
On Fun
tions and TypesFairouz KamareddineS
hool of Mathemati
al and Computer S
ien
es, Heriot-Watt Univ., Ri

arton,Edinburgh EH14 4AS, S
otland, fairouz�ma
s.hw.a
.ukAbstra
t. The introdu
tion of a general de�nition of fun
tion was keyto Frege's formalisation of logi
. Self-appli
ation of fun
tions was at theheart of Russell's paradox. Russell introdu
ed type theory in order to
ontrol the appli
ation of fun
tions and hen
e to avoid the paradox.Sin
e, di�erent type systems have been introdu
ed, ea
h allowing di�er-ent fun
tional power. Eight of these in
uential systems have been uni�edin the so-
alled Barendregt
ube. These systems use di�erent binders forfun
tions and types and do not allow types to have the same instantia-tion right as fun
tions. De Bruijn did not always make these distin
tions.In this paper, we dis
uss the modern, as well as de Bruijn's frameworkof fun
tions and types and study the
ube in di�erent frameworks.1 SummaryIn [19, 17℄, a review of types and fun
tions up to 1940 has been given. [19, 17℄explain in detail the strong
onne
tion between fun
tions and types. Sin
e 1940,many type systems have been developed ea
h allowing di�erent fun
tional power.In [3℄, an elegant
ube whi
h
ontains eight of these type systems has been given.In the
ube, both fun
tions and types are
reated by abstra
tions: fun
tionsare
reated via � where �x:A:B stands for the fun
tion from A to B whi
h givena 2 A returns B[x := a℄ (i.e., B where a is substituted for x); and types are
reated via � where �x:A:B stands for the type of the fun
tions from A to[a2AB[x := a℄ whi
h given a 2 A return fa 2 B[x := a℄. However, in the
ube,fun
tions apply to arguments and (�x:A:B)a redu
es to B[x := a℄ but types donot apply to arguments in the sense that (�x:A:B)a is not allowed to redu
e toanything. Instead, if needed, one writes B[x := a℄ without ever implying thatthis
ould have
ome from (�x:A:B)a. In parti
ular, the type of the appli
ationof a fun
tion f of type �x:A:B to an argument a of type A in the
ube is givenby B[x := a℄ instead of (�x:A:B)a.De Bruijn in his famous Automath [22℄ allowed�-redu
tion where (�x:A:B)aredu
es to B[x := a℄. He also used what we
all type instantiation whi
h is toapply both fun
tions and types to arguments so that if �x:A:b is of type �x:A:Band a is of type A then (�x:A:b)a has type (�x:A:B)a. Sometimes, de Bruijnunifed the � and � and wrote [x : A℄B for both �x:A:B and �x:A:B.Extending the
ube with de Bruijn's ideas (of �-redu
tion, type instantiationand uni�
ation of binders) has only partially been studied. [18℄ showed that typeinstantiation in the
ube leads to the loss of subje
t redu
tion and
orre
tness of

types. [18℄ did not investigate uni�ying � and � . Laan (private
ommuni
ation)rewrote the
ube by repla
ing in the terms and rules, every � and � with aunique binder �. He did not investigate the extension with type instantiation.In Se
tion 2.2, we review the
ube and its properties. In Se
tion 2.3, wereview the �-
ube of [18℄ where both �-redu
tion and type instantiation arepresent and explain why
orre
tness of types and subje
t redu
tion are lost. InSe
tion 3, we present the �-
ube where only �-redu
tion is present and showthat �-redexes do not o

ur in legal terms and that this �-
ube is isomorphi
 tothe
ube in the sense that they both have the same typing judgements and typethe same terms. We show that the �-
ube has all the properties of the
ube. InSe
tion 4, we present the [-
ube where both � and � are written as [. We showthat this [-
ube is isomorphi
 to the �-
ube and also satis�es all the properties.The isomorphism between the type judgements of the [-
ube, the �-
ube andthe
ube shows that one gains nothing in by either unifying binders or allowing�-redu
tion. The use of one binder
an be seen as a
osmeti
 operation no more.Next, we move to a
ube where binders are uni�ed and where also the instan-tiation behaviour of types and fun
tions is allowed. In Se
tion 5 we add to the[-
ube type instantiation. We also add �parameters whi
h allow the treatmentof higher level as well as lower level fun
tions within one framework, �de�nitionswhi
h enable us to abbreviate large expressions using identi�ers and �expli
itsubstitutions whi
h enable us to
ontrol the evaluation of terms. The result willbe the [iÆ�p-
ube with uni�ed binders, instantiation on types, de�nitions, expli
itsubstitutions and parameters providing a
exible and expressive framework.2 The formal ma
hineryFrege gave in [8℄, a pre
ise formalisation of logi
 whi
h depended on a verygeneral de�nition of fun
tion given via the Abstra
tion Prin
iple:\If in an expression, [. . . ℄ a simple or a
ompound sign has one or more o
-
urren
es and if we regard that sign as repla
eable in all or some of theseo

urren
es by something else (but everywhere by the same thing), then we
all the part that remains invariant in the expression a fun
tion, and the re-pla
eable part the argument of the fun
tion."Frege's general notion of fun
tion meant that fun
tions
an take a variety ofarguments and he was aware that types help avoid the paradoxes.\ Now just as fun
tions are fundamentally di�erent from obje
ts, so also fun
-tions whose arguments are and must be fun
tions are fundamentally di�erentfrom fun
tions whose arguments are obje
ts and
annot be anything else. I
all the latter �rst-level, the former se
ond-level."Despite being
autious, his work fa
ed a paradox dis
overed by Russell. To avoidthe paradoxes, Russell used rami�ed types whi
h have a double hierar
hy: oneof (simple) types (informally due Frege [9℄) and one of orders. Rami�ed typesfa
ed many problems and hen
e the orders of the types were left out.Chur
h's
ombination of �-
al
ulus with simple types gave �!, the basis formost modern type systems. �! however is very restri
tive. The hierar
hy of the

simple theory of types used by �! leads to a dupli
ation of work. For example,numbers, booleans, the identity fun
tion have to be de�ned at every level. Thisled to new (modern) type theories that allow more general notions of fun
tions(e.g, polymorphi
1 fun
tions) whi
h avoid these and other problems (
f. [3℄).Unlike simple types, modern types have similar features to fun
tions:{ We
an
onstru
t a type by abstra
tion. E.g., the type �A:�:�y:A:A of thepolymorphi
 identity fun
tion is obtained by taking any type A (we write A :� for \A is a type") and returning the type �y:A:A of the identity fun
tion onA. The polymorphi
 identity fun
tion is written as �A:�:�y:A:y, the identityfun
tion over A is �y:A:y and the type of �A:�:�y:A:y is �A:�:�y:A:A.{ We
an instantiate types. E.g., if A above is the set of natural numbers Nthen we are
on
erned with the identity fun
tion over N whose type is�y:A:Awhere A is substituted by N (written (�y:A:A)[A := N℄), i.e., �y:N:N.De Bruijn [22℄ identi�es the abstra
tions obtained by � and � whereas othermodern type systems don't. De Bruijn also, unlike others, gives �-terms thesame instantiation power as �-terms (i.e., Both (�x:AB)C and (�x:AB)C redu
eto B[x := C℄). In this paper we study de Bruijn's framework of types andfun
tions by unifying both abstra
tions (via [), and allowing type instantiationwithin a set of eight type systems whi
h form the Barendregt Cube.2.1 Basi
 notionsDe�nition 1 [Terms℄{ We de�ne the set of terms T by: T ::= �j2jV j�V:T :T jT T where � 2 f�;�g.{ We de�ne the set of [-terms (or terms when no
onfusion o

urs) T[by:T[::= � j 2 j V j [V:T[:T[j T[T[.Notation 2 We take V to be a set of variables over whi
h, x, y, z, x1, et
.range. We take
apital letters A, B, a, b, et
. sometimes also indexed by Arabi
numerals su
h as A1, A2, to range over terms. We use fv(A) resp. bv(A) todenote the free resp. bound variables of A, and A[x := B℄ to denote the (impli
it)substitution of all the free o

urren
es of x in A by B. We assume familiaritywith the notion of
ompatibility. As usual, we take terms to be equivalent upto variable renaming and let � denote synta
ti
 equality. We also assume theBarendregt
onvention (BC) where names of bound variables are always
hosenso that they di�er from free ones in a term and where di�erent abstra
tion op-erators bind di�erent variables. Hen
e, for example, we write for the ordinary
ube (�y:A:y)x instead of (�x:A:x)x. (BC) will also be assumed for
ontexts andtypings (for ea
h of the
al
uli presented) so that for example, if � ` �x:A:B : Cthen x will not o

ur in � . We de�ne subterms in the usual way.De�nition 3 [Redu
tions℄{ De�ne �-redu
tion as the
ompatible
losure of (�x:A:B)C !� B[x := C℄.{ De�ne [-redu
tion as the
ompatible
losure of ([x:A:B)C ![B[x := C℄.1 Polymorphism was already re
ognized by Russell as typi
al ambiguity.

