
Reducibility proofs in λ-calculi with intersection types

Fairouz Kamareddine, Vincent Rahli, and J. B. Wells

ULTRA group, Heriot-Watt University, http://www.macs.hw.ac.uk/ultra/

March 14, 2008

Abstract

Reducibility has been used to prove a number of properties in the λ-calculus and is well known to offer
on one hand very general proofs which can be applied to a number of instantiations, and on the other hand, to
be quite mysterious and inflexible. In this paper, we look at two related but different results in λ-calculi with
intersection types. We show that one such result (which aims at giving reducibility proofs of Church-Rosser,
standardisation and weak normalisation for the untyped λ-calculus) faces serious problems which break the
reducibility method and then we provide a proposal to partially repair the method. Then, we consider a second
result whose purpose is to use reducibility for typed terms to show Church-Rosser of β-developments for untyped
terms (without needing to use strong normalisation), from which Church-Rosser of β-reduction easily follows.
We extend the second result to encompass both βI- and βη-reduction rather than simply β-reduction.

1 Introduction

Based on realisability semantics [6], the reducibility method has been developed by Tait [11] in order to
prove normalisation of some functional theories. The idea is to interpret types by sets of λ-terms closed
under some properties. Krivine [10] uses reducibility to prove the strong normalisation of system D.
Koletsos [8] proves that the set of simply typed λ-terms has the Church-Rosser property. Gallier [3, 4]
uses some aspects of Koletsos’s method to prove a number of results such as the strong normalisation of
the λ-terms that are typable in systems like D or DΩ [10]. In particular, Gallier states some conditions
a property needs to satisfy in order to be enjoyed by some typable terms under some restrictions.
Similarly, Ghilezan and Likavec [5] state some conditions a property on λ-terms has to satisfy in order
to be held by all λ-terms that are typable under some restriction on types in a type system which is
close to DΩ. Additionally Ghilezan and Likavec state a condition that a property needs to satisfy in
order to step from “a λ-term typable under some restrictions on types holds the property” to “a λ-term
of the untyped λ-calculus holds the property”. If successful, the method designed by Ghilezan and
Likavec would provide an attractive method for establishing properties like Church-Rosser for all the
untyped λ-terms, simply by showing easier conditions on typed terms. However, we show in this paper
that Ghilezan and Likavec’s method fails for the typed terms, and that also the step of passing from
typed to untyped terms fails. We show why we also fail to entirely repair the first result and how far
we can get when trying to repair it. The second result seems unrepairable. Ghilezan and Likavec also
present a weaker method for a type system similar to system D, which allows using reducibility to
prove properties of the term typable by this system, namely the strongly normalisable terms. As far as
we know, this portion of their result is correct. (They do not actually apply this weaker method to any
sets of terms.)

In addition to the method proposed by Ghilezan and Likavec (which does not actually work for
the full untyped λ-calculus), other steps of establishing properties like Church-Rosser (also called
confluence) for typed λ-terms and concluding the properties for all the untyped λ-terms have been
successfully exploited in the literature. Koletsos and Stavrinos [9] use reducibility to state that λ-
terms that are typable in system D hold the Church-Rosser property. Using this result together with a
method based on β-developments [7, 10], they show that β-developments are Church-Rosser and this
in turn will imply the confluence of the untyped λ-calculus. Although Klop proves the confluence of
β-developments [1], his proof is based on strong normalisation whereas the Koletsos and Stavrinos’s

1

http://www.macs.hw.ac.uk/ultra/

proof only uses an embedding of β-developments in the reduction of typable λ-terms. In this paper, we
apply Koletsos and Stavrinos’s method to βI-reduction and then generalise it to βη-reduction.

In section 2 we introduce formal machinery. In section 3 we present the reducibility method used
by Ghilezan and Likavec and show that it fails at a number of important propositions which makes it
inapplicable to the full untyped λ-calculus, although a version of their method works for the strongly
normalisable terms. We give counterexamples which show that all the conditions stated in Ghilezan
and Likavec’s paper are satisfied, yet the claimed property does not hold. In section 4 we give some
indications on the limits of the method. We show how these limits affect the salvation of the method
(when trying to salvage the method we, in some sense, only go a bit further than the result obtained
by Ghilezan and Likavec using a type system similar to D instead of the type system similar to DΩ).
We also point out some links between the work done by Ghilezan and Likavec and the work done by
Gallier. In section 5 we adapt the Church-Rosser proof of Koletsos and Stavrinos [9] to βI-reduction.
In section 6 we non-trivially generalise the Koletsos and Stavrinos’s method to handle βη-reduction.
We conclude in section 7. For space reasons we omit proofs. However, full proofs can be downloaded
from the web page of the authors.

2 The Formal Machinery

In this section we provide some known formal machinery on λ-calculus and type theory. Let n,m be
metavariables which range over the set of natural numbers N = {0, 1, 2, . . .}. We assume that if a
metavariable v ranges over any set s then the metavariables vn, v′, v′′, etc. also range over s. A binary
relation is a set of pairs. Let rel range over binary relations. Let dom(rel) = {x | 〈x, y〉 ∈ rel} and
ran(rel) = {y | 〈x, y〉 ∈ rel}. A function is a binary relation fun such that if {〈x, y〉, 〈x, z〉} ⊆ fun
then y = z. Let fun range over functions. Let s → s′ = {fun | dom(fun) ⊆ s ∧ ran(fun) ⊆ s′}.
Given n sets s1, . . . , sn, where n ≥ 2, s1 × . . .× sn stands for the set of all the tuples built on the sets
s1, . . . , sn. If x ∈ s1 × . . .× sn, then x = 〈x1, . . . , xn〉 such that xi ∈ si for all i ∈ {1, . . . , n}.

