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t. The ��-
al
ulus (
f. [1℄) re
e
ts in its 
hoi
e of operators and rules the 
al
ulus of 
ate-gori
al 
ombinators (
f. [3℄). The main innovation of the ��-
al
ulus is the division of terms in twosorts: sort term and sort substitution. �se departs from this style of expli
it substitutions in twoways. First, it keeps the 
lassi
al and unique sort term of the �-
al
ulus. Se
ond, it does not use someof the 
ategori
al operators, espe
ially those whi
h are not present in the 
lassi
al �-
al
ulus. The�se introdu
es two new operators whi
h re
e
t the substitution and updating that are present in themeta-language of the �-
al
ulus, and so it 
an be said to be 
loser to the �-
al
ulus from an intuitivepoint of view, rather than a 
ategori
al one.The �se-
al
ulus, like the ��-
al
ulus, simulates �-redu
tion, is 
on
uent (on open terms1) [9℄ and doesnot preserve PSN [6℄. However, although strong normalisation (SN) of the �-
al
ulus (the substitution
al
ulus asso
iated with the ��-
al
ulus) has been established, it is still unkown whether strong nor-malisation of the se-
al
ulus (the substitution 
al
ulus asso
iated with the �se-
al
ulus) holds. Onlyweak normalisation of the se-
al
ulus is known so far. This note, is a dis
ussion of the status of strongnormalisation of the se-
al
ulus. Basi
ally we show that the set of rules se is the union of two disjointsets of rules A and B whi
h are both SN but this does not lead us anywhere as 
ommutation does nothold and hen
e modularity 
annot be used to obtain SN of se. In addition, the distribution elimina-tion [13℄ and re
ursive path ordering methods are not appli
able and we remain unsure whether se isa
tually SN or not.Strong normalisation of sub
al
uli of seThe last 15 years have seen an explosion in expli
it substitution 
al
uli (see [10℄ for a survey). As far as weknow, almost all of them satisfy the property that the underlying 
al
ulus of substitutions terminate. Forthe �se-
al
ulus [9℄, this property remains unsolved. This paper is to pose this problem in the hope that it
an generate interest as a termination problem whi
h at least for 
uriosity, needs to be settled. The answer
an go either way. On the one hand, although the ��-
al
ulus does not have PSN, the �-
al
ulus itself isSN. On the other hand, 
ould the loss of PSN in the �se-
al
ulus be due to the non-SN of the se-
al
ulus?Are there termination te
hniques that we still have not explored and that 
ould help us settle this problem?We would like to �nd out.Let us summarize �rst the main problems that we fa
e when trying to establish SN for se.Problem 1: Unable to use re
ursive path ordering By taking a qui
k look at the se-rules (see De�ni-tion 22), it be
omes obvious that the unfriendly rules, with respe
t to SN, are �-�-transition and to a lesserextent '-�-transition. These rules prevent us from establishing an order on the set of operators in order tosolve the normalisation problem with a re
ursive path ordering.Problem 2: Unable to use Zantema's distribution elimination lemma The se-rules \look like"asso
iative rules but unfortunately they are not; e.g. in �-�-transition one 
ould think of the �j-operatordistributing over the �i-operator, but it is not a \true" distribution: �j 
hanges to �j+1 when a
ting onthe �rst term and to �j�i+1 when a
ting on the se
ond. This prevents us from using Zantema's distributionelimination method [13℄ to obtain SN.? This work was 
arried out under EPSRC grants GR/K25014, GR/L15685 and GR/L36963.1 The �se-
al
ulus is 
on
uent on the whole set of open terms whereas �� is 
on
uent on the open terms withoutmetavariables of sort substitution as is shown in [12℄.



