On Formalised Proofs of Termination of
Recursive Functions *

Fairouz Kamareddine and Frangois Monin

Department of Computing and Electrical Engineering,
Heriot-Watt University,
Edinburgh EH14 4AS, Scotland,

fairouz@cee.hw.ac.uk, monin@cee.hw.ac.uk

Abstract. In proof checkers and theorem provers (e.g. Coq [4] and Pro-
Pre [13]) recursive definitions of functions are shown to terminate au-
tomatically. In standard non-formalised termination proofs of recursive
functions, a decreasing measure is sometimes used. Such a decreasing
measure is usually difficult to find.

By observing the proof trees of the proofs of termination of recursive
functions in ProPre (the system used in Coq’s proofs of termination), [14]
finds a decreasing measure which could be used to show termination in
the standard non-formalised way. This is important because it establishes
a method to find decreasing measures that help in showing termination.
As the ProPre system made heavy use of structural rather than inductive
rules, an extended more powerful version has been built with new proof
trees based on new rules.

In this article, we show that the ordinal measures found in [14] lose the
decreasing property in the extended ProPre system and then, set out to
show that the extended ProPre system will still be suitable for finding
measures required by other systems (e.g. NQTHM). We do this by show-
ing that exist other measures that can be associated to the proof trees
developed in the extended ProPre system that respect the decreasing
property. We also show that the new parameterised measure functions
preserve the decreasing property up to a simple condition.

1 Introduction

In the verification of programs defined on recursive data structures, that use
automated deduction, an important property is that of termination. A recur-
sively defined function terminates if there is a well-founded order such that each
recursive call of the function decreases with respect to this order. Though the
termination problem is undecidable, several methods have been proposed for
studying the termination of functional programs. For example, measures are
used in the well-known NQTHM system of Boyer-Moore [2,3], and in [6] the
system can deal with measures based on polynomial norms. Though efficient,

* Supported by EPSRC GR/L15685.

these methods need however the measures to be given by the user. Other auto-
mated systems [18,15,19] have been developed, these are fully automated but
they use only fixed ordering or a lexicographic combinations of the ordering.

Another approach has been developed in the termination procedure of the
Coq prover [4] implemented in the ProPre system [11]. The method is automated
and builds formal proofs because it is based on the Curry-Howard isomorphism
from which lambda-terms are extracted which compute the algorithms. In con-
trast with other methods as for instance in [3, 6], a notion of right terminal state
property for proof trees is introduced in the procedure instead of measures. It has
been shown in [14] that once a termination proof is made, it is then possible to
find a decreasing measure related to each proof tree. The measures characterize
in some sense the orders found by the ProPre system (called ramified measure)
which differ from the lexicographic combinations of one single fixed ordering.
Moreover it has been shown that these measures could be automatically given
for the NQTHM system.

However a difficult task for the system of [11] is to be able to establish the
termination of the automated construction of the proof trees. A drawback of
that system is that it is not easy to derive efficient rules in a formal context.
More particularly, the method in [11] is restricted to one general structural rule
and this implies the right terminal state property of proof trees to be limited.

To circumvent these drawbacks, the formal logical framework behind the
method in [11], has been extended to give rise to a new system [12] using other
rules and accommodated with a generalized induction principle. Furthermore an
order decision procedure on terms has been introduced outside the proof trees
that alleviate the search of right terminal state properties. As a consequence, the
termination method can be used by the system in a far more efficient way and
the class of formal termination proofs made in the system has been considerably
enlarged.

The measures coming from the previous system can be also defined in the new
system. But unfortunately they do not enjoy the decreasing property anymore.
Therefore, the method of [14] cannot be used in the new ProPre system [12] to
find suitable measures required by other systems such as NQTHM. We solve this
problem in this paper by showing that there exist other measures that can be
associated to the proof trees developed in the system respecting the decreasing
property.

Moreover, the order decision procedure mentioned above, that is external to
the formal proofs in the ProPre system, is based on the so-called size measure. So,
this measure function could be easily changed or parameterised in the extended
ProPre system. We also show that, up to a simple condition (Property 4.11),
the decreasing property of measures will still hold.

Our work has the following advantages:

— We establish a method to find the measures needed to establish termina-
tion for recursive functions. We extend the system to a more powerful ver-
sion while retaining the decreasing property of measures. This is important

2

because non-formalised termination proofs usually rely on the decreasing
property.

As the extended version of ProPre used the advantageous order decision
procedure which was isolated from the formal proofs (in contrast to being
intertwined with them as in the earlier version of ProPre), this implied that
the measure functions could be easily parameterised or changed. In this paper
we show that those measure functions preserve the decreasing property up
to a simple condition. This means that the measures (now in a larger class)
found by the method of this paper can be used by systems such as NQTHM.

Preliminaries

We assume familiarity with basic notions of type theory and term rewriting. The
following definition contains some basic notions needed throughout the paper.

Definition 2.1.

1.

