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Abstract

SUBSEXPL is a system originally developed to visualise reductions, simplifications and normal-
isations in three important calculi of explicit substitutions and has been applied to understand
and explain properties of these calculi and to compare the different styles of making explicit the
substitution operation in implementations of the λ-calculus in de Bruijn notation. The system
was developed in OCaml and now it can be executed inside the Emacs editor within a new mode
which allows a very easy interaction. The use of special symbols makes its application very useful
for students because the notation on the screen is as close as possible to that on the papers. In
addition to λ-calculus and explicit substitutions calculi in de Bruijn notation, now it is possible to
work with the λ-calculus with variables as names and with several calculi of explicit substitutions
using also representation of variables with names. Moreover, in contrast to the original version
of the system, that was restricted to three specific calculi of explicit substitution, the new version
allows the inclusion of new calculi by giving as input their grammatical descriptions. SUBSEXPL
has been used with success for teaching basic properties of the λ-calculus and for illustrating the
computational impact of selecting one kind of representation of variables (either names or indices)
and a specific style of making explicit substitutions in real implementations based on the λ-calculus.
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1 Introduction

The system SUBSEXPL [12] was developed in OCaml as a system to simulate
and compare calculi of explicit substitutions in de Bruijn notation (variables
as indices). In this work we present an extension of this system that has many
additional features that simplify the user interaction through a dedicated use
inside Emacs, that allows for the treatment of calculi with variables as names
too and that is much more flexible than the original system, because now it is
possible to insert new calculi by giving as input their grammatical descriptions.

In the last twenty years, much work has been done in the field of explicit
substitutions [22,1,7,19,25,3,17,10,15,14,2,13,21]. These developments have il-
lustrated the usefulness of explicit substitutions calculi for practical notions
like the implementation of typed functional programming languages [24,29,16]
and higher-order proof assistants [9,27,8,6]. SUBSEXPL concentrates on the
simulation of the application of the rewriting rules citeBaNi98 of different cal-
culi. Some of these calculi were developed using de Bruijn indexes that are
very adequate for implementations because one does not have to deal with
α-equivalence, other calculi use names. Named notation is good for humans
but α-equivalence classes need to be treated carefully. Originally, SUBSEXPL
implemented three important calculi (carefully compared in [2] with help of
earlier prototypes of the system) that use de Bruijn indexes:

(i) The λσ-style [1] which introduces two different sets of entities: one for
terms and one for substitutions.

(ii) The λs-style [19] which makes use of the philosophy of de Bruijn’s Au-
tomath [26] elaborated in the new item notation [18]. The philosophy
states that terms are built by applications (a function applied to an ar-
gument), abstraction (a function), substitution or updating. The ad-
vantages of this philosophy include remaining as close as possible to the
familiar λ-calculus (cf. [18]).

(iii) The suspension calculus [25], which introduces three different sets of enti-
ties: one for terms, one for environments and one for lists of environments.

The implementation of SUBSEXPL with this new extension, so called
SUBSEXPL 2.0, allows the definition of new calculi in just a few steps in both
de Bruijn or named notations. In this way, the user can play with his/her
own calculi, simulate reductions and normalisations, export the latex code,
and have at his/her disposition many other features that were available in the
original implementation.

On the one hand, several of the great challenges involving explicit substitu-
tions calculi were already solved, but on the other hand one can say that they
are not completely understood, and the proposal of SUBSEXPL is to help the
understanding of their properties. In fact, just recently a calculus of explicit
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substitutions that satisfies all the desired computational properties was devel-
oped [21]. The desired properties of an explicit substitutions calculus, say λc,
include:

(a) Simulation of one-step β-reduction: if t→β t
′ then t→+

λc t
′.

(b) Confluence (CR) on open terms (and hence on closed terms): if one
extends the grammar of the calculus with the so called meta-variables,
and M is a term with possible occurrences of meta-variables then, if
M1

∗
λc← M →∗λc M2 then there exists a λ-term M3 such that M1 →∗λc

M3
∗
λc←M2.

