
On Funtions and TypesFairouz KamareddineShool of Mathematial and Computer Sienes, Heriot-Watt Univ., Riarton,Edinburgh EH14 4AS, Sotland, fairouz�mas.hw.a.ukAbstrat. The introdution of a general de�nition of funtion was keyto Frege's formalisation of logi. Self-appliation of funtions was at theheart of Russell's paradox. Russell introdued type theory in order toontrol the appliation of funtions and hene to avoid the paradox.Sine, di�erent type systems have been introdued, eah allowing di�er-ent funtional power. Eight of these inuential systems have been uni�edin the so-alled Barendregt ube. These systems use di�erent binders forfuntions and types and do not allow types to have the same instantia-tion right as funtions. De Bruijn did not always make these distintions.In this paper, we disuss the modern, as well as de Bruijn's frameworkof funtions and types and study the ube in di�erent frameworks.1 SummaryIn [19, 17℄, a review of types and funtions up to 1940 has been given. [19, 17℄explain in detail the strong onnetion between funtions and types. Sine 1940,many type systems have been developed eah allowing di�erent funtional power.In [3℄, an elegant ube whih ontains eight of these type systems has been given.In the ube, both funtions and types are reated by abstrations: funtionsare reated via � where �x:A:B stands for the funtion from A to B whih givena 2 A returns B[x := a℄ (i.e., B where a is substituted for x); and types arereated via � where �x:A:B stands for the type of the funtions from A to[a2AB[x := a℄ whih given a 2 A return fa 2 B[x := a℄. However, in the ube,funtions apply to arguments and (�x:A:B)a redues to B[x := a℄ but types donot apply to arguments in the sense that (�x:A:B)a is not allowed to redue toanything. Instead, if needed, one writes B[x := a℄ without ever implying thatthis ould have ome from (�x:A:B)a. In partiular, the type of the appliationof a funtion f of type �x:A:B to an argument a of type A in the ube is givenby B[x := a℄ instead of (�x:A:B)a.De Bruijn in his famous Automath [22℄ allowed�-redution where (�x:A:B)aredues to B[x := a℄. He also used what we all type instantiation whih is toapply both funtions and types to arguments so that if �x:A:b is of type �x:A:Band a is of type A then (�x:A:b)a has type (�x:A:B)a. Sometimes, de Bruijnunifed the � and � and wrote [x : A℄B for both �x:A:B and �x:A:B.Extending the ube with de Bruijn's ideas (of �-redution, type instantiationand uni�ation of binders) has only partially been studied. [18℄ showed that typeinstantiation in the ube leads to the loss of subjet redution and orretness of

types. [18℄ did not investigate uni�ying � and � . Laan (private ommuniation)rewrote the ube by replaing in the terms and rules, every � and � with aunique binder �. He did not investigate the extension with type instantiation.In Setion 2.2, we review the ube and its properties. In Setion 2.3, wereview the �-ube of [18℄ where both �-redution and type instantiation arepresent and explain why orretness of types and subjet redution are lost. InSetion 3, we present the �-ube where only �-redution is present and showthat �-redexes do not our in legal terms and that this �-ube is isomorphi tothe ube in the sense that they both have the same typing judgements and typethe same terms. We show that the �-ube has all the properties of the ube. InSetion 4, we present the [-ube where both � and � are written as [. We showthat this [-ube is isomorphi to the �-ube and also satis�es all the properties.The isomorphism between the type judgements of the [-ube, the �-ube andthe ube shows that one gains nothing in by either unifying binders or allowing�-redution. The use of one binder an be seen as a osmeti operation no more.Next, we move to a ube where binders are uni�ed and where also the instan-tiation behaviour of types and funtions is allowed. In Setion 5 we add to the[-ube type instantiation. We also add �parameters whih allow the treatmentof higher level as well as lower level funtions within one framework, �de�nitionswhih enable us to abbreviate large expressions using identi�ers and �expliitsubstitutions whih enable us to ontrol the evaluation of terms. The result willbe the [iÆ�p-ube with uni�ed binders, instantiation on types, de�nitions, expliitsubstitutions and parameters providing a exible and expressive framework.2 The formal mahineryFrege gave in [8℄, a preise formalisation of logi whih depended on a verygeneral de�nition of funtion given via the Abstration Priniple:\If in an expression, [. . . ℄ a simple or a ompound sign has one or more o-urrenes and if we regard that sign as replaeable in all or some of theseourrenes by something else (but everywhere by the same thing), then weall the part that remains invariant in the expression a funtion, and the re-plaeable part the argument of the funtion."Frege's general notion of funtion meant that funtions an take a variety ofarguments and he was aware that types help avoid the paradoxes.\ Now just as funtions are fundamentally di�erent from objets, so also fun-tions whose arguments are and must be funtions are fundamentally di�erentfrom funtions whose arguments are objets and annot be anything else. Iall the latter �rst-level, the former seond-level."Despite being autious, his work faed a paradox disovered by Russell. To avoidthe paradoxes, Russell used rami�ed types whih have a double hierarhy: oneof (simple) types (informally due Frege [9℄) and one of orders. Rami�ed typesfaed many problems and hene the orders of the types were left out.Churh's ombination of �-alulus with simple types gave �!, the basis formost modern type systems. �! however is very restritive. The hierarhy of the

simple theory of types used by �! leads to a dupliation of work. For example,numbers, booleans, the identity funtion have to be de�ned at every level. Thisled to new (modern) type theories that allow more general notions of funtions(e.g, polymorphi1 funtions) whih avoid these and other problems (f. [3℄).Unlike simple types, modern types have similar features to funtions:{ We an onstrut a type by abstration. E.g., the type �A:�:�y:A:A of thepolymorphi identity funtion is obtained by taking any type A (we write A :� for \A is a type") and returning the type �y:A:A of the identity funtion onA. The polymorphi identity funtion is written as �A:�:�y:A:y, the identityfuntion over A is �y:A:y and the type of �A:�:�y:A:y is �A:�:�y:A:A.{ We an instantiate types. E.g., if A above is the set of natural numbers Nthen we are onerned with the identity funtion over N whose type is�y:A:Awhere A is substituted by N (written (�y:A:A)[A := N℄), i.e., �y:N:N.De Bruijn [22℄ identi�es the abstrations obtained by � and � whereas othermodern type systems don't. De Bruijn also, unlike others, gives �-terms thesame instantiation power as �-terms (i.e., Both (�x:AB)C and (�x:AB)C redueto B[x := C℄). In this paper we study de Bruijn's framework of types andfuntions by unifying both abstrations (via [), and allowing type instantiationwithin a set of eight type systems whih form the Barendregt Cube.2.1 Basi notionsDe�nition 1 [Terms℄{ We de�ne the set of terms T by: T ::= �j2jV j�V:T :T jT T where � 2 f�;�g.{ We de�ne the set of [-terms (or terms when no onfusion ours) T[by:T[::= � j 2 j V j [V:T[:T[j T[T[.Notation 2 We take V to be a set of variables over whih, x, y, z, x1, et.range. We take apital letters A, B, a, b, et. sometimes also indexed by Arabinumerals suh as A1, A2, to range over terms. We use fv(A) resp. bv(A) todenote the free resp. bound variables of A, and A[x := B℄ to denote the (impliit)substitution of all the free ourrenes of x in A by B. We assume familiaritywith the notion of ompatibility. As usual, we take terms to be equivalent upto variable renaming and let � denote syntati equality. We also assume theBarendregt onvention (BC) where names of bound variables are always hosenso that they di�er from free ones in a term and where di�erent abstration op-erators bind di�erent variables. Hene, for example, we write for the ordinaryube (�y:A:y)x instead of (�x:A:x)x. (BC) will also be assumed for ontexts andtypings (for eah of the aluli presented) so that for example, if � ` �x:A:B : Cthen x will not our in � . We de�ne subterms in the usual way.De�nition 3 [Redutions℄{ De�ne �-redution as the ompatible losure of (�x:A:B)C !� B[x := C℄.{ De�ne [-redution as the ompatible losure of ([x:A:B)C ![B[x := C℄.1 Polymorphism was already reognized by Russell as typial ambiguity.

