Refining the Barendregt Cube with Parameters

Fairouz Kamareddine (Heriot-Watt University, Edinburgh)
Twan Laan and Rob Nederpelt (Eindhoven University of Technology, NL)

7 March 2001

The Low Level approach of functions

- Historically, functions have long been treated as a kind of meta-objects.
- Function *values* have always been important, but abstract functions have not been recognised in their own right until the third of the 20th century.
- In the *low level approach* or *operational* view on functions, there are no functions as such, but only function values.
- E.g., the sine-function, is always expressed together with a value: $\sin(\pi)$, $\sin(x)$ and properties like: $\sin(2x) = 2\sin(x)\cos(x)$.
- It has long been usual to call f(x)—and not f—the function and this is still the case in many introductory mathematics courses.

The revolution of treating functions as first class citizens

- In the nowadays accepted view on functions, they are 'first class citizens'.
- Abstraction and application form the basis of the λ -calculus and type theory.
- This is rigid and does not represent the development of logic in 20th century.
- Frege and Russell's conceptions of functional abstraction, instantiation and application do not fit well with the λ -calculus approach.
- In *Principia Mathematica* [Whitehead and Russell, 1910^1 , 1927^2]: If, for some a, there is a proposition ϕa , then there is a function $\phi \hat{x}$, and vice versa.
- ullet The function ϕ is not a separate entity but always has an argument.

λ -calculus does not fully represent functionalisation

- 1. Abstraction from a subexpression $2+3 \mapsto x+3$
- 2. Function construction $x + 3 \mapsto \lambda . x + 3$
- 3. Application construction $(\lambda x.(x+3))2$
- 4. Concretisation to a subexpression $(\lambda x.(x+3))2 \rightarrow 2+3$
- Cannot identify the original term from which a function has been abstracted.

$$let add_2 = (\lambda x.x + 2) in add_2(x) + add_2(y)$$

- cannot abstract only half way: x+3 is not a function, $\lambda x.x+3$ is.
- cannot apply x+3 to an argument: (x+3)2 does not evaluate to 2+3.

Parameters: What and Why

- we speak about *functions with parameters* when referring to functions with variable values in the *low-level* approach. The x in f(x) is a parameter.
- Parameters enable the same expressive power as the high-level case, while allowing us to stay at a lower order. E.g. first-order with parameters versus second-order without [Laan and Franssen, 2001].
- Desirable properties of the lower order theory (decidability, easiness of calculations, typability) can be maintained, without losing the flexibility of the higher-order aspects.
- This low-level approach is still worthwile for many exact disciplines. In fact, both in logic and in computer science it has certainly not been wiped out, and for good reasons.

Automath

- has a parameter mechanism. verification of mathematical proofs, AUTOMATH, The first tool for mechanical representation and
- every line has the following format: AUTOMATH consists of a finite list of lines where The representation of a mathematical text

$$x_1: A_1, \dots, x_n: A_n \vdash g(x_1, \dots, x_n) = t: T.$$

parameters of g, with respective types A_1, \ldots, A_n . expression t of type T and x_1,\ldots,x_n are the Here g is a new name, an abbreviation for the

- in the context needed for it. inherently parametrised by the variables occurring Each line introduces a new definition which is
- in AUTOMATH [Benthem Jutting, 1977] revealed and sufficiently readable for humans. mechanism is vital for keeping proofs manageable that this combined definition and Developments of ordinary mathematical theory parameter

The Barendregt Cube

- $\bullet \ \ \mathcal{T}_P \ ::= \mathcal{V} \ | \ S \ | \ \mathcal{T}_P \mathcal{T}_P \ | \ \lambda \mathcal{V} : \mathcal{T}_P . \mathcal{T}_P \ | \ \Pi \mathcal{V} : \mathcal{T}_P . \mathcal{T}_P$
- $\mathcal V$ is a set of variables and $S=\{*,\Box\}.$

(axiom)
$$\langle \rangle \vdash * : \Box$$

(start)
$$\frac{\Gamma \vdash A : s}{\Gamma, x : A \vdash x : A} \ x \not\in \text{DOM} (\Gamma)$$

