Is the se-calculus strongly normalising?*

Fairouz Kamareddine!, and Alejandro Rios?

! Computing and Electrical Engineering, Heriot-Watt Univ., Riccarton, Edinburgh EH14 4AS, Scotland,
fairouz@Qcee.hw.ac.uk
2 Department of Computer Science, University of Buenos Aires, Pabellén I - Ciudad Universitaria (1428) Buenos
Aires, Argentina, rios@dc.uba.ar

Abstract. The Ao-calculus (cf. [1]) reflects in its choice of operators and rules the calculus of cate-
gorical combinators (cf. [3]). The main innovation of the Ao-calculus is the division of terms in two
sorts: sort term and sort substitution. As. departs from this style of explicit substitutions in two
ways. First, it keeps the classical and unique sort term of the A-calculus. Second, it does not use some
of the categorical operators, especially those which are not present in the classical A-calculus. The
Ase introduces two new operators which reflect the substitution and updating that are present in the
meta-language of the A-calculus, and so it can be said to be closer to the A-calculus from an intuitive
point of view, rather than a categorical one.

The As.-calculus, like the Ao-calculus, simulates S-reduction, is confluent (on open terms') [9] and does
not preserve PSN [6]. However, although strong normalisation (SN) of the o-calculus (the substitution
calculus associated with the Ao-calculus) has been established, it is still unkown whether strong nor-
malisation of the s.-calculus (the substitution calculus associated with the As.-calculus) holds. Only
weak normalisation of the s.-calculus is known so far. This note, is a discussion of the status of strong
normalisation of the s.-calculus. Basically we show that the set of rules s, is the union of two disjoint
sets of rules A and B which are both SN but this does not lead us anywhere as commutation does not
hold and hence modularity cannot be used to obtain SN of s.. In addition, the distribution elimina-
tion [13] and recursive path ordering methods are not applicable and we remain unsure whether s. is
actually SN or not.

Strong normalisation of subcalculi of s,

The last 15 years have seen an explosion in explicit substitution calculi (see [10] for a survey). As far as we
know, almost all of them satisfy the property that the underlying calculus of substitutions terminate. For
the As.-calculus [9], this property remains unsolved. This paper is to pose this problem in the hope that it
can generate interest as a termination problem which at least for curiosity, needs to be settled. The answer
can go either way. On the one hand, although the Ao-calculus does not have PSN, the o-calculus itself is
SN. On the other hand, could the loss of PSN in the As.-calculus be due to the non-SN of the s.-calculus?
Are there termination techniques that we still have not explored and that could help us settle this problem?
We would like to find out.

Let us summarize first the main problems that we face when trying to establish SN for s..
Problem 1: Unable to use recursive path ordering By taking a quick look at the s.-rules (see Defini-
tion 22), it becomes obvious that the unfriendly rules, with respect to SN, are o-o-transition and to a lesser
extent @-o-transition. These rules prevent us from establishing an order on the set of operators in order to
solve the normalisation problem with a recursive path ordering.
Problem 2: Unable to use Zantema’s distribution elimination lemma The s.-rules “look like”
associative rules but unfortunately they are not; e.g. in o-o-transition one could think of the ¢/-operator
distributing over the o'-operator, but it is not a “true” distribution: ¢/ changes to ¢*! when acting on
the first term and to o/ ~*! when acting on the second. This prevents us from using Zantema’s distribution
elimination method [13] to obtain SN.

* This work was carried out under EPSRC grants GR/K25014, GR/L15685 and GR/L36963.
! The Asc-calculus is confluent on the whole set of open terms whereas Ao is confluent on the open terms without
metavariables of sort substitution as is shown in [12].

Fairouz Kamareddine, and Alejandro Rios

Problem 3: Unable to use modularity Another technique to show SN is modularity, i.e. establish SN for
certain subcalculi and afterwards prove that these subcalculi satisfy a commutation property to conclude SN
for the whole calculus. At the end of this note we will come back to this point and show that the necessary
commutation results do not hold.

