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t. An e�e
tive strategy for implementing higher order uni�
ation (HOU) based on the �se-style of expli
it substitution is proposed. The strategy is based on a �se-uni�
ation method re
entlydeveloped by the authors. A pre-
ooking translation for applying the �se-style of uni�
ation to HOUin the pure �-
al
ulus is presented. Corre
tness and 
ompleteness of the proposed strategy and of thepre-
ooking translation are shown and their appli
ability to HOU in the pure �-
al
ulus is illustrated.1 Introdu
tionIn [DHK00℄, a higher order uni�
ation (HOU) method was based on the ��-style of expli
it substitution[ACCL91℄. In [ARK00℄, HOU was studied in the �se-style of expli
it substitution [KR97℄. It is 
laimed in[ARK00℄ that �se-uni�
ation has the advantages of enabling qui
ker dete
tion of redi
es and of having a
learer semanti
s. In this paper, we set out to provide an e�e
tive strategy for implementing �se-uni�
ationand a pre-
ooking translation for applying it to HOU in the �-
al
ulus. It should be stressed that �� and�se are two di�erent styles of expli
it substitution whi
h are not isomorphi
. This implies that reworking theHOU method in �se is not a translation of work already done in ��. Many rules and proofs of the �se-HOUdi�er from those of the ��-HOU. We outline some of these di�eren
es throughout the arti
le.In Se
tion 2, we introdu
e the ne
essary notions, the relevan
e of expli
it substitution in HOU andthe �se- and ��-
al
uli. In Se
tion 3, we review our �se-style based uni�
ation method (
f. [ARK00℄). InSe
tions 4 and 5, we dis
uss our uni�
ation strategy and its appli
ability for HOU in the pure �-
al
ulus.Then we 
on
lude and dis
uss future work in Se
tion 6.2 Ba
kgroundWe assume familiarity with the notion of term algebra T (F ;X ) built on a (
ountable) set of variables Xand a set of operators F . Variables in X are denoted by upper 
ase last letters of the Roman alphabetX;Y; :::. For a term t 2 T (F ;X ), var (t) denotes the set of variables o

urring in t. We assume familiaritywith the �-
al
ulus as in [Bar84℄ and with the basi
 notions and notation of rewriting theory as in [BN98℄.For a redu
tion relation R over a set A, (A;!R), we denote with !�R the re
exive and transitive 
losure of!R. The subs
ript R is usually omitted. When a !� b we say that there exists a derivation from a to b.Synta
ti
al identity is denoted by a = b.A valuation is a mapping from X to T (F ;X ). The homeomorphi
 extension of a valuation, �, fromits domain X to the domain T (F ;X ) is 
alled the grafting of �. This notion is usually 
alled �rst ordersubstitution and 
orresponds to simple substitution without renaming. As usual, valuations and their 
orre-sponding grafting valuations are denoted by the same Greek letter. The domain of a grafting � is de�nedby Dom(�) = fX j X� 6= X;X 2 Xg and its range by Ran(�) = [X2Dom(�)var(X�). The set of variablesinvolved in � is var (�) = Dom(�) [ Ran(�). A valuation and its 
orresponding grafting � are expli
itly de-noted by � = fX=X� j X 2 Dom(�)g. When ne
essary, expli
it representations of graftings are di�erentiatedfrom substitutions by a \g" subs
ript: fX=X� j X 2 Dom(�)gg .? Partially supported by CAPES (BEX0384/99-2) Brazilian Foundation. Work 
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2 M. Ayala-Rin
�on and F. KamareddineNeeded properties of the ��- and �se-
al
ulus, their typed versions and normal form 
hara
terizationsare brie
y in
luded.2.1 The �-
al
ulus in de Bruijn notationLet V be a (
ountable) set of variables (di�erent from the ones in X ) denoted by lower
ase last lettersof the Roman alphabet x; y; :::. Terms �(V), of the �-
al
ulus with names are indu
tively de�ned bya ::= x j (a a) j �x:a. Terms of the forms �x:a and (a b) are 
alled abstra
tions and appli
ations,respe
tively. As it is well-known, �rst order substitution or grafting leads to problems in the �-
al
ulus.For example, applying the �rst order substitution fu=xg to �x:(u x) results in �x:(x x) whi
h is wrong.Therefore, the �-
al
ulus with names uses variable renaming via �-
onversion so that (�x:(u x))fu=xg, byrenaming x (say as y), results in the 
orre
t term �y:(x y). Taking 
are of appropriate �-
onversions, �- and�-redu
tion rules are de�ned in �(X ) respe
tively by (�x:a b)! afx=bg and �x:(a x)! a; if x 62 Fvar(a),where Fvar (a) denotes the set of free variables o

urring at a.Uni�
ation in �(V) di�ers from the �rst order notion, be
ause bound variables in �(V) are untou
hed byuni�
ation substitutions. Uni�
ation variables in the �-
al
ulus are free variables. Thus free variables o

ur-ring at terms of a uni�
ation problem 
an be partitioned into true uni�
ation variables and 
onstants,that 
annot be bound by the uni�ers.To di�erentiate between uni�
ation and 
onstant variables, one 
ould 
onsider uni�
ation variables asmeta-variables in a set X . Thus, �-
al
ulus should be de�ned as the term algebra, �(V ;X ), over the setof operators f�x: j x 2 Vg [ f( )g [ V and the set of variables X . In this setting, a notion of substitution
ould be adapted for meta-variables preserving the semanti
s of both �- and �-redu
tion. But the mostappropriate notation for our purposes is the ones of de Bruijn indi
es [NGdV94℄ where bound variablesare related to their 
orresponding abstra
tors by their relative height. For instan
e, �x:(�z :(x z) (x z)) istranslated into �:(�:(2 1) (1 4)). Indi
es for free variables are appropriately sele
ted to avoid relating themwith abstra
tors.The set �dB(X ) of �-terms in de Bruijn notation is de�ned indu
tively as a ::= n j X j (a a) j �:awhere X 2 X and n 2 N n f0g.De�nition 21. Let a 2 �dB(X ), i 2 N. The i-lift of a, a+i, is de�ned as:a) X+i = X, for X 2 X b) (a1 a2)+i = (a+i1 a+i2 )
) (�:a1)+i = �:a+(i+1)1 d) n+i = �n+ 1; if n > in; if n � i for n 2 N :The lift of a term a, that is needed to de�ne substitution, is its 0-lift, denoted brie
y by a+. We willdenote by a(+k)i , the i 
ompositions of k-lift.De�nition 22. The appli
ation of the substitution with b of n 2 N n f0g on a term a in �dB(X ), denotedfn=bga, is de�ned indu
tively as:1. fn=bgX = X, for X 2 X 2. fn=bg(a1 a2) = (fn=bga1 fn=bga2)3. fn=bg�:a1 = �:fn+ 1=b+ga1 4. fn=bgm =8<:m� 1; if m > nb; if m = nm; if m < n if m 2 N.De�nition 23. Let � = fX1=a1; : : : ; Xn=ang be a valuation from the set of meta-variables X to �dB(X ).The 
orresponding substitution, also denoted by �, is de�ned indu
tively as follows:a) �(m) = m for m 2 N b) �(X) = X�, for X 2 X
) �(a1 a2) = (�(a1) �(a2)) d) ��:a1 = �:�+(a1)where �+ denotes the substitution 
orresponding to the valuation �+ = fX1=a+1 ; : : : ; xn=a+n g.In �dB(X ), the left side of the �-redu
tion rule is written as �:(a0 1), where a0 stands for the 
orrespondingtranslation of a into the language of �dB(X ). The 
ondition \x 62 Fvar (a)" means, in �dB(X ), that thereare neither o