{ De�ne �-redution as the ompatible losure of (�x:A:B)C !� B[x := C℄.{ We de�ne the union of redution relations as usual. For example, ��-redution is union of !� and !� .{ For eah redution relation r, !!r is the reexive transitive losure of !rand =r is the equivalene losure of!r. We write!!+r to denote r-redutionin one or more steps. We say that A is strongly normalising with respet to!r (notation SN!r (A)) if there are no in�nite !r-redutions starting at A.De�nition 4 [delarations, ontexts℄1. A delaration d is of the form x : A. We de�ne var(d) � x, type(d) � A andfv(d) � fv(A). We let d, d0, d1, et. range over delarations.2. A ontext � is a (possibly empty) onatenation of delarations d1; d2; � � � ; dnsuh that if i 6= j, then var(di) 6� var(dj). We de�ne dom (�) = fvar(d) jd 2 �g. The empty ontext is denoted throughout by hi or simply by ;. Weuse � , �1, �, et. as meta-variables for ontexts.3. We de�ne substitutions on ontexts by: ;[x := A℄ � ;, and (�; y : B)[x :=A℄ � � [x := A℄; y : B[x := A℄.De�nition 5 [statements, judgements℄ Let � be a ontext, A;B;C be terms.Let ` be one of the typing relations of Setion 21. A : B is alled a statement. A and B are its subjet and prediate respetively.2. � ` A : B is a judgement, and � ` A : B : C denotes � ` A : B^� ` B : C.3. � is legal if 9A1; B1 terms suh that � ` A1 : B1.4. A is a � -term if 9B1 term suh that [� ` A : B1 _ � ` B1 : A℄.5. A is legal if 9�1[A is a �1-term℄.6. If d is a delaration then � ` d i� � ` var(d) : type(d).2.2 Reviewing the Barendregt ubeIn the Barendregt ube of [3℄, eight well-known type systems are presented in auniform way. The weakest system is Churh's simply typed �-alulus �! [6℄,and the strongest system is the Calulus of Construtions �C [7℄. The seondorder �-alulus [10, 24℄ disovered independently by Girard and Reynolds �g-ures on the ube between �! and �C. Moreover, via the Propositions-as-Typespriniple (see [14℄), many logial systems an be desribed in the ube.In the ube, we have in addition to the usual �-abstration, a type formingoperator � . Briey, if A is a type, and B is a type possibly ontaining thevariable x, then �x:A:B is the type of funtions that, given a term a : A, outputa value of type B[x := a℄. Here a : A expresses that a is of type A. If x does notour in B, then �x:A:B is the type of funtions from A to B, written A! B.To the �-abstration at the level of types orresponds �-abstration at the levelof objets. Roughly speaking, if M is a term of type B (M and B possiblyontaining x), then �x:A:M is a term of type �x:A:B. The ube has two sorts �(the set of types) and 2 (the set of kinds) with � : 2. If A : � (resp. A : 2) we sayA is a type (resp. a kind). All systems of the ube have the same typing rulesbut are distinguished from one another by the set R of pairs of sorts (s1; s2)

allowed in the so-alled type-formation or �-formation rule, (�). Eah systemof the ube has its own set R (whih must ontain (�; �)). A �-type an only beformed in a spei� system of the ube if rule (�) is satis�ed for some (s1; s2)in the set R of that system. The rule (�) is as follows:(�) � ` A : s1 �; x:A ` B : s2� ` (�x:A:B) : s2 (s1; s2) 2 RAs there are only two sorts, � and 2, and eah set R must ontain (�; �),there are only eight possible di�erent systems of the ube (see Figure 1). Thedependenies between these systems is depited in Figure 2. Furthermore, thesystems in the ube are related to other type systems as is shown in the overviewof Figure 1 (see [3℄). With the rule (�), an important aspet of the ube is that itprovides a fatorisation of the expressive power of the Calulus of Construtionsinto three features: polymorphism, type onstrutors, and dependent types:{ (�; �) is the basi rule that forms types. All the ube systems have this rule.{ (2; �) is the rule that takes are of polymorphism. Girard's System (alsoknown as �2) is the weakest system on the ube that features this rule.{ (2;2) takes are of type onstrutors. The system �! is the weakest systemon the ube that features this rule.{ (�;2) takes are of term dependent types. The system �P is the weakestsystem on the ube that features this rule.De�nition 6 [The ube℄ The ube has T as the set of terms and �-redution!� for the redution relation. Let R � f(�; �); (�;2); (2; �); (2;2)g suh that(�; �) 2 R. The type system �R desribes how judgements � `R A : B (or � `A : B, if it is lear whih R is used) an be derived. � ` A : B states that A hastype B in ontext � . The typing rules are given in Figure 3 (s; s1; s2 2 f�;2g).System Related system Names, referenes�! �� simply typed �-alulus; [6, 2, 13℄ (�; �)�2 F 2nd order typed �-alulus; [10, 24℄ (�; �) (2; �)�P aut-QE, LF [5, 11℄ (�; �) (�;2)�P2 [20℄ (�; �) (2; �) (�;2)�! POLYREC [23℄�! F! [10℄ (�; �) (2;2)�P! (�; �) (�;2) (2;2)�C CC Calulus of Construtions; [7℄ (�; �) (2; �) (�;2) (2;2)Fig. 1. Systems of the Barendregt ubeBelow, we list the standard properties for the ube (see [3℄ for proofs).Theorem 7 (Churh-Rosser Theorem for T and !�) Let A;B1; B2 2 T .If A!!� B1 and A!!� B2 then there is a C suh that B1 !!� C and B2 !!� C.Lemma 8 (Free Variable Lemma for ` and !�)1. If d and d0 are di�erent elements in a legal ontext � , then var(d) 6� var(d0).

�����������������! �P�2 �P2�! �P!�C�!p ppp p ppp
-6��1 (�;2) 2 R(2;2) 2 R(2; �) 2 RFig. 2. The Barendregt ube(axiom) hi ` � : 2(start) � ` A : s�; x:A ` x : A x 62 dom (�)(weak) � ` A : B � ` C : s�; x:C ` A : B x 62 dom (�)(�) � ` A : s1 �; x:A ` B : s2� ` �x:A:B : s2 (s1; s2) 2 R(�) �; x:A ` b : B � ` �x:A:B : s� ` �x:A:b : �x:A:B(appl) � ` F : �x:A:B � ` a : A� ` Fa : B[x:=a℄(onv) � ` A : B � ` B0 : s B =� B0� ` A : B0Fig. 3. Rules of the (Barendregt) ube2. If � � �1; d; �2 and � ` B : C then fv(d) � dom (�1) and fv(B); fv(C) �dom (�).Lemma 9 (Start and Context Lemma for ` and !�) If � is legal then� ` � : 2 and 8d 2 � , � ` d. Moreover, if � � �1; d; �2 then �1 ` type(d) : sfor some sort s.Lemma 10 (Substitution Lemma for ` and !�) If �; x : A;� ` B : Cand � ` D : A then �;�[x := D℄ ` B[x := D℄ : C[x := D℄.Lemma 11 (Thinning Lemma for ` and !�)If � and � are legal, � � �, and � ` A : B then � ` A : B.Lemma 12 (Generation Lemma for ` and !�)1. If � ` s : C then then s � � and C =� 2, furthermore if C 6� 2 then� ` C : s0 for some sort s0.2. If � ` x : C then there is a sort s and B =� C suh that � ` B : s andx:B 2 � ;3. If � ` (�x:A:B) : C then there is sort s and D suh that � ` (�x:A:D) : s;�; x:A ` B : D; and C =� (�x:A:D);4. If � ` (�x:A:B) : C then there is (s1; s2) 2 R suh that � ` A : s1,�; x:A ` B : s2 and C =� s2;5. If � ` Fa : C then there are A;B suh that � ` F : (�x:A:B), � ` a : Aand C =� B[x:=a℄.

