On Functions and Types

Fairouz Kamareddine

School of Mathematical and Computer Sciences, Heriot-Watt Univ., Riccarton,
Edinburgh EH14 4AS, Scotland, fairouz@macs.hw.ac.uk

Abstract. The introduction of a general definition of function was key
to Frege’s formalisation of logic. Self-application of functions was at the
heart of Russell’s paradox. Russell introduced type theory in order to
control the application of functions and hence to avoid the paradox.
Since, different type systems have been introduced, each allowing differ-
ent functional power. Eight of these influential systems have been unified
in the so-called Barendregt cube. These systems use different binders for
functions and types and do not allow types to have the same instantia-
tion right as functions. De Bruijn did not always make these distinctions.
In this paper, we discuss the modern, as well as de Bruijn’s framework
of functions and types and study the cube in different frameworks.

1 Summary

In [19,17], a review of types and functions up to 1940 has been given. [19,17]
explain in detail the strong connection between functions and types. Since 1940,
many type systems have been developed each allowing different functional power.
In [3], an elegant cube which contains eight of these type systems has been given.

In the cube, both functions and types are created by abstractions: functions
are created via A where A..4.B stands for the function from A to B which given
a € A returns B[z := a] (i.e., B where a is substituted for z); and types are
created via II where II,.4.B stands for the type of the functions from A to
Ugea B[z := a] which given a € A return fa € B[z := a]. However, in the cube,
functions apply to arguments and (A;.4.B)a reduces to B[z := a] but types do
not apply to arguments in the sense that (II,.4.B)a is not allowed to reduce to
anything. Instead, if needed, one writes B[z := a] without ever implying that
this could have come from (I1,.4.B)a. In particular, the type of the application
of a function f of type II,.4.B to an argument a of type A in the cube is given
by B[z := a] instead of (II,.4.B)a.

De Bruijn in his famous Automath [22] allowed IT-reduction where (I1,.4.B)a
reduces to B[z := a]. He also used what we call type instantiation which is to
apply both functions and types to arguments so that if \;.4.b is of type I1,.4.B
and a is of type A then (\;.4.b)a has type (II.4.B)a. Sometimes, de Bruijn
unifed the A and I and wrote [z : A]B for both A;.4.B and II,.4.B.

Extending the cube with de Bruijn’s ideas (of II-reduction, type instantiation
and unification of binders) has only partially been studied. [18] showed that type
instantiation in the cube leads to the loss of subject reduction and correctness of

types. [18] did not investigate unifiying A and II. Laan (private communication)
rewrote the cube by replacing in the terms and rules, every A and II with a
unique binder 7. He did not investigate the extension with type instantiation.
In Section 2.2, we review the cube and its properties. In Section 2.3, we
review the IT-cube of [18] where both II-reduction and type instantiation are
present and explain why correctness of types and subject reduction are lost. In
Section 3, we present the m-cube where only II-reduction is present and show
that II-redexes do not occur in legal terms and that this 7-cube is isomorphic to
the cube in the sense that they both have the same typing judgements and type
the same terms. We show that the m-cube has all the properties of the cube. In
Section 4, we present the b-cube where both A and I are written as b. We show
that this b-cube is isomorphic to the m-cube and also satisfies all the properties.
The isomorphism between the type judgements of the b-cube, the 7-cube and
the cube shows that one gains nothing in by either unifying binders or allowing
IT-reduction. The use of one binder can be seen as a cosmetic operation no more.
Next, we move to a cube where binders are unified and where also the instan-
tiation behaviour of types and functions is allowed. In Section 5 we add to the
b-cube type instantiation. We also add eparameters which allow the treatment
of higher level as well as lower level functions within one framework, edefinitions
which enable us to abbreviate large expressions using identifiers and eexplicit
substitutions which enable us to control the evaluation of terms. The result will
be the b;5,p-cube with unified binders, instantiation on types, definitions, explicit
substitutions and parameters providing a flexible and expressive framework.

2 The formal machinery

Frege gave in [8], a precise formalisation of logic which depended on a very

general definition of function given via the Abstraction Principle:
“If in an expression, [...] a simple or a compound sign has one or more oc-

currences and if we regard that sign as replaceable in all or some of these
occurrences by something else (but everywhere by the same thing), then we
call the part that remains invariant in the expression a function, and the re-
placeable part the argument of the function.”

Frege’s general notion of function meant that functions can take a variety of

arguments and he was aware that types help avoid the paradoxes.
“ Now just as functions are fundamentally different from objects, so also func-

tions whose arguments are and must be functions are fundamentally different
from functions whose arguments are objects and cannot be anything else. I
call the latter first-level, the former second-level.”
Despite being cautious, his work faced a paradox discovered by Russell. To avoid
the paradoxes, Russell used ramified types which have a double hierarchy: one
of (simple) types (informally due Frege [9]) and one of orders. Ramified types
faced many problems and hence the orders of the types were left out.
Church’s combination of A-calculus with simple types gave A—, the basis for
most modern type systems. A— however is very restrictive. The hierarchy of the

simple theory of types used by A— leads to a duplication of work. For example,
numbers, booleans, the identity function have to be defined at every level. This
led to new (modern) type theories that allow more general notions of functions
(e.g, polymorphic' functions) which avoid these and other problems (cf. [3]).
Unlike simple types, modern types have similar features to functions:

— We can construct a type by abstraction. E.g., the type Il a...I1y.4.A of the
polymorphic identity function is obtained by taking any type A (we write A :
« for “A is a type”) and returning the type IT,.4.A4 of the identity function on
A. The polymorphic identity function is written as Aa.«.Ay: 4.y, the identity
function over A is Ay. 4.y and the type of M. Ay:a.y is I a.w. 01y 0. A.

— We can instantiate types. E.g., if A above is the set of natural numbers N
then we are concerned with the identity function over N whose type is I,. 4.4
where A is substituted by N (written (I1,.4.4)[4 :=N)), i.e., II,n.N.

De Bruijn [22] identifies the abstractions obtained by A and IT whereas other
modern type systems don’t. De Bruijn also, unlike others, gives II-terms the
same instantiation power as A-terms (i.e., Both (\;.4B)C and (I1,.4B)C reduce
to B[z := (). In this paper we study de Bruijn’s framework of types and
functions by unifying both abstractions (via b), and allowing type instantiation
within a set of eight type systems which form the Barendregt Cube.

2.1 Basic notions

Definition 1 [Terms]
— We define the set of terms 7 by: T ::= *|0|V|wy.7. T |TT where w € {\, II'}.
— We define the set of h-terms (or terms when no confusion occurs) 7, by:

T, =[OV by, T, | T, 7T,

Notation 2 We take V to be a set of variables over which, z, y, z, x1, etc.
range. We take capital letters A, B, a, b, etc. sometimes also indezxed by Arabic
numerals such as Ai, As, to range over terms. We use FV(A) resp. BV(A) to
denote the free resp. bound variables of A, and Alx := B] to denote the (implicit)
substitution of all the free occurrences of x in A by B. We assume familiarity
with the notion of compatibility. As usual, we take terms to be equivalent up
to variable renaming and let = denote syntactic equality. We also assume the
Barendregt convention (BC) where names of bound variables are always chosen
so that they differ from free ones in a term and where different abstraction op-
erators bind different variables. Hence, for example, we write for the ordinary
cube (my.a.y)x instead of (7g.a.x)x. (BC) will also be assumed for contexts and
typings (for each of the calculi presented) so that for example, if I' + 7,.4.B : C
then x will not occur in I'. We define subterms in the usual way.