Definition 1 (BACKGROUND ON THE λ-CALCULUS)
• We let x, y, z range over V , a countable infinite set of λ-term variables. λ-terms are defined by
M ∈ Λ ::= x | (λx.M) | (M1M2). We let M,N,P,Q,R range over Λ. We assume the usual
definition of subterms and write N ⊆ M if N is a subterm of M (M ⊆ M). We assume the
usual convention for parenthesis and omit these if no confusion arises. Hence,M N1...Nn, where
n ≥ 1, stands for (...((M N1) N2)...Nn−1) Nn.
We take terms modulo α-conversion and use the Barendregt convention (BC) where the names of
bound variables differ from the free ones. When two terms M and N are equal (modulo α), we
write M = N . We write fv(M) for the set of the free variables of term M .
If F ⊆ Λ then let F � M = {N | N ∈ F ∧N ⊆M}
We define Mn(N) by induction on n, as follows: M0(N) = N and Mn+1(N) = M(Mn(N)).

• The set of paths is defined as follows: p ∈ Path ::= 0 | 1.p | 2.p. We define M |p as follows:
M |0 = M , (λx.M)|1.p = M |p , (MN)|1.p = M |p and (MN)|2.p = N |p . We define 2n.p by
induction on n ≥ 0: 20.p = p and 2n+1.p = 2n.2.p.

• The set ΛI ⊂ Λ, of terms of the λI-calculus is defined by the following rules: – x ∈ ΛI
– If x ∈ fv(M) and M ∈ ΛI then λx.M ∈ ΛI – If M,N ∈ ΛI then MN ∈ ΛI

• We define as usual the substitution M [x := N] of the term N for all free occurrences of x in the
term M . We write M [x1 := N1, . . . , xn := Nn] for the simultaneous substitution of Ni for all
free occurrences of xi in M for 1 ≤ i ≤ n.

• Let us define the four following common relations:
– Beta ::= 〈(λx.M)N,M [x := N]〉 – Eta ::= 〈λx.Mx,M〉, where x 6∈ FV (M)
– BetaI ::= 〈(λx.M)N,M [x := N]〉, where x ∈ FV (M) – BetaEta = Beta ∪ Eta
Let 〈r, s〉 ∈ {〈Beta, β〉, 〈BetaI, βI〉, 〈Eta, η〉, 〈BetaEta, βη〉}. We defineRs to be {L | 〈L,R〉 ∈

2

r}. If 〈L,R〉 ∈ r then we call L a s-redex and R the s-contractum of L (or the L s-contractum).
We define the ternary relation →s as follows:

– M 0→s M
′ if 〈M,M ′〉 ∈ r – λx.M 1.p→s λx.M

′ if M
p→s M

′

– MN
1.p→s M

′N if M
p→s M

′ – NM 2.p→s NM
′ if M

p→s M
′

We define the binary relation →s (we use the same name as for the just defined ternary relation
→s to simplify the notations) as follows: M →s M

′ if there exists p such that M
p→s M

′. We
define Rs

M as {p |M |p ∈ Rs}.
We us define the head and internal reductions:
→h::= 〈λx1. . . . xn.(λx.M0)M1 . . .Mm, λx1. . . . xn.M0[x := M1]M2 . . .Mm〉, where n ≥ 0
and m ≥ 1.
We define the binary relation →i as →β \ →h.
s ∈ {β, βI, η, βη, h, i}. We define the relation →∗

s as the reflexive and transitive closure of →s.
• Let NFβ = {λx1. . . . λxn.x0N1 . . . Nm | N1, . . . , Nm ∈ NFβ} be the set of β-normal forms,

WNβ = {M | ∃N ∈ NFβ. M →∗
β N} be the set of weakly β-normalisable terms and SNβ =

{M | all the reductions starting from M are finite} be the set of strongly β-normalisable terms.
Let r ∈ {β, βI, βη}. We say thatM has the Church-Rosser property for r (has r-CR) if whenever
M →∗

r M1 and M →∗
r M2, there exists M3 such that M1 →∗

r M3 and M2 →∗
r M3. Let

CRr = {M | M has r-CR} and CRr
0 = {xM1 . . .Mn | ∀i ∈ {1, . . . , n}. Mi ∈ CRr}. We use

CR to denote CRβ and CR0 to denote CRβ
0 .

A term is a weak head normal form if it is a λ-abstraction (a term of the form λx.M) or if it starts
with a variable (a term of the form xM1 . . .Mn). A term is weakly head normalising if it reduces
to a weak head normal form. let Wr = {M | ∃n ∈ N. ∃x ∈ V. ∃P, P1, . . . , Pn ∈ Λ. (M →∗

r

λx.P ∨M →∗
r xP1 . . . Pn)}. We use W to denote Wβ .

We say that M has the standardisation property if whenever M →∗
β N then there is a M ′ such

that M →∗
h M

′ and M ′ →∗
i N . Let S = {M |M has the standardisation property}.

Throughout, we take c to be a metavariable ranging over V . The next definition adapts Λc and the
c-erasure defined by Krivine [10], to deal with βI- and βη-reduction.

Definition 2 (BACKGROUND ON DEVELOPMENTS)
• Let Mc range over {Ληc,ΛIc} where Ληc and ΛIc are defined as follows (note that ΛIc ⊂ ΛI):
(R1) If x is a variable distinct from c then

1. x ∈Mc.
2. If M ∈ ΛIc and x ∈ fv(M) then λx.M ∈ ΛIc.
3. If M ∈ Ληc then λx.(M [x := c(cx)]) ∈ Ληc.
4. If Nx ∈ Ληc, x 6∈ fv(N) and N 6= c then λx.Nx ∈ Ληc.

(R2) If M,N ∈Mc then cMN ∈Mc.
(R3) If M,N ∈Mc and M is a λ-abstraction then MN ∈Mc.
(R4) If M ∈ Ληc then cM ∈ Ληc.
• We define |M |c and |〈M, p〉|c inductively as follows:

– |x|c = x – |λx.N |c = λx.|N |c, if x 6= c
– |cP |c = |P |c – |NP |c = |N |c|P |c, if N 6= c.
– |〈M, 0〉|c = 0 – |〈λx.M, 1.p〉|c = 1.|〈M, p〉|c, if x 6= c
– |〈MN, 1.p〉|c = 1.|〈M, p〉|c
– |〈cM, 2.p〉|c = |〈M, p〉|c – |〈NM, 2.p〉|c = 2.|〈M, p〉|c, if N 6= c

Definition 3 (BACKGROUND ON TYPE SYSTEMS) Let i ∈ {1, 2}.
• LetA be a countable infinite set of type variables, let α range overA and let Ω 6∈ A be a constant

type. The sets of types Type1 ⊂ Type2 are given by:

3

(1) τ ≤ τ (6) (τ1 ≤ τ2 ∧ τ1 ≤ τ3) ⇒ τ1 ≤ τ2 ∩ τ3
(2) (τ1 ≤ τ2 ∧ τ2 ≤ τ3) ⇒ τ1 ≤ τ3 (7) (τ1 ≤ τ ′1 ∧ τ2 ≤ τ ′2) ⇒ τ1 ∩ τ2 ≤ τ ′1 ∩ τ ′2
(3) τ1 ∩ τ2 ≤ τ1 (8) (τ1 ≤ τ ′1 ∧ τ ′2 ≤ τ2) ⇒ τ ′1 → τ ′2 ≤ τ1 → τ2
(4) τ1 ∩ τ2 ≤ τ2 (9) τ ≤ Ω
(5) (τ1 → τ2) ∩ (τ1 → τ3) ≤ τ1 → (τ2 ∩ τ3) (10) τ → Ω ≤ Ω → Ω

Figure 1: Ordering axioms on types

Γ, x : τ ` x : τ
(ax)

x : τ ` x : τ (axI)

Γ `M : τ1 → τ2 Γ ` N : τ1
Γ `MN : τ2

(→E)
Γ1 `M : τ1 → τ2 Γ2 ` N : τ1

Γ1 u Γ2 `MN : τ2
(→EI)

Γ, x : τ1 `M : τ2
Γ ` λx.M : τ1 → τ2

(→I)
Γ `M : τ1 Γ `M : τ2

Γ `M : τ1 ∩ τ2
(∩I)

Γ `M : τ1 ∩ τ2
Γ `M : τ1

(∩E1)
Γ `M : τ1 ∩ τ2

Γ `M : τ2
(∩E2)

Γ `M : τ1 τ1 ≤∇ τ2
Γ `M : τ2

(≤∇) Γ `M : Ω
(Ω)

Figure 2: Typing rules

σ ∈ Type1 ::= α | σ1 → σ2 | σ1 ∩ σ2

τ ∈ Type2 ::= α | τ1 → τ2 | τ1 ∩ τ2 | Ω
• Let Γ,∆ ∈ B1 = {{x1 : σ1, . . . , xn : σn} | ∀j, k ∈ {1, . . . , n}. (k 6= j ⇒ xk 6= xj)} and

Γ,∆ ∈ B2 = {{x1 : τ1, . . . , xn : τn} | ∀j, k ∈ {1, . . . , n}. (k 6= j ⇒ xk 6= xj)}. Let
B ∈ {B1,B2}. We define dom(Γ) = {x | x : τ ∈ Γ}. When dom(Γ1)∩dom(Γ2) = ∅, we write
Γ1,Γ2 for Γ1∪Γ2. Moreover, we write x : τ for {x : τ}. We denote Γ = {xm : τm, . . . , xn : τn}
where n ≥ m ≥ 0, by (xi : τi)m

n . If m = 1, we simply denote Γ by (xi : τi)n. If Γ1 = (xi :
τi)n, (yi : τ ′′i)p and Γ2 = (xi : τ ′i)n, (zi : τ ′′′i)q where x1, . . . , xn are the only shared variables,
then Γ1 u Γ2 = (xi : τi ∩ τ ′i)n, (yi : τ ′′i)p, (zi : τ ′′′i)q. Let X ⊆ V . We define Γ � X = Γ′ ⊆ Γ
where dom(Γ′) = dom(Γ) ∩X .

• We define a type system TS by its set of types types , its type derivability relation deriv , its set of
environments B and its set X of rules from Figure 2 where deriv is the type derivability relation
built on B, Λ and types and generated using the rules X . We write TS , deriv](types,B, X) to
define the type derivability relation deriv built on types , B and X and to define the type system
TS built on types , deriv , B and X .
Referring to Figure 1, let∇1 = {(1), (2), (3), (4), (5), (6), (7), (8)},∇2 = ∇1∪{(9), (10)}, and
Type∇i = Typei. Let ≤i be the subtyping relation defined on the set of types Typei and the set
of axioms ∇i. We write τ1 ∼i τ2 iff τ1 ≤i τ2 and τ2 ≤i τ1.
We now define λ∩1, λ∩2, and D, DI , our four main type systems:
λ∩1,`1](Type1,B1, {(ax), (→E), (→I), (∩I), (≤1)})
λ∩2,`2](Type2,B2, {(ax), (→E), (→I), (∩I), (≤2), (Ω)})
D,`βη](Type1,B1, {(ax), (→E), (→I), (∩I), (∩E1), (∩E2)})
DΩ,`Ω](Type2,B2, {(ax), (→E), (→I), (∩I), (∩E1), (∩E2), (Ω)})
DI ,`βI](Type1,B1, {(axI), (→I

E), (→I), (∩I), (∩E1), (∩E2)}). In DI , we assume σ ∩ σ = σ.

3 Problems of the Ghilezan and Likavec’s reducibility method [5]

We now introduce the Ghilezan and Likavec’s method and explain its problems. Throughout, we let
� = λx.xx.

Definition 4 (TYPES/REDUCIBILITY OF [5]) Let i ∈ {1, 2} and P ranging over 2Λ.

4

• The type interpretation J−Ki
− is a function in (Typei × 2Λ) → 2Λ, defined by:

– JαKi
P = P

– Jτ1 → τ2K1P = {M | ∀N ∈ Jτ1K1P . MN ∈ Jτ2K1P} – Jτ1 ∩ τ2Ki
P = Jτ1Ki

P ∩ Jτ2Ki
P

– Jτ1 → τ2K2P = {M ∈ P | ∀N ∈ Jτ1K2P . MN ∈ Jτ2K2P} – JΩK2P = Λ
• A valuation is a function ν : V → Λ.

We let ν(x := M) be the function ν where ν ′(x) = M and ν ′(y) = ν(y) if y 6= x.
Let J−Kν : Λ → Λ where JMKν = M [x1 := ν(x1), . . . , xn := ν(xn)] for fv(M) = {x1, . . . , xn}.