Lemma 13 (Corretness of types for ` and !�)If � ` A : B then (B � 2 or � ` B : s for some sort s).Lemma 14 (Typability of subterms for ` and !�)If A is legal and B is a subterm of A, then B is legal.Lemma 15 (Subjet Redution for ` and !�)If � ` A : B and A!!� A0 then � ` A0 : B.Lemma 16 (Redution preserves legal terms for ` and !�)1. If � ` A : B and B !!� B0 then � ` A : B0.2. If A is a � -term and A!!� A0 then A0 is a � -term.Lemma 17 (Uniqueness of Types for ` and !�)If � ` A1 : B1 and � ` A2 : B2 and A1 =� A2, then B1 =� B2.Theorem 18 (Strong Normalisation for ` and !�)If A is `-legal then SN!� (A).2.3 Reviewing the �-ube: �-redution and type instantiation[18℄ provided the �-ube whih extends the ube with both �-redution andtype instantiation. In this setion, we review the �-ube and its properties.De�nition 19 [The �-ube℄ The �-ube has T as the set of terms and ��-redution !�� for the redution relation. The typing rules of the �-ube arethose of De�nition 6 but where =� in the (onv) rule is replaed by =�� and(appl) is replaed by (new appl):(new appl) � `� F : (�x:A:B) � `� a : A� `� Fa : (�x:A:B)aWe write `� to denote type derivation in the �-ube.[18℄ showed that Theorem 7 where one replaes every !!� by !!� � , and Lem-mas 8..11 where one replaes every ` by `� hold for the �-ube. [18℄ also showedthat Lemma 12 holds for the �-ube if one replaes ` by `� , =� everywhere by=�� and if in lause 5., B[x := a℄ is replaed by (�x:A:B)a. However, [18℄ showedthat both orretness of types Lemma 13 and subjet redution Lemma 15 failfor the �-ube. Finally, strong normalisation Theorem 18 holds for the �-ubewhere `� and !�� replae ` and !� respetively.In order to understand why orretness of types and subjet redution fail inthe �-ube but not in the ube, let us reet on the legal terms in both ubes.Lemma 20 � 6` 2 : A, � 6` AB : 2, � 6` �x:A:B : s, and � 6` (�x:A:B)a : C.Proof: For the �rst 3 statements, see [3℄. For the fourth, assume � ` (�x:A:B)a :C. By Lemma 12, 9A0; B0 suh that � ` �x:A:B : �y:A0 :B0. Again by Lemma 12,9(s1; s2) 2 R suh that �y:A0 :B0 =� s2 ontraditing Churh Rosser. �

Lemma 21 � 6`� 2 : A, � 6`� AB : 2, � 6`� �x:A:B : s. However, terms ofthe form (�x:A:B)a an be legal, but, � 6`� (�x:A:B)a : s.Proof: All the statements have the same proofs as those of Lemma 20. As fora legal �-redex, take for example z : � `� (�x:z:z)z : �� and hene terms of theform (�x:A:B)a an be legal. It is these new legal terms that led to the loss oforretness of types of the �-ube and hene of subjet redution beause theyan not have a sort as a type. The proof is similar to that in Lemma 20. �The fat that these new legal terms (�x:A:B)a annot have type s, that theyare 6� 2 and they are the types of other terms, lead to the loss of orretness oftypes and hene of subjet redution.Example 22 z : �; x : z `� (�y:z:y)x : (�y:z:z)x hene loss of orretness oftypes. Also, (�y:z:y)x!�� x but z : �; x : z 6`� x : (�y:z:z)x.[15℄ proposed the �Æ-ube whih has �-redution and type instnatiation, butwhere both orretness of types and subjet redution hold. The idea was to addthe so-alled de�nitions to the �-ube.De�nition 23 [The �Æ-ube℄ The �Æ-ube has T as the set of terms and ��-redution !�� for the redution relation. The ontexts of the �Æ-ube arehanged by allowing in addition to the usual delarations, de�nitions of theform x = B : A whih de�ne x to be B and to have type A. The typing rulesof the �Æ-ube are those of De�nition 19 but where =�� in the (onv) rule isreplaed by � `�Æ B def= B0 is the smallest equivalene relation losed under:{ If B =�� B0 then � `�Æ B def= B0{ If x = D : C 2 � and B0 arises from B by substituting one partiular freeourrene of x in B by D then � `�Æ B def= B0and three new rules are added:(start-def) � `�Æ A : s � `�Æ B : A�; x = B:A `�Æ x : A x 62 dom (�)(weak-def) � `�Æ A : B � `�Æ C : s � `�Æ D : C�; x = D:C `�Æ A : B x 62 dom (�)(def) �; x = B:A `�Æ C : D� `�Æ (�x:A:C)B : D[x := B℄Let us see now how the problem explained in Example 22 disappears:First, the example is no longer a ounterexample for orretness of types:By (weak-def) z : �; x : z; y = x : z `�Æ z : �.Hene by (def) z : �; x : z `�Æ (�y:z:z)x : �[y := x℄ � �.Seond, the example is no longer a ounterexample for subjet redution:As z : �; x : z `�Æ x : z, z : �; x : z `�Æ (�y:z:z)x : � and z : �; x : z `�Æ z def=(�y:z:z)x, we use (onv) to get: z : �; x : z `�Æ x : (�y:z:z)x.