Let us say here that, even if o-o-transition seems responsible for the difficulties in establishing SN,
Zantema succeded in establishing that the o-o-transition scheme on its own is SN (personal communication
cited in [9]). Here we shall go a step further: we shall prove that o-o-tr.+@-o-tr. is SN and also that the
calculus obtained with the rest of the rules is SN as well.

In this note we shall frequently use the following nomenclature:

Definition 1 We define the following sets of rules:

xp = {o-p-tr.1, o-p-tr.2, p-p-tr.1, p-p-tr.2},

xo = {o-o-tr., p-o-tr.},

xp~ = {o-p-tr.1, p-p-tr.2}, xp~~ = {o-p-tr.2, p-p-tr.1}.

Note that s, = (s + *¢) + *o. We shall prove in this note that both calculi generated by the set of rules
s + #@ (Theorem 4) and %o (Theorem 11) are SN. Unfortunately, these calculi do not possess the property
of commutation needed to ensure that their union s, is SN (see Example 14).

It is not difficult to prove that s + x¢ is SN by giving a weight that decreases through reduction. We
begin by defining two weight functions we will need for the final weight:

Definition 2 Let P : As,, = IN and W : As,, = IN be defined inductively by:

P(X)=P(n)=2 W(X)=W(@) =1

P(ab) = P(a) + P(b) W(ab) =W(a) +W(b) +1

P(Aa) = P(a) W(Xa) = W(a) +1
P(ac’b) = j x P(a) x P(b) W(aoib) =2 W(a)* (W(b)+1)
P(ppa) = (k+1) % (P(a) + 1) W (ppa) =2 W(a)

Lemma 3 For a, b € As,p the following hold:
1 Ifa —s44p b then W(a) > W(b).

2. If a =54 yp- b then W(a) > W (b).
3 If a —,,-- b then P(a) > P(b).

PROOF: By induction on a: if the reduction is internal, the IH applies; otherwise, the theorem must be
checked for each rule. X

An immediate consequence of the previous lemma, is:
Theorem 4 The s + xp-calculus is SN.

PROOF: The previous lemma ensures that the ordinal (W (a), P(a)) decreases with the lexicographical order
for each s + *¢p-reduction. X

Now, to prove SN for xo we are going to use the isomorphism presented in the appendix and the technique
that Zantema used to prove SN for the calculus whose only rule is g-o-transition (cf. [9]). Following this
isomorphism, the schemes o-o-tr. and @-o-tr. of As, both translate into the same scheme of Aw., namely
o-/-transition of Definition 28.

Zantema uses the following lemma (cf. [11]):

Lemma 5 Any reduction relation — on a set T satisfying 1,2, and 3 is strongly normalising:
1. — is weakly normalising.

2. — is locally confluent.

3. — is increasing, i.e., 3 a function f : T — IN where a — b= f(a) < f(b).

We use the previous lemma to prove that the calculus whose only rule is o-/-transition, let us call it o-
/-calculus, is strongly normalising. For the o-/ — calculus, 2 follows from a simple critical pair analysis
and 3 can be easily established by choosing f(a) to be the size of a. To show weak normalisation of the
0-/ — calculus the technique used by Zantema (cf. [9]) can be adapted here:

Is the se-calculus strongly normalising? 3
Definition 6 We say that c € Aw' is an external normal form if ¢ = a[s1];, - - - [sn]i, where a # c[d/] and
if sk, = b/ then iy > ix+1. We denote the set of external normal forms ENF .

Lemma 7 Letc=als1]i, - [sn)i, € ENF and let i, <i,y1 and s, = b,/ then there exists a o-/-derivation
c =T alt1]j, - [tnt1ljus, € ENF such that jn,y1 = in and for every r with 1 < r < n+ 1 we have either
t, = si for some k <n+1 ort, = (ap[sn+1])/ for some s, = a,/ with 1 <p < n.

