
Automath type inclusion in Barendregt’s Cube

Fairouz Kamareddine1, J.B. Wells1 and Daniel Ventura2

1 School of Maths and Computer Sc., Heriot-Watt Univ., Edinburgh, UK
2 Instituto de Informática, Universidade Federal de Goiás, Goiânia GO, Brazil.

Abstract. The introduction of a general definition of function was key
to Frege’s formalisation of logic. Self-application of functions was at the
heart of Russell’s paradox. Russell introduced type theory to control
the application of functions and avoid the paradox. Since, different type
systems have been introduced, each allowing different functional power.
Most of these systems use the two binders λ andΠ to distinguish between
functions and types, and allow β-reduction but not Π-reduction. That
is, (πx:A.B)C → B[x := C] is only allowed when π is λ but not when
it is Π . Since Π-reduction is not allowed, these systems cannot allow
unreduced typing. Hence types do not have the same instantiation right
as functions. In particular, when b has type B, the type of (λx:A.b)C is
immediately given as B[x := C] instead of keeping it as (Πx:A.B)C to be
Π-reduced to B[x := C] later. Extensions of modern type systems with
both β- and Π-reduction and unreduced typing have appeared in [11, 12,
?] and lead naturally to unifying the λ and Π abstractions [9, 10]. The
Automath system combined the unification of binders λ and Π with
β- and Π-reduction together with a type inclusion rule that allows the
different expressions that define the same term to share the same type.
In this paper we extend the cube of 8 influential type systems [3] with
the Automath notion of type inclusion [5] and study its properties.

1 Introduction

Different type systems exist, each allowing different functional power. The λ-
calculus is a higher-order rewriting system which allows the elegant incorpo-
ration of functions and types, explains the notion of computability and is at
the heart of programming languages (e.g., Haskell and ML) and formalisations
of mathematics (e.g., Automath and Coq). Typed versions of the λ-calculus
provide a vehicle where logics, types and rewriting converge. Heyting [7], Kol-
mogorov [13] and Curry and Feys [6] (improved by Howard [8]) observed the
“propositions as types” or “proofs as terms” (PAT) correspondence. In
PAT, logical operators are embedded in the types of λ-terms rather than in the
propositions and λ-terms are viewed as proofs of the propositions represented by
their types. Advantages of PAT include the ability to manipulate proofs, easier
support for independent proof checking, the possibility of the extraction of com-
puter programs from proofs, and the ability to prove properties of the logic via
the termination of the rewriting system. And so, typed λ-calculi have been the
subject of extensive studies in the second half of the 20th century. For example:

II

– Both mathematics and programming languages make heavy use of the so-
called let expressions/abbreviations where a large expression is given a name
which can be replaced by the whole expression (we say in this case that the
definition/abbreviation is unfolded) when the need to do so arises.

– Some type systems (e.g.,Automath and the system of [12] haveΠ-reduction
(Πx:A.B)N →Π B[x:=N] and unreduced typing:

Γ ⊢M : Πx:A.B Γ ⊢ N : A

Γ ⊢MN : (Πx:A.B)N

[12] showed that Π-reduction and unreduced typing lead to the loss of Sub-
ject Reduction (SR) which can be restored by adding abbreviations (cf. [11]).
Note that the abbreviation/definition system of Automath itself is not
“smart enough” for restoring SR: take the same counterexample as in [12].

– Some versions of the λ-calculus (e.g., in Automath and in the Barendregt
cube with unified binders [10]) used the same binder for both λ and Π

abstraction. In particular, Automath used [x : A]B for both λx : A.B and
Πx : A.B. Consequences of unifying λ and Π are:
• A term can have many distinct types [10]. E.g., in λP of [3], we have:

α : ∗ ⊢β (λx:α.α) : (Πx:α.∗) and α : ∗ ⊢β (Πx:α.α) : ∗

which, when we give up the difference between λ and Π , result in:

I) α : ∗ ⊢β [x:α]α : [x:α] ∗ and II) α : ∗ ⊢β [x:α]α : ∗

Indeed, both equations I) and II) hold in AUT-QE.
• More generally, in AUT-QE we have the dervived rule:

Γ ⊢β [x1:A1] · · · [xn:An]B : [x1:A1] · · · [xn:An]∗

Γ ⊢β [x1:A1] · · · [xn:An]B : [x1:A1] · · · [xm:Am]∗
0 ≤ m ≤ n (1)

This derived rule (1) has the following equivalent derived rule in λP (and
hence in the higher systmes like λPω):

Γ ⊢β λx1:A1. · · ·λxn:An.B : Πx1:A1. · · ·Πxn:An. ∗ 0 ≤ m ≤ n

Γ ⊢β λx1:A1. · · ·λxm:Am.Πxm+1:Am+1. · · ·Πxn:An.B : Πx1:A1. · · ·Πxm:Am.∗

However,Aut-QE goes further and generalises (1) to a rule of type inclusion:

Γ ⊢β M : [x1:A1] · · · [xn:An]∗

Γ ⊢β M : [x1:A1] · · · [xm:Am]∗
0 ≤ m ≤ n (Q)

Such type inclusion guarantees that two equal definitions will share (at least)
one type and appears in higher order Automath systems like Aut-QE.

Remark 1 Rule (Q) may be motivated by looking at the definition system of
Automath where I) allows us to introduce a definition ζ(α) := [x:α]α : [x:α]∗
and II) enables us to define ξ(α) := [x:α]α : ∗. Now ζ(α) and ξ(α) are defining
exactly the same term (and are therefore called “definitionally equal”), but with-
out Rule (Q) they wouldn’t share the same type (whilst [x:α]α has both the type
of ζ(α) and the type of ξ(α)). By generalizing (1) to (Q) we get that ζ(α) also
has type ∗, so ζ(α) and ξ(α) share (at least one) type.

III

The behaviour of (variants of) Rule (Q) has never been studied in modern
type systems. This paper fills these gaps and gives the first extensive account
of modern type systems with/without Π-reduction, unreduced typing and type
inclusion. We chose to use as basis for these extensions, a flexible and general
framework: Barendregt’s β-cube. In the β-cube of [3], eight well-known type
systems are given in a uniform way. The weakest system is Church’s simply
typed λ-calculus λ→, and the strongest system is the Calculus of Constructions
λPω. The second order λ-calculus figures on the β-cube between λ→ and λPω.
The paper is divided as follows:
– Section 2 introduces a number of cubes, establishes necessary properties, and

shows that in the cube with type inclusion, 4 systems get merged into two
due to type inclusion.

– Section 3 establishes the generation lemma that is crucial for type checking
in all the cubes. Then, correctness of types and subject reduction (safety) as
well as preservation of types under reduction are studied for all the cubes.
Strong normalisation, typability of subterms and unicity of types are laid out
to be studied for each cube separately in the later sections.

– In Section 4 we relate the various cubes showing exactly which includes which
and whether these inclusions are strict. We then study strong normalisation,
typability of subterms and unicity of types in these cubes.

– We conclude in Section 5 and add an appendix containing missing proofs.

2 Notions of reduction and typing
We define the set of terms T by: T ::= ∗ |2 | V | πV:T .T | T T where π ∈ {λ,Π}.
We let s, s′, s1, etc. range over the sorts {∗,2}. We assume that {∗,2} ∩ V = ∅.
We take V to be a set of variables over which, x, y, z, x1, etc. range. We let
A, B, M , N , a, b, etc. sometimes also indexed by Arabic numerals such as
A1, A2 range over terms. We use fv(A) to denote the free variables of A, and
A[x := B] to denote the substitution of all the free occurrences of x in A by B.
We assume familiarity with the notion of compatibility. As usual, we take terms
to be equivalent up to variable renaming and let ≡ denote syntactic equality. We
also assume the Barendregt convention (BC) where names of bound variables
are always chosen so that they differ from free ones in a term and where different
abstraction operators bind different variables. For example, we write (πy:A.y)x
instead of (πx:A.x)x and πx:A.πy:B.C instead of πx:A.πx:B.C. (BC) will also be
assumed for contexts and typings (for each of the calculi presented) so that for
example, if Γ ⊢ πx:A.B : C then x will not occur in Γ . We define subterms in
the usual way. For Λ ∈ {λ,Π}, we write Λxm:Am

. . . Λxn:An
.A as Λi:m..n

xi:Ai
.A.

Definition 2 [Reductions]
– Let β-reduction →β be the compatible closure of (λx:A.B)C →β B[x := C].
– Let Π-reduction →Π be the compatible closure of (Πx:A.B)C →Π B[x := C].
– We define the union of reduction relations as usual. E.g., →βΠ=→β ∪ →Π .
– Let r ∈ {β,Π, βΠ}. We define r-redexes in the usual way. Moreover:
• →→r is the reflexive transitive closure of →r and =r is the equivalence

closure of →r. We write
+
→→r to denote one or more steps of r-reduction.

IV

• If A→r B (resp. A→→r B), we also write B r← A (resp. B r←← A).
• We say that A is strongly normalising with respect to →r (we use the
notation SN→r

(A)) if there are no infinite →r-reductions starting at A.
• We say that A is in r-normal form if there is no B such that A→r B.
• We use nfr(A) to refer to the r-normal form of A if it exists.