urren
es in a0 of the index 1 at height zero nor of the index 2 at height one et
. This means,in general, that there exists a term b su
h that b+ = a. Thus �-redu
tion is de�ned as (�:a b)! f1=bga and�-redu
tion as �:(a 1)! b if 9b b+ = a.
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it Substitution 32.2 The ��-
al
ulusDe�nition 24. The ��-
al
ulus is de�ned as the 
al
ulus of the rewriting system �� presented in Table 1where terms a ::= 1 j X j (a b) j �a j a[s℄ and subs s ::= id j " j a:s j s Æ s:Table 1. �� Rewriting System of the ��-
al
ulus(Beta) (�:a b) �! a [b � id℄ (Id) a[id℄ �! a(VarCons) 1 [a � s℄ �! a (App) (a b)[s℄ �! (a [s℄) (b [s℄)(Abs) (�:a)[s℄ �! �:a [1 � (s Æ ")℄ (Clos) (a [s℄)[t℄ �! a [s Æ t℄(IdL) id Æ s �! s (IdR) s Æ id �! s(ShiftCons) " Æ (a � s) �! s (Map) (a � s) Æ t �! a [t℄ � (s Æ t)(Ass) (s Æ t) Æ u �! s Æ (t Æ u) (VarShift) 1� " �! id(SCons) 1[s℄ � (" Æ s) �! s (Eta) �:(a 1) �! b if a =� b["℄The equational theory asso
iated to �� de�nes a 
ongruen
e denoted by =�� . The 
orresponding 
ongruen
eobtained by dropping the Beta and Eta rules is denoted by =�.The rewriting system �� satis�es the following properties: it is lo
ally 
on
uent [ACCL91℄, 
on
uenton substitution-
losed terms (i.e., terms without substitution variables) [R��o93℄ and not 
on
uent on openterms (i.e., terms with term and substitution variables) [CHL96℄.Proposition 25 ([R��o93℄). Any ��-term in ��-normal form is of one of the following forms: a) �a; b)(a b1 : : : bn), where a is either 1, 1["n℄, X or X [s℄ being s a substitution term di�erent from id in normalform; or 
) a1 : : : ap: "n, where a1; : : : ; ap are normal terms and ap 6= n.In �(X ) and �dB(X ), the rule Xfy=tg = X , where y is an element of V or a de Bruijn index, respe
tively,is ne
essary be
ause there is no way to suspend the substitution fy=tg until X is instantiated. In the ��-
al
ulus the appli
ation of this substitution 
an be delayed, sin
e the term X [s℄ does not redu
e to X .Observe that the 
ondition a =� b["℄ of the Eta rule is stronger than the 
ondition a = b+ as X = X+, butthere exists no term b su
h that X =� b["℄. The fa
t that the appli
ation of a substitution to a meta-variable
an be suspended until the meta-variable is instantiated will be used to 
ode substitution of variables in Xby X -grafting and expli
it lifting. Consequently a notion of X -substitution in ��-
al
ulus is unne
essary.2.3 The �se-
al
ulusThe �se-
al
ulus avoids introdu
ing two di�erent sets of entities and insists on remaining 
lose to the syntaxof the �-
al
ulus. Next to � and appli
ation, the �se-
al
ulus introdu
es substitution (�) and updating (')operators. In the �se-
al
ulus, we let a; b; 
; et
. range over the sets of terms �s. A term 
ontaining neithersubstitution nor updating operators is 
alled a pure term.De�nition 26 (�se-
al
ulus). The rules �se of the �se-
al
ulus are given in Table 2 and the terms arede�ned by �sop ::= X j N j �sop�sop j ��sop j �sop �j�sop j 'ik�sop for j; i � 1 ; k � 0. The �se-
al
ulusis the redu
tion system (�sop;!�se) where !�se is the least 
ompatible redu
tion on �sop generated by theset of rules �se. The 
al
ulus of substitutions asso
iated with the �se-
al
ulus is the rewriting systemgenerated by the set of rules se = �se � f�-generation;Etag and we 
all it the se-
al
ulus.The equational theory asso
iated with �se de�nes a 
ongruen
e denoted by =�se . The 
ongruen
e ob-tained by dropping the �-generation and Eta rules is denoted by =se . When we restri
t the redu
tion tothese rules, we will use expressions su
h as se-redu
tion, se-normal form, et
, with the obvious meaning.In order to 
larify di�eren
es between the ��-
al
ulus and the �se-
al
ulus, we show the 
orresponden
ebetween their Eta rules; i.e., the 
orresponden
e between both 
onditions b["℄ = a and '20b = a. Rememberthat in the ��-
al
ulus we only use the de Bruijn index 1 and that the other indi
es are 
odi�ed as 1["n℄.
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�on and F. KamareddineTable 2. Rewriting System of the �se-
al
ulus with �-rule(�-generation) (�:a b) �! a �1 b(�-�-transition) (�:a)�ib �! �:(a �i+1 b)(�-app-transition) (a1 a2)�ib �! ((a1 �ib) (a2 �ib))(�-destru
tion) n�ib �! 8<: n� 1 if n > i'i0 b if n = in if n < i('-�-transition) 'ik(�:a) �! �:('ik+1 a)('-app-transition) 'ik(a1 a2) �! (('ik a1) ('ik a2))('-destru
tion) 'ik n �! �n+ i� 1 if n > kn if n � k(Eta) �:(a 1) �! b if a =se '20b(�-�-transition) (a�ib)�j 
 �! (a �j+1 
) �i (b �j�i+1 
) if i � j(�-'-transition 1) ('ik a)�j b �! 'i�1k a if k < j < k + i(�-'-transition 2) ('ik a)�j b �! 'ik(a �j�i+1 b) if k + i � j('-�-transition) 'ik(a�j b) �! ('ik+1 a)�j ('ik+1�j b) if j � k + 1('-'-transition 1) 'ik ('jl a) �! 'jl ('ik+1�j a) if l + j � k('-'-transition 2) 'ik ('jl a) �! 'j+i�1l a if l � k < l + jExample 27 Consider the term �:((2 �:(1 3)) 1) in �dB(X ). Observe that the Eta rule applies, sin
e '20b ='20(1 �:(1 2)) �! ('201 '20�:(1 2)) �! ('201 �:'21(1 2)) �! ('201 �:('211 '212)) �!� (2 �:(1 3)) = a.Analogously, in the ��-
al
ulus we have: (1 �:(1 2))["℄ = (1 �:(1 1["℄))["℄ �! (1["℄ �:(1 1["℄)["℄) �!(1["℄ �:(1 1["℄)[1: "2℄) �! (1["℄ �:(1[1: "2℄ 1["℄[1: "2℄)) �! (1["℄ �:(1[1: "2℄ 1[" Æ(1: "2)℄)) �!(1["℄ �:(1[1: "2℄ 1["2℄)) �! (1["℄ �:(1 1["2℄)) = (2 �:(1 3)). �The 
orresponden
e between both Eta rules is the 
ase k = 0 of the following lemma.Lemma 28 ([ARK00℄). Let a 2 �dB and a0 its 
orresponding 
odi�
ation in the language of the ��-
al
ulus, where all indi
es n 2 N o

urring at a are repla
ed with 1["n�1℄. Then, for all k � 0, the �-normalform of a0[1:1["℄: : : : :1["k�1℄: "k+1℄ is the 
orresponding 
odi�
ation of the s-normal form of '2ka.The previous lemma 
an be straightforwardly extended for terms a 2 �dB(X ). In fa
t, observe that fora meta-variable X 2 X at a position i 2 O(a), the 
orresponding subterms of the �- and s-normal forms ofa["℄ and '20a are of the form X [1:1["℄: : : : :1["k�1℄: "k+1℄ and '2kX , respe
tively, supposing that the height ofthe o