Sorts, Functions, Sorted Signature We assume a set S of sorts and a
finite set F of function symbols (or functions). We use s, s1, s2, ..., s', s”,
... to range over sorts and f, f1, f2,..., f', f",... to range over functions.
A sorted signature is a finite set F of functions and a set S of sorts.
Types, Arities of functions and Constants For every function f € F,
we associate a type s1,...,Sp, — s with s,81,...,s, € S. The number n > 0
denotes the arity of f. A function is called constant if its arity is 0.
Defined and Constructor Symbols We assume that the set of functions
F is divided in two disjoint sets F. and F,. Functions in F. (which also
include the constants) are called constructor symbols or constructors and
those in Fy are called defined symbols or defined functions.
Variables Let X be a countable set of variables disjoint from F. We assume
that for every variable is associated a sort.
Terms over F and X of sort s: T(F,X)s If s is a sort, F is a subset of
F and X is a certain set of variables, then the set of terms over F' and X
(simply called terms) of sort s denoted T (F, X)s, is the smallest set where:
(a) every element of X of sort s is a term of sort s,
(b) ifty,... ,t, are terms of sort s1,... , s, respectively, and if f is a function
of type s1,...,8, = s in F, then f(t1,...,t,) is a term of sort s.
We use t,I,r,u,v,ty,l1,7m1,t,..., 8", U',7",t", ... to range over T (F,X),. If
X is empty, we denote T (F, X)s by T(F)s. T(F,X) = J;es T (F, X)s.
Constructor Terms, Ground terms and Ground Constructor Terms
Recall the set of variables X and the set of functions F = F. U Fy.
(a) Elements of T (F., X)s,i.e., terms such that every function symbol which
occurs in them is a constructor symbol, are called constructor terms.
(b) Elements of T (F. U Fy)s, i-€., terms in which no variable occurs, are
called ground terms.
(c¢) Elements of T (F.)s i.e., terms which do not have any variables and where
every function symbol which occurs in them is a constructor symbol, are
called ground constructor terms.

7. (Sorted) Equations A sorted equation is a pair (I,r), of terms [and r of
a sort s. We always assume that the equation is sorted and hence, we may
drop the term sorted and speak only of equations. An equation (I,r)s gives
rise to a rewrite rule I — r. Although a pair (I,7), is oriented it will also be
written [=5 7. When no confusion occurs, the sort may be discarded from
the equation and we write (I,r), I = 7 and [= r. [(resp. r) are called the
left (resp. right) hand side of the equation.

8. Left-Linear Equations An equation is left-linear iff each variable occurs
only once in the left-hand side of the equation.

9. Non-Overlapping Equations A set of equations is non overlapping iff no
left-hand sides unify each other.

10. Specification or Constructor System A specification of a function f :
S1,-..,8, = § in Fy is a non overlapping set of left-linear equations
{(e1,€1)s,-.. ,(ep,€p)s} such that for all 1 < i < p, e; is of the form
f(t, ... ty) with t; € T(F.,X)s,;, j=1,...,n, and €} € T(F. U Fq, X),.
We use &, &', ... to range over specifications.

11. {Constructor, Ground, Ground Constructor} Substitution A sub-
stitution ¢ is a mapping from the set A of variables to the set of terms
T(F,X), such that for every variable x, o(z) and x are of the same sort.
A substitution o is called a constructor substitution (respectively ground
substitution, ground constructor substitution) if o(z) is a constructor term
(respectively ground term, ground constructor term) for any variable z.

12. Recursive Call Let £ be a specification of a function f with type s, ...,
Sn — S. A recursive call of f is a pair (f(t1,...,tn), f(u1,...,u,)) where
f(t1,... ,t,) is a left-hand side of an equation of f and f(uy,...,u,) is a
subterm of the corresponding right-hand side.

3 The extended ProPre system

The extended ProPre system deals with inductive types that are defined with
second order formulas using first and second order universal quantification, im-
plication and a general least fixed point operator on predicate variables. The last
connective aims at improving the efficiency of the extracted programs (see [16]).

Unlike the previous system [11], a connector symbol [is added whose mean-
ing is a connective conjunction used with some restrictions but without any
algorithmic counterpart. The last property is interesting because it first allows
the programs not to carry out some unnecessary computations, and secondly it
can easily support inductive methods (which was not the case in the previous
system). Combined with the connector [, a binary relation symbol < is added. It
corresponds to a well-founded ordering on terms which is used for the inductive
rule defined in the section.

Definition 3.1. The language is defined as follows:

1. Terms The terms of Definition 2.1.6 constitute the first order part.

2. Data Symbols For each sort s; is associated a unary second order predicate
said also data symbol and denoted by Ds, or D;, whose meaning is: ¢ €
T (Fe)s; iff Ds, () holds.
3. Formulae A formula is built as follows:
(a) if D is a data symbol and ¢ is a term then D(t) is a formula,
(b) if A is a formula and x is a variable, then Vz A is a formula,
(c) if A is a formula and u, v are terms, then A | (u < v) is a formula,
(d) if A and B are formulas, then A — B is a formula.
We use A, B, P, F, F|, F,,... to range over formulae.

Notation 3.2. We will use some convenient conventions:

Du; is a shorthand for D(u) | (u < t),

VzA — B denotes Vz(A — B).

Fi,...,F, = F denotes Fi} — (F» — ... = (F, = F))...).

Let P = Fy,...,F,,VeD'(z), Fyy1,...,Fy — D(t) be a formula, then
P_pi(y) denotes the formula Fy,..., Fi, Fiy1,..., Fn — D(2).

Ll

Note that the later notation is correct as it will be used with Definition 3.4.

Definition 3.3. Let f : s1,...,s, = s € Fyq. The termination statement for
f is the formula: Va1 (Ds, (x1) — ... = Voo (Ds, (2n) = Ds(f(21,... ,20)))),
also written by Notation 3.2 as: Vo1 Dy (x1), ... , Ve, Dp(xy) = D(f(z1,... ,2,)).

