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Abstract—This paper looks at how ancient mathematicians
(and especially the Pythagorean school) were faced by problem-
s/paradoxes associated with the infinite which led them to juggle
two systems of numbers: the discrete whole/rationals which were
handled arithmetically and the continuous magnitude quantities
which were handled geometrically. We look at how approxima-
tions and mixed numbers (whole numbers with fractions) helped
develop the arithmetization of geoemtry and the development
of mathematical analysis and real numbers.
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I. WHY DID IT TAKE SO LONG TO DEVELOP REAL
NUMBERS AND ANALYSIS?

God made the integers; all else is the work of man.
Kronecker

The concepts and language of mathematics have been under
development slowly but surely since ancient times. Despite
the obstacles, this development uncovered fascinating results,
which include as late as the 20th century, a sound foundation
of the theory of the infinitesimal (which is in essence the
foundation of mathematics) and the theory of the computable.
Well before then, Leibniz (1646–1717) conceived of auto-
mated deduction where he wanted to find a language L
and a method that could carry out proof checking/finding to
determine the correctness of statements in L.1 Leibniz was
frustrated by the limitations in expressing thoughts:

If we could find characters or signs appropriate for express-
ing all our thoughts as definitely and as exactly as arithmetic
expresses numbers or geometric analysis expresses lines,
we could in all subjects in so far as they are amenable to
reasoning accomplish what is done in Arithmetic/Geometry.

Leibniz

But at the time of Leibniz, expressibility in Arithmetic was far
from complete and the real numbers were still not developed.
The later development of real analysis2 would be based on
the real numbers and the arithmetisation of geometry.

1Now we know, due to later results by Gödel, Church and Turing, that
such a method can not work for every statement.

2Thanks to Euler who converted the calculus of Newton and Leibniz from
a geometrical field to a field where mathematical formulae are analysed.

A. From naturals to intergers and rationals

Natural numbers were long understood, but it may come
as a surprise that as late as the 14th century, negative
numbers were not known in Europe. In Italy, a double
entry bookkeeping system compensated for their absence.
Accounts in which debits may be greater than credits were
compared without using negative integers. If c and d are in
N+, then account c 	 d has credit c and debit d. Define
accounts = {m	n |m,n, p, q ∈ N+}. Just like the arithmetic
(N+,=,+, ·, 1) on natural numbers N+ = {1, 2, · · · } is
defined with equality =, addition +, multiplication ·, and
identity element 1 for ·, we define (accounts,∼=,+c, ·c) by:
• m	 n ∼= p	 q iff m+ q = n+ p.
• (m	 n) +c (p	 q) = (m+ p)	 (n+ q).
• (m	 n) ·c (p	 q) = (mp+ nq)	 (mq + np).

The integers (Z,+i, ·i, 0i, 1i,−α) are then defined from the
equivalence classes: [m	 n] = {p	 q : p	 q ∼= m	 n} by:
• Z = {[m	 n] |m,n ∈ N+}.
• [(m	 n)] +i [(p	 q)] = [(m	 n) +c (p	 q)].
• [(m	 n)] ·i [(p	 q)] = [(m	 n) ·c (p	 q)].
• Identity 0i for +i: for any m, n in N+, [m	m] = [n	n].
• Identity 1i for ·i: take 1i = [(p+1)	p] for any p ∈ N+.
• Inverse for +i: if α = [m	 n], then −α = [n	m].

Like we defined (Z,+i, ·i, 0i, 1i,−α) from (accounts,∼=
,+c, ·c) which were defined from (N+,=,+, ·, 1), we can
define positive rational numbers (Q+,+r, ·r, 1r,a−1) from
fractions = {mn | m,n ∈ N+} where the arithmetic of
(fractions,�,+f , ·f ) is defined from (N+,=,+, ·, 1) by:
• m
n �

p
q if and only if mq = np,

• m
n +f

p
q =

mq + np
nq and m

n ·f
p
q =

mp
nq .

Then, we define (Q+,+r, ·r, 1r,a−1) from equivalence
classes
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• Identity 1r for ·r: take 1r =
[

1
1

]
.

• Inverse for +r:
[m
n
]−1

=
[ n
m
]
.