2 Fairouz Kamareddine, and Alejandro R��osProblem 3: Unable to use modularity Another te
hnique to show SN is modularity, i.e. establish SN for
ertain sub
al
uli and afterwards prove that these sub
al
uli satisfy a 
ommutation property to 
on
lude SNfor the whole 
al
ulus. At the end of this note we will 
ome ba
k to this point and show that the ne
essary
ommutation results do not hold.Let us say here that, even if �-�-transition seems responsible for the diÆ
ulties in establishing SN,Zantema su

eded in establishing that the �-�-transition s
heme on its own is SN (personal 
ommuni
ation
ited in [9℄). Here we shall go a step further: we shall prove that �-�-tr.+'-�-tr. is SN and also that the
al
ulus obtained with the rest of the rules is SN as well.In this note we shall frequently use the following nomen
lature:De�nition 1 We de�ne the following sets of rules:�' = f�-'-tr.1; �-'-tr.2; '-'-tr.1; '-'-tr.2g,�� = f�-�-tr.; '-�-tr.g;�'� = f�-'-tr.1; '-'-tr.2g, �'�� = f�-'-tr.2; '-'-tr.1g.Note that se = (s + �') + ��. We shall prove in this note that both 
al
uli generated by the set of ruless+ �' (Theorem 4) and �� (Theorem 11) are SN. Unfortunately, these 
al
uli do not possess the propertyof 
ommutation needed to ensure that their union se is SN (see Example 14).It is not diÆ
ult to prove that s + �' is SN by giving a weight that de
reases through redu
tion. Webegin by de�ning two weight fun
tions we will need for the �nal weight:De�nition 2 Let P : �sop ! IN and W : �sop ! IN be de�ned indu
tively by:P (X) = P (n) = 2 W (X) =W (n) = 1P (a b) = P (a) + P (b) W (a b) =W (a) +W (b) + 1P (�a) = P (a) W (�a) =W (a) + 1P (a �jb) = j � P (a) � P (b) W (a �jb) = 2 �W (a) � (W (b) + 1)P ('ika) = (k + 1) � (P (a) + 1) W ('ika) = 2 �W (a)Lemma 3 For a; b 2 �sop the following hold:1. If a!s+�' b then W (a) �W (b).2. If a!s+�'� b then W (a) > W (b).3. If a!�'�� b then P (a) > P (b).Proof: By indu
tion on a: if the redu
tion is internal, the IH applies; otherwise, the theorem must be
he
ked for ea
h rule. �An immediate 
onsequen
e of the previous lemma is:Theorem 4 The s+ �'-
al
ulus is SN.Proof: The previous lemma ensures that the ordinal (W (a); P (a)) de
reases with the lexi
ographi
al orderfor ea
h s+ �'-redu
tion. �Now, to prove SN for �� we are going to use the isomorphism presented in the appendix and the te
hniquethat Zantema used to prove SN for the 
al
ulus whose only rule is �-�-transition (
f. [9℄). Following thisisomorphism, the s
hemes �-�-tr. and '-�-tr. of �se both translate into the same s
heme of �!e, namely�-=-transition of De�nition 28.Zantema uses the following lemma (
f. [11℄):Lemma 5 Any redu
tion relation ! on a set T satisfying 1,2, and 3 is strongly normalising:1. ! is weakly normalising.2. ! is lo
ally 
on
uent.3. ! is in
reasing, i.e., 9 a fun
tion f : T �! IN where a! b) f(a) < f(b).We use the previous lemma to prove that the 
al
ulus whose only rule is �-=-transition, let us 
all it �-=-
al
ulus, is strongly normalising. For the �-= � 
al
ulus, 2 follows from a simple 
riti
al pair analysisand 3 
an be easily established by 
hoosing f(a) to be the size of a. To show weak normalisation of the�-=� 
al
ulus the te
hnique used by Zantema (
f. [9℄) 
