
Is the se-alulus strongly normalising??Fairouz Kamareddine1, and Alejandro R��os21 Computing and Eletrial Engineering, Heriot-Watt Univ., Riarton, Edinburgh EH14 4AS, Sotland,fairouz�ee.hw.a.uk2 Department of Computer Siene, University of Buenos Aires, Pabell�on I - Ciudad Universitaria (1428) BuenosAires, Argentina, rios�d.uba.arAbstrat. The ��-alulus (f. [1℄) reets in its hoie of operators and rules the alulus of ate-gorial ombinators (f. [3℄). The main innovation of the ��-alulus is the division of terms in twosorts: sort term and sort substitution. �se departs from this style of expliit substitutions in twoways. First, it keeps the lassial and unique sort term of the �-alulus. Seond, it does not use someof the ategorial operators, espeially those whih are not present in the lassial �-alulus. The�se introdues two new operators whih reet the substitution and updating that are present in themeta-language of the �-alulus, and so it an be said to be loser to the �-alulus from an intuitivepoint of view, rather than a ategorial one.The �se-alulus, like the ��-alulus, simulates �-redution, is onuent (on open terms1) [9℄ and doesnot preserve PSN [6℄. However, although strong normalisation (SN) of the �-alulus (the substitutionalulus assoiated with the ��-alulus) has been established, it is still unkown whether strong nor-malisation of the se-alulus (the substitution alulus assoiated with the �se-alulus) holds. Onlyweak normalisation of the se-alulus is known so far. This note, is a disussion of the status of strongnormalisation of the se-alulus. Basially we show that the set of rules se is the union of two disjointsets of rules A and B whih are both SN but this does not lead us anywhere as ommutation does nothold and hene modularity annot be used to obtain SN of se. In addition, the distribution elimina-tion [13℄ and reursive path ordering methods are not appliable and we remain unsure whether se isatually SN or not.Strong normalisation of subaluli of seThe last 15 years have seen an explosion in expliit substitution aluli (see [10℄ for a survey). As far as weknow, almost all of them satisfy the property that the underlying alulus of substitutions terminate. Forthe �se-alulus [9℄, this property remains unsolved. This paper is to pose this problem in the hope that itan generate interest as a termination problem whih at least for uriosity, needs to be settled. The answeran go either way. On the one hand, although the ��-alulus does not have PSN, the �-alulus itself isSN. On the other hand, ould the loss of PSN in the �se-alulus be due to the non-SN of the se-alulus?Are there termination tehniques that we still have not explored and that ould help us settle this problem?We would like to �nd out.Let us summarize �rst the main problems that we fae when trying to establish SN for se.Problem 1: Unable to use reursive path ordering By taking a quik look at the se-rules (see De�ni-tion 22), it beomes obvious that the unfriendly rules, with respet to SN, are �-�-transition and to a lesserextent '-�-transition. These rules prevent us from establishing an order on the set of operators in order tosolve the normalisation problem with a reursive path ordering.Problem 2: Unable to use Zantema's distribution elimination lemma The se-rules \look like"assoiative rules but unfortunately they are not; e.g. in �-�-transition one ould think of the �j-operatordistributing over the �i-operator, but it is not a \true" distribution: �j hanges to �j+1 when ating onthe �rst term and to �j�i+1 when ating on the seond. This prevents us from using Zantema's distributionelimination method [13℄ to obtain SN.? This work was arried out under EPSRC grants GR/K25014, GR/L15685 and GR/L36963.1 The �se-alulus is onuent on the whole set of open terms whereas �� is onuent on the open terms withoutmetavariables of sort substitution as is shown in [12℄.