The steps to build (Z,+i, ·i, 0i, 1i,−α) and
(Q+,+r, ·r, 1r,a−1) lead to a generalisation as follows:



Definition 1: If (S, ◦) is a Commutative Cancellation
Semigroup3 (CCS), then build (S × S,≈, ∗) as follows:
• Define congruence ≈ on S × S based on (S, ◦) by:

(x, y) ≈ (u, v) iff x ◦ v = y ◦ u.
• The operation ∗ on S × S inherited from ◦ is defined

by (x, y) ∗ (u, v) = (x ◦ u, y ◦ v).
Then, define [(x, y)] = {(u, v) : (u, v) ≈ (x, y)} and Sd =
{[(x, y)] : x, y ∈ S}, and build (sd, ◦d, ed, a−1) as follows:
• Define [(x, y)]ed[(u, v)] = [(x, y) ∗ (u, v)] = [(x ◦ u, y ◦
v)]. Note that (Sd, ◦d) is a CCS.

• Note that if x ∈ S, then xd = [(y ◦ x, y)] ∈ Sd.
• Identity: Define ed to be [(x, x)] for some x in S. For

all a, we have ed ◦d a = a ◦d ed = a.
• Inverses: If a = [(x, y)], define a−1 to be [(y, x)]. We

have a ◦d a−1 = ed = a−1 ◦d a.
Comparing the theory of fractions and the theory of accounts
suggests that we can define a unified theory for adding
inverses and, if none is present, identity elements.

CCS (N+,+) (N+, ·)
inverses × ×
Identity element ×

√

CCS (Z,+i) (Q+, ·r)
with identity and inverses

√ √

Just like we built (Z,+) with identity 0i and inverses −α
from (N+,+), we can build (Q,+ri) with identity and
inverses from (Q+,+r). But we cannot build R this way. The
real numbers need to be constructed (using approximations
and limits like Dedekind cuts, Cauchy sequences, etc.). This
brings us to what is the foundations of mathematics? The
foundation of mathematics is reasoning about whether the
infinitesimal is sound. Euclid’s Elements developed math-
ematics in geometric terms and anything not expressible
in such terms was excluded. Geometry could accommodate
the whole numbers and their ratios as well as irrational
magnitudes. Think for example of the spiral of Theodorus of
Cyrene which established that the square roots of non square
integers from 3 to 17 are irrationals.

√
2

√
3

√
4√

5
√

6
√

7

√
8
√

9
√

10√
11√12

√
13

√
14

√
15

√
16

√
17

B. Proofs by Pebbles/Diagrams

Knorr [5] suggests that the original proofs were proofs as
diagrams using pebble diagrams. It is known that the ancient
Greeks did arithmetic by counting with pebbles, and pebble

3I.e., ◦ satisfies closure, commutativity, associativity and cancellation law
on S where cancellation means that a ◦ b = a ◦ c implies b = c.

diagrams give these calculations by representing the pebbles
by using small circles.

Example 1: Here are some statements and their proofs:
• The square of an odd number is 1 + a multiple of 4.

The square of an even number is a multiple of 4.

• If as many odd numbers as we please be added together,
and their multitude be even, then the sum is even.

A B C D E

The Greeks also mastered the use of geometric proofs:
Example 2: The geometric proof of the Pythagorean Theo-

rem: c2 = a2 +b2. The left square shows (a+b)2 = 2ab+c2

while the right one shows (a+ b)2 = 2ab+ a2 + b2.
Hence, 2ab+ c2 = 2ab+ a2 + b2 and c2 = a2 + b2.
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C. Proofs by Contradiction

According to Knorr [5], the change from proofs using dia-
grams/pebbles to proofs as sequences of statements occurred
with the discovery of incommensurability:

Theorem 1: There is no unit which measures exactly
the side and diagonal of a square.

Key results needed for the incommensurability proof relate
to Pythagorean triples and the theory of Odd/Even Numbers:

Definition 2: Pythagorean triples are triples of positive
whole numbers representing the lengths of two legs and the
hypotenuse of a right triangle. I.e., a Pythagorean triple is a
triple of positive integers (a, b, c) if and only if a2 + b2 = c2.
E.g. (3, 4, 5), (6, 8, 10), (5, 12, 13), (9, 12, 15), (8, 15, 17).



The following are the results needed to prove incommen-
surability theorem 1. Assume (a, b, c) is a Pythagorean triple.

1. If c is even, then both a and b are even.
2. If c is even, then (a2 ,

b
2 ,
c
2) is also a Pythagorean triple.

3. If c is a multiple of four, then so are a and b.
4. If c is odd, then one of a, b is odd and the other is even.
5. If any two of a, b, c is even, then the third is also even.
6. If one of a, b, c is odd, then two are odd and one is even.

1 · · · 6 above can be shown using diagrams/pebbles. However,
theorem 1 itself needs a proof by contradiction:

Proof. Suppose there is such a unit in terms of which, the
side of the square is a and the diagonal is c.