PROOF: By induction on n. X

Lemma 8 Letc = a[s1];, - - - [sn]i, such that a # c[d/]i. There exists a o-/-derivation ¢ =% a[t1];, - - - [tn];, €
ENF such that for every r with 1 < r < n + 1 we have either t, = s for some k < n or t, =
(@p, 1 [Spralks = [Sprnlkn)/ With 1 <pp1 < -+ <ppp <1 and with some sp =ap,,/ (1 <p<n).

PROOF: By induction on n, using the previous lemma. X
Lemma 9 The o-/-calculus is weakly normalising.

PROOF: Suppose there is a term ¢ not having a normal form for which every term smaller (in size) than
¢ admits a normal form. Let ¢ = a[s1];, - - - [sn]s, such that a # c[d/];. Applying Lemma 8, we get ¢ —

— alt1]j, - - [tn];, € ENF. Note that a, t1, --- t,, are all smaller than ¢ and hence admit a normal form.
Now replacing each of them by its normal form in a[t1];, - - - [tn];, we have a normal form for ¢ which is a
contradiction. X

Therefore we can finally apply Lemma 5 to conclude:
Theorem 10 The o-/-calculus is strongly normalising on Aw'.

Now, using the isomorphism, since, as we mentioned before, both rule schemes in *¢ translate into the
single o-/ rule scheme, we have:

Theorem 11 The xo-calculus is strongly normalising.

Now that s+ *¢ and %o have been proved SN the question arises whether the whole system can be proved
SN using a modularity result. The answer is negative for the classical modularity theorem of Bachmair-
Dershowitz, which we recall here:

Definition 12 A rewrite relation R commutes over S if whenever a —g b —pg ¢, there is an alternative
derivation a - g d — rus C.

Theorem 13 (Bachmair-Dershowitz-85) Let R commute over S. The combined system RU S is SN iff
R and S both are SN.

The following example shows that no commutation is possible between s + *¢ and %o and therefore the
Bachmair-Dershowitz’s Theorem cannot be applied to get SN for s..

Example 14 Now, here is an example which shows that xo does not commute over s + xp: Let k +1 < j,
h<j—i+1and h>k+ 1. Let us consider the following derivation:

(¢k(ac"b)) o/c =y @ ((ac"b) 0/~ he) 2o sir ph((ac? ") " (bo? 771 H20))

But it is easy to see that (p%(aa"b)) a’c does not contain any xo-redex.
On the other hand, s + *p does not commute over xo either: Let i < j and let us consider the following
derivation:

((Aa) 0'b) 09¢) = g—v_ir (Aa) d?Tie) o' (bo? ™) =, (AMao?T2e)) o (bo? ™)

But reducing the only s-redex in ((Aa)o'b) oic) we get (AM(ao'™1b))o’ic which also has a unique s-redex.
Reducing it we get \((a o 1b) oitlc) and now there is only the o-o-transition redex, whose reduction gives
us M((aoi*2¢)o™ L (boi~Le)) which has no further redexes. Therefore, (A(aoit?c)) ot(ba’~tt1¢) cannot be
reached from ((\a) o'b) oic) with an s.-derivation beginning with an s-step.

Fairouz Kamareddine, and Alejandro Rios

References

1.

2.

3.

10.

11.
12.
13.

A

M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy. Explicit Substitutions. Journal of Functional Programming,
1(4):375-416, 1991.

Z. Benaissa, D. Briaud, P. Lescanne, and J. Rouyer-Degli. Av, a calculus of explicit substitutions which preserves
strong normalisation. Functional Programming, 6(5), 1996.

P.-L. Curien. Categorical Combinators, Sequential Algorithms and Functional Programming. Pitman, 1986.
Revised edition : Birkhduser (1993).

P.-L. Curien, T. Hardin, and J.-J. Lévy. Confluence properties of weak and strong calculi of explicit substitutions.
Technical Report RR 1617, INRIA, Rocquencourt, 1992.

N. de Bruijn. Lambda-Calculus notation with nameless dummies, a tool for automatic formula manipulation,
with application to the Church-Rosser Theorem. Indag. Mat., 34(5):381-392, 1972.