urren
e of X at position i is k.Similarly to the ��-
al
ulus we 
an des
ribe operators of the �se-
al
ulus over the signature of a �rstorder sorted term algebra T�se(X ) built on X , the set of variables of sort term and its subsort nat�term.The set of variables of sort term in a term a 2 T�se (X ) is denoted by T var (a).Theorem 29 ([KR97℄). a) The se-
al
ulus is weakly normalizing and 
on
uent. b) The �se-
al
ulus sim-ulates �-redu
tion. 
) The �se-
al
ulus is 
on
uent on open terms.As 
orollary of the 
hara
terization of the se-normal forms in [KR97℄ (Theorem 8) we obtain a 
hara
-terization of �se-normal forms.Corollary 210 (�se-normal forms). a 2 �sop is a �se-normal form i�:1. a 2 X [ N;2. a = (b 
), where b; 
 are �se-normal forms and b is not an abstra
tion of the form �:d;
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it Substitution 53. a = �:b, where b is a �se-normal form ex
luding appli
ations of the form (
 1) su
h that there exists dwith '20d =se 
;4. a = b�j
, where 
 is a �se-normal form and b is an �se-normal form of one of the following forms:a) X, b) d�ie, with j < i or 
) 'ikd, with j � k;5. a = 'ikb, where b is a �se-normal form of one of the following forms:a) X, b) 
�jd, with j > k + 1 or 
) 'jl 
, with k < l.2.4 Typed �-
al
uliFor the sake of 
larity we in
lude only the essential notation of typed ��- and �se-
al
uli. Properties 
an befound in detail in [ARK00℄.We re
all that an environment � in de Bruijn setting is simply a list of types and, in the 
ase of the��-
al
ulus, substitutions re
eive environments as types. For all the systems we will 
onsider, we take:types A ::= A j A! B and envirs � ::= nil j A:� . The rewrite rules of the 
orresponding typed 
al
uliare exa
tly the same ex
ept that rules involving abstra
tions are now typed. Redu
tion in the typed ��- and�se-
al
uli is de�ned by adding to the rules in �� and in �se the ne
essary typing information. Thus, forthe typed ��-
al
ulus we have the typed rules (Beta), (Abs) and (Eta) respe
tively as follows:(�A:a b) �! a [b � id℄ (�A:a)[s℄ �! �A:a [1 � (s Æ ")℄ �A:(a 1) �! b if a =� b["℄and for the typed �se-
al
ulus:(�-generation) (�A:a b) �! a �1 b (�-�-transition) (�A:a)�ib �! �A:(a �i+1 b)('-�-transition) 'ik(�A:a) �! �A:('ik+1 a) (Eta) �A:(a 1) �! b if a =s '20bWe denote typability in �dB(X ), the ��- and �se-
al
uli by `�dB(X ), `�� and `�se respe
tively.Chara
terization of �-long normal forms in the typed ��- and �se-
al
uli is ne
essary to simplify the set ofrules of the uni�
ation algorithms. Essentially, the use of �-long normal forms guarantees that meta-variablesof a fun
tional type A! B are instantiated with typed terms of the form �A:a.De�nition 211 (�-long normal form in ��). Let a be a ��-normal form term of type A1 ! : : :! An !B in the environment � . The �-long normal form (�-lnf) of a, written a0, is de�ned by:1. if a = �C :b then a0 = �C :b0;2. if a = (k b1 : : : bp) then a0 = �A1 : : : �An(k+ n 
1 : : : 
p n0 : : : 10) where 
i is the �-lnf of the normal formof bi["n℄;3. if a = (X [s℄ b1 : : : bp) then a0 = �A1 : : : �An(X [s0℄ 
1 : : : 
p n0 : : :10) where 
i is the �-lnf of bi["n℄ and ifs = d1 : : : dq : "k then s0 = e1 : : : eq: "k+n where ei is the �-lnf of di["n℄.De�nition 212 (�-long normal form in �se). Let a be a �se-normal form term of type A1 ! : : : !An ! B in the environment � . The �-long normal form (�-lnf) of a, written a0, is de�ned by:1. if a = �C :b then a0 = �C :b0;2. if a = (b1 : : : bp) then a0 = �A1 : : : �An(
1 : : : 
p n0 : : : 10), where 
i is the �-lnf of the normal form of'n+10 bi;3. if a = b�i
 then a0 = �A1 : : : �An(d0�i+ne0 n0 : : : 10), where d0; e0 are the �-lnfs of the normal forms of'n+10 b and 'n+10 
, respe
tively;4. if a = 'ikb then a0 = �A1 : : : �An('ik
0 n0 : : : 10), where 
0 is the �-lnf of the normal form of 'n+10 b.The set of uni�
ation rules of both HOU methods are 
onstru
ted by 
ombining the di�erent types of�-lnfs enumerated in De�nitions 211 and 212 obtaining di�erent types of equational problems. For the HOUsetting based on the �se-style an additional 
hara
terization of �se-normal terms whose main operators areeither � or ' will be useful in order to 
ombine dire
tly �-lnfs of type 2 (See subse
tion 2.5) with the onesof type 3. and 4. This simpli�es the 
omparison of both HOU approa
hes.De�nition 213 (Long normal form (lnf)). Let a be either a ��-term or a �se-term. The long normalform of a is de�ned as the �-lnf of its ��-normal form.In both typed ��- and �se-
al
uli we have that two terms are ��-equivalent i� they have the same lnf.
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�on and F. Kamareddine2.5 �se-normal formsWe present a 
hara
terization of �se-normal terms whose main operators are either � or ' (i.e. of type 3.and 4. in Corollary 210). This is essential in order to simplify our presentation of the uni�
ation rules andof the 
ex-
ex equations.Observe that left arguments of the � operator or arguments of the ' operator at �se-normal termsare neither appli
ations, nor abstra
tions, nor de Bruijn indi
es. For instan
e, 'ji (a b) ! ('ika 'ikb),(a b)�i
! (a�i
 b�i
). Hen
e, the sole possibility is to have as a left argument a meta-variable. Thus onehas to 
onsider terms with alternating sequen
es of operators ' and � whose left innermost argument is ameta-variable; for instan
e, (('j3i3 (('j1i1X)�i2a))�i4b)�i5
.De�nition 214. Let t be a �se-normal term whose root operator is either � or ' and let X be its leftinnermost meta-variable. Denote by  jkik the operator at the kth position following the sequen
e of operators 'and �, 
onsidering only left arguments of the � operators, in the innermost outermost ordering. Additionally,if  jkik 
orresponds to an operator ' then jk and ik denote its super and subs
ripts, respe
tively and if  jkik
orresponds to an operator � then jk = 0 and ik denotes its supers
ript. Let ak denote the 
orrespondingright argument of the kth operator if  jkik = �ik and the empty argument if  jkik = 'jkik . The skeleton of twritten sk(t) is  jpip : : :  j1i1 (X; a1; : : : ; ap).Example 215 Consider a �se-normal term t of the form (('j3i3 (('j1i1X)�i2a))�i4b)�i5
. Then the skeleton oft, sk(t), is  0i5 0i4 j3i3  0i2 j1i1 (X; a; b; 
). �Lemma 216. Let t be a �se-normal term whose root operator is either � or ' and let the skeleton of t,sk(t) =  jpip : : :  j1i1 (X; a1; : : : ; ap). Su

essive subs
ripts ik and ik+1 satisfy the following 
onditions:1. ik > ik+1 if  k and  k+1 are both � operators or both ' operators;2. ik � ik+1 if  k and  k+1 are ' and � operators, respe
tively;3. ik > ik+1 + 1 if  k and  k+1 are � and ' operators, respe
tively.Proof. By simple analysis of the arithmeti
 
onstraints at the �se rewrite rules. ut3 Uni�
ation in the �se-
al
ulusIn this se
tion we brie
y present uni�
ation in the �se-style of expli
it substitution, as is given in [ARK00℄.Normal form 
hara
terization of �se-terms jointly with WN and CR properties are the essential requirementsto develop a uni�
ation method for the �se-
al
ulus, whi
h 
an be applied for HOU in the �-
al
ulus.Let T (F ;X ) be a term algebra over a set of fun
tion symbols F and a 
ountable set of variables X and letA be an F-algebra. A uni�
ation problem over T (F ;X ) is a �rst order formula without universal quanti�eror negation, whose atoms are of the form F; T or s =?A t. Uni�
ation problems are written as disjun
tions ofexistentially quanti�ed 
onjun
tions of atomi
 equational uni�
ation problems: D = Wj2J 9wj Vi2Ij si =?Ati. When jJ j = 1, the uni�
ation problem is 
alled a uni�
ation system. Variables in the set w of auni�
ation system 9wVi2I si =?A ti are bound and all other variables are free. T and F stand for the empty
onjun
tion and disjun
tion, respe
tively. The empty disjun
tion 
orresponds to an unsatis�able problem.A uni�er of a uni�
ation system 9wVi2I si =?A ti is a grafting � su
h that A j= 9wVi2I si�jw = ti�jwwhere �jw denotes the restri
tion of the grafting � to the domain X nw. A uni�er of Wj2J 9wj Vi2Ij si =?A tiis a grafting � that uni�es at least one of the uni�
ation systems. The set of uni�ers of a uni�
ation problem,D, or system, P , is denoted by UA(D) or UA(P ), respe
tively.De�nition 31. A �se-uni�
ation problem P is a uni�
ation problem in the algebra T�se(X ) modulo theequational theory of �se. An equation of su
h a problem is denoted a =?�se b, where a and b are �se-termsof the same sort. An equation is 
alled trivial when it is of the form a =?�se a.We present a set of rewrite rule s
hemata used to simplify uni�
ation problems. The obje
tive of applyingthe rules is to obtain a des
ription of the set of uni�ers. Basi
 de
omposition rules for uni�
ation should beapplied modulo the usual boolean simpli�
ation rules as given in [DHK00℄.