In the previous ProPre system, the proofs relied on two fundamental notions:
the distributing trees and the right terminal state property. In the extended
version, the distributing trees now include two new rules, said Struct and Ind
rules defined in the section. The definition of the right terminal state property
(Definition 3.8) is now more sophisticated due to the introduction of these rules.

The ProPre prover makes termination proofs, said I-proofs, with the help of
some macro-rules (or tactics, or derived rules) of Natural Deduction for Predicate
Calculus (see [9]). The set of the rules and the definition of I-proofs is described
in [12]. Due to Proposition 3.9 below, we will only need here to define the Struct-
rule and the Ind-rule which constitute the distributing trees in ProPre.

Although the earlier ProPre system can prove the termination of many al-
gorithms, there are numerous interesting algorithms for whose there exist no
proof trees. For instance, the example below illustrates that the use Rec-rule
defined in [11] can lead to loss of efficiency. Let T'r be the sort tree, with the
leave constant le : T'r and the branch constructor br : Tr,Tr — Tr. Consider
the specification of the flatten function flat : Tr — T'r given by the following
equations:

flat(le) = le
flat(br(le,a)) = br(le, flat(a))
flat(br(br(ai,az),a)) = flat(br(ay,br(as,a))).

While the specification cannot be proven to terminate in the previous system [11],
the termination proof is now easily done in the extended system due to the new
rules presented below. Note that a single ordering using for instance the size mea-
sure [18] is not sufficient for the termination proof because of the presence of the
second recursive call. The flatten can be proved to terminate using polynomial
ordering [10], but these have to be given by the user [1]. Therefore methods have
been developed in [5,17] that aim at synthesising polynomial orderings.

We now introduce the rules that are used in the extended system. Let be
given a sort s. We then consider all the constants ci, ... ,c, of type :—= s, and all
the constructor functions Cj : s4,,...,8;, — 8, (ix > 1), i < ¢, whose range is
s. Note that the above distinction between constants and the other constructors
just corresponds to a question of presentation. Let also F'(z) be a formula where
x, of sort s, is free in F'. Then:

1. &.,(F) denotes Flc;/x], i < p,

i

2. &¢,(F) denotes Vx;, Dy, (zi,), ... ,Va;, D;, (zi,) = F|Ci(zi,, ... ,xi,,) /2],

t < g, where z;,,... ,z;, are not in F,
3. U¢,(F) denotes Yz;, D;, (x4,), ... ,Yz;, D;, (xik);VZ(DZ<Ci(xi1,___ i)
Flz/z]) = F[Ci(x4y, ... ,x;)/x]), i < g, where z,2;,,... ,x;, are notin F.

Definition 3.4. Let P be of the form Fy,...,F,VeD(z), Fyt1,...,Fm —
D'(t). The induction rule for the sort s is a choice between the two following
rules:
rr ¢Ci (P—D(x)) i<p, I' + ¢C_j (P—D(x)) J<4q
r+pP

Struct(x)

I' =& (P_pu))i<p, I' F¥;(P_pw)) j <4
I vP

Ind(x)

For instance the induction rule Ind on integers is:

I' FP_n@)(0) T' FVyN(y),V2(Nz<sy = P_n(@)(2)) = P_n)(sy)
I' WP

Ind(z)

The Struct has to be considered as a reasoning by cases. The above rules lead
the following

Definition 3.5. A formula F is called an I-formula iff F is of the form
Hy,...,Hy — D(f(t1,..- t,)) with D a data symbol and f € F4 such that
foralli =1,...,m, H; is of the form either YaD'(z) or Vz(D'z<, — F'), with
D' a data symbol, F' an I-formula and u a term.

Furthermore a formula of the above form H; = Vz(D'z<, — F') is called a
restrictive hypothesis of F'.

Note that the above definition is a recursive definition whose initial case can
be obtained with “H; = Ve D'(x)”. The heart C(F') of the formula F' will denote
the term f(t1,... tn).

Though a restrictive hypothesis is not an I-formula, we will also say that H' is
a restrictive hypothesis of another restrictive hypothesis Vz(D'z<, — F') if H'
is a restrictive hypothesis of the I-formula F'. Finally C(Vz(D'z<s — F')) will
be C(F").

Definition 3.6. Let £ be a specification of a function f of type s1,...,5, — s.
A is a distributing tree for £ iff A is a proof tree built only with the Struct rule
and Ind rule such that:

1. its root is F Y1 Dy (x1),... ,YepDy(xy) — D(f(z1,...,2,)) (termination
statement).

2. L={I1F061,... I F0,} is the set of A’s leaves, then there exists a one
to one application b: £ < & such that b(L) = (¢,u) if and only if L = (I" I)
where 6 is an I-formula with C(6) =t¢.

One can see that the antecedents remain unchanged in the definition of the rules
Struct and Ind in the ProPre system. Though this is not so usual, it turns out
that the antecedent formulas are embedded in the consequents. So, as the context
(i.e. the set of antecedents) is empty in the root of a distributing tree, there is
no antecedent in each node of the tree. Therefore we will use the notation 6 both
for I 8 and for the formula itself. One notes that any formula in a distributing
tree is an I-formula.

Before stating the right terminal state property that enjoy the distributing
trees in the I-proofs developed in the ProPre system, we assume that there is
a well founded ordering C on term corresponding to the interpretation of the
relation symbol < defined in the language. This ordering is made explicit in the
next section. We also need the

Definition 3.7. We say that an I-formula or restrictive hypothesis P can be
applied to a term ¢ if C'(P) matches ¢ according to a substitution o such that
for each variable x occurring free in P we have o(z) = x.