• – ν |=i M : τ iff JMKν ∈ JτKi
P – ν |=i Γ iff ∀(x : τ) ∈ Γ. ν(x) ∈ JτKi

P
– Γ |=i M : τ iff ∀ν ∈ V → Λ. (ν |=i Γ ⇒ ν |=i M : τ)

• Let X ⊆ Λ. Let us recall the variable, saturation, closure and invariance under abstraction predi-
cates defined by Ghilezan and Likavec:

– VARi(P,X) ⇐⇒ V ⊆ X .
– SAT1(P,X) ⇐⇒ (∀M ∈ Λ. ∀x ∈ V. ∀N ∈ P. M [x := N] ∈ X ⇒ (λx.M)N ∈ X).
– SAT2(P,X) ⇐⇒ (∀M,N ∈ Λ. ∀x ∈ V. M [x := N] ∈ X ⇒ (λx.M)N ∈ X).
– CLO1(P,X) ⇐⇒ (∀M ∈ Λ. ∀x ∈ V. Mx ∈ X ⇒M ∈ P).
– CLO2(P,X) ⇐⇒ CLO(P,X) ⇐⇒ (∀M ∈ Λ. ∀x ∈ V. M ∈ X ⇒ λx.M ∈ P).
– VAR(P,X) ⇐⇒ (∀x ∈ V. ∀n ∈ N. ∀N1, . . . , Nn ∈ P. xN1 . . . Nn ∈ X).
– SAT(P,X) ⇐⇒ (∀M,N ∈ Λ. ∀x ∈ V. ∀n ∈ N. ∀N1, . . . , Nn ∈ P.
M [x := N]N1 . . . Nn ∈ X ⇒ (λx.M)NN1 . . . Nn ∈ X).

– INV(P) ⇐⇒ (∀M ∈ Λ. ∀x ∈ V. M ∈ P ⇐⇒ λx.M ∈ P).
For R ∈ {VARi,SATi,CLOi}, let R(P) ⇐⇒ ∀τ ∈ Typei.R(P, JτKi

P).

Lemma 5 (PRINCIPAL BASIC LEMMAS PROVED IN [5])
1. If VAR1(P) and CLO1(P) are satisfied then

a. ∀σ ∈ Type1. JσK1P ⊆ P .
b. If SAT1(P) and Γ `1 M : σ then we have Γ |=1 M : σ and M ∈ P

2. VAR2(P) ∧ SAT2(P) ∧ CLO2(P) ∧ Γ `2 M : τ ⇒ Γ |=2 M : τ .
3. VAR2(P) ∧ SAT2(P) ∧ CLO2(P) ∧ ∀τ ∈ Type2. (τ 6∼2 Ω ∧ Γ `2 M : τ) ⇒M ∈ P .
4. CLO(P,P) ⇒ ∀τ ∈ Type2. (τ 6∼2 Ω ⇒ CLO2(P, JτK2P)).
5. VAR(P,P), SAT(P,P) and CLO(P,P) for P ∈ {CR,S,W}.

Ghilezan and Likavec claim that if CLO1(P), VAR1(P) and SAT1(P) are true then SNβ ⊆ P
(note that this result does not make any use of the type system λ∩1).

According to Ghilezan and Likavec, VARi, SATi and CLOi are sufficient for the reducibility
method, and to prove them one needs stronger induction hypotheses which are easier to prove. They
sets out to show that when i = 2, the stronger conditions are VAR, SAT and CLO. We show that
this attempt fails. They do not develop the necessary stronger induction hypotheses for the case when
i = 1, and λ∩1 can only anyway type strongly normalisable terms, so we will not consider the case
i = 1 further.

Lemma 6 For all τ, τ ′ ∈ Type2, α→ Ω → τ ′ 6∼2 Ω → τ

Lemma 7 (LEMMA 3.16 OF [5] IS FALSE) Lemma 3.16 of [5] stated below is false:
VAR(P,P) ⇒ ∀τ ∈ Type2. (∀τ ′ ∈ Type2. (τ 6∼2 Ω → τ ′) ⇒ VAR(P, JτK2P)).

Proof: Note that VAR(P, JτK2P) ⇒ V ⊆ JτK2P . Let x ∈ V , τ be α→ Ω → α and P be WNβ . By
lemma 6, for all τ ′ ∈ Type2, τ 6∼2 Ω → τ ′ and VAR(P,P) is true. Assume VAR(P, JτK2P), then
x ∈ JτK2P . Then x ∈ Jα→ Ω → αK2P = JτK2P because x ∈ P = JαK2P , and xx(��) ∈ JαK2P = P
because �� ∈ Λ = JΩK2P . But xx(��) ∈ P is false, so VAR(P, JτK2P) is false. �

5

The proof for Lemma 3.18 of [5] does not work (because of a misused of an induction hypothesis)
but we have not yet proved or disproved that lemma:

Remark 8 (IT IS NOT CLEAR THAT LEMMA 3.18 OF [5] HOLDS) It is not clear whether this lemma of [5]
holds: SAT(P,P) ⇒ ∀τ ∈ Type2. (∀τ ′ ∈ Type2. (τ 6∼2 Ω → τ ′) ⇒ SAT(P, JτK2P)).

Then, Ghilezan and Likavec give a proposition (Proposition 3.21) which is the reducibility method
for typable terms. However, the proof of that proposition depends on two problematic lemmas (lemma
3.16 which we showed to fail in our lemma 7, and lemma 3.18 which according to remark 8 has not
been proved).

Lemma 9 (PROPOSITION 3.21 OF [5] FAILS) Assume VAR(P,P), SAT(P,P) and CLO(P,P). It is
not the case that: ∀τ ∈ Type2. (τ 6∼2 Ω ∧ ∀τ ′ ∈ Type2. (τ 6∼2 Ω → τ ′) ∧ Γ `2 M : τ ⇒M ∈ P).

Proof: Let P be WNβ . Note that λy.λz.�� 6∈ WNβ and ∅ `2 λy.λz.�� : α→ Ω → Ω is
derivable, where α→ Ω → Ω 6∼2 Ω and by lemma 6, α→ Ω → Ω 6∼2 Ω → τ ′, for all τ ′ ∈ Type2.
Since VAR(WNβ,WNβ), CLO(WNβ,WNβ) and SAT(WNβ,WNβ) hold, we get a counterexample
for Proposition 3.21 of [5]. �

Finally, also the Ghilezan and Likavec’s proof method for untyped terms fails.