2 Fairouz Kamareddine, and Alejandro R��osProblem 3: Unable to use modularity Another tehnique to show SN is modularity, i.e. establish SN forertain subaluli and afterwards prove that these subaluli satisfy a ommutation property to onlude SNfor the whole alulus. At the end of this note we will ome bak to this point and show that the neessaryommutation results do not hold.Let us say here that, even if �-�-transition seems responsible for the diÆulties in establishing SN,Zantema sueded in establishing that the �-�-transition sheme on its own is SN (personal ommuniationited in [9℄). Here we shall go a step further: we shall prove that �-�-tr.+'-�-tr. is SN and also that thealulus obtained with the rest of the rules is SN as well.In this note we shall frequently use the following nomenlature:De�nition 1 We de�ne the following sets of rules:�' = f�-'-tr.1; �-'-tr.2; '-'-tr.1; '-'-tr.2g,�� = f�-�-tr.; '-�-tr.g;�'� = f�-'-tr.1; '-'-tr.2g, �'�� = f�-'-tr.2; '-'-tr.1g.Note that se = (s + �') + ��. We shall prove in this note that both aluli generated by the set of ruless+ �' (Theorem 4) and �� (Theorem 11) are SN. Unfortunately, these aluli do not possess the propertyof ommutation needed to ensure that their union se is SN (see Example 14).It is not diÆult to prove that s + �' is SN by giving a weight that dereases through redution. Webegin by de�ning two weight funtions we will need for the �nal weight:De�nition 2 Let P : �sop ! IN and W : �sop ! IN be de�ned indutively by:P (X) = P (n) = 2 W (X) =W (n) = 1P (a b) = P (a) + P (b) W (a b) =W (a) +W (b) + 1P (�a) = P (a) W (�a) =W (a) + 1P (a �jb) = j � P (a) � P (b) W (a �jb) = 2 �W (a) � (W (b) + 1)P ('ika) = (k + 1) � (P (a) + 1) W ('ika) = 2 �W (a)Lemma 3 For a; b 2 �sop the following hold:1. If a!s+�' b then W (a) �W (b).2. If a!s+�'� b then W (a) > W (b).3. If a!�'�� b then P (a) > P (b).Proof: By indution on a: if the redution is internal, the IH applies; otherwise, the theorem must beheked for eah rule. �An immediate onsequene of the previous lemma is:Theorem 4 The s+ �'-alulus is SN.Proof: The previous lemma ensures that the ordinal (W (a); P (a)) dereases with the lexiographial orderfor eah s+ �'-redution. �Now, to prove SN for �� we are going to use the isomorphism presented in the appendix and the tehniquethat Zantema used to prove SN for the alulus whose only rule is �-�-transition (f. [9℄). Following thisisomorphism, the shemes �-�-tr. and '-�-tr. of �se both translate into the same sheme of �!e, namely�-=-transition of De�nition 28.Zantema uses the following lemma (f. [11℄):Lemma 5 Any redution relation ! on a set T satisfying 1,2, and 3 is strongly normalising:1. ! is weakly normalising.2. ! is loally onuent.3. ! is inreasing, i.e., 9 a funtion f : T �! IN where a! b) f(a) < f(b).We use the previous lemma to prove that the alulus whose only rule is �-=-transition, let us all it �-=-alulus, is strongly normalising. For the �-= � alulus, 2 follows from a simple ritial pair analysisand 3 an be easily established by hoosing f(a) to be the size of a. To show weak normalisation of the�-=� alulus the tehnique used by Zantema (f. [9℄) an be adapted here:



Is the se-alulus strongly normalising? 3De�nition 6 We say that  2 �!t is an external normal form if  = a[s1℄i1 � � � [sn℄in where a 6= [d=℄k andif sk = bk= then ik > ik+1. We denote the set of external normal forms ENF .Lemma 7 Let  = a[s1℄i1 � � � [sn℄in 2 ENF and let in � in+1 and sn = bn= then there exists a �-=-derivation !+ a[t1℄j1 � � � [tn+1℄jn+1 2 ENF suh that jn+1 = in and for every r with 1 � r � n + 1 we have eithertr = sk for some k � n+ 1 or tr = (ap[sn+1℄)= for some sp = ap= with 1 � p � n.Proof: By indution on n. �Lemma 8 Let  = a[s1℄i1 � � � [sn℄in suh that a 6= [d=℄k. There exists a �-=-derivation !! a[t1℄j1 � � � [tn℄jn 2ENF suh that for every r with 1 � r � n + 1 we have either tr = sk for some k � n or tr =(apr 1 [spr 2 ℄k2 � � � [spr n ℄kn)= with 1 � pr 1 � � � � � pr n � n and with some sp = apr 1= (1 � p � n).Proof: By indution on n, using the previous lemma. �Lemma 9 The �-=-alulus is weakly normalising.Proof: Suppose there is a term  not having a normal form for whih every term smaller (in size) than admits a normal form. Let  = a[s1℄i1 � � � [sn℄in suh that a 6= [d=℄k. Applying Lemma 8, we get  !! a[t1℄j1 � � � [tn℄jn 2 ENF . Note that a; t1; � � � tn are all smaller than  and hene admit a normal form.Now replaing eah of them by its normal form in a[t1℄j1 � � � [tn℄jn we have a normal form for  whih is aontradition. �Therefore we an �nally apply Lemma 5 to onlude:Theorem 10 The �-=-alulus is strongly normalising on �!t.Now, using the isomorphism, sine, as we mentioned before, both rule shemes in �� translate into thesingle �-= rule sheme, we have:Theorem 11 The ��-alulus is strongly normalising.Now that s+�' and �� have been proved SN the question arises whether the whole system an be provedSN using a modularity result. The answer is negative for the lassial modularity theorem of Bahmair-Dershowitz, whih we reall here:De�nition 12 A rewrite relation R ommutes over S if whenever a !S b !R , there is an alternativederivation a!R d!R[S .Theorem 13 (Bahmair-Dershowitz-85) Let R ommute over S. The ombined system R [ S is SN i�R and S both are SN.The following example shows that no ommutation is possible between s + �' and �� and therefore theBahmair-Dershowitz's Theorem annot be applied to get SN for se.Example 14 Now, here is an example whih shows that �� does not ommute over s + �': Let k + i � j,h � j � i+ 1 and h > k + 1. Let us onsider the following derivation:('ik(a �hb))�j!�' 'ik((a �hb)�j�i+1)!����tr 'ik((a �j�i+2)�h(b �j�i�h+2))But it is easy to see that ('ik(a �hb))�j does not ontain any ��-redex.On the other hand, s+ �' does not ommute over �� either: Let i � j and let us onsider the followingderivation:((�a)�ib)�j)!����tr ((�a)�j+1)�i(b �j�i+1)!s (�(a �j+2))�i(b �j�i+1)But reduing the only s-redex in ((�a)�ib)�j) we get (�(a �i+1b))�j whih also has a unique s-redex.Reduing it we get �((a �i+1b)�j+1) and now there is only the �-�-transition redex, whose redution givesus �((a �j+2)�i+1(b �j�i+1)) whih has no further redexes. Therefore, (�(a �j+2))�i(b �j�i+1) annot bereahed from ((�a)�ib)�i) with an se-derivation beginning with an s-step.
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Is the se-alulus strongly normalising? 5A.2 The �s- and �se-aluliThe idea of �s is to handle expliitly the meta-operators given in de�nitions 15 and 16. Therefore, the syntaxof the �s-alulus is obtained by adding two families of operators :{ f�jgj�1, whih denotes the expliit substitution operators. Eah �j is an in�x operator of arity 2 anda �jb has as intuitive meaning the term a where all free ourrenes of the variable orresponding to thede Bruijn index j are to be substituted by the term b.