Definition 3.8. Let £ be a specification of a function f and A be a distributing
tree for £. We say that A satisfies the right terminal state property (r.t.s.p.) iff
for all leaves L = 6 of A with e € £ the equation such that b(L) = e (b given
in Definition 3.6) and for all recursive calls (¢,v) of e, there exists a restrictive
hypothesis P = VzDz<s, Hy,... ,Hy — D(w) of 6 and a such that P can be
applied to v according to a substitution ¢ with:

1. o(2) C s and

2. for all restrictive hypothesis H of P of the form VyD'y.s — K there is a
restrictive hypothesis Hy of 6 of the form VyD'y~,, — K such that o(s') C
So.

This characterization is due to the following proposition (see [12] for proof).

Proposition 3.9. There exists an I-proof for f iff there exists a distributing
tree for f with the right terminal state.

Proposition 3.9 says that one can only focus on distributing trees that satisfy the
right terminal state. So, as already mentioned, we do not explicit I-proofs here
but we only consider distributing trees and the right terminal state properties.

4 Synthesising ordinal measures

The earlier system built proof trees which have the right terminal state property
defined in [13]. It has been shown in [14] that one can extract an ordinal measure,
which will be called R-measure, from each proof tree. The R-measure has the
decreasing property if the proof tree satisfies the right terminal state property.
This measure can be also defined against a proof tree with the new context. But
the decreasing property of the R-measure is not valid anymore. A reason is that,
as the system ProPre corresponds to an extension of the Recursive Definition
of the Coq system, the existence of suitable measures does not correspond any
longer to the R-measures. It turns out that if we want to retrieve the decreasing
property, we need to extend the class of measures to other measures.

In this section we recall the definition of the R-measures but in the context
of the extended system, and we present the theorem on the decreasing property
of the measures that fails but which will be re-established. We then introduce
the extended measures for which Theorem 1 holds again.

4.1 The R-measures

Before giving the ordinal measures we first introduce some definitions concerning
the judgments in distributing trees.

Definition 4.1. Let A be a distributing tree. A branch B from the root 6, to
a leaf 0 will be denoted by (01,x1),. .., (0k-1,Tk—1),0k where z; (1 < i < k),
is the variable for which either the rule Struct or Ind is applied on 6;.

Definition 4.2. Let 4 be a tree and € a node of A. The height of 6 in A,
denoted by (8, A), is the height of the subtree of A whose root is # minus one.

According to the definition of a distributing tree A, we have the two following
straightforward facts.

Fact 4.3. Let £ be a specification of a function f of type s1,...,s, = s and
A be a distributing tree. For each (t1,...,t,) € T(Fe)sy * ... % T (Fe)s, there
exists one and only one leaf § of A and a ground constructor substitution p such
that p(C(0)) = f(t1,... ,tpn)-

Fact 4.4. For every branch of A from the root to a leaf (61, 1), ..., (0k—-1,Tk—1),
0, and for all i < j < k, there exists a constructor substitution o;; such that

04,i(C(8:)) = C(8;)-

Definition 4.5. The recursive length of a term ¢ of sort s is defined by:

1. if ¢ is a constant ¢, then lg(c) =0,
2. ift =C(ty,... ,tn) with C':s1,... 8, — s € F, then lg(t) =1+ Y _ lg(t;).

S§j=s§

Definition 4.6. Let £ be a specification of a function f : sy,...,s, — s such
that there exists a distributing tree A for £. The R-measure

Qr : T(Fo)sy * ... x T(Fe)s, = w*, where w is the least infinite ordinal, is
defined as follows:

Let t = (t1,... ,t,) be an element of the domain and € be the leaf of A such that
there is a substitution p with p(C(0)) = f(¢) (Fact 4.3). Let B be the branch
(61,21), ... ,(Ok=1,Tk—1),0 of A from the root to 8, let o, s be the substitutions
of Fact 4.4. Then {25(t) is defined as the following ordinal sum:
k—1
Qr(t) =Y N xlg(ploni(x:)))
i=1

We now need some definitions before giving Theorem 1.

Definition 4.7. A finite sequence of positive integers ¢ will be called a position,
€ will denote the empty sequence and - the concatenation operation on sequences.

For each position ¢ and sort s, we will assume there is a new variable of sort s
indexed by ¢ distinct from those of A'. The following definition allows us to state
Theorem 1 below.

Definition 4.8. Let be a term ¢ and ¢ be a position, the term [t], is defined as
follows: [c], = ¢ if ¢ is a constant, [z], = x if x is a variable, [C(t1,... ,tn)]q =
C([t1lg1s--- > [tnlgn) if C € Fey and [f(t1, ... stn)]q = 24 if f € Fy.

Theorem 1. Let & be a specification of a function f : s1,... ,s, = s and A be a
distributing tree A for £ having the right terminal state property. The associated
measure (2g then satisfies the decreasing property. That is to say, for each re-
cursive call (f(t1,... ,tn), f(u1,...,uy)) of € and for every ground constructor
substitution ¢ we have: 2r(p(t1),...,0(tn)) > 2r(e([ui]r), - -, e(Jun]n))

Unfortunately, though Theorem 1 holds in the context of R-proofs (see [14]),
examples show that it fails in the current context. Consider, for instance, the
simple example of the specification of the addition function add : nat,nat — nat,
defined with an unusual way illustrating our purpose.

add(s(x),s(y)) = add(s(s(x)),y)
add(0,y) =y
add(s(z),0) = s(z)

There exists a tree which enjoys the right terminal state property that leads to
the following measure: 2g(u,v) = w * lg(u) + lg(v). Obviously the decreasing
property does not hold.