Lemma 10 (PROPOSITION 3.23 OF [5] FAILS) Proposition 3.23 of [5] which states that “If P ⊆ Λ is
invariant under abstraction (i.e., INV(P)), VAR(P,P) and SAT(P,P) then P = Λ” fails.

Proof: The proof given in [5] depends on Proposition 3.21 which fails. As VAR(WNβ,WNβ),
SAT(WNβ,WNβ) and INV(WNβ), we get a counterexample for Proposition 3.23. �

4 How much of the Ghilezan and Likavec’s method can we salvage?

Because we proved that the Proposition 3.23 of [5] is false, we know that the given set of properties
(INV(P), VAR(P,P) and SAT(P,P)) that a set of terms P has to fulfil to be equal to the set of terms
of the untyped λ-calculus is not the right one. So even if one works on the soundness result or on the
type interpretation (the set of realisers), to obtain the same result as the one claimed by Ghilezan and
Likavec, one should come up with a new set of properties.

Proposition 3.23 of [5] states a set of properties characterising the set of terms of the untyped λ-
calculus. The predicate VAR(Λ,Λ) states that the variables (and the terms of the form xNM1 · · ·Mn

) belong to the untyped λ-calculus. The predicate INV(Λ) states among other things that if a term is
a λ-term then the abstraction of a variable over this term is a λ-term too. To get a full characterisation
of the set of terms of the untyped λ-calculus, we need a predicate, let us call it APP(P), stating that
(λx.M)NM1 · · ·Mn ∈ P if M,N,M1, . . . ,Mn ∈ P , to be true. Is this predicate true if VAR(P,P),
SAT(P,P) and INV(P) are true? No, because we saw that we can find a set of terms (WNβ) which
satisfies these properties but is not equal to the λ-calculus. For example, we cannot get the non strongly
normalisable terms to be in WNβ . So, these properties are not enough to characterise the λ-calculus.

The problem with these properties is that if one tries to salvage the Ghilezan and Likavec’s reducibil-
ity method, the properties VAR(P,P) and CLO(P,P) are going to impose a restriction on the arrow
types for which the interpretation is in P (the realisers of arrow types), as we can see in the arrow type
case of the proof of the following lemma 13. 4 and in the arrow type case of the proof of the following
lemma 14. As shown at the end of this section, even if the obtained result when considering these re-
strictions is different from (in some sens, is an improvement of) the one given by Ghilezan and Likavec
using the type system λ∩1, we do not succeed in salvaging their method.

The use of the non-trivial types (we recall the definition below) introduced by Gallier [4] are not
much of a help in this case, because of the precise restriction imposed by VAR(P,P). One might also

6

want to consider the sets of properties (we do not recall them in this paper for lack of space) stated
in his work [4], but which are unfortunately not easy to prove for CR, because a proof of xM ∈ CR
for all M ∈ Λ is required. Moreover, if one succeeds in proving that the variables are included in the
interpretation of a defined set of types containing Ω → α, where Ω is interpreted as Λ and α as P , then
one has proved that xM ∈ P , so that in the case P = CR, M ∈ CR.

It is worth pointing out that a part of the work done by Gallier [4] would still be valid if adapted to
the type system λ∩2. Gallier defines the non-trivial types as follows:

ψ ∈ NonTrivial ::= α | τ → ψ | τ ∩ ψ | ψ ∩ τ
Types in Type2 are then interpreted as follows: JαKP = P , Jψ ∩ τKP = Jτ ∩ ψKP = JτKP ∩ JψKP ,
JτKP = Λ if τ 6∈ NonTrivial and Jτ → ψKP = {M ∈ P | ∀N ∈ JτKP . MN ∈ JψKP}. We can easily
prove that if τ1 ≤2 τ2 then Jτ1KP ⊆ Jτ2KP . Hence, considering the type system λ∩2 instead of the
type system DΩ, the method of Gallier gets a set of predicates which when satisfied by a set of terms
P implies that the set of terms typable in the system λ∩2 by a non-trivial type is a subset of P . Gallier
proved that the set of head-normalising λ-terms satisfies each of the given predicates.

Using a method similar that the Ghilezan and Likavec’s method, Gallier proved also that the set of
weakly head-normalising terms (W) is equal to the set of terms typable by a weakly non-trivial types
in the type system DΩ. The set of weakly non-trivial types is defined as follows:

ψ ∈ WeaklyNonTrivial ::= α | τ → ψ | Ω → Ω | τ ∩ ψ | ψ ∩ τ
As explain above, when trying to salvage the Ghilezan and Likavec’s method we have to restrict the

set of realisers when defining the interpretation of the set of types Type2. The different restrictions lead
us to the definition of Type3.

Definition 11 ρ ∈ Type3 ::= α | ρ1 → ρ2 | ρ ∩ τ | τ ∩ ρ.
• JαK3P = P .
• Jτ1 ∩ τ2K3P = Jτ1K3P ∩ Jτ2K3P , if τ1 ∩ τ2 ∈ Type3.
• JτK3P = Λ, if τ 6∈ Type3.
• Jτ1 → τ2K3P = {M ∈ P | ∀N ∈ Jτ1K3P . MN ∈ Jτ2K3P}, if τ1 → τ2 ∈ Type3.

Because of the defined semantics, we have to consider an additional restriction. As a matter of fact,
to prove the soundness lemma 5. 2, when considering the case of the rule (≤2) we need the following
result: if τ1 ≤2 τ2 then Jτ1K2P ⊆ Jτ2K2P . So when proving the soundness result w.r.t. the new semantics,
we should have to prove: if τ1 ≤2 τ2 then Jτ1K3P ⊆ Jτ2K3P . However, by rule (8), Ω → α ≤ α→ α, but
JΩ → αK3P = Λ and Jα → αK3P ⊆ P . Hence we define a new type system where we restrict the type
system λ∩2 by getting ride of the rule (8).

