
SUBSEXPL: A Tool for Simulating and

Comparing Explicit Substitutions Calculi⋆

Flávio L. C. de Moura⋆⋆1 and Mauricio Ayala-Rincón⋆ ⋆ ⋆1 and Fairouz
Kamareddine2

1 Departamento de Matemática, Universidade de Braśılia, Braśılia D.F., Brasil.
flavio@mat.unb.br, ayala@mat.unb.br

2 School of Mathematical and Computer Sciences, Heriot-Watt University,
Edinburgh, Scotland. fairouz@macs.hw.ac.uk

Abstract. We present the system SUBSEXPL used for simulating and
comparing explicit substitutions calculi. The system allows the manip-
ulation of expressions of the λ-calculus and of three different styles of
explicit substitutions: the λσ, the λse and the suspension calculus. Im-
plementations of the η-reduction are provided for each calculi. Other
explicit substitutions calculi can be incorporated into the system easily
due to its modular structure. Its applications include: the visualisation
of the contractions of the λ-calculus, and of guided one-step reductions
as well as normalisation via each of the associated substitution calculi.
Many useful facilities are available: reductions can be easily recorded and
stored into files or Latex outputs and several examples for dealing with
arithmetic operations and computational operators such as conditionals
and repetitions in the λ-calculus are available. The system has been of
great help for systematically comparing explicit substitutions calculi, as
well as for understanding properties of explicit substitutions such as the
Preservation of Strong Normalisation. In addition, it has been used for
teaching basic properties of the λ-calculus such as: computational ad-
equacy, the importance of de Bruijn’s notation and of making explicit
substitutions in real implementations.

Keywords: λ-Calculus, Explicit Substitutions, Visualisation of β- and η-
Contraction and Normalisation.

1 Introduction

In the last decade, a number of explicit substitutions calculi have been developed.
Most of these calculi have been claimed to be useful for practical notions such
as the implementation of typed functional programming languages and higher-
order proof assistants. We describe SUBSEXPL, a system developed in Ocaml,
a language of the ML family, which allows for the manipulation of expressions
of the λ-calculus and of three different calculi of explicit substitutions:

⋆ Work supported by funds from CNPq (CT-INFO) 50.6598/04-7.
⋆⋆ Corresponding author. Supported by Brazilian CAPES Foundation.

⋆ ⋆ ⋆ Partially supported by Brazilian Research Council CNPq.

1. λσ [1] which introduces two different sets of entities: one for terms and one
for substitutions.

2. λs [12] which is based on the philosophy of de Bruijn’s Automath [20] elabo-
rated in the new item notation [11]. In this framework, a term is a sequence
of items, which can be an application item, an abstraction item, a substitution

item or an updating item. The advantages of building the explicit substitu-
tions calculus in this framework include remaining as close as possible to the
familiar λ-calculus (cf. [13]).

3. The suspension calculus [17], which introduces three different sets of entities:
terms, environments and lists of environments.

Each of these different styles has plus and minus points. Although various
attempts have been made at comparing these styles (cf. [2, 13]), a lot remains
to be explained. A better understanding of the similarities and differences of
these styles may lead on one hand to solving the remaining open questions
related to the various calculi, and on the other hand, to a more inclusive cal-
culus and implementations which combine the advantages in one system. The
inclusion of other calculus of explicit substitutions is also possible: the docu-
mentation provided with the source code of the system includes a file called
adding-a-new-calculus which explains all the necessary steps.

Through SUBSEXPL, we attempt to understand the working of the rewrite
rules of these calculi. We developed a full scale Ocaml implementation of the
three calculi where contractions in all these calculi (as well as in the type-free
λ-calculus) can be visualised in a step-wise fashion and where the behaviour of
the reduction paths can be analysed. Especially, we concentrate on the one-step
guided reductions and normalisation via each of the associated substitution cal-

culi. However, implementation of rewriting rules is straightforward in rewriting
based languages such as ELAN and Maude, we prefer to use a language of the
ML family because of their natural ability to control the matching which allows
for selection of redexes before contractions are done.

SUBSEXPL has been successfully used for teaching our students basic prop-
erties of the λ-calculus such as: computational adequacy, the importance of de
Bruijn’s notation and of making explicit substitutions in real implementations
based on the λ-calculus. SUBSEXPL has also been of great importance for sys-
tematically comparing these three calculi of explicit substitutions.

Furthermore, SUBSEXPL includes adequate implementations of the rules of
η-reduction for the three calculi as well as a clean implementation for the λse-
calculus (cf. [2]) in the sense that no other rewriting rules than the ones strictly
involved in the Eta-contraction3 are included in one-step Eta-contraction. Work
on higher-order unification (HOU) in λσ and λse established the importance
of combining Eta-reduction or contraction (as well as expansion) with explicit
substitutions. This has provided extensions of λσ and λse with Eta-reduction
rules also referred to by λσ and λse (cf.[6, 3]). Eta reduction as well as expansion
are necessary for working with functions and programs, since one needs to express

3 We use the Greek letter η to refer only to the “η-rule” of the pure λ-calculus, and its
name “Eta” to refer to the corresponding rules in the explicit substitutions calculi.

functional or extensional equality; i.e., when the application of two λ-terms to
any term yields the same result, then they should be considered equal. This
led to various extensions of explicit substitutions calculi with an Eta-rule even
before this was applied to HOU [9, 21, 5, 14].