an be adapted here:



Is the se-
al
ulus strongly normalising? 3De�nition 6 We say that 
 2 �!t is an external normal form if 
 = a[s1℄i1 � � � [sn℄in where a 6= 
[d=℄k andif sk = bk= then ik > ik+1. We denote the set of external normal forms ENF .Lemma 7 Let 
 = a[s1℄i1 � � � [sn℄in 2 ENF and let in � in+1 and sn = bn= then there exists a �-=-derivation
 !+ a[t1℄j1 � � � [tn+1℄jn+1 2 ENF su
h that jn+1 = in and for every r with 1 � r � n + 1 we have eithertr = sk for some k � n+ 1 or tr = (ap[sn+1℄)= for some sp = ap= with 1 � p � n.Proof: By indu
tion on n. �Lemma 8 Let 
 = a[s1℄i1 � � � [sn℄in su
h that a 6= 
[d=℄k. There exists a �-=-derivation 
!! a[t1℄j1 � � � [tn℄jn 2ENF su
h that for every r with 1 � r � n + 1 we have either tr = sk for some k � n or tr =(apr 1 [spr 2 ℄k2 � � � [spr n ℄kn)= with 1 � pr 1 � � � � � pr n � n and with some sp = apr 1= (1 � p � n).Proof: By indu
tion on n, using the previous lemma. �Lemma 9 The �-=-
al
ulus is weakly normalising.Proof: Suppose there is a term 
 not having a normal form for whi
h every term smaller (in size) than
 admits a normal form. Let 
 = a[s1℄i1 � � � [sn℄in su
h that a 6= 
[d=℄k. Applying Lemma 8, we get 
 !! a[t1℄j1 � � � [tn℄jn 2 ENF . Note that a; t1; � � � tn are all smaller than 
 and hen
e admit a normal form.Now repla
ing ea
h of them by its normal form in a[t1℄j1 � � � [tn℄jn we have a normal form for 
 whi
h is a
ontradi
tion. �Therefore we 
an �nally apply Lemma 5 to 
on
lude:Theorem 10 The �-=-
al
ulus is strongly normalising on �!t.Now, using the isomorphism, sin
e, as we mentioned before, both rule s
hemes in �� translate into thesingle �-= rule s
heme, we have:Theorem 11 The ��-
al
ulus is strongly normalising.Now that s+�' and �� have been proved SN the question arises whether the whole system 
an be provedSN using a modularity result. The answer is negative for the 
lassi
al modularity theorem of Ba
hmair-Dershowitz, whi
h we re
all here:De�nition 12 A rewrite relation R 
ommutes over S if whenever a !S b !R 
, there is an alternativederivation a!R d!R[S 
.Theorem 13 (Ba
hmair-Dershowitz-85) Let R 
ommute over S. The 
ombined system R [ S is SN i�R and S both are SN.The following example shows that no 
ommutation is possible between s + �' and �� and therefore theBa
hmair-Dershowitz's Theorem 
annot be applied to get SN for se.Example 14 Now, here is an example whi
h shows that �� does not 
ommute over s + �': Let k + i � j,h � j � i+ 1 and h > k + 1. Let us 
onsider the following derivation:('ik(a �hb))�j
!�' 'ik((a �hb)�j�i+1
)!����tr 'ik((a �j�i+2
)�h(b �j�i�h+2
))But it is easy to see that ('ik(a �hb))�j
 does not 
ontain any ��-redex.On the other hand, s+ �' does not 
ommute over �� either: Let i � j and let us 
onsider the followingderivation:((�a)�ib)�j
)!����tr ((�a)�j+1
)�i(b �j�i+1
)!s (�(a �j+2
))�i(b �j�i+1
)But redu
ing the only s-redex in ((�a)�ib)�j
) we get (�(a �i+1b))�j
 whi
h also has a unique s-redex.Redu
ing it we get �((a �i+1b)�j+1
) and now there is only the �-�-transition redex, whose redu
tion givesus �((a �j+2
)�i+1(b �j�i+1
)) whi
h has no further redexes. Therefore, (�(a �j+2
))�i(b �j�i+1
) 
annot berea
hed from ((�a)�ib)�i
) with an se-derivation beginning with an s-step.