3 The �-ube: allowing �-redution onlyWe extend the ube with �-redution (without type instantiation). Unlike the�-ube, we show that the �-ube has all the properties of the ube. However,we will also show that the �-ube is a trivial extension of the ube in the sensethat if � `� A : B then � ` A : B and �;A and B are free of �-redexes.De�nition 24 [The �-ube℄ The �-ube has T as the set of terms and ��-redution !�� for the redution relation. The typing rules of the �-ube arethose of De�nition 6 but where =� in the (onv) rule is replaed by =�� .We write `� to denote type derivation in the �-ube.As the typing relation does not play a role in the Churh Rosser Theorem,Churh Rosser for the �-ube holds and has the same proof as that for the �-ube. Lemmas 8..11 where one replaes every ` by `� hold for the �-ube andhave the same proofs as those for the ordinary ube. The generation lemma forthe �-ube (and its proof) is the same as that of Lemma 12 but where `� and=�� replae ` and =�. Also, Lemmas 13 and 14 where one replaes every ` by`� hold for the �-ube and have the same proofs as those for the ordinary ube.Now, having Churh Rosser and the generation, substitution and typabilityof subterms lemmas for the �-ube, we an establish the following lemma:Lemma 25 � 6`� 2 : A, � 6`� AB : 2, � 6`� �x:A:B : s, and � 6`� (�x:A:B)a :C. Moreover, if � `� A : B then all of �;A and B are free of �-redexes.Proof:The proof of eah statement exept the last is similar to that in Lemma 20.For the last statement, use indution on � `� A : B. We only show the (appl)ase. By indution F and a and � are free of �-redexes. By this lemma, Fais also free of �-redexes. By generation and substitution we an show that� `� B[x := a℄ : s and by Lemma 14 all subterms of B[x := a℄ are typable.Hene, by this lemma, none of the subterms of B[x := a℄ an be a �-redex. �By this lemma, the proof of subjet redution is similar to that for the ube.Lemma 26 (Subjet Redution for `� and !��)If � `� A : B and A!!�� A0 then � `� A0 : B.Proof: Similar to Lemma 15 as in the (appl) ase, in the derivable statement� `� Fa : B[x := a℄, it is not possible that F be of the form �y:C :D. �Lemmas 16 and 17 hold for the �-ube and have similar proofs to those of theube (hange to !!�� and `�). Next we show that �-redexes play no role.Lemma 27 1. Let � `� A : B. a) if A!�� A0 then A!� A0. b) A!!�� A0then A!!� A0.) if A =�� A0 then A =� A02. � ` A : B if and only if � `� A : B.Proof:

1. a) By Lemma 25, A is free of �-redexes. b) By indution on A !!�� A0.Assume A!!n�� A00 !�� A0. By subjet redution, � `� A00 : B and heneby IH, A!!n� A00 and A00 !� A0. Hene, A!� A0.) By Churh Rosser, 9Csuh that A !!�� C and A0 !!�� C. By subjet redution, � `� A0 : B.Hene by a), A!!� C and A0 !!� C. Hene A =� A0.2. One diretion is trivial beause every `-rule is also a `�-rule (for (onv), notethat =��=��). For the other diretion, use indution on � `� A : B. Weonly show the (onv) ase. If � `� A : B0 omes from � `� A : B, � `� B : sand B0 =�� B. By a) B0 =� B. Hene, by IH and (onv) � ` A : B. �Theorem 28 (Strong Normalisation for `� and !��) If A is `�-legal thenSN!�� (A).Proof:We only need to show that if � `� A : B then SN!�� (A). By Lemma 27.2,� ` A : B and by Theorem 18 SN!� (A). If there is an in�nite path A !��A1 !�� A2 : : : then by Lemma 27.1, there is an in�nite path A !� A1 !�A2 : : : . Contradition. �4 The [-ube: Identifying � and � in the ubeIn Setion 3, we showed that adding �-redution to the ube preserves all theproperties, but that this addition does not have any inuene on the legal termsor typing relation. That is, �-redution never takes plae on legal terms, and oneannot type more terms than already possible. The typing relations of the ubeand the �-ube are equivalent. Although, we allowed � and � to behave alikein redutions, in legal terms only � redexes exist and are ative at redutions.�-redexes never our in legal terms, and hene never take plae. What if werename both �s and �s using one unique name, say [? De�nitely legal termswill ontain [-redexes, but do we keep all the desirable properties of the ube?Our study is motivated by de Bruijn [22℄ who wrote [x : A℄B for both �x:A:Band �x:A:B. We will replae all the �s and �s of Setion 2.2 by [x:A:B whihrepresents de Bruijn's [x : A℄B. This variant of the ordinary ube will be shownto be equivalent to the �-ube and to have all the desirable properties.De�nition 29 [The [-ube℄ The [-ube has T[as the set of terms and [-redution![for the redution relation. The [-ube judgements are de�ned by hanging inDe�nition 6, every � and � in the rules (�), (�) and (appl) to [. We all thesenew rules ([1), ([2) and (app[) respetively. When neessary, we write � `[A : Binstead of � ` A : B.In order to investigate the onnetion between the [-ube, and the �-ube andube. It is useful to de�ne a translation funtion between their terms T and T[:De�nition 30 { For A 2 T , we de�ne A 2 T[as follows:s � s x � x AB � A B �x:A:B � �x:A:B � [x:A:B.For ontexts we de�ne: hi � hi �; x : A � � ; x : A.

{ For A 2 T[, we de�ne [A℄ to be fA0 2 T suh that A0 � Ag.For ontext, obviously: [� ℄ � f� 0 suh that � 0 � �g.Lemma 311. If A;B 2 T then A[x := B℄ � A[x := B℄.2. Let A;B 2 T[and R 2 f!;!!g. If AR[B then A0R��B0 for all A0 2 [A℄and B0 2 [B℄.3. Let A;B 2 T and R 2 f!;!!;=g. If AR��B then AR[B.4. If A 2 T[then [A℄ 6= ;.5. Let A 2 T . If SN!�� (A) then SN![(A).6. Let A 2 T[. If SN![(A) then SN!�� (A0) for all A0 2 [A℄.Proof: 1. By indution on A. 2. For ![, by indution on A ![B. For !![,use indution on the number of redution steps. 3. For !�� , by indution onA!�� B. For!!�� , use indution on the number of redution steps. For =�� ,take A =�� B and use Churh Rosser for the �-ube to �nd A !!�� A1 andB !!�� A1 and then use the earlier statement for !!�� . 4. By indution onA. (An A0 an be found by replaing eah [by �.) 5. Let A where SN!�� (A).Assume an in�nite path A ![A1 ![A2 : : : . By 4, let A0i 2 [Ai℄. Then, by 2,A!�� A01 !�� A02 : : : ontradition. 6. similar to 5, using 3. �Theorem 32 (Churh-Rosser Theorem) Let A;B1; B2 2 T[. If A !![B1and A!![B2 then there is a C suh that B1 !![C and B2 !![C.Proof: By Lemma 31, [A℄, [B℄ and [B0℄ are all non empty. Let A0 2 [A℄, B01 2[B1℄ and B02 2 [B2℄. By Lemma 31, A0 !!�� B01 and A0 !!�� B02 and heneby Churh Rosser for the �-ube, there is a C 0 suh that B01 !!�� C 0 andB02 !!�� C 0. Now use Lemma 31 again to get that B1 � B01 !![C 0 andB2 � B02 !![C 0. �Corollary 33 Let A;B 2 T[. If A =[B then A0 =�� B0 for all A0 2 [A℄ andB0 2 [B℄.Lemmas 8..11 and 13..17 are formulated for the [-ube in a similar way (replaeall �s and �s by [and every ` by `[) and have similar proofs to the ube. Forthe generation lemma, as now both ([1) and ([1) type terms of the form [x:A:B,we need to ombine lauses 3. and 4. of Lemma 12 depending on whether ([1) or([2) are used. The generation lemma hanges as below, but its proof is similarto that of Lemma 12. Note that only one of the sublauses applies.Lemma 34 (Generation lemma for the [-ube) The generation lemma forthe [-ube has lauses 1., 2., and 5., of Lemma 12, where `, =� and �x:A:Bhange to `[, =[and [x:A:B respetively and lauses 3. and 4. hange to:3+4. If � `[([x:A:B) : C then only one of the following holds:{ Either there is sort s and D suh that � `[([x:A:D) : s; �; x:A `[B : D;and C =[([x:A:D);