Input/output of λ-terms is a difficult point because λ-expressions may be-
come big very quickly. In order to ease reading the outputs of the system, we
provided Latex outputs which can be generated during any step of the reduction
and, moreover, the generated file can be easily edited according to the user’s
requirement.

SUBSEXPL has been used as a tool for understanding properties of explicit
substitutions calculi. Desired properties of an explicit substitutions calculus in-
clude:

(a) Simulation of one step β-reduction: whenever a reduces to b in the λ-calculus
using one step β-reduction, we have that a reduces to b in the explicit sub-
stitutions calculus using one step of the explicit β-reduction (starting rule)
and the substitution rules.

(b) Confluence (CR): confluence is the property that establishes that reductions
do not depend on reduction strategies or in other words, that whenever a
term can be reduced in two different ways, the obtained terms can be joined

by rewriting into a common term. CR is considered for two classes of terms:
(b.1) Ground terms: these are the usual terms of the λ-calculus built from

variables, applications and abstractions.
(b.2) Open terms: in this case, the language of the explicit substitutions calcu-

lus is expanded with a new class of variables, known as meta-variables.
In this setting, open terms can be seen as contexts and meta-variables as
place-holders. Open terms are essential in higher-order unification and
matching algorithms that uses explicit substitutions [6, 3, 7].

(c) Strong normalisation (SN) of the underlying calculus of explicit substitu-
tions: this is the termination property of the explicit substitutions calculi
without the explicit β-reduction rule; i.e., without the rule that starts the
simulation of the β-reduction.

(d) Preservation of SN (PSN): whenever all possible reductions starting from a
pure λ-term are terminating in the λ-calculus, there are no possible infinite
reductions starting from this term in the explicit substitutions calculus.

Without Eta, λσ satisfies (a), (b.1), (c) and satisfies (b.2) only when the set
of open terms is restricted to those which admit meta-variables of sort terms.
Without Eta, λs satisfies (a)..(d) but not (b.2). However, λs has an extension
λse (again without Eta) for which (a), (b.1) and (b.2) holds, but (d) fails and
(c) is unknown. The suspension calculus (which does not have Eta) satisfies (a)
and when restricted to well formed terms it also satisfies (b.1), (b.2) and (c),
but (d) is unknown (cf. [13, 19]).

SUBSEXPL has been used as a tool for examining the PSN property of two
of the three calculi we consider. The system allows us to follow the counter-
examples of Melliès ([16]) and Guillaume ([8]) for proving that neither λσ- nor
λse-calculi preserve SN.

In section 2 we briefly describe the system and its usage and, before conclud-
ing, in section 3 we illustrate the applications of the system.

2 Description of SUBSEXPL

SUBSEXPL is an implementation of the rewriting rules of the three treated
calculi of explicit substitutions. SUBSEXPL is an open source software, runs over
GNU/Linux platforms and is available at www.mat.unb.br/∼ayala/TCgroup/.

2.1 Use of the system

To start the system, execute the file subsexpl.bin (by typing ./subsexpl.bin

in a terminal). We recommend the use of the line editor ledit4:
./ledit.out ./subsexpl.bin.

Alternatively, the user can run SUBSEXPL inside a shell in the EMACS
editor so that (s)he can easily cut and paste and check the balance of expressions.
To do so just type within EMACS M-x shell and then ./subsexpl.

The first screen is as below where option 4 gives a brief grammatical descrip-
tion of the input and output for each calculus.

*************** SUBSEXPL ***************

SELECT the calculus
TYPE

0 for the Pure lambda-calculus
1 for the Lambda sigma calculus

2 for the Lambda s_e calculus
3 for the Suspension calculus

4 for the Grammatical description IN/OUT (and internal)
OR 5 for quit
>

Option 0 allows the user to simulate one-step β-reduction and η-reduction
as well as normalisations in the pure λ-calculus, while options 1, 2 and 3 per-
form simulations of reductions and normalisations in λσ, λse and the suspension
calculus, respectively.

As a complete example, we will show how to operate with the Church’s
numerals (cf. [4]) whose description can be found in the Examples file distributed
with the source code. Consider the reduction A+C1C1 →6

β C2, which evaluates
“1+1” in the λ-calculus, where A+ = λxypq.((x p)((y p) q)) represents the sum
operator, and C1 = λfx.fx is a Church numeral. The A+ operator is written
in de Bruijn notation as A+ = λλλλ.((4 2)(3 2) 1) which is translated to the
SUBSEXPL language as L(L(L(L(A(A(4,2),A(A(3,2),1)))))).