Definition 3 [Reductions]
— Define §-reduction as the compatible closure of (A;.4.B)C —3 B[z := C].
— Define b-reduction as the compatible closure of (by.4.B)C' —, B[z := C].

! Polymorphism was already recognized by Russell as typical ambiguity.

— Define IT-reduction as the compatible closure of (II;.4.B)C — B[z := C].

— We define the union of reduction relations as usual. For example, SII-
reduction is union of =g and — 7.

— For each reduction relation r, —», is the reflexive transitive closure of —,
and =, is the equivalence closure of —,. We write —»,} to denote r-reduction
in one or more steps. We say that A is strongly normalising with respect to
—, (notation SN_, (A)) if there are no infinite —,-reductions starting at A.

Definition 4 [declarations, contexts]

1. A declaration d is of the form z : A. We define var(d) = z, type(d) = A and
Fv(d) = Fv(A). We let d, d’, di, etc. range over declarations.

2. A context I is a (possibly empty) concatenation of declarations dy, ds, - - - ,d,
such that if ¢ # j, then var(d;) # var(d;). We define boMm (I") = {var(d) |
d € I'}. The empty context is denoted throughout by () or simply by (. We
use I', I, A, etc. as meta-variables for contexts.

3. We define substitutions on contexts by: §[z := A] = 0, and (I',y : B)[z :=
Al =Tz := A],y: Blz := A].

Definition 5 [statements, judgements] Let I" be a context, A, B,C be terms.
Let F be one of the typing relations of Section 2

1. A: Biscalled a statement. A and B are its subject and predicate respectively.
I'- A:Bisajudgement,and ' - A: B :C denotes ' - A: BAI'- B : C.
I' is legal if AA,, By terms such that '+ A; : By.
Ais a I'-term if 3B; term such that [['+ A:B; VI By : Al
A is legal if AI1[A is a I'-term)].
If d is a declaration then I' F d iff I' - var(d) : type(d).

St W

2.2 Reviewing the Barendregt cube

In the Barendregt cube of [3], eight well-known type systems are presented in a
uniform way. The weakest system is Church’s simply typed A-calculus A— [6],
and the strongest system is the Calculus of Constructions AC [7]. The second
order A-calculus [10, 24] discovered independently by Girard and Reynolds fig-
ures on the cube between A— and AC. Moreover, via the Propositions-as-Types
principle (see [14]), many logical systems can be described in the cube.

In the cube, we have in addition to the usual A-abstraction, a type forming
operator II. Briefly, if A is a type, and B is a type possibly containing the
variable z, then II,.4.B is the type of functions that, given a term a : A, output
a value of type B[z := a]. Here a : A expresses that a is of type A. If does not
occur in B, then II,.4.B is the type of functions from A to B, written A — B.
To the IT-abstraction at the level of types corresponds A-abstraction at the level
of objects. Roughly speaking, if M is a term of type B (M and B possibly
containing z), then \,.4.M is a term of type II,.4.B. The cube has two sorts *
(the set of types) and O (the set of kinds) with * : O. If A : % (resp. A : O) we say
A is a type (resp. a kind). All systems of the cube have the same typing rules
but are distinguished from one another by the set R of pairs of sorts (s, s2)

allowed in the so-called type-formation or II-formation rule, (IT). Each system

of the cube has its own set R (which must contain (x, x)). A II-type can only be

formed in a specific system of the cube if rule (II) is satisfied for some (s1, s2)

in the set R of that system. The rule (II) is as follows:

I'FA:s I''zw:AbF B:ss
T'F (I1,.a.B) : 52

(H) (81,82) €ER

As there are only two sorts, * and O, and each set R must contain (x, x),
there are only eight possible different systems of the cube (see Figure 1). The
dependencies between these systems is depicted in Figure 2. Furthermore, the
systems in the cube are related to other type systems as is shown in the overview
of Figure 1 (see [3]). With the rule (IT), an important aspect of the cube is that it
provides a factorisation of the expressive power of the Calculus of Constructions
into three features: polymorphism, type constructors, and dependent types:

— (x,%) is the basic rule that forms types. All the cube systems have this rule.

— (O, %) is the rule that takes care of polymorphism. Girard’s System (also
known as A2) is the weakest system on the cube that features this rule.

— (0O, 0) takes care of type constructors. The system Aw is the weakest system
on the cube that features this rule.

— (%,0) takes care of term dependent types. The system AP is the weakest
system on the cube that features this rule.

Definition 6 [The cube] The cube has T as the set of terms and S-reduction
— 3 for the reduction relation. Let R C {(x,*), (x,0), (0, %), (0d,0)} such that
(*,%) € R. The type system AR describes how judgements I'-p A : B (or I' -
A: B, if it is clear which R is used) can be derived. I' F A : B states that A has
type B in context I'. The typing rules are given in Figure 3 (s, s1, 52 € {x,0}).

System [Related system|Names, references

A— AT simply typed A-calculus; [6,2,13] |(*, %)

A2 F 2nd order typed A-calculus; [10, 24]|(x, *)|(O,)

AP AuT-QE, LF |[[5,11] (%, %) (x,0)

AP2 120] (+,4)| @, 9)| (D)

Aw POLYREC (23]

Aw Fw [10] (%, %) (0,0)
APw (*:*) (*:D) (D7D)
AC CcC Calculus of Constructions; [7] (%, %) (3, %) |(x,D)|(3,0)

Fig. 1. Systems of the Barendregt cube

Below, we list the standard properties for the cube (see [3] for proofs).

Theorem 7 (Church-Rosser Theorem for 7 and —3) Let A,B1,B> € T.
If A =3 By and A —g B> then there is a C such that By =3 C and By —5 C.

Lemma 8 (Free Variable Lemma for - and —3)
1. Ifd and d' are different elements in a legal context I', then var(d) £ var(d').

A2 AP2

(0,%) € R
AW APl
‘ ?D’D) €ER
AP (+,O)€R

Fig. 2. The Barendregt cube

(axiom) (F=*:0
I'FA:s
e Er— r
(start) ToAFz A x & poM (I')
I'-A:B I'EC:s
(weak) T «CFA.D x & poM (I')
I'FA:s; I'z:AF B : s
I ! .
() TFaB s (s1,52) € R
) Iz:AFb: B I'FII,.o.B:s
' Xpab: IT..4.B
(appl) I'FF:II..».B I'Fa:A
PP I'+ Fa : Blz:=a]
I'-A:B I'+B':s B:[-;B'
(conv) -
I'-A:B

Fig. 3. Rules of the (Barendregt) cube

2. If'=11,d,I and I' - B : C then Fv(d) C DoM (I1) and ¥V(B),rv(C) C
powMm (I).

Lemma 9 (Start and Context Lemma for - and —g) If I is legal then
I'x:0andVd e I', ' - d. Moreover, if I' = I',d, [» then I F type(d) : s
for some sort s.