{ De�ne �-redu
tion as the
ompatible
losure of (�x:A:B)C !� B[x := C℄.{ We de�ne the union of redu
tion relations as usual. For example, ��-redu
tion is union of !� and !� .{ For ea
h redu
tion relation r, !!r is the re
exive transitive
losure of !rand =r is the equivalen
e
losure of!r. We write!!+r to denote r-redu
tionin one or more steps. We say that A is strongly normalising with respe
t to!r (notation SN!r (A)) if there are no in�nite !r-redu
tions starting at A.De�nition 4 [de
larations,
ontexts℄1. A de
laration d is of the form x : A. We de�ne var(d) � x, type(d) � A andfv(d) � fv(A). We let d, d0, d1, et
. range over de
larations.2. A
ontext � is a (possibly empty)
on
atenation of de
larations d1; d2; � � � ; dnsu
h that if i 6= j, then var(di) 6� var(dj). We de�ne dom (�) = fvar(d) jd 2 �g. The empty
ontext is denoted throughout by hi or simply by ;. Weuse � , �1, �, et
. as meta-variables for
ontexts.3. We de�ne substitutions on
ontexts by: ;[x := A℄ � ;, and (�; y : B)[x :=A℄ � � [x := A℄; y : B[x := A℄.De�nition 5 [statements, judgements℄ Let � be a
ontext, A;B;C be terms.Let ` be one of the typing relations of Se
tion 21. A : B is
alled a statement. A and B are its subje
t and predi
ate respe
tively.2. � ` A : B is a judgement, and � ` A : B : C denotes � ` A : B^� ` B : C.3. � is legal if 9A1; B1 terms su
h that � ` A1 : B1.4. A is a � -term if 9B1 term su
h that [� ` A : B1 _ � ` B1 : A℄.5. A is legal if 9�1[A is a �1-term℄.6. If d is a de
laration then � ` d i� � ` var(d) : type(d).2.2 Reviewing the Barendregt
ubeIn the Barendregt
ube of [3℄, eight well-known type systems are presented in auniform way. The weakest system is Chur
h's simply typed �-
al
ulus �! [6℄,and the strongest system is the Cal
ulus of Constru
tions �C [7℄. The se
ondorder �-
al
ulus [10, 24℄ dis
overed independently by Girard and Reynolds �g-ures on the
ube between �! and �C. Moreover, via the Propositions-as-Typesprin
iple (see [14℄), many logi
al systems
an be des
ribed in the
ube.In the
ube, we have in addition to the usual �-abstra
tion, a type formingoperator � . Brie
y, if A is a type, and B is a type possibly
ontaining thevariable x, then �x:A:B is the type of fun
tions that, given a term a : A, outputa value of type B[x := a℄. Here a : A expresses that a is of type A. If x does noto

ur in B, then �x:A:B is the type of fun
tions from A to B, written A! B.To the �-abstra
tion at the level of types
orresponds �-abstra
tion at the levelof obje
ts. Roughly speaking, if M is a term of type B (M and B possibly
ontaining x), then �x:A:M is a term of type �x:A:B. The
ube has two sorts �(the set of types) and 2 (the set of kinds) with � : 2. If A : � (resp. A : 2) we sayA is a type (resp. a kind). All systems of the
ube have the same typing rulesbut are distinguished from one another by the set R of pairs of sorts (s1; s2)

allowed in the so-
alled type-formation or �-formation rule, (�). Ea
h systemof the
ube has its own set R (whi
h must
ontain (�; �)). A �-type
an only beformed in a spe
i�
 system of the
ube if rule (�) is satis�ed for some (s1; s2)in the set R of that system. The rule (�) is as follows:(�) � ` A : s1 �; x:A ` B : s2� ` (�x:A:B) : s2 (s1; s2) 2 RAs there are only two sorts, � and 2, and ea
h set R must
ontain (�; �),there are only eight possible di�erent systems of the
ube (see Figure 1). Thedependen
ies between these systems is depi
ted in Figure 2. Furthermore, thesystems in the
ube are related to other type systems as is shown in the overviewof Figure 1 (see [3℄). With the rule (�), an important aspe
t of the
ube is that itprovides a fa
torisation of the expressive power of the Cal
ulus of Constru
tionsinto three features: polymorphism, type
onstru
tors, and dependent types:{ (�; �) is the basi
 rule that forms types. All the
ube systems have this rule.{ (2; �) is the rule that takes
are of polymorphism. Girard's System (alsoknown as �2) is the weakest system on the
ube that features this rule.{ (2;2) takes
are of type
onstru
tors. The system �! is the weakest systemon the
ube that features this rule.{ (�;2) takes
are of term dependent types. The system �P is the weakestsystem on the
ube that features this rule.De�nition 6 [The
ube℄ The
ube has T as the set of terms and �-redu
tion!� for the redu
tion relation. Let R � f(�; �); (�;2); (2; �); (2;2)g su
h that(�; �) 2 R. The type system �R des
ribes how judgements � `R A : B (or � `A : B, if it is
lear whi
h R is used)
an be derived. � ` A : B states that A hastype B in
ontext � . The typing rules are given in Figure 3 (s; s1; s2 2 f�;2g).System Related system Names, referen
es�! �� simply typed �-
al
ulus; [6, 2, 13℄ (�; �)�2 F 2nd order typed �-
al
ulus; [10, 24℄ (�; �) (2; �)�P aut-QE, LF [5, 11℄ (�; �) (�;2)�P2 [20℄ (�; �) (2; �) (�;2)�! POLYREC [23℄�! F! [10℄ (�; �) (2;2)�P! (�; �) (�;2) (2;2)�C CC Cal
ulus of Constru
tions; [7℄ (�; �) (2; �) (�;2) (2;2)Fig. 1. Systems of the Barendregt
ubeBelow, we list the standard properties for the
ube (see [3℄ for proofs).Theorem 7 (Chur
h-Rosser Theorem for T and !�) Let A;B1; B2 2 T .If A!!� B1 and A!!� B2 then there is a C su
h that B1 !!� C and B2 !!� C.Lemma 8 (Free Variable Lemma for ` and !�)1. If d and d0 are di�erent elements in a legal
ontext � , then var(d) 6� var(d0).

