(D0z�u ! F 0), withD0 a data symbol, F 0 an I-formula and u a term.Furthermore a formula of the above form Hi = 8z(D0z�u ! F 0) is alled arestritive hypothesis of F .Note that the above de�nition is a reursive de�nition whose initial ase anbe obtained with \Hi = 8xD0(x)". The heart C(F ) of the formula F will denotethe term f(t1; : : :; tn).



Though a restritive hypothesis is not an I-formula, we will also say that H 0 isa restritive hypothesis of another restritive hypothesis 8z(D0z�s ! F 0) if H 0is a restritive hypothesis of the I-formula F 0. Finally C(8z(D0z�s ! F 0)) willbe C(F 0).De�nition 3.6. Let E be a spei�ation of a funtion f of type s1; : : : ; sn ! s:A is a distributing tree for E i� A is a proof tree built only with the Strut ruleand Ind rule suh that:1. its root is ` 8x1D1(x1); : : : ;8xnDn(xn) ! D(f(x1; : : : ; xn)) (terminationstatement).2. if L = f�1 ` �1; : : : ; �q ` �qg is the set of A's leaves, then there exists a oneto one appliation b: L ,! E suh that b(L) = (t; u) if and only if L = (� ` �)where � is an I-formula with C(�) = t.One an see that the anteedents remain unhanged in the de�nition of the rulesStrut and Ind in the ProPre system. Though this is not so usual, it turns outthat the anteedent formulas are embedded in the onsequents. So, as the ontext(i.e. the set of anteedents) is empty in the root of a distributing tree, there isno anteedent in eah node of the tree. Therefore we will use the notation � bothfor ` � and for the formula itself. One notes that any formula in a distributingtree is an I-formula.Before stating the right terminal state property that enjoy the distributingtrees in the I-proofs developed in the ProPre system, we assume that there isa well founded ordering � on term orresponding to the interpretation of therelation symbol � de�ned in the language. This ordering is made expliit in thenext setion. We also need theDe�nition 3.7. We say that an I-formula or restritive hypothesis P an beapplied to a term t if C(P ) mathes t aording to a substitution � suh thatfor eah variable x ourring free in P we have �(x) = x.De�nition 3.8. Let E be a spei�ation of a funtion f and A be a distributingtree for E . We say that A satis�es the right terminal state property (r.t.s.p.) i�for all leaves L = � of A with e 2 E the equation suh that b(L) = e (b givenin De�nition 3.6) and for all reursive alls (t; v) of e, there exists a restritivehypothesis P = 8zDz�s; H1; : : : ; Hk ! D(w) of � and a suh that P an beapplied to v aording to a substitution � with:1. �(z) � s and2. for all restritive hypothesis H of P of the form 8yD0y�s0 ! K there is arestritive hypothesis H0 of � of the form 8yD0y�s0 ! K suh that �(s0) vs0.This haraterization is due to the following proposition (see [12℄ for proof).Proposition 3.9. There exists an I-proof for f i� there exists a distributingtree for f with the right terminal state.



