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The Low Level approach of functions

e Historically, functions have long been treated as a kind of meta-objects.

e Function values have always been important, but abstract functions have not
been recognised in their own right until the third of the 20th century.

e In the low level approach or operational view on functions, there are no
functions as such, but only function values.

e E.g., the sine-function, is always expressed together with a value: sin(m),
sin(z) and properties like: sin(2x) = 2sin(z) cos(x).

e It has long been usual to call f(z)—and not f—the function and this is still
the case in many introductory mathematics courses.
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The revolution of treating functions as first class citizens

e In the nowadays accepted view on functions, they are ‘first class citizens'.
e Abstraction and application form the basis of the A-calculus and type theory.
e This is rigid and does not represent the development of logic in 20th century.

e Frege and Russell’'s conceptions of functional abstraction, instantiation and
application do not fit well with the A-calculus approach.

e In Principia Mathematica [Whitehead and Russell, 19101, 19272]: If, for some
a, there is a proposition ¢a, then there is a function ¢z, and vice versa.

e The function ¢ is not a separate entity but always has an argument.
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A-calculus does not fully represent functionalisation
1. Abstraction from a subexpression 2+ 3 +— = + 3

2. Function construction z + 3 — Az + 3
3. Application construction (Az.(x + 3))2

4. Concretisation to a subexpression (Az.(x +3))2 > 243

e Cannot identify the original term from which a function has been abstracted.

let addy; = (Az.z + 2) in addy(x) + adda(y)
e cannot abstract only half way: = 4+ 3 is not a function, Az.x + 3 is.

e cannot apply = + 3 to an argument: (x + 3)2 does not evaluate to 2+3.
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Parameters: What and Why

e we speak about functions with parameters when referring to functions with
variable values in the low-level approach. The = in f(z) is a parameter.

e Parameters enable the same expressive power as the high-level case, while

allowing us to stay at a lower order. E.g. first-order with parameters versus
second-order without [Laan and Franssen, 2001].

e Desirable properties of the lower order theory (decidability, easiness of

calculations, typability) can be maintained, without losing the flexibility of
the higher-order aspects.

e This low-level approach is still worthwile for many exact disciplines. In fact,

both in logic and in computer science it has certainly not been wiped out, and
for good reasons.
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Automath

e The first tool for mechanical representation and
verification of mathematical proofs, AUTOMATH,
has a parameter mechanism.

e The representation of a mathematical text in
AUTOMATH consists of a finite list of /ines where
every line has the following format:

ry: Ay, .. xn Ay g(ay, .. x,) =t T

Here g is a new name, an abbreviation for the
expression t of type 1" and x1,...,x, are the
parameters of g, with respective types A1, ..., A,.

e Each line introduces a new definition which is
inherently parametrised by the variables occurring
in the context needed for it.

e Developments of ordinary mathematical theory
in AUTOMATH [Benthem Jutting, 1977] revealed
that this combined definition and parameter
mechanism is vital for keeping proofs manageable
and sufficiently readable for humans.
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The Barendregt Cube
o Tp =V |S|TpTr | A\V:Tp.Tp | IV:Tp.Tp
e Vs a set of variables and S = {x, O}.
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Different type formation conditions

I'-A:s1 TI'z:AF B : sy
(1I) . .
'+ (Ilz:A.B) : s

Amf va ~ m—

e ([, x) takes care of polymorphism. A2 is weakest
on cube satisfying this.

e (00,00) takes care of type constructors. Aw is
weakest on cube satisfying this.

e (x, ) takes care of term dependent types. AP is
weakest on cube satisfying this.