�����������������! �P�2 �P2�! �P!�C�!p ppp p ppp
-6��1 (�;2) 2 R(2;2) 2 R(2; �) 2 RFig. 2. The Barendregt
ube(axiom) hi ` � : 2(start) � ` A : s�; x:A ` x : A x 62 dom (�)(weak) � ` A : B � ` C : s�; x:C ` A : B x 62 dom (�)(�) � ` A : s1 �; x:A ` B : s2� ` �x:A:B : s2 (s1; s2) 2 R(�) �; x:A ` b : B � ` �x:A:B : s� ` �x:A:b : �x:A:B(appl) � ` F : �x:A:B � ` a : A� ` Fa : B[x:=a℄(
onv) � ` A : B � ` B0 : s B =� B0� ` A : B0Fig. 3. Rules of the (Barendregt)
ube2. If � � �1; d; �2 and � ` B : C then fv(d) � dom (�1) and fv(B); fv(C) �dom (�).Lemma 9 (Start and Context Lemma for ` and !�) If � is legal then� ` � : 2 and 8d 2 � , � ` d. Moreover, if � � �1; d; �2 then �1 ` type(d) : sfor some sort s.Lemma 10 (Substitution Lemma for ` and !�) If �; x : A;� ` B : Cand � ` D : A then �;�[x := D℄ ` B[x := D℄ : C[x := D℄.Lemma 11 (Thinning Lemma for ` and !�)If � and � are legal, � � �, and � ` A : B then � ` A : B.Lemma 12 (Generation Lemma for ` and !�)1. If � ` s : C then then s � � and C =� 2, furthermore if C 6� 2 then� ` C : s0 for some sort s0.2. If � ` x : C then there is a sort s and B =� C su
h that � ` B : s andx:B 2 � ;3. If � ` (�x:A:B) : C then there is sort s and D su
h that � ` (�x:A:D) : s;�; x:A ` B : D; and C =� (�x:A:D);4. If � ` (�x:A:B) : C then there is (s1; s2) 2 R su
h that � ` A : s1,�; x:A ` B : s2 and C =� s2;5. If � ` Fa : C then there are A;B su
h that � ` F : (�x:A:B), � ` a : Aand C =� B[x:=a℄.

Lemma 13 (Corre
tness of types for ` and !�)If � ` A : B then (B � 2 or � ` B : s for some sort s).Lemma 14 (Typability of subterms for ` and !�)If A is legal and B is a subterm of A, then B is legal.Lemma 15 (Subje
t Redu
tion for ` and !�)If � ` A : B and A!!� A0 then � ` A0 : B.Lemma 16 (Redu
tion preserves legal terms for ` and !�)1. If � ` A : B and B !!� B0 then � ` A : B0.2. If A is a � -term and A!!� A0 then A0 is a � -term.Lemma 17 (Uniqueness of Types for ` and !�)If � ` A1 : B1 and � ` A2 : B2 and A1 =� A2, then B1 =� B2.Theorem 18 (Strong Normalisation for ` and !�)If A is `-legal then SN!� (A).2.3 Reviewing the �-
ube: �-redu
tion and type instantiation[18℄ provided the �-
ube whi
h extends the
ube with both �-redu
tion andtype instantiation. In this se
tion, we review the �-
ube and its properties.De�nition 19 [The �-
ube℄ The �-
ube has T as the set of terms and ��-redu
tion !�� for the redu
tion relation. The typing rules of the �-
ube arethose of De�nition 6 but where =� in the (
onv) rule is repla
ed by =�� and(appl) is repla
ed by (new appl):(new appl) � `� F : (�x:A:B) � `� a : A� `� Fa : (�x:A:B)aWe write `� to denote type derivation in the �-
ube.[18℄ showed that Theorem 7 where one repla
es every !!� by !!� � , and Lem-mas 8..11 where one repla
es every ` by `� hold for the �-
ube. [18℄ also showedthat Lemma 12 holds for the �-
ube if one repla
es ` by `� , =� everywhere by=�� and if in
lause 5., B[x := a℄ is repla
ed by (�x:A:B)a. However, [18℄ showedthat both
orre
tness of types Lemma 13 and subje
t redu
tion Lemma 15 failfor the �-
ube. Finally, strong normalisation Theorem 18 holds for the �-
ubewhere `� and !�� repla
e ` and !� respe
tively.In order to understand why
orre
tness of types and subje
t redu
tion fail inthe �-
ube but not in the
ube, let us re
e
t on the legal terms in both
ubes.Lemma 20 � 6` 2 : A, � 6` AB : 2, � 6` �x:A:B : s, and � 6` (�x:A:B)a : C.Proof: For the �rst 3 statements, see [3℄. For the fourth, assume � ` (�x:A:B)a :C. By Lemma 12, 9A0; B0 su
h that � ` �x:A:B : �y:A0 :B0. Again by Lemma 12,9(s1; s2) 2 R su
h that �y:A0 :B0 =� s2
ontradi
ting Chur
h Rosser. �

Lemma 21 � 6`� 2 : A, � 6`� AB : 2, � 6`� �x:A:B : s. However, terms ofthe form (�x:A:B)a
an be legal, but, � 6`� (�x:A:B)a : s.Proof: All the statements have the same proofs as those of Lemma 20. As fora legal �-redex, take for example z : � `� (�x:z:z)z : �� and hen
e terms of theform (�x:A:B)a
an be legal. It is these new legal terms that led to the loss of
orre
tness of types of the �-
ube and hen
e of subje
t redu
tion be
ause they
an not have a sort as a type. The proof is similar to that in Lemma 20. �The fa
t that these new legal terms (�x:A:B)a
annot have type s, that theyare 6� 2 and they are the types of other terms, lead to the loss of
orre
tness oftypes and hen
e of subje
t redu
tion.Example 22 z : �; x : z `� (�y:z:y)x : (�y:z:z)x hen
e loss of
orre
tness oftypes. Also, (�y:z:y)x!�� x but z : �; x : z 6`� x : (�y:z:z)x.[15℄ proposed the �Æ-
ube whi
h has �-redu
tion and type instnatiation, butwhere both
orre
tness of types and subje
t redu
tion hold. The idea was to addthe so-
alled de�nitions to the �-
ube.De�nition 23 [The �Æ-
ube℄ The �Æ-
ube has T as the set of terms and ��-redu
tion !�� for the redu
tion relation. The
ontexts of the �Æ-
ube are
hanged by allowing in addition to the usual de
larations, de�nitions of theform x = B : A whi
h de�ne x to be B and to have type A. The typing rulesof the �Æ-
ube are those of De�nition 19 but where =�� in the (
onv) rule isrepla
ed by � `�Æ B def= B0 is the smallest equivalen
e relation
losed under:{ If B =�� B0 then � `�Æ B def= B0{ If x = D : C 2 � and B0 arises from B by substituting one parti
ular freeo

urren
e of x in B by D then � `�Æ B def= B0and three new rules are added:(start-def) � `�Æ A : s � `�Æ B : A�; x = B:A `�Æ x : A x 62 dom (�)(weak-def) � `�Æ A : B � `�Æ C : s � `�Æ D : C�; x = D:C `�Æ A : B x 62 dom (�)(def) �; x = B:A `�Æ C : D� `�Æ (�x:A:C)B : D[x := B℄Let us see now how the problem explained in Example 22 disappears:First, the example is no longer a
ounterexample for
orre
tness of types:By (weak-def) z : �; x : z; y = x : z `�Æ z : �.Hen
e by (def) z : �; x : z `�Æ (�y:z:z)x : �[y := x℄ � �.Se
ond, the example is no longer a
ounterexample for subje
t redu
tion:As z : �; x : z `�Æ x : z, z : �; x : z `�Æ (�y:z:z)x : � and z : �; x : z `�Æ z def=(�y:z:z)x, we use (
onv) to get: z : �; x : z `�Æ x : (�y:z:z)x.