Strategies for HOU via �se-Style of Expli
it Substitution 7Table 3. �se-uni�
ation rules(De
-�) P ^ �A:a =?�se �A:b ! P ^ a =?�se b(De
-App) P ^ (n a1 : : : ap) =?�se (n b1 : : : bp) ! P Vi=1::p ai =?�se bi(App-Fail) P ^ (n a1 : : : ap) =?�se (m b1 : : : bq) ! Fif n 6= m(De
-�) P ^ a�ib =?�se 
�id ! P ^ a =?�se 
 ^ b =?�se d(�-Fail) P ^ a�ib =?�se 
�jd ! Fif i 6= j and a�ib =?�se 
�jd is not 
ex-
ex(De
-') P ^ 'ika =?�se 'ikb ! P ^ a =?�se b('-Fail) P ^ 'ika =?�se 'jl b ! Fif i 6= j or k 6= l and 'ika =?�se 'jl b is not 
ex-
ex(Exp-�) P ! 9(Y : A:� ` B); P ^X =?�se �A:Yif (X : � ` A! B) 2 T var(P ); Y 62 T var(P ), and X is a unsolved variable(Exp-App) P ^  jpip : : :  j1i1 (X; a1; : : : ; ap) =?�se (m b1 : : : bq) !P ^  jpip : : :  j1i1 (X; a1; : : : ; ap) =?�se (m b1 : : : bq) ^Wr2Rp[Ri 9H1; : : : ; Hk; X =?�se (r H1 : : : Hk)if  jpip : : :  j1i1 (X; a1; : : : ; ap) is the skeleton of a �se-normal term and X has an atomi
type and is not solved where H1; : : : ; Hk are variables of appropriate types, not o

ur-ring in P , with the environments �Hi = �X , Rp is the subset of fi1; : : : ; ipg of super-s
ripts of the � operator su
h that (r H1 : : : Hk) has the right type, Ri = Spk=0 if ik �m+p�k�Ppl=k+1 jl > ik+1 then fm+p�k�Ppl=k+1 jlg else ;, where i0 =1; ip+1 = 0(Repla
e) P ^X =?�se a ! fX=agP ^X =?�se aif X 2 T var (P );X 62 T var (a) and a 2 X ) a 2 T var(P )(Normalize) P ^ a =?�se b ! P ^ a0 =?�se b0if a or b is not in lnf where a0 is the lnf of a if a is not a solved variable and a otherwise.b0 is de�ned from b identi
allyDe�nition 32. The set in Table 3 de�nes the �se-uni�
ation rules for the typed �se-uni�
ation problems.Sin
e �se is CR and WN, the sear
h 
an be restri
ted to �-long normal solutions that are graftings bindingfun
tional variables into �-long normal terms of the form �:a and atomi
 variables into �-long normal termsof the form (k b1 : : : bp) or a�ib or 'ika, where in the �rst 
ase k 
an be omitted and p be zero. The use of the�-rule is important to redu
e the number of 
ases (or uni�
ation rules) to be 
onsidered when de�ning theuni�
ation algorithm, but as for the ��-
al
ulus, the �-rule 
an be dropped [DHK00℄. As for the ��-style ofuni�
ation, Normalize and De
-� use the fa
t that �se is CR and WN to normalize equations of the form�:a =?�se �:b into a0 =?�se b0 and the rule Repla
e propagates the grafting fX=ag 
orresponding to equationsX =?�se a. Exp-� generates the grafting fX=�:Y g for a variable X of type A! B, where Y is a new variableof type B.Equations of the form (n a1 : : : ap) =?�se (m b1 : : : bq) are transformed by the rules De
-App and App-Failinto the empty disjun
tion when n 6= m, as it has no solution, or into the 
onjun
tion Vi=1::p ai =?�se bi,when n = m. Remember that by terms of the form (n a1 : : : ap) we also mean those where n is omitted orp = 0. Analogously, the rules De
-� and De
-' de
ompose equations with leading operators � and '. But,the 
orresponding rules �-Fail and '-Fail should omit 
ex-
ex equations as the Example 33 shows.Example 33 Let (�:(�:(X 2) 1) Y ) =?�se (�:(Z 1) U) be a uni�
ation problem, where X;Y; Z and U aremeta-variables of the same atomi
 type, say A.Then (�:(�:(X 2) 1) Y ) !� ((X�2Y )�1('10Y ) '10Y ) and (�:(Z 1) U)!� (Z�1U '10U). Thusapplying the rule Normalize to the original equation we obtain ((X�2Y )�1('10Y ) '10Y ) =?�se (Z�1U '10U)whi
h 
an be de
omposed into (X�2Y )�1('10Y ) =?�se Z�1U ^ '10Y =?�se '10U and subsequently into(X�2Y ) =?�se Z ^ '10Y =?�se U ^ Y =?�se U .Sin
e 8n 2 N, '10n ! n, the equation '10Y =?�se U always has solutions, and solutions of the last twoequations are graftings of the form fY=V; U=V g. Additionally, observe that the �rst equation has a varietyof solutions: take fX=ng; thus if n > 2, fZ=n� 1g else if n = 2, fZ='20Y g else fZ=1g.



8 M. Ayala-Rin
�on and F. KamareddineAnalogously, by normalization and de
omposition with the ��-uni�
ation rules we have:(�:(�:(X 2) 1) Y ) =?�� (�:(Z 1) U) !Normalize (X [Y:Y:id℄ Y ) =?�� (Z[U:id℄ U), whi
h 
an bede
omposed into X [Y:Y:id℄ =?�� Z[U:id℄ ^ Y =?�� U . A further step of repla
ement gives the 
orresponding
ex-
ex equation of the ��-
al
ulus X [Y:Y:id℄ =?�� Z[Y:id℄. �In ��-HOU, the rule Exp-App advan
es towards solutions to equations of the form X [a1 : : : ap: "n℄ =?�se(m b1 : : : bq) where X is an unsolved variable of an atomi
 type. The �se-uni�
ation rule Exp-App has theanalogous role for �se-uni�
ation problems. Use of �se-normal forms in Exp-App is not essential. This isdone with the sole obje
tive of simplifying the 
ase analysis presented in the de�nition of the rule and its
ompleteness proof. In fa
t, this 
an be dropped and subsequently in
orporated as an eÆ
ient uni�
ationstrategy, where before applying Exp-App, �se-uni�
ation problems are normalized.Example 34 From the uni�
ation problem �:(�:(Y 1) �:(X 1)) =? �:(�:V �:W ) we rea
h the equations:(Y [�:(X 1):id℄ �:(X 1)) =?�� V [�:W:id℄ and (Y �1�:(X 1) �:('11 1)) =?�se V �1�:W . After applying the
orresponding Exp-App rules, with V =?�� (V1 V2) and V =?�se (V1 V2), additional equations appear:�:(X 1) =?�� V2[�:(X 1):id℄ and �:('11X 1) =?�se V2�1�:(X 1). Solutions result by sele
ting the 
ase V2 =?��1 or 
orrespondingly V2 =?�se 1. �De�nition 35. A uni�
ation system P is a �se-solved form if it is a 
onjun
tion of non trivial equationsof the following forms:(Solved) X =?�se a, where the variable X does not o

ur anywhere else in P and a isin lnf. Su
h an equation and variable are said to be solved in P .(Flex-Flex) non solved equations between long normal terms whose root operator is � or' whi
h 
an be represented as equations between their skeleton: jpip : : :  j1i1 (X; a1; : : : ; ap) =?�se  lqkq : : :  l1k1(Y; b1; : : : ; bq).Remark 36 Consider a �se-normal term t whose root operator is either � or ' and with skeleton of theform sk(t) =  jpip : : :  j1i1 (X; a1; : : : ; ap). Then by binding X with n, n > i1, one obtains the normal formt!� n+Ppk=1 jk � p. This is a dire
t 
onsequen
e of lemma 216. �The rest of this se
tion lists relevant properties of the �se-uni�
ation rules. For proofs, see [ARK00℄.Lemma 37. Any �se-solved form has �se-uni�ers.Lemma 38 (Well-typedness). Dedu
tion by the �se-uni�
ation rules of a well typed equation gives riseonly to well typed equations, T and F.Lemma 39 (Equivalen
e of solvedness and normalization). Solved problems are normalized for the�se-uni�
ation rules and, 
onversely, if a system is a 
onjun
tion of equations that 
annot be redu
ed by the�se-uni�
ation rules then it is solved.De�nition 310. Let P and P 0 be �se-uni�
ation problems, let \rule" denote the name of a �se-uni�
ationrule and \!rule" its 
orresponding dedu
tion relation over uni�
ation problems. By 
orre
tness of rule weunderstand: P !rule P 0 implies U�se(P 0) � U�se(P ). By 
ompleteness of rule we understand: P !rule P 0implies U�se(P ) � U�se (P 0)Theorem 311 (Corre
tness and Completeness). The �se-uni�
ation rules are 
orre
t and 
omplete.