B. Guillaume. Un calcul des substitutions avec etiquettes. PhD thesis, Université de Savoie, Chambéry, France,
1999.

T. Hardin and A. Laville. Proof of Termination of the Rewriting System SUBST on CCL. Theoretical Computer
Science, 46:305-312, 1986.

F. Kamareddine and A. Rios. A A-calculus & la de Bruijn with explicit substitutions. Proceedings of PLILP’95.
LNCS, 982:45-62, 1995.

F. Kamareddine and A. Rios. Extending a A-calculus with explicit substitution which preserves strong normali-
sation into a confluent calculus on open terms. Journal of Functional Programming, 7(4):395-420, 1997.

F. Kamareddine and Alejandro Rios. Relating the Ao- and As-styles of explicit substitutions. Logic and Compu-
tation, 10(3):349-380, 2000.

J.-W. Klop. Term rewriting systems. Handbook of Logic in Computer Science, II, 1992.

A. Rios. Contribution a l’étude des A-calculs avec substitutions ezplicites. PhD thesis, Université de Paris 7, 1993.
H. Zantema. Termination of term rewriting: interpretation and type elimination. J. Symbolic Computation,
17(1):23-50, 1994.

Formal Machinery

A.1 The classical A-calculus in de Bruijn notation

We assume the reader familiar with de Bruijn notation (cf. [5]). We define A, the set of terms with de Bruijn
indices, by: A= IN | (AA4) | (AA).

We use a, b, ... to range over A and m,n,... to range over IN (positive natural numbers). Furthermore,

we assume the usual conventions about parentheses and avoid them when no confusion occurs. Throughout
the whole article, a = b is used to mean that a and b are syntactically identical, and write —1 and — to
denote the transitive and the reflexive transitive closures of a reduction notion —. We say that a reduction
— is compatible on A when for all a, b, ¢ € A, we have a — b implies ac — be, ca — ¢b and Aa — Ab.

In order to define B-reduction & la de Bruijn, we must define the substitution of a variable n for a term

b in a term a. Therefore, we need to update the term b:

Definition 15 The updating functions U} : A — A for k > 0 and i > 1 are defined inductively:

Ui (ab) = Ul (a) Ui (D) ' Ci 1t
SR viw = {2
Up(Aa) = AU 14 (a)) =

Now we define the family of meta-substitution functions:

Definition 16 The meta-substitutions at level j, for 7 > 1, of a term b € A in a term a € A, denoted
afj < b}, is defined inductively on a as follows:

(@a)fj « b} = (@ {i < b)) (afy « b)) n-1if n>j
nfj e b} = { UIO) if n=j
(M) {5 b} = Aafj +1 ¢ b)) n i n<j.

Definition 17 S-reduction is the least compatible reduction on A generated by:

(B-rule) (Aa)b —p a1}

The A-calculus (a la de Bruijn), is the reduction system whose only rewriting rule is (3.

Is the se-calculus strongly normalising? b}

A.2 The As- and As.-calculi

The idea of As is to handle explicitly the meta-operators given in definitions 15 and 16. Therefore, the syntax
of the As-calculus is obtained by adding two families of operators :

— {0’ }j>1, which denotes the explicit substitution operators. Each o/ is an infix operator of arity 2 and
a o’b has as intuitive meaning the term a where all free occurrences of the variable corresponding to the
de Bruijn index j are to be substituted by the term b.

— {¢}. }k>0 i>1, which denotes the updating functions necessary when working with de Bruijn numbers to
fix the variables of the term to be substituted.

Definition 18 The set of terms, noted As, of the As-calculus is given as follows:
Asu=IN | AsAs | Ms | AsaiAs | ¢iAs where j,i>1, k>0.

We take a, b, ¢ to range over As. A term of the form ao'b is called a closure. Furthermore, a term containing
neither a’s nor ’s is called a pure term. A denotes the set of pure terms.

A compatible reduction on As is a reduction — such that for all a, b, c € As, if a — b then ac — bc,
ca—ch, da—= M, acic = boie, cola — colb and <p}'ga — @};b.