3 The �-
ube: allowing �-redu
tion onlyWe extend the
ube with �-redu
tion (without type instantiation). Unlike the�-
ube, we show that the �-
ube has all the properties of the
ube. However,we will also show that the �-
ube is a trivial extension of the
ube in the sensethat if � `� A : B then � ` A : B and �;A and B are free of �-redexes.De�nition 24 [The �-
ube℄ The �-
ube has T as the set of terms and ��-redu
tion !�� for the redu
tion relation. The typing rules of the �-
ube arethose of De�nition 6 but where =� in the (
onv) rule is repla
ed by =�� .We write `� to denote type derivation in the �-
ube.As the typing relation does not play a role in the Chur
h Rosser Theorem,Chur
h Rosser for the �-
ube holds and has the same proof as that for the �-
ube. Lemmas 8..11 where one repla
es every ` by `� hold for the �-
ube andhave the same proofs as those for the ordinary
ube. The generation lemma forthe �-
ube (and its proof) is the same as that of Lemma 12 but where `� and=�� repla
e ` and =�. Also, Lemmas 13 and 14 where one repla
es every ` by`� hold for the �-
ube and have the same proofs as those for the ordinary
ube.Now, having Chur
h Rosser and the generation, substitution and typabilityof subterms lemmas for the �-
ube, we
an establish the following lemma:Lemma 25 � 6`� 2 : A, � 6`� AB : 2, � 6`� �x:A:B : s, and � 6`� (�x:A:B)a :C. Moreover, if � `� A : B then all of �;A and B are free of �-redexes.Proof:The proof of ea
h statement ex
ept the last is similar to that in Lemma 20.For the last statement, use indu
tion on � `� A : B. We only show the (appl)
ase. By indu
tion F and a and � are free of �-redexes. By this lemma, Fais also free of �-redexes. By generation and substitution we
an show that� `� B[x := a℄ : s and by Lemma 14 all subterms of B[x := a℄ are typable.Hen
e, by this lemma, none of the subterms of B[x := a℄
an be a �-redex. �By this lemma, the proof of subje
t redu
tion is similar to that for the
ube.Lemma 26 (Subje
t Redu
tion for `� and !��)If � `� A : B and A!!�� A0 then � `� A0 : B.Proof: Similar to Lemma 15 as in the (appl)
ase, in the derivable statement� `� Fa : B[x := a℄, it is not possible that F be of the form �y:C :D. �Lemmas 16 and 17 hold for the �-
ube and have similar proofs to those of the
ube (
hange to !!�� and `�). Next we show that �-redexes play no role.Lemma 27 1. Let � `� A : B. a) if A!�� A0 then A!� A0. b) A!!�� A0then A!!� A0.
) if A =�� A0 then A =� A02. � ` A : B if and only if � `� A : B.Proof:

1. a) By Lemma 25, A is free of �-redexes. b) By indu
tion on A !!�� A0.Assume A!!n�� A00 !�� A0. By subje
t redu
tion, � `� A00 : B and hen
eby IH, A!!n� A00 and A00 !� A0. Hen
e, A!� A0.
) By Chur
h Rosser, 9Csu
h that A !!�� C and A0 !!�� C. By subje
t redu
tion, � `� A0 : B.Hen
e by a), A!!� C and A0 !!� C. Hen
e A =� A0.2. One dire
tion is trivial be
ause every `-rule is also a `�-rule (for (
onv), notethat =��=��). For the other dire
tion, use indu
tion on � `� A : B. Weonly show the (
onv)
ase. If � `� A : B0
omes from � `� A : B, � `� B : sand B0 =�� B. By a) B0 =� B. Hen
e, by IH and (
onv) � ` A : B. �Theorem 28 (Strong Normalisation for `� and !��) If A is `�-legal thenSN!�� (A).Proof:We only need to show that if � `� A : B then SN!�� (A). By Lemma 27.2,� ` A : B and by Theorem 18 SN!� (A). If there is an in�nite path A !��A1 !�� A2 : : : then by Lemma 27.1, there is an in�nite path A !� A1 !�A2 : : : . Contradi
tion. �4 The [-
ube: Identifying � and � in the
ubeIn Se
tion 3, we showed that adding �-redu
tion to the
ube preserves all theproperties, but that this addition does not have any in
uen
e on the legal termsor typing relation. That is, �-redu
tion never takes pla
e on legal terms, and one
annot type more terms than already possible. The typing relations of the
ubeand the �-
ube are equivalent. Although, we allowed � and � to behave alikein redu
tions, in legal terms only � redexes exist and are a
tive at redu
tions.�-redexes never o

ur in legal terms, and hen
e never take pla
e. What if werename both �s and �s using one unique name, say [? De�nitely legal termswill
ontain [-redexes, but do we keep all the desirable properties of the
ube?Our study is motivated by de Bruijn [22℄ who wrote [x : A℄B for both �x:A:Band �x:A:B. We will repla
e all the �s and �s of Se
tion 2.2 by [x:A:B whi
hrepresents de Bruijn's [x : A℄B. This variant of the ordinary
ube will be shownto be equivalent to the �-
ube and to have all the desirable properties.De�nition 29 [The [-
ube℄ The [-
ube has T[as the set of terms and [-redu
tion![for the redu
tion relation. The [-
ube judgements are de�ned by
hanging inDe�nition 6, every � and � in the rules (�), (�) and (appl) to [. We
all thesenew rules ([1), ([2) and (app[) respe
tively. When ne
essary, we write � `[A : Binstead of � ` A : B.In order to investigate the
onne
tion between the [-
ube, and the �-
ube and
ube. It is useful to de�ne a translation fun
tion between their terms T and T[:De�nition 30 { For A 2 T , we de�ne A 2 T[as follows:s � s x � x AB � A B �x:A:B � �x:A:B � [x:A:B.For
ontexts we de�ne: hi � hi �; x : A � � ; x : A.

{ For A 2 T[, we de�ne [A℄ to be fA0 2 T su
h that A0 � Ag.For
ontext, obviously: [� ℄ � f� 0 su
h that � 0 � �g.Lemma 311. If A;B 2 T then A[x := B℄ � A[x := B℄.2. Let A;B 2 T[and R 2 f!;!!g. If AR[B then A0R��B0 for all A0 2 [A℄and B0 2 [B℄.3. Let A;B 2 T and R 2 f!;!!;=g. If AR��B then AR[B.4. If A 2 T[then [A℄ 6= ;.5. Let A 2 T . If SN!�� (A) then SN![(A).6. Let A 2 T[. If SN![(A) then SN!�� (A0) for all A0 2 [A℄.Proof: 1. By indu
tion on A. 2. For ![, by indu
tion on A ![B. For !![,use indu
tion on the number of redu
tion steps. 3. For !�� , by indu
tion onA!�� B. For!!�� , use indu
tion on the number of redu
tion steps. For =�� ,take A =�� B and use Chur
h Rosser for the �-
ube to �nd A !!�� A1 andB !!�� A1 and then use the earlier statement for !!�� . 4. By indu
tion onA. (An A0
an be found by repla
ing ea
h [by �.) 5. Let A where SN!�� (A).Assume an in�nite path A ![A1 ![A2 : : : . By 4, let A0i 2 [Ai℄. Then, by 2,A!�� A01 !�� A02 : : :
ontradi
tion. 6. similar to 5, using 3. �Theorem 32 (Chur
h-Rosser Theorem) Let A;B1; B2 2 T[. If A !![B1and A!![B2 then there is a C su
h that B1 !![C and B2 !![C.Proof: By Lemma 31, [A℄, [B℄ and [B0℄ are all non empty. Let A0 2 [A℄, B01 2[B1℄ and B02 2 [B2℄. By Lemma 31, A0 !!�� B01 and A0 !!�� B02 and hen
eby Chur
h Rosser for the �-
ube, there is a C 0 su
h that B01 !!�� C 0 andB02 !!�� C 0. Now use Lemma 31 again to get that B1 � B01 !![C 0 andB2 � B02 !![C 0. �Corollary 33 Let A;B 2 T[. If A =[B then A0 =�� B0 for all A0 2 [A℄ andB0 2 [B℄.Lemmas 8..11 and 13..17 are formulated for the [-
ube in a similar way (repla
eall �s and �s by [and every ` by `[) and have similar proofs to the
ube. Forthe generation lemma, as now both ([1) and ([1) type terms of the form [x:A:B,we need to
ombine
lauses 3. and 4. of Lemma 12 depending on whether ([1) or([2) are used. The generation lemma
hanges as below, but its proof is similarto that of Lemma 12. Note that only one of the sub
lauses applies.Lemma 34 (Generation lemma for the [-
ube) The generation lemma forthe [-
ube has
lauses 1., 2., and 5., of Lemma 12, where `, =� and �x:A:B
hange to `[, =[and [x:A:B respe
tively and
lauses 3. and 4.
hange to:3+4. If � `[([x:A:B) : C then only one of the following holds:{ Either there is sort s and D su
h that � `[([x:A:D) : s; �; x:A `[B : D;and C =[([x:A:D);