Lemma 10 (Substitution Lemma for - and —3) If Iz : A AF B : C
and I' = D : A then I'y Alz := D]+ Bz := D] : Clx := D].

Lemma 11 (Thinning Lemma for - and —3)
If I and A are legal, ' C A, and '+ A: B then AF A:B.

Lemma 12 (Generation Lemma for - and —3)

1. If I' b s : C then then s = x and C =g O, furthermore if C # O then
I'EC: s for some sort s'.

2. If I' - x : C then there is a sort s and B =3 C such that I' - B : s and
z:Bely;

3. If '+ (Ag:a.B) : C then there is sort s and D such that I' &= (II,.4.D) : s;
I'w:AF B :D; and C =g (II;.4.D);

4. If I' b (II,.4.B) : C then there is (s1,s2) € R such that ' + A : sy,
I''z:AF B : sy and C' =g s3;

5. If I''+ Fa : C then there are A,B such that ' - F : (II,.o.B), 'Fa: A
and C =g Blz:=a].

Lemma 13 (Correctness of types for - and —3)
If'-A:B then (B=0O or I' - B : s for some sort s).

Lemma 14 (Typability of subterms for - and —3)
If A is legal and B is a subterm of A, then B is legal.

Lemma 15 (Subject Reduction for F and —3)
If'A:Band A —»3 A" then ' - A’ : B.

Lemma 16 (Reduction preserves legal terms for - and —3)

1. If’'+A:B and B —»3 B' thenI' - A: B'.
2. If Ais a I'-term and A —»3 A’ then A’ is a I'-term.

Lemma 17 (Uniqueness of Types for - and —3)
IfF F A1 . B1 and I' + Ag . Bg and A1 =B AQ, then B1 =p BQ.

Theorem 18 (Strong Normalisation for - and —3)
If A is \--legal then SN_,;(A).

2.3 Reviewing the IT-cube: II-reduction and type instantiation

[18] provided the II-cube which extends the cube with both II-reduction and
type instantiation. In this section, we review the I7-cube and its properties.

Definition 19 [The II-cube] The IT-cube has 7 as the set of terms and SII-
reduction — g7 for the reduction relation. The typing rules of the II-cube are
those of Definition 6 but where =g in the (conv) rule is replaced by =g and
(appl) is replaced by (new appl):

I'tp F:(l;.4.B) I'tpa:A
I'ty Fa: (II,.4.B)a

(new appl)

We write 7 to denote type derivation in the II-cube.

[18] showed that Theorem 7 where one replaces every —»3 by —»3 II, and Lem-
mas 8..11 where one replaces every - by k7 hold for the IT-cube. [18] also showed
that Lemma 12 holds for the I7-cube if one replaces - by 7, =g everywhere by
=g and if in clause 5., B[z := a] is replaced by (II,.4.B)a. However, [18] showed
that both correctness of types Lemma 13 and subject reduction Lemma 15 fail
for the IT-cube. Finally, strong normalisation Theorem 18 holds for the IT-cube
where 77 and — g7 replace - and — g respectively.

In order to understand why correctness of types and subject reduction fail in
the I1-cube but not in the cube, let us reflect on the legal terms in both cubes.

Lemma 20 I't/O: A, 'Y AB:0O, '/ Apoa.B:s, and I't/ (II,.4.B)a : C.

PRroOF: For the first 3 statements, see [3]. For the fourth, assume I' & (II;.4.B)a :
C. By Lemma 12, 3A', B' such that I' - II,.4.B : I, :.B’. Again by Lemma 12,
A(s1, s2) € R such that IT,. 4..B' =3 s» contradicting Church Rosser. X

Lemma 21 I'/p O: A, I' g AB : O, I' /i1 Ap.a-B : s. However, terms of
the form (II,.4.B)a can be legal, but, I' t/ip (Ily.4.B)a : s.

PROOF: All the statements have the same proofs as those of Lemma 20. As for
a legal IT-redex, take for example z : * k7 (II;.,.2)z : *x and hence terms of the
form (II,.4.B)a can be legal. It is these new legal terms that led to the loss of
correctness of types of the IT-cube and hence of subject reduction because they
can not have a sort as a type. The proof is similar to that in Lemma 20. X

The fact that these new legal terms (II,.4.B)a cannot have type s, that they
are Z O and they are the types of other terms, lead to the loss of correctness of
types and hence of subject reduction.

Example 22 z : x,2 : 2 Fip (Ay.z.y)x @ (IIy..2)x hence loss of correctness of
types. Also, (Ay:z.y)x —gm & but z: %, 2 : 2 Vg o (I:..2)x.

[15] proposed the IIs-cube which has II-reduction and type instnatiation, but
where both correctness of types and subject reduction hold. The idea was to add
the so-called definitions to the I7-cube.

Definition 23 [The II5-cube| The IT5-cube has T as the set of terms and S11-
reduction —g;r for the reduction relation. The contexts of the Ils;-cube are
changed by allowing in addition to the usual declarations, definitions of the
form x = B : A which define z to be B and to have type A. The typing rules

of the II5-cube are those of Definition 19 but where =g in the (conv) rule is

replaced by I' Fp; B 4f B’ is the smallest equivalence relation closed under:

— If B=py B then 'y, BY B/

—Ifz =D :C €I and B’ arises from B by substituting one particular free

occurrence of x in B by D then I' k7, B e pr

and three new rules are added:

I'tp, A:s I'tp, B: A
e =B:Atp,xz: A
I'tp, A:B I'tp, C:s I'kp, D:C
I''e=D:Cty, A:B
I''e=B:AFp, C:D
I'tp, (m3:4.C)B : D[z := B]

(start-def) x ¢ poM (I)

(weak-def) x & powm (I)

(def)

Let us see now how the problem explained in Example 22 disappears:
First, the example is no longer a counterexample for correctness of types:
By (weak-def) z: %,z :z,y =x : z b, 2 : *.

Hence by (def) z: x,2 : 2z by (Iy:..2)2 : x[y = x] = *.

Second, the example is no longer a counterexample for subject reduction:

def
Aszixzizbgyeiz, 2z 5,02k, (Hy..2)e:xand z:%,0: 2 2 =

(IIy.,.z)x, we use (conv) to get: z : x,x : 2z b, @ : (y.;.2)x.

3 The m-cube: allowing IT-reduction only

We extend the cube with IT-reduction (without type instantiation). Unlike the
II-cube, we show that the w-cube has all the properties of the cube. However,
we will also show that the 7-cube is a trivial extension of the cube in the sense
that if '+, A: Bthen ' A: B and I, A and B are free of II-redexes.

Definition 24 [The m-cube] The m-cube has 7 as the set of terms and SII-
reduction =g for the reduction relation. The typing rules of the m-cube are
those of Definition 6 but where =3 in the (conv) rule is replaced by =gr.

We write | to denote type derivation in the m-cube.