{ Or there is (s1; s2) 2 R suh that � `[A : s1, �; x:A `[B : s2 and C =[s2;The next theorem onnets the typing judgements in the ube with the �-ube. A less general version of this theorem was stated (for the ube and withouta proof) in a short note by Twan Laan (private ommuniations) in whih healso stated De�nition 29, item 1 of De�nition 30 and the generation lemma.Theorem 35 1. If � `� A : B then � `[A : B.2. If � `[A : B then there exists � 0 2 [� ℄ suh that � 0 is the only `�-legal ontext of [� ℄ and there are unique A0 2 [A℄ and B0 2 [B℄ suh that� 0 `� A0 : B0.Proof: 1. By indution on � `� A : B. 2. By indution on � `[A : B. (axiom)and (start) are easy. (weak): If �; x : C `[A : B omes from � `[A : B and� `[C : s, then by IH, let � 0 be the unique legal ontext in [� ℄. Let A0; B0and C 0 be the unique elements suh that � 0 `� A0 : B0 and � 0 `� C 0 : s (byuniity of the legal ontext, we write � 0 in both judgements). Hene, by (weak)� 0; x : C 0 `� A0 : B0. As for uniity, if � 00; x : C 00 `� A00 : B00 then by ontextlemma � 00 `� C 00 : s0 where � 00 2 [� ℄ and C 00 2 [C℄. Hene � 00 � � 0 by uniityof legal � 0 2 [� ℄ and C 00 � C 0 by IH. As FV (A00; B00) = FV (A0; B0) � dom (� 0),hene � 0 `� A00 : B00 and hene by IH, A00 � A0 and B00 � B0.([2): Assume � `[[x:A:b : [x:A:B omes from �; x : A `[b : B and � `[[x:A:B : s. By IH, � 0; x : A0 `� b0 : B0 and � 00 `� �x:A00 :B00 : s. (Note theuse of � instead of � beause it is easy to show that � 6`� �x:D:E : s.) It iseasy to show that B0 6� 2 and hene by orretness of types, � 0; x : A0 `�B0 : s. Now, by generation lemma, � 00; x : A00 `� B00 : s and hene by IH,� 00 � � 0, A0 � A00 and B0 � B00. Hene, by (�) � 0 `� �x:A0 :B0 : �x:A0 :B0.(Note the use of � and � . It is easy to show that using `� it is not possibleto derive �x:D:e : �x:D:E, �x:D:e : �x:D:E or �x:D:e : �x:D:E.) As for uniity,Assume � 00 `� �x:A00 :B00 : �x:A00 :B00 where all elements belong to the rightlass. Obviously by uniqueness of legal ontexts in the same lass, � 00 � � 0. Byorretness of types, � 0 `� �x:A00 :B00 : s. By generation, � 0; x : A00 `� B00 : sand hene by IH, A00 � A0. As � 0; x : A0 `� B0 : s0, by IH again, B00 � B0.([1): Assume � `[[x:A:B : s2 omes from �; x : A `[B : s2 and � `[A : s1 for(s1; s2) rule. By IH, there is are unique legal ontexts � 0 2 [� ℄ and � 00; x : A00 2[�; x : A℄ and there are unique terms A0 2 [A℄; B0 2 [B℄ suh that � 0 `� A0 : s1and � 00; x : A00 `� B0 : s2. By ontext lemma, � 00 `� A00 : s0 with � 00 2 [� ℄and A00 2 [A℄. Hene, by IH, � 00 � � 0 and A00 � A0. Hene, by (�) we have� 0 `� �x:A0 :B0 : s2 with �x:A0 :B0 2 [[x:A:B℄. As for uniity, if there are otherlass elements suh that � 00 `� �x:A00 :B00 : C then by unity of legal � 0 2 [� ℄,� 00 � � 0. As C 2 [s2℄ then C � s2. By generation lemma, � 0; x : A00 `� B00 : s2and � 0 `� A00 : s. Hene by IH, A00 � A0 and again by IH, B00 � B0.(onv): Assume � `[A : C omes from � `[A : B, � `[C : s and B =[C. ByIH, there is a unique legal ontext � 0 2 [� ℄ and there are unique A0 2 [A℄; B0 2[B℄ and C 0 2 [C℄ suh that � 0 `� A0 : B0 and � 0 `� C 0 : s. By Corollary 33,B0 =�� C 0. Hene, by (onv), � 0 `� A0 : C 0. For uniity, assume � 0 `� A00 : C 00where A00 2 [A℄ and C 00 2 [C℄ (reall � 0 is the only legal ontext in [� ℄). By

orretness of types lemma, either C 00 � 2 or � 0 `� C 00 : s0. But C 00 6� 2 elseC 0 � 2 and � 0 `� 2 : s0 absurd. As � 0 `� C 00 : s0, � 0 `� C 0 : s, and C 00 2 [C℄,we get by IH, C 00 � C 0. Note that B0 6� 2, else, C 0 !!�� 2, and as � 0 `� C 0 : s,we get by subjet redution that � 0 `� 2 : s, absurd. Hene, as � 0 `� A0 : B0,we get by orretness of types that � 0 `� B0 : s0. Now, as � 0 `� A00 : C 0,� 0 `� B0 : s0 and B0 =�� C 0, by (onv) � 0 `� A00 : B0. Hene, by IH, A0 � A00.(app[): Assume � `[Fa : B[x := a℄ omes from � `[F : [x:A:B and � `[a : A.By IH, there is a unique legal � 0 2 [� ℄ and there are unique a0 2 [a℄; F 0 2[F ℄; A0; A00 2 [A℄; B0 2 [B℄ suh that � 0 `� F 0 : �x:A0 :B0 and � 0 `� a0 : A00.(Note that we took � 0 `� F 0 : �x:A0 :B0 instead of � 0 `� F 0 : �x:A0 :B0 beauseotherwise, we get � 0 `� �x:A0 :B0 : s ontraditing Lemma 25.) By generationlemma on � 0 `� F 0 : �x:A0 :B0, � 0 `� A0 : s1 and � 0; x : A0 `� B0 : s2 for (s1; s2)rule. Hene, A00 6� 2 (else A � A0 � 2 and hene � 0 `� 2 : s ontraditingLemma 25). Hene, by orretness of types on � 0 `� a0 : A00 we get � 0 `� A00 : s.By IH, A00 � A0. Hene by (app[) � 0 `� F 0a0 : B0[x := a0℄. For uniity, assumethat � 0 `� F 00a00 : C. Then by generation, � 0 `� F 00 : �y:D:E, � 0 `� a00 : Dand C =�� E[y := a00℄. By IH, F 00 � F 0, a00 � a0, y � x, D � A0 and E � B0.Hene, C =�� B0[x := a0℄. But C 2 [B0[x := a0℄℄. Therefore, C � B0[x := a0℄. �Theorem 36 (Strong Normalisation) If A is `[-legal then SN![(A).Proof: As A is legal, then either � `[A : B or � `[B : A. If � `[B : A thenby Lemma 13 for the [-ube, A � 2 (hene SN![(A)) or � `[A : s. Hene,we only prove the theorem for � `[A : B. By Theorem 35, there are unique� 0; A0 and B0 suh that � 0 `� A0 : B0 and � 0 � � , A0 � A and B0 � B. ByTheorem 28, SN!�� (A0) and hene by Lemma 31 SN![(A0), i.e., SN![(A). �5 The [iÆ�p-ubeSo far, we showed that the [-ube an be seen as a osmeti version of the ubeand that in the [-ube, the ube, and the �-ube, the same terms an be typed.It is obvious to ask next, whether extending the [-ube with type instantiationswill fae the same fate as extending the ordinary ube with type instantiations.We have not yet investigated this question, but we suspet that the answer isyes. Note that we showed the isomorphism of type judgements in the �-ube and[-ube by heavily relying on orretness of types and subjet redution in the�-ube. Subjet redution and orretness of types do not hold in the �-ube.We will devote this setion to a few extensions (inluding type instantiation)to the [-ube in the spirit of Automath. These extensions are as follows:1. Type instantiation We will follow [18℄ and replae (app[) by (new app[):(new app[) � ` F : ([x:A:B) � ` a : A� ` Fa : ([x:A:B)aThe main reason for this new rule is ompatibility. The ([2) rule in Def-inition 29 may be regarded as the ompatibility property for typing with