(c) Strong Normalisation (SN) for λc-typed terms: If the λc-term can
be typed then t does not have infinite reductions.

(d) Preservation of SN (PSN): if all reductions from the λ-term t are finite
in the λ-calculus then so are all the reductions from t in the λc-calculus.

(e) Full Composition (FC): For all terms t, t′ and variable x, t[x/t′] →∗λc
t{x/t′}. In other words, the implicit substitution implements the explicit
one.

This paper is organised as follows: a complete description of the new
version of SUBSEXPL is given in Section 2. An example on how to define a
new calculus in named notation is presented in subsection 2.1. A calculus in
de Bruijn notation is presented in subsection 2.2 together with the well-known
counter-example of Melliès. In subsection 2.3 we illustrate some educational
applications of the system. We conclude in Section 3.

2 Description of SUBSEXPL

SUBSEXPL 2.0 is an OCaml implementation that uses a syntactic exten-
sion based on the revised syntax provided by the pre-processor Camlp5
(http://pauillac.inria.fr/∼ddr/camlp5/). It permits the definition of
new calculi and its rewriting rules in an easy way because it implements a
generic notion of term based on a first-order signature [5] given by:

type expression =

[ T of string and array expression

| V of string ];

In addition, a notion of a (meta-) capture avoiding substitution, denoted
by {x := N}, and of an explicit unary substitution are available. The meta-
substitution is implemented according to the revised syntax as follows:

value rec replace (x, n) term =

match term with

[ V _ when x = term -> n
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| V _ -> term

| <:generic< L(^y,^m,^t) >> when y = x -> term

| <:generic< L(^y,^m,^t) >> when not(List.mem y

(Variable.free_variables n)) ->

let m = replace (x, n) m

in

<:generic< L(^y,^m,^t) >>

| <:generic< L(^y,^m,^t) >> ->

let fv = Variable.free_variables <:generic< A(^n,^m) >> in

let name = ref (Variable.next_name y) in

let z = do {

while (List.mem name.val fv) do {

name.val := Variable.next_name name.val }

;

name.val } in

let m = replace (y, z) m in

let m = replace (x, n) m

in

<:generic< L(^z,^m,^t) >>

| T name args -> T name (Array.map (replace (x, n)) args) ]

The implemented notion of explicit substitution, whose reserved notation
is [x := N], allows the definition of new calculi of explicit substitutions that
uses unary substitutions. In the next section we present, as an example, a
calculus of explicit substitutions with such an unary substitution. The pre-
sentation is user friendly in the sense that it is as close as possible to the paper
and pencil representation and non-ascii symbols like λ and arrows are provided
by the x-symbol package that is installed with SUBSEXPL. The interface used
is the GNU Emacs system (http://www.gnu.org/software/emacs/) which
is an extensible text-editor with support text editing. A SUBSEXPL emacs
mode were developed to allow an easier way to perform reductions. This emacs
mode, shown in Figure 1, allows among other things, the evaluation of one
expression, of a region or of the whole buffer, as well as, to start/interrupt
or kill the SUBSEXPL interactive mode. SUBSEXPL commands can be ex-
ecuted directly in the SUBSEXPL interactive mode, or can be typed inside a
subsexpl file (i.e., file with extension .se) before being evaluated.

In the next subsection, one can see how easy it is to define a calculus with
names and unary substitution in the SUBSEXPL system.