In the remaining of the section, we introduce new measures that enable the
theorem to be restored.

4.2 The new ramified measures

As already mentioned, an ordering relation C on term is introduced in the ex-
tended system. In contrast to the previous system, this relation can be checked
outside of the formal proofs and so can be easily modified independently of the
logical framework of the system. The ordering relation is related to a measure
on terms in the following way.

Definition 4.9. Assume a measure m on the terms ranging over natural num-
bers. Let u,v € T(F., X)s for a given sort s. We say that u C v iff:

1) m(u) < m(v), 2) Var(u) C Var(v), 3) u is linear

A special measure, the so called size measure lgi, is used in the system and is
defined as follows:

Definition 4.10. The size measure of a term ¢ of sort s is given by:

1. if ¢ is a constant or a variable, then lgi(t) = 1,
2. ift=C(t1,... ,t,) with C : s1,... ,8, = s € F, then lgi(t) = 1+ lgi(t1) +
ot Lgi(ty)

Note that Definition 4.13 uses only the value on constructor ground terms for
the measure m, but this one is also defined on constructor terms because it is
needed for the termination proofs of the ProPre system.

In order to be able to prove the decreasing property of the new ordinal measures
defined below, we will only need to assume a property on the measure m.

Property 4.11. Let u,v € T(F,X), such that v C v. Then for all constructor
substitutions o, we have m(o(u)) < m(o(v)).

Note that the lemma obviously holds for [gi. For that, it is enough to remark

that Igi(t)—1 > 0 and lgi(o(t)) = lgi(t) +#(z,t)x Y (Igi(o(x)) — 1) for any
z€Var(t)

term ¢, where Var(t) denotes the set of variables which occur in ¢ and #(z, t) is

the number of the occurrences of the variable z in t.

It is now necessary to distinguish the sequents coming respectively from an appli-
cation of the Struct-rule and the Ind-rule. Therefore we introduce the following:

Definition 4.12. Let 6 be a judgment in a distributing tree A4 and 6’ an
immediate children of §. We say that 6 is decreasing and 6’ is an Ind-judgment
if one comes from the other using the Ind rule. The test function ¢ is defined on
each node as follows: £(0) is 1 if 8 is a decreasing judgment and 0 if not.

Definition 4.13. Let £ be a specification of a function f : s1,...,s, = s
such that there exists a distributing tree A for £. The new ramified measure
21T (Fe)sy %% T(Fe)s, = w¥, is defined as follows:

Let t = (t1,... ,t,) be an element of the domain and 6 be the leaf of A such that

there is a substitution p with p(C(0)) = f(¢) (Fact 4.3). Let B be the branch
(61,21), ... ,(Ok=1,Tk—1),0 of A from the root to ¢, let o, s be the substitutions
of Fact 4.4. Then

k-1
Qr(t) = ZWH(Q"’A) *&§(0;) x m(p(og,i(z))) -

The intuition would suggest to substitute only the measure m instead of the
recursive lg in Definition 4.6. But once again, examples show that Theorem 1
fails in that case. It is now far from obvious that the new ordinal measures enjoy
the decreasing property. However Theorem 1 now holds with the new measures.
whose version is given below with Theorem 2

Theorem 2. Let & be a specification of a function f : s1,... ,s, = s and A be a
distributing tree A for € having the right terminal state property. The associated
measure (27 then satisfies the decreasing property. That is to say, for each re-
cursive call (f(t1,... ,tn), f(u1,...,uy)) of € and for every ground constructor

substitution ¢ we have: 2r(p(t1),...,¢(tn)) > 2r(e([ui]r),- -, e([unln))

Proof: The proof is long but it can be derived from the main Proposition 5.25
below. The reader is referred to [8] for a detailed proof of Theorem 2. O

Now that we have Theorem 2, we can extract from an automated termination
proof of the flatten function defined at Section 3 the following ordinal measure
which has the decreasing property:

2r(le) =w Q2r(br(le,a)) = w* (1 + lgi(a))
Qr(br(br(a,b),c) = w* (2 + lgi(a) + lgi(b) + lgi(c)) + 1 + lgi(a) + 1gi(b).

5 The analysis of the I-formulas

This section is devoted to the analysis of the I-formulas. Due to the shape of
the distributing trees and the I-formula that appear in the branches, we need to
introduce some definitions and to establish several lemmas which will is used for
the proof of Theorem 2 and Proposition 5.25 .

Definition 5.1. For a term ¢ and a subterm u of ¢ that has only one occurrence
in ¢, u>t will denote the position of u in t¢.

Definition 5.2. RH(F) denotes the set of the restrictive hypotheses of an
I-formula F' and for P = Vz(Dzgs — F') with F' an I-formula, we define
RH(P) = RH(F'). For P; and P; in RH(F) we say that P; is before P; if F' can
be written Pi,...,P, — D(t) with 1 < j < i < k. Moreover, for a restrictive
hypothesis P of F, then #(P, F) = 1 + card{P' € R(F), P’ before P}.

One can easily see that, if 8 is an immediate antecedent of 6 in a distributing
tree, then each restrictive hypothesis of corresponds to a restrictive hypothesis
in #’. A new restrictive hypothesis is also in ' if the rule is Ind. Formally we
have the following definition.