{ Or there is (s1; s2) 2 R su
h that � `[A : s1, �; x:A `[B : s2 and C =[s2;The next theorem
onne
ts the typing judgements in the
ube with the �-
ube. A less general version of this theorem was stated (for the
ube and withouta proof) in a short note by Twan Laan (private
ommuni
ations) in whi
h healso stated De�nition 29, item 1 of De�nition 30 and the generation lemma.Theorem 35 1. If � `� A : B then � `[A : B.2. If � `[A : B then there exists � 0 2 [� ℄ su
h that � 0 is the only `�-legal
ontext of [� ℄ and there are unique A0 2 [A℄ and B0 2 [B℄ su
h that� 0 `� A0 : B0.Proof: 1. By indu
tion on � `� A : B. 2. By indu
tion on � `[A : B. (axiom)and (start) are easy. (weak): If �; x : C `[A : B
omes from � `[A : B and� `[C : s, then by IH, let � 0 be the unique legal
ontext in [� ℄. Let A0; B0and C 0 be the unique elements su
h that � 0 `� A0 : B0 and � 0 `� C 0 : s (byuni
ity of the legal
ontext, we write � 0 in both judgements). Hen
e, by (weak)� 0; x : C 0 `� A0 : B0. As for uni
ity, if � 00; x : C 00 `� A00 : B00 then by
ontextlemma � 00 `� C 00 : s0 where � 00 2 [� ℄ and C 00 2 [C℄. Hen
e � 00 � � 0 by uni
ityof legal � 0 2 [� ℄ and C 00 � C 0 by IH. As FV (A00; B00) = FV (A0; B0) � dom (� 0),hen
e � 0 `� A00 : B00 and hen
e by IH, A00 � A0 and B00 � B0.([2): Assume � `[[x:A:b : [x:A:B
omes from �; x : A `[b : B and � `[[x:A:B : s. By IH, � 0; x : A0 `� b0 : B0 and � 00 `� �x:A00 :B00 : s. (Note theuse of � instead of � be
ause it is easy to show that � 6`� �x:D:E : s.) It iseasy to show that B0 6� 2 and hen
e by
orre
tness of types, � 0; x : A0 `�B0 : s. Now, by generation lemma, � 00; x : A00 `� B00 : s and hen
e by IH,� 00 � � 0, A0 � A00 and B0 � B00. Hen
e, by (�) � 0 `� �x:A0 :B0 : �x:A0 :B0.(Note the use of � and � . It is easy to show that using `� it is not possibleto derive �x:D:e : �x:D:E, �x:D:e : �x:D:E or �x:D:e : �x:D:E.) As for uni
ity,Assume � 00 `� �x:A00 :B00 : �x:A00 :B00 where all elements belong to the right
lass. Obviously by uniqueness of legal
ontexts in the same
lass, � 00 � � 0. By
orre
tness of types, � 0 `� �x:A00 :B00 : s. By generation, � 0; x : A00 `� B00 : sand hen
e by IH, A00 � A0. As � 0; x : A0 `� B0 : s0, by IH again, B00 � B0.([1): Assume � `[[x:A:B : s2
omes from �; x : A `[B : s2 and � `[A : s1 for(s1; s2) rule. By IH, there is are unique legal
ontexts � 0 2 [� ℄ and � 00; x : A00 2[�; x : A℄ and there are unique terms A0 2 [A℄; B0 2 [B℄ su
h that � 0 `� A0 : s1and � 00; x : A00 `� B0 : s2. By
ontext lemma, � 00 `� A00 : s0 with � 00 2 [� ℄and A00 2 [A℄. Hen
e, by IH, � 00 � � 0 and A00 � A0. Hen
e, by (�) we have� 0 `� �x:A0 :B0 : s2 with �x:A0 :B0 2 [[x:A:B℄. As for uni
ity, if there are other
lass elements su
h that � 00 `� �x:A00 :B00 : C then by uni
ty of legal � 0 2 [� ℄,� 00 � � 0. As C 2 [s2℄ then C � s2. By generation lemma, � 0; x : A00 `� B00 : s2and � 0 `� A00 : s. Hen
e by IH, A00 � A0 and again by IH, B00 � B0.(
onv): Assume � `[A : C
omes from � `[A : B, � `[C : s and B =[C. ByIH, there is a unique legal
ontext � 0 2 [� ℄ and there are unique A0 2 [A℄; B0 2[B℄ and C 0 2 [C℄ su
h that � 0 `� A0 : B0 and � 0 `� C 0 : s. By Corollary 33,B0 =�� C 0. Hen
e, by (
onv), � 0 `� A0 : C 0. For uni
ity, assume � 0 `� A00 : C 00where A00 2 [A℄ and C 00 2 [C℄ (re
all � 0 is the only legal
ontext in [� ℄). By

orre
tness of types lemma, either C 00 � 2 or � 0 `� C 00 : s0. But C 00 6� 2 elseC 0 � 2 and � 0 `� 2 : s0 absurd. As � 0 `� C 00 : s0, � 0 `� C 0 : s, and C 00 2 [C℄,we get by IH, C 00 � C 0. Note that B0 6� 2, else, C 0 !!�� 2, and as � 0 `� C 0 : s,we get by subje
t redu
tion that � 0 `� 2 : s, absurd. Hen
e, as � 0 `� A0 : B0,we get by
orre
tness of types that � 0 `� B0 : s0. Now, as � 0 `� A00 : C 0,� 0 `� B0 : s0 and B0 =�� C 0, by (
onv) � 0 `� A00 : B0. Hen
e, by IH, A0 � A00.(app[): Assume � `[Fa : B[x := a℄
omes from � `[F : [x:A:B and � `[a : A.By IH, there is a unique legal � 0 2 [� ℄ and there are unique a0 2 [a℄; F 0 2[F ℄; A0; A00 2 [A℄; B0 2 [B℄ su
h that � 0 `� F 0 : �x:A0 :B0 and � 0 `� a0 : A00.(Note that we took � 0 `� F 0 : �x:A0 :B0 instead of � 0 `� F 0 : �x:A0 :B0 be
auseotherwise, we get � 0 `� �x:A0 :B0 : s
ontradi
ting Lemma 25.) By generationlemma on � 0 `� F 0 : �x:A0 :B0, � 0 `� A0 : s1 and � 0; x : A0 `� B0 : s2 for (s1; s2)rule. Hen
e, A00 6� 2 (else A � A0 � 2 and hen
e � 0 `� 2 : s
ontradi
tingLemma 25). Hen
e, by
orre
tness of types on � 0 `� a0 : A00 we get � 0 `� A00 : s.By IH, A00 � A0. Hen
e by (app[) � 0 `� F 0a0 : B0[x := a0℄. For uni
ity, assumethat � 0 `� F 00a00 : C. Then by generation, � 0 `� F 00 : �y:D:E, � 0 `� a00 : Dand C =�� E[y := a00℄. By IH, F 00 � F 0, a00 � a0, y � x, D � A0 and E � B0.Hen
e, C =�� B0[x := a0℄. But C 2 [B0[x := a0℄℄. Therefore, C � B0[x := a0℄. �Theorem 36 (Strong Normalisation) If A is `[-legal then SN![(A).Proof: As A is legal, then either � `[A : B or � `[B : A. If � `[B : A thenby Lemma 13 for the [-
ube, A � 2 (hen
e SN![(A)) or � `[A : s. Hen
e,we only prove the theorem for � `[A : B. By Theorem 35, there are unique� 0; A0 and B0 su
h that � 0 `� A0 : B0 and � 0 � � , A0 � A and B0 � B. ByTheorem 28, SN!�� (A0) and hen
e by Lemma 31 SN![(A0), i.e., SN![(A). �5 The [iÆ�p-
ubeSo far, we showed that the [-
ube
an be seen as a
osmeti
 version of the
ubeand that in the [-
ube, the
ube, and the �-
ube, the same terms
an be typed.It is obvious to ask next, whether extending the [-
ube with type instantiationswill fa
e the same fate as extending the ordinary
ube with type instantiations.We have not yet investigated this question, but we suspe
t that the answer isyes. Note that we showed the isomorphism of type judgements in the �-
ube and[-
ube by heavily relying on
orre
tness of types and subje
t redu
tion in the�-
ube. Subje
t redu
tion and
orre
tness of types do not hold in the �-
ube.We will devote this se
tion to a few extensions (in
luding type instantiation)to the [-
ube in the spirit of Automath. These extensions are as follows:1. Type instantiation We will follow [18℄ and repla
e (app[) by (new app[):(new app[) � ` F : ([x:A:B) � ` a : A� ` Fa : ([x:A:B)aThe main reason for this new rule is
ompatibility. The ([2) rule in Def-inition 29 may be regarded as the
ompatibility property for typing with