(weak)
$$\frac{\Gamma \vdash A : B \quad \Gamma \vdash C : s}{\Gamma, x : C \vdash A : B} \quad x \not\in \text{DOM}(\Gamma)$$

(II)
$$\frac{\Gamma \vdash A : s_1 \quad \Gamma, x : A \vdash B : s_2}{\Gamma \vdash (\Pi x : A . B) : s_2} \ (s_1, s_2) \in \mathbf{R}$$

(
$$\lambda$$
)
$$\frac{\Gamma, x:A \vdash b:B \quad \Gamma \vdash (\Pi x:A.B):s}{\Gamma \vdash (\lambda x:A.b):(\Pi x:A.B)}$$

(appl)
$$\frac{\Gamma \vdash F : (\Pi x : A.B) \quad \Gamma \vdash a : A}{\Gamma \vdash Fa : B[x := a]}$$

$$\frac{\Gamma \vdash A : B \quad \Gamma \vdash B' : s \quad B =_{\beta} B'}{\Gamma \vdash A : B'}$$

Different type formation conditions

(II)
$$\frac{\Gamma \vdash A : s_1 \quad \Gamma, x : A \vdash B : s_2}{\Gamma \vdash (\Pi x : A . B) : s_2} \ (s_1, s_2) \in \mathbf{R}$$

- on cube satisfying this $(\square,*)$ takes care of polymorphism. $\lambda 2$ is weakest
- weakest on cube satisfying this. (\Box, \Box) takes care of type constructors. S.
- weakest on cube satisfying this. $(*,\Box)$ takes care of term dependent types. λP is

$\lambda P_{\underline{\omega}}$	$\lambda \omega$ $\lambda \omega$	$\lambda \rightarrow \lambda 2$
(*,*)	* * * *	* * * *
$(\square,*)$		$(\square,*)$
	*,	(∗,□)
		,

Systems of the Barendregt Cube

				λ2 F			λP AUT-QE	두	λP2	$\lambda \underline{\omega}$ POLYREC	$\lambda \omega$ F ω	λC CC	
[Church 1040] [Rarandragt	[Church, 1940], [Barendregt, 1984] (Appendix A), [Hindley	and Seldin, 1986] (Chapter	14)	second order typed λ -	calculus; [Girard, 1972],	[Reynolds, 1974]	E [Bruijn, 1968]	[Harper et al., 1987]	[Longo and Moggi, 1988]	REC [Renardel de Lavalette, 1991]	[Girard, 1972]	Calculus of Constructions;	

The Barendregt Cube

LF

- LF (see [Harper et al., 1987]) is often described as λP of the Barendregt Cube.
- [Geuvers, 1993] shows that the use of the Π -formation rule $(*, \Box)$ is very restricted in the practical use of LF.
- This use is in fact based on a parametric construct rather than on Π -formation.
- We will find a more precise position of LF on the Cube (between $\lambda \rightarrow$ and λP).

ML

- We only consider an explicit version of a subset of ML.
- In ML, One can define the polymorphic identity by:

$$Id(\alpha:*) = (\lambda x : \alpha . x) : (\alpha \to \alpha) \tag{1}$$

• But in ML, it is not possible to make an explicit λ -abstraction over $\alpha:*$ by:

$$Id = (\lambda \alpha: * .\lambda x: \alpha.x) : (\Pi \alpha: * .\alpha \to \alpha)$$
 (2)

• The type $\Pi\alpha: *.\alpha \to \alpha$ does not belong to the language of ML and hence the λ -abstraction of equation (2) is not possible in ML.

ML

- Therefore, we can state that ML does not have a Π -formation rule $(\square, *)$.
- Nevertheless, ML has some parameter mechanism (α parameter of Id)
- ML has limited access to the rule $(\Box, *)$ enabling equation (1) to be defined.
- ML's type system is none of those of the eight systems of the Cube.
- We place the type system of ML on our refined Cube (between $\lambda 2$ and $\lambda \underline{\omega}$).