In order to investigate the connection between the various type systems, it is
useful to change Π-redexes into λ-redexes and to contract Π-redexes:

Definition 3 [Changing Π-redexes, ≤, ≤r]

– For A ∈ T , we define [A]Π ∈ T and Ã ∈ T as follows:
• [A]Π is A where all Π-redexes are contracted.

• Ã is A where every Π-redex (Πx:−.−) is changed into a λ-redex (λx:−.−).
– • Let ≤ be the smallest reflexive and transitive relation on terms such that

Λi:1..n
xi:Ai

.∗ ≤ Λi:1..m
xi:Ai

. ∗ for all m ≤ n.

• Let r ∈ {β, βΠ}. For terms A, B we define A ≤r B by: There are terms
A′ =r A and B′ =r B such that A′ ≤ B′.

Theorem 4 (Church-Rosser for →r where r ∈ {β, βΠ}). Let r ∈ {β, βΠ}.
If B1 r←← A→→r B2 then there is a C such that B1 →→r C r←← B2.

Proof. For the β-case see [3]. For the βΠ-case see [12]. ⊠

Corollary 5
1. If A ≤r B and B ≤r C then A ≤r C.
2. If Πx:A.B1 ≤r Πx:A.B2 then B1 ≤r B2.

Proof. 1. Determine A′ =r A and B′ =r B such that A′ ≤ B′, and determine
C′ =r C and B′′ =r B such that B′′ ≤ C′. Note that we can write: A′ ≡ Λi:1..n

xi:Ai
.∗;

B′ ≡ Λi:1..m
xi:Ai

.∗; B′′ ≡ Λ
i:1..p
xi:Bi

.∗ and C′ ≡ Λ
i:1..q
xi:Bi

.∗ for some m ≤ n, q ≤ p. As
B′ =r B

′′, they have a common r-reduct by the Church Rosser Theorem 4. Note
that this reduct must be of the form Λi:1..m

xi:Ci
.∗ for some Ci =r Ai =r Bi, and

that m = p. Define A′′ ≡ Λi:1..m
xi:Ci

.Λ
j:m+1..n
xj:Aj

∗ and C′′ ≡ Λ
i:1..q
xi:Ci

.∗. Since A′′ ≤ C′′

(as q ≤ p = m ≤ n), A′′ =r A
′ =r A and C′′ =r C′ =r C, so we have A ≤r C.

2. Determine P =r Πx:A.B1 and Q =r Πx:A.B2 where P ≤ Q. For some m ≤ n,
P ≡ Λi:1..n

xi:Ai
.∗ and Q ≡ Λi:1..m

xi:Ai
.∗. Since B1 =r Λi:2..n

xi:Ai
.∗ ≤ Λi:2..m

xi:Ai
.∗ =r B2 we get

B1 ≤r B2. ⊠

Definition 6 [⊥, Declarations, contexts, ⊆, ⊆′]
1. There are two forms of declarations over which d, d′, d1, . . . range.
2. A variable declaration (v-dec) d is of the form x : A. We define var(d) = x,

type(d) = A and fv(d) = fv(A).
3. An abbreviation declaration (a-dec) d is of the form x = B : A and abbreviates

B of type A to be x. We define var(d) = x, type(d) = A, ab(d) = B and
fv(d) = fv(A) ∪ fv(M).

4. A context Γ is a (possibly empty) concatenation of declarations d1, d2, · · · , dn
such that if i 6= j, then var(di) 6≡ var(dj). Let dom (Γ) = {var(d) | d ∈ Γ},
Γ -decl = {d ∈ Γ | d is a v-dec} and Γ -abb = {d ∈ Γ | d is an a-dec }. Let
Γ,∆, Γ ′, Γ1, Γ2, . . . range over contexts and denote the empty context by 〈〉.

V

5. We define substitutions on contexts by: 〈〉[x := A] ≡ 〈〉,
(Γ, y : B)[x := A] ≡ Γ [x := A], y : B[x := A],
(Γ, y = B : C)[x := A] ≡ Γ [x := A], y = B[x := A] : C[x := A].

6. If d is the a-dec x = E : F , we write Γd for Γ [x := E] and Ad for A[x := E].
7. We define ⊆ (resp. ⊆′) between contexts as the least reflexive transitive relation

satisfying Γ,∆ ⊆ Γ, d,∆ (resp. Γ,∆ ⊆′ Γ, d,∆ and Γ, x : A,∆ ⊆′ Γ, x = B :
A,∆).

8. We extend Definition 3 to contexts as follows: [〈〉]Π ≡ 〈〉
[Γ, x : A]Π ≡ [Γ]Π , x : [A]Π [Γ, x = B : A]Π ≡ [Γ]Π , x = [B]Π : [A]Π

〈̃〉 ≡ 〈〉 Γ̃, x : A ≡ Γ̃ , x : Ã ˜Γ, x = B : A ≡ Γ̃ , x = B̃ : Ã.

All systems of the β-cube have the same typing rules but are distinguished
from one another by the set R of pairs of sorts (s1, s2) allowed in the type-
formation or Π-formation rule, (Π) given in BT (λ,Π) of Figure 4. Each system
of the β-cube has its set R such that (∗, ∗) ∈ R ⊆ {(∗, ∗), (∗,2), (2, ∗), (2,2)}
and hence there are only eight possible different systems of the β-cube (see
Figure 2). The dependencies between these systems is depicted in Figure 1.
A Π-type can only be formed in a specific system of the β-cube if rule (Π) of
Figure 4 is satisfied for some (s1, s2) in the setR of that system. The type system

λR describes how judgements Γ ⊢R A : B (or Γ ⊢ A : B, if it is clear which R is
used) can be derived. Rule (Π) provides a factorisation of the expressive power
into three features: polymorphism, type constructors, and dependent types:
– (∗, ∗) is the basic rule that forms types. All the β-cube systems have this rule.
– (2, ∗) takes care of polymorphism. λ2 is the weakest system with (2, ∗).
– (2,2) takes care of type constructors. λω is the weakest system with (2,2).
– (∗,2) takes care of term dependent types. λP is the weakest system with

(∗,2).

λ→ (∗, ∗)
λ2 (∗, ∗) (2, ∗)
λP (∗, ∗) (∗,2)
λP2 (∗, ∗) (2, ∗) (∗,2)
λω (∗, ∗) (2,2)
λω (∗, ∗) (2, ∗) (2,2)
λPω (∗, ∗) (∗,2) (2,2)
λPω (∗, ∗) (2, ∗) (∗,2) (2,2)

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

λ→ λP

λ2 λP2

λω λPω

λPωλω

p p

pp

p p

pp

-

6

��1
(∗,2) ∈ R

(2,2) ∈ R

(2, ∗) ∈ R

Fig. 1. Barendregt’s β-cube

Cubes Rules References

β,→β BT(λ,Π) + convβ + appΠ [3]
πi,→βΠ BT(λ,Π) + convβΠ + i-appΠ [12]
βa,→β BT(λ,Π) + convβ + appΠ + BA + letλ [11]
πai,→βΠ BT(λ,Π) + convβΠ + i-appΠ + BA + letλ + letΠ [11]
π,→βΠ BT(λ,Π) + convβΠ + appΠ This paper
πa,→βΠ BT(λ,Π) + convβΠ + appΠ + BA + letλ + letΠ This paper
βQ,→β BT(λ,Π) + convβ + appΠ + Qβ This paper

⊢π= ⊢β⊂⊢r⊂⊢πai
= ⊢πa for r ∈ {βa, πi} (Lemma 16)

⊢βa and ⊢πi
are unrelated (Lemma 16)

⊢βQω
= ⊢βQω

(Lemma 14)

⊢βQPω
= ⊢βQPω

(Lemma 14)

Fig. 2. Systems studied in this paper

VI

Cubes lemmas hold lemmas restricted

β 15..21
πi 15 and 19 16→23, 17→23+25, 18→23+25, 20→26, 21→23
βa 15..19 and 21 20→27
πai 15..19 and 21 20→27
π 15..21
πa 15..19 20→27
βQ 15..16

Fig. 3. Properties of various cubes

The next definition sets out the basic notions needed for our type systems.

Definition 7 [Statements, judgements] Let Γ be a context, A,B,C be terms.
Let ⊢ be one of the typing relations of this paper.

1. A : B is called a statement. A and B are its subject and predicate respectively.
2. Γ ⊢ A : B is a judgement which states that A has type B in context Γ .

Γ ⊢ A : B : C denotes Γ ⊢ A : B ∧ Γ ⊢ B : C.
3. Γ is ⊢-legal (or simply legal) if ∃A1, B1 terms such that Γ ⊢ A1 : B1.
4. A is a Γ⊢-term (or simply Γ -term) if ∃B1 such that [Γ ⊢ A : B1 ∨Γ ⊢ B1 : A].
5. A is ⊢-legal (or simply legal) if ∃Γ1[A is a Γ⊢

1 -term].
6. Let r be a reduction relation. We define Γ B =r B′ as the smallest equiva-

lence relation closed under A and B where: A. IfB =r B
′ then Γ B =r B

′.
B. If x = D : C ∈ Γ and B′ arises from B by substituting one particular free
occurrence of x in B by D then Γ B =r B′.
Note that if Γ does not have a-decs, then Γ B =r B′ becomes B =r B′.