We include, besides the rule mimicking the S-rule (o-generation), a set of rules which are the equations
in definitions 15 and 16 oriented from left to right.

Definition 19 The As-calculus is the reduction system (As, —xs), where — s is the least compatible reduc-
tion on As generated by the following rules:

o-generation (Aa)b —s aold
o-A-transition (Aa) a7b — A(ao?T1b)

o-app-transition (ay az) 09b — (a; 07b) (az 07b)

o-destruction nolb—< b if n=j
n if n<j
p-A-transition o1 (Aa) — Mg, a)

p-app-transition @Z(al as) — (np}c ay) (np}c as)

n+i—14if n>k

-] i
p-destruction Ppn— {n if n<k

We use As to denote this set of rules. The s-calculus, the calculus of substitutions associated with the
As-calculus, is the reduction system generated by the set of rules s = As — {o-generation}.

Lemma 20 (cf. [8]) The following holds:

1. (SN and CR of s) The s-calculus is strongly normalising and confluent on As. Hence, every term a has
a unique s-normal form denoted s(a).

2. The set of s-normal forms is exactly A.

For all a, b € As we have:

s(ab) = s(@)s(h), s(Aa) = A(s(a)) , spia) = Ui(s(a), slaoib) = s(@){j < s(b)} -

Let a,b€ As, if a 25_gen b or a =5 b then s(a) —»3 s(b) .

(Soundness) Let a, b€ A, if a —»xs b then a —»pb.

(Simulation of B-reduction) Let a, b € A, if a =3 b then a —»sb.

(CR of As) The As-calculus is confluent on As.

(Preservation of SN) Pure terms which are strongly normalising in the A\-calculus are also strongly

normalising in the \s-calculus.

to

SIS

Fairouz Kamareddine, and Alejandro Rios

Open terms were introduced in the As-calculus as follows (see [9]):
Definition 21 The set of open terms, noted Aso, is given as follows:
Asop 5=V | IN | AsopAsey | AMsop | Asop0?Asep | ¢hAse, — where j,i>1, k>0

and where V stands for a set of variables, over which X, Y, ... range. We take a, b, c to range over As,,.
Furthermore, closures, pure terms and compatibility are defined as for As.

Working with open terms one loses confluence as shown by the following counterexample:
(AX)Y)otl — (XolY)ot1 (AX)Y)ott = (A X)ot1)(Yoll)

and (Xo'Y)o!'1 and ((AX)o'1)(Yo!1) have no common reduct. Moreover, the above example shows that
even local confluence is lost. In order to solve this problem, [9] added to the As-calculus a set of rules that
guarantees confluence:

Definition 22 The set of rules s, is obtained by adding the rules given below to the set As.

o-o-transition (ac'b) ol c — (aoite) ot (bol~itle) if i<
o-p-transition 1 (pLa) ol b — ¢l ta if k<j<k+i
o-p-transition 2 (¢t a) ol b — i (aci L) if k+1<j

p-o-transition o (aod b) — (p}4q a) 07 (np};+1_j b) if j<k+1
p-p-transition 1 ¢l ((,0{ a) — <,0{ ((p}'c_i_l_j a) if l+j<k
p-p-transition 2 @l ((,0{ a) — <p{+i_1 a if l<k<l+j

The Asc-calculus is the reduction system (Asqp, —xs.) where — s, is the least compatible reduction on Asp
generated by the set of rules As.. The calculus of substitutions associated with the As.-calculus is the rewriting
system generated by the set of rules s, = \s. — {o-generation} and we call it s.-calculus.

Lemma 23 (See [9]) The following holds:

1. (WN and CR of s.) The s.-calculus is weakly normalising and confluent.
2. (Simulation of B-reduction) Let a, b€ A, if a > b then a —»xs, b.

3. (CR of As.) The Ase-calculus is confluent on open terms.

4. (Soundness) Let a, b€ A, if a —»xs, b then a —»3b.