Strategies for HOU via �se-Style of Expli
it Substitution 9Table 4. Uni�
ation repla
e strategyNormalize or De
-� or De
-App or App-Fail or De
-� or �-Fail orDe
-' or '-Fail or Exp-�; Repla
e or Exp-App ; Repla
e4 A uni�
ation strategy�se-uni�
ation rules should be applied following some strategy that avoids non termination of the uni�
ationpro
ess. Observe, in parti
ular, that the rule Exp-� 
an be applied in�nitely many times on one variableof a system if no repla
ement is done. Analogously to [DHK00℄ we de�ne a uni�
ation strategy that afterea
h appli
ation of either Exp-� or Exp-app applies the rule Repla
e. Rules should, of 
ourse, be applied in afair manner, whi
h means that in one disjun
tion of systems, none of the 
onstitutive systems is left foreverwithout applying uni�
ation rules on it.Our so 
alled uni�
ation repla
e strategy, 
onsists of a fair appli
ation of the �se-uni�
ation rules aspresented in Table 4 (A;B means A before B, and A or B means 
hoose either A or B).Su

essive appli
ations of (Exp-�; Repla
e) and (Exp-App; Repla
e) are denoted by Exp-�R and Exp-AppR, respe
tively.A uni�
ation problem, P , is divided into the non solved, say Q, and solved, say R, equations. We usethe notation P = hQ;Ri. Completeness of the uni�
ation repla
e strategy is proved by showing that all theabove groups of rules de
rease a 
omplexity measure based on the grafting � resulting from the uni�
ationalgorithm. For a solved system R 
onsisting of only solved equations, Subst(R) denotes the 
anoni
al graftingasso
iated to R. For example if R = (X =?�se a) then Subst(R) = fX=ag.Take in the rest of this se
tion a �se-normalized grafting solution � of a uni�
ation problem P .De�nition 41. For a system of equations P = hQ;Ri and a �se-normalized grafting �, whi
h is a solutionof P , we de�ne the UnifStrat transformations hQ;R; �i !r hQ0; R0; �0i, where r is a group of rules of theuni�
ation repla
e strategy, as follows:1. hQ;R; �i!Normalize hQ0; R0; �i, where Q0 and R0 are the normalized forms of Q and R as de�ned in the�se-uni�
ation.2. hQ^ �A:a =?�se �A:b; R; �i!De
��hQ0; R0; �i, where Q0 = Q^ a =?�se b and R0 = R when a =?�se b is notsolved with respe
t to Q ^R or Q0 = Q and R0 = R ^ a =?�se b when a =?�se b is solved.3. hQ ^ (n a1 : : : ap) =?�se (n b1 : : : bp); R; �i!De
�App hQ0; R0; �i, where Q0 
onsists in Q and the unsolvedequations (with respe
t to Q ^ R) in Vi=1::p ai =?�se bi and R0 
onsists in R and the solved equations inVi=1::p ai =?�se bi.4. hQ;R; �i!De
��hQ0; R0; �i, where Q0 
onsists in Q and the unsolved equations (with respe
t to Q ^ R)in a =?�se 
 ^ b =?�se d and R0 
onsists in R and the solved equations in a =?�se 
 ^ b =?�se d.5. hQ;R; �i!De
�'hQ0; R0; �i, where if a =?�se b is unsolved with respe
t to Q ^ R, Q0 = Q ^ a =?�se b andR0 = R else Q0 = Q and R0 = R ^ a =?�se b.6. hQ ^X =?�se b; R; �i!Repla
ehfX=bgQ;R ^X =?�se b; �i7. hQ;R; �i!Exp��RhfX=�A:Y gQ;R^X =?�se �A:Y; � n fX=�A:ag[fY=ag, when Exp-� applies on Q^R.8. hQ ^  jpip : : :  j1i1 (X; a1; : : : ; ap) =?�se (m b1 : : : bq); R; �i!Exp�AppRhfX=(r H1 : : : Hk)g(Q ^  jpip : : :  j1i1 (X; a1; : : : ; ap) =?�se (m b1 : : : bq));R ^X =?�se (r H1 : : : Hk); � n fX=(r 
1 : : : 
k) [ fHi=
igifor one of the r 2 Rp [ Ri, when Exp-App applies on Q ^ R.Lemma 42 (UnifStrat is well de�ned). The transformations Exp-�R and Exp-AppR are well de�ned.Proof. We show that the transformations applied on the grafting part � of hQ;R; �i make sense.First, observe that sin
e Exp-� preserves the solutions, � is also a �se-solution of the equation X =?�se�A:Y . This together with the assumption that � is �se-normalized, implies that the instantiation of X by �is of the form fX=�A:ag. Hen
e the transformation Exp-�R is well de�ned.Se
ond, sin
e Exp-App preserves the solutions, � is �se-solution of the equation X =?�se (r H1 : : : Hk).Thus �(X) = (r 
1 : : : 
k), for some 
i, i = 1; : : : ; k. Consequently, the transformation Exp-AppR is wellde�ned too. ut



10 M. Ayala-Rin
�on and F. KamareddineLemma 43 (Finiteness of UnifStrat). For a system hQ;Ri having for solution a �se-normalized grafting�, there is no in�nite derivation issued from hQ;R; �i, using the UnifStrat transformations.Proof. We de�ne the size of a grafting as the sum of the size of the terms in its range: j�j = �t2Ran�jtj.First, we prove that there are no in�nite sequen
es of transformation appli
ations involving the trans-formations Normalize, Repla
e, De
-�, De
-App, De
-� and De
-'. We de�ne a 
omplexity measure, � , of asystem P = hQ;Ri by: �(P ) = hjvar (Q)j; f�i;max(jaij; jbij)gai=?�sebi2Qi where �i is the length of the shortest�se-normalizing derivation of ai =?�se bi. Complexities are 
ompared lexi
ographi
ally using the ordering onnaturals for the �rst 
omponent and the multiset ordering for the se
ond 
omponent itself ordered by thelexi
ographi
 ordering on naturals (for ground notions on multiset ordering see [BN98℄).Now observe that for ea
h possible appli
ation of these transformations on a system P its 
omplexityde
reases. Normalize may de
rease the number of variables but always de
reases the size of one of the �i.Repla
e de
reases the number of unsolved variables. De
-�, De
-App, De
-� and De
-' never in
rease �i(sin
e the normalization derivation of a subterm is always equal or smaller than the derivation of its 
ontextterm) and they de
rease the size of the equation to whi
h they are applied.Se
ond, in order to involve in the whole argumentation transformations Exp-� R and Exp-AppR we de�nea new 
omplexity measure involving the size of the grafting: �(P ) = hj�j; �(P )i.Sin
e the transformations Normalize, Repla
e, De
-�, De
-App, De
-� and De
-' do not 
hange thegrafting, previous argumentation holds for the resulting lexi
ographi
al ordering on these 
omplexity usingthe ordering on naturals for the �rst 
omponent. Moreover, transformations Exp-� R and Exp-AppR alwaysde
rease the size of the 
urrent grafting �. Consequently the appli
ation of UnifStrat is terminating. utLemma 44 (Preservation of solutions). If � is a �se-solution of system Q and if hQ;R; �i !r hQ0; R0; �0ithen �0 is a �se-solution of Q0 and � Æ Subst(R) =var(Q;R)�se �0 Æ Subst(R0).Proof. For all the rules ex
ept Exp-� R and Exp-AppR, we have �0 = �. Additionally, sin
e the rules Exp-�and Exp-App preserve solutions, we have that �0 is a solution of Q0. Observe that the equality modulo �seis introdu
ed by possible normalization steps.As the proofs for Exp-�R and Exp-AppR are similar, we only do one. By the de�nition of Exp-�R, �0 is a�se-solution of Q0. Let Z be a variable in var(Q;R) then either Z = X or Z 6= X . In the �rst 
ase, � satis�es�(X) = (� Æ Subst(R))(X) = �(X) = �A:a, and (�0 Æ Subst(R0))(X) = �0(�A:Y ) = �A:a. In the se
ond 
ase,both graftings give the same image for Z. utLemma 45 (Constru
tion of solutions). Let hQ0; R0; �0i ! hQ1; R1; �1i ! � � � ! hQn; Rn; �ni be a�nite derivation applying transformations of UnifStrat starting from the problem P0 = hQ0; R0i and the�se-normalized solution �0. Then, �0 =var(Pn)�se �n Æ Subst(Rn), where �n is a solution of the solved form Qn.Proof. Observe that �0 = �0ÆSubst(R0). From Lemmas 43 and 44, the derivation originated from hQ0; R0; �0iis �nite, say of length n, and we have: �0 Æ Subst(R0) =var(P0)�se �1 Æ Subst(R1) =var(P1)�se � � � =var(Pn�1)�se�nÆSubst(Rn). By Lemma 39,Qn^Rn should be a solved form. Moreover, var (P0) � var (P1) � � � � � var (Pn)sin
e the set of variables of the uni�
ation problems 
ould only de
rease due to the Normalize rule. Then wehave �0 =var(Pn)�se �n Æ Subst(Rn). utTheorem 46 (Completeness of UnifStrat). The �se-uni�
ation rules des
ribe a 
orre
t and 
omplete�se-uni�
ation pro
edure in the sense that, given a �se-uni�
ation problem P :if the �se-uni�
ation rules lead in a �nite number of steps to a disjun
tion of systems having one of itsone 
onstitutive system solved, then the problem P is �se-uni�able and a solution to P is the solution
onstru
ted in Lemma 37 for a solved 
onstitutive system,if P has a uni�er � then the strategy UnifStrat leads in a �nite number of steps to a disjun
tion ofsystems su
h that one 
onstitutive system is solved and, like P , has a uni�er.Proof. Straightforward, using Lemma 43 and Theorem 311. ut