7. We define Γ ⊢ d by: •Γ ⊢ var(d) : type(d).
• And, if d is a-dec then Γ ⊢ ab(d) : type(d) and Γ var(d) =r ab(d).

8. We define Γ ⊢ ∆ by: Γ ⊢ d for every d ∈ ∆.

In this paper we study extended versions of the β-cube. The extensions con-
sidered are summarized in Figure 2 which shows for each cube, its reduction
relation and its typing rules. For example, the β-cube uses β-reduction and the
BT(λ,Π) rules of Figure 4 with convβ of Figure 7 and appΠ of Figure 8.

(axiom) 〈〉 ⊢ ∗ : 2

(start)
Γ ⊢ A : s

Γ, x:A ⊢ x : A
x 6∈ dom (Γ)

(weak)
Γ ⊢ A : B Γ ⊢ C : s

Γ, x:C ⊢ A : B
x 6∈ dom (Γ)

(Π)
Γ ⊢ A : s1 Γ, x:A ⊢ B : s2

Γ ⊢ Πx:A.B : s2
(s1, s2) ∈ R

(λ)
Γ, x:A ⊢ b : B Γ ⊢ Πx:A.B : s

Γ ⊢ λx:A.b : Πx:A.B

Fig. 4. Basic typing BT (λ,Π)

Definition 8 We define a number of cubes, all of which have T as the set of
terms, contexts as in Definition 6.4 and use the BT(λ,Π) rules of Figure 4. For
each c-cube we define, we write ⊢c to denote type derivation in the c-cube.
– The β- and βQ-cubes have contexts that are free of a-decs, use β-reduction
→β, and the rules convβ of Figure 7 and appΠ of Figure 8. In addition, the
βQ-cube uses the Qβ rule of Figure 10.

VII

(start-a)
Γ ⊢ A : s Γ ⊢ B : A

Γ, x = B:A ⊢ x : A
x 6∈ dom (Γ)

(weak-a)
Γ ⊢ A : B Γ ⊢ C : s Γ ⊢ D : C

Γ, x = D:C ⊢ A : B
x 6∈ dom (Γ)

Fig. 5. Basic abbreviation rules BA

(let\)
Γ, x = B:A ⊢ C : D

Γ ⊢ (\x:A.C)B : D[x := B]

Fig. 6. (let\) where \ = λ or \ = Π

– The πi-cube has contexts that are free of a-decs, uses βΠ-reduction →βΠ ,
and the rules convβΠ of Figure 7 and i-appΠ of Figure 9.

– The βa-cube uses β-reduction →β , and the BA rules of Figure 5, convβ of
Figure 7, appΠ of Figure 8 and letλ of Figure 6.

– The πai-cube uses βΠ-reduction →βΠ , and the BT(λ,Π) rules of Figure 4
with the BA rules of Figure 5, convβΠ of Figure 7, i-appΠ of Figure 9 and
letλ and letΠ of Figure 6.

– The π-cube has contexts that are free of a-decs, uses βΠ-reduction→βΠ , and
the rules convβΠ of Figure 7 and appΠ of Figure 8. In addition, the πQ-cube
uses the Qβ rule of Figure 10.

– The πa-cube uses βΠ-reduction →βΠ , and the BA rules of Figure 5, convβΠ
of Figure 7, appΠ of Figure 8 and letλ and letΠ of Figure 6.

In what follows we establish basic properties for the cubes listed above. Unless
spcifically mentioned, these properties hold for all the cubes.

Lemma 9 (Free Variable Lemma for ⊢ and →r) Let Γ be ⊢-legal.
1. If d and d′ are different elements in Γ , then var(d) 6≡ var(d′).
2. If Γ ⊢ B : C then fv(B), fv(C) ⊆ dom (Γ).
3. If Γ = Γ1, d, Γ2 then fv(d) ⊆ dom (Γ1).

Proof. We prove 1, 2 and 3 by induction on the derivation of Γ ⊢c B : C. ⊠

Lemma 10 (Start/Context Lemma for ⊢ and →r)
1. If Γ is ⊢-legal then Γ ⊢ ∗ : 2 and for all d ∈ Γ , Γ ⊢ d.
2. On the derivation tree to Γ1, d, Γ2 ⊢ A : B we have

– Γ1 ⊢ type(d) : s for some sort s and Γ1, d ⊢ var(d) : type(d).
– If d is a-dec then Γ1 ⊢ ab(d) : type(d) and Γ1, d var(d) =r ab(d).

Proof. 1. Show by induction on Γ ⊢c B : C that if Γ = 〈〉 then Γ ⊢ ∗ : 2 and if
Γ = Γ ′, d then both Γ ′ ⊢ ∗ : 2 and Γ ⊢ ∗ : 2. 2. By induction on Γ ⊢c B : C. ⊠

Lemma 11 (Transitivity Lemma for ⊢ and →r) Let Γ,∆ be ⊢-legal con-
texts such that Γ ⊢ ∆. The following hold:
1. If ∆ A =r B then Γ A =r B. 2. If ∆ ⊢ A : B then Γ ⊢ A : B.

(convr)
Γ ⊢ A : B Γ ⊢ B

′ : s Γ B =r B
′

Γ ⊢ A : B′

Fig. 7. (convr) where r = β or r = βΠ

VIII

(app\)
Γ ⊢ F : Πx:A.B Γ ⊢ a : A

Γ ⊢ Fa : B[x:=a]

Fig. 8. (appΠ)

(i-appΠ)
Γ ⊢ F : Πx:A.B Γ ⊢ a : A

Γ ⊢ Fa : (Πx:A.B)a

Fig. 9. (i-appΠ)

Proof. By induction on the derivation ∆ ⊢ A : B. We do the let case. Assume
∆ ⊢ (\x:A.C)B : D[x := B] comes from ∆,x = B:A ⊢ C : D where x 6∈ dom (∆)
(else rename x). By start lemma on the derivation tree to ∆,x = B:A ⊢ C : D
we have ∆ ⊢ B : A and ∆ ⊢ A : s. Hence by IH, Γ ⊢ B : A and Γ ⊢ A : s.
Hence, by (start-a), Γ, x = B:A ⊢ x : A and Γ, x = B:A is legal. Furthermore,
by start lemma, Γ, x = B:A x =r B. Hence, Γ, x = B:A ⊢ ∆,x = B:A. By
IH, Γ, x = B:A ⊢ C : D and by let\,Γ ⊢ (\x:A.C)B : D[x := B]. ⊠

Lemma 12 (Thinning Lemma for ⊢ and →r)
1. If Γ and ∆ are ⊢-legal, Γ ⊆′ ∆, and Γ A =r B then ∆ A =r B.
2. If Γ and ∆ are ⊢-legal, Γ ⊆′ ∆, and Γ ⊢ A : B then ∆ ⊢ A : B.

Lemma 13 (Substitution Lemma for ⊢ and →r)
1. If Γ, d,∆ B =r C, d is a-dec, and B,C are Γ, d,∆⊢-legal then

Γ,∆d Bd =r Cd.
2. If B is Γ, d-legal and d is a-dec then Γ, d B =r Bd.
3. If Γ, d,∆ ⊢ B : C and d is a-dec then Γ,∆d ⊢ Bd : Cd.
4. If Γ, d,∆ ⊢ B : C and Γ ⊢ A : type(d) then

Γ,∆[var(d) := A] ⊢ B[var(d) := A] : C[var(d) := A].

Proof. 1. By induction on the derivation Γ, d,∆ B =r C.
2. By induction on the derivation Γ, d,∆ ⊢ A : B we show that Γ, d,∆ A =r Ad

and Γ, d,∆ B =r Bd.
3. and 4. By induction on the derivation Γ, d,∆ ⊢ B : C. ⊠

Lemma 14
1. If Γ ⊢ A : B then 2 does not occur in A,Γ , and if 2 occurs in B then B ≡ 2.
2. If Γ ⊢ A : B then A 6=r 2 and if B =r 2 then B ≡ 2.
3. In all cubes that don’t use let\, Γ 6⊢ AB : 2.
4. If let\ is permissible then we can have Γ ⊢ AB : 2.
5. Let (Λ, r) ∈ {(Π, β), (Π, βΠ)}.

If Γ ⊢ A : 2 then A =r Λ
i:1..l
xi:Ai

.∗ where l ≥ 0 and Γ ⊢ Λi:1..l
xi:Ai

.∗ : 2.

6. If Γ ⊢ π1
x1:A1

π2
x2:A2

. . . πl
xl:Al

.∗ : A where π ∈ {λ,Π} and l ≥ 0 then πi = Π

for all 1 ≤ i ≤ l and A =β 2 (hence A ≡ 2).