Then, we have a right triangle

c
a

a and so (a, a, c) is a
Pythagorean triple. Now c must either be even or odd.
• Suppose c even. Then, by 1., a is even. So by 2., we can

double the unit and halve all the dimensions. Clearly, we
cannot do this indefinitely, since otherwise the unit will
grow larger than a.

• So we must have a Pythagorean triple of the form
(a, a, c) in which c is odd. But then, by 4., a is both
even and odd, a contradiction. �

The proof of incommensurability is believed to be the first
proof by contradiction in the history of mathematical proofs.
The proof cannot be “seen” by looking at a diagram: it is
necessary to follow a sequence of sentences with reasons.

Theorem 1 implies that
√

2 is not a rational number.
Proof: Assume

√
2 =

p
q , then 2q2 = p2. Hence (q, q, p)

forms a Pythagorean triple.

p
q

q Hence there is a unit
which measures exactly the side and diagonal of a square.
This contradicts the incommensurability theorem. �

D. Numbers and Magnitudes

With the incommensurability results, the notion of “num-
ber” as a discrete collection of units (e.g., naturals or ratio-
nals) was no longer enough. There arose a need for numbers
that are continuous. The Greeks did not know how to handle
these continuous quantities. The main problem was that they
treated mathematical objects as given and did not conceive
of constructing them. And so, they juggled with two notions:
• Their notion of “numbers” (as a multitude of units,

Definition 2 of Book VII).
• The so-called “magnitudes” (which include things like

lines and areas and volumes, etc.).
The Greeks developed arithmetic for their numbers, but
treated their magnitudes geometrically. However, although
they had not thought of constructing new mathematical
objects, they did introduce a procedure for approximating
ratios. Such approximations were helpful for the much later
constructions of magnitudes (e.g., the real numbers).

Before explaining how the Greeks developed approxima-
tions, we explain the anthyphairesis concept. Anthyphairesis

is composed of two Greek terms: υφαιρεω (meaning sub-
tract) and αντι (meaning alternating/reciprocal) and hence
ανθυφαιρεσις stands for alternated/reciprocal subtraction.
So, given whole numbers r0 and r1, repeatedly subtract r1
from r0, r0 − r1, r0 − r1 − r1, · · · until r2 < r1 remains,
then repeat the process for r1 and r2, and so on.

r1

r1 r1 r1 r1

... :

r1 r2
r0

Euclid used anthyphairesis to check whether two numbers
are prime to one another. He proved that anthyphairesis
applied to two relatively prime numbers leads to the unit.

PROPOSITION 1. OF BOOK VII OF THE Elements
Two unequal numbers being set out, and the less being
continuously subtracted in turn from the greater, if the
number left never measures the one before it until a unit is
left, the original numbers will be prime to one another.

Example 3: Here is why 17 and 3 are prime to one another.
17 = 5 × 3 + 2
3 = 1 × 2 + 1©
2 = 2 × 1 + 0

The ratio and continued fraction are respectively:
[5, 1, 2] and 17

3 = 5 + 1

1 +
1

2

.

3

3

3 3 3 3 1 1
1

2
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Euclid proved that anthyphairesis applied to non relatively
prime numbers gives their greatest common divisor (GCD).

PROPOSITION 2. OF BOOK VII OF THE Elements
Given two numbers not prime to one another, to find
their greatest common measure.

Example 4: As we see below, 136 and 6 are not prime to
one another and their greatest common divider is 2.

136 = 22 × 6 + 4.
6 = 1 × 4 + 2©.
4 = 2 × 2 + 0.

The ratio and continued fraction are respectively:
[22, 1, 2] and 136

6 = 22 + 1

1 +
1

2

.

6
6

..........................

22 repeats of 6× 6 square
..........................
..........................

6

1 1
1

4

4136

Example 5:
• 12 and 5 are prime to one another.



12 = 2 × 5 + 2
5 = 2 × 2 + 1©
2 = 2 × 1 + 0

The ratio and continued fraction are respectively:
[2, 2, 2] and 12

5 = 2 + 1

2 +
1

2

.

5

5 5 1 1
1
2

2
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• 22 and 6 are not prime to one another and their greatest
common divider is 2.

22 = 3 × 6 + 4.
6 = 1 × 4 + 2©.
4 = 2 × 2 + 0.

The ratio and continued fraction are respectively:
[3, 1, 2] and 22

6 = 3 + 1

1 +
1

2

.