Extending the Cube with parametric constructs

- Parametric constructs are $c(b_1, \ldots, b_n)$ with b_1, \ldots, b_n terms of certain types.
- $\bullet \ \ \mathcal{T}_P \ ::= \ \mathcal{V} \mid \boldsymbol{S} \mid \mathcal{C}(\underbrace{\mathcal{T}_{P_1}, \dots \mathcal{T}_{P_n}}) \mid \mathcal{T}_P \mathcal{T}_P \mid \lambda \mathcal{V} : \mathcal{T}_P . \mathcal{T}_P \mid \Pi \mathcal{V} : \mathcal{T}_P . \mathcal{T}_P$

 \mathcal{C} is a set of constants, b_1, \ldots, b_n are called the *parameters* of $c(b_1, \ldots, b_n)$.

- R allows several kinds of Π -constructs. We also use a set \mathbf{P} of (s_1, s_2) where $s_1, s_2 \in \{*, \square\}$ to allow several kinds of parametric constructs.
- $(s_1, s_2) \in \mathbf{P}$ means that we allow parametric constructs $c(b_1, \ldots, b_n) : A$ where b_1, \ldots, b_n have types B_1, \ldots, B_n of sort s_1 , and A is of type s_2 .
- If both $(*, s_2) \in \mathbf{P}$ and $(\square, s_2) \in \mathbf{P}$ then combinations of parameters allowed. For example, it is allowed that B_1 has type *, whilst B_2 has type \square .

The Cube with parametric constants

- Let \mathbf{R} , $\mathbf{P} \subseteq \{(*,*),(*,\square),(\square,*),(\square,\square)\}$ containing (*,*).
- $\lambda \mathbf{RP} = \lambda \mathbf{R}$ and the two rules ($\overset{\rightarrow}{\mathbf{C}}$ -weak) and ($\overset{\rightarrow}{\mathbf{C}}$ -app):

$$\frac{\Gamma \vdash b : B - \Gamma, \Delta_i \vdash B_i : s_i - \Gamma, \Delta \vdash A : s}{\Gamma, c(\Delta) : A \vdash b : B} \ (s_i, s) \in \mathbf{P}, c \text{ is } \Gamma\text{-fresh}$$

$$\frac{\Gamma_{1}, c(\Delta): A, \Gamma_{2} \vdash b_{i}: B_{i}[x_{j}:=b_{j}]_{j=1}^{i-1} \quad (i=1,\ldots,n)}{\Gamma_{1}, c(\Delta): A, \Gamma_{2} \vdash A: s \quad \text{(if } n=0)}{\Gamma_{1}, c(\Delta): A, \Gamma_{2} \vdash c(b_{1},\ldots,b_{n}): A[x_{j}:=b_{j}]_{j=1}^{n}}$$

$$\Delta \equiv x_1:B_1,\ldots,x_n:B_n.$$

$$\Delta_i \equiv x_1:B_1,\ldots,x_{i-1}:B_{i-1}$$

Properties of the Refined Cube

- Correctness of types) If $\Gamma \vdash A : B$ then $(B \equiv \Box \text{ or } \Gamma \vdash B : S \text{ for some sort } S)$.
- (Subject Reduction SR) If $\Gamma \vdash A : B$ and $A \longrightarrow_{\beta} A'$ then $\Gamma \vdash A' : B$
- (Strong Normalisation) For all \vdash -legal terms M, we have $\mathsf{SN}_{\to_{\beta}}(M)$. I.e. M is strongly normalising with respect to \to_{β} .
- Other properties such as Uniqueness of types and typability of subterms hold.
- ullet $\lambda {f RP}$ is the system which has Π -formation rules m R and parameter rules m P.
- Let $\lambda \mathbf{RP}$ parametrically conservative (i.e., $(s_1, s_2) \in \mathbf{P}$ implies $(s_1, s_2) \in \mathbf{R}$).
 - The parameter-free system $\lambda \mathbf{R}$ is at least as powerful as $\lambda \mathbf{RP}$.
 - If $\Gamma \vdash_{\mathbf{RP}} a : A$ then $\{\Gamma\} \vdash_{\mathbf{R}} \{a\} : \{A\}$.