Applying this operator to add the Church numeral C1 twice, gives the ex-
pression corresponding to A+C1C1 in the SUBSEXPL grammar:
A(A(L(L(L(L(A(A(4,2),A(A(3,2),1)))))), L(L(A(2,1)))),L(L(A(2,1))))

After choosing option 0 in the first screen of the system, we type the above
expression:

4 http://cristal.inria.fr/∼ddr

*************** SUBSEXPL ***************

SELECT the calculus

TYPE
0 for the Pure lambda-calculus
1 for the Lambda sigma calculus

2 for the Lambda s_e calculus
3 for the Suspension calculus

4 for the Grammatical description IN/OUT (and internal)
OR 5 for quit
> 0

Give an expression (or quit): A(A(L(L(L(L(A(A(4,2),
A(A(3,2),1)))))),L(L(A(2,1)))),L(L(A(2,1))))

After typing the expression, type ENTER. The next screen will output the
current expression and the available redexes for the rules:
Expression: A(A(L(L(L(L(A(A(4,2),A(A(3,2),1)))))),L(L(A(2,1)))),L(L(A(2,1))))

1. Beta: 1 7. Latex output.

2. Eta: 121 21 8. Save current reduction.
3. Leftmost/outermost normalisation. 9. Restart current reduction.

4. Rightmost/innermost normalisation. 10. Restart SUBSEXPL.
5. Back one step. 11. Quit.
6. See history.

Give the number:

To select β-reduction, type 1 and then type 1 again to select the redex at
position 1. Now the current screen is:

Expression: A(L(L(L(A(A(L(L(A(2,1))),2),A(A(3,2),1))))),L(L(A(2,1))))

1. Beta: 0 11111 7. Latex output.
2. Eta: 1111111 21 8. Save current reduction.
...

Give the number:

Note that we have two options to apply β-reduction. One at the root po-
sition of the term, written as 0, and another at position 11111. To reduce the
term at position 11111, first type 1 to select Beta and then type the position.
Continue the reduction until you get a normal term: L(L(A(2,A(2,1)))) which
corresponds to C2.

The additional options of the system are:
3. Leftmost/outermost normalisation: normalises the given term choosing
always the leftmost redex.
4. Rightmost/innermost normalisation: normalises the given term choosing
always the rightmost redex.
5. Back one step: allows the user to return to the previous step in the current
derivation.
6. See history: shows in the current screen the list of all expressions generated
in the current reduction.
7. Latex Output: generates automatically a file with the latex code of the cur-
rent reduction and display the .dvi file on the screen5

8. Save current reduction: allows the user to save the current reduction into
a simple text file, say my-reduction. To load this reduction in a further section,
the user should restart the system giving this file as argument: ./ledit.out

5 We assume that the running system has latex and xdvi installed.

./subsexpl.bin my-reduction.
9. Restart current reduction: allows the user to restart the current reduc-
tion from the beginning after asking if the user wants to save the current reduc-
tion.
10. Restart SUBSEXPL: restarts the system after asking if the user wants to
save the current reduction.
11. Quit: halts the system after asking if the user wants to save the current
reduction.

To generate the latex output, which is possible to be generated even during
the intermediate steps in a reduction, just type 7 and then give a file name with-
out any extension. For example, my file. In this case, the system will generate
a dvi file named my file.dvi. Note that in the latex output, all the redexes you
chose during the reduction will appear underlined:

(((λ(λ(λ(λ((42)((32)1))))))(λ(λ(21))))(λ(λ(21)))) →β

((λ(λ(λ(((λ(λ(21)))2)((32)1)))))(λ(λ(21)))) →β

((λ(λ(λ((λ(31))((32)1)))))(λ(λ(21)))) →β

((λ(λ(λ(2((32)1)))))(λ(λ(21)))) →β

(λ(λ(2(((λ(λ(21)))2)1)))) →β

(λ(λ(2((λ(31))1)))) →β

(λ(λ(2(21))))

An interesting exercise is to simulate such a derivation step by step using the
λσ, the λse or the suspension calculus. The current implementation has two nor-
malisation strategies available: the leftmost/outermost strategy or the strategy
according to the order of the rules given on the screen of each calculi (we call this
strategy ’random’). An interesting fact is that the first step of the previous exam-
ple when simulated in the λσ-calculus using the random normalisation strategy
generates some huge λσ-terms which exceeds the available memory for the latex
compilation. In fact, the simulation of the first β-reduction in the λσ-calculus
using the ’random’ strategy is done in 236 steps, while the same simulation using
the leftmost strategy is performed in only 45 steps! The complete reduction us-
ing the leftmost/outermost strategy generated about 3 full pages of latex output
with small fonts. In the λse as well as in the suspension calculus, both strategies
generate the output within about 2 pages.

Terms with internal operators of the explicit substitutions calculi may be
given as input: as an example, take the λσ-term ((λ1) 1[↑])[1.id] which is written
in SUBSEXPL as Sb(A(L(1),Sb(One,Up)),Pt(One,Id)). Giving this term to
the system we get the screen below, from which one can follow the reduction by
selecting rules and redexes (positions).

Expression: Sb(A(L(One),Sb(One,Up)),Pt(One,Id))

1. Beta: 1 9. IdL: 17. Back one step.
2. App: 0 10. IdR: 18. See history.

3. Abs: 11. ShiftCons: 19. Latex output.
4. Clos: 12. VarShift: 20. Save current reduction.
5. VarCons: 13. SCons: 21. Restart current reduction.