{ f'ikgk�0 i�1, whih denotes the updating funtions neessary when working with de Bruijn numbers to�x the variables of the term to be substituted.De�nition 18 The set of terms, noted �s , of the �s-alulus is given as follows:�s ::= IN j �s�s j ��s j �s�j�s j 'ik�s where j; i � 1 ; k � 0 :We take a; b;  to range over �s. A term of the form a �jb is alled a losure. Furthermore, a term ontainingneither �'s nor ''s is alled a pure term. � denotes the set of pure terms.A ompatible redution on �s is a redution ! suh that for all a; b;  2 �s, if a ! b then a  ! b , a!  b, �a! �b, a �j! b �j,  �ja!  �jb and 'ika! 'ikb.We inlude, besides the rule mimiking the �-rule (�-generation), a set of rules whih are the equationsin de�nitions 15 and 16 oriented from left to right.De�nition 19 The �s-alulus is the redution system (�s;!�s), where !�s is the least ompatible redu-tion on �s generated by the following rules:�-generation (�a) b �! a �1 b�-�-transition (�a)�jb �! �(a�j+1b)�-app-transition (a1 a2)�jb �! (a1 �jb) (a2 �jb)�-destrution n�jb �! 8<:n� 1 if n > j'j0 b if n = jn if n < j'-�-transition 'ik(�a) �! �('ik+1 a)'-app-transition 'ik(a1 a2) �! ('ik a1) ('ik a2)'-destrution 'ik n �! �n+ i� 1 if n > kn if n � kWe use �s to denote this set of rules. The s-alulus, the alulus of substitutions assoiated with the�s-alulus, is the redution system generated by the set of rules s = �s� f�-generationg.Lemma 20 (f. [8℄) The following holds:1. (SN and CR of s) The s-alulus is strongly normalising and onuent on �s. Hene, every term a hasa unique s-normal form denoted s(a).2. The set of s-normal forms is exatly �.3. For all a; b 2 �s we have:s(a b) = s(a)s(b) , s(�a) = �(s(a)) , s('ika) = U ik(s(a)) , s(a �jb) = s(a)ffj s(b)gg .4. Let a; b 2 �s , if a!��gen b or a!!�s b then s(a)!!� s(b) .5. (Soundness) Let a; b 2 � , if a!!�s b then a!!� b .6. (Simulation of �-redution) Let a; b 2 �, if a!� b then a!!�s b .7. (CR of �s) The �s-alulus is onuent on �s.8. (Preservation of SN) Pure terms whih are strongly normalising in the �-alulus are also stronglynormalising in the �s-alulus.



6 Fairouz Kamareddine, and Alejandro R��osOpen terms were introdued in the �s-alulus as follows (see [9℄):De�nition 21 The set of open terms, noted �sop is given as follows:�sop ::= V j IN j �sop�sop j ��sop j �sop �j�sop j 'ik�sop where j; i � 1 ; k � 0and where V stands for a set of variables, over whih X, Y , ... range. We take a; b;  to range over �sop.Furthermore, losures, pure terms and ompatibility are de�ned as for �s.Working with open terms one loses onuene as shown by the following ounterexample:((�X)Y )�11! (X�1Y )�11 ((�X)Y )�11! ((�X)�11)(Y �11)and (X�1Y )�11 and ((�X)�11)(Y �11) have no ommon redut. Moreover, the above example shows thateven loal onuene is lost. In order to solve this problem, [9℄ added to the �s-alulus a set of rules thatguarantees onuene:De�nition 22 The set of rules �se is obtained by adding the rules given below to the set �s.�-�-transition (a �ib)�j  �! (a �j+1 ) �i (b �j�i+1 ) if i � j�-'-transition 1 ('ik a)�j b �! 'i�1k a if k < j < k + i�-'-transition 2 ('ik a)�j b �! 'ik(a �j�i+1 b) if k + i � j'-�-transition 'ik(a �j b) �! ('ik+1 a)�j ('ik+1�j b) if j � k + 1'-'-transition 1 'ik ('jl a) �! 'jl ('ik+1�j a) if l + j � k'-'-transition 2 'ik ('jl a) �! 'j+i�1l a if l � k < l + jThe �se-alulus is the redution system (�sop;!�se) where !�se is the least ompatible redution on �sopgenerated by the set of rules �se. The alulus of substitutions assoiated with the �se-alulus is the rewritingsystem generated by the set of rules se = �se � f�-generationg and we all it se-alulus.Lemma 23 (See [9℄) The following holds:1. (WN and CR of se) The se-alulus is weakly normalising and onuent.2. (Simulation of �-redution) Let a; b 2 �, if a!