Strategies for HOU via �se-Style of Expli
it Substitution 115 HOU in the pure �-
al
ulusWe present in an informal way two examples on how to apply our �se-uni�
ation method in order to solveHOU problems in the pure �-
al
ulus. We 
ompare our work to the appli
ation of ��-HOU.Observe �rstly that unifying two terms a and b in the �-
al
ulus 
onsists in �nding a substitution �su
h that �(a) =�� �(b). But in the �-
al
ulus the notion of substitution is di�erent from the �rst orderone or grafting, as was shown in Se
tion 2. Thus using the notation of substitution in De�nitions 22 and23, a uni�er in the �-
al
ulus of the problem �:X =?�� �:2 (where =�� denotes the 
ongruen
e generatedby the �- and �-rules on �dB(X )) is not a term t = �X su
h that �:t =?�� �:2 but a term t = �X su
hthat �(�:X) = �:�+(X) = �:2 as (�:X)fX=tg = �:XfX=t+g = �:t+ and not �:t. This observation 
an beextended to any uni�er and by translating appropriately �-terms a; b 2 �dB(X ), the HOU problem a =?�� b
an be redu
ed to equational uni�
ation. [DHK00℄ presents a translation 
alled pre-
ooking from �dB(X )terms into the ��-
al
ulus su
h that sear
hing for solutions of the 
orresponding ��-uni�
ation problem
orresponds to sear
hing for solutions of the HOU problem a =?�� b. In the following examples, we illustrateinformally the analogous situation in the �se-
al
ulus.Example 51 Consider the higher order uni�
ation problem �:(X 2) =?�� �:2, where 2 and X are of typeA and A ! A, respe
tively. Observe that applying a substitution solution � to the �dB(X )-term �:(X 2)gives �(�:(X 2)) = �:(�+(X) 2). Then in the �se-
al
ulus we are sear
hing for a grafting �0 su
h that�0(�:('20(X) 2)) =�se �:2. Correspondingly, in the ��-
al
ulus, �:(X 2) is translated or pre-
ooked into�:(X ["℄ 2). Observe that this 
orresponden
e results from lemma 28. Then we should sear
h for uni�ers forthe problem �:('20(X) 2) =?�se �:2.Now we apply �se-uni�
ation rules to the problem �:('20(X) 2) =?�se �:2. By applying De
-� and Exp-�we get ('20(X) 2) =?�se 2 and subsequently 9Y ('20(X) 2) =?�se 2 ^X =?�se �:Y . Then by applying Repla
eand Normalize we obtain 9Y ('20(�:Y ) 2) =?�se 2^X =?�se �:Y and 9Y ('21Y )�12 =?�se 2^X =?�se �:Y . Now,by applying rule Exp-app we obtain(9Y ('21Y )�12 =?�se 2 ^X =?�se �:Y ) ^ (Y =?�se 1 _ Y =?�se 2) whi
h by Repla
e gives(('211)�12 =?�se 2 ^X =?�se �:1) _ (('212)�12 =?�se 2 ^X =?�se �:2) and, �nally, by Normalize(2 =?�se 2^X =?�se �:1) _ (2 =?�se 2^X =?�se �:2). In this way substitution solutions fX=�:1g and fX=�:2gare found.To 
omplete the analysis note that by De�nitions 22, 23 and �-redu
tion in �dB(X ) we have:fX=�:1g(�:(X 2)) = �:(fX=(�:1)+g(X) 2) = �:(�:1+1 2) = �:(�:1 2) =� �:2 andfX=�:2g(�:(X 2)) = �:(fX=(�:2)+g(X) 2) = �:(�:2+1 2) = �:(�:3 2) =� �:2:Observe that the last appli
ation of �-redu
tion is as follows: (�:3 2) =� f1=2g(3) = 2. �In general, before the uni�
ation pro
ess, a �-term a should be translated into the �se-term a0 resultingby simultaneously repla
ing ea
h o

urren
e of a meta-variable X at position i in a with 'k+10 X , where k isthe number of abstra
tors between the root position of a, ", and position i. If k = 0 then the o

urren
e of Xremains un
hanged. Essentially, what the pre-
ooking translation de�ned in [DHK00℄ does is to trans
ribeall o

urren
es of de Bruijn indi
es n into 1["n�1℄ and all o

urren
es of meta-variables X into X ["k℄, wherek is determined as above. Noti
e that the two pre-
ooking translations 
an be implemented non-re
ursivelyin an eÆ
ient way.Example 52 Consider the HOU problem F (f(a)) =? f(F (a)). In �dB(X ) it 
an be seen as (X (2 1)) =?��(2 (X 1)), where both X and 2 are of type A! A and 1 is of type A. Sin
e there are no abstra
tors at theterms of the equational problem, the equation remains un
hanged: (X (2 1)) =?�se (2 (X 1)).For simpli
ity we omit existential quanti�ers. After one appli
ation of Exp-� and another of Repla
e weget (�:Y (2 1)) =?�se (2 (�:Y 1)) ^ X =?�se �:Y where Y is of type A. Applying Normalize we obtainY �1(2 1) =?�se (2 Y �11) ^ X =?�se �:Y And by one appli
ation of Exp-App we get Y �1(2 1) =?�se(2 Y �11) ^X =?�se �:Y ^ (Y =?�se 1 _ Y =?�se (3 H1)).Note that other possible 
ases do not produ
e solved forms. By Repla
e and Normalize we get:((2 1) =?�se (2 1) ^X =?�se �:1) _ ((2 H1�1(2 1)) =?�se (2 (2 H1�11)) ^X =?�se �:(3 H1)), from whi
hwe have the �rst solved system 
orresponding to the identity solution: fX=�:1g.
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�on and F. KamareddineSubsequently, other solutions 
an be obtained from the equational system(2 H1�1(2 1)) =?�se (2 (2 H1�11)) ^X =?�se �:(3 H1)In fa
t, by De
-App and Exp-App we obtainH1�1(2 1) =?�se (2 H1�11) ^X =?�se �:(3 H1) ^ (H1 =?�se 1 _H1 =?�se (3 H2))Other possible 
ases do not produ
e solved forms. By Repla
e and Normalize we obtain ((2 1) =?�se(2 1) ^ X =?�se �:(3 1)) _ ((2 H2�1(2 1)) =?�se (2 (2 H2�11)) ^ X =?�se �:(3 (3 H2))), from wherewe have the se
ond solved system 
orresponding to the grafting solution: fX=�:(3 1)g. This 
orrespondsto the solution F = f ; in fa
t, by repla
ing X with �:(3 1) in the original uni�
ation problem we obtain(�:(3 1) (2 1)) =?�se (2 (�:(3 1) 1)), from where it is 
lear that de Bruijn indi
es 3 and 2 
orrespond to thesame operator. Additionally, note that (�:(3 1) (2 1)) !� (2 (2 1)) and (2 (�:(3 1) 1)) !� (2 (2 1)).Hen
e, applying De
-App, Exp-App, Repla
e and Normalize to the equational system ((2 H2�1(2 1))=?�se (2 (2 H2�11)) ^ X =?�se �:(3 (3 H2))) we obtain the third solved system giving the grafting so-lution fX=�:(3 (3 1))g 
orresponding to the solution F = ff . The uni�
ation pro
ess 
ontinues in�nitelyprodu
ing solved systems 
orresponding to the grafting solutions fX=�:(3 (3 (3 1)))g (i.e. F = fff),fX=�:(3 (3 (3 (3 1))))g (i.e. F = ffff), et
. �Now we 
an de�ne our pre-
ooking translation.De�nition 53 (Pre-
ooking). Let a 2 �dB(X ) su
h that � `�dB(X ) a : T . To every variable X of typeA o