6. Id: 14. Eta: 22. Restart SUBSEXPL.

7. Assoc: 15. One beta full step (leftmost): 1 23. Quit.
8. Map: 16. One beta full step (random): 1

Give the number:

2.2 Implementation of Eta contraction

SUBSEXPL includes implementations of the Eta-rule for each of the three calculi
of explicit substitutions treated here. The implementation follows the notion of
cleanness as defined in [2]. The intuitive idea of a clean Eta implementation
is that it does not mix isolated applications of Eta-reduction with applications
of other rules of the corresponding substitution calculi that the ones strictly
involved in the Eta-reduction. Clean implementations of the Eta-rule allow us
to reach good simulations of the Eta-contraction, which implies the possibility
of combining steps of Beta and Eta contraction.

The suspension calculus did not originally have an Eta-rule. In [2] this cal-
culus was enlarged with an adequate Eta-rule in the so-called λsusp calculus. For
the enlarged calculus λsusp, λse and λσ we showed that there exists a correspon-
dence among their Eta-rules which means that, when applied to pure λ-terms,
these rules behave similarly (cf. [2]).

Neither the suspension calculus nor the λσ-calculus has completely clean
implementations of the Eta-rule. In fact, in these calculi, the implementation of
the Eta-rule requires the application of some rewriting rules, not directly related
to Eta contraction, but which are necessary to normalise some simple terms.
Nevertheless, our implementation of the Eta-rule for λse is clean.

Eta-reduction is important to computational problems that arise in applica-
tions of the λ-calculus. For instance, in [6, 3] η-reduction is useful in the treatment
of higher order unification and matching via explicit substitutions calculi.

3 Applications

SUBSEXPL has been successfully used to teach computational notions of the
λ-calculus as well as to compare and understand some properties of explicit
substitutions calculi. In this way, SUBSEXPL can be seen as a tool with both
educational and research purposes. In this section we start by explaining how
the system can be used for educational purposes exploring some computability
notions over the λ-calculus. After that, we explain how it can be used to compare
calculi of explicit substitutions according to the computational effort necessary
to simulate one step of β-reduction and finally we show how SUBSEXPL can be
used to follow the counter-examples of Melliès and Guillaume that establish that
the λσ- and the λse-calculus, respectively, do not preserve strong normalisation.

3.1 Understanding the λ-calculus and its implementations

We have used SUBSEXPL to explain to students questions related to the com-
putational adequacy of the λ-calculus and the problems which arise from the

usual notation with symbolic variables and the implicit notion of substitution.
The computational expressiveness of the λ-calculus can be illustrated by ex-
amples which range from the λ-representation of arithmetic operations such
as addition, multiplication and exponentiation over Church’s numerals to the
λ-representation of basic data structures which include booleans and computa-
tional commands and operators such as if-then-else, iteration and recursion. All
this was done in the spirit of [4].

As a concrete example, we consider an expression for computing the fac-
torial function. This simple exercise takes a lot of effort, because students are
neither familiar with the notation nor with the operational semantics of the λ-
calculus. But implementing this class of exercises is necessary because this gives
the real flavour of the computational power of the λ-calculus. By using SUB-
SEXPL over EMACS we can very quickly implement these functions: Initially, we
create abbreviations for the needed operators and functions; afterwards, we com-
pound these operators and functions in order to complete the desired function.
We illustrate how this is done for the case of the factorial function. Basically,
this function is implementing by defining an iteration operator TH given by
λp.〈S+(p true), H(p true)(p false)〉, where S+ is the successor function, i.e.,
S+ = A+C1 and H is a convenient function that does the right job. The result
of applying TH to 〈Ci, Cf(i)〉 is the pair 〈Ci+1, Cf(i+1)〉, where f references the
function implemented by the iteration mechanism, the first component of the
pair is a counter for the iteration step and the second one is the value of the
desired function at that step. This iteration operator is then used repeatedly.

Abbreviations 1. The Church numbers are as given before;
2. The booleans true and false correspond to the λ-terms L(L(2)) and L(L(1)),
respectively.
3. 〈M, N〉 represents the pair operator which is given, in the language of SUB-
SEXPL, by the λ-term L(A(A(1,M),N)). Pairs can be applied to booleans, writ-
ten as 〈M, N〉true and 〈M, N〉false and the normal form of these terms are M
and N, respectively.
4. For the case of the factorial function, the adequate operator T is given as TH

above where H is selected as λxy.A∗ y (S+x). It is easy to see that this operator
satisfies the property: T〈Ck, Ck!〉 β-reduces to 〈Ck+1, C(k+1)!〉, and so, applying
repeatedly this mechanism we are counting the number of iteration in the first
component of the pair and computing the associated value of the factorial in
second one.

In the language of SUBSEXPL, the normal form of the operator T for factorial
is given by:
L(L(A(A(1,L(L(A(2,A(A(A(4,L(L(2))),2),1))))),

L(A(A(3,L(L(1))),L(A(2,A(A(A(4,L(L(2))),2),1))))))))

Checking parts of the implementation This step is useful for testing the
functionality of parts of the intended implementation which allows to infer
the functionality of the whole specification. For instance, we can check that

T〈C2, C2!〉 reduces to 〈C3, C3!〉. In the input syntax of SUBSEXPL this is writ-
ten as

T〈C2, C2!〉

8

>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>:

A(

T

8

<

:

L(L(A(A(1, L(L(A(2, A(A(A(4,L(L(2))), 2), 1))))),
L(L(A(A(A(4, L(L(1))), 2), A(A(A(4, L(L(2))),

A(A(4, L(L(1))), 2)), 1)))))))