As the typing relation does not play a role in the Church Rosser Theorem,
Church Rosser for the 7w-cube holds and has the same proof as that for the I7-
cube. Lemmas 8..11 where one replaces every + by F; hold for the m-cube and
have the same proofs as those for the ordinary cube. The generation lemma for
the w-cube (and its proof) is the same as that of Lemma 12 but where . and
=g replace F and =g. Also, Lemmas 13 and 14 where one replaces every F by
F. hold for the m-cube and have the same proofs as those for the ordinary cube.

Now, having Church Rosser and the generation, substitution and typability
of subterms lemmas for the 7-cube, we can establish the following lemma:

Lemma 25 I't/, O: A, I'lt/p AB: 0O, 't/ M\p.a.B:s, and 't/ (II,.4.B)a :
C. Moreover, if ' -, A : B then all of I, A and B are free of II-redexes.

PRrOOF: The proof of each statement except the last is similar to that in Lemma, 20.
For the last statement, use induction on I" -, A : B. We only show the (appl)
case. By induction F' and a and I are free of II-redexes. By this lemma, Fa
is also free of IT-redexes. By generation and substitution we can show that
I' -, B[z := a] : s and by Lemma 14 all subterms of B[z := a] are typable.
Hence, by this lemma, none of the subterms of B[z := a] can be a IT-redex. X

By this lemma, the proof of subject reduction is similar to that for the cube.

Lemma 26 (Subject Reduction for ., and —37)
IfI'+; A:B and A —-»gg A’ then I' -, A" : B.

PRrROOF: Similar to Lemma 15 as in the (appl) case, in the derivable statement
I+, Fa: B[z := a, it is not possible that F' be of the form II,.c.D. X

Lemmas 16 and 17 hold for the m-cube and have similar proofs to those of the
cube (change to =g and k). Next we show that II-redexes play no role.

Lemma 27 1. Let 't A:B. a) if A »pp A" then A -5 A'. b) A s A
then A —»g A'. ¢) if A= A' then A= A’
2.I'FA:Bifand only if '+, A: B.

PROOF:

1. a) By Lemma 25, A is free of II-redexes. b) By induction on A —»gg A'.
Assume A 7% A" =g A'. By subject reduction, I"F; A" : B and hence
by IH, A -7 A" and A" —5 A'. Hence, A =3 A'. ¢) By Church Rosser, 3C
such that A —»z C and A" =g C. By subject reduction, I' F, A" : B.
Hence by a), A -3 C and A" =3 C. Hence A =g A’.

2. One direction is trivial because every F-rule is also a F-rule (for (conv), note
that =3C=gar). For the other direction, use induction on I' -, A : B. We
only show the (conv) case. If '+, A : B' comes from I' -, A: B, 'k, B :s
and B’ =gi7 B. By a) B’ =3 B. Hence, by IH and (conv) I' - A : B. X

Theorem 28 (Strong Normalisation for -, and —g57) If A istr-legal then
SN, (A).

Proor: We only need to show that if I" -, A : B then SN, (4). By Lemma 27.2,
I' A : B and by Theorem 18 SN_, (A). If there is an infinite path A —51
Ay —pm As ... then by Lemma 27.1, there is an infinite path A —g A; —3
As Contradiction. X

4 The b-cube: Identifying A and IT in the cube

In Section 3, we showed that adding I7-reduction to the cube preserves all the
properties, but that this addition does not have any influence on the legal terms
or typing relation. That is, II-reduction never takes place on legal terms, and one
cannot type more terms than already possible. The typing relations of the cube
and the m-cube are equivalent. Although, we allowed II and A to behave alike
in reductions, in legal terms only A redexes exist and are active at reductions.
II-redexes never occur in legal terms, and hence never take place. What if we
rename both As and ITs using one unique name, say b? Definitely legal terms
will contain »-redexes, but do we keep all the desirable properties of the cube?

Our study is motivated by de Bruijn [22] who wrote [z : A]B for both A\;.4.B
and II,.4.B. We will replace all the As and ITs of Section 2.2 by b,.4.B which
represents de Bruijn’s [z : A]B. This variant of the ordinary cube will be shown
to be equivalent to the 7m-cube and to have all the desirable properties.

Definition 29 [The b-cube] The b-cube has 7, as the set of terms and b-reduction
—, for the reduction relation. The b-cube judgements are defined by changing in
Definition 6, every A and IT in the rules (IT), (A) and (appl) to b. We call these
new rules (b1), (b2) and (appb) respectively. When necessary, we write I' -, A : B
instead of I' - A : B.

In order to investigate the connection between the h-cube, and the m-cube and
cube. It is useful to define a translation function between their terms 7 and 7,:

Definition 30 — For A € T, we define A € 7, as follows: .
5=s T=x AB=AB Mua.B=I,.a.B=)53.B.

For contexts we define: () =() Iz:A=1T,z:A.

— For A € T, we define [A] to be {4’ € T such that 4" = A}.
For context, obviously: [I'] = {I" such that I"" =I'}.

Lemma 31

1. If A,B €T then Az := B] = A[z := B].

Let A,B € T, and R € {—,—»}. If AR,B then A'RgpB' for all A’ € [A]
and B' € [B].

Let A,B€T and R € {—,—»,=}. If ARg;; B then AR,B.

If A€, then [A] £ 0.

Let A€ T. If SN, (A) then SN_,, (A).

Let A€ T,. If SN_,,(A) then SN_,,, (A') for all A" € [A].

e

S S Lo

PRrOOF: 1. By induction on A. 2. For —,, by induction on A —, B. For —»,,
use induction on the number of reduction steps. 3. For =37, by induction on
A =g B. For =7, use induction on the number of reduction steps. For =gz,
take A =g B and use Church Rosser for the II-cube to find A =g A; and
B —»3m A; and then use the earlier statement for —»gp. 4. By induction on
A. (An A’ can be found by replacing each b by A.) 5. Let A where SN_,,, (A4).
Assume an infinite path A —, A; —, A>.... By 4, let A} € [A;]. Then, by 2,
A —pm A} —pm A ... contradiction. 6. similar to 5, using 3. X

Theorem 32 (Church-Rosser Theorem) Let A,B;,By € T,. If A —, By
and A —», Bs then there is a C such that By —», C and By —», C.

PROOF: By Lemma 31, [4], [B] and [B’] are all non empty. Let A’ € [A], B] €
[B1] and Bj € [Bs]. By Lemma 31, A’ —»3 B} and A" —»gp Bj and hence
by Church Rosser for the II-cube, there is a C’ such that B} —»gp C' and
B, —»sp C'. Now use Lemma 31 again to get that B; = B} —», C' and

By = Bé — C'. X

Corollary 33 Let A,B € T,. If A=, B then A" =g;; B for all A’ € [A] and
B' € [B].

Lemmas 8..11 and 13..17 are formulated for the >-cube in a similar way (replace
all ITs and As by b and every I by +,) and have similar proofs to the cube. For
the generation lemma, as now both (b1) and (b1) type terms of the form b,.4.B,
we need to combine clauses 3. and 4. of Lemma 12 depending on whether (b1) or
(b2) are used. The generation lemma changes as below, but its proof is similar
to that of Lemma 12. Note that only one of the subclauses applies.