Proposition 3.9 says that one an only fous on distributing trees that satisfy theright terminal state. So, as already mentioned, we do not expliit I-proofs herebut we only onsider distributing trees and the right terminal state properties.4 Synthesising ordinal measuresThe earlier system built proof trees whih have the right terminal state propertyde�ned in [13℄. It has been shown in [14℄ that one an extrat an ordinal measure,whih will be alled R-measure, from eah proof tree. The R-measure has thedereasing property if the proof tree satis�es the right terminal state property.This measure an be also de�ned against a proof tree with the new ontext. Butthe dereasing property of the R-measure is not valid anymore. A reason is that,as the system ProPre orresponds to an extension of the Reursive Definitionof the Coq system, the existene of suitable measures does not orrespond anylonger to the R-measures. It turns out that if we want to retrieve the dereasingproperty, we need to extend the lass of measures to other measures.In this setion we reall the de�nition of the R-measures but in the ontextof the extended system, and we present the theorem on the dereasing propertyof the measures that fails but whih will be re-established. We then introduethe extended measures for whih Theorem 1 holds again.4.1 The R-measuresBefore giving the ordinal measures we �rst introdue some de�nitions onerningthe judgments in distributing trees.De�nition 4.1. Let A be a distributing tree. A branh B from the root �1 toa leaf �k will be denoted by (�1; x1); : : : ; (�k�1; xk�1); �k where xi (1 � i < k),is the variable for whih either the rule Strut or Ind is applied on �i.De�nition 4.2. Let A be a tree and � a node of A. The height of � in A,denoted by H(�;A), is the height of the subtree of A whose root is � minus one.Aording to the de�nition of a distributing tree A, we have the two followingstraightforward fats.Fat 4.3. Let E be a spei�ation of a funtion f of type s1; : : : ; sn ! s andA be a distributing tree. For eah (t1; : : : ; tn) 2 T (F)s1 � : : : � T (F)sn thereexists one and only one leaf � of A and a ground onstrutor substitution � suhthat �(C(�)) = f(t1; : : : ; tn).Fat 4.4. For every branh ofA from the root to a leaf (�1; x1); : : : ; (�k�1; xk�1);�k and for all i � j � k, there exists a onstrutor substitution �j;i suh that�j;i(C(�i)) = C(�j):De�nition 4.5. The reursive length of a term t of sort s is de�ned by:



1. if t is a onstant , then lg() = 0,2. if t = C(t1; : : : ; tn) with C : s1; : : : ; sn ! s 2 F then lg(t) = 1+Xsj=s lg(tj).De�nition 4.6. Let E be a spei�ation of a funtion f : s1; : : : ; sn ! s suhthat there exists a distributing tree A for E . The R-measure
R : T (F)s1 � : : : � T (F)sn ! !!, where ! is the least in�nite ordinal, isde�ned as follows:Let t = (t1; : : : ; tn) be an element of the domain and � be the leaf of A suh thatthere is a substitution � with �(C(�)) = f(t) (Fat 4.3). Let B be the branh(�1; x1); : : : ; (�k�1; xk�1); � of A from the root to �, let �r;s be the substitutionsof Fat 4.4. Then 
R(t) is de�ned as the following ordinal sum:
R(t) = k�1Xi=1 !H(�i;A) � lg(�(�k;i(xi))) ;We now need some de�nitions before giving Theorem 1.De�nition 4.7. A �nite sequene of positive integers q will be alled a position,� will denote the empty sequene and � the onatenation operation on sequenes.For eah position q and sort s, we will assume there is a new variable of sort sindexed by q distint from those of X . The following de�nition allows us to stateTheorem 1 below.De�nition 4.8. Let be a term t and q be a position, the term [[t℄℄q is de�ned asfollows: [[℄℄q =  if  is a onstant, [[x℄℄q = x if x is a variable, [[C(t1; : : : ; tn)℄℄q =C([[t1℄℄q�1; : : : ; [[tn℄℄q�n) if C 2 F, and [[f(t1; : : : ; tn)℄℄q = xq if f 2 Fd.Theorem 1. Let E be a spei�ation of a funtion f : s1; : : : ; sn ! s and A be adistributing tree A for E having the right terminal state property. The assoiatedmeasure 
R then satis�es the dereasing property. That is to say, for eah re-ursive all (f(t1; : : : ; tn); f(u1; : : : ; un)) of E and for every ground onstrutorsubstitution ' we have: 
R('(t1); : : : ; '(tn)) > 
R('([[u1℄℄1); : : : ; '([[un℄℄n))Unfortunately, though Theorem 1 holds in the ontext of R-proofs (see [14℄),examples show that it fails in the urrent ontext. Consider, for instane, thesimple example of the spei�ation of the addition funtion add : nat; nat! nat,de�ned with an unusual way illustrating our purpose.add(s(x); s(y)) = add(s(s(x)); y)add(0; y) = yadd(s(x); 0) = s(x)There exists a tree whih enjoys the right terminal state property that leads tothe following measure: 
R(u; v) = ! � lg(u) + lg(v). Obviously the dereasingproperty does not hold.In the remaining of the setion, we introdue new measures that enable thetheorem to be restored.