〈C2, C2!〉

8

>>>>>>>>>>><

>>>>>>>>>>>:

L(A(
A(1,

L(L(A(2, A(2, 1))))
| {z }

C2

),
L(L(A(2, A(2, 1))))
| {z }

C2

))
)

By β-normalisation this part of the implementation can be checked obtaining
the term
L(A(A(1,L(L(A(2,A(2,A(2,1)))))),

L(L(A(2,A(2,A(2,A(2,A(2,A(2,1)))))))))) which corresponds to 〈C3, C3!〉
The repetition mechanism is completed by applying n times the iteration

operator starting from the pair 〈C0, C0!〉. This is done by the term:

A(A(Cn, T), 〈C0, C0!〉) (1)

which reduces to 〈Cn, Cn!〉.
Functionality of all parts of the desired mechanism/function can be checked

by normalisation with SUBSEXPL.

Final function Once enough tests have been ran over SUBSEXPL, the factorial
function can be written as:

L(A(A(A(1, T), 〈C0, C0!〉)
︸ ︷︷ ︸

Match with eq. (1)

, L(L(1))
︸ ︷︷ ︸

false

)

︸ ︷︷ ︸

Selection of the 2nd element of the pair

) (2)

The equation (2), when applied to the Church numeral Cn, β-reduces to Cn!. In
fact, such an application will generate a β-redex in the root of the new term.
Reducing this new term, there is a sub-term of eq. (2) which reduces exactly to
the term corresponding to eq. (1). And, this term we have already showed that
reduces to the pair 〈Cn, Cn!〉. To get the desired result we need to select the
second element of this pair which is done by applying it to false, as previously
explained.

Observe that in the syntax of SUBSEXPL (which corresponds to the one of
the λ-calculus) the expression for factorial (eq. (2)) is incomprehensible:

L(A(A(A(1,L(L(A(A(1,L(L(A(2,A(A(A(4,L(L(2))),2),1))))),

L(L(A(A(A(4,L(L(1))),2),A(A(A(4,L(L(2))),

A(A(4,L(L(1))),2)),1)))))))),L(A(A(1,L(L(1))),

L(L(A(2,1)))))),L(L(1))))

Similarly, other functions can be implemented easily. In fact, notice that from
this construction it is easy (also for students) to infer that the sole thing to be
changed in the whole repetition mechanism is the function H in the definition
of the iteration operator TH . For instance, for computing the function

∑n

i=0 i,
H should be replaced by λxy.A+ y (S+x); for computing the function

∑n

i=0 i2,
H should be replaced by λxy.A+y(A∗(S

+x)(S+x)); etc.

We believe that this kind of experiments is necessary and useful for obtaining
a flavor of the computational power of the λ-calculus. A way to speed-up the
generation of non elementary implementations is by using our system jointly with
an editor for creating the necessary abbreviations, cutting, pasting and testing
for modular constructions of “programs” or functions. In intelligent editors such
as EMACS, these abbreviations can be easily incorporated in new buttons and
short-cut keys, which makes the quick construction of these functions possible.
Some of these experiments are included in the file of examples of the distribution.

The problem of having an implicit notion of substitution involves a com-
plex implementational question because this is not a first-order operation. The
comprehension of the necessity of making substitution an explicit operation is
realised only when students are asked to implement β-contraction. After illus-
trating the computational adequacy of the λ-calculus, problems inherent to its
implementation may be easily pointed out: collisions, confusion, renaming of
variables, etc. Then students realise that substitution is a meta-operation that
must be carefully defined in any correct implementation of the λ-calculus and
are able to truly understand the beauty and usefulness of notational solutions
such as de Bruijn’s indexes and the importance of explicit substitutions calculi.

3.2 Comparing calculi by the simulation of β-reduction

SUBSEXPL has been implemented with the intention of comparing the three
treated calculi of explicit substitutions with respect to the necessary effort to
simulate one-step β-reduction. By applying this system we were able to conclude
that λse is more efficient than the suspension calculus and is incomparable to
the λσ-calculus in the simulation of one-step β-reduction [2]. The efficiency of
λse is justified by the fact that the manipulation of de Bruijn indexes in λse

is directly related to a built-in manipulation of natural numbers and arithmetic
(which is standard in today’s computational environments and programming
languages) whereas in the other two calculi, this is done constructively. Of course
this comparison is interesting, but not conclusive since λse is not completely
adequate for combining steps of β-reduction, which is more natural in λsusp

[15, 18]. But we believe this has to be investigated more carefully, since some
variations of λse like λt ([13]), which is a calculus à la λse but which updates à
la λσ, can allow this combination in the λσ family of calculi.

3.3 Understanding properties of explicit substitutions

SUBSEXPL has been used as a tool for understanding properties of explicit sub-
stitutions calculi. This is illustrated by examining the property of Preservation
of Strong Normalisation (PSN).