6

6 6 6 2 2
2

4

422

The Greeks also applied anthyphairesis to magnitudes.
They showed that two magnitudes are commensurable if and
only if anthyphairesis terminates and that if the anthyphairesis
procedure of finding the ratio or GCD of two numbers is
applied to incommensurable magnitudes, it will not terminate.

PROPOSITION 2 OF BOOK X OF THE Elements.
If, when the less of two unequal magnitudes is contin-
uously subtracted in turn from the greater, that which
is left never measures the one before it, the magnitudes
will be incommensurable.

Example 6: We show that
√

2 is incommensurable.
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Geometrically, we assume the isosceles rectangular triangle
BCA below and take BD of length

√
2 − 1. From D we

draw the perpendicular to AB meeting BC on F . We get an
isosceles recltangular triangle BDF . We repeat the process

obtaining isosceles recltangular triangles BEG, BHI , and
so on. In this repetition, the less of two unequal magnitudes
is continuously subtracted in turn from the greater, yet what
is left never measures the one before it. This can be repeated
infinitely and

√
2 is incommensurable. Using anthyphairesis:

. . .
...

1

1
3− 2

√
2

√
2− 1

√
2− 1

√
2− 1

√
2

The ratio of
√

2 to 1 is [1, 2, 2, · · · ] and the continued fraction
is
√

2 = 1 + 1

2 +
1

2 +
. . .

.

√
2 is called a quadratic irrational because it is the solution

to the quadratic equation x2 − 2 = 0. Note that these con-
tinued fractions provide an approximation to

√
2 as follows:

•
√

2 ≈ 1,
•
√

2 ≈ 1 + 1
2 = 1.5,

•
√

2 ≈ 1 + 1

2 +
1

2

= 1.4,

•
√

2 ≈ 1 + 1

2 +
1

2 +
1

2

= 1.417,

•
√

2 ≈ 1 + 1

2 +
1

2 +
1

2 +
1

2

= 1.4139 etc.

Infinite repetitions/approximations were a useful part of
Greek’s Mathematics but, anthyphairesis had its limitations.
E.g., the obvious theorem below cannot be proved with it:

If the ratio of A to C is the same as the ratio of B to
C, then A = B.

To overcome the problems, Eudoxus, defined proportion
(having the same ratio) for magnitudes instead of ratios.
He invented the method of exhaustion which was used
by Archimedes and Euclid (see Sections I-G and I-H).
Theodorus of Cyrene used Eudoxus approximation in his
spiral of irrational numbers pictured earlier.

E. The Greeks’ problems with infinitesimals/limits

The Greeks were puzzled by limits and infinitesimals. They
needed approximations but faced obstacles they could not
explain. For example, in the diagram below, the length of the
stepped line is clearly 2s no matter how many steps there
are. But as the number of steps increases, the stepped line
seems to approach the diagonal whose length is

√
2s 6= 2s.



s

They demonstrated many paradoxes like the following:

Zeno’s Dichotomy Paradox There is no motion, because
what moves must arrive at the middle of its course before
it reaches the end.

For example, to leave the room, you first have to get
halfway to the door, then halfway from that point to the door,
etc. No matter how close you are to the door, you have to go
half the remaining distance. Hence, there is no finite motion
because always going half way while in motion is infinite.

Suppose the distance is 1 meter and the object moves at 1
meter per second. It must reach halfway ( 12 meter from the
starting point) in a1 = 1

2 second. Let t1 = a1. From this
halfway point, the object moves halfway to the end, which is
a2 = 1

4 meters. The total time so far is t2 = a1+a2 = 1
2 + 1

4 .
We clearly have the following infinite sequences:

a1, a2, a3, . . . =
1

2
,

1

4
,

1

8
, . . .

t1, t2, . . . =
1

2
,

3

4
,

7

8
, . . . where each tn = a1+a2+ · · ·+an.

Zeno concluded that the total time which is the sum of an
infinite sequence must be infinite and we can never reach
our destination. This is incorrect since we can reach our
destination in a finite time. So, where did Zeno get it wrong?

In modern notation, we see that:
• tn = 2n−1

2n = 1− 1
2n < 1 and limn→∞ tn = 1.

• 2Σ∞n=1an = 2a1 + 2Σ∞n=2
1
2n = 1 + Σ∞n=1

1
2n = 1 +

Σ∞n=1an.
• Hence, Σ∞n=1an = 1 and limn→∞tn = Σ∞n=1an = 1.

Despite the complications of limits, the Greeks continued
to use them to measure magnitudes. Both Archimedes and
Euclid (see Sections I-G and I-H) used Eudoxus theory of
proportions which is a geometric method based on exhaustive
approximations designed to overcome the difficulties obtained
from the discovery of the irrationals.