Definition 5.3. Let 6 be a judgment in a distributing tree and 6’ an immediate
antecedent of §. We define an injective application Resg: g : R(0) — R(0') with
Resgr o(P) the restrictive hypothesis P’ in R(6") such that #(P',0") = #(P,6).

Resg: p(P) can be seen as the residual of P in 6’ and therefore the application
can be generalized to any antecedent 8’ of 6 using composition of applications.

Definition 5.4. For an Ind-judgment €' in a distributing tree, the restrictive
hypothesis P in 0 such that #(P,0") = card(R(0")) is called the new hypothesis,
denoted by N (6'). In particular, it is such that all restrictive hypotheses in 6’
are before P.

Remark 5.5. We can remark that if § is a decreasing judgment with z the
induction variable and ¢’ an immediate antecedent then x> C(6) = z > C(N(0))
where the new hypothesis A/ (0) is of the form Vz(Dz<s; — H). This will be used
for the proof of Proposition 5.25.

If #" is an immediate antecedent of a decreasing judgment #, we know that 6’
is of the form: Va1 Dy (x1),... ,Yop Dy(21), N(0") = 0_p(a) [w/x], with N'(0") =
2(Dzzw = O_p(a)[2/7]). So, for a Ind-judgment 6', we can easily define the
application Dy : R(N(0')) — R(0") where Dy (Q) is the restrictive hypothesis
Q" of 0_p(o)[w/z] with #(Q",0_p)|w/z]) = #(Q,0 _p()[z/z]). We can say
that D is a duplication of restrictive hypotheses.

Lemma 5.6. Let P =Vz(Dz<s,H1,... ,Hr — D(t)) be arestrictive hypothesis
0 of a judgment in a distributing tree then
1) the variables of s are free in P and have no other occurrences in P,

2) the variables in P distinct of those in s are bounded in P.
3) s is a subterm of C(#) and s> C(0) = z> C(P).

Proof: See [12]. i

Definition 5.7. Let G and F be two restrictive hypotheses. We define a con-
gruence relation as follows: F' and G are said similar, denoted by F' = G if they
are respectively of the form Vz(D(z)<s — H) and Vz(D(z)<; — H).

Lemma 5.8. Given an Ind-judgment 6 in a distributing tree and P a restrictive
hypothesis of A'(f). Then Dy(P) ~ P.

Proof: According to the form of N'(6) (see the definition of Dy), we know that
P and Dy(P) are of the form Vy(D'(y)<s — H')[z/z] and Vy(D'(y)<s —
H")[w/z]. Lemma 5.6 says that « does not occur in H (and may not possibly oc-
cur in s'). Therefore P = Vy(D'(y) 45[2/2] = H') and Dy (P) = Vy(D'(y) <s'[w/a]
— H'), thus P ~ Dy(P). O

Lemma 5.9. Let P be a restrictive hypothesis of in a distributing tree, and
' an antecedent of §. Then Resg g(P) = P.

Proof: By induction on the branch between 6 and 6'. |

Corollary 5.10. If 4 is a judgment in a distributing tree, ' an immediate
antecedent of #, and P a restrictive hypothesis of #, then R(Resg ¢(P)) = R(P).

Proof: By Lemma 5.9, we have P = Vz(D(z)<s;, — F) and Resg g(P) =
Vz(D(z)<s, = F). Thus R(P) = F = R(Resg o(P)). O

Lemma 5.11. For all judgments 6 in a distributing tree, then there does not
exist two restrictive hypotheses similar in 6.

Proof: See (8] U

Definition 5.12. Let 6 be a judgment in a distributing tree and 64, ...,
0, = 6 the consecutive judgments from the root 6; to 6. Let P be a restrictive
hypothesis of §. We note [J(P) the first integer j such that there is Q € R(6;)
with P = Resg g, (@), which is correct since Ry ¢(P) = P.

Since every application Resg g is injective, Resg,lo (P) will denote the antecedent
of P with the assumption that P is in the image of the application.

Lemma 5.13. In the context of the previous definition, the rule between 6 7(p)
. —1

and 0 7(py_1 is the Ind-rule, and Resg 6, (P)=N(07p)).

Proof: The opposite leads to a contradiction with the definition of J(P). |

Corollary 5.14. Let P be a restrictive hypothesis of a judgment # in a dis-
tributing tree. Then, using also Corollary 5.10, we have

R(P) =R(Res; . . (P) = R (B(r))).

Definition 5.15. Let € be a judgment in a distributing tree and P be a re-
strictive hypothesis of §. Then we can now etasblish the following diagram and
thereby define the application Tpy : R(P) < R(0), with Tpy = Resg,0,,, ©
Doy py-

Tpy
R(P) R()
Id 2 ReSgﬂj(P)
R(Res;},ﬂp) (P)) R(O7p))
N————
N(QJ(P)) D@y(p)

In the case where # is an Ind-judgment and P = N(f), then 67py = 6 and
Ypy = Dy.So, T can be seen as a generalization of D for all restrictive hypotheses
of any 6.

Fact 5.16. We remark that 1py is injective by composition of injective ap-
plications. Moreover, according to Lemmas 5.8 and 5.9, Ypy(Q) ~ @ for all

Q € R(P).

Lemma 5.17. For a restrictive hypothesis P of a judgment 6 in a distributing
tree and @ a restrictive hypothesis of P, we have J(P) > J(Xps(Q)).