To illustrate the use of SUBSEXPL in understanding properties of explicit
substitution calculi, we explain how one can follow(/check) papers which prove
some properties of these calculi. In particular, we follow the proofs of non PSN
of λσ and λse given in [16] and [8], respectively. By examining these counter-
examples in SUBSEXPL, firstly, one can animate the generation of an infinite
derivation in the associated substitution calculi starting from a well typed term
of the pure λ-calculus. Secondly, one can try to generate infinite derivations of
β-reductions from these λ-terms, concluding (the most critical of them) that this
is impossible. This last step is achieved without necessarily knowing that there
are no infinite (β-)derivations in the λ-calculus starting from well typed terms. In
this way it is possible to simultaneously understand the importance of the PSN
property as well as why it does not hold in these two calculi. The detailed steps
for running Guillaume’s counter-example can be found in the tutorial distributed
with the system.

The counter-example of Melliès To follow the counter-example in the λσ-
calculus, consider the well typed pure λ-term written in de Bruijn’s notation
as λ((λ(λ1)((λ1)1))((λ1)1)). The corresponding term in the language of SUB-
SEXPL is given by

L(A(L(A(L(1),A(L(1),1))),A(L(1),1)))

The infinite reduction is generated by applying an adequate strategy which
mixes rules of the associated calculus σ with the rule Beta which initiates the
simulation of one step β-reduction. The whole derivation, with the usual gram-
mar of the λσ-calculus, is given at the end of this subsection according to the
numbering of steps given in the following tables.

step rule position

1 1 111
2 1 1
3 4 1

At this point,
L(Sb(1,Cp(Pt(A(L(1),1),Id),Pt(A(L(1),1),Id)))) is the current term. Let
us define recursively:

s 1 = Pt(A(L(1),1),Id)

s 2 = Cp(Up,Pt(Sb(1,s 1),Id))

= Cp(Up,Pt(Sb(1,Pt(A(L(1),1),Id)),Id))

s 3 = Cp(Up,Pt(Sb(1,s 2),Id))

= Cp(Up,Pt(Sb(1,Cp(Up,Pt(Sb(1,Pt(A(L(1),1),Id)),Id))),Id))

...

s i = Cp(Up,Pt(Sb(1,s (i-1))),Id))

With this definition, we can write the current term as L(Sb(1,Cp(s 1,s 1))).
At this point, applying the Map transition at position 12 the sub-term s 1 is
duplicated. And we get L(Sb(1,Pt(Sb(A(L(1),1),s 1),Cp(Id,s 1)))). Note
that the second occurrence of s 1 is vacuous, in the sense that it can be eas-
ily eliminated by the rule VarCons. The key idea of Melliès is to maintain this
second occurrence of s 1 and to propagate the first occurrence as follows:

step rule position

5 2 121
6 9 122
7 3 1211

Now the current term is L(Sb(1,Pt(A(L(Sb(1,Pt(1,Cp(s 1,Up)))),

Sb(1,s 1)),s 1))) and again we can apply the Beta rule and then compose the
two substitutions:

step rule position

8 1 121
9 4 121

The next 3 steps duplicate the sub-term Pt(Sb(1,Pt(A(L(1),1),Id)),Id)

and generate the term s 2 = Cp(Up,Pt(Sb(1,Pt(A(L(1),1),Id)),Id)) which
have inside an occurrence of s 1:

step rule position

10 8 1212
11 5 12121
12 7 12122

At this point, L(Sb(1,Pt(Sb(1,Pt(Sb(1,s 1),Cp(s 1,s 2))),s 1))) be-
comes the current term. It contains an occurrence of Cp(s 1,s 2). By repeating
the same sequence of rules, we will get a term with the sub-term Cp(s 2,s 3).

step rule position step rule position

13 8 12122 18 4 121221
14 2 121221 19 8 1212212
15 9 121222 20 5 12122121
16 3 1212211 21 7 12122122
17 1 121221

Here, it is easy to see how an infinite reduction can be built from the initial
well typed term in the λσ calculus of explicit substitutions. In the following we
give the corresponding reduction generated in Latex format by SUBSEXPL:

0 (λ((λ((λ1)((λ1)1)))((λ1)1)))→Beta

1 (λ((λ1[(((λ1)1)·id)])((λ1)1)))→Beta

2 (λ1[(((λ1)1)·id)][(((λ1)1)·id)])→Clos

3 (λ1[((((λ1)1)·id)
| {z }

s1

◦(((λ1)1)·id)
| {z }

s1

)])→Map

4 (λ1[(((λ1)1)[(((λ1)1)·id)]·(id◦(((λ1)1)·id)))])→App

5 (λ1[(((λ1)[(((λ1)1)·id)]1[(((λ1)1)·id)])·(id◦(((λ1)1)·id)))])→IdL

6 (λ1[(((λ1)[(((λ1)1)·id)]1[(((λ1)1)·id)])·(((λ1)1)·id))])→Abs

7 (λ1[(((λ1[(1·((((λ1)1)·id)◦↑))])1[(((λ1)1)·id)])·(((λ1)1)·id))])→Beta

8 (λ1[(1[(1·((((λ1)1)·id)◦↑))][(1[(((λ1)1)·id)]·id)]·(((λ1)1)·id))])→Clos

9 (λ1[(1[((1·((((λ1)1)·id)◦↑))◦(1[(((λ1)1)·id)]·id))]·(((λ1)1)·id))])→Map

10 (λ1[(1[(1[(1[(((λ1)1)·id)]·id)]·(((((λ1)1)·id)◦↑)◦(1[(((λ1)1)·id)]·id)))]·(((λ1)1)·id))])