respet to abstration. That is, b : B implies [x:A:b : [x:A:B. Compatibilityfor typing with respet to appliation is lost however. From the (app[) rule,F : [x:A:B implies Fa : B[x := a℄ instead of Fa : ([x:A:B)a.2. De�nitions (also known as abbreviations or let expressions) were heavilyused in Automath and have sine been exploited in funtional languages likeHaskell and ML and theorem provers like Coq. The idea is that if k oursin a text f , it may be pratial to introdue an abbreviation for k: (f. [16℄):{ The representation of k may be long. This makes manipulations with fa time- and memory-onsuming task, in partiular when k ours severaltimes in f . Abbreviating k an make manipulations with f easier.{ The objet k may represent a struture that is partiularly interesting.Abbreviating k opens the possibility to introdue a signi�ant name fork. This makes the expression easier to understand for human beings.De�nition 23 explained how de�nitions were added to the �-ube. We willfollow the same proess when adding de�nitions in [-ube (see De�nition 41).23. Expliit substitution The substitution required by �-redution in any imple-mentation of the �-alulus must be implemented via smaller operations.Thus, there is a oneptual gap between the theory of the �-alulus andits implementation. By representing substitutions in the struture of termsand by providing step-wise redutions to propagate the substitutions, ex-pliit substitution provides a number of bene�ts suh as more exibility inordering work and postponing unneeded work inde�nitely.To add expliit substitutions to the [-ube, we extend the set of terms T[with substitution terms of the form A[x B℄. We add substitution rules tosay how substitutions propagate through terms, and we replae B[x := A℄in the �-rule by B[x A℄ whih allows us to ontrol the substitutions(see De�nition 40). Finally, we need to add a new typing rule (subst) whihexplains how terms of the form B[x A℄ an be typed (see De�nition 41).4. Parameters were heavily used in Automath and later studied in [19℄. The�-alulus aommodates the higher level approah of funtions where fun-tions are �rst lass itizens. However, in many pratial systems, the lowerlevel approah where funtions always our with their arguments (parame-ters) and do not stand alone is neessary. The programming language ML forinstane, was not be based on Girard's system F (as it was not known thenwhether type heking in F is deidable). Hene, terms like the polymorphiidentity Id = ��:�x:x : ��:� ! � annot be typed in ML. However, termslike Id(�) = �x:x : �! � an be typed in ML and hene, Id was introduedwith parameters, and never alone. 3[19℄ gives extensive reasons why parameters are needed in many areas oflogi. Laan shows parameters have advantages on a large spetrum ranging2 It is interesting to investigate whether the (def) rule an be eliminated. The (def) rulewas used in [15, 16℄ beause without it, Subjet redution and Corretness of typesfail for the ordinary ube with�-redution and (new appl). We have not investigatedif Subjet redution and Corretness of types also fail for the [-ube with (new app[).Nonetheless, we add (def) beause it provides smaller type derivations (see [16℄).3 Note that ML is impliitly typed, i.e., one writes �x:B instead of �x:A:B

from expressivity, to deidability, and to being able to relate di�erent systemstogether. The reader is referred to [19℄ for more details.We add parameters �a la Laan to our [-ube. We will add parametri termsof the form (b1; : : : ; bn) where the parameters are b1; : : : ; bn. We need toadd new typing rules to type these new terms. These an be found in De�-nition 41. Just as we allow several kinds of �-onstruts (via the set R) inthe ube, we follow [19, 16℄ and allow several kinds of parametri onstrutsvia a set P , onsisting of tuples (s1; s2) where s1; s2 2 f�;2g. (s1; s2) 2 Pmeans that we allow parametri onstruts (b1; : : : ; bn) : A where b1; : : : ; bnhave types B1; : : : ; Bn of sort s1, and A is of type s2. If both (�; s2) 2 P and(2; s2) 2 P then ombinations of parameters are possible.5.1 The extensionExtensions of the ordinary ube with parameters alone, with de�nitions andtype instantiation alone, with expliit substitutions alone, and with expliit sub-stitutions with de�nitions have already taken plae in the literature. [16℄ gavean extension of the ordinary ube with three of these onepts: de�nitions, typeinstantiation and expliit substitutions, and another separate extension with pa-rameters alone. Here we give an extension with all these onepts in one ube.In addition, our extension deals with a uni�ed binder [instead of the usualseparate � and � present. It is the hope that providing as many of the usefulextensions in one system, will result in a pratial framework that ombines allthe advantages. Of ourse it remains to be investigated how the [-ube fares witheah of these extensions separately. This is left for future work.De�nition 37 The set Ta of terms of the [iÆ�p-ube is de�ned together withthe set LT of lists of terms as follows by:Ta ::= � j 2 j V j C(LT) j [V:Ta :Ta j TaTa j Ta[V Ta℄, and LT ::= ? j LT ; Ta.C (over whih ; 0; : : : range) is a set of onstants disjoint from V .In Notation 2, the notions of fv(A), bv(A), impliit substitution A[x := B℄and ompatibility are extended to take into aount the new terms of the formA[x B℄ and (b1; : : : ; bn). In partiular,if bi ![b0i then (b1; : : : ; bi; : : : ; bn)![(b1; : : : ; b0i; : : : ; bn) for 1 � i � n.fv(A[x B℄) = fv(A) n fxg) [fv(B)fv((a1; : : : ; an)) = Sni=1 fv(ai)(A[x B℄)[y := C℄ � (A[y := C℄)[x B[y := C℄℄,(b1; : : : ; bn)[x:=A℄ � (b1[x:=A℄; : : : ; bn[x:=A℄).In addition, Barendregt's Convention BC is extended to the new terms. E.g.,a term ([y:A:B)[y C℄ is renamed to ([x:A:B[y := x℄)[y C℄ where x is fresh.De�nition 38 [Constants of terms℄ De�ne ons (A), the onstants of A by:ons (s) = ons (x) = ;; ons ((a1; : : : ; an)) = fg [Sni=1 ons (ai) ;ons (AB) = ons ([x:A:B) = ons (A[x B℄) = ons (A) [ons (B) ;De�nition 39 [delarations, de�nitions, ontexts, �0℄