Lemma 34 (Generation lemma for the »>-cube) The generation lemma for
the b-cube has clauses 1., 2., and 5., of Lemma 12, where -, =g and II;.4.B
change to F,, =, and b,.4.B respectively and clauses 8. and 4. change to:
3+4. If '+, (04:4.B) : C then only one of the following holds:
— FEither there is sort s and D such that I' +, (by.a.D) : s; I'Nx:A b+, B : D;
and C =b (bx:A.D);

— Or there is (s1,82) € R such that '+, A : sy, [x:A b, B :se and C =) sa;

The next theorem connects the typing judgements in the cube with the 7-
cube. A less general version of this theorem was stated (for the cube and without
a proof) in a short note by Twan Laan (private communications) in which he
also stated Definition 29, item 1 of Definition 30 and the generation lemma.

Theorem 35 1. If '+, A:B thenT F, A: B.

2.If I' v, A : B then there exists ' € [I'] such that I'' is the only ;-
legal context of [I'] and there are unique A' € [A] and B' € [B] such that
I A:B.

Proor: 1. By induction on I' -, A : B. 2. By induction on I' -, A : B. (axiom)
and (start) are easy. (weak): If Iz : C F, A: B comes from I' -, A : B and
I' b, C : s, then by IH, let I'" be the unique legal context in [I']. Let A', B’
and C’ be the unique elements such that I" F, A" : B' and I" -, C' : s (by
unicity of the legal context, we write I in both judgements). Hence, by (weak)
I'z:C' ;A" : B'. As for unicity, if I,z : C" - A" : B" then by context
lemma I F, C" : s where I'" € [I'] and C" € [C]. Hence I'" = I'"" by unicity
of legal I € [I'Tand C"" = C" by IH. As FV (A", B") = FV(A', B') C pom (I"),
hence I'" F, A" : B" and hence by IH, A” = A" and B" = B'.

(b2): Assume I' Fy by.a.b : bya.B comes from Iz : A+, b: B and I' k
bpa.B :s. By IH, Iz : A’ V' : B" and I'" +, II.on.B" : s. (Note the
use of II instead of A because it is easy to show that I' t/x A,.p.E : s.) It is
easy to show that B’ Z O and hence by correctness of types, I,z : A’ F,
B’ : s. Now, by generation lemma, I,z : A” +, B" : s and hence by IH,
" =1I" A = A" and B' = B". Hence, by (II) I" Fr Apiar.B' : IIp.pr.B'.
(Note the use of A and II. It is easy to show that using k, it is not possible
to derive II,.p.e : II,.p.E, II.p.e : A\y.p.E or Ap.p.e : A\p.p.E.) As for unicity,
Assume I'" F; Agarn.B" @ II,.4n.B" where all elements belong to the right
class. Obviously by uniqueness of legal contexts in the same class, I = I"'. By
correctness of types, I b, II,.4+.B" : s. By generation, I'',z : A” +, B" : s
and hence by IH, A" = A". As I,z : A’ -, B' : s', by IH again, B" = B'.

(b1): Assume I' by by.4.B : 5o comes from Iz : AF, B:syand I'H, A: s for
(s1,82) rule. By IH, there is are unique legal contexts ' € [['] and ",z : A" €
[I,z : A] and there are unique terms A’ € [A], B’ € [B] such that I -, A" : s;
and I,z : A" F, B’ : s5. By context lemma, I'" F; A" : s' with I'" € [I]
and A" € [A]. Hence, by IH, I'" = I'" and A” = A’. Hence, by (II) we have
I'vp I, 2.B" : so with IT,. 4/.B" € [0.4.B]. As for unicity, if there are other
class elements such that I b, IT,.4».B" : C then by unicty of legal I € [I'],
I'"=T1". As C € [ss] then C' = sy. By generation lemma, I'')z : A" -, B" : sy
and I'" -, A" : s. Hence by IH, A" = A’ and again by IH, B = B'.

(conv): Assume I'+, A: C comes from I'+F, A: B, '+, C': s and B =, C. By
IH, there is a unique legal context I"" € [I'] and there are unique A' € [A],B' €
[B] and C" € [C] such that [" Fr A" : B" and I'" -, C' : s. By Corollary 33,
B' =g C'. Hence, by (conv), I'" -, A’ : C'. For unicity, assume I F, A" : C"
where A" € [A] and C" € [C] (recall I'" is the only legal context in [I']). By

correctness of types lemma, either C"” = O or I F, C" : s'. But C" # O else
C'=0and I+, O:s abswrd. As "+, C" : ', "+, C' : s, and C" € [C],
we get by IH, C" = C". Note that B’ # O, else, C' —»g O, and as [-, C' : s,
we get by subject reduction that I F, O : s, absurd. Hence, as [" +, A" : B',
we get by correctness of types that I F, B’ : s’. Now, as I'" F, A" : C',
I't; B':s" and B' =357 C', by (conv) I'" . A" : B'. Hence, by IH, A’ = A".
(appb): Assume I' b, Fa: B[z := a] comes from I'F, F :by.4a.Band I' F, a: A.
By IH, there is a unique legal I € [I'] and there are unique o’ € [a],F' €
[F],A", A" € [A], B" € [B] such that I'" b, F' : II;.o.B" and I'" F; o' : A",
(Note that we took I"" - F' : II,. o/.B" instead of I'" b, F' : A\, a:.B" because
otherwise, we get I'" b, A;.4.B' : s contradicting Lemma 25.) By generation
lemmaon I, F' : [Iy.o.B', " A' sy and I, x: A' b, B’ @ s9 for (s1, 82)
rule. Hence, A" # O (else A = A’ = O and hence I'" -, O : s contradicting
Lemma 25). Hence, by correctness of typeson I . a' : A" we get I'" -, A" : s.
By IH, A" = A’. Hence by (app?) I b, F'a' : B'[x := a']. For unicity, assume
that I -, F"a" : C. Then by generation, I" b F" : II,,p.E, ' - " : D
and C =g Ely :=d"]. ByIH, F" = F',d" =d,y=2,D=A"and E = B'.
Hence, C =g B'[x := d']. But C € [B'[z := d']]. Therefore, C = B'[z :=a]. K

Theorem 36 (Strong Normalisation) If A is b,-legal then SN_, (A).

PROOF: As A is legal, then either '+, A: BorI'H, B: A.If I' -, B : A then
by Lemma 13 for the b-cube, A = O (hence SN_,,(4)) or I' b, A : s. Hence,
we only prove the theorem for I" -+, A : B. By Theorem 35, there are unique
I'" A" and B’ such that I" F, A’ : B'and I" = I', A’ = A and B' = B. By

Theorem 28, SN_,,, (4") and hence by Lemma 31 SN_, (4’), i.e., SN, (4). K

5 The b;s5p-cube

So far, we showed that the b-cube can be seen as a cosmetic version of the cube
and that in the b-cube, the cube, and the 7-cube, the same terms can be typed.
It is obvious to ask next, whether extending the b-cube with type instantiations
will face the same fate as extending the ordinary cube with type instantiations.
We have not yet investigated this question, but we suspect that the answer is
yes. Note that we showed the isomorphism of type judgements in the 7-cube and
b-cube by heavily relying on correctness of types and subject reduction in the
m-cube. Subject reduction and correctness of types do not hold in the IT-cube.