(Qβ)
Γ ⊢ λ

i:1..k
xi:Ai

.A : Πi:1..n
xi:Ai

.∗

Γ ⊢ λ
i:1..m
xi:Ai

.Π
i:m+1..k
xi:Ai

A : Πi:1..m
xi:Ai

.∗
0 ≤ m ≤ n, A 6≡ λx:B.C

Fig. 10. (Qβ)

IX

7. If Γ ⊢ Πi:1..l
xi:Ai

.∗ : 2 then Γ ⊢ Π
i:1..p
xi:Ai

.∗ : 2, Γ, x1 : A1, x2 : A2, . . . , xp : Ap ⊢

Π
i:p+1..l
xi:Ai

.∗ : 2 and Γ, x1 : A1, x2 : A2, . . . , xp−1 : Ap−1 ⊢ Ap : sp for some sort
sp where (sp,2) ∈ R and 1 ≤ p ≤ l.

8. If Γ ⊢ λx:A.B : C then C 6=r s.
9. If Γ ⊢ A : 2 then for A1, A2, . . . Al where l ≥ 0, Γ ⊢ Πi:1..l

xi:Ai
.∗ : 2 and

– If let\ is not permissible, then A ≡ Πi:1..l
xi:Ai

.∗.

– If letΠ is not permissible, then A =β Πi:1..l
xi:Ai

.∗.

– If letΠ is permissible, then A =βΠ Πi:1..l
xi:Ai

.∗.
10. Rule Qβ and rule (s,2) for s ∈ {∗,2} imply rule (s, ∗).

This means that the type systems λQω and λQω are equal, and that λQPω

and λQPω are equal as well.

3 Desirable properties
In this section we study the desirable properties of our cubes. Note that these
are generalised versions of those of the standard β-cube because they type more
terms. Unless otherwise stated, ⊢ ranges over ⊢c for any of c ∈ {πi, βa, π, πa, βQ}.

Lemma 15 (Generation Lemma for ⊢ and →r)
1. If Γ ⊢ s : C then s ≡ ∗ and C ≡ 2.
2. If Γ ⊢ x : C then for some d in Γ , x ≡ var(d), Γ ⊢ C : s and Γ ⊢ type(d) : s

for some sort s. For all systems that exclude rule (Q), Γ type(d) =r C. In
βQ, type(d) ≤β C.

3. If Γ ⊢ Πx:A.B : C then there is (s1, s2) ∈ R such that Γ ⊢ A : s1, Γ, x:A ⊢ B :
s2, and if C 6≡ s2 then Γ ⊢ C : s for some sort s. For all systems that exclude
rule (Q), Γ C =r s2. In βQ, C =β s2.

4. If Γ ⊢ λx:A.b : C then there are s and B where Γ ⊢ Πx:A.B : s, Γ, x:A ⊢ b : B,
and if C 6≡ Πx:A.B then Γ ⊢ C : s′ for some sort s′. For all systems that
exclude rule (Q), Γ Πx:A.B =r C. In βQ, Πx:A.B ≤β C.

5.(a) If abbreviations are not included then: If Γ ⊢ Fa : C then ∃A,B with
Γ ⊢ F : Πx:A.B, Γ ⊢ a : A and if C 6≡ T then Γ ⊢ C : s for some s, where:
– T ≡ B[x:=a] if unreduced typing i-app is not used;
– T ≡ (Πx:A.B)a otherwise.
For all systems that exclude rule (Q), Γ T =r C. In βQ, T ≤β C.

(b) If abbreviations are included then for all systems that exclude rule (Q):
i. If Γ ⊢ Fa : C and F 6≡ πy:D.E then there are A,B such that Γ ⊢ F :

Πx:A.B, Γ ⊢ a : A and Γ C =r T and if C 6≡ T then Γ ⊢ C : s
for some s, where T ≡ B[x:=a] if unreduced typing is not used, and
T ≡ (Πx:A.B)a otherwise.

ii. If Γ ⊢ (πy:D.E)a : C then Γ, y = a : D ⊢ E : C.

Lemma 16 (Correctness of types for ⊢ and →r) In all systems except ⊢πi
:

If Γ ⊢ A : B then (B ≡ 2 or Γ ⊢ B : s for some sort s).

Proof. By induction on the derivation Γ ⊢ A : B using the substitution lemma.
We only do the Qβ rule. If Γ ⊢ λi:1..m

xi:Ai
.Πi:m+1..k

xi:Ai
A : Πi:1..m

xi:Ai
.∗ comes from Γ ⊢

λi:1..k
xi:Ai

.A : Πi:1..n
xi:Ai

.∗ then since Πi:1..n
xi:Ai

.∗ 6≡ 2, by IH, Γ ⊢ Πi:1..n
xi:Ai

.∗ : s for some

X

sort s. By lemma 14.6 and 14.7, we have Γ ⊢ Πi:1..n
xi:Ai

.∗ : 2. For a counterexample
and a weaker form of this lemma for ⊢πi

, see Section 4.1. ⊠

Lemma 17 (Subject Reduction for ⊢ and →r) Let r ∈ {β, βΠ}. In all sys-
tems except ⊢πi

: If Γ ⊢ A : B and A→→r A′ then Γ ′ ⊢ A : B.

Proof. First, we prove by simultaneous induction the following:
1. If Γ ⊢ A : B and A→r A′ then Γ ⊢ A′ : B.
2. If Γ ⊢ A : B and Γ →r Γ ′ then Γ ⊢ A′ : B.
Then, we prove the lemma by induction on the derivation A →→r A′. For a
counterexample and a weaker form of this lemma for ⊢πi

, see Section 4.1. ⊠

Lemma 18 (Reduction preserves types for ⊢ and →r) Let r ∈ {β, βΠ}.
In all systems except ⊢πi

: If Γ ⊢ A : B and B →→r B′ then Γ ⊢ A : B′.

Proof. Standard using subject reduction and corrrectness of types. First, note
that B =r B′. By correctness of types, either B ≡ 2 (hence B′ ≡ 2 and we are
done) or Γ ⊢ B : s for some sort s in which case Γ ⊢ B′ : s by subject reduction
and hence by convr, Γ ⊢ A : B′. Again, for ⊢πi

, see Section 4.1. ⊠

The next 3 lemmas will be studied for each cube in the relevant sections.

Lemma 19 (Strong Normalisation for ⊢ and →r)
If A is ⊢-legal then SN→r

(A).

Lemma 20 (Typability of subterms for ⊢ and →r)
If A is ⊢-legal and B is a subterm of A, then B is ⊢-legal.

Lemma 21 (Unicity of Types for ⊢ and →r)

1. If Γ ⊢ A : B1 and Γ ⊢ A : B2, then Γ B1 =r B2.
2. If Γ ⊢ A1 : B1 and Γ ⊢ A2 : B2 and Γ A1 =r A2, then Γ B1 =r B2.
3. If Γ ⊢ B1 : s, Γ B1 =r B2 and Γ ⊢ A : B2 then Γ ⊢ B2 : s.

4 Connecting the various extensions of the cube
In this section we will connect the various extensions of the cube and we will
complete the properties of ⊢c where c ∈ {πi, βa, πai, π, πa, Qβ}.

Lemma 22 1. Let c ∈ {β, πi, βa, π}. Then: Γ 6⊢c (Πx:A.B)a : C and if Γ ⊢β
A : B then Γ , A and B are all free of Π-redexes.

2. Terms of the form (Πx:A.B)a can be ⊢πi
-legal, but, Γ 6⊢πi

(Πx:A.B)a : C.
3. If Γ ⊢πi

A : B then Γ and A are free of Π-redexes and B is the only possible
Π-redex in B.

4. Let c ∈ {πai, πa}. (Πx:A.B)a can be ⊢c-typable and we can have Γ ⊢c AB : 2.
5. We can have Γ ⊢βa

(λx:A.B)a : 2.
6. Let c ∈ {πai, πa}. If Γ A =β B then Γ A =βΠ B.

Moreover, If Γ ⊢c A : B then any of Γ , A and B may contain Π-redexes.
7. Let c ∈ {β, πi, βa, βai}. If Πx:A.B is ⊢c-legal then Γ ⊢c Πx:A.B : s.

XI

8. a) If Γ ⊢β A : B then Γ ⊢πi
A : B. b) If Γ ⊢πi

A : B then Γ ⊢β A : [B]Π .
c) If Γ ⊢πi

A : B and B is free of Π-redexes then Γ ⊢β A : B.
d) ⊢β⊂⊢πi

9. a) If Γ ⊢β A : B then Γ ⊢βa
A : B.

b) If Γ ⊢βa
A : B then Γ ⊢πai

A : B.
c) If Γ ⊢πi

A : B then Γ ⊢πai
A : B but the opposite does not hold.

d) If Γ ⊢πai
A : B then Γ̃ ⊢βa

Ã : B̃.
10. It does not hold that Γ ⊢βa

A : B for Γ free of a-decs implies Γ ⊢β A : B.
11. ⊢β⊂⊢βa

⊂⊢πai
.