F. The area a regular polygon

For both Archimedes’ theorem and Euclid’s theorem, we
need a general formula for the area of a regular polygon (i.e.,
a polygon where all angles (resp. all sides) are equal). Let us
start with the area of a square of side s.

s

h

Instead of simply taking s2, take the bottom of the 4 triangles
obtained by the diagonals. Note that the altitude h = 1

2s.

The area A of the square = 4× area of triangle = 4× 1
2hs =

1
2h(4s) = 1

2hp. where p is the perimeter of the square.
Note that A = 1

2hp = 1
2
s
2 (4s) = s2.

Now let us consider a regular octagon. If we divide it into
triangles the same way, we get eight triangles, each of whose
areas is 1

2hs. If we take all eight triangles and note that here
p = 8s, we get for the area A = 1

2h(8s) = 1
2hp.

We saw this for the square and the regular octagon, but it
holds for every regular polygon:

The area of any regular polygon is one-half the altitude
to a side times the perimeter, or 1

2
hp.

Now we come to the area of a circle. Note that the above
polygon was inscribed in the circle with circumference C. If
we keep increasing the number of sides, the perimeter will
approach the circumference C and the altitude will approach
the radius r. By the above, this suggests that the formula for
the area of a circle should be

A =
1

2
rC.

And since π is defined to be the ratio of the circumference
of a circle to twice its radius, we have

π =
C

2r
,

Hence
A =

1

2
r(2πr) = πr2

This must have seemed obvious to the ancient Greeks from
an early period in the history of their geometry. But how
could they prove it? At one time some of them argued that a
circle is a regular polygon with infinitely many sides, but they
eventually decided that this kind of reasoning is not immune
to attacks by sophists. For just because regular polygons with
an increasing number of sides seems to be approaching a
circle, does not automatically justify in deducing this formula
for the area of a circle. They found evidence like this to be
misleading. Recall the stepped line which wrongly gave the
impression that

√
2s = 2s.

G. Euclid on Areas of Circles and Squares

It took a long time for the proof that A = 1
2rC to be given.

Although this was obvious to the Greeks, a proof was hard
to find. Before that proof was given (by Archimedes), Euclid
proved that the areas of circles have the same proportion as
the squares on their diameters (Proposition 2 of Book XII of
Elements). The proof uses Proposition 1 of Book XII.



PROPOSITION 1 OF BOOK XII OF THE Elements.
Similar polygons inscribed in circles are to one another as
the squares on the diameters of the circles.

Similar figures are those which have the same shape. In
similar polygons the corresponding angles are equal and the
corresponding sides all have the same proportion.

The areas A of similar polygons are proportional to:
• The squares of their altitudes h.
• The squares of their perimeters p.
• The squares of any of their linear parts.

p1
p2 = h1

h2
and A1

A2
= h1

h2

h1
h2

= h2
1

h2
2

=
p21
p22

.

The proof of Proposition 1 of Book XII uses the above and
the fact that AGB is similar to A′G′B′ below and hence
( AB
A′B′

)2 = ( AG
A′G′

)2 = A1
A2

.

O
BA

D

C E

F
G

O′
B′A′

D′

C ′ E′

F ′
G′

Now we look at Euclid’s proposition 2 and its proof:

PROPOSITION 2 OF BOOK XII OF THE Elements.
Circles are to one another as the squares on the diameters.

Euclid starts his proof as follows:

Let ABCD, EFGH be circles, and BD, FH their
diameters; I say that, as the circle ABCD is to the circle
EFGH , so is the square on BD to the square on FH .

For, if the square on BD is not to the square on FH as the
circle ABCD is to the circle EFGH , then, as the square
on BD is to the square on FH , so will the circle ABCD

be either to some less area than the circle EFGH or to a
greater.

Euclid’s strategy is to prove his result by contradiction. In
fact, it will be a double proof by contradiction. He will first
assume that it will be in the ratio to a smaller area S, derive
a contradiction from that, then assume that it will be in the
ratio to a larger area S, and then derive a contradiction from

that area as well. As a result, the only possibility left will be
the result stated in the proposition.

We will not repeat the proof here (see [2, 4]). We must
mention however that Euclid’s method is based on Eudoxus
exhaustion which infinitely inscribes and circumscribes poly-
gons inside the circles. First, Euclid assumes it to be in that
ratio to a less area S and shows that the square EFGH
inscribed in the circle EFGH is greater than half of the circle
EFGH . He shows this by noting that the circumscribed
square, which includes area outside the circle, has twice the
area of the inscribed square.