2.1 The λex calculus

The λex calculus [21] is a calculus with explicit substitutions that uses named
notation. The λex calculus is obtained by extending the λx calculus [22,28,7]
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Fig. 1. The SUBSEXPL menu

with one rewriting rule to specify the composition of dependent substitutions
and one equation to specify the commutation of independent substitutions, as
follows:

t ::= x | (t t) | (λx.t) | t[x/t]
t[x/u][y/v] =C t[y/v][x/u], if y 6∈ fv(u) & x 6∈ fv(v)

(λx.t) u →B t[x/u]

x[x/u] →Var u

t[x/u] →Gc t if x 6∈ fv(t)

(t u)[x/v] →App t[x/v] u[x/v]

(λy.t)[x/v] →Lam λy.t[x/v]

t[x/u][y/v] →Comp t[y/v][x/u[y/v]] if y ∈ fv(u)

The specification of the λex calculus in the SUBSEXPL system is pre-
sented in Figure 2. The selection of the classic syntax that is loaded in the
beginning of the file lambda ex.se shown on the top of Figure 2 allows the
user to define a calculus in named notation. The presentation of the rules
follows exactly the “paper and pencil” one, and the current limitations of the
current implementation are that equations and conditional rules cannot be
expressed yet. In order to perform a correct reduction from a system with
conditional rules, the system leaves to the user the decision of when or not
the conditional rule is really applicable.

As an example, consider the (one-step) reduction of the term
(λx.(x y)(λyz.(z λu.u)))w shown at the bottom of Figure 2. The command
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Fig. 2. A reduction in the λex calculus

#match-rules matchs all the rules defined so far against the given term. The
system lists all the rules with the corresponding positions that can be applied
up to conditions; in this case, only the B rule can be applied at the root po-
sition (denoted by ε) of the term. In order to apply the rule B at the root
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of the term, we use the command #→ B ε (typed as #\to B \epsilon), and
the reduct (x y λ y.λ z.z λ u.u)[x:=w] is displayed exactly as one would
do with paper and pencil. At this point, the command #match-rules returns
that both the rules App and Gc can be applied at the root of the current term.
Since Gc is a conditional rule, the user must first check if the condition is satis-
fied. In this case, it is not satisfied because the variable x has a free occurrence
in the term (x y λ y.λ z.z λ u.u) and the sole option is to apply the rule
App and we get the term (x y)[x:=w] ((λy.λz.z λu. u)[x:=w]). At this
point the command #match-rules returns one App-redex at position 1, two
Gc-redexes at positions 1 and 2, and a Lam-redex at position 2. The rule Gc

cannot be applied at position 1 due to the side condition, but we can apply
it at position 2, since x does not occur in the term λy.λz.z λu. u. The
pending substitution [x:=w] needs to be propagated over the subterms x and
y, and finally after an application of Gc and Var we get the normal form w y

λ y.λ z.z λ u.u. After that, one can see that the command #match-rules

returns an empty string because there is no redex (reducible expression) left,
and no rule can be applied. The commands can be typed directly in the
SUBSEXPL interactive mode, but if it is important to store the rules and the
reduction then all this information must be typed in a file with extension .se

(cf. Figure 2).

Fig. 3. The λσ-calculus
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2.2 Calculi in de Bruijn notation

The so called de Bruijn notation [11] uses indexes to represent bound and free
variables. In this notation, free variables are stored in a list that represents the
context of the term, and its reference corresponds to its position in this list.
For instance, the λ-term λxy.xv(λz.yxzw) is represented by λλ2 3(λ2 3 1 5)
in the context [v, w], and as λλ2 4(λ2 3 1 4) in the context [w, v]. As an
example of a calculus in de Bruijn notation, consider the λσ-calculus [1] that
is defined by the following grammar and rules:

terms t ::= 1 | (t t) | (λt) | t[s]

substitutions s ::= id | ↑ | a.s | s ◦ s

(Beta) (λa b) −→ a [b · id]

(App) (a b)[s] −→ (a [s]) (b [s])

(Abs) (λa)[s] −→ λ(a [1 · (s ◦ ↑)])

(Clos) (a [s])[t] −→ a [s ◦ t]