12. a) If Γ ⊢βa
A : B then Γ ⊢πa

A : B.
b) If Γ ⊢πa

A : B then Γ ⊢πai
A : B.

c) It is possible that Γ ⊢πa
A : B but Γ 6⊢βa

A : B. Hence ⊢βa
⊂⊢πa

.
13. Let Γ ⊢π A : B and R ∈ {→,→→}. If ARβΠA′ then ARβA

′.
14. Γ ⊢β A : B if and only if Γ ⊢π A : B.
15. Assume var(d) 6∈ fv(A) ∪ fv(B) ∪ fv(∆). Then:
• If Γ, d,∆ ⊢πa

A : B then Γ,∆ ⊢πa
A : B.

• If Γ, d,∆ A =βΠ B then Γ,∆ A =βΠ B.
16. a. Γ ⊢πa

A : B if and only if Γ ⊢πai
A : B.

b. ⊢π=⊢β⊂⊢r⊂⊢πai
=⊢πa

for r ∈ {βa, πi}.
c. ⊢βa

and ⊢πi
are unrelated.

4.1 The πi-cube: Π-reduction and unreduced typing

[12] provided the πi-cube which extends the β-cube with both Π-reduction and
unreduced typing. In addition to the success of Automath in using these notions,
there are many arguments as to why such notions are useful; the reader is refered
to [11, 12,?]. Here, we complete the results for the πi-cube. [12] showed that
Lemmas 15 and 19 as well as the following hold for the πi-cube:

Lemma 23 (See [12])
1. A restricted correctness of types Lemma 16: If Γ ⊢πi

A : B and B is not a
Π-redex then (B ≡ 2 or Γ ⊢πi

B : s for some sort s).
2. A weak subject reduction Lemma 17: If Γ ⊢πi

A : B and A →→βΠ A′ then
Γ ⊢πi

A′ : [B]Π .
3. A weak reduction preserves types Lemma 18: If Γ ⊢πi

A : B and B →→βΠ B′

then Γ ⊢πi
A : [B′]Π .

4. An almost unicity of Types Lemma 21 where clause 3 is restricted to β: If
Γ ⊢πi

B1 : s, B1 =β B2 and Γ ⊢πi
A : B2 then Γ ⊢πi

B2 : s.

Items 1, 3 and 8 of Lemma 22 can be understood to imply that the πi-cube is
an almost trivial extension of the β-cube. If Γ ⊢πi

A : B then Γ ⊢β A : [B]Π but
whereas B can be a Π-redex, [B]Π cannot. Since by item 2 of Lemma 22, Γ 6⊢πi

(Πx:A.B)a : C, the new legal terms (Πx:A.B)a cannot have type s. Hence, since
also (Πx:A.B)a 6≡ 2, we lose correctness of types and hence subject reduction:

Example 24 Let Γ = z : ∗, x : z, A ≡ (λy:z .y)x and B ≡ (Πy:z.z)x. We have
Γ ⊢πi

A : B, B 6≡ 2 and by Lemma 22, Γ 6⊢πi
B : s. Hence we lose correctness

of types. Also, A→βΠ x but Γ 6⊢πi
x : B and we lose subject reduction.

XII

In addition to weak correctness of types/subject reduction (cf. Lemma 23):

Lemma 25 (Restricted Subject reduction/reduction preserves types)

1. If Γ ⊢πi
A : B, B is not a Π-redex and A→→βΠ A′ then Γ ⊢πi

A′ : B.

2. If Γ ⊢πi
A : B, B is not a Π-redex and B →→βΠ B′ then Γ ⊢πi

A : B′.

Proof. 1. By Lemma 22.8 c), since B is not a Π-redex, Γ ⊢β A : B. Hence
by subject reduction for the cube, Γ ⊢β A′ : B. Hence, by Lemma 22.8 a),
Γ ⊢πi

A′ : B. For 2., use Lemma 22.8. ⊠

Finally, we complete the results of [12] by addressing Lemma 20.

Lemma 26 (Restricted typability of subterms for ⊢πi
and →βΠ) If Γ ⊢πi

A : B then every subterm of A and every proper subterm of B is ⊢πi
-legal.

Proof. By induction on the derivation Γ ⊢πi
A : B using Lemma 22.7. ⊠

4.2 Completing the βa- and πai-cubes: abbreviations without/with
Π-reduction and unreduced typing

In order to obtain full (rather than weak) correctness of types and subject re-
duction, [11] proposed the πai-cube which has in addition to Π-reduction and
unreduced typing, the so-called definitions or abbreviations. If k occurs in a text
f (such a text can be a single expression or a list of expressions, e.g. a book), it
is sometimes practical to introduce an abbreviation for k, for several reasons.

Of course, for c ∈ {βa, πai}, the c-cube is a non trivial extension of the β-
cube. [11] showed that Lemma 19 holds for the βa- and πai-cubes. Here we study
typability of subterms Lemma 20, and unicity of types Lemma 21. Before doing
so, let us see explain how the problem of Example 24 disappears in the πai-cube:
– First, the example is no longer a counterexample for correctness of types:

By (weak-a) z : ∗, x : z, y = x : z ⊢πai
z : ∗.

Hence by (letΠ) z : ∗, x : z ⊢πai
(Πy:z.z)x : ∗[y := x] ≡ ∗.

– Second, the example is no longer a counterexample for subject reduction:
Since z : ∗, x : z ⊢πai

x : z, and z : ∗, x : z ⊢πai
(Πy:z.z)x : ∗ and

z : ∗, x : z z =βΠ (Πy:z.z)x, we use (convβΠ) to get:
z : ∗, x : z ⊢πai

x : (Πy:z.z)x.

As for typability of subterms Lemma 20, it only holds in a restricted form
in all the cubes that have abbreviations. For this we need the bachelor notion:
Let \ ∈ {λ,Π}; we say that \x:D is bachelor in B if there are no E, F such that
(\x:D.E)F is a subterm of B.

Lemma 27 (Restricted typability of subterms for ⊢ and →r) If A is ⊢-
legal and B is a subterm of A such that every bachelor λx:D in B is also bachelor
in A, then B is ⊢-legal.

The next example (adapted from [4]), shows why typability of subterms fails
in the βa- and πai-cubes when the bachelor condition is dropped.

XIII

Example 28 Let c ∈ {βa, πai} and let βa = β and πai = βΠ. We have the
following derivation (we miss out obvious steps):
1. α : ∗, β = α : ∗, y : β ⊢c y : β
2. α : ∗, β = α : ∗, y : β ⊢c y : α by 1, convc
3. α : ∗, β = α : ∗, y : β, z = y : α ⊢c z : α by 2, start-a
4. α : ∗, β = α : ∗, y : β ⊢c (λz:α.z)y : α by 3, letλ
5. α : ∗, β = α : ∗, y : β ⊢c (λz:α.z)y : β by 4, convc
6. α : ∗, β = α : ∗ ⊢c λy:β .(λz:α.z)y : Πy:β .β by 5, λ
7. α : ∗ ⊢c (λβ:∗.λy:β.(λz:α.z)y)α : Πy:α.α by 6, letλ

However, λβ:∗.λy:β .(λz:α.z)y is not ⊢c-legal. To show this, assume, it is ⊢c-legal.
Hence, by correctness of types and Lemma 22, there is Γ,A such that Γ ⊢c
λβ:∗.λy:β .(λz:α.z)y : A. Then, by four applications of the generation lemma, there
is α′, s such that Γ ′

 α =c α
′ and Γ ′ ⊢ α′ : s where Γ ′ = β : ∗, y : β, z = y : α.

Now it is easy to show that Γ ′
 α =c β and Γ ′ 6 α =c β, contradiction.

The appendix shows the unicity of types Lemma 21 for the βa- and πai-cubes.

4.3 The π-cube
Lemmas 15..16 and 20 hold for the π-cube and have the same proofs as the β-
cube. As for subject reduction Lemma 17 and strong normalisation Lemma 19:

Proof (Subject Reduction for ⊢π and→βΠ). Similar to the β-cube as by Lemma 22,
in the (app) case, it is not possible that F be of the form Πy:C .D in Γ ⊢π Fa :
B[x := a]. Or, use the isomorphism with the β-cube given in lemma 22. ⊠

Proof (Strong Normalisation for ⊢π and→βΠ). By correctness of types, we only
need to show that if Γ ⊢π A : B then SN→βΠ

(A). By Lemma 22, Γ ⊢β A : B
and by Lemma 19 SN→β

(A). If there is an infinite path A→βΠ A1 →βΠ A2 . . .

then by Lemma 22, there is an infinite path A→β A1 →β A2 Absurd. ⊠

Finally, Unicity of types lemma 21 holds for the π-cube and can be easily
established using the isomorphism with the β-cube given in lemma 22.

4.4 The πa-cube: allowing Π-reduction and abbreviations
Since ⊢πa

and ⊢πai
are the same relation and the πa- and πai-cubes have the

same terms, contexts and reduction relation, we have that in the πa-cube the
remaining subject reduction, reduction preserves types, strong normalisation and
typability of subterms have the same status as in the πai-cube. They all hold
except for typability of subterms which is restricted as in Lemma 27.