We will devote this section to a few extensions (including type instantiation)
to the b-cube in the spirit of Automath. These extensions are as follows:

1. Type instantiation We will follow [18] and replace (appb) by (new appb):

I'FF:(boa.B) Ita:A
I'Fa: (04.4.B)a

(new appb)

The main reason for this new rule is compatibility. The (b3) rule in Def-
inition 29 may be regarded as the compatibility property for typing with

respect to abstraction. That is, b : B implies by, 4.b : b,.4.B. Compatibility
for typing with respect to application is lost however. From the (appb) rule,
F :bg.4.B implies Fa : B[z := a] instead of Fa : (by.4.B)a.

2. Definitions (also known as abbreviations or let expressions) were heavily
used in Automath and have since been exploited in functional languages like
Haskell and ML and theorem provers like Coq. The idea is that if & occurs
in a text f, it may be practical to introduce an abbreviation for k: (cf. [16]):

— The representation of £ may be long. This makes manipulations with f
a time- and memory-consuming task, in particular when k occurs several
times in f. Abbreviating k& can make manipulations with f easier.

— The object k£ may represent a structure that is particularly interesting.
Abbreviating k opens the possibility to introduce a significant name for
k. This makes the expression easier to understand for human beings.

Definition 23 explained how definitions were added to the II-cube. We will
follow the same process when adding definitions in b-cube (see Definition 41).2

3. Ezplicit substitution The substitution required by f-reduction in any imple-
mentation of the A-calculus must be implemented via smaller operations.
Thus, there is a conceptual gap between the theory of the A-calculus and
its implementation. By representing substitutions in the structure of terms
and by providing step-wise reductions to propagate the substitutions, ex-
plicit substitution provides a number of benefits such as more flexibility in
ordering work and postponing unneeded work indefinitely.

To add explicit substitutions to the h-cube, we extend the set of terms 7,
with substitution terms of the form Az < B]. We add substitution rules to
say how substitutions propagate through terms, and we replace Bz := A]
in the B-rule by B[z « A] which allows us to control the substitutions
(see Definition 40). Finally, we need to add a new typing rule (subst) which
explains how terms of the form B[z + A] can be typed (see Definition 41).

4. Parameters were heavily used in Automath and later studied in [19]. The
A-calculus accommodates the higher level approach of functions where func-
tions are first class citizens. However, in many practical systems, the lower
level approach where functions always occur with their arguments (parame-
ters) and do not stand alone is necessary. The programming language ML for
instance, was not be based on Girard’s system F (as it was not known then
whether type checking in F' is decidable). Hence, terms like the polymorphic
identity Id = A\y.A\p.w : [I4.a — « cannot be typed in ML. However, terms
like Id(a) = A;.x : @ = « can be typed in ML and hence, Id was introduced
with parameters, and never alone. 3
[19] gives extensive reasons why parameters are needed in many areas of
logic. Laan shows parameters have advantages on a large spectrum ranging

2 Tt is interesting to investigate whether the (def) rule can be eliminated. The (def) rule
was used in [15, 16] because without it, Subject reduction and Correctness of types
fail for the ordinary cube with I7-reduction and (new appl). We have not investigated
if Subject reduction and Correctness of types also fail for the b-cube with (new appb).
Nonetheless, we add (def) because it provides smaller type derivations (see [16]).

3 Note that ML is implicitly typed, i.e., one writes \;.B instead of \z.a.B

from expressivity, to decidability, and to being able to relate different systems
together. The reader is referred to [19] for more details.

We add parameters & la Laan to our b-cube. We will add parametric terms
of the form ¢(by,...,b,) where the parameters are bi,...,b,. We need to
add new typing rules to type these new terms. These can be found in Defi-
nition 41. Just as we allow several kinds of IT-constructs (via the set R) in
the cube, we follow [19,16] and allow several kinds of parametric constructs
via a set P, consisting of tuples (si,s2) where s1,s9 € {*,0}. (s1,52) € P
means that we allow parametric constructs ¢(b,...,b,) : A where by,..., b,
have types B, ..., By of sort s1, and A is of type s2. If both (x,s2) € P and
(0, s2) € P then combinations of parameters are possible.

5.1 The extension

Extensions of the ordinary cube with parameters alone, with definitions and
type instantiation alone, with explicit substitutions alone, and with explicit sub-
stitutions with definitions have already taken place in the literature. [16] gave
an extension of the ordinary cube with three of these concepts: definitions, type
instantiation and explicit substitutions, and another separate extension with pa-
rameters alone. Here we give an extension with all these concepts in one cube.
In addition, our extension deals with a unified binder b instead of the usual
separate A and IT present. It is the hope that providing as many of the useful
extensions in one system, will result in a practical framework that combines all
the advantages. Of course it remains to be investigated how the b-cube fares with
each of these extensions separately. This is left for future work.

Definition 37 The set 7, of terms of the 2;5,,-cube is defined together with
the set Lo of lists of terms as follows by:
To = |0O|V|C(Ly) | by, Ta | TaTa | TalV < Tal, and Ly == & | Lo, Ta.

C (over which ¢,c,... range) is a set of constants disjoint from V.

In Notation 2, the notions of Fv(A4), BV(A), implicit substitution A[z := B]
and compatibility are extended to take into account the new terms of the form
Alz «+ B] and ¢(by, ..., by). In particular,

if b; —, b} then ¢(by,...,b;, ..., by) = c(by, ..., 0, ... by) for 1 <i < n.

FV(Alz < B]) = rv(4) \ {z}) UFV(B)

Fv(c(ay,...,a,)) = Ui, FV(as)

(Ale < B])ly i= C] = (Aly := C)l « Bly = C),

c(by, ..., bp)[x:=A] = e(bi[z:=A], ..., by[z:=A]).

In addition, Barendregt’s Convention BC is extended to the new terms. E.g.,
a term (9y.4.B)[y < C] is renamed to (by.4.Bly := z])[y < C] where z is fresh.

Definition 38 [Constants of terms] Define CONS (A4), the constants of A by:
CONS (s) = CONS (z) = 0; CONS (¢(ay, .. .,an)) = {c} UUJ;_; CONS (a;);
CONS (AB) = CONS (bg.4.B) = CONs (A[z < B]) = CONsS (A) U CONS (B);

Definition 39 [declarations, definitions, contexts, C']

1. A variable declaration d is of the form x : A. We define var(d) = z, type(d) =
A, rv(d) = rv(A) and CONS (d) = CONS (A).

2. A constant declaration d is of the form c¢(z1:By,...,x,:By):A where ¢ € C.
We define type(d) = A and dec-cons (d) = c. ¢ is called a primitive constant.
x1,.-.,%, are the parameters of d. We define rv(d) to be Fv(A)Urv(By) - - -U
FV(B,,) and CONS (d) to be CONS (A) U CONS (By) --- U CONS (By,).

3. A definition d is of the form x = B : A and defines z of type A to be B. We
define var(d), type(d) and ab(d) to be x, A, and B respectively. We define
Fv(d) = FV(A) UFV(B) and coNs (d) to be CONS (A) U CONS (B).