respe
t to abstra
tion. That is, b : B implies [x:A:b : [x:A:B. Compatibilityfor typing with respe
t to appli
ation is lost however. From the (app[) rule,F : [x:A:B implies Fa : B[x := a℄ instead of Fa : ([x:A:B)a.2. De�nitions (also known as abbreviations or let expressions) were heavilyused in Automath and have sin
e been exploited in fun
tional languages likeHaskell and ML and theorem provers like Coq. The idea is that if k o

ursin a text f , it may be pra
ti
al to introdu
e an abbreviation for k: (
f. [16℄):{ The representation of k may be long. This makes manipulations with fa time- and memory-
onsuming task, in parti
ular when k o

urs severaltimes in f . Abbreviating k
an make manipulations with f easier.{ The obje
t k may represent a stru
ture that is parti
ularly interesting.Abbreviating k opens the possibility to introdu
e a signi�
ant name fork. This makes the expression easier to understand for human beings.De�nition 23 explained how de�nitions were added to the �-
ube. We willfollow the same pro
ess when adding de�nitions in [-
ube (see De�nition 41).23. Expli
it substitution The substitution required by �-redu
tion in any imple-mentation of the �-
al
ulus must be implemented via smaller operations.Thus, there is a
on
eptual gap between the theory of the �-
al
ulus andits implementation. By representing substitutions in the stru
ture of termsand by providing step-wise redu
tions to propagate the substitutions, ex-pli
it substitution provides a number of bene�ts su
h as more
exibility inordering work and postponing unneeded work inde�nitely.To add expli
it substitutions to the [-
ube, we extend the set of terms T[with substitution terms of the form A[x B℄. We add substitution rules tosay how substitutions propagate through terms, and we repla
e B[x := A℄in the �-rule by B[x A℄ whi
h allows us to
ontrol the substitutions(see De�nition 40). Finally, we need to add a new typing rule (subst) whi
hexplains how terms of the form B[x A℄
an be typed (see De�nition 41).4. Parameters were heavily used in Automath and later studied in [19℄. The�-
al
ulus a

ommodates the higher level approa
h of fun
tions where fun
-tions are �rst
lass
itizens. However, in many pra
ti
al systems, the lowerlevel approa
h where fun
tions always o

ur with their arguments (parame-ters) and do not stand alone is ne
essary. The programming language ML forinstan
e, was not be based on Girard's system F (as it was not known thenwhether type
he
king in F is de
idable). Hen
e, terms like the polymorphi
identity Id = ��:�x:x : ��:� ! �
annot be typed in ML. However, termslike Id(�) = �x:x : �! �
an be typed in ML and hen
e, Id was introdu
edwith parameters, and never alone. 3[19℄ gives extensive reasons why parameters are needed in many areas oflogi
. Laan shows parameters have advantages on a large spe
trum ranging2 It is interesting to investigate whether the (def) rule
an be eliminated. The (def) rulewas used in [15, 16℄ be
ause without it, Subje
t redu
tion and Corre
tness of typesfail for the ordinary
ube with�-redu
tion and (new appl). We have not investigatedif Subje
t redu
tion and Corre
tness of types also fail for the [-
ube with (new app[).Nonetheless, we add (def) be
ause it provides smaller type derivations (see [16℄).3 Note that ML is impli
itly typed, i.e., one writes �x:B instead of �x:A:B

from expressivity, to de
idability, and to being able to relate di�erent systemstogether. The reader is referred to [19℄ for more details.We add parameters �a la Laan to our [-
ube. We will add parametri
 termsof the form
(b1; : : : ; bn) where the parameters are b1; : : : ; bn. We need toadd new typing rules to type these new terms. These
an be found in De�-nition 41. Just as we allow several kinds of �-
onstru
ts (via the set R) inthe
ube, we follow [19, 16℄ and allow several kinds of parametri

onstru
tsvia a set P ,
onsisting of tuples (s1; s2) where s1; s2 2 f�;2g. (s1; s2) 2 Pmeans that we allow parametri

onstru
ts
(b1; : : : ; bn) : A where b1; : : : ; bnhave types B1; : : : ; Bn of sort s1, and A is of type s2. If both (�; s2) 2 P and(2; s2) 2 P then
ombinations of parameters are possible.5.1 The extensionExtensions of the ordinary
ube with parameters alone, with de�nitions andtype instantiation alone, with expli
it substitutions alone, and with expli
it sub-stitutions with de�nitions have already taken pla
e in the literature. [16℄ gavean extension of the ordinary
ube with three of these
on
epts: de�nitions, typeinstantiation and expli
it substitutions, and another separate extension with pa-rameters alone. Here we give an extension with all these
on
epts in one
ube.In addition, our extension deals with a uni�ed binder [instead of the usualseparate � and � present. It is the hope that providing as many of the usefulextensions in one system, will result in a pra
ti
al framework that
ombines allthe advantages. Of
ourse it remains to be investigated how the [-
ube fares withea
h of these extensions separately. This is left for future work.De�nition 37 The set Ta of terms of the [iÆ�p-
ube is de�ned together withthe set LT of lists of terms as follows by:Ta ::= � j 2 j V j C(LT) j [V:Ta :Ta j TaTa j Ta[V Ta℄, and LT ::= ? j LT ; Ta.C (over whi
h
;
0; : : : range) is a set of
onstants disjoint from V .In Notation 2, the notions of fv(A), bv(A), impli
it substitution A[x := B℄and
ompatibility are extended to take into a

ount the new terms of the formA[x B℄ and
(b1; : : : ; bn). In parti
ular,if bi ![b0i then
(b1; : : : ; bi; : : : ; bn)![
(b1; : : : ; b0i; : : : ; bn) for 1 � i � n.fv(A[x B℄) = fv(A) n fxg) [fv(B)fv(
(a1; : : : ; an)) = Sni=1 fv(ai)(A[x B℄)[y := C℄ � (A[y := C℄)[x B[y := C℄℄,
(b1; : : : ; bn)[x:=A℄ �
(b1[x:=A℄; : : : ; bn[x:=A℄).In addition, Barendregt's Convention BC is extended to the new terms. E.g.,a term ([y:A:B)[y C℄ is renamed to ([x:A:B[y := x℄)[y C℄ where x is fresh.De�nition 38 [Constants of terms℄ De�ne
ons (A), the
onstants of A by:
ons (s) =
ons (x) = ;;
ons (
(a1; : : : ; an)) = f
g [Sni=1
ons (ai) ;
ons (AB) =
ons ([x:A:B) =
ons (A[x B℄) =
ons (A) [
ons (B) ;De�nition 39 [de
larations, de�nitions,
ontexts, �0℄