→V arCons

11 (λ1[(1[(1[(((λ1)1)·id)]·(((((λ1)1)·id)◦↑)◦(1[(((λ1)1)·id)]·id)))]·(((λ1)1)·id))])→Assoc

12 (λ1[(1[(1[(((λ1)1)·id)]·((((λ1)1)·id)
| {z }

s1

◦(↑◦(1[(((λ1)1)·id)]·id))
| {z }

s2

))]·(((λ1)1)·id))])→Map

13 (λ1[(1[(1[(((λ1)1)·id)]·(((λ1)1)[(↑◦(1[(((λ1)1)·id)]·id))]·

(id◦(↑◦(1[(((λ1)1)·id)]·id)))))]·(((λ1)1)·id))])→App

14 (λ1[(1[(1[(((λ1)1)·id)]·(((λ1)[(↑◦(1[(((λ1)1)·id)]·id))]1[(↑◦(1[(((λ1)1)·id)]·id))])·
(id◦(↑◦(1[(((λ1)1)·id)]·id)))))]·(((λ1)1)·id))])→IdL

15 (λ1[(1[(1[(((λ1)1)·id)]·(((λ1)[(↑◦(1[(((λ1)1)·id)]·id))]1[(↑◦(1[(((λ1)1)·id)]·id))])·

(↑◦(1[(((λ1)1)·id)]·id))))]·(((λ1)1)·id))])→Abs

16 (λ1[(1[(1[(((λ1)1)·id)]·(((λ1[(1·((↑◦(1[(((λ1)1)·id)]·id))◦↑))])1[(↑◦(1[(((λ1)1)·id)]·id))])·

(↑◦(1[(((λ1)1)·id)]·id))))]·(((λ1)1)·id))])→Beta

17 (λ1[(1[(1[(((λ1)1)·id)]·(1[(1·((↑◦(1[(((λ1)1)·id)]·id))◦↑))][(1[(↑◦(1[(((λ1)1)·id)]·id))]·id)]·

(↑◦(1[(((λ1)1)·id)]·id))))]·(((λ1)1)·id))])→Clos

18 (λ1[(1[(1[(((λ1)1)·id)]·(1[((1·((↑◦(1[(((λ1)1)·id)]·id))◦↑))◦(1[(↑◦(1[(((λ1)1)·id)]·id))]·id))]·

(↑◦(1[(((λ1)1)·id)]·id))))]·(((λ1)1)·id))])→Map

19 (λ1[(1[(1[(((λ1)1)·id)]·(1[(1[(1[(↑◦(1[(((λ1)1)·id)]·id))]·id)]·

(((↑◦(1[(((λ1)1)·id)]·id))◦↑)◦(1[(↑◦(1[(((λ1)1)·id)]·id))]·id)))]·
(↑◦(1[(((λ1)1)·id)]·id))))]·(((λ1)1)·id))])→V arCons

20 (λ1[(1[(1[(((λ1)1)·id)]·(1[(1[(↑◦(1[(((λ1)1)·id)]·id))]·
(((↑◦(1[(((λ1)1)·id)]·id))◦↑)◦(1[(↑◦(1[(((λ1)1)·id)]·id))]·id)))]·

(↑◦(1[(((λ1)1)·id)]·id))))]·(((λ1)1)·id))])→Assoc

21 (λ1[(1[(1[(((λ1)1)·id)]·(1[(1[(↑◦(1[(((λ1)1)·id)]·id))]·
((↑◦(1[(((λ1)1)·id)]·id))
| {z }

s2

◦(↑◦(1[(↑◦(1[(((λ1)1)·id)]·id))]·id))
| {z }

s3

))]·

(↑◦(1[(((λ1)1)·id)]·id))))]·(((λ1)1)·id))])

The above steps are stored in the file mellies distributed with the source
code of SUBSEXPL and can be executed automatically with the command
./subsexpl.bin mellies (or ./ledit.out ./subsexpl.bin mellies). In this
case, the output dvi file automatically generated is mellies-ls.dvi. Note that
the notation s1, s2, s3 and the numeration of the steps are used here for ease
reading but is not automatically generated in the above dvi file. The latex code
of the output can be found in the file mellies-ls. The mellies-README file
(distributed with the source code) explains these details and some additional
information about generating the corresponding postscript file.

4 Conclusions and future work

We presented the system SUBSEXPL which is an Ocaml implementation of
the rewriting rules of the λσ, the λse and the suspension calculi of explicit
substitutions, although according to the current structure the inclusion of other
explicit substitutions calculi can be easily done.

We showed how the system has been applied both to educational and research
purposes. Its educational uses include:

– the visualisation of the computational adequacy of the λ-calculus via speci-
fication of numerical functions and programming operators;

– the visualisation of (non trivial) properties of the λ-calculus such as non
termination and the normalisation theorem;

– the illustration of the problem of implicitness of the substitution operator
and how this is resolved in real implementations by explicit substitutions
calculi; etc.

Its research applications include:

– analysis of non trivial properties of explicit substitutions calculi;
– comparing calculi of explicit substitutions.