Proof: See [8] o

Lemma 5.18. Let A be a distributing tree for a specification of a function,
having the right terminal state property. Let 6 be a leaf of A and (¢,v) be a
recursive call of C(6). In this context, if P is the restrictive hypothesis of 6
holding Definition 3.8 of the r.t.s.p of A and H and Hj holding the point 2) of
Definition 3.8 with the same notations, then Ypg(H) = Hp and J(P) > J(Hy).

Proof: According to the point 2) of Definition 3.8, we have H ~ Hy. Furthermore,
by Fact 5.16, Tp(H) ~ H. Hence Lemma 5.11 gives us that Yp(Q) = Hy and
then J(P) > J(Hy) with Lemma 5.17. i

Definition 5.19. For any 6 in a distributing tree and an antecedent 6’ of 6,
then [0, 0] p (respectively [0, 0'[;) will denote the set of the decreasing judgments
(respectively Ind-judgments) between 6 and €' (respectively without 68").

Fact 5.20. Let &£ be a specification of a function f and A be a distributing tree
for £. If 0; is the root of A, that is to say the termination statement of f, and
if 6 is an Ind-judgment in A, then card(R(N(6))) = card([01,0[r)-

Proof: Since card(R(0)) = card(R(N(0)))+1, it is actually enough to show that
card(R(#)) = card([61,0]r) which is then straightforward by induction on the
number of judgments 6y, ...,6. O

Fact 5.21. Let P and P’ be two distinct restrictive hypotheses of a judgment
6, then J(P) # J(P").

Proof: The opposite leads to a contradiction thanks to Lemma 5.13. O

Lemma 5.22. Let A be a distributing tree having the r.t.s.p. with the root 6.
Let P be the restrictive hypothesis of a leaf 8 in the definition of the r.s.t.p.,
then for all & € [01,05(p)[r, there is one and only one H € R(P) such that

0 =07xp.0, 1))

Proof: By Lemma 5.13, for all H € R(P), 87(ry,, (#)) is an Ind-judgment.
Furthermore Lemma 5.18 says that J(P) > J(Ype,(H)) and so 07(r,, (1))
€ [01,9J(p)[[. Let U = U {0J(Tp‘9k (H))} included in [01,9J(p)[[. As prgk
HER(P)

is injective, then, using Fact 5.21, we get card(U) = card(R(P)). Now
Card([ﬁl,ﬁj(p) 1) = card(R(/\/(0J(p)))) (Fact 5.20)

= card(R(Res;igﬂp) (P))) (Lemma 5.13)

= card(R(P)) (Corollary 5.14)
Hence U = [61,6j(p)[1. O

Lemma 5.23. Let 6 and 6’ be two judgments in a distributing tree of a speci-
fication then C(f) and C(#') match the same term iff § and 6’ are in the same
branch.

Proof: Fact 4.4 gives one sense, the other one is made assuming the opposite and
using the fact that if a judgment does not match a term, then its antecedent do
not neither. O

Lemma 5.24. Let 6 be a judgment in a distributing tree of a specification and
¢’ an antecedent of 6. If P is a restrictive hypothesis of 6" such that 6 7(py_; €
[0,0'[r then C(#) matches C(P).

Proof: by the previous lemma C(¢) matches C(6(py—1). Furthermore, let Q'
denotes Respr g, p, (P), then Q = P with Lemma 5.9 and so C(Q) = C(P).
Now, since) is the new hypothesis of 6 (p), it is easy to see that C(07(p)_1)
matches C(Q). Hence C(#) matches C(P). i

We now state the main Proposition below that enables Theorem 2 to hold.

Proposition 5.25. Let A be a distributing tree of a specification £ with
the right terminal state property and (¢,u) be an inductive call of £. Let also
B=(0,21),-..,(0k_1,z1-1),0r be a branch of A with C () =t. Let P be a
restrictive hypothesis of 8y, and o be the substitution such that o*(C(P)) = u
with respect the r.t.s.p.. Then for each decreasing judgment 6; in B which is a
strict descendent of 8 7(py_; (i.e. i < J(P)—1), C(0;) (respectively C(8.7(p)-1))
matches u according to a substitution o} (respectively oY P)fl) and

m(p o o¥(z;)) < m(p o ok,i(:)),
m(p ooy py_(Z7p)-1)) <m(p oo gp)-1(T7(P)-1))

for all ground constructor substitution ¢ (where oy ; are given in Fact 4.4).

Proof: Let 6; be a decreasing judgment with i < J(P) — 1. By Fact 4.4, we
know that C(6;) matches C(67(py—1) which matches also C(P) according to
Lemma 5.24 (with 6 = 0 7(p)_1,0" = 0), and so C(6;) matches u.

Now, we are going to show the first inequality. Since #;;; is an Ind-judgment,
by Lemma 5.22, there is a restrictive () of P such that jypvgk (@)=t + 1. Let
N(i+1) =Vz(Dz<s = Q) be the new hypothesis of 6,11 and let Qo be Ypy, (Q).
We know that Q ~ @y, likewise Qo ~ Res;]ioy(Qo)(Qo) = N(07(q,))- Hence
Q@ ~ N (6;11) and we can write Q = Vz(Dz<y — G) and Qo = Vz(Dzs, = G).
Now

z;>C(0;) = 2> C(N(0i1+1)) (Remark 5.5)
—250Q) QRN
=s'>C(P) (Lemma 5.6).
Moreover C(6;) matches C'(P) which matches u. Then, with the previous equal-
ities, we have o} (z;) = o¥(s').
Furthermore:

2> C0(Q) = 2> C(Tpp, (Q)) (@ = Tpp,.(Q))
=s0>C(0) (Lemma 5.6)
=sob>t (C(B) =1).