4.2 The new rami�ed measuresAs already mentioned, an ordering relation � on term is introdued in the ex-tended system. In ontrast to the previous system, this relation an be hekedoutside of the formal proofs and so an be easily modi�ed independently of thelogial framework of the system. The ordering relation is related to a measureon terms in the following way.De�nition 4.9. Assume a measure m on the terms ranging over natural num-bers. Let u; v 2 T (F;X )s for a given sort s. We say that u � v i�:1)m(u) < m(v); 2) Var(u) � Var(v); 3) u is linearA speial measure, the so alled size measure lgi, is used in the system and isde�ned as follows:De�nition 4.10. The size measure of a term t of sort s is given by:1. if t is a onstant or a variable, then lgi(t) = 1,2. if t = C(t1; : : : ; tn) with C : s1; : : : ; sn ! s 2 F then lgi(t) = 1 + lgi(t1) +: : :+ lgi(tn)Note that De�nition 4.13 uses only the value on onstrutor ground terms forthe measure m, but this one is also de�ned on onstrutor terms beause it isneeded for the termination proofs of the ProPre system.In order to be able to prove the dereasing property of the new ordinal measuresde�ned below, we will only need to assume a property on the measure m.Property 4.11. Let u; v 2 T (F;X )s suh that u � v: Then for all onstrutorsubstitutions �; we have m(�(u)) < m(�(v)):Note that the lemma obviously holds for lgi. For that, it is enough to remarkthat lgi(t)�1 � 0 and lgi(�(t)) = lgi(t)+#(x; t)� Xx2Var(t)(lgi(�(x))� 1) for anyterm t, where Var(t) denotes the set of variables whih our in t and #(x; t) isthe number of the ourrenes of the variable x in t.It is now neessary to distinguish the sequents oming respetively from an appli-ation of the Strut-rule and the Ind-rule. Therefore we introdue the following:De�nition 4.12. Let � be a judgment in a distributing tree A and �0 animmediate hildren of �. We say that � is dereasing and �0 is an Ind-judgmentif one omes from the other using the Ind rule. The test funtion � is de�ned oneah node as follows: �(�) is 1 if � is a dereasing judgment and 0 if not.De�nition 4.13. Let E be a spei�ation of a funtion f : s1; : : : ; sn ! ssuh that there exists a distributing tree A for E . The new rami�ed measure
I : T (F)s1 � : : : � T (F)sn ! !! , is de�ned as follows:Let t = (t1; : : : ; tn) be an element of the domain and � be the leaf of A suh that



there is a substitution � with �(C(�)) = f(t) (Fat 4.3). Let B be the branh(�1; x1); : : : ; (�k�1; xk�1); � of A from the root to �, let �r;s be the substitutionsof Fat 4.4. Then
I(t) = k�1Xi=1 !H(�i;A) � �(�i) �m(�(�k;i(xi))) :The intuition would suggest to substitute only the measure m instead of thereursive lg in De�nition 4.6. But one again, examples show that Theorem 1fails in that ase. It is now far from obvious that the new ordinal measures enjoythe dereasing property. However Theorem 1 now holds with the new measures.whose version is given below with Theorem 2Theorem 2. Let E be a spei�ation of a funtion f : s1; : : : ; sn ! s and A be adistributing tree A for E having the right terminal state property. The assoiatedmeasure 
I then satis�es the dereasing property. That is to say, for eah re-ursive all (f(t1; : : : ; tn); f(u1; : : : ; un)) of E and for every ground onstrutorsubstitution ' we have: 
I('(t1); : : : ; '(tn)) > 
I('([[u1℄℄1); : : : ; '([[un℄℄n))Proof: The proof is long but it an be derived from the main Proposition 5.25below. The reader is referred to [8℄ for a detailed proof of Theorem 2. 2Now that we have Theorem 2, we an extrat from an automated terminationproof of the atten funtion de�ned at Setion 3 the following ordinal measurewhih has the dereasing property:
I (le) = ! 