(VarCons) 1 [a · s] −→ a

(Id) a[id] −→ a

(Assoc) (s ◦ t) ◦ u −→ s ◦ (t ◦ u)

(Map) (a · s) ◦ t −→ a [t] · (s ◦ t)

(IdL) id ◦ s −→ s

(IdR) s ◦ id −→ s

(ShiftCons) ↑ ◦ (a · s) −→ s

(VarShift) 1· ↑ −→ id

(SCons) 1[s] · (↑ ◦ s) −→ s

(Eta) λ(a 1) −→ b if a =σ b[↑]

The rewriting system of the λσ-calculus is defined directly in a text file with
extension (.se) as shown in Figure 3. The directives #select-output-syntax
sigma and #select-input-syntax sigma concerns the definition of the gram-
mar. The former directive defines the way SUBSEXPL will output terms in
the buffer, and the latter, the input grammar. This simple and friendly inter-
action allow us to give a much more readable presentation of Melliès’s counter-
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example than the one presented in previous version of the system [12].

2.2.1 Melliès counter-example

In [23], Melliès proved that the λσ-calculus does not preserve strong
normalisation. This proof consists in building, by an adequate combi-
nation of the rules, an infinite derivation from the well-typed λ-term
λ((λ(λ1)((λ1)1))((λ1)1)). In Figure 4, one can see the initial steps of this
infinite derivation with the very same notation that one would do in paper.
This derivation corresponds to two applications of the duplication lemma
as presented in [23]. The duplication lemma states that, for any λ-term t,
(λ1)1 · id ◦ t→+

λσ 1[1[t] · t◦ ↑ ◦(1[t] · id)] · t. In line 7 of Figure 4, the generated
term contains (λ1)1 · id ◦ (λ1)1 · id as subterm which is obtained after
two applications of the rule beta followed by the rule clos that combines
two pending substitutions into a new one. By the duplication lemma, this
subterm reduces to 1[1[(λ1)1 · id] · ((λ1)1 · id)◦ ↑ ◦(1[(λ1)1 · id] · id)] · (λ1)1 · id
that is a subterm of the term that is in the line 25. The application of the
duplication lemma is a sequence of 9 rewriting steps given by the application
of the rules map, app, idL, abs, beta, clos, map, varCons and assoc, in
this order. Following the reduction in Figure 4 one can see two successive
applications of the duplication lemma: the first one starts at line 8 with an
application of the rule map at position 12 that propagates the substitution
(λ 1) 1 · id over a list of terms. The app rule applied at position 123,
propagates the substitution (λ 1) 1 · id over an application. The rule idL

at position 122 removes an occurrence of the substitution id in the left of
a composition of substitutions. The rule abs at position 1231 generates the
new beta-redex at position 121 that is reduced in next step. The two pending
substitutions 1·((λ 1) 1· id)◦ ↑ and 1[(λ 1) 1· id]· id are combined by
an application of the rule clos at position 121. The next application of map
at position 1212 propagates the subterm 1[(λ 1) 1· id]· id over a list of
terms, and the rule varCons at position 12121 eliminates the substitution id,
and finally the rule assoc applied at position 12122 generates a term that
has
1[1[(λ 1) 1·id]· ((λ 1) 1·id)◦ ↑ ◦ 1[(λ 1) 1·id]·id]· (λ 1) 1· id
as subterm that has exactly the expected form 1[1[t] · t◦ ↑ ◦(1[t] · id)] · t for
t = (λ1)1 · id. The advantage of this presentation is the latex-like notation
that is presented in the subsexpl emacs mode. In this way, it easier to follow
reductions that can also be exported as a latex files.