Then, he bisects the circumference EF , FG, GH , HE at
the points K, L, M , N and joins EK, KF , FL, LG, GM ,
MH , HN , NE and proves that the new circumference (in
effect inscribing a new regular polygon with twice the number
of sides as the previous one), is more than half the area inside
the circle but outside the previous polygon. By bisecting the
remaining circumferences and joining straight lines, and by
doing this continually, one is left with some segments of the
circle which will be less than the excess by which the circle
EFGH exceeds the area S.

In modern notation, let the circles have areas a and b
respectively, and let the ratio of the squares of their diameters
be k. Let the areas of the polygons inscribed in the circle
with area a (resp. b) have areas a1, a2, . . . (resp. b1, b2, . . .).
We have 0 < a1 < a2 < . . . < an < . . . < a and
0 < b1 < b2 < . . . < bn < . . . < b.

• For each n, we have
– k = an

bn
, so that an

k
= bn.

– (a−an+1) < 1
2(a−an) and (b−bn+1) < 1

2(b−bn).

• We want to prove k = a
b
.

• If k 6= a
b

, then k = a
S , where S < b or S > b.

– Suppose S < b. Choose N so that b − bN < b −
S. The number N represents the number of times
the number of sides of the inscribed polygon was
doubled. Then S < bN . But S = a

k
> aN

k
= bN ,

a contradiction.
– Suppose S > b. This is similar to the above case

with a and b reversed.
It follows that k = a

b
. �

H. Archimedes’ Measurement of a Circle

Archimedes used Eudoxus’ exhaustion to prove the fol-
lowing proposition (and hence its corollary that the area of a
circle of circumference C and radius r is A = 1

2rC).

PROPOSITION 1 OF ARCHIMEDES’S BOOK
“MEASUREMENT OF A CIRCLE”.

The area of any circle is equal to a right-angled
triangle in which one of the sides about the right
triangle is equal to the radius, and the other to the
circumference of the circle.



As we see from the begin of its proof, an infinite number of
polygons will be inscribed/circumscribed in the circle.

Let ABCD be the given circle, K the triangle
described.

Then, if the circle is not equal to K, it must be either
greater or less.
I. If possible, let the circle be greater than K.
Inscribe a square ABCD, bisect the arcs AB, BC,
CD, DA, and then bisect (if necessary) the halves,
and so on, until the sides of the inscribed polygon
whose angular points are the points of division sub-
tend segments whose sum is less than the excess of
the circle over K.

Let us write the proof in modern notation.
Let K = 1

2rC (the area of the triangle). If A 6= K, then:

I. Suppose A > K.
– Inscribe a square with side s1, altitude to the side
h1, and perimeter p1. The area of the square is a1 =
1
2h1p1.

– Now, double the number of sides of the inscribed
polygon, and keep doubling it. For polygon n with
side sn, altitude to the side hn, and perimeter pn,
the area is an = 1

2hnpn.
– From the geometry of the situation, we have that
h1 < h2 < . . . < hn < . . . r,
p1 < p2 < . . . < pn < . . . < C, and
a1 < a2 < . . . < an < . . . < A.

– Now choose N so that A − aN < A − 1
2rC. It

follows that 1
2rC < aN .

– But since hN < r, pN < C, and aN = 1
2hNpN ,

we have aN < 1
2rC, a contradiction.

II. Suppose, on the contrary, that A < K.
– Circumscribe a square with perimeter P1; then the

area is A1 = 1
2rP1.

– Double the number of sides of the circumscribed
figure, and keep doing it. If, for the nth polygon,
the perimeter is Pn, then the area is An = 1

2rPn.
– From the geometry, we have
C < . . . < Pn < . . . < P2 < P1 and
A < . . . An < . . . < A2 < A1.

– Choose N where AN −A < 1
2rC −A.

Then AN < 1
2rC.

– But C < PN and AN = 1
2rPN , so 1

2rC < AN ,
another contradiction.