I(br(le; a)) = ! � (1 + lgi(a))
I(br(br(a; b); ) = ! � (2 + lgi(a) + lgi(b) + lgi()) + 1 + lgi(a) + lgi(b).5 The analysis of the I-formulasThis setion is devoted to the analysis of the I-formulas. Due to the shape ofthe distributing trees and the I-formula that appear in the branhes, we need tointrodue some de�nitions and to establish several lemmas whih will is used forthe proof of Theorem 2 and Proposition 5.25 .De�nition 5.1. For a term t and a subterm u of t that has only one ourrenein t, u . t will denote the position of u in t.De�nition 5.2. RH(F ) denotes the set of the restritive hypotheses of anI-formula F and for P = 8z(Dz�s ! F 0) with F 0 an I-formula, we de�neRH(P ) = RH(F 0). For Pi and Pj in RH(F ) we say that Pi is before Pj if F anbe written P1; : : : ; Pk ! D(t) with 1 � j < i � k. Moreover, for a restritivehypothesis P of F , then #(P; F ) = 1 + ardfP 0 2 R(F ); P 0 before Pg.One an easily see that, if �0 is an immediate anteedent of � in a distributingtree, then eah restritive hypothesis of � orresponds to a restritive hypothesisin �0. A new restritive hypothesis is also in �0 if the rule is Ind. Formally wehave the following de�nition.



De�nition 5.3. Let � be a judgment in a distributing tree and �0 an immediateanteedent of �. We de�ne an injetive appliation Res�0;� : R(�) ,! R(�0) withRes�0;�(P ) the restritive hypothesis P 0 in R(�0) suh that #(P 0; �0) = #(P; �).Res�0;�(P ) an be seen as the residual of P in �0 and therefore the appliationan be generalized to any anteedent �0 of � using omposition of appliations.De�nition 5.4. For an Ind-judgment �0 in a distributing tree, the restritivehypothesis P in � suh that #(P; �0) = ard(R(�0)) is alled the new hypothesis,denoted by N (�0). In partiular, it is suh that all restritive hypotheses in �0are before P .Remark 5.5. We an remark that if � is a dereasing judgment with x theindution variable and �0 an immediate anteedent then x .C(�) = z . C(N (�))where the new hypothesis N (�) is of the form 8z(Dz�s ! H). This will be usedfor the proof of Proposition 5.25.If �0 is an immediate anteedent of a dereasing judgment �, we know that �0is of the form: 8x1D1(x1); : : : ;8xkDk(xk);N (�0)! ��D(x)[w=x℄, with N (�0) =z(Dz�w ! ��D(x)[z=x℄). So, for a Ind-judgment �0, we an easily de�ne theappliation D�0 : R(N (�0)) ,! R(�0) where D�0(Q) is the restritive hypothesisQ0 of ��D(x)[w=x℄ with #(Q0; ��D(x)[w=x℄) = #(Q; ��D(x)[z=x℄). We an saythat D is a dupliation of restritive hypotheses.Lemma 5.6. Let P = 8z(Dz�s; H1; : : : ; Hk ! D(t)) be a restritive hypothesis� of a judgment in a distributing tree then1) the variables of s are free in P and have no other ourrenes in P;2) the variables in P distint of those in s are bounded in P .3) s is a subterm of C(�) and s . C(�) = z . C(P ).Proof: See [12℄. 