4.5 The Q-cube

De Bruijn’s system Aut-QE had the rule
Γ ⊢ A : Πi:1..n

xi:Ai
.∗

Γ ⊢ A : Πi:1..m
xi:Ai

.∗
0 ≤ m ≤ n. How-

ever, in Aut-QE, Π and λ are identified. This is not the case in the β-Cube
which motivated us to formulate the rule as in Qβ. We will call the type systems
that result from adding Qβ to λ→, λ2, λP, etc.: λQ→, λQ2

, λQP, etc..

XIV

One might worry that by this rule we can show unexpected things. E.g., if
m = n = 0 and k = 1 we may think that we could show Γ ⊢ λx1:A1

.A : ∗ and
Γ ⊢ Πx1:A1

.A : ∗. This is not the case because by lemma 22, Γ 6⊢ λx:A.B : s.
Unicity of types lemma 21 fails for the βQ-cube. Take: A : ∗, x : Πy:A.∗ ⊢ x :

Πy:A.∗ and hence by Qβ, A : ∗, x : Πy:A.∗ ⊢ x : ∗. We have shown that Unicity
of Types is not provable in any system with the strength of at least λQP .

5 Conclusion
De Bruijn introduced the type inclusion rule to allow the well typed behaviour of
definitions. Since Automath, numerous systems have studied notions of subtyp-
ing (e.g., [9, 1, 14]). However, there is still no study of modern type systems with
de Bruijn’s type inclusion. This paper bridges the gap and studies the systems
of the Barendregt cube with type inclusions showing that 4 systems turn into
two systems and that unicity of types fails.

References
1. David Aspinall and Adriana Compagnoni. Subtyping dependent types. Theoretical

Computer Science, 266: 273-309. 2001.
2. H.P. Barendregt. The Lambda Calculus: its Syntax and Semantics. Studies in Logic

and the Foundations of Mathematics 103. North-Holland. 1984.
3. H.P. Barendregt. Lambda calculi with types. In Handbook of Logic in Computer

Science, Volume 2, S. Abramsky, Dov M. Gabbay, and T.S.E. Maibaum, editors,
pages 117–309. Oxford University Press, 1992.

4. R. Bloo, F. Kamareddine, and R. P. Nederpelt. The Barendregt Cube with Def-
initions and Generalised Reduction. Information and Computation 126:123–143,
1996.

5. N.G. de Bruijn. The mathematical language AUTOMATH, its usage and some of
its extensions. In M. Laudet, D. Lacombe, and M. Schuetzenberger, editors, Sym-

posium on Automatic Demonstration, pages 29–61, IRIA, Versailles, 1968. Springer
Verlag, Berlin, 1970. Lecture Notes in Mathematics 125.

6. H. B. Curry and R. Feys. Combinatory Logic I. Studies in Logic and the Founda-
tions of Mathematics. North-Holland, Amsterdam, 1958.

7. A. Heyting. Mathematische Grundlagenforschung. Intuitionismus. Beweistheorie.

Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer-Verlag, Berlin, 1934.
8. W.A. Howard. The formulas-as-types notion of construction. In Hindley and Seldin

1980, pages 479–490, 1980.
9. DeLesley Hutchins. Pure Subtype Systems. Proceedings of the 37th Annual ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages. 2010.
10. F. Kamareddine. Typed lambda calculi with unified binders. Journal of Functional

Programming, Volume 15, no. (5), pages 771-796, September 2005, ISSN: 0956-
7968. Cambridge University Press.

11. F. Kamareddine, R. Bloo, and R. Nederpelt. On π-conversion in the λ-cube and
the combination with abbreviations. Annals of Pure and Applied Logic, 97:27–45,
1999.

12. F. Kamareddine and R.P. Nederpelt. Canonical typing and Π-conversion in the
Barendregt Cube. Journal of Functional Programming, 6(2):245–267, 1996.

13. A. N. Kolmogorov. Zur Deutung der Intuitionistischen Logik. Mathematisches

Zeitschrift, 35:58–65, 1932.
14. Jan Zwanenburg. Pure Type Systems with Subtyping. TLCA 1991, LNCS 381:396.

XV

A Proofs
This appendix gives the proofs for lemmas 12, 14, 15, 22, 27, as well as the
unicity of types Lemma 21 for the βa- and πai-cubes.

Proof (Thinning Lemma 12).

1. First show by induction on Γ A =r B that if Γ and ∆ are ⊢-legal then:
– If Γ ≡ Γ1, Γ2 ⊆′ Γ1, d, Γ2 ≡ ∆ and Γ A =r B then ∆ A =r B.
– If Γ ≡ Γ1, x : A,Γ2 ⊆

′ Γ1, x = B : A,Γ2 ≡ ∆ and Γ A =r B then
∆ A =r B.

Then, show the statement by induction on Γ ⊆′ ∆.
2. First show by induction on Γ ⊢ A : B that if Γ and ∆ are ⊢-legal then:

– If Γ ≡ Γ1, Γ2 ⊆
′ Γ1, d, Γ2 ≡ ∆ and Γ ⊢ A : B then ∆ ⊢ A : B.

– If Γ ≡ Γ1, x : A,Γ2 ⊆′ Γ1, x = B : A,Γ2 ≡ ∆ and Γ ⊢ A : B then
∆ ⊢ A : B.

Then, show the statement by induction on Γ ⊆′ ∆. ⊠

Proof (Lemma 14).

1. By induction on the derivation Γ ⊢ A : B.
2. This is a corollary of 1. above.
3. By induction on the derivation Γ ⊢ AB : 2.
4. Since y : ∗, x = y : ∗ ⊢ ∗ : 2, then y : ∗ ⊢ (λx:∗.∗)y : y.
5. By induction on the derivation Γ ⊢ A : 2 using Start/Context Lemma 10

to show that the start and start-a rules do not apply, 1. above to show that
convr and app\ do not apply, and Substitution Lemma 13.

6. By induction on the derivation Γ ⊢ π1
x1:A1

π2
x2:A2

. . . πl
xl:Al

.∗ : A using 1.
above. Then, use 2. to deduce A ≡ 2.

7. By induction on the derivation Γ ⊢ Πi:1..l
xi:Ai

.∗ : 2. Convr and Qβ don’t apply.
8. By induction on the derivation Γ ⊢ λx:A.B : C.
9. By induction on the derivation Γ ⊢ A : 2.
10. Assume Γ ⊢ A : s and Γ, x:A ⊢ B : ∗. Then:

(1) Γ, x:A ⊢ ∗:2 (by the Start Lemma)
(2) Γ ⊢ (Πx:A.∗) : 2 ((s,2) on (1))
(3) Γ ⊢ (λx:A.B) : (Πx:A.∗) ((λ) on (2))
(4) Γ ⊢ (Πx:A.B) : ∗ (Rule (Q) on (3)) ⊠

Proof (Generation Lemma 15). 1. By induction on the derivation Γ ⊢ s : C.
The Q-rule does not apply.
2. By induction on the derivation Γ ⊢ x : C. We only do the Q-rule. As-
sume Γ ⊢ x : ∗ comes from Γ ⊢ x : Πi:1..n

xi:Ai
.∗. By IH, there is d in Γ such

that x ≡ var(d), Γ ⊢ Πi:1..n
xi:Ai

.∗ : s, Γ ⊢ type(d) : s for some sort s and

type(d) ≤β Πi:1..n
xi:Ai

.∗. Since Πi:1..n
xi:Ai

.∗ ≤β ∗, by Lemma 1, type(d) ≤β ∗. By
lemma 14, s ≡ 2 and Γ ⊢ ∗ : 2.
3., 4., and 5.: By induction on the generation Γ ⊢ M : C. We only do the new
cases: the Q-rule and the difficult case of ⊢πa

. First the Q-rule in ⊢βQ
.

AssumeM ≡ λi:1..m
xi:Ai

.Πi:m+1..k
xi:Ai

.M ′,M ′ is not of the form λx:N1
.N2, C ≡ Πi:1..m

xi:Ai
.∗,

m ≤ n and Γ ⊢ M : C because Γ ⊢ λi:1..k
xi:Ai

.M ′ : Πi:1..n
xi:Ai

.∗. Write U ≡ λi:1..k
xi:Ai

.M ′

and W ≡ Πi:1..n
xi:Ai

.∗.