With the inequalities we have z; > C(6;) = so > t. Hence, since C'(6;) matches
C(0r) =t, we get oy,i(z;) = so.
Finally, point 2) of the right terminal state property says that o%(s’) C sp, and
s0, by Property 4.11, m(p o 0¥(s")) < m(¢(so)). That is to say m(p o o (z;)) <
m(p o ok,i(wi))

It remains to show the second inequality. We recall that 67p) is an Ind-
judgment whose new hypothesis is N'(67(p)) = Reso_yl(m’ok (P) = P. Then

Typ)-1> C(ej(p),l) =zD C(N(gj(p))) (Remark 55)

—26C(P) (CWN (@) = C(P))
=s>C(6g) (Lemma 5.6)
=s>t (C(0k) =1).

Thus Uk7j(p),1(.’1,'j(p),1) = S.

Furthermore, we have seen for the first inequality that C'(07(p)—1) matches P
which matches u, then by a previous equality, U?(P)_l(wj(p)_l) = o%(2). Now
using point 1) of the right terminal state property, we have c%(z) C s which gives,
by Property 4.11, m(po0"(2)) < m(¢(s)). Therefore m(poc) (€ 7(p)-1)) <

m(gp o 0k7.7(P)71($.7(P)71))' =

6 Conclusion

While the measures found from the termination proofs of the recursive definition
command of Coq were shown in [14] to be suitable for other systems such as the
NQTHM of [2,3], they cannot be defined in the extended termination system
without losing the decreasing property. We have solved the problem by showing
the existence of other decreasing measures in the extended termination system
in question (the new ProPre of [12]). Moreover, the new measures we found in
this paper, enlarge the class of suitable measures in the sense that each recursive
algorithm proven to terminate in the previous system ProPre [11] is also proven
to terminate in the extended ProPre system [12].

The orders characterised by the measures differ from the lexicographic combi-
nations of one fixed ordering [18,15,19]. We can also mention the work of [7]
which supports the use of term orderings coming from the rewriting systems
area especially those methods of [5,17] which aim at automatically synthesising
suitable polynomial orderings for termination of functional programs.

There is now no more obstacle to provide the measures to other systems that
require such measures. The investigations of formal proofs in this paper highlight
new measures and advocate as in [14] a termination method based on ordinal
measures.

References

[1] A. Ben Cherifa and P. Lescanne. Termination of rewriting systems by polynomial
interpretations and its implementation. Science of Computer Programming 9(2),
137-159, 1987.

[2] R.S. Boyer and J S. Moore. A computational logic, Academic Press, New York,
1979.

[3] R.S.Boyer and J S. Moore. A computational logic handbook, Academic Press, 1988.

[4] C. Cornes et al.. The Coq proof assistant reference manual version 5.10. Technical
Report 077, INRIA, 1995.

[5] J. Giesl. Generating polynomial orderings for termination proofs. Proceedings of
the 6th International Conference on Rewriting Techniques and Application, Kaiser-
lautern, volume 914 of LNCS, 1995.

[6] J. Giesl. Automated termination proofs with measure functions. Proceedings of the
19th Annual German Conference on Artificial Intelligence, Bielefeld, volume 981
of LNAI, 1995.

[7] J. Giesl. Termination analysis for functional programs using term orderings. Pro-
ceedings of the Second International Static Analysis Symposium, Glasgow, volume
983 of LNCS, 1995.

[8] F.D. Kamareddine and F. Monin. On Formalised Proofs of Termina-
tion of Recursive Function. http://www.cee.hw.ac.uk/ fairouz/papers/research-
reports/ppdp99full.ps.

[9] J.L. Krivine and M. Parigot. Programming with proofs. J. Inf. Process Cybern.,
EIK 26(3):149-167, 1990.

[10] D.S. Lankford. On proving term rewriting systems are Noetherian. Technical Re-
port Memo MTP-3, Louisiana Technology University, 1979.

[11] P. Manoury. A User’s friendly syntaz to define recursive functions as typed lambda-
terms. Proceedings of Type for Proofs and Programs TYPES’94, volume 996 of
LNCS 996, 1994.

[12] P. Manoury and M. Simonot. Des preuves de totalité de fonctions comme synthése
de programmes. PhD thesis, University Paris 7, 1992.

[13] P. Manoury and M. Simonot. Automatizing termination proofs of recursively de-
fined functions. Theoretical Computer Science 135(2): 319-343, 1994.

[14] F. Monin and M. Simonot. An ordinal measure based procedure for termination
of functions. To appear in Theoretical Computer Science.

[15] F. Nielson and H.R. Nielson. Operational semantics of termination types. Nordic
Journal of Computing, 3(2):144-187, 1996.

[16] M. Parigot. Recursive programming with proofs. Theoretical Computer Science
94(2): 335-356, 1992.

[17] J. Steinbach. Generating polynomial orderings. Information Processing Letters,
49:85-93, 1994.

[18] C. Walther. Argument-bounded algorithms as a basis for automated termination
proofs. Proceedings of 9th International Conference on Automated Deduction, Ar-
gonne, Illinois, volume 310 of LNCS, 1988.

[19] C. Walther. On proving the termination of algorithms by machine. Artificial In-
telligence, 71(1):101-157, 1994.