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hineryA.1 The 
lassi
al �-
al
ulus in de Bruijn notationWe assume the reader familiar with de Bruijn notation (
f. [5℄). We de�ne �, the set of terms with de Bruijnindi
es, by: � ::= IN j (��) j (��).We use a; b; : : : to range over � and m;n; : : : to range over IN (positive natural numbers). Furthermore,we assume the usual 
onventions about parentheses and avoid them when no 
onfusion o

urs. Throughoutthe whole arti
le, a = b is used to mean that a and b are synta
ti
ally identi
al, and write !+ and !! todenote the transitive and the re
exive transitive 
losures of a redu
tion notion !. We say that a redu
tion! is 
ompatible on � when for all a; b; 
 2 �, we have a! b implies a 
! b 
, 
 a! 
 b and �a! �b.In order to de�ne �-redu
tion �a la de Bruijn, we must de�ne the substitution of a variable n for a termb in a term a. Therefore, we need to update the term b:De�nition 15 The updating fun
tions U ik : �! � for k � 0 and i � 1 are de�ned indu
tively:U ik(ab) = U ik(a)U ik(b)U ik(�a) = �(U ik+1(a)) U ik(n) = �n+ i� 1 if n > kn if n � k :Now we de�ne the family of meta-substitution fun
tions:De�nition 16 The meta-substitutions at level j , for j � 1 , of a term b 2 � in a term a 2 � , denotedaffj bgg , is de�ned indu
tively on a as follows:(a1a2)ffj bgg = (a1ffj bgg) (a2ffj bgg)(�a)ffj bgg = �(affj+ 1 bgg) nffj bgg = 8<:n� 1 if n > jU j0 (b) if n = jn if n < j :De�nition 17 �-redu
tion is the least 
ompatible redu
tion on � generated by:(�-rule) (�a) b!� aff1 bggThe �-
al
ulus (�a la de Bruijn), is the redu
tion system whose only rewriting rule is �.



Is the se-
al
ulus strongly normalising? 5A.2 The �s- and �se-
al
uliThe idea of �s is to handle expli
itly the meta-operators given in de�nitions 15 and 16. Therefore, the syntaxof the �s-
al
ulus is obtained by adding two families of operators :{ f�jgj�1, whi
h denotes the expli
it substitution operators. Ea
h �j is an in�x operator of arity 2 anda �jb has as intuitive meaning the term a where all free o

urren
es of the variable 
orresponding to thede Bruijn index j are to be substituted by the term b.{ f'ikgk�0 i�1, whi
h denotes the updating fun
tions ne
essary when working with de Bruijn numbers to�x the variables of the term to be substituted.De�nition 18 The set of terms, noted �s , of the �s-
al
ulus is given as follows:�s ::= IN j �s�s j ��s j �s�j�s j 'ik�s where j; i � 1 ; k � 0 :We take a; b; 
 to range over �s. A term of the form a �jb is 
alled a 
losure. Furthermore, a term 
ontainingneither �'s nor ''s is 
alled a pure term. � denotes the set of pure terms.A 
ompatible redu
tion on �s is a redu
tion ! su
h that for all a; b; 
 2 �s, if a ! b then a 
 ! b 
,
 a! 
 b, �a! �b, a �j
! b �j
, 
 �ja! 
 �jb and 'ika! 'ikb.We in
lude, besides the rule mimi
king the �-rule (�-generation), a set of rules whi
h are the equationsin de�nitions 15 and 16 oriented from left to right.De�nition 19 The �s-
al
ulus is the redu
tion system (�s;!�s), where !�s is the least 
ompatible redu
-tion on �s generated by the following rules:�-generation (�a) b �! a �1 b�-�-transition (�a)�jb �! �(a�j+1b)�-app-transition (a1 a2)�jb �! (a1 �jb) (a2 �jb)�-destru
tion n�jb �! 8<:n� 1 if n > j'j0 b if n = jn if n < j'-�-transition 'ik(�a) �! �('ik+1 a)'-app-transition 'ik(a1 a2) �! ('ik a1) ('ik a2)'-destru
tion 'ik n �! �n+ i� 1 if n > kn if n � kWe use �s to denote this set of rules. The s-
al
ulus, the 
al
ulus of substitutions asso
iated with the�s-
al
ulus, is the redu
tion system generated by the set of rules s = �s� f�-generationg.Lemma 20 (
f. [8℄) The following holds:1. (SN and CR of s) The s-
al
ulus is strongly normalising and 
on
uent on �s. Hen
e, every term a hasa unique s-normal form denoted s(a).2. The set of s-normal forms is exa
tly �.3. For all a; b 2 �s we have:s(a b) = s(a)s(b) , s(�a) = �(s(a)) , s('ika) = U ik(s(a)) , s(a �jb) = s(a)ffj s(b)gg .4. Let a; b 2 �s , if a!��gen b or a!!�s b then s(a)!!� s(b) .5. (Soundness) Let a; b 2 � , if a!!�s b then a!!� b .6. (Simulation of �-redu
tion) Let a; b 2 �, if a!� b then a!!�s b .7. (CR of �s) The �s-
al
ulus is 
on
uent on �s.8. (Preservation of SN) Pure terms whi
h are strongly normalising in the �-
al
ulus are also stronglynormalising in the �s-
al
ulus.