XVI

i. M ≡ Πx1:A1
.B. Then m = 0, k > 0, and we used Rule (Q) to derive:

Γ ⊢ λi:1..k
xi:Ai

.M ′ : Πi:1..n
xi:Ai

.∗

Γ ⊢ Πi:1..k
xi:Ai

.M ′ : ∗

By IH, there are s, B such that Γ, x1:A1 ⊢ λi:2..k
xi:Ai

.M ′ : B, Γ ⊢ Πx1:A1
.B : s,

and Πx1:A1
.B ≤β Πi:1..n

xi:Ai
.∗ and if Πx1:A1

.B 6≡ Πi:1..n
xi:Ai

.∗ then Γ ⊢ Πi:1..n
xi:Ai

.∗ : 2

(note Lemma 14). By Lemma 14, Γ, x1 : A1 ⊢ Πi:2..n
xi:Ai

.∗ : 2 and there is
s1 such that Γ ⊢ A1 : s1 and (s1,2) ∈ R, hence also, (s1, ∗) ∈ R. By
Corollary 5.2, B ≤β Πi:2..n

xi:Ai
.∗. Determine B′ =β B where B′ ≤ Πi:2..n

xi:Ai
.∗, say

B′ ≡ Πi:2..ℓ
xi:Ai

.∗ where l ≥ n and Γ, x1 : A1 ⊢ Πi:2..ℓ
xi:Ai

.∗ : 2. By conversion,

Γ, x1:A1 ⊢ λi:2..k
xi:Ai

.M ′ : Πi:2..ℓ
xi:Ai

.∗, and as M ′ is not of the form λx:N1
.N2, we

can use (Q) and obtain Γ, x1:A1 ⊢ Πi:2..k
xi:Ai

.M ′ : ∗. Since Γ ⊢ A1 : s1 and
(s1, ∗) ∈ R we are done.

ii. M ≡ λx1:A1
.b. Then k > 0 and b ≡ λi:2..m

xi:Ai
.Πi:m+1..k

xi:Ai
.M ′. By the induction

hypothesis there are s,B such that Γ ⊢ Πx1:A1
.B : s, Γ, x1:A1 ⊢ λi:2..k

xi:Ai
.M ′ :

B and Πx1:A1
.B ≤β Πi:1..n

xi:Ai
.∗ and if Πi:1..n

xi:Ai
.∗ 6≡ Πx1:A1

.B then Γ ⊢ Πi:1..n
xi:Ai

.∗ :

2 (note Lemma 14). Note that Πx1:A1
.B ≤β Πi:1..n

xi:Ai
.∗ ≤β Πi:1..m

xi:Ai
.∗, so by

Lemma 1, Πx1:A1
.B ≤β Πi:1..m

xi:Ai
.∗. Determine B′ =β Πx1:A1

.B such that

B′ ≤ Πi:1..n
xi:Ai

.∗ and Γ ⊢ B′ : 2. We can write B′ ≡ Πi:1..ℓ
xi:Ai

.∗ for an ℓ such
that m ≤ n ≤ ℓ. Distinguish two cases:
• k ≤ m. Then M ≡ λi:1..k

xi:Ai
.M ′, b ≡ λi:2..k

xi:Ai
.M ′ and hence Γ, x1:A1 ⊢ b : B.

• k > m. Then M ≡ λi:1..m
xi:Ai

.Πi:m+1..k
xi:Ai

.M ′. By conversion, Γ, x1:A1 ⊢

λi:2..k
xi:Ai

.M ′ : B′, and as M ′ is not of the form λx:N1
.N2, and m ≤ n ≤ ℓ,

we get by (Q) that Γ, x1:A1 ⊢ λi:2..m
xi:Ai

.Πi:m+1..k
xi:Ai

.M ′ : Πi:2..m
xi:Ai

.∗.
iii. M ≡ AB. Then k = m = 0, so U ≡ AB. By induction there are x, P,Q

such that Γ ⊢ A : Πx:P .Q, Γ ⊢ B : P and Q[x:=B] ≤β W . Notice that
W ≤β C ≡ ∗, so by Lemma 1, B ≤β C.

Next we do the case 5(b)ii. of ⊢πa
. By induction on the derivation rules we first

prove that if Γ ⊢ (πy:D.E)a : C then one of the following holds:

– Γ, y = a : D ⊢ E : H and Γ H [y := a] =βΠ C and if H [y := a] 6≡ C then
Γ ⊢ C : s for some s.

– Γ ⊢ a : F , Γ ⊢ λy:D.E : Πz:F .G, Γ C =βΠ G[z := a] and if G[z := a] 6≡ C

then Γ ⊢ C : s for some s.

If the first case holds, then by substitution and thinning, Γ, y = a : D H [y :=
a] =βΠ H and Γ, y = a : D H [y := a] =βΠ C. Hence, Γ, y = a : D H =βΠ C

and we use convβΠ to get Γ, y = a : D ⊢ E : C.
In the second case, by generation case 3. on Γ ⊢ λy:D.E : Πz:F .G we get Γ, y :
D ⊢ E : L, Γ Πy:D.L =βΠ Πz:F .G and if Πy:D.L 6≡ Πz:F .G then Γ ⊢
Πz:F .G : s′ for some s′. Hence y = z and Γ D =βΠ F and Γ L =βΠ G.
Now, using generation case 4. we prove that Γ, y = a : D ⊢ E : L. Since
Γ C =βΠ G[y := a] we get Γ, y = a : D C =βΠ G. Since Γ L =βΠ G we
get Γ, y = a : D L =βΠ G. Hence, Γ, y = a : D L =βΠ C. We show that

XVII

Γ, y = a : D ⊢ C : s′′ for some sort s′′. Hence using Γ, y = a : D ⊢ E : L and
convβΠ , we get Γ, y = a : D ⊢ E : C. ⊠

Proof (Connecting cubes Lemma 22).

1. If Γ ⊢c (Πx:A.B)a : C, then by Lemma 15, ∃A′, B′ such that Γ ⊢c Πx:A.B :
Πy:A′ .B′. Again by Lemma 15, Γ Πy:A′ .B′ =r s2 for sort s2, contradicting
Church Rosser.
As for the second statement, first show by induction on the derivation Γ, x :
C,∆ ⊢c A : B that if both A and a are free ofΠ-redexes, Γ, x : C,∆ ⊢c A : B
and Γ ⊢c a : C, then A[x := a] is free ofΠ-redexes. Then show the statement
by induction on Γ ⊢c A : B.

2. Take for example z : ∗, x : z ⊢πi
(λy:z.y)x : (Πy:z.z)x and hence terms of

the form (Πx:A.B)a can be ⊢πi
-legal. It is the new legal terms that led to

the loss of correctness of types of the πi-cube and hence of subject reduction
because they can not be typable.

3. By induction on Γ ⊢πi
A : B.

4. z : ∗, x : z ⊢c (Πy:z.z)x : ∗ and z : ∗ ⊢c (λy:∗.∗)z : 2 provide examples.

5. y : ∗ ⊢βa
(λx:∗.∗)y : 2.

6. Note that =β⊆=βΠ .
Also, note that z : ∗, x : z ⊢c (Πy:z.z)x : ∗ and z : ∗, x : z ⊢c x : (Πy:z.z)x.
Note also that z : ∗, x : z, y = (Πy:z.z)x : ∗ ⊢c y : ∗.

7. By correctness (resp. restricted correctness) of types, it is enough to show
that if Γ ⊢c Πx:A.B : C then Γ ⊢c Πx:A.B : s. We do this by induction on
the derivation Γ ⊢c Πx:A.B : C.

8. a) By induction on the derivation Γ ⊢β A : B using the substitution lemma
for the πi-cube and 7 above. b) By induction on the derivation Γ ⊢πi

A : B.
c) By b) Γ ⊢β A : [B]Π . Since B is free of Π-redexes, B = [B]Π and
Γ ⊢β A : B.
d) Using a), it is enough to find Γ,A,B such that Γ ⊢πi A : B but Γ 6⊢β
A : B. We know that z : ∗, x : z ⊢πi

(λy:z.y)x : (Πy:z.z)x but by 3 above,
z : ∗, x : z 6⊢β (λy:z.y)x : (Πy:z.z)x.

9. a) holds since the rules of ⊢β are a subset of the rules of ⊢βa
.

b) is by induction on Γ ⊢βa
A : B.

c) holds because the rules of ⊢πi
are a subset of the rules of ⊢πai

. As for
strict inclusion, note that α : ∗ ⊢πai

(λβ:∗.λy:β .(λz:α.z)y)α : Πy:α.α but
α : ∗ 6⊢πi

(λβ:∗.λy:β .(λz:α.z)y)α : Πy:α.α since we don’t have y : α.
d) by induction on Γ ⊢πai

A : B. We only do the i-app rule. Let Γ ⊢πai

Fa : (Πx:A.B)a come from Γ ⊢πai
F : Πx:A.B and Γ ⊢πai

a : A. By IH,

Γ̃ ⊢βa
F̃ : Π̃x:A.B ≡ Π

x:Ã
.B̃ and Γ̃ ⊢βa

ã : Ã. Hence by app, Γ̃ ⊢βa
F̃ ã :

B̃[x := Ã]. Since Π
x:Ã

.B̃ is Γ̃⊢βa -term, by correctness of types, ∃s such

that Γ̃ ⊢βa
Π

x:Ã
.B̃ : s. Hence by generation, Γ̃ , x : Ã ⊢βa

B̃ : s. Hence

by thinning, Γ̃ , x = ã : Ã ⊢βa
B̃ : s. By letλ, Γ̃ ⊢βa

(λ
x:Ã

.B̃)ã : s. By

convβΠ , Γ̃ ⊢βa
F̃ ã : (λ

x:Ã
.B̃)ã. If F̃ was a Π-term, then by generation,

Γ̃ Π
x:Ã

.B̃ =β s2 for some s2 absurd. Hence, F̃ ã ≡ F̃ a.