2De�nition 5.7. Let G and F be two restritive hypotheses. We de�ne a on-gruene relation as follows: F and G are said similar, denoted by F � G if theyare respetively of the form 8z(D(z)�s ! H) and 8z(D(z)�t ! H).Lemma 5.8. Given an Ind-judgment � in a distributing tree and P a restritivehypothesis of N (�). Then D�(P ) � P .Proof: Aording to the form of N (�) (see the de�nition of D�0), we know thatP and D�(P ) are of the form 8y(D0(y)�s0 ! H 0)[z=x℄ and 8y(D0(y)�s0 !H 0)[w=x℄. Lemma 5.6 says that x does not our in H (and may not possibly o-ur in s0). Therefore P = 8y(D0(y)�s0[z=x℄ ! H 0) and D�(P ) = 8y(D0(y)�s0[w=x℄! H 0), thus P � D�(P ). 2Lemma 5.9. Let P be a restritive hypothesis of � in a distributing tree, and�0 an anteedent of �. Then Res�0;�(P ) � P .Proof: By indution on the branh between � and �0. 2



Corollary 5.10. If � is a judgment in a distributing tree, �0 an immediateanteedent of �, and P a restritive hypothesis of �, thenR(Res�0;�(P )) = R(P ).Proof: By Lemma 5.9, we have P = 8z(D(z)�s1 ! F ) and Res�0;�(P ) =8z(D(z)�s2 ! F ). Thus R(P ) = F = R(Res�0;�(P )). 2Lemma 5.11. For all judgments � in a distributing tree, then there does notexist two restritive hypotheses similar in �.Proof: See [8℄ 2De�nition 5.12. Let � be a judgment in a distributing tree and �1, : : : ,�n = � the onseutive judgments from the root �1 to �. Let P be a restritivehypothesis of �. We note J (P ) the �rst integer j suh that there is Q 2 R(�j)with P = Res�;�j (Q), whih is orret sine R�;�(P ) = P .Sine every appliationRes�0;� is injetive,Res�1�0;�(P ) will denote the anteedentof P with the assumption that P is in the image of the appliation.Lemma 5.13. In the ontext of the previous de�nition, the rule between �J (P )and �J (P )�1 is the Ind-rule, and Res�1�;�J(P )(P ) = N (�J (P )).Proof: The opposite leads to a ontradition with the de�nition of J (P ). 2Corollary 5.14. Let P be a restritive hypothesis of a judgment � in a dis-tributing tree. Then, using also Corollary 5.10, we haveR(P ) = R(Res�1�;�J (P )(P )) = R(N (�J (P ))):De�nition 5.15. Let � be a judgment in a distributing tree and P be a re-stritive hypothesis of �. Then we an now etasblish the following diagram andthereby de�ne the appliation �P;� : R(P ) ,! R(�), with �P;� = Res�;�J(P ) ÆD�J (P ) : R(P ) -�P;� R(�)6?R(Res�1�;�J (P )(P )| {z }N (�J (P )) ) - R(�J (P ))Id o Res�;�J(P )
D�J (P )� �6

In the ase where � is an Ind-judgment and P = N (�), then �J (P ) = � and�P;� = D�. So, � an be seen as a generalization ofD for all restritive hypothesesof any �.