urring at a we asso
iate the same type and 
ontext � in the �se-
al
ulus. The pre-
ooking of a from�dB(X ) to the �se-
al
ulus is de�ned by ap
 = PC(a; 0) where PC(a; n) is de�ned by:1. PC(�B :a; n) = �B :PC(a; n+ 1) 2. PC((a b); n) = (PC(a; n) PC(b; n))3. PC(k; n) = k 4. PC(X;n) = if n = 0 then X else 'n+10 XLemma 54. If � `�dB(X ) a : T , then � `�se ap
 : T .Proof. We prove the more general result: if A1 : : : An; � `�dB(X ) a : T and if to every variable o

urring ata, the same type and 
ontext � is asso
iated, then A1 : : : An; � `�se PC(a; n) : T . This is done by indu
tionon the stru
ture of terms, for all n.Initially, observe that 
ases a = k and a = (a1 a2) are simple. Afterwards, suppose that a = �B :b.Then T = B ! C and B;A1 : : : An; � `�dB(X ) b : C. Thus B;A1 : : : An; � `�se PC(b; n + 1) : C andA1 : : : An; � `�se PC(�B :b; n) = �B :PC(b; n+ 1) : B ! C. Finally, for a = X by de�nition of � `�dB(X )X : T , � `�se X : T and A1 : : : An; � `�se 'n+10 (X) : T . utNow pre-
ooking is justi�ed by the following proposition that relates substitution in �dB(X ) and graftingin �se.Proposition 55 (Semanti
s of pre-
ooking). Let a; b1; : : : ; bp be terms of �dB(X ). We have:(afX1=b1; : : : ; Xp=bpg)p
 = ap
fX1=b1p
 ; : : : ; Xp=bpp
ggProof. The more general fa
t PC(afX1=b+i1 ; : : : ; Xp=b+ip g; i) = PC(a; i)fX1=b1p
 ; : : : ; Xp=bpp
gg is what wewill prove. Observe that the 
ase i = 0 
orresponds to the proposition: (afXj=bjg)p
 = PC(afXj=b+0j g; 0) =PC(a; 0)fXj=bjp
gg = ap
fXj=bjp
gg . The proof is done by indu
tion on the stru
ture of terms for all i.� a = �:b. PC((�:b)fXj=b+ij g; i) = PC(�:(bfXj=b+i+1j g); i) = �:(PC(bfXj=b+i+1j g; i+ 1)). By indu
tionhypothesis, the previous expression is equal to �:(PC(b; i+ 1)fXj=bjp
gg) = �:(PC(b; i+ 1))fXj=bjp
gg =PC(�:b; i)fXj=bjp
gg.� a = (a1 a2). Observe that PC((a1 a2)fXj=b+ij g; i) = PC((a1fXj=b+ij g a2fXj=b+ij g); i) and this isequal to (PC(a1fXj=b+ij g; i) PC(a2fXj=b+ij g; i)). By applying the indu
tion hypothesis the last expres-sion is equal to (PC(a1; i)fXj=bjp
gg PC(a2; i)fXj=bjp
gg). To 
on
lude, the last expression is equal to(PC(a1; i) PC(a2; i))fXj=bjp
gg = PC((a1 a2); i)fXj=bjp
gg.



Strategies for HOU via �se-Style of Expli
it Substitution 13� a = n. PC(nfXj=b+ij g; i) = PC(n; i) = nfXj=bjp
gg = PC(n; i)fXj=bjp
gg.� a = X. We have two 
ases: either X = Xj , for some 1 � j � p, or X 6= Xj , for all 1 � j � p. Theinteresting 
ase is the �rst one. Suppose that X = Xj , for some 1 � j � p. Then we should prove thatPC(b+ij ; i) = PC(Xj ; i)fXj=bjp
gg = 'i+10 bjp
 . We will prove the more general fa
t that PC(b(+k)i ; i+ k) ='i+1k PC(b; k). This is done by indu
tion on the stru
ture of b as follows:� b = �:
. PC((�:
)(+k)i ; i+k) = PC(�:
(+(k+1))i ; i+k) sin
e (�:
)(+k)i = �:
(+(k+1))i . The last expressionis equal to �:PC(
(+(k+1))i ; i+ k + 1) whi
h is equal to �:'i+1k+1PC(
; k + 1) by the indu
tion hypothesis. Thelast expression is equal to 'i+1k �:PC(
; k + 1) = 'i+1k PC(�:
; k).� b = (b1 b2). Initially, we have the following: PC((b1 b2)(+k)i ; i + k) = PC((b(+k)i1 b(+k)i2 ); i +k) = (PC(b(+k)i1 ; i+ k) PC(b(+k)i2 ; i+ k)). Then by applying the indu
tion hypothesis this is equal to('i+1k PC(b1; k) 'i+1k PC(b2; k)) = 'i+1k PC((b1 b2); k).� b = n. Case n > k, PC(n(+k)i ; i + k) = PC(n+ i; i + k) = n+ i and 'i+1k PC(n; k) = 'i+1k n = n+ i.Case n � k, PC(n(+k)i ; i+ k) = PC(n; i+ k) = n and 'i+1k PC(n; k) = 'i+1k n = n.� b = X. PC(X(+k)i ; i+k) = PC(X; i+k) = 'i+k+10 X and 'i+1k PC(X; k) = 'i+1k 'k+10 X = 'i+k+10 X . utIn 
ontrast with the 
orresponding proof in [DHK00℄, where substitution obje
ts are ne
essary for provingthe 
riti
al 
ase of a = X (i.e., substitutions of the form [1:::k: "i+k℄) our proof uses pure term obje
ts bysele
ting the appropriate super and subs
ripts for the ' operator (i.e., 'i+1k ).The following proposition presents ne
essary fa
ts for relating the existen
e of solutions for uni�
ationproblems in the pure �-
al
ulus and in the �se-
al
ulus.Proposition 56. Let a and b be terms in �dB(X ). Then1. a!� b implies ap
 !��se bp
. 2. If a is ��-normal then ap
 is �se-normal.3. a!� b implies ap
 !eta bp
. 4.a =�� b if and only if ap
 =�se bp
Proof. First. We will prove the more general fa
t that (�k+1:a b) !� (�k:a)f1=bg implies ((�k+1:a) b)p
!��se ((�k :a)f1=bg)p
. This is done by indu
tion on a for all k. The 
ase k = 0 
orresponds to our 
ase ofinterest. Initially, noti
e that ((�k+1:a) b)p
 = ((�k+1:PC(a; k + 1)) bp
) !�se �k:(PC(a; k + 1)�k+1bp
)and that (�k :a)f1=bg = �k :(afk + 1=b+kg). Thus ((�k :a)f1=bg)p
 = �k:PC(afk + 1=b+kg; k).� a = n. The interesting 
ase o