XVIII

10. α : ∗ ⊢βa
(λβ:∗.λy:β.(λz:α.z)y)α : Πy:α.α (see Example 28). However,

α : ∗ 6⊢β (λβ:∗.λy:β .(λz:α.z)y)α : Πy:α.α since we don’t have y : α.
Another way to prove this is to assume α : ∗ ⊢β (λβ:∗.λy:β .(λz:α.z)y)α :
Πy:α.α. Hence, by correctness of types, λβ:∗.λy:β .(λz:α.z)y is (α : ∗)⊢β -term
and by 9 a) above it is (α : ∗)⊢βa -legal, contradicting Example 28.

11. For ⊢β⊂⊢βa
, use 9.a) and 10. above. For ⊢βa

⊂⊢πai
, use 9.b) above and this

example: z : ∗, x : z ⊢πai
(λy:z .y)x : (Πy:z.z)x but by 1 above, z : ∗, x : z 6⊢βa

(λy:z .y)x : (Πy:z.z)x.
12. a) By induction on the derivation Γ ⊢βa

A : B using 6 above.
b) By induction on the derivation Γ ⊢πa

A : B. we only do the (app)
case. Assume Γ ⊢πa

Fa : B[x := a] comes from Γ ⊢πa
F : Πx:A.B and

Γ ⊢πa
a : A. By IH, Γ ⊢πai

F : Πx:A.B and Γ ⊢πai
a : A and hence

Γ ⊢πai
Fa : (Πx:A.B)a by (i-app). By correctness of types, Γ ⊢πai

Πx:A.B : s
for some s and hence by generation, Γ, x : A ⊢πai

B : s′. Since Γ ⊢πai
a : A

then by substitution lemma, Γ ⊢πai
B[x := a] : s′. Now, since Γ B[x :=

a] =βΠ (Πx:A.B)a we use (convβΠ) to get Γ ⊢πa
Fa : B[x := a].

c) Note that z : ∗, x : z ⊢πa
(Πy:z.z)x : ∗ but by 4 above, if Γ ⊢βa

A : B then
all of Γ,A and B are free of Π-redexes.

13. a) By 1 above, A is free of Π-redexes.
b) By induction on A →→βΠ A′. Assume A →→n

βΠ A′′ →βΠ A′. By subject
reduction, Γ ⊢π A′′ : B and hence by IH, A→→n

β A′′ and A′′ →β A′. Hence,
A→→β A′.

14. One direction is trivial because every ⊢β-rule is also a ⊢π-rule (for (convr),
note that =β⊆=βΠ). For the other direction, use induction on Γ ⊢π A : B.
We only show the (convr) case. Let Γ ⊢π A : B come from Γ ⊢π A : B′,
Γ ⊢π B′ : s and B =βΠ B′. By Church-Rosser, ∃B′′ such that B′ →→n

βΠ

B′′ ←←βΠ B. By Correctness of types, B ≡ 2 or ∃s′ such that Γ ⊢π B : s′.
If B ≡ 2 then B′′ ≡ 2 and B′ →→n

βΠ 2, hence by subject reduction and
Γ ⊢π B′ : s we get Γ ⊢π 2 : s contradicting 1 above. Hence Γ ⊢π B : s′ and
by 13 above, B →→β B′′. Also, by 13, B′ →→β B′′. Hence, B =β B′. Hence,
by IH and (convr), Γ ⊢β A : B.

15. This is a corollary of item 12 above.
16. a. One direction holds by 12 above. The other direction is by induction on

Γ ⊢πai
A : B. Since every ⊢πai

-rule (except the (i-app) rule) is also a rule
of ⊢πa

, we only deal with the (i-app) case. Assume Γ ⊢πai
Fa : (Πx:A.B)a

comes from Γ ⊢πai
F : Πx:A.B and Γ ⊢πai

a : A. By IH, Γ ⊢πa
F : Πx:A.B

and Γ ⊢πa
a : A and hence by (app), Γ ⊢πa

Fa : B[x := a]. Since Γ

(Πx:A.B)a =βΠ B[x := a], to derive Γ ⊢πa
Fa : (Πx:A.B)a, it is enough

to show that Γ ⊢πa
(Πx:A.B)a : s for some s. Since Γ ⊢πa

F : Πx:A.B, by
correctness of types, Γ ⊢πa

Πx:A.B : s and by generation, Γ, x : A ⊢πa
B : s′

and Γ ⊢πa
A : s′′. It is easy to show that Γ, x = a : A is legal. Hence, since

Γ, x : A ⊆′ Γ, x = a : A, we can use thinning to get Γ, x = a : A ⊢πa
B : s′.

And so, by (let), Γ ⊢πa
(Πx:A.B)a : s′.

b. ⊢π=⊢β by 14 above. ⊢β⊂⊢βa
⊂⊢πai

by 9 above. ⊢πai
=⊢πa

by a. above.
⊢β⊂⊢πi

by 8 above. ⊢πi
⊂⊢πai

by 9 above.
c. z : ∗, x : z ⊢πi

(λy:z .y)x : (Πy:z.z)x but z : ∗, x : z 6⊢βa
(λy:z.y)x : (Πy:z.z)x

XIX

by 1 above.
Also, α : ∗ ⊢βa

(λβ:∗.λy:β .(λz:α.z)y)α : Πy:α.α but
α : ∗ 6⊢πi

(λβ:∗.λy:β .(λz:α.z)y)α : Πy:α.α since we don’t have y : α. ⊠

Proof (Restricted typability of subterms Lemma 27 for ⊢βa
+→be and ⊢πai

+→βΠ).
We will prove that:

1. If A is ⊢-legal and B is a subterm of A such that every bachelor λx:D in B

is also bachelor in A, then B is ⊢-legal.
2. If A is ⊢πai

-legal and B is a subterm of A such that every bachelor πx:D in
B is also bachelor in A, then B is ⊢πai

-legal.

Let c ∈ {βa, πai}. If Γ ⊢c C : A, then by correctness of types, A ≡ 2 (and
there is nothing to prove) or Γ ⊢c A : s. Hence, it is enough to prove the lemma
for Γ ⊢c A : C. For 1, we prove this by induction on the derivation that if
Γ ⊢βa

A : C and B is a subterm of A resp. Γ such that every bachelor λx:D

in B is also bachelor in A resp. Γ , then B is ⊢βa
-legal. For 2, we prove this by

induction on the derivation that if Γ ⊢πai
A : C and B is a subterm of A resp.

Γ such that every bachelor πx:D in B is also bachelor in A resp. Γ , then B is
⊢πai

-legal. ⊠

Proof (Unicity of Types for ⊢βa
+→β and for ⊢πai

+→βΠ).

1. By induction on the structure of A using the generation lemma.
2. First, show by Church-Rosser and subject reduction using 1 that:

If Γ ⊢c A1 : B1 and Γ ⊢c A2 : B2 and A1 =c A2, then Γ B1 =c B2. (*)
Then, define
– [A]〈〉 ≡ A, [A]Γ,x:C ≡ [A]Γ and [A]Γ,x=B:C ≡ [A[x := B]]Γ .
– [x : A]Γ as x : [A]Γ and [x = B : A]Γ as x = [B]Γ : [A]Γ .
– Γ 0 as Γ and Γn as Γ where n elements d1, . . . , dn of Γ have been replaced

by [d1]Γ , . . . , [dn]Γ .
Note that [A]Γ,Γ ′ ≡ [[A]Γ ′]Γ , Γ A =c [A]Γ , and if Γ A1 =c A2 then
[A1]Γ =c [A2]Γ .
Now prove by induction on Γ ⊢c A : B that:
If Γ ⊢c A : B then Γn ⊢c [A]Γ : [B]Γ and Γn ⊢c A : B for n ≤ the number
of elements in Γ .
Finally, assume Γ ⊢c A1 : B1 and Γ ⊢c A2 : B2 and Γ A1 =c A2. Then,
Γ ⊢c [A1]Γ : [B1]Γ , Γ ⊢c [A2]Γ : [B2]Γ and [A1]Γ =c [A2]Γ . Hence, by (*),
Γ [B1]Γ =c [B2]Γ . But, Γ B1 =c [B1]Γ and Γ B2 =c [B2]Γ . Hence,
Γ c B1 =c B2.

3. As Γ ⊢c A : B2, by correctness of types B2 ≡ 2 or Γ ⊢c B2 : s′ for some s′.
– If Γ ⊢c B2 : s′ then by 2 above, Γ s =c s′. By the proof of 2 above,

s ≡ [s]Γ =c [s
′]Γ ≡ s′. Hence, s ≡ s′ and so, Γ ⊢c B2 : s.

– If B2 ≡ 2, we prove that if Γ A =c 2 then Γ 6⊢c A : B. If Γ A =c 2

and Γ ⊢c A : B then by the proof of 2 above, [A]Γ =c [2]Γ and Γn ⊢c
[A]Γ : [B]Γ for n ≤ the number of elements in Γ . Hence [A]Γ →→c 2 and
by SR, Γn ⊢c 2 : [B]Γ contradicting Lemma 22. ⊠