2.3 Teaching λ-calculus with SUBSEXPL

The system SUBSEXPL have been used in both graduate and undergraduate
courses to teach the (untyped) λ-calculus. Since the notation used by SUB-
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Fig. 4. The counter-example of Melliès

SEXPL is exactly the same as that presented in classes, this tool turned out
to be a very useful support for students. The initial example that makes stu-
dents realise how basic operations can be done in a language with a grammar
as simple as

M ::= x | (M M) | (λx.M)(1)

concerns the operations with the so called Church numerals that are λ-
terms that codify natural numbers in the λ-calculus as follows: Cn ≡
λfx.f(f(f...(fx))), where the body of the abstraction has n occurrences of
the parameter f . On the top of Figure 5, one can see the file church.se that
contains the presentation of the β- and η-reductions. In the next lines of the
same file, identifiers are used to codify arbitrary λ-terms: for instance, the
λ-term λ x y . y x that represents the exponential operator for Church
numerals is identified by Aexp by typing Aexp \equiv \lambda x y . y x.
Similarly, the second and the third Church numerals are identified by C2 and
C3 in the file church.se.

As a running example, we will evaluate the expression Aexp C2 C3 that
will compute the exponential of C2 to the power C3. The result after running
the subsexpl toplevel and replacing all the identifiers by the corresponding
λ-term (#expand-macros) is shown in the bottom of Figure 5. The positions
where the defined rules (in this case, β and η) can be applied are listed by
the command #match-rules: initially, there is only one β-redex at position
1, and there are no η-redexes. The reduction can be performed stepwise, or
a normalisation strategy can be applied and the system outputs the whole
reduction that ends with a normal form.
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Fig. 5. Church Numerals

Teaching the adequability of the λ-calculus can also benefit the use of SUB-
SEXPL. The use of identifiers to represent complex and long λ-terms allows
a clear presentation of important notions like recursion. In fact, at the top of
Figure 6, one can see a short presentation of the factorial function built from
the fixpoint operator Y and more basic constructions like the predicate ISZERO
that checks if its argument is the Church numeral zero, the multiplication op-
erator MULT and the predecessor function PRED. The bottom of Figure 6 shows
the tail of the rather long computation of the term FACT C3 that corresponds
to the factorial of 3: the last term of the reduction is the Church numeral 6,
as expected. Such constructions can be done step by step with the students
who can now follow more complex constructions and run their own examples.
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Fig. 6. Towards the expressive power of the λ-calculus

3 Conclusions and Future Work

We presented an extension of the SUBSEXPL system which
is an OCaml implementation for comparing, simulating and
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studying λ-calculus and explicit substitutions calculi [20]. The
source code is freely available at the SUBSEXPL web page:
http://www.cic.unb.br/∼flavio/subsexpl/index.html.

We showed how SUBSEXPL has been used for both educational and re-
search purposes with calculi using either variables as names or de Bruijn in-
dices. In this extension, the user can easily define new calculi of explicit sub-
stitutions, simulate reductions and normalisations, export latex code, among
other facilities. The notation presented in the Emacs buffer is a latex-like no-
tation and the user can use alias in order to represent complex λ-terms. This
facility is particularly important for teaching theory of the λ-calculus, basic
properties of variations of the λ-calculus as well as elaborated computational
operations such as iteration and recursion implemented in variations of the
λ-calculus in several styles of explicit substitutions.

Several real specifications and implementations of calculi of explicit sub-
stitutions in modern systems use a new hybrid approach known as locally
nameless] [4] in which bound variables are represented by de Bruijn indexes,
and free variables by names. This approach benefits the unitary representation
of classes of α-equivalent terms without the need of context for free variables.
In its future versions, SUBSEXPL will allow the definition of calculi using the
locally nameless approach.
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Functional Programming, 1(4):375–416, 1991.

[2] M. Ayala-Rincón, F.L.C. de Moura, and F. Kamareddine. Comparing and implementing calculi
of explicit substitutions with eta-reduction. Annals of Pure and Applied Logic, 134:5–41, 2005.

[3] M. Ayala-Rincón and C. Muoz. Explicit Substitutions and All That. Revista Colombiana de
Computación, 1(1):47–71, 2000.
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