� b then a!!�se b .3. (CR of �se) The �se-alulus is onuent on open terms.4. (Soundness) Let a; b 2 � , if a!!�se b then a!!� b .A.3 The ��-alulusThe ��-alulus [1℄ is a formalism whih enables expliit substitution. Its syntax is two-sorted: the sort termof terms and the sort substitution of expliit substitutions. These an be interpreted as a sequene of termsand the result of exeuting a substitution in a term an be interpreted as the term obtained by replaingthe ourrenes of the n-th index of de Bruijn in the term by the n-th term of the sequene. This intuitiveinterpretation is developped and illustrated with many examples in [1℄. Here are the syntax and the rules ofthe ��-alulus:De�nition 24 The syntax of the ��-alulus is given by:Terms ��t ::= 1 j ��t��t j ���t j ��t[��s℄Substitutions ��s ::= id j " j ��t � ��s j ��s Æ ��sThe set, denoted ��, of rules of the ��-alulus is the following:



Is the se-alulus strongly normalising? 7(Beta) (�a) b �! a [b � id℄(VarId) 1 [id℄ �! 1(VarCons) 1 [a � s℄ �! a(App) (a b)[s℄ �! (a [s℄) (b [s℄)(Abs) (�a)[s℄ �! �(a [1 � (s Æ ")℄)(Clos) (a [s℄)[t℄ �! a [s Æ t℄(IdL) id Æ s �! s(ShiftId) " Æ id �! "(ShiftCons) " Æ (a � s) �! s(Map) (a � s) Æ t �! a [t℄ � (s Æ t)(Ass) (s1 Æ s2) Æ s3 �! s1 Æ (s2 Æ s3)The set of rules of the �-alulus is �� � f(Beta)g . We use a; b; ; : : : to range over ��t and s; t; : : :to range over ��s. For every substitution s we de�ne the iteration of the omposition of s indutively ass1 = s and sn+1 = s Æ sn. We use the onvention s0 = id . Note that the only de Bruijn index used is 1 , butwe an ode n by the term 1["n�1℄ . By so doing, we have � � ��t .Lemma 25 (f. [1, 7℄)1. The �-alulus is strongly normalising (SN) and onuent (CR).2. The ��-alulus is onuent.It is well known that the ��-alulus is not onuent on open terms, furthermore it is not even loallyonuent. To obtain loal onuene four rules must be added, and the alulus thus obtained is alled the��SP -alulus.De�nition 26 The ��SP -alulus is obtained by adding to �� the rules given below and by deleting the rules(VarId) and (ShiftId), sine both of them are instanes of the new rules.(Id) a[id℄ �! a(IdR) s Æ id �! s(VarShift) 1� " �! id(SCons) 1[s℄ � (" Æ s) �! sEven the ��SP -alulus is not onuent on open terms (terms whih admit metavariables of both sorts), asshown in [4℄, but it is onuent when the set of open terms is restrited to those whih admit metavariablesof sort term only [12℄.A.4 The �!- and �!e-aluliIn order to express �s-terms in the ��-style, [10℄ split the losure operator of �� (denoted in a semi-in�xnotation as �[�℄) in a family of losures operators that were denoted also with a semi-in�x notation as �[�℄i,where i ranges on the set of natural numbers. [10℄ also admitted as basi operators the iterations of " andtherefore had a ountable set of basi substitutions "n, where n ranges on the set of natural numbers. Bydoing so, the updating operators of �s beome available as �["n℄i. Finally, [10℄ introdued a slash operatorof sort term ! substitution whih transforms a term a into a substitution a=. This operator may beonsidered as onsing with id (in the ��-jargon) and was �rst introdued and exploited in the ��-alulus(f. [2℄). Here is the formalisation of this syntax and the rewriting rules of �!:



8 Fairouz Kamareddine, and Alejandro R��osDe�nition 27 The set of terms of the �!-alulus, noted �!, is de�ned as �!t [�!s, where �!t and �!sare mutually de�ned as follows:Terms �!t ::= IN j �!t�!t j ��!t j �!t[�!s℄jSubstitutions �!s ::= "i j �!t=where j � 1 and i � 0. The set, denoted �!, of rules of the �!-alulus is given as follows:�-generation (�a) b �! a [b=℄1�-app-transition (a b)[s℄j �! (a [s℄j) (b [s℄j)�-�-transition (�a)[s℄j �! �(a[s℄j+1)�-=-destrution n[a=℄j �! 8<:n� 1 if n > ja["j�1℄1 if n = jn if n < j�-"-destrution n["i℄j �! �n+ i if n � jn if n < jThe set of rules of the !-alulus is �! � f� � generationg . We use a; b; ; : : : to range over �!t ands; t; : : : to range over �!s.De�nition 28 The set of open terms, noted �!op is de�ned as �!top [ �!sop, where �!top and �!sop aremutually de�ned as follows:Open Terms �!top ::= V j IN j �!top�!top j ��!top j �!top[�!sop℄jSubstitutions �!sop ::= "i j �!top=where j � 1 and i � 0, and where V stands for a set of variables, over whih X, Y , ... range. We take a; b; to range over �!top and s; t; : : : over �!sop. Furthermore, losures, pure terms and ompatibility are de�nedas for �!. The set, denoted �!e, of rules of the �!e-alulus is obtained by adding to the set of rules �! thenew following rules: �-=-transition a [b=℄k[s℄j �! a [s℄j+1[b[s℄j�k+1=℄k if k � j=-"-transition a ["i℄k[b=℄j �! (a[b=℄j�i["i℄k if k + i � ja["i�1℄k if k � j < k + i"-"-transition a ["i℄k["l℄j �! (a["l℄j�i["i℄k if k + i < ja["i+l℄k if k � j � k + iThe set of rules of the !e-alulus is �!e � f��generationg .Remark 29 Note that the rule shemes =-" and "-" an be merged into the single shemea ["i℄k[s℄j ! a[s℄j�i["i℄k for k + i < jbut they must be kept distint for the ase k + i = j if SN is to be preserved. In fat, the "-"-sheme, ifadmited in the ase k + i = j, may generate an in�nite loop by itself (take for instane i = k = l = 1 andj = 2).



Is the se-alulus strongly normalising? 9[10℄ de�ned two funtions, that are inverse of eah other, and establish an isomorphism between �se and�!e. Furthermore, their restrition to ground terms also establishes an isomorphism between �s and �!.These isomorphisms translate properties of �s and �se to �! and �!e, respetively.De�nition 30 The funtions T : �sop ! �!top and S : �!top ! �sop are de�ned indutively by:T (X) = X S(X) = XT (n) = n S(n) = nT (a b) = T (a)T (b) S(a b) = S(a)S(b)T (�a) = �T (a) S(�a) = �S(a)T (a �jb) = T (a)[T (b)=℄j S(a [b=℄j) = S(a)�jS(b)T ('ika) = T (a)["i�1℄k+1 S(a ["i℄k) = 'i+1k�1(S(a))We use the same names T and S for the trivial restritions of these funtions to ground terms. The ontextwill be always lear enough in order to avoid ambiguities.Theorem 31 (f. [10℄) The following hold:1. Let a; b 2 �s. If a!s b then T (a)!! T (b). If a!�s b then T (a)!�! T (b).2. Let a; b 2 �sop. If a!se b then T (a)!!e T (b). If a!�se b then T (a)!�!e T (b).3. Let a; b 2 �!t. If a!! b then S(a)!s S(b). If a!�! b then S(a)!�s S(b).4. Let a; b 2 �!top. If a!!e b then S(a)!se S(b). If a!�!e b then S(a)!�se S(b).5. If a 2 �!t or a 2 �!top, then we have T (S(a)) = a .6. If a 2 �s or a 2 �sop, then we have S(T (a)) = a .Now that the aluli have been proved isomorphi, all the results mentioned in setions 1.2 and 1.3onerning �s and �se translate into orresponding results for the sort term to �! and �!e.Theorem 32 The following hold:1. The !-alulus is SN and onuent on �!t.2. Let a; b 2 � . If a!!�! b then a!!� b . If a!� b then a!!�! b .3. The �!-alulus is onuent on �!t.4. Pure terms whih are SN in the �-alulus are also SN in the �!-alulus.5. The !e-alulus is weakly normalising and onuent.6. The �!e-alulus is onuent on open terms.7. Let a; b 2 � . If a!!�!e b then a!!� b . If a!� b then a!!�!e b .