1. A variable delaration d is of the form x : A. We de�ne var(d) � x, type(d) �A, fv(d) � fv(A) and ons (d) � ons (A).2. A onstant delaration d is of the form (x1:B1; : : : ; xn:Bn):A where 2 C.We de�ne type(d) � A and de-ons (d) � . is alled a primitive onstant .x1; : : : ; xn are the parameters of d. We de�ne fv(d) to be fv(A)[fv(B1) � � �[fv(Bn) and ons (d) to be ons (A) [ons (B1) � � � [ons (Bn).3. A de�nition d is of the form x = B : A and de�nes x of type A to be B. Wede�ne var(d), type(d) and ab(d) to be x, A, and B respetively. We de�nefv(d) � fv(A) [fv(B) and ons (d) to be ons (A) [ons (B).4. d; d0; d1; : : : range over delarations (variables/onstants) and de�nitions.5. A ontext � is a (possibly empty) onatenation of delarations and de�ni-tions d1; d2; � � � ; dn suh that if i 6= j, then var(di) 6� var(dj) if di and dj areeither variable delarations or de�nitions, and de-ons (di) 6� de-ons (dj)if di and dj are onstant delarations. We de�ne dom (�) = fvar(d) jd is a variable delaration or a de�nition in �g.De�ne ons (�) to be the set fde-ons (d) j d is a onstant delaration in �g.� -del = fd 2 � j d is a delaration g and � -abb = fd 2 � j d is a de�nition g.We use �;�; � 0; �1; �2; : : : to range over ontexts.6. We de�ne substitutions on ontexts by: ;[x := A℄ � ;; (�; y : B)[x :=A℄ � � [x := A℄; y : B[x := A℄; (�; (x1 : A1; : : : ; xn : An) : C)[x :=A℄ � � [x := A℄; (x1 : A1[x := A℄; : : : ; xn : An[x := A℄) : C[x := A℄; and(�; y = B : C)[x := A℄ � � [x := A℄; y = B[x := A℄ : C[x := A℄.7. De�ne �0 between ontexts as the least reexive transitive relation satisfying:{ �;� �0 �; d;� for d a delaration (variable/onstant) or a de�nition.{ �; x : A;� �0 �; x = B : A;�De�nition 40 [a-Redution℄ a-Redution !a is de�ned as the union of ![0and !� whih are de�ned as the ompatible losures of, respetively:([x:A:B)C ![0 B[x C℄([y:A:B)[x C℄ !� [y:A[x C℄:B[x C℄((b1; : : : ; bn))[x C℄ !� (b1[x C℄ : : : ; bn[x C℄)(AB)[x C℄ !� A[x C℄:B[x C℄x[x C℄ !� CA[x C℄ !� A if x 62 fv(A)De�nition 41 Let R be as in De�nition 6 and let (�; �) 2 P and P be a subsetof f(�; �); (�;2); (2; �); (2;2)g. The judgements that are derivable in �RP aredetermined by the typing rules for �R of De�nition 29 where the (onv) and(app[) rules are replaed by (new onv) and (new app[) and where six new rules(start-def), (weak-def), (subst), (def), (!C-weak) and (!C-app) are added (in thelast two rules, � � x1:B1; : : : ; xn:Bn and �i � x1:B1; : : : ; xi�1:Bi�1). The newand hanged rules are given in Figure 4. In (new-onv), � `a B def= B0 is de�nedon Ta as the smallest equivalene relation losed under:{ If B =a B0 then � `a B def= B0{ If x = D : C 2 � and B0 arises from B by substituting one partiular freeourrene of x in B by D then � `a B def= B0.

(start-def) � `a A : s � `a B : A�; x = B:A `a x : A x 62 dom (�)(weak-def) � `a A : B � `a C : s � `a D : C�; x = D:C `a A : B x 62 dom (�)(subst) �; x = B:A `a C : D� `a C[x B℄ : D[x := B℄(def) �; x = B:A `a C : D� `a ([x:A:C)B : D[x := B℄(new onv) � `a A : B � `a B0 : s � `a B def= B0� `a A : B0(new app[) � `a F : ([x:A:B) � `a a : A� `a Fa : ([x:A:B)a(!C-weak) � `a b : B �;�i `a Bi : si �;� `a A : s�; (�) : A `a b : B (si; s) 2 P , 62 ons (�)(!C-app) �1; (�):A;�2 `a bi:Bi[xj :=bj ℄i�1j=1 (i = 1; : : : ; n)�1; (�):A;�2 `a A : s (if n = 0)�1; (�):A; �2 `a (b1; : : : ; bn) : A[xj :=bj ℄nj=1Fig. 4. New/hanged rules of the ubeDe�nition 42 [Statements, judgements, legal terms and ontexts℄ De�nition 4is extended to Ta and `a by hanging everywhere in de�nition 4, T by Ta, ` by`a and by hanging item 6 to the following:If d is a variable delaration then � `a d i� � `a var(d) : type(d).Otherwise, if d is a de�nition then � `a d i� � `a var(d) : type(d) ^ � `aab(d) : type(d) ^ � `a var(d) def= ab(d). Otherwise,if d � (x1 : B1; : : : ; xn : Bn):A and n = 0 then � `a d is de�ned as � `a : A.Else, if d � (x1 : B1; : : : ; xn : Bn):A and n 6= 0 then � `a d is de�ned as� `a (b1; : : : ; bn):A[xj :=bj ℄nj=1 whenever � `a bi : Bi[xj :=bj ℄i�1j=1 for 1 � i � n.5.2 Properties of the extensionThe [iÆ�p-ube an be seen as a union of the uni�ed binder versions of two ubes:{ The e-ube whih is the ordinary ube extended with de�nitions,�-redution,type instantiation and expliit substitution ��def-ubeof [16℄.{ The f -ube whih is the ordinary ube with parameters of [19, 16℄.Hene, its properties are formulated by a union of those of [16℄, and are provedby using the same methods (but in the single binder framework) or showing iso-morphi orrespondenes between ordinary versions and uni�ed binder versionsas we did in Setion 4.Lemma 43 (Free variable Lemma for `a and !a)1. If d and d0 are di�erent delarations or de�nitions (none of whih is a on-stant delaration) in a legal ontext � , then var(d) 6� var(d0).

2. If d and d0 are di�erent onstant delarations in a legal ontext � , thende-ons (d) 6� de-ons (d0).3. If � � �1; d; �2 and � `a B : C then{ ons (d) � ons (�1),{ fv(d) � �dom (�1) if d is a variable delaration or a de�nitiondom (�1; x1:B1; : : : ; xn:Bn) if d � (x1:B1; : : : ; xn:Bn):A{ fv(B); fv(C) � dom (�) and ons (B) ;ons (C) � ons (�).Lemma 44 (Substitution Lemma for `a and !a) Let d be x = D : C, �dbe �[x := D℄, Ad be A[x := D℄ and Bd be B[x := D℄. The following holds:1. If �; d;� `a A def= B, A and B are �; d;�-legal, then �;�d `a Ad def= Bd.2. If B is a �; d-legal term, then �; d `a B def= Bd.3. If �; d;� `a A : B or (�; x : C;� `a A : B and � `a D : C) then�;�d `a Ad : Bd.Corollary 45 Assume var(d) 62 fv(A) [fv(B) [fv(�). Then:� If �; d;� `a A : B then �;� `a A : B.� If �; d;� `a A def= B then �;� `a A def= B.Lemma 46 (Start Lemma for `a and !a) Let � be a `a-legal ontext. Then� `a � : 2 and 8d 2 � [� `a d℄.Lemma 47 (Context Lemma for `a) Let �1; d; �2 be a `a-legal ontext.{ If d is a variable delaration then �1 `a type(d) : s for some sort s, �1; d `avar(d) : type(d).{ If d is a de�nition then �1 `a type(d) : s for some sort s, �1; d `a var(d) :type(d) and �1 `a ab(d) : type(d).{ If d � (x1 : B1; : : : ; xn : Bn):A then for some sort s, �1; x1 : B1; : : : ; xn :Bn `a A : s and for some sorts si, for 1 � i � n where (si; s) 2 P , we have�1; x1 : B1; : : : ; xi�1 : Bi�1 `a Bi : si.Lemma 48 (Thinning Lemma for `a and !a) Let d be either a delara-tion or a de�nition and let �1; d; �2 be a legal ontext.1. If �1; �2 `a A def= B, then �1; d; �2 `a A def= B.2. If �1; �2 `a A : B, then �1; d; �2 `a A : B.3. If d is x = D : C and �1; x : C; �2 `a A : B, then �1; d; �2 `a A : B.Lemma 49 (Generation Lemma for `a and !a)1. If � `a s : C then s � � and � `a C def= 2, furthermore if C 6� 2 then� `a C : s0 for some sort s0.2. If � `a x : A then for some d 2 � , x � var(d), � `a A def= type(d) and� `a A : s for some sort s.3. If � `a [x:A:B : C then{ Either there is D and sort s where �; x : A `a B : D, � `a [x:A:D : s,� `a [x:A:D def= C and if [x:A:D 6� C then � `a C : s0 for some sort s0.