6 Fairouz Kamareddine, and Alejandro R��osOpen terms were introdu
ed in the �s-
al
ulus as follows (see [9℄):De�nition 21 The set of open terms, noted �sop is given as follows:�sop ::= V j IN j �sop�sop j ��sop j �sop �j�sop j 'ik�sop where j; i � 1 ; k � 0and where V stands for a set of variables, over whi
h X, Y , ... range. We take a; b; 
 to range over �sop.Furthermore, 
losures, pure terms and 
ompatibility are de�ned as for �s.Working with open terms one loses 
on
uen
e as shown by the following 
ounterexample:((�X)Y )�11! (X�1Y )�11 ((�X)Y )�11! ((�X)�11)(Y �11)and (X�1Y )�11 and ((�X)�11)(Y �11) have no 
ommon redu
t. Moreover, the above example shows thateven lo
al 
on
uen
e is lost. In order to solve this problem, [9℄ added to the �s-
al
ulus a set of rules thatguarantees 
on
uen
e:De�nition 22 The set of rules �se is obtained by adding the rules given below to the set �s.�-�-transition (a �ib)�j 
 �! (a �j+1 
) �i (b �j�i+1 
) if i � j�-'-transition 1 ('ik a)�j b �! 'i�1k a if k < j < k + i�-'-transition 2 ('ik a)�j b �! 'ik(a �j�i+1 b) if k + i � j'-�-transition 'ik(a �j b) �! ('ik+1 a)�j ('ik+1�j b) if j � k + 1'-'-transition 1 'ik ('jl a) �! 'jl ('ik+1�j a) if l + j � k'-'-transition 2 'ik ('jl a) �! 'j+i�1l a if l � k < l + jThe �se-
al
ulus is the redu
tion system (�sop;!�se) where !�se is the least 
ompatible redu
tion on �sopgenerated by the set of rules �se. The 
al
ulus of substitutions asso
iated with the �se-
al
ulus is the rewritingsystem generated by the set of rules se = �se � f�-generationg and we 
all it se-
al
ulus.Lemma 23 (See [9℄) The following holds:1. (WN and CR of se) The se-
al
ulus is weakly normalising and 
on
uent.2. (Simulation of �-redu
tion) Let a; b 2 �, if a!� b then a!!�se b .3. (CR of �se) The �se-
al
ulus is 
on
uent on open terms.4. (Soundness) Let a; b 2 � , if a!!�se b then a!!� b .A.3 The ��-
al
ulusThe ��-
al
ulus [1℄ is a formalism whi
h enables expli
it substitution. Its syntax is two-sorted: the sort termof terms and the sort substitution of expli
it substitutions. These 
an be interpreted as a sequen
e of termsand the result of exe
uting a substitution in a term 
an be interpreted as the term obtained by repla
ingthe o

urren
es of the n-th index of de Bruijn in the term by the n-th term of the sequen
e. This intuitiveinterpretation is developped and illustrated with many examples in [1℄. Here are the syntax and the rules ofthe ��-
al
ulus:De�nition 24 The syntax of the ��-
al
ulus is given by:Terms ��t ::= 1 j ��t��t j ���t j ��t[��s℄Substitutions ��s ::= id j " j ��t � ��s j ��s Æ ��sThe set, denoted ��, of rules of the ��-
al
ulus is the following:



Is the se-
al
ulus strongly normalising? 7(Beta) (�a) b �! a [b � id℄(VarId) 1 [id℄ �! 1(VarCons) 1 [a � s℄ �! a(App) (a b)[s℄ �! (a [s℄) (b [s℄)(Abs) (�a)[s℄ �! �(a [1 � (s Æ ")℄)(Clos) (a [s℄)[t℄ �! a [s Æ t℄(IdL) id Æ s �! s(ShiftId) " Æ id �! "(ShiftCons) " Æ (a � s) �! s(Map) (a � s) Æ t �! a [t℄ � (s Æ t)(Ass) (s1 Æ s2) Æ s3 �! s1 Æ (s2 Æ s3)The set of rules of the �-