Example

- $m{R}=\{(*,*)\}$ $m{P}_1=\emptyset \quad m{P}_2=\{(*,*)\} \quad m{P}_3=\{(*,\Box)\} \quad m{P}_4=\{(*,*),(*,\Box)\}$ All $\lambda m{R} m{P}_i$ for $1\leq i\leq 4$ with the above specifications are all equal in power.
- $m{R}_5=\{(*,*)\}$ $m{P}_5=\{(*,*),(*,\Box)\}.$ $\lambda o < \lambda m{R}_5 m{P}_5 < \lambda \mbox{P}$: we can to talk about predicates:

eq not possible in $\lambda \rightarrow$.

The refined Barendregt Cube

LF, ML, $\mathrm{Aut}\text{-}68$, and $\mathrm{Aut}\text{-}\mathrm{QE}$ in the refined Cube

LF

- [Geuvers, 1993] initially described LF as the system λP of the Cube. However, the Π -formation rule $(*, \Box)$ is restricted in most applications of LF.
- [Geuvers, 1993] splits λ -formation in two (LF (λ_P) is called LF⁻):

$$(\lambda_{0}) \frac{\Gamma, x : A \vdash M : B \quad \Gamma \vdash \Pi x : A \cdot B : *}{\Gamma \vdash \lambda_{0} x : A \cdot M : \Pi x : A \cdot B} \qquad (\lambda_{0} x : A \cdot M) N \to_{\beta_{0}} M[x := N]$$

$$(\lambda_{P}) \frac{\Gamma, x : A \vdash M : B \quad \Gamma \vdash \Pi x : A \cdot B : \square}{\Gamma \vdash \lambda_{P} x : A \cdot M : \Pi x : A \cdot B} \qquad (\lambda_{P} x : A \cdot M) N \to_{\beta_{P}} M[x := N]$$

- If M:* or M:A:* in LF, then the β_P -normal form of M contains no λ_P ;
- ullet If $\Gamma dash_{\mathsf{LF}} M : A$, and Γ, M, A do not contain a λ_P , then $\Gamma dash_{\mathsf{LF}^-} M : A$;
- If $\Gamma \vdash_{\mathsf{LF}} M : A(:*)$, all in β_P -normal form, then $\Gamma \vdash_{\mathsf{LF}^-} M : A(:*)$.

LF

- Hence: the only need for a type $\Pi x : A.B : \square$ is to declare a variable in it.
- This is only done when the Propositions-As-Types principle PAT is applied during the construction of the type of the operator Prf as follows:

$$\frac{\texttt{prop}:* \vdash \texttt{prop}:* \quad \texttt{prop}:*, \alpha : \texttt{prop} \vdash *: \square}{\texttt{prop}:* \vdash (\Pi \alpha : \texttt{prop}.*) : \square}.$$

- In LF, this is the only point where the Π -formation rule $(*, \square)$ is used.
- No λ_P -abstractions are used. Prf is only used when applied to term p:prop.
- Hence, the practical use of LF would not be restricted if we present Prf in a parametric form, and use $(*, \Box)$ as a parameter instead of a Π -formation rule.
- This puts LF in between $\lambda \rightarrow$ and λP in the Refined Cube.

Logicians versus mathematicians and induction over numbers

• Logician uses ind: Ind as proof term for an application of the induction axiom. The type Ind can only be described in $\lambda \mathbf{R}$ where $\mathbf{R} = \{(*,*),(*,\square),(\square,*)\}$:

$$Ind = \Pi p: (\mathbb{N} \to *).p0 \to (\Pi n: \mathbb{N}.\Pi m: \mathbb{N}.pn \to Snm \to pm) \to \Pi n: \mathbb{N}.pn \qquad (3)$$

- Mathematician uses ind only with $P: \mathbb{N} \to *$, Q: P0 and $R: (\Pi n: \mathbb{N}.\Pi m: \mathbb{N}.Pn \to Snm \to Pm)$ to form a term $(\operatorname{ind} PQR): (\Pi n: \mathbb{N}.Pn)$.
- The use of the induction axiom by the mathematician is better described by the parametric scheme (p, q and r are the parameters of the scheme):

$$\operatorname{ind}(p:\mathbb{N}\to *, q:p0, r:(\Pi n:\mathbb{N}.\Pi m:\mathbb{N}.pn\to Snm\to pm)):\Pi n:\mathbb{N}.pn \tag{4}$$

• The logician's type Ind is not needed by the mathematician and the types that occur in 4 can all be constructed in λR with $R = \{(*,*)(*,\square)\}$.