Definition 12 Let ≤3 be the preorder ≤2 without the rule (8). Let `3 be the relation `2 where ≤2 is
replaced by≤3. Let λ∩3 be the type system λ∩2 where `2 is replaced by `3 and≤2 is replaced by≤3.
Let |=3 be the relation |=2 where JτK2P is replaced by JτK3P .

Lemma 13
1. Jτ1 ∩ τ2K3P = Jτ1K3P ∩ Jτ2K3P .
2. JρK3P ⊆ P .
3. If τ1 ≤3 τ2 then Jτ1K3P ⊆ Jτ2K3P .
4. If VAR(P,P) then for all τ ∈ Type2, VAR(P, JτK3P).
5. If SAT(P,P) then for all τ ∈ Type2, SAT(P, JτK3P).

We now prove the new soundness lemma:

Lemma 14 If VAR(P,P), SAT(P,P), CLO(P,P) and Γ `3 M : τ then Γ |=3 M : τ

Proposition 15 If Γ `3 M : ρ then M ∈ CR, M ∈ S, and M ∈ W.

7

The difference with the first result obtained by Ghilezan and Likavec [5] using the type system λ∩1

(beside the fact that the predicates are different. See definition 4.4 and lemma 5. 1 above) is that now
we are able to prove that even some non strongly normalisable terms belong to the sets CR, S, and W
as the following example shows: by (Ω) and (ax) we get x : α `3 �� : Ω and x : α, y : Ω `3 x : α.
By (→I) we get x : α `3 λy.x : Ω → α and by →E we get x : α `3 (λy.x)(��) : α. Moreover,
we conjecture that all the strongly normalisable terms are typable in the type system λ∩3 with a type
in Type3. However, we did not salvage the Ghilezan and Likavec’s method because some terms of the
untyped λ-calculus are not typable in the type system λ∩3 by a type in Type3.

5 Adapting the CR proof of Koletsos and Stavrinos [9] to βI-reduction

Koletsos and Stavrinos [9] gave a proof of Church-Rosser for β-reduction for system D given in Defi-
nition 3 and showed that this can be used to show confluence of β-developments without using strong
normalisation. In this section, we adapt this proof to βI and set the formal ground for generalising
the Koletsos and Stavrinos’s method for βη in the next section. After giving the definition of βI-
developments, we will introduce the type interpretation which will be used to establish Church-Rosser
of both systems D and DI (for βη- resp. βI-reduction).

The next definition, taken from Krivine [10] (and used by Koletsos and Stavrinos [9]) uses the
variable c to destroy the βI-redexes of M which are not in the set F of βI-redex occurrences in M ,
and to neutralise applications so that they cannot be transformed into redexes after βI-reduction.

Definition 16 (Φc(−,−)) Let M ∈ ΛI, c 6∈ fv(M), and F ⊆ RβI
M .

• If M = x then F = ∅ and Φc(x,F) = x

• If M = λx.N and x 6= c and F ′ = {p | 1.p ∈ F} ⊆ RβI
N then Φc(λx.N,F) = λx.Φc(N,F ′)

• If M = NP , F1 = {p | 1.p ∈ F} ⊆ RβI
N and F2 = {p | 2.p ∈ F} ⊆ RβI

P then

Φc(NP,F) =
{
cΦc(N,F1)Φc(P,F2) if 0 6∈ F
Φc(N,F1)Φc(P,F2) otherwise

Lemma 17 Let M ∈ ΛI, such that c 6∈ fv(M), F ⊆ RβI
M , p ∈ F and M

p→βI M
′. Then, there exists

a unique F ′ ⊆ RβI
M ′ , such that P = Φc(M,F)

p′
→βI Φc(M ′,F ′) and |〈P, p ′〉|c = p.

We define the set of βI-residuals of a set F of βI-redexes relative to a sequence of βI-redexes.

Definition 18 Let M ∈ ΛI, such that c 6∈ fv(M) and let F ⊆ RβI
M .

• Let p ∈ F and M
p→βI M ′. By lemma 17, there exists a unique F ′ ⊆ RβI

M ′ such that P =

Φc(M,F)
p′
→βI Φc(M ′,F ′) and |〈P, p ′〉|c = p. We call F ′ the set of βI-residuals of F in M ′

relative to p.
• A one-step βI-development of (M,F), denoted (M,F) →βId (M ′,F ′), is a βI-reduction
M

p→βI M
′ where p ∈ F and F ′ is the set of βI-residuals of F in M ′ relative to p. A βI-

development is the transitive closure of a one-step βI-development. We write also M F→βId Mn

for the βI-development (M,F) →∗
βId (Mn,Fn).

Definition 19 1. Let r ∈ {βI, βη}. We define J−Kr : Type1 → 2Λ by:
• JαKr = CRr • Jσ1 ∩ σ2Kr = Jσ1Kr ∩ Jσ2Kr

• Jσ1 → σ2Kr = {t ∈ CRr | ∀u ∈ Jσ1Kr. tu ∈ Jσ2Kr}.
2. X ⊆ Λ is saturated iff ∀n ∈ N. ∀M,N,M1, . . . ,Mn ∈ Λ. ∀x ∈ V.
M [x := N]M1 . . .Mn ∈ X ⇒ (λx.M)NM1 . . .Mn ∈ X

8

X ⊆ ΛI is I-saturated iff ∀n ∈ N. ∀M,N,M1, . . . ,Mn ∈ Λ. ∀x ∈ V.
x ∈ fv(M) ⇒M [x := N]M1 . . .Mn ∈ X ⇒ (λx.M)NM1 . . .Mn ∈ X

It turns out that if σ ∈ Type1 then JσKr is saturated and only contains Church-Rosser terms. Krivine
[10] gave a proof for β-SN. Koletsos ans Stavrinos [9] adapted Krivine’s proof for β-Church-Rosser.
In this section we adapt the Koletsos and Stavrinos’s method [9] for βη-Church-Rosser. First, we adapt
the Krivine’s soundness lemma to both `βI and `βη.

Lemma 20 Let r ∈ {βI, βη}. If x1 : σ1, . . . , xn : σn `r M : σ and ∀i ∈ {1, . . . , n}. Ni ∈ JσiKr then
M [(xi := Ni)n

1] ∈ JσKr.