al
ulus is �� � f(Beta)g . We use a; b; 
; : : : to range over ��t and s; t; : : :to range over ��s. For every substitution s we de�ne the iteration of the 
omposition of s indu
tively ass1 = s and sn+1 = s Æ sn. We use the 
onvention s0 = id . Note that the only de Bruijn index used is 1 , butwe 
an 
ode n by the term 1["n�1℄ . By so doing, we have � � ��t .Lemma 25 (
f. [1, 7℄)1. The �-
al
ulus is strongly normalising (SN) and 
on
uent (CR).2. The ��-
al
ulus is 
on
uent.It is well known that the ��-
al
ulus is not 
on
uent on open terms, furthermore it is not even lo
ally
on
uent. To obtain lo
al 
on
uen
e four rules must be added, and the 
al
ulus thus obtained is 
alled the��SP -
al
ulus.De�nition 26 The ��SP -
al
ulus is obtained by adding to �� the rules given below and by deleting the rules(VarId) and (ShiftId), sin
e both of them are instan
es of the new rules.(Id) a[id℄ �! a(IdR) s Æ id �! s(VarShift) 1� " �! id(SCons) 1[s℄ � (" Æ s) �! sEven the ��SP -
al
ulus is not 
on
uent on open terms (terms whi
h admit metavariables of both sorts), asshown in [4℄, but it is 
on
uent when the set of open terms is restri
ted to those whi
h admit metavariablesof sort term only [12℄.A.4 The �!- and �!e-
al
uliIn order to express �s-terms in the ��-style, [10℄ split the 
losure operator of �� (denoted in a semi-in�xnotation as �[�℄) in a family of 
losures operators that were denoted also with a semi-in�x notation as �[�℄i,where i ranges on the set of natural numbers. [10℄ also admitted as basi
 operators the iterations of " andtherefore had a 
ountable set of basi
 substitutions "n, where n ranges on the set of natural numbers. Bydoing so, the updating operators of �s be
ome available as �["n℄i. Finally, [10℄ introdu
ed a slash operatorof sort term ! substitution whi
h transforms a term a into a substitution a=. This operator may be
onsidered as 
onsing with id (in the ��-jargon) and was �rst introdu
ed and exploited in the ��-
al
ulus(
f. [2℄). Here is the formalisation of this syntax and the rewriting rules of �!:



8 Fairouz Kamareddine, and Alejandro R��osDe�nition 27 The set of terms of the �!-
al
ulus, noted �!, is de�ned as �!t [�!s, where �!t and �!sare mutually de�ned as follows:Terms �!t ::= IN j �!t�!t j ��!t j �!t[�!s℄jSubstitutions �!s ::= "i j �!t=where j � 1 and i � 0. The set, denoted �!, of rules of the �!-
al
ulus is given as follows:�-generation (�a) b �! a [b=℄1�-app-transition (a b)[s℄j �! (a [s℄j) (b [s℄j)�-�-transition (�a)[s℄j �! �(a[s℄j+1)�-=-destru
tion n[a=℄j �! 8<:n� 1 if n > ja["j�1℄1 if n = jn if n < j�-"-destru
tion n["i℄j �! �n+ i if n � jn if n < jThe set of rules of the !-
al
ulus is �! � f� � generationg . We use a; b; 
; : : : to range over �!t ands; t; : : : to range over �!s.De�nition 28 The set of open terms, noted �!op is de�ned as �!top [ �!sop, where �!top and �!sop aremutually de�ned as follows:Open Terms �!top ::= V j IN j �!top�!top j ��!top j �!top[�!sop℄jSubstitutions �!sop ::= "i j �!top=where j � 1 and i � 0, and where V stands for a set of variables, over whi