{ Or for some sorts s1; s2: � `a A : s1, �; x : A;`a B : s2, (s1; s2) is arule, � `a C def= s2 and if s2 6� C then � `a C : s for some sort s.4. If � `a Fa : C, F 6� [x:A:B, then for some D;E: � `a a : D, � `a F :[x:D:E, � `a ([x:D:E)a def= C and if ([x:D:E)a 6� C then � `a C : s for somes.5. If � `a ([x:A:D)B : C, then �; x = B : A `a D : C.6. If � `a A[x B℄ : C, then for some term D we have �; x = B : D `a A : C.7. If � `a (b1; : : : ; bn) : D then there exist s, � � x1 : B1; : : : ; xn : Bnand A suh that D =� A[xj :=bj ℄nj=1, and � `a bi:Bi[xj :=bj ℄i�1j=1. Moreover,� � �1; (�) : A;�2 and �1; � `a A : s. Finally, there are si 2 S suh that�1; �i `a Bi : si and (si; s) 2 P .Lemma 50 (Corretness of types for `a and !a)If � `a A : B then (B � 2 or � `a B : s for some sort s).Lemma 51 (Subjet Redution for `a and !a)If � `a A : B and A!!� A0 then � `a A0 : B.Strong Normalisation an be established by translations into orresponding ubeswhih are shown to be strongly normalising.Theorem 52 (Strong Normalisation) If A is `a-legal then SN!a(A).6 ConlusionIn this paper, we used a unique binder �a la de Bruijn instead of the usual twobinders � and � . We studied the Barendregt ube written in this notation andestablished an isomorphism between the two versions of the ube. We then gaveintantiation power to types similar to that of terms. Armed by the loss of im-portant properties of the ordinary ube with type instantiation, and onsideringthe solutions to these problems, we deided not to study the ube with uni�edbinders and type instantiation, but instead to move to a larger extensions whereother features like de�nitions, parameters and expliit substitutions are added.The interesting next step is to assess the impliations of the ollapse of both �and � into a unique binder. For example, does the uni�ed binder give a wellbehaved ube with type instantiation alone or with expliit substitutions alone?Type instantiation in the ordinary ube faes the problem of loss of Subjetredution (f. [18℄). Expliit substitutions in the ordinary ube also faes theproblem of loss of Subjet redution (f. [4℄).Referenes1. S. Abramsky, Dov M. Gabbay, and T.S.E. Maibaum, editors. Handbook of Logiin Computer Siene, Volume 2. Oxford University Press, 1992.2. H.P. Barendregt. The Lambda Calulus: its Syntax and Semantis. Studies in Logiand the Foundations of Mathematis 103. North-Holland. 1984.

3. H.P. Barendregt. Lambda aluli with types. In [1℄, pages 117{309. Oxford Uni-versity Press, 1992.4. R. Bloo. Preservation of Termination for Expliit Substitutions. PhD thesis, Eind-hoven University of Tehnology, 1997.5. N.G. de Bruijn. The mathematial language AUTOMATH, its usage and some ofits extensions. In M. Laudet, D. Laombe, and M. Shuetzenberger, editors, Sym-posium on Automati Demonstration, pages 29{61, IRIA, Versailles, 1968. SpringerVerlag, Berlin, 1970. Leture Notes in Mathematis 125; also in [22℄, pages 73{100.6. A. Churh. A formulation of the simple theory of types. The Journal of SymboliLogi, 5:56{68, 1940.7. T. Coquand and G. Huet. The alulus of onstrutions. Information and Com-putation, 76:95{120, 1988.8. G. Frege. Begri�sshrift, eine der arithmetishen nahgebildete Formelsprahe desreinen Denkens. Nebert, Halle, 1879. Also in [12℄, pages 1{82.9. G. Frege. Funktion und Begri�, Vortrag gehalten in der Sitzung vom 9. Januarder Jenaishen Gesellshaft f�ur Mediin und Naturwissenshaft. Hermann Pohle,Jena, 1891. English translation in [21℄, pages 137{156.10. J.-Y. Girard. Interpr�etation fontionelle et �elimination des oupures dansl'arithm�etique d'ordre sup�erieur. PhD thesis, Universit�e Paris VII, 1972.11. R. Harper, F. Honsell, and G. Plotkin. A framework for de�ning logis. In Pro-eedings Seond Symposium on Logi in Computer Siene, pages 194{204, 1987.12. J. van Heijenoort, editor. From Frege to G�odel: A Soure Book in MathematialLogi, 1879{1931. Harvard University Press, Cambridge, Massahusetts, 1967.13. J.R. Hindley and J.P. Seldin. Introdution to Combinators and �-alulus, volume 1of London Mathematial Soiety Student Texts. Cambridge University Press, 1986.14. W.A. Howard. The formulas-as-types notion of onstrution. In [25℄, pages 479{490, 1980.15. F. Kamareddine, R. Bloo, and R. Nederpelt. On �-onversion in the �-ube andthe ombination with abbreviations. Annals of Pure and Applied Logi, 97:27{45,1999.16. F. Kamareddine, T. Laan, and R. Nederpelt. Revisiting the notion of funtion.Logi and Algebrai Programming, to appear.17. F. Kamareddine, T. Laan, and R. Nederpelt. Types in logi and mathematisbefore 1940. Bulletin of Symboli Logi, 8(2):185{245, 2002.18. F. Kamareddine and R.P. Nederpelt. Canonial typing and �-onversion in theBarendregt Cube. Journal of Funtional Programming, 6(2):245{267, 1996.19. T. Laan. The Evolution of Type Theory in Logi and Mathematis. PhD thesis,Eindhoven University of Tehnology, 1997.20. G. Longo and E. Moggi. Construtive natural dedution and its modest interpre-tation. Tehnial Report CMU-CS-88-131, Carnegie Mellono University, 1988.21. B. MGuinness, editor. Gottlob Frege: Colleted Papers on Mathematis, Logi,and Philosophy. Basil Blakwell, Oxford, 1984.22. R.P. Nederpelt, J.H. Geuvers, and R.C. de Vrijer, editors. Seleted Papers onAutomath. Studies in Logi and the Foundations of Mathematis 133. North-Holland, Amsterdam, 1994.23. G.R. Renardel de Lavalette. Stritness analysis via abstrat interpretation forreursively de�ned types. Information and Computation, 99:154{177, 1991.24. J.C. Reynolds. Towards a theory of type struture, volume 19 of Leture Notes inComputer Siene, pages 408{425. Springer, 1974.25. J.P. Seldin and J.R. Hindley, editors. To H.B. Curry: Essays on CombinatoryLogi, Lambda Calulus and Formalism. Aademi Press, New York, 1980.