Next, we adapt a corollary given by Koletsos and Stavrinos to show that if Γ `r M : σ then
M ∈ CRr, for r ∈ {βI, βη}. To treat βI- and βη-reduction, we generalise next a lemma given by
Krivine [10] (and used by Koletsos and Stavrinos [9]) which states that if M ∈ ΛIc (resp. Ληc) then M
is typable in D (resp. DI) and hence M ∈ CRβI (resp. M ∈ CRβη).

Lemma 21 Let c 6∈ dom(Γ) ⊇ fv(M) \ {c} = {x1, . . . , xn}.
1. If M ∈ ΛIc and Γ′ = Γ � fv(M), then there exist σ1, σ2 ∈ Type1 such that if c ∈ fv(M) then

Γ′, c : σ1 `βI M : σ2, else Γ′ `βI M : σ2.
2. If M ∈ Ληc then there exist σ1, σ2 ∈ Type1 such that Γ, c : σ1 `βη M : σ2.

The next lemma adapts the main Koletsos and Stavrinos’s theorem [9] where as far as we know it
first appeared.

Lemma 22 (CONFLUENCE OF THE βI -DEVELOPMENTS) LetM ∈ ΛI, such that c 6∈ fv(M). IfM F1→βId

M1 and M F2→βId M2, then there exist F ′
1 ⊆ RβI

M1
, F ′

2 ⊆ RβI
M2

and M3 ∈ ΛI such that M1
F ′

1→βId M3

and M2
F ′

2→βId M3.

By the notation: M →1I M
′ ⇐⇒ ∃F ,F ′. (M,F) →∗

βId (M ′,F ′) where M,M ′ ∈ ΛI, such that
c 6∈ fv(M), the transitive reflexive closure of →βI is equal to the transitive reflexive closure of →1I .
We are now able to prove the inclusion of ΛI in CRβI and so the equality between these two sets.

Lemma 23 If M ∈ ΛI such that c 6∈ fv(M) then M ∈ CRβI .

6 Generalisation of the method to βη-reduction

In this section we generalise the method of section 5 to βη-reduction. This generalisation is not trivial
since when studying developments involving η-reduction we need closure under η-reduction of a de-
fined set of frozen terms. For example, let M = λx.cNx ∈ ΛIc where x 6∈ fv(N) and N ∈ ΛIc, then
M →η cN 6∈ ΛIc. For such reasons, we extended ΛIc to Ληc. In this section, many of the notions used
to prove Church-Rosser of βI-reduction will be extended to deal with βη-reduction.

A full common definition of a βη-residual is given by Curry and Feys [2] (p. 117, 118). Another
definition of βη-residual (called λ-residual) is presented by Klop [7] (definition 2.4, p. 254). Klop
[7] shows that both definitions enable to prove different properties of developments. Following the
definition of a βη-residual given by Curry and Feys [2] (and as pointed out in [2, 7, 1]), if the η-redex
λx.(λy.M)x, where x 6∈ fv(λy.M), is reduced in the term P = (λx.(λy.M)x)N to give the term
Q = (λy.M)N , thenQ is not a βη-residual of P in P (note that following the definition of a λ-residual
given by Klop [7], Q is a λ-residual of the redex (λy.M)x in P since the λ of the redex Q is the same
than the λ of the redex (λy.M)x in P). Moreover, if the β-redex (λy.My)x, where y 6∈ fv(M), is
reduced in the term P = λx.(λy.My)x to give the term Q = λx.Mx, then Q is not a βη-residual of P

9

in P (note that following the definition of a λ-residual given by Klop [7], Q is a λ-residual of the redex
P in P since the λ of the redex Q is the same than the λ of the redex P in P). Our definition 26 differs
from the common one stated by Curry and Feys [2] by these cases as we illustrate in the following
example: Ψc((λx.(λy.M)x)N, {1, 1.0, 1.1.0}) = {cn((λx.(λy.P [y := c(cy)])x)Q) | n ≥ 0 ∧ P ∈
Ψc(M,∅) ∧ Q ∈ Ψc(N,∅)}, where x 6∈ fv(λy.M). Let p = 1.0 then (λx.(λy.M)x)N

p→βη

(λy.M)N . Moreover, P0 = cn((λx.(λy.P [y := c(cy)])x)Q)
p′
→βη c

n((λy.P [y := c(cy)])Q) such
that n ≥ 0, P ∈ Ψc(M,∅), Q ∈ Ψc(N,∅), |〈P0, p ′〉|c = |〈P0, 2n.1.0〉|c = p (using a lemma stated
and proved in the long version of this article) and cn((λy.P [y := c(cy)])Q) ∈ Ψc((λy.M)N, {0}).

The next definition adapts definition 16 to deal with βη-reduction.

Definition 24 (Ψc(−,−),Ψc
0(−,−)) Let c 6∈ fv(M) and F ⊆ Rβη

M .
(P1) If M ∈ V \ {c} then F = ∅ and

Ψc(M,F) = {cn(M) | n > 0} Ψc
0(M,F) = {M}

(P2) If M = λx.N and x 6= c and F ′ = {p | 1.p ∈ F} ⊆ Rβη
N then:

Ψc(M,F) =
{
{cn(λx.P [x := c(cx)]) | n ≥ 0 ∧ P ∈ Ψc(N,F ′)} if 0 6∈ F
{cn(λx.N ′) | n ≥ 0 ∧N ′ ∈ Ψc

0(N,F ′)} otherwise

Ψc
0(M,F) =

{
{λx.N ′[x := c(cx)] | N ′ ∈ Ψc(N,F ′)} if 0 6∈ F
{λx.N ′ | N ′ ∈ Ψc

0(N,F ′)} otherwise

(P3) If M = NP , F1 = {p | 1.p ∈ F} ⊆ Rβη
N and F2 = {p | 2.p ∈ F} ⊆ Rβη

P then:

Ψc(M,F) =
{
{cn(cN ′P ′) | n ≥ 0 ∧N ′ ∈ Ψc(N,F1) ∧ P ′ ∈ Ψc(P,F2)} if 0 6∈ F
{cn(N ′P ′) | n ≥ 0 ∧N ′ ∈ Ψc

0(N,F1) ∧ P ′ ∈ Ψc(P,F2)} otherwise

Ψc
0(M,F) =

{
{cN ′P ′ | N ′ ∈ Ψc(N,F1) ∧ P ′ ∈ Ψc

0(P,F2)} if 0 6∈ F
{N ′P ′ | N ′ ∈ Ψc

0(N,F1) ∧ P ′ ∈ Ψc
0(P,F2) otherwise

Lemma 25 Let M ∈ Λ, such that c 6∈ fv(M), F ⊆ Rβη
M , p ∈ F and M

p→βη M
′. Then, there exists a

unique F ′ ⊆ Rβη
M ′ such that for all N ∈ Ψc(M,F), there exists N ′ ∈ Ψc(M ′,F ′) and p ′ ∈ Rβη

N such

that N
p′
→βη N

′ and |〈N, p ′〉|c = p.