1. A variable de
laration d is of the form x : A. We de�ne var(d) � x, type(d) �A, fv(d) � fv(A) and
ons (d) �
ons (A).2. A
onstant de
laration d is of the form
(x1:B1; : : : ; xn:Bn):A where
 2 C.We de�ne type(d) � A and de
-
ons (d) �
.
 is
alled a primitive
onstant .x1; : : : ; xn are the parameters of d. We de�ne fv(d) to be fv(A)[fv(B1) � � �[fv(Bn) and
ons (d) to be
ons (A) [
ons (B1) � � � [
ons (Bn).3. A de�nition d is of the form x = B : A and de�nes x of type A to be B. Wede�ne var(d), type(d) and ab(d) to be x, A, and B respe
tively. We de�nefv(d) � fv(A) [fv(B) and
ons (d) to be
ons (A) [
ons (B).4. d; d0; d1; : : : range over de
larations (variables/
onstants) and de�nitions.5. A
ontext � is a (possibly empty)
on
atenation of de
larations and de�ni-tions d1; d2; � � � ; dn su
h that if i 6= j, then var(di) 6� var(dj) if di and dj areeither variable de
larations or de�nitions, and de
-
ons (di) 6� de
-
ons (dj)if di and dj are
onstant de
larations. We de�ne dom (�) = fvar(d) jd is a variable de
laration or a de�nition in �g.De�ne
ons (�) to be the set fde
-
ons (d) j d is a
onstant de
laration in �g.� -de
l = fd 2 � j d is a de
laration g and � -abb = fd 2 � j d is a de�nition g.We use �;�; � 0; �1; �2; : : : to range over
ontexts.6. We de�ne substitutions on
ontexts by: ;[x := A℄ � ;; (�; y : B)[x :=A℄ � � [x := A℄; y : B[x := A℄; (�;
(x1 : A1; : : : ; xn : An) : C)[x :=A℄ � � [x := A℄;
(x1 : A1[x := A℄; : : : ; xn : An[x := A℄) : C[x := A℄; and(�; y = B : C)[x := A℄ � � [x := A℄; y = B[x := A℄ : C[x := A℄.7. De�ne �0 between
ontexts as the least re
exive transitive relation satisfying:{ �;� �0 �; d;� for d a de
laration (variable/
onstant) or a de�nition.{ �; x : A;� �0 �; x = B : A;�De�nition 40 [a-Redu
tion℄ a-Redu
tion !a is de�ned as the union of ![0and !� whi
h are de�ned as the
ompatible
losures of, respe
tively:([x:A:B)C ![0 B[x C℄([y:A:B)[x C℄ !� [y:A[x C℄:B[x C℄(
(b1; : : : ; bn))[x C℄ !�
(b1[x C℄ : : : ; bn[x C℄)(AB)[x C℄ !� A[x C℄:B[x C℄x[x C℄ !� CA[x C℄ !� A if x 62 fv(A)De�nition 41 Let R be as in De�nition 6 and let (�; �) 2 P and P be a subsetof f(�; �); (�;2); (2; �); (2;2)g. The judgements that are derivable in �RP aredetermined by the typing rules for �R of De�nition 29 where the (
onv) and(app[) rules are repla
ed by (new
onv) and (new app[) and where six new rules(start-def), (weak-def), (subst), (def), (!C-weak) and (!C-app) are added (in thelast two rules, � � x1:B1; : : : ; xn:Bn and �i � x1:B1; : : : ; xi�1:Bi�1). The newand
hanged rules are given in Figure 4. In (new-
onv), � `a B def= B0 is de�nedon Ta as the smallest equivalen
e relation
losed under:{ If B =a B0 then � `a B def= B0{ If x = D : C 2 � and B0 arises from B by substituting one parti
ular freeo

urren
e of x in B by D then � `a B def= B0.

(start-def) � `a A : s � `a B : A�; x = B:A `a x : A x 62 dom (�)(weak-def) � `a A : B � `a C : s � `a D : C�; x = D:C `a A : B x 62 dom (�)(subst) �; x = B:A `a C : D� `a C[x B℄ : D[x := B℄(def) �; x = B:A `a C : D� `a ([x:A:C)B : D[x := B℄(new
onv) � `a A : B � `a B0 : s � `a B def= B0� `a A : B0(new app[) � `a F : ([x:A:B) � `a a : A� `a Fa : ([x:A:B)a(!C-weak) � `a b : B �;�i `a Bi : si �;� `a A : s�;
(�) : A `a b : B (si; s) 2 P ,
 62
ons (�)(!C-app) �1;
(�):A;�2 `a bi:Bi[xj :=bj ℄i�1j=1 (i = 1; : : : ; n)�1;
(�):A;�2 `a A : s (if n = 0)�1;
(�):A; �2 `a
(b1; : : : ; bn) : A[xj :=bj ℄nj=1Fig. 4. New/
hanged rules of the
ubeDe�nition 42 [Statements, judgements, legal terms and
ontexts℄ De�nition 4is extended to Ta and `a by
hanging everywhere in de�nition 4, T by Ta, ` by`a and by
hanging item 6 to the following:If d is a variable de
laration then � `a d i� � `a var(d) : type(d).Otherwise, if d is a de�nition then � `a d i� � `a var(d) : type(d) ^ � `aab(d) : type(d) ^ � `a var(d) def= ab(d). Otherwise,if d �
(x1 : B1; : : : ; xn : Bn):A and n = 0 then � `a d is de�ned as � `a
 : A.Else, if d �
(x1 : B1; : : : ; xn : Bn):A and n 6= 0 then � `a d is de�ned as� `a
(b1; : : : ; bn):A[xj :=bj ℄nj=1 whenever � `a bi : Bi[xj :=bj ℄i�1j=1 for 1 � i � n.5.2 Properties of the extensionThe [iÆ�p-
ube
an be seen as a union of the uni�ed binder versions of two
ubes:{ The e-
ube whi
h is the ordinary
ube extended with de�nitions,�-redu
tion,type instantiation and expli
it substitution ��def-
ubeof [16℄.{ The f -
ube whi
h is the ordinary
ube with parameters of [19, 16℄.Hen
e, its properties are formulated by a union of those of [16℄, and are provedby using the same methods (but in the single binder framework) or showing iso-morphi

orresponden
es between ordinary versions and uni�ed binder versionsas we did in Se
tion 4.Lemma 43 (Free variable Lemma for `a and !a)1. If d and d0 are di�erent de
larations or de�nitions (none of whi
h is a
on-stant de
laration) in a legal
ontext � , then var(d) 6� var(d0).

2. If d and d0 are di�erent
onstant de
larations in a legal
ontext � , thende
-
ons (d) 6� de
-
ons (d0).3. If � � �1; d; �2 and � `a B : C then{
ons (d) �
ons (�1),{ fv(d) � �dom (�1) if d is a variable de
laration or a de�nitiondom (�1; x1:B1; : : : ; xn:Bn) if d �
(x1:B1; : : : ; xn:Bn):A{ fv(B); fv(C) � dom (�) and
ons (B) ;
ons (C) �
ons (�).Lemma 44 (Substitution Lemma for `a and !a) Let d be x = D : C, �dbe �[x := D℄, Ad be A[x := D℄ and Bd be B[x := D℄. The following holds:1. If �; d;� `a A def= B, A and B are �; d;�-legal, then �;�d `a Ad def= Bd.2. If B is a �; d-legal term, then �; d `a B def= Bd.3. If �; d;� `a A : B or (�; x : C;� `a A : B and � `a D : C) then�;�d `a Ad : Bd.Corollary 45 Assume var(d) 62 fv(A) [fv(B) [fv(�). Then:� If �; d;� `a A : B then �;� `a A : B.� If �; d;� `a A def= B then �;� `a A def= B.Lemma 46 (Start Lemma for `a and !a) Let � be a `a-legal
ontext. Then� `a � : 2 and 8d 2 � [� `a d℄.Lemma 47 (Context Lemma for `a) Let �1; d; �2 be a `a-legal
ontext.{ If d is a variable de
laration then �1 `a type(d) : s for some sort s, �1; d `avar(d) : type(d).{ If d is a de�nition then �1 `a type(d) : s for some sort s, �1; d `a var(d) :type(d) and �1 `a ab(d) : type(d).{ If d �
(x1 : B1; : : : ; xn : Bn):A then for some sort s, �1; x1 : B1; : : : ; xn :Bn `a A : s and for some sorts si, for 1 � i � n where (si; s) 2 P , we have�1; x1 : B1; : : : ; xi�1 : Bi�1 `a Bi : si.Lemma 48 (Thinning Lemma for `a and !a) Let d be either a de
lara-tion or a de�nition and let �1; d; �2 be a legal
ontext.1. If �1; �2 `a A def= B, then �1; d; �2 `a A def= B.2. If �1; �2 `a A : B, then �1; d; �2 `a A : B.3. If d is x = D : C and �1; x : C; �2 `a A : B, then �1; d; �2 `a A : B.Lemma 49 (Generation Lemma for `a and !a)1. If � `a s : C then s � � and � `a C def= 2, furthermore if C 6� 2 then� `a C : s0 for some sort s0.2. If � `a x : A then for some d 2 � , x � var(d), � `a A def= type(d) and� `a A : s for some sort s.3. If � `a [x:A:B : C then{ Either there is D and sort s where �; x : A `a B : D, � `a [x:A:D : s,� `a [x:A:D def= C and if [x:A:D 6� C then � `a C : s0 for some sort s0.