h X, Y , ... range. We take a; b; 
to range over �!top and s; t; : : : over �!sop. Furthermore, 
losures, pure terms and 
ompatibility are de�nedas for �!. The set, denoted �!e, of rules of the �!e-
al
ulus is obtained by adding to the set of rules �! thenew following rules: �-=-transition a [b=℄k[s℄j �! a [s℄j+1[b[s℄j�k+1=℄k if k � j=-"-transition a ["i℄k[b=℄j �! (a[b=℄j�i["i℄k if k + i � ja["i�1℄k if k � j < k + i"-"-transition a ["i℄k["l℄j �! (a["l℄j�i["i℄k if k + i < ja["i+l℄k if k � j � k + iThe set of rules of the !e-
al
ulus is �!e � f��generationg .Remark 29 Note that the rule s
hemes =-" and "-" 
an be merged into the single s
hemea ["i℄k[s℄j ! a[s℄j�i["i℄k for k + i < jbut they must be kept distin
t for the 
ase k + i = j if SN is to be preserved. In fa
t, the "-"-s
heme, ifadmited in the 
ase k + i = j, may generate an in�nite loop by itself (take for instan
e i = k = l = 1 andj = 2).



Is the se-
al
ulus strongly normalising? 9[10℄ de�ned two fun
tions, that are inverse of ea
h other, and establish an isomorphism between �se and�!e. Furthermore, their restri
tion to ground terms also establishes an isomorphism between �s and �!.These isomorphisms translate properties of �s and �se to �! and �!e, respe
tively.De�nition 30 The fun
tions T : �sop ! �!top and S : �!top ! �sop are de�ned indu
tively by:T (X) = X S(X) = XT (n) = n S(n) = nT (a b) = T (a)T (b) S(a b) = S(a)S(b)T (�a) = �T (a) S(�a) = �S(a)T (a �jb) = T (a)[T (b)=℄j S(a [b=℄j) = S(a)�jS(b)T ('ika) = T (a)["i�1℄k+1 S(a ["i℄k) = 'i+1k�1(S(a))We use the same names T and S for the trivial restri
tions of these fun
tions to ground terms. The 
ontextwill be always 
lear enough in order to avoid ambiguities.Theorem 31 (
f. [10℄) The following hold:1. Let a; b 2 �s. If a!s b then T (a)!! T (b). If a!�s b then T (a)!�! T (b).2. Let a; b 2 �sop. If a!se b then T (a)!!e T (b). If a!�se b then T (a)!�!e T (b).3. Let a; b 2 �!t. If a!! b then S(a)!s S(b). If a!�! b then S(a)!�s S(b).4. Let a; b 2 �!top. If a!!e b then S(a)!se S(b). If a!�!e b then S(a)!�se S(b).5. If a 2 �!t or a 2 �!top, then we have T (S(a)) = a .6. If a 2 �s or a 2 �sop, then we have S(T (a)) = a .Now that the 
al
uli have been proved isomorphi
, all the results mentioned in se
tions 1.2 and 1.3
on
erning �s and �se translate into 
orresponding results for the sort term to �! and �!e.Theorem 32 The following hold:1. The !-
al
ulus is SN and 
on
uent on �!t.2. Let a; b 2 � . If a!!�! b then a!!� b . If a!� b then a!!�! b .3. The �!-
al
ulus is 
on
uent on �!t.4. Pure terms whi
h are SN in the �-
al
ulus are also SN in the �!-
al
ulus.5. The !e-
al
ulus is weakly normalising and 
on
uent.6. The �!e-
al
ulus is 
on
uent on open terms.7. Let a; b 2 � . If a!!�!e b then a!!� b . If a!� b then a!!�!e b .