Definition 26 Let M ∈ Λ and F ⊆ Rβη
M .

• Let p ∈ F and M
p→βη M ′. By lemma 25, there exists a unique F ′ ⊆ Rβη

M ′ , such that for

all N ∈ Ψc(M,F) there exist N ′ ∈ Ψc(M ′,F ′) and p ′ ∈ Rβη
N such that N

p′
→βη N ′ and

|〈N, p ′〉|c = p. We call F ′ the set of βη-residuals of F in M ′ relative to p.
• Let c 6∈ fv(M). A one-step βη-development of (M,F), denoted (M,F) →βηd (M ′,F ′), is a
βη-reduction M

p→βη M
′ where p ∈ F and F ′ is the set of βη-residuals of F in M ′ relative

to p. A βη-development is the transitive closure of a one-step βη-development. We write also
M

F→βηd M
′ for the βη-development (M,F) →∗

βηd (M ′,F ′).

Lemma 27 (CONFLUENCE OF THE βη-DEVELOPMENTS) Let M,M1,M2 ∈ Λ. If M F1→βηd M1 and

M
F2→βηd M2, then there exist sets F ′

1 ⊆ Rβη
M1

and F ′
2 ⊆ Rβη

M2
and a term M3 ∈ Λ such that

M1
F ′

1→βηd M3 and M2
F ′

2→βηd M3.

By the notation: M →1 M
′ ⇐⇒ ∃F ,F ′. (M,F) →∗

βηd (M ′,F ′), the transitive reflexive closure
of →βη is equal to the transitive reflexive closure of →1. We are now able to prove the (non-strict)
inclusion of Λ in CRβη and the equality between these sets.

Lemma 28 If M ∈ Λ such that c 6∈ fv(M) then M ∈ CRβη.

10

7 Conclusion/comparison

Reducibility is a powerful method and has been applied to prove using a single method, a number
of properties of the λ-calculus (Church-Rosser, strong normalisation, etc.). This paper studied two
reducibility methods which exploit the passage from typed (in an intersection type system) to untyped
terms. We showed that a first method given by Ghilezan and Likavec [5] fails in its aim and we have
only been able to provide a partial solution. We adapted a second method given by Koletsos and
Stavrinos [9] from β to βI-reduction and we generalised it to βη-reduction. There are differences in
the type systems chosen and the methods of reducibility used by Ghilezan and Likavec on one side
and by Koletsos and Stavrinos on the other. Koletsos and Stavrinos use system D [10], which has
elimination rules for intersection types whereas Ghilezan and Likavec use λ∩ and λ∩Ω with subtyping.
Moreover, the Koletsos and Stavrinos’s method depends on the inclusion of typable λ-terms in the
set of λ-terms possessing the Church-Rosser property, whereas the Ghilezan and Likavec’s method
(the working part of their method) is to prove the inclusion of typable terms in an arbitrary subset
of the untyped λ-calculus closed by some properties. Moreover, Ghilezan and Likavec consider the
VAR(P), SAT(P) and CLO(P) predicates whereas Koletsos and Stavrinos use standard reducibility
methods through saturated sets. Koletsos and Stavrinos prove the confluence of developments using
the confluence of typable λ-terms in system D (the authors prove that even a simple type system is
sufficient). The advantage of the Koletsos and Stavrinos’s proof of confluence of developments is that
strong normalisation is not needed.

References

[1] H. Barendregt, J. A. Bergstra, J. W. Klop, H. Volken. Degrees, reductions and representability
in the lambda calculus. Technical Report Preprint no. 22, University of Utrecht, Department of
Mathematics, 1976.

[2] H. B. Curry, R. Feys. Combinatory logic, vol. 1. 1958.

[3] J. Gallier. On the correspondance between proofs and λ-terms. Cahiers du centre de logique,
1997. Available at http://www.cis.upenn.edu/˜jean/gbooks/logic.html (last
visited 2008–02–6).

[4] J. Gallier. Typing untyped λ-terms, or reducibility strikes again!. Annals of Pure and Applied
Logic, 91, 2003.

[5] S. Ghilezan, S. Likavec. Reducibility: A ubiquitous method in lambda calculus with intersection
types. Electr. Notes Theor. Comput. Sci., 70(1), 2002.

[6] S. C. Kleene. On the interpretation of intuitionistic number theory. The Journal of Symbolic
Logic, 10(4), 1945.

[7] J. W. Klop. Combinatory Reductions Systems. PhD thesis, Mathematisch Centrum, Amsterdam,
1980.

[8] G. Koletsos. Church-Rosser theorem for typed functional systems. Journal of Symbolic Logic,
50(3), 1985.

[9] G. Koletsos, G. Stavrinos. Church-Rosser property and intersection types. Australian Journal of
Logic, 2008. To appear.

[10] J. L. Krivine. Lambda-calcul, types et modeles. Dunod, 1990.

[11] W. W. Tait. Intensional interpretations of functionals of finite type I. J. Symb. Log., 32(2), 1967.

11

http://www.cis.upenn.edu/~jean/gbooks/logic.html

	Introduction
	The Formal Machinery
	Problems of the Ghilezan and Likavec's reducibility method Gil+Lik:2002
	How much of the Ghilezan and Likavec's method can we salvage?
	Adapting the CR proof of Koletsos and Stavrinos Kol+Str:2007 to I-reduction
	Generalisation of the method to -reduction
	Conclusion/comparison