4. d,d',d;,... range over declarations (variables/constants) and definitions.

5. A context I' is a (possibly empty) concatenation of declarations and defini-
tions dy,ds, - - - ,d,, such that if i # j, then var(d;) # var(d;) if d; and d; are
either variable declarations or definitions, and dec-cons (d;) # dec-cons (d;)
it d; and d; are constant declarations. We define pom (I') = {var(d) |
d is a variable declaration or a definition in I'}.

Define CONS (I") to be the set {dec-cons (d) | d is a constant declaration in I'}.

I'"decl = {d € I' | d is a declaration } and I'-abb = {d € I' | d is a definition }.

We use I A, I, I, I, ... to range over contexts.

6. We define substitutions on contexts by: @[z := A] = 0; (INy : B)[z :=
Al = I'lx := Al,y : Blz = A]; (I,e(zr @ A1,...,xy Ap) @ O)z =
Al =Tz == Al,c(zy + Aifxr = A],...,zy : Aplz = A]) : Clz := A]; and
(Iy=B:C)z:=A] =TIz := A,y = B[z := 4] : C[z := A].

7. Define C' between contexts as the least reflexive transitive relation satisfying:

— IAC' IN,d, A for d a declaration (variable/constant) or a definition.
—TINz: AAC s=B:AA

Definition 40 [a-Reduction] a-Reduction —, is defined as the union of —
and —, which are defined as the compatible closures of, respectively:

(bmAB)C —>hr B[:U — C]

(0y:a.B)[x + C] —o Dy:Alec)-Blr < C]
(c(br,...,bn))[x < C] =4 c(bi]z < C]...,bp[z < C))
(AB)[z + C] =4 Alz + C].Blz + (]

zlz + C] =, C

Alx + C] =, A ifxgFv(A)

Definition 41 Let R be as in Definition 6 and let (x, %) € P and P be a subset
of {(*,x), (x,0), (0, x),(0,0)}. The judgements that are derivable in ARP are
determined by the typing rules for AR of Definition 29 where the (conv) and
(app?) rules are replaced by (new conv) and (new app») and where six new rules

— —
(start-def), (weak-def), (subst), (def), (C-weak) and (C-app) are added (in the
last two rules, A = x1:By,...,x,:By, and A; = x1:B1,...,x;—1:B;—1). The new

and changed rules are given in Figure 4. In (new-conv), I' -, B 4f B is defined

on 7, as the smallest equivalence relation closed under:
~IfB=,B then '+, BE B’
—Ifx =D :C € I' and B’ arises from B by substituting one particular free

occurrence of z in B by D then I' -, B df pr.

'+, A:s '+, B:A

(start-def) Te—BAr 2 4 x & poM (I)
(weak-def) FF“A:BFx:gZLFC:;:BF“D:C « ¢ pom (I)
I''e=B:A+,C:D

(subst) I'+, Clz < B]: D[z := B]
I'e=B:A+,C:D
f b
(def) T Fo (02:4.0)B : D[z = B]
', A:B ', B :s r'r.BYp

(new conv) v

'+, A:B

IFo F:(boia.B) IFoa: A

(new app?) I'ty Fa: (be:a.B)a

(a-weak) I'tab:B I{’c(Aj)'_aABll—asbl BF’ Ab, A:s (si,s) € P, c¢g cons(I')
I, c(A):A I bi:Bi[xj::bj];;ll (i=1,...,n)
I, e(A):A Ty Fq At s (if n=0)
I, c(A):A I o c(br, ..., by): A[xj::bj];’zl
Fig. 4. New/changed rules of the cube

(a-app)

Definition 42 [Statements, judgements, legal terms and contexts] Definition 4
is extended to 7, and -, by changing everywhere in definition 4, 7 by 7,, F by
k. and by changing item 6 to the following:

If d is a variable declaration then I' b, d iff I' I, var(d) : type(d).

Otherwise, if d is a definition then I' -, d iff I" F, var(d) : type(d) A" F,
ab(d) : type(d) A ' b, var(d) def ab(d). Otherwise,

ifd=c(zy: By,...,xn : By):A and n =0 then I' b, d is defined as I' I, ¢ : A.
Else, if d = ¢(zy : By,...,z, : By):A and n # 0 then I' F, d is defined as
I'tqc(by,. .. by):Alzj:=b;]7_; whenever I' -, b; : Bi[xj::bj];;ll for 1 <i<mn.

5.2 Properties of the extension

The b;s,p-cube can be seen as a union of the unified binder versions of two cubes:

— The e-cube which is the ordinary cube extended with definitions, I7-reduction,
type instantiation and explicit substitution I7oDEF-cubeof [16].
— The f-cube which is the ordinary cube with parameters of [19, 16].

Hence, its properties are formulated by a union of those of [16], and are proved
by using the same methods (but in the single binder framework) or showing iso-
morphic correspondences between ordinary versions and unified binder versions
as we did in Section 4.

Lemma 43 (Free variable Lemma for -, and —,)

1. If d and d' are different declarations or definitions (none of which is a con-
stant declaration) in a legal context I', then var(d) # var(d').

2. If d and d' are different constant declarations in a legal context I', then
dec-cons (d) Z dec-cons (d').
3 IfI'=11,d,I5 and I' -, B : C then
— cons (d) C cons (1),
— wv(d) C poM (I) if d is a variable declaration or a definition
— | bOM (Fl,éUliBl, - ,ZL“nZBn) Zf d= C(ZL“lZBl, . ,ZL“nZBn)ZA
— FV(B),Fv(C) C boM (I') and cONS(B),coNs (C) C cons (I').

Lemma 44 (Substitution Lemma for -, and —,) Letdbex =D : C, Ay
be Alx := D], A4 be Az := D] and By be B[z := D). The following holds:

1. Frd A, A B, A and B are I',d, A-legal, then T, Ay o Aqg S B,.

2. If B is a I',d-legal term, then I';d+, B def By.

3 If Id, A+, A: Bor Iz : CCAF, A:Band I' b, D : C) then

F,Ad '_a Adth.

Corollary 45 Assume var(d) € FV(A) UFV(B) UFV(A). Then:
o IfId) Aty A: B then ')A+, A: B.

o IfId, Aty AY B then LA, A Y B.

Lemma 46 (Start Lemma for F, and —,) Let I’ be at4-legal context. Then
I'tyx:0andVd € I'I" -, d].

Lemma 47 (Context Lemma for ,) Let I'1,d, I be a t4-legal context.

— If d is a variable declaration then Iy -, type(d) : s for some sort s, I[1,d b,
var(d) : type(d).

— If d is a definition then I -, type(d) : s for some sort s, I'l,d b, var(d) :
type(d) and I F, ab(d) : type(d).

— Ifd=c(xy : By,...,z, : By):A then for some sort s, I'1,x1 : By,...,xy, :
B, k. A s and for some sorts s;, for 1 <i <n where (s;,s) € P, we have
Fl,iL“l ZBl,...,iL“i,1 ZBl',l '_a Bz LS.

Lemma 48 (Thinning Lemma for -, and —,) Let d be either a declara-

tion or a definition and let I'1,d, Is be a legal context.