Logicians versus mathematicians and induction over numbers

- Mathematician: only applies the induction axiom and doesn't need to know the proof-theoretical backgrounds.
- A logician develops the induction axiom (or studies its properties).
- $(\square, *)$ is not needed by the mathematician. It is needed in logician's approach in order to form the Π -abstraction $\Pi p:(\mathbb{N} \to *).\cdots$).
- Consequently, the type system that is used to describe the mathematician's use of the induction axiom can be weaker than the one for the logician.
- Nevertheless, the parameter mechanism gives the mathematician limited (but for his purposes sufficient) access to the induction scheme.

Conclusions

- Parameters enable the same expressive power as the high-level case, while allowing us to stay at a lower order. E.g. first-order with parameters versus second-order without [Laan and Franssen, 2001].
- Desirable properties of the lower order theory (decidability, easiness of calculations, typability) can be maintained, without losing the flexibility of the higher-order aspects.
- Parameters enable us to find an exact position of type systems in the generalised framework of type systems.
- Parameters describe the difference between developers and users of systems.

Future Work

- The above only explained the extension of the Cube with parametric constants.
- A larger extension can be made to the more generalised Pure Type Systems.
- We can add definitions and parametric definitions to the Cube and Pure Type systems. This can be found in [Laan, 1997].

Bibliography

- H.P. Barendregt. *The Lambda Calculus: its Syntax and Semantics*. Studies in Logic and the Foundations of Mathematics **103**. North-Holland, Amsterdam, revised edition, 1984.
- L.S. van Benthem Jutting. *Checking Landau's "Grundlagen" in the Automath system*. PhD thesis, Eindhoven University of Technology, 1977. Published as Mathematical Centre Tracts nr. 83 (Amsterdam, Mathematisch Centrum, 1979).
- N.G. de Bruijn. The mathematical language AUTOMATH, its usage and some of its extensions. In M. Laudet, D. Lacombe, and M. Schuetzenberger, editors, *Symposium on Automatic Demonstration*, pages 29–61, IRIA, Versailles, 1968. Springer Verlag, Berlin, 1970. Lecture Notes in Mathematics **125**; also in [Nederpelt et al., 1994], pages 73–100.
- A. Church. A formulation of the simple theory of types. The Journal of Symbolic Logic, 5:56-68, 1940.
- T. Coquand and G. Huet. The calculus of constructions. *Information and Computation*, 76:95–120, 1988.

- J.H. Geuvers. Logics and Type Systems. PhD thesis, Catholic University of Nijmegen, 1993.
- J.-Y. Girard. Interprétation fonctionelle et élimination des coupures dans l'arithmétique d'ordre supérieur. PhD thesis, Université Paris VII, 1972.
- R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. In *Proceedings Second Symposium on Logic in Computer Science*, pages 194–204, Washington D.C., 1987. IEEE.
- J.R. Hindley and J.P. Seldin. *Introduction to Combinators and* λ -calculus, volume 1 of London Mathematical Society Student Texts. Cambridge University Press, 1986.
- T. Laan. The Evolution of Type Theory in Logic and Mathematics. PhD thesis, Eindhoven University of Technology, 1997.

Twan Laan and Michael Franssen. Parameters for first order logic. Logic and Computation, 2001.

- G. Longo and E. Moggi. Constructive natural deduction and its modest interpretation. Technical Report CMU-CS-88-131, Carnegie Mellon University, Pittsburgh, USA, 1988.
- R.P. Nederpelt, J.H. Geuvers, and R.C. de Vrijer, editors. *Selected Papers on Automath*. Studies in Logic and the Foundations of Mathematics **133**. North-Holland, Amsterdam, 1994.

- G.R. Renardel de Lavalette. Strictness analysis via abstract interpretation for recursively defined types. *Information and Computation*, 99:154–177, 1991.
- J.C. Reynolds. *Towards a theory of type structure*, volume 19 of *Lecture Notes in Computer Science*, pages 408–425. Springer, 1974.
- A.N. Whitehead and B. Russell. $Principia\ Mathematica$, volume I, II, III. Cambridge University Press, 1910^1 , 1927^2 .