{ Or for some sorts s1; s2: � `a A : s1, �; x : A;`a B : s2, (s1; s2) is arule, � `a C def= s2 and if s2 6� C then � `a C : s for some sort s.4. If � `a Fa : C, F 6� [x:A:B, then for some D;E: � `a a : D, � `a F :[x:D:E, � `a ([x:D:E)a def= C and if ([x:D:E)a 6� C then � `a C : s for somes.5. If � `a ([x:A:D)B : C, then �; x = B : A `a D : C.6. If � `a A[x B℄ : C, then for some term D we have �; x = B : D `a A : C.7. If � `a
(b1; : : : ; bn) : D then there exist s, � � x1 : B1; : : : ; xn : Bnand A su
h that D =� A[xj :=bj ℄nj=1, and � `a bi:Bi[xj :=bj ℄i�1j=1. Moreover,� � �1;
(�) : A;�2 and �1; � `a A : s. Finally, there are si 2 S su
h that�1; �i `a Bi : si and (si; s) 2 P .Lemma 50 (Corre
tness of types for `a and !a)If � `a A : B then (B � 2 or � `a B : s for some sort s).Lemma 51 (Subje
t Redu
tion for `a and !a)If � `a A : B and A!!� A0 then � `a A0 : B.Strong Normalisation
an be established by translations into
orresponding
ubeswhi
h are shown to be strongly normalising.Theorem 52 (Strong Normalisation) If A is `a-legal then SN!a(A).6 Con
lusionIn this paper, we used a unique binder �a la de Bruijn instead of the usual twobinders � and � . We studied the Barendregt
ube written in this notation andestablished an isomorphism between the two versions of the
ube. We then gaveintantiation power to types similar to that of terms. Armed by the loss of im-portant properties of the ordinary
ube with type instantiation, and
onsideringthe solutions to these problems, we de
ided not to study the
ube with uni�edbinders and type instantiation, but instead to move to a larger extensions whereother features like de�nitions, parameters and expli
it substitutions are added.The interesting next step is to assess the impli
ations of the
ollapse of both �and � into a unique binder. For example, does the uni�ed binder give a wellbehaved
ube with type instantiation alone or with expli
it substitutions alone?Type instantiation in the ordinary
ube fa
es the problem of loss of Subje
tredu
tion (
f. [18℄). Expli
it substitutions in the ordinary
ube also fa
es theproblem of loss of Subje
t redu
tion (
f. [4℄).Referen
es1. S. Abramsky, Dov M. Gabbay, and T.S.E. Maibaum, editors. Handbook of Logi
in Computer S
ien
e, Volume 2. Oxford University Press, 1992.2. H.P. Barendregt. The Lambda Cal
ulus: its Syntax and Semanti
s. Studies in Logi
and the Foundations of Mathemati
s 103. North-Holland. 1984.

3. H.P. Barendregt. Lambda
al
uli with types. In [1℄, pages 117{309. Oxford Uni-versity Press, 1992.4. R. Bloo. Preservation of Termination for Expli
it Substitutions. PhD thesis, Eind-hoven University of Te
hnology, 1997.5. N.G. de Bruijn. The mathemati
al language AUTOMATH, its usage and some ofits extensions. In M. Laudet, D. La
ombe, and M. S
huetzenberger, editors, Sym-posium on Automati
 Demonstration, pages 29{61, IRIA, Versailles, 1968. SpringerVerlag, Berlin, 1970. Le
ture Notes in Mathemati
s 125; also in [22℄, pages 73{100.6. A. Chur
h. A formulation of the simple theory of types. The Journal of Symboli
Logi
, 5:56{68, 1940.7. T. Coquand and G. Huet. The
al
ulus of
onstru
tions. Information and Com-putation, 76:95{120, 1988.8. G. Frege. Begri�ss
hrift, eine der arithmetis
hen na
hgebildete Formelspra
he desreinen Denkens. Nebert, Halle, 1879. Also in [12℄, pages 1{82.9. G. Frege. Funktion und Begri�, Vortrag gehalten in der Sitzung vom 9. Januarder Jenais
hen Gesells
haft f�ur Medi
in und Naturwissens
haft. Hermann Pohle,Jena, 1891. English translation in [21℄, pages 137{156.10. J.-Y. Girard. Interpr�etation fon
tionelle et �elimination des
oupures dansl'arithm�etique d'ordre sup�erieur. PhD thesis, Universit�e Paris VII, 1972.11. R. Harper, F. Honsell, and G. Plotkin. A framework for de�ning logi
s. In Pro-
eedings Se
ond Symposium on Logi
 in Computer S
ien
e, pages 194{204, 1987.12. J. van Heijenoort, editor. From Frege to G�odel: A Sour
e Book in Mathemati
alLogi
, 1879{1931. Harvard University Press, Cambridge, Massa
husetts, 1967.13. J.R. Hindley and J.P. Seldin. Introdu
tion to Combinators and �-
al
ulus, volume 1of London Mathemati
al So
iety Student Texts. Cambridge University Press, 1986.14. W.A. Howard. The formulas-as-types notion of
onstru
tion. In [25℄, pages 479{490, 1980.15. F. Kamareddine, R. Bloo, and R. Nederpelt. On �-
onversion in the �-
ube andthe
ombination with abbreviations. Annals of Pure and Applied Logi
, 97:27{45,1999.16. F. Kamareddine, T. Laan, and R. Nederpelt. Revisiting the notion of fun
tion.Logi
 and Algebrai
 Programming, to appear.17. F. Kamareddine, T. Laan, and R. Nederpelt. Types in logi
 and mathemati
sbefore 1940. Bulletin of Symboli
 Logi
, 8(2):185{245, 2002.18. F. Kamareddine and R.P. Nederpelt. Canoni
al typing and �-
onversion in theBarendregt Cube. Journal of Fun
tional Programming, 6(2):245{267, 1996.19. T. Laan. The Evolution of Type Theory in Logi
 and Mathemati
s. PhD thesis,Eindhoven University of Te
hnology, 1997.20. G. Longo and E. Moggi. Constru
tive natural dedu
tion and its modest interpre-tation. Te
hni
al Report CMU-CS-88-131, Carnegie Mellono University, 1988.21. B. M
Guinness, editor. Gottlob Frege: Colle
ted Papers on Mathemati
s, Logi
,and Philosophy. Basil Bla
kwell, Oxford, 1984.22. R.P. Nederpelt, J.H. Geuvers, and R.C. de Vrijer, editors. Sele
ted Papers onAutomath. Studies in Logi
 and the Foundations of Mathemati
s 133. North-Holland, Amsterdam, 1994.23. G.R. Renardel de Lavalette. Stri
tness analysis via abstra
t interpretation forre
ursively de�ned types. Information and Computation, 99:154{177, 1991.24. J.C. Reynolds. Towards a theory of type stru
ture, volume 19 of Le
ture Notes inComputer S
ien
e, pages 408{425. Springer, 1974.25. J.P. Seldin and J.R. Hindley, editors. To H.B. Curry: Essays on CombinatoryLogi
, Lambda Cal
ulus and Formalism. A
ademi
 Press, New York, 1980.