A.3 The Ao-calculus

The Ao-calculus [1] is a formalism which enables explicit substitution. Its syntax is two-sorted: the sort term
of terms and the sort substitution of explicit substitutions. These can be interpreted as a sequence of terms
and the result of executing a substitution in a term can be interpreted as the term obtained by replacing
the occurrences of the n-th index of de Bruijn in the term by the n-th term of the sequence. This intuitive
interpretation is developped and illustrated with many examples in [1]. Here are the syntax and the rules of
the Ao-calculus:

Definition 24 The syntaz of the Ao-calculus is given by:

Terms Aot =1 | ActAct | Mot | Act[Ac?]
Substitutions Ac® :=id | 1 | A’ - Ac® | Ao® o Ac®

The set, denoted Ao, of rules of the Ao-calculus is the following:

Is the se-calculus strongly normalising? 7

(Beta) (Aa)b — alb-id]

(Varld) 1id] — 1

(VarCons) lla-s] —a

(App) (@b)ls] — (als]) (b 5]

(Abs) (Aa)ls] — Aal1 - (s0 1)

(Clos) (a[s])[t] — a[sot]

(IdL) idos — s

(Shiftld) $oid —s 1

(ShiftCons) to(a-s) — s

(Map) (a-s)ot —alt]-(sot)

(Ass) (s1082) 083 —» s10(s2083)
The set of rules of the o-calculus is Ao — {(Beta)}. We use a,b,c,... to range over Aot and s,t,...

to range over Ac®. For every substitution s we define the iteration of the composition of s inductively as
s' = 5 and s"t! = sos™. We use the convention s° = id. Note that the only de Bruijn index used is 1, but

we can code n by the term 1[t"~1]. By so doing, we have A C Act.
Lemma 25 (cf. [1,7])

1. The o-calculus is strongly normalising (SN) and confluent (CR).
2. The Ao-calculus is confluent.

It is well known that the Ao-calculus is not confluent on open terms, furthermore it is not even locally
confluent. To obtain local confluence four rules must be added, and the calculus thus obtained is called the
Aogp-calculus.

Definition 26 The Aosp-calculus is obtained by adding to Ao the rules given below and by deleting the rules
(Varld) and (Shiftld), since both of them are instances of the new rules.

(1d) alid] — a
(IdR) soid — s
(VarShift) 1- 1 —id

(SCons) 1s]- (1 o08) — s

Even the Aogp-calculus is not confluent on open terms (terms which admit metavariables of both sorts), as
shown in [4], but it is confluent when the set of open terms is restricted to those which admit metavariables
of sort term only [12].

A.4 The Aw- and A\w,-calculi

In order to express As-terms in the Ao-style, [10] split the closure operator of Ao (denoted in a semi-infix
notation as —[—]) in a family of closures operators that were denoted also with a semi-infix notation as —[—];,
where i ranges on the set of natural numbers. [10] also admitted as basic operators the iterations of 1 and
therefore had a countable set of basic substitutions 1", where n ranges on the set of natural numbers. By
doing so, the updating operators of As become available as —[1"];. Finally, [10] introduced a slash operator
of sort term — substitution which transforms a term a into a substitution a/. This operator may be
considered as consing with id (in the \o-jargon) and was first introduced and exploited in the Av-calculus
(cf. [2])- Here is the formalisation of this syntax and the rewriting rules of Aw:

Fairouz Kamareddine, and Alejandro Rios

Definition 27 The set of terms of the Aw-calculus, noted Aw, is defined as Aw' U Aw®, where Aw® and Aw®
are mutually defined as follows:

Terms Awt = IN | Aw'Aw | Mwt | Aw![Aw®];
Substitutions Aw® =1 | Awt/

where j > 1 and i > 0. The set, denoted Aw, of rules of the Aw-calculus is given as follows:

o-generation (Aa)b — alb/l1
o-app-transition (ab)[s]; — (a[s];) (b[s];)
o-A-transition (Aa)[s]; — A(a[s]j+1)

n—1 if n>j

o-/-destruction nla/]; — { a7 if n=j
n if n<j

n+iif n>y

o-T-destruction n[t']; — {n if n<j

The set of rules of the w-calculus is \w — {0 — generation} . We use a,b,c,... to range over Aw' and
s,t,... to range over Aw®.