It follows that A = K = 1
2rC. �

I. Eudoxus, the infinitesimal and the limit

We saw the use of Eudoxus’ exhaustion method in the
proofs of Euclid and Archimedes. This method infinitely
constructs new objects that would eventually only differ in
infinitesimal amounts. It can be used to develop a definition
of the limit of a sequence and a function. Historically, the de-
velopment of calculus and analysis in European mathematics
occured before a definition of the real numbers. At the time of
Descartes, Leibniz and Newton, it had not even been settled
whether or not there were infinitely small quantities. For
centuries before and after, infinitesimals oscillated between
being accepted and being rejected. They were introduced
in 450 BC, banned by Eucledian mathematicians because
of the problems they faced with them, used by Kepler to
calculate the area of an ellipse as the infinite sum of vertical
lines contained in the ellipse, banned again in the 1630s by
religious clerics in Rome. They still flourished in the 17th
century4 and were crucial for the development of calculus
by Newton and Leibniz. They were thought to exist by
Cauchy who used them in his approach to calculus, then
they were abandoned again in the 19th century due to their
unclear logical status to be revived again in the 20th century
especially in Robinson’s non-standard analysis. Nowadays,
they take center stage in the foundations of mathematics
which many people define as a sound theory of infinitesimals.

The next graph demonstrates how a curved line is made of
infinitely small straight line segments.
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The next example explains a cleric position on infinitesimals.
Example 7: To find the derivative f ′(2) at x = 2 of y =

f(x) = x2, we assume x 6= 2. Then we calculate:

∆y

∆x
=
f(x)− f(2)

x− 2
=
x2 − 22

x− 2
=

(x+ 2)(x− 2)

x− 2
= x+ 2.

Since we are only able to conclude that the quotient is equal
to x + 2 on the assumption that x 6= 2, we appear to have
taken an illegal step. We justify this by saying that we are
taking its limit as x → 2 and write: dy

dx
= limx→2

∆y
∆x.

Newton calls dy
dx

= limx→2
∆y
∆x, ultimate value or value

at instant of disappearance. Sarcastically, this is called the

4In the ideas that a curved line is made of infinitely small straight line
segments, and quantities that differ by an infinitely small quantity are equal.



ghosts of a departed quantity in a critique [1] by Bishop
Berkeley addressed to a certain “Infidel Mathematician”. [1]
examined whether the object and principles of the modern
Analysis are more distinctly conceived, or more evidently
deduced, than religious mysteries and points of faith.

J. Infinitesimals and the birth of analysis

At school, after studying arithmetic and elementary alge-
bra, you are introduced to geometry (the study of shapes)
and trigonometry (the study of side lengths and angles of
triangles) and then you move to a pre-calculus course which
combines advanced algebra and geometry with trigonometry.
After all this, you are introduced to calculus. Calculus (orig-
inally called infinitesimal calculus) is the mathematical study
of continuous change. The infinitesimal part is important. It is
believed that if Descartes had expressed rather than supressed
the infinitesimals and infinites in his method, he would have
invented the calculus before Newton and Leibniz.

Calculus formalizes the study of continuous change, while
analysis provides it with a rigorous foundation in logic. As
we saw, the Greeks dealt with discrete numbers arithmetically
and with continuous magnitudes geometrically. But continu-
ous systems can be subdivided indefinitely, and their descrip-
tion requires the real numbers. This infinite subdivision was
influenced by Eudoxus’ and Archimedes’ approximations.
The real numbers were not present in the historic approach
to define limits and develop the calculus. The ancient Greeks
separated whole and rational numbers, which are discrete,
from continuous magnitudes. They had different kinds of
magnitudes for lengths, areas, volumes, angles, etc., and never
multiplied two lengths to get another length. The beginning
of algebra and the reduction of geometrical problems into
algebraic and arithmetical ones in the 9th century [6, 7]
paved the way for Descartes innovative ruler-and-compass
construction for multiplying two lengths to get a length. This
allowed Algebra to be a science concerned with numbers
rather than geometric magnitudes.

Here is how the ruler-and-compass construction works:
Example 8: The length of AB is a. On a line AC through

A and at an angle to AB, let the length of AC be a unit,
and construct E on the same line so that the length of AE
is b. Join C and B with line segment BC, and construct
a line through E parallel to BC; let this line intersect the
extension of AB at D. Then triangles ABC and ADE are
similar. Hence, AE is to AC as AD is to AB. I.e., AD = ab.

E

A
B

C

D

The move to generalise the geometric concepts and meth-
ods of the calculus to more algebraic forms continued into the
18th century. But the field was still rife with disagreements
on the need and use of infinitesimals and mathematicians
began to worry about the lack of rigorous foundations of

the calculus (recall that the foundations of mathematics is a
sound reasoning about the infinitesimal). This would change
due Cauchy’s ideas of function and limit which led to a more
rigorous formulation of the calculus, limit/continuity/real
numbers. And, due to the emerging exact definition of real
numbers the rules for reasoning with real numbers became
even more precise. However, all this historical background of
the development of analysis is rarely reflected in the modern
teaching of the subject. Instead, students are introduced to
methods that they find challenging, like the ε−δ/ ε−N proofs
of limits without background material on why limits, infinites,
approximations and infinitesimals were developed. From our
experience, an evolutionary and somewhat historic approach
is helpful. This is why we embarked on a book [4] that
introduces mathematical analysis by employing the evolution
of this area of mathematics to first develop fundamental
concepts of mathematical analysis and to only introduce
formal definitions after the concepts are understood.