The former was illustrated by showing that one can check the proofs of Melliès
and Guillaume (included in the tutorial distributed with the source code of the
system) of the fact that neither λσ nor λse preserve strong normalisation using
the system. The latter by showing how the system assisted us in the proof that
λse is more efficient than the suspension calculus and is incomparable to the
λσ-calculus in the simulation of one-step β-reduction [2].

Furthermore, SUBSEXPL gives correct implementations of η-reduction for
each of the three explicit substitutions calculi treated here. For the λse-calculus
this implementation is also clean, but for λσ and λsusp (and by the nature of
these calculi), the simulation of one-step η-reduction requires the use of rewriting
rules that are not strictly related to this one-step simulation.

Other authors have presented tools that manipulate λ-expressions in a similar
way; for example Huet presented a tool and illustrated how this can be applied
for assisting in the understanding of non trivial properties of the λ-calculus
such as Böhm’s theorem [10]. The novelty of SUBSEXPL with relation to these
applications is that it follows the de Bruijn’s philosophy of avoiding names, which
makes our tool also adequate for assisting in the reasoning about properties of
explicit substitution calculi.

As any modern computational system, SUBSEXPL is in constant develop-
ment and new features should be included in future versions. Among these fea-
tures, we can point out the inclusion of variations of the suspension calculus
that combine applications of β-reduction and the development of new modules
for dealing with simply typed λ-terms and λ-calculus with names. Moreover, we
will develop an EMACS mode which may ease the inclusion of some common
structures used to build more complex terms.

Acknowledgments: We would like to thank Manuel Maarek and Stéphane
Gimenez for the useful help with Ocaml and suggestions to improve the system.

References

1. M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy. Explicit Substitutions. J. of
Func. Programming, 1(4):375–416, 1991.

2. M. Ayala-Rincón, F.L.C. de Moura, and F. Kamareddine. Comparing and imple-
menting calculi of explicit substitutions with eta-reduction. To appear in Special
Issue of Annals of Pure and Applied Logic - WoLLIC 2002 selected papers, 2005.

3. M. Ayala-Rincón and F. Kamareddine. Unification via the λse-Style of Explicit
Substitution. The Logical Journal of the Interest Group in Pure and Applied Logics,
9(4):489–523, 2001.

4. H. P. Barendregt. The Lambda Calculus : Its Syntax and Semantics (revised edi-
tion). North Holland, 1984.

5. D. Briaud. An explicit Eta rewrite rule. In Typed lambda calculi and applications,
volume 902 of LNCS, pages 94–108. Springer, 1995.

6. G. Dowek, T. Hardin, and C. Kirchner. Higher-order Unification via Explicit
Substitutions. Information and Computation, 157(1/2):183–235, 2000.

7. F. L. C. de Moura, F. Kamareddine and M. Ayala-Rincón. Second order matching
via explicit substitutions. In 11th Int. Conf. on Logic for Programming Artificial
Intelligence and Reasoning, volume 3452 of LNCS. pages 433–448, Springer, 2005.

8. B. Guillaume. The λse-calculus Does Not Preserve Strong Normalization. J. of
Func. Programming, 10(4):321–325, 2000.

9. T. Hardin. Eta-conversion for the languages of explicit substitutions. In Algebraic
and logic programming, volume 632 of LNCS, pages 306–321. Springer, 1992.

10. G. Huet. An analysis of böhm’s theorem. TCS, 121:145–167, 1993.
11. F. Kamareddine and R. P. Nederpelt. A useful λ-notation. TCS, 155:85–109, 1996.
12. F. Kamareddine and A. Ŕıos. A λ-calculus à la de Bruijn with Explicit Substitu-

tions. In Proc. of PLILP’95, volume 982 of LNCS, pages 45–62. Springer, 1995.
13. F. Kamareddine and A. Ŕıos. Relating the λσ- and λs-Styles of Explicit Substi-

tutions. Journal of Logic and Computation, 10(3):349–380, 2000.
14. D. Kesner. Confluence of extensional and non-extensional λ-calculi with explicit

substitutions. TCS, 238(1-2):183–220, 2000.
15. C. Liang and G. Nadathur. Tradeoffs in the Intensional Representation of Lambda

Terms. In S. Tison, editor, Rewriting Techniques and Applications (RTA 2002),
volume 2378 of LNCS, pages 192–206. Spinger-Verlag, 2002.

16. P.-A. Melliès. Typed λ-calculi with explicit substitutions may not terminate in
Proceedings of TLCA’95. LNCS, 902, 1995.

17. G. Nadathur. A Fine-Grained Notation for Lambda Terms and Its Use in Inten-
sional Operations. J. of Func. and Logic Programming, 1999(2):1–62, 1999.

18. G. Nadathur. The Suspension Notation for Lambda Terms and its Use in Met-
alanguage Implementations. In Proceedings Ninth Workshop on Logic, Language,
Information and Computation (WoLLIC 2002), volume 67 of ENTCS, 2002.

19. G. Nadathur and D. S. Wilson. A Notation for Lambda Terms A Generalization
of Environments. TCS, 198:49–98, 1998.

20. R. P. Nederpelt, J. H. Geuvers, and R. C. de Vrijer. Selected papers on Automath.
North-Holland, 1994.

21. A. Ŕıos. Contribution à l’étude des λ-calculs avec substitutions explicites. PhD
thesis, Université de Paris 7, 1993.