Definition 28 The set of open terms, noted Aw,, is defined as Aw}, U Aw,, where Awl, and Awj, are
mutually defined as follows:

Open Terms Awl, ==V | IV | Aw} A}

] 0 op |)‘szp | Aw(t)p[Awgp]j
Substitutions Aw?, =1 | Aw! /

where 7 > 1 and i > 0, and where V stands for a set of variables, over which X,Y , ... range. We take a, b, ¢
to range over Awt and s, t, ... over Aw;,,. Furthermore, closures, pure terms and compatibility are defined
as for Aw. The set, denoted Aw., of rules of the Aw.-calculus is obtained by adding to the set of rules Aw the
new following rules:

o-/-transition a[b/|x[s]; — a[s]j+1[b[s]j—k+1/lk if kK <J

alb/lj—i[t'le if k+i<j

/-T-transition a[T*]x[b/]; — {G[Ti_l]k i oh<j<hii

alt =it if k+i<j

A - i ap
t--transition a[1*]x[1]; — {a[TH-l]k if k<j<k+i

The set of rules of the we-calculus is Aw, — {o—generation} .
Remark 29 Note that the rule schemes /-1 and -1 can be merged into the single scheme
a [Ti]k[s]j — a[s]j,i[Ti]k fork+i<j

but they must be kept distinct for the case k +1i = j if SN is to be preserved. In fact, the 1-1-scheme, if
admited in the case k + i = j, may generate an infinite loop by itself (take for instance i =k =1=1 and

j=2)

Is the se-calculus strongly normalising? 9

[10] defined two functions, that are inverse of each other, and establish an isomorphism between As. and
Aw,. Furthermore, their restriction to ground terms also establishes an isomorphism between As and Aw.
These isomorphisms translate properties of As and As. to Aw and Aw,, respectively.

Definition 30 The functions T : As,, — Aw(t)p and S : Awf,p — As,p are defined inductively by:

T(X)=X S(X) =X

T(n)=n Sm) =n

T(ab) =T (a)T'(b) S(ab) = S(a)S(b)
T(Aa) = AT (a) S(Aa) = AS(a)

T(a0h) = T@[T(0)/); S(a[b/);) = S(@) SIS(0)
T(pia) = T(a)[1Juss S(a 1) = gt (S(a))

We use the same names T and S for the trivial restrictions of these functions to ground terms. The context
will be always clear enough in order to avoid ambiguities.

Theorem 31 (cf. [10]) The following hold:

. Leta,be As. If a =5 b then T'(a) =, T'(b). If a —xs b then T'(a) —x, T'(b).

. Let a, b€ Asop. If a —5_ b then T'(a) =, T'(b). If a —xs, b then T'(a) —x,. T(D).
. Leta, be Awt. If a =, b then S(a) =5 S(b). If a =5, b then S(a) —xs S(b).

. Leta, b€ Awl,. If a =, b then S(a) =5, S(b). If a =, b then S(a) —xs, S(b).
If a € Awt or a € AWt , then we have T'(S(a)) = a .

op?
Ifa € As or a € As,y, then we have S(T'(a)) =a .

S T fe te =

Now that the calculi have been proved isomorphic, all the results mentioned in sections 1.2 and 1.3
concerning As and As. translate into corresponding results for the sort term to Aw and Awe.

Theorem 32 The following hold:

The w-calculus is SN and confluent on Aw®.

Let a,be A. If a5, b then a =g b. If a =3 b then a —x, b.

The Mw-calculus is confluent on Aw?.

Pure terms which are SN in the A-calculus are also SN in the Aw-calculus.
The we-calculus is weakly normalising and confluent.

The Awe-calculus is confluent on open terms.

Let a,be A. If a —»x,. b then a —»3b. If a = b then a —»y,, b.

NS G oo~