The landscape of mathematics would change forever during
the 19th century and the commitment to rigorous foundations
would lead to the discovery of computability and its limits.
Rigorous foundations also shed light on the holes that started
to appear in Euclid’s historic work which led some to
question the deductive structure of the Elements. Such logical
inaccuracies have been addressed in the work of Hilbert [3]
who wrote 20 postulates adequate to prove all the theorems
in the Elements. Here we go through some of these holes.

• Look at Proposition 1 of Book I of Euclid’s Elements:

To construct an equilateral triangle on a given finite
straight line.

Let AB be the finite straight line. The proof draws two
circles with radius AB, and center A (resp. B). The
circles intersect at C and the triangle ABC is equilateral.

A BD E

C

There is a problem in this proof. At first glance, there
does not appear to be any doubt that the construction
given there constructs the desired equilateral triangle and
that the proof proves that it is an equilateral triangle.
However, there is a gap in the proof. There is, in fact,
no proof that the point C exists. We can construct a
model of geometry in which all of the postulates and
axioms are satisfied but Proposition 1 is not.

• Euclid’s Postulate 5 (the parallel postulates) is less
obvious than the other postulates.

• Euclid used a number of statements as facts in his
Elements even though they had neither been proved nor
been introduced as postulates. For example:



A straight line that intersects one side of a triangle but
does not pass through any vertex of the triangle must
intersect one and only one of the other sides.

Based on this statement, Pasch proved that Euclid’s
formulation was not complete in the sense that there are
statements that should hold but which cannot be proven
from Euclid’s formulation.

1) A straight line passing through the center of a circle
must intersect the circle.

2) Given 3 different points on the same line, one of
them is between the other two.

Having introduced the discrete (natural, rational and inte-
ger) numbers, and having emphasised the historical treatment
of continuous magnitudes and the need for real numbers in the
development of analysis, we now discuss the real numbers.

K. What are the real numbers?

Recall Proposition 2. of Book VII of the Elements and
the approximations for

√
2 in Section I-D. You can think

of
√

2 as all the rational numbers strictly less than it. I.e.,
as: {1, 1 + 1

2 , 1 + 1

2 +
1

2

, 1 + 1

2 +
1

2 +
1

2

, · · · }. All irrational

numbers have infinitely distinct approximations like
√

2.
Hence, the real numbers can be defined as non empty subsets
of the rationals which satisfy some properties (see below).
Real numbers will be defined as elements of a complete
ordered field. Hence the following definitions.

Definition 3: A field is a set (S,+, ·) such that S is closed
under + and · and satisfies distributivity a(b+ c) = ab+ ac,
commutativity and associativity of + and ·, and existence of
identity elements 0 and 1 (a + 0 = a and a · 1 = a) and
inverses −a and a−1 (for each a except for 0 under ·).

Example 9: None of N+ or Z is a field but Q is a field.
Definition 4: A field is ordered (by <) if for all a, b, c:

• exactly one of a < b, a = b, and b < a holds.
• if a < b and b < c, then a < c.
• if 0 < a and 0 < b, then 0 < a+ b and 0 < ab.
• a < b if and only if 0 < b+ (−a).

The next axiom is important for the real numbers.

AXIOM OF COMPLETENESS [AC]
Every nonempty set of quantities that has an upper
bound has a least upper bound.

Now we give the definition of the Real Numbers R.
Definition 5: Our quantities form an ordered field that

satisfies the Axiom of Completeness AC. We will refer to
them as real numbers and denote their collection by R.
Recall that the real numbers are continuous whereas the
natural/integer/rational numbers are discrete. The following
help us to see some differences between these numbers.

ARCHIMEDES LAW [AL]
For any two quantities a and b where b > a > 0, there
is a positive integer n such that b < an.

Definition 6: An ordered field which also satisfies AL is
called an Archimedean ordered field.

Example 10: Q is an Archimedean ordered field.
• Completeness implies the Archimedean Property As-

sume a and b are real numbers such that a > 0. There
is a positive integer n such that an > b.

• We can approximate real numbers by rational numbers.
Density of rationals If a and b are any two real numbers
with a < b, then there is a rational number r such that
a < r < b.
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