Fat 5.16. We remark that �P;� is injetive by omposition of injetive ap-pliations. Moreover, aording to Lemmas 5.8 and 5.9, �P;�(Q) � Q for allQ 2 R(P ).Lemma 5.17. For a restritive hypothesis P of a judgment � in a distributingtree and Q a restritive hypothesis of P , we have J (P ) > J (�P;�(Q)):Proof: See [8℄ 2Lemma 5.18. Let A be a distributing tree for a spei�ation of a funtion,having the right terminal state property. Let � be a leaf of A and (t; v) be areursive all of C(�). In this ontext, if P is the restritive hypothesis of �holding De�nition 3.8 of the r.t.s.p of A and H and H0 holding the point 2) ofDe�nition 3.8 with the same notations, then �P;�(H) = H0 and J (P ) > J (H0).Proof: Aording to the point 2) of De�nition 3.8, we haveH � H0: Furthermore,by Fat 5.16, �P;�(H) � H: Hene Lemma 5.11 gives us that �P;�(Q) = H0 andthen J (P ) > J (H0) with Lemma 5.17. 2De�nition 5.19. For any � in a distributing tree and an anteedent �0 of �,then [�; �0℄D (respetively [�; �0[I) will denote the set of the dereasing judgments(respetively Ind-judgments) between � and �0 (respetively without �0).Fat 5.20. Let E be a spei�ation of a funtion f and A be a distributing treefor E . If �1 is the root of A, that is to say the termination statement of f , andif � is an Ind-judgment in A; then ard(R(N (�))) = ard([�1; �[R):Proof: Sine ard(R(�)) = ard(R(N (�)))+1; it is atually enough to show thatard(R(�)) = ard([�1; �℄R) whih is then straightforward by indution on thenumber of judgments �1; : : : ; �. 2Fat 5.21. Let P and P 0 be two distint restritive hypotheses of a judgment�, then J (P ) 6= J (P 0).Proof: The opposite leads to a ontradition thanks to Lemma 5.13. 2Lemma 5.22. Let A be a distributing tree having the r.t.s.p. with the root �1:Let P be the restritive hypothesis of a leaf �k in the de�nition of the r.s.t.p.,then for all � 2 [�1; �J (P )[I ; there is one and only one H 2 R(P ) suh that� = �J (�P;�k (H)):Proof: By Lemma 5.13, for all H 2 R(P ); �J (�P;�k (H)) is an Ind-judgment.Furthermore Lemma 5.18 says that J (P ) > J (�P;�k (H)) and so �J (�P;�k (H))2 [�1; �J (P )[I : Let U = [H2R(P )f�J (�P;�k (H))g inluded in [�1; �J (P )[I . As �P;�kis injetive, then, using Fat 5.21, we get ard(U) = ard(R(P )). NowCard([�1; �J (P )[I) = ard(R(N (�J (P )))) (Fat 5.20)= ard(R(Res�1�;k�J (P )(P ))) (Lemma 5.13)= ard(R(P )) (Corollary 5.14)Hene U = [�1; �J (P )[I . 2



Lemma 5.23. Let � and �0 be two judgments in a distributing tree of a spei-�ation then C(�) and C(�0) math the same term i� � and �0 are in the samebranh.Proof: Fat 4.4 gives one sense, the other one is made assuming the opposite andusing the fat that if a judgment does not math a term, then its anteedent donot neither. 2Lemma 5.24. Let � be a judgment in a distributing tree of a spei�ation and�0 an anteedent of �: If P is a restritive hypothesis of �0 suh that �J (P )�1 2[�; �0[R then C(�) mathes C(P ).Proof: by the previous lemma C(�) mathes C(�J (P )�1). Furthermore, let Q0denotes Res�0;�J (P )(P ), then Q � P with Lemma 5.9 and so C(Q) = C(P ):Now, sine Q is the new hypothesis of �J (P ), it is easy to see that C(�J (P )�1)mathes C(Q): Hene C(�) mathes C(P ): 2We now state the main Proposition below that enables Theorem 2 to hold.Proposition 5.25. Let A be a distributing tree of a spei�ation E withthe right terminal state property and (t; u) be an indutive all of E : Let alsoB = (�1; x1); : : : ; (�k�1; xk�1); �k be a branh of A with C(�k) = t. Let P be arestritive hypothesis of �k and �u be the substitution suh that �u(C(P )) = uwith respet the r.t.s.p.. Then for eah dereasing judgment �i in B whih is astrit desendent of �J (P )�1 (i.e. i < J (P )�1), C(�i) (respetively C(�J (P )�1))mathes u aording to a substitution �ui (respetively �uJ (P )�1) andm(' Æ �ui (xi)) � m(' Æ �k;i(xi)),m(' Æ �uJ (P )�1(xJ (P )�1)) < m(' Æ �k;J (P )�1(xJ (P )�1))for all ground onstrutor substitution ' (where �k;j are given in Fat 4.4).Proof: Let �i be a dereasing judgment with i < J (P ) � 1: By Fat 4.4, weknow that C(�i) mathes C(�J (P )�1) whih mathes also C(P ) aording toLemma 5.24 (with � = �J (P )�1; �0 = �k), and so C(�i) mathes u.Now, we are going to show the �rst inequality. Sine �i+1 is an Ind-judgment,by Lemma 5.22, there is a restritive Q of P suh that J�P;�k (Q)= i + 1. LetN (�i+1) = 8z(Dz�s ! G) be the new hypothesis of �i+1 and let Q0 be �P;�k (Q):We know that Q � Q0, likewise Q0 � Res�1�k;�J (Q0)(Q0) = N (�J (Q0)): HeneQ � N (�i+1) and we an write Q = 8z(Dz�s0 ! G) and Q0 = 8z(Dz�s0 ! G):Nowxi . C(�i) = z . C(N (�i+1)) (Remark 5.5)= z . C(Q) (Q � N (�i+1))= s0 . C(P ) (Lemma 5.6).Moreover C(�i) mathes C(P ) whih mathes u. Then, with the previous equal-ities, we have �ui (xi) = �u(s0):Furthermore:



z . C(Q) = z . C(�P;�k(Q)) (Q � �P;�k(Q))= s0 . C(�k) (Lemma 5.6)= s0 . t (C(�k) = t).With the inequalities we have xi . C(�i) = s0 . t. Hene, sine C(�i) mathesC(�k) = t, we get �k;i(xi) = s0.Finally, point 2) of the right terminal state property says that �u(s0) v s0, andso, by Property 4.11, m(' Æ �u(s0)) � m('(s0)). That is to say m(' Æ �ui (xi)) �m(' Æ �k;i(xi))It remains to show the seond inequality. We reall that �J (P ) is an Ind-judgment whose new hypothesis is N (�J (P )) = Res�1�J (P );�k(P ) � P . ThenxJ (P )�1 . C(�J (P )�1) = z . C(N (�J (P ))) (Remark 5.5)= z . C(P ) (C(N (�J (P )) = C(P ))= s . C(�k) (Lemma 5.6)= s . t (C(�k) = t).Thus �k;J (P )�1(xJ (P )�1) = s.Furthermore, we have seen for the �rst inequality that C(�J (P )�1) mathes Pwhih mathes u, then by a previous equality, �uJ (P )�1(xJ (P )�1) = �u(z): Nowusing point 1) of the right terminal state property, we have �u(z) � s whih gives,by Property 4.11,m('Æ�u(z)) < m('(s)): Thereforem('Æ�uJ (P )�1(xJ (P )�1)) <m(' Æ �k;J (P )�1(xJ (P )�1)): 26 ConlusionWhile the measures found from the termination proofs of the reursive de�nitionommand of Coq were shown in [14℄ to be suitable for other systems suh as theNQTHM of [2, 3℄, they annot be de�ned in the extended termination systemwithout losing the dereasing property. We have solved the problem by showingthe existene of other dereasing measures in the extended termination systemin question (the new ProPre of [12℄). Moreover, the new measures we found inthis paper, enlarge the lass of suitable measures in the sense that eah reursivealgorithm proven to terminate in the previous system ProPre [11℄ is also provento terminate in the extended ProPre system [12℄.The orders haraterised by the measures di�er from the lexiographi ombi-nations of one �xed ordering [18, 15, 19℄. We an also mention the work of [7℄whih supports the use of term orderings oming from the rewriting systemsarea espeially those methods of [5, 17℄ whih aim at automatially synthesisingsuitable polynomial orderings for termination of funtional programs.There is now no more obstale to provide the measures to other systems thatrequire suh measures. The investigations of formal proofs in this paper highlightnew measures and advoate as in [14℄ a termination method based on ordinalmeasures.
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