A= | (x, %)

A2 (x,%) | (O, *)

AP (, %) (x,0)

Aw (, %) (O, 0O)
AP2 | (k%) | (O,%) | (%,0)

Aw | (k) | (8, %) (0,0)
APw | (x, %) (x,0) | (O,0)
AC (x,%) | (O,%) | (%,0) | (O,0)
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Systems of the Barendregt Cube

System | Rel. system | Names, references

A—> AT simply typed  A-calculus;
[Church, 1940], [Barendregt,
1984] (Appendix A), [Hindley
and Seldin, 1986] (Chapter
14)

A2 F second order typed A-
calculus; [Girard, 1972],
[Reynolds, 1974]

AP AUT-QE Bruijn, 1968]

LF [Harper et al., 1987]

AP2 Longo and Moggi, 1988]

Aw POLYREC | [Renardel de Lavalette, 1991]

Aw Fw Girard, 1972]

AC CC Calculus of Constructions;

[Coquand and Huet, 1988]
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The Barendregt Cube
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LF

e LF (see [Harper et al., 1987]) is often described as AP of the Barendregt Cube.

o [Geuvers, 1993] shows that the use of the Il-formation rule (x, ) is very
restricted in the practical use of LF.

e This use is in fact based on a parametric construct rather than on II-formation.

e We will find a more precise position of LF on the Cube (between A\— and A\P).
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ML

e \We only consider an explicit version of a subset of ML.

e In ML, One can define the polymorphic identity by:
Id(a:x) = (A\z:a.x) @ (@ — «) (1)

e But in ML, it is not possible to make an explicit A-abstraction over « : * by:

Id = (Aa: x Ax:a.z) : (Ila: * .a — «) (2)

e The type Ila: x .c« — o does not belong to the language of ML and hence the
A-abstraction of equation (2) is not possible in ML.

FLOPS'01, 7-9 March 2001,Waseda, Japan 11



Kamareddine, Laan and Nederpelt

ML

e Therefore, we can state that ML does not have a II-formation rule (O, x).

e Nevertheless, ML has some parameter mechanism (a parameter of I1d)

e ML has limited access to the rule (O, %) enabling equation (1) to be defined.
e ML's type system is none of those of the eight systems of the Cube.

e We place the type system of ML on our refined Cube (between \2 and \w).
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Extending the Cube with parametric constructs

e Parametric constructs are ¢(by,...,b,) with by,..., b, terms of certain types.

o Tp :=V | S| C(Tpl, : ..Tp@) | TpTp | A\V:Tp.Tp | IV Tp.Tp

n§0

C is a set of constants, by, ..., b, are called the parameters of ¢(by,...,b,).

e R allows several kinds of II-constructs. We also use a set P of (s, s2) where
$1,82 € {*,0} to allow several kinds of parametric constructs.

® (s1,52) € P means that we allow parametric constructs ¢(b1, ..., b,) : A where
bi,...,b, have types By, ..., B, of sort s;, and A is of type ss.

o If both (%,s2) € P and (O, s3) € P then combinations of parameters allowed.
For example, it is allowed that B; has type %, whilst By has type [.
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The Cube with parametric constants

o Let R, P C {(x,%), (x,0),(0,%),(0,0)} containing (x, *).

— —
e \RP = )R and the two rules (C-weak) and (C-app):

I'e(A): AFb: B

(si,s) € P, cis I'-fresh

Fl, C(A):A, FQ - szZ[xJ:bj];;ll (Z — 1, ce ,n)
Fl, C(A)IA, FQ F A:s (If n — O)
Fl, C(A)IA, FQ - C(bl, v oey bn) . A[xj::bj]?zl

A=x1:By,...,x,:B,.
Ai = CBliBl, c. ,xi_lzBi_l
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Properties of the Refined Cube
e Correctness of types) If ' A : Bthen (B=0or ' B : S for some sort .5).

e (Subject Reduction SR) If ' A: Band A =3 A" then' - A': B

e (Strong Normalisation) For all t-legal terms M, we have SN_, ,(M). l.e. M
is strongly normalising with respect to —g.

e Other properties such as Uniqueness of types and typability of subterms hold.
e ARP is the system which has II-formation rules R and parameter rules P.

e Let ARP parametrically conservative (i.e., (s1,s2) € P implies (s1,s2) € R).