1. N, Db AY B, then I, d, I Fo A% B.

2. IfIN, Iy +, A: B, then I[1,d, I3+, A: B.
3 Ifdisx=D:C and I,z :C, Iy, A: B, then I'N,d, I+, A: B.

Lemma 49 (Generation Lemma for +, and —,)

1. IfI'tys:Cthens=xand ' -, C def O, furthermore if C Z O then

I'tk, C: s for some sort s'.
2. If I't, x : A then for somed € I', x = var(d), I' +, A def type(d) and
I', A:s for some sort s.
3. If I' by bp.n.B: C then
— Either there is D and sort s where I'yx : A+, B : D, I' by bp.a.D : s,

I'Fy bpa.D e o and if bpon.D £ C then I' by C : s’ for some sort s'.

— Or for some sorts s1,82: I' o A s1, I'Nw : Ajby B @ s2, (s1,82) is a
rule, I' -, C def sy and if so Z C then I' b, C : s for some sort s.

4. If 'y Fa : C, F £ b,.4.B, then for some D,E: ' by a: D, 'ty F :
ben-E, 'y (be.n-E)a e o and if (be.p-E)a Z C then '+, C : s for some
s.

5 If 'ty (04:a.D)B:C, then It =B: AF, D :C.

IfI' +, Alz < B]: C, then for some term D we have Iy x =B : D+, A:C.

7. If I' o c(by,...,by) = D then there exist s, A = x1 : Bi,...,x, : By
and A such that D =5 Alz;:=b;]}_,, and I' -, bi:B,-[:vj::bj];;ll. Moreover,
I'="I,¢(AQ): A I and IN,AF, A:s. Finally, there are s; € S such that
Fl,Ai Fo. B; :s; and (SZ,S) € P.

R

Lemma 50 (Correctness of types for -, and —,)
If'+, A: B then (B=0O or I'+, B : s for some sort s).

Lemma 51 (Subject Reduction for -, and —,)
IfI'tb A:Band A —»3 A then I'+, A’ : B.

Strong Normalisation can be established by translations into corresponding cubes
which are shown to be strongly normalising.

Theorem 52 (Strong Normalisation) If A is F,-legal then SN_, (A).

6 Conclusion

In this paper, we used a unique binder & la de Bruijn instead of the usual two
binders A and II. We studied the Barendregt cube written in this notation and
established an isomorphism between the two versions of the cube. We then gave
intantiation power to types similar to that of terms. Armed by the loss of im-
portant properties of the ordinary cube with type instantiation, and considering
the solutions to these problems, we decided not to study the cube with unified
binders and type instantiation, but instead to move to a larger extensions where
other features like definitions, parameters and explicit substitutions are added.
The interesting next step is to assess the implications of the collapse of both A
and I into a unique binder. For example, does the unified binder give a well
behaved cube with type instantiation alone or with explicit substitutions alone?
Type instantiation in the ordinary cube faces the problem of loss of Subject
reduction (cf. [18]). Explicit substitutions in the ordinary cube also faces the
problem of loss of Subject reduction (cf. [4]).

References

1. S. Abramsky, Dov M. Gabbay, and T.S.E. Maibaum, editors. Handbook of Logic
in Computer Science, Volume 2. Oxford University Press, 1992.

2. H.P. Barendregt. The Lambda Calculus: its Syntaz and Semantics. Studies in Logic
and the Foundations of Mathematics 103. North-Holland. 1984.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

H.P. Barendregt. Lambda calculi with types. In [1], pages 117-309. Oxford Uni-
versity Press, 1992.

. R. Bloo. Preservation of Termination for Ezplicit Substitutions. PhD thesis, Eind-

hoven University of Technology, 1997.

N.G. de Bruijn. The mathematical language AUTOMATH, its usage and some of
its extensions. In M. Laudet, D. Lacombe, and M. Schuetzenberger, editors, Sym-
posium on Automatic Demonstration, pages 29-61, IRIA, Versailles, 1968. Springer
Verlag, Berlin, 1970. Lecture Notes in Mathematics 125; also in [22], pages 73-100.
A. Church. A formulation of the simple theory of types. The Journal of Symbolic
Logic, 5:56-68, 1940.

T. Coquand and G. Huet. The calculus of constructions. Information and Com-
putation, 76:95-120, 1988.

G. Frege. Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des
reinen Denkens. Nebert, Halle, 1879. Also in [12], pages 1-82.

G. Frege. Funktion und Begriff, Vortrag gehalten in der Sitzung vom 9. Januar
der Jenaischen Gesellschaft fir Medicin und Naturwissenschaft. Hermann Pohle,
Jena, 1891. English translation in [21], pages 137-156.

J.-Y. Girard. Interprétation fonctionelle et élimination des coupures dans
Uarithmétique d’ordre supérieur. PhD thesis, Université Paris VII, 1972.

R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. In Pro-
ceedings Second Symposium on Logic in Computer Science, pages 194-204, 1987.
J. van Heijenoort, editor. From Frege to Gddel: A Source Book in Mathematical
Logic, 1879-1931. Harvard University Press, Cambridge, Massachusetts, 1967.
J.R. Hindley and J.P. Seldin. Introduction to Combinators and A-calculus, volume 1
of London Mathematical Society Student Texts. Cambridge University Press, 1986.
W.A. Howard. The formulas-as-types notion of construction. In [25], pages 479—
490, 1980.

F. Kamareddine, R. Bloo, and R. Nederpelt. On m-conversion in the A-cube and
the combination with abbreviations. Annals of Pure and Applied Logic, 97:27-45,
1999.

F. Kamareddine, T. Laan, and R. Nederpelt. Revisiting the notion of function.
Logic and Algebraic Programming, to appear.

F. Kamareddine, T. Laan, and R. Nederpelt. Types in logic and mathematics
before 1940. Bulletin of Symbolic Logic, 8(2):185-245, 2002.

F. Kamareddine and R.P. Nederpelt. Canonical typing and IT-conversion in the
Barendregt Cube. Journal of Functional Programming, 6(2):245-267, 1996.

T. Laan. The Ewvolution of Type Theory in Logic and Mathematics. PhD thesis,
Eindhoven University of Technology, 1997.

G. Longo and E. Moggi. Constructive natural deduction and its modest interpre-
tation. Technical Report CMU-CS-88-131, Carnegie Mellono University, 1988.

B. McGuinness, editor. Gottlob Frege: Collected Papers on Mathematics, Logic,
and Philosophy. Basil Blackwell, Oxford, 1984.

R.P. Nederpelt, J.H. Geuvers, and R.C. de Vrijer, editors. Selected Papers on
Automath. Studies in Logic and the Foundations of Mathematics 133. North-
Holland, Amsterdam, 1994.

G.R. Renardel de Lavalette. Strictness analysis via abstract interpretation for
recursively defined types. Information and Computation, 99:154-177, 1991.

J.C. Reynolds. Towards a theory of type structure, volume 19 of Lecture Notes in
Computer Science, pages 408-425. Springer, 1974.

J.P. Seldin and J.R. Hindley, editors. To H.B. Curry: Essays on Combinatory
Logic, Lambda Calculus and Formalism. Academic Press, New York, 1980.