— The parameter-free system AR is at least as powerful as ARP.
— If ' Frp a : A then {F} FRr {a} : {A} .
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Example

o R={(x);
Pi=0 Py={(xx} Pi={(x0)} Pi={(x*),(0)
All \RP; for 1 <1 <4 with the above specifications are all equal in power.

o Rs={(x,%)} Ps={(xx),(x0)}.
A— < AR;Ps < AP: we can to talk about predicates:
a K,
eq(xa, y:a)
refl(x:a) : eq(x,x), .
symm(x:c, y:o, preq(x,y))
trans(x:a, y:a, z:a, p:eq(x,y), q:eq(y, z))
eq not possible in A—.
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The refined Barendregt Cube
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LF, ML, AuT-68, and AUuT-QE in the refined Cube

A2

ML

AP2

E

APw

LF
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LF
e [Geuvers, 1993] initially described LF as the system AP of the Cube.

However, the II-formation rule (x,0) is restricted in most applications of LF.

e [Geuvers, 1993] splits A-formation in two (LF — (A\p) is called LF™):
() )F,x:A FM:B I'FIlx:AB:x
’ T F \oa:A.M : Tlz:A.B

I'Ne:AFM:B TI'FIllx:AB:O
I'EApx:A.M : 11x:A.B

(Aoz:AM)N —5, M|z:=N]

()\p) ()\piL’AM)N —78p M[ZL’:N]

o If M :xor M:A:xinLF, then the Bp-normal form of M contains no \p;
o IfI'HM: A, and I', M, A do not contain a Ap, then ' - - M : A;

o If " M: A(: %), all in Bp-normal form, then I' - - M : A(: %).
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LF

e Hence: the only need for a type Ilx:A.B : O is to declare a variable in it.

e This is only done when the Propositions-As-Types principle PAT is applied
during the construction of the type of the operator Prf as follows:

prop:* - prop: *  prop:x,a:prop - x:0

prop:* = (Ila:prop.x*) : O
e In LF, this is the only point where the II-formation rule (x, O) is used.

e No \p-abstractions are used. Prf is only used when applied to term p:prop.

e Hence, the practical use of LF would not be restricted if we present Prf in a
parametric form, and use (%, 0) as a parameter instead of a II-formation rule.

e This puts LF in between A— and AP in the Refined Cube.
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Logicians versus mathematicians and induction over numbers

e |ogician uses ind: Ind as proof term for an application of the induction axiom.
The type Ind can only be described in AR where R = {(x, ), (*,0), (O, %) }:

Ind = Ip:(N—x*).p0— (IIn:N.IIm:N.pn— Snm—pm)—IIn:N.pn  (3)

e Mathematician uses ind only with P : N—x, ¢ : PO and R
(IIn:N.IIm:N.Pn—Snm—Pm) to form a term (indPQR):(IIn:N.Pn).

e The use of the induction axiom by the mathematician is better described by
the parametric scheme (p, ¢ and r are the parameters of the scheme):

ind(p:N—x, ¢:p0, r:(IIn:N.IIm:N.pn—Snm—pm)) : lIn:N.pn (4)

e The logician’s type Ind is not needed by the mathematician and the types
that occur in 4 can all be constructed in AR with R = {(x,*)(x, 0)}.
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Logicians versus mathematicians and induction over numbers

e Mathematician: only applies the induction axiom and doesn’t need to know
the proof-theoretical backgrounds.

e A logician develops the induction axiom (or studies its properties).

e (0, %) is not needed by the mathematician. It is needed in logician’s approach
in order to form the Il-abstraction IIp:(N — %).---).

e Consequently, the type system that is used to describe the mathematician’s
use of the induction axiom can be weaker than the one for the logician.

e Nevertheless, the parameter mechanism gives the mathematician limited (but
for his purposes sufficient) access to the induction scheme.
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Conclusions

e Parameters enable the same expressive power as the high-level case, while
allowing us to stay at a lower order. E.g. first-order with parameters versus
second-order without [Laan and Franssen, 2001].

e Desirable properties of the lower order theory (decidability, easiness of
calculations, typability) can be maintained, without losing the flexibility of
the higher-order aspects.

e Parameters enable us to find an exact position of type systems in the generalised
framework of type systems.

e Parameters describe the difference between developers and users of systems.
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Future Work

e The above only explained the extension of the Cube with parametric constants.
e A larger extension can be made to the more generalised Pure Type Systems.

e \We can add definitions and parametric definitions to the Cube and Pure Type
systems. This can be found in [Laan, 1997].
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