urs when n = k + 1. In this 
ase, �k :(k+ 1fk + 1=b+kg) = �k:b+k .Additionally, we have ((�k+1:n) b)p
 = (�k+1:n bp
) !��se �k:(n�k+1bp
) = �k:'k+10 bp
 and (�k :b+k)p
 =�k:PC(b+k ; k). Then we have to prove that �k:'k+10 bp
 !��se �k:PC(b+k ; k). We prove the more general fa
tthat �k+i:'k+1i PC(b; i)!��se �k+i:PC(b(+i)k ; k + i). This is done by stru
tural indu
tion on b for all k > 0and i � 0.� b = m. On one side, �k+i:'k+1i PC(m; i) = �k+i:'k+1i m = ��k+i:m+ k; if n > i;�k+i:m; if m � i:On the other side, by de�nition of i-lift, �k+i:PC(m(+i)k ; k + i) = ��k+i:m+ k; if n > i;�k+i:m; if m � i:� b = X. We have two 
ases: either i = 0 or i > 0. In the �rst 
ase we have �k:'k+10 PC(X; 0) = �k:'k+10 Xand �k:PC(X+k ; k) = �k:PC(X; k) = �k :'k+10 X . If i > 0, �k+i:'k+1i PC(X; i) = �k+i:'k+1i 'i+10 X !�se�k+i:'k+i+10 X and �k+i:PC(X; k + i) = �k+i:'k+i+10 X .� b = �:
. We have that �k+i:'k+1i PC(�:
; i) = �k+i:'k+1i �:PC(
; i+ 1) !�se �k+i:�:('k+1i+1 PC(
; i+ 1))= �k+i+1:'k+1i+1 PC(
; i+ 1) that �se-derives into �k+i+1:PC(b(+i+1)k ; k + i+ 1) by indu
tion hypothesis.� b = (b1 b2). Using the hypotheses that �k+i:'k+1i PC(bj ; i) !��se �k+i:PC(b(+i)kj ; k + i), for j = 1; 2,we obtain the desired 
on
lusion.� a = X. Observe that �k:(PC(X; k + 1)�k+1bp
) = �k:('k+20 X)�k+1bp
) !�se �k:'k+10 X and that�k:PC(Xfk + 1=b+kg; k) = �k:PC(X; k) = �k :'k+10 X.� a = �:
. Straightforwardly by applying the indu
tion hypothesis on the more simple term 
 for k + 1:((�k+2:
) b)p
 !��se ((�k+1:
)f1=bg)p
.� a = (a1 a2). By indu
tion.
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ond. We prove the more general fa
t that if a is ��-normal then for all k, PC(a; k) is �se-normal. Thisis done by stru
tural indu
tion on the stru
ture of a for all k, as follows.� a = n. Obvious.� a = X . PC(X; k) = 'k+10 X that is �se-normal.� a = �:b. PC(�:b; k) = �:PC(b; k + 1) and sin
e b should be ��-normal, PC(b; k+1) is �se-normal. Then�:PC(b; k + 1) is �se-normal too.� a = (b 
). Sin
e b and 
 are ��-normals then (PC(a; k) PC(b; k)) is �se-normal.Third. We prove the more general fa
t that if �:(�k :a 1) !� d then (�:(�k :a 1))p
 !eta dp
. Observe thatd should be of the form �k:
 and su
h that (�k :
)+ = �k:
+k = �k :a. Then 
+k = a. Noti
e that our 
ase ofinterest is the 
orresponding to k = 0. The proof is by indu
tion on the stru
ture of a for all k.� a = n. Firstly, noti
e that �:(�k :n 1) !� �k:m whenever �k :n = (�k:m)+ = �k:(m+k) = if m � k then�k:m else �k:m+ 1. Then m = n if n � k and m = n � 1 if n � 1 > k. Observe that n 6= k + 1. Thus,PC(�:(�k :n 1); 0) = �:(�k :PC(n; k + 1) 1) = �:(�k :n 1) !eta if n � k then �k:n else if n � 1 > k then�k:n� 1, sin
e '20�k:m = �k :'2km = if m � k then �k:m else if m > k then �k:m+ 1.� a = X . Firstly, noti
e that �:(�k :X 1) !� �k :X sin
e (�k :X)+ = �k :X+k = �k:X . Afterwards, ob-serve that PC(�:(�k :X 1); 0) = �:(�k :PC(X; k + 1) PC(1; 1)) = �:(�k :'k+20 X 1) !eta �k:'k+10 X, sin
e'20(�k:'k+10 X) =se �k:'2k'k+10 X =se �k :'k+20 X. Finally, we have that PC(�k :X; 0) = �k:PC(X; k) =�k:'k+10 X.� a = �:b. Suppose, �:(�k :�:a 1) !� �k:d. Then �k:�:a = (�k :d)+ = �k :d+k and �:a = d+k. ThenPC(�:(�k :�:a 1); 0) = �:(�k :PC(�:a; k + 1) 1) !eta �k:PC(d; k) = PC(�k+1:
; 0), for some 
.� a = (b 
). Noti
e that �:(�k :(a1 a2) 1)!� �k:(
1 
2) if �k:(a1 a2) = (�k:(
1 
2))+ = �k:(
+k1 
+k2 ). Itshould hold that 
+ki = ai for i = 1; 2. Then �:(�k :ai 1)!� �k:
i, for i = 1; 2. Now, PC(�:(�k :(a1 a2) 1); 0) =�:(�k :(PC(a1; k + 1) PC(a2; k + 1)) 1) and by the indu
tion, �:(�k :(PC(a1; k + 1) PC(a2; k + 1)) 1)!eta�k:(PC(
1; k) PC(
2; k)) = PC(�k :(
1 
2); 0).Fourth. On one side, that a =�� b implies ap
 =�se bp
 is proved by indu
tion on the length of the proof ofa =�� b using the previous �rst and se
ond items.On the other side, suppose that ap
 =�se bp
 and sele
t a0 and b0 normal forms of a and b, respe
tively.By previous items, terms ap
 and bp
 redu
e to a0p
 and b0p
, respe
tively. Consequently, a0p
 =�se b0p
 anda0p
 = b0p
 sin
e these terms should be �se-normal. To 
on
lude, by the fa
t that the pre-
ooking translationis inje
tive on �dB(X ), a0 = b0. Then we obtain that a =�� b. utAgain, our proof di�ers from the 
orresponding in [DHK00℄ in that we avoid the use of 
ompli
atedsubstitution obje
ts be
ause we pro�t from the semanti
s of the ' operator of the �se-
al
ulus.Finally, we relate solutions and their existen
e in the pure �-
al
ulus and for the 
orresponding pre-
ookedterms in the �se-
al
ulus.Proposition 57 (Corresponden
e between solutions). Let a and b be terms in �dB(X ). Then thereexist terms N1; : : : ; Np in �dB(X ) su
h that afX1=N1; : : : ; Xp=Npg =�� bfX1=N1; : : : ; Xp=Npg if and onlyif there exist �se-terms M1; : : : ;Mp su
h that ap
fX1=M1; : : : ; Xp=Mpgg =�se bp
fX1=M1; : : : ; Xp=Mpgg.Proof. On the one side, suppose that fXi=Nigi=1::p is a solution of the uni�
ation problem a =?�� b. ThenafXi=Nig =�� bfXi=Nig. By the fourth item of the Proposition 56, (afXi=Nig)p
 =�se (bfXi=Nig)p
 andby the Proposition 55 we obtain that ap
fXi=Nip
gg =�se bp
fXi=Nip
gg.On the other side, suppose that ap
fXi=M 0igg =�se bp
fXi=M 0igg. We sele
t terms Ni, i = 1; :::; p, in therange of the pre-
ooking translation su
h that Ni =�se M 0i and let Mi be terms in �dB(X ) su
h that Mip
 =Ni. Then ap
fXi=Mip
gg =�se bp
fXi=Mip
gg and by the Proposition 55 we obtain that (afXi=Mig)p
 =�se(bfXi=Mig)p
. This jointly with the Proposition 56 implies that afXi=Mig =�� bfXi=Mig. ut6 Con
lusionsFollowing the ��-uni�
ation approa
h introdu
ed in [DHK00℄, we have developed an e�e
tive strategy forimplementing the �se-uni�
ation rules presented in [ARK00℄. Additionally, we presented a pre-
ooking trans-lation that trans
ribes pure �-terms in de Bruijn notation into �se-terms, for whi
h the sear
h of graftingsolutions 
orresponds to substitution solutions in the pure �-
al
ulus.
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it Substitution 15Note that 
orre
tness and 
ompleteness proofs for the ��- and the �se-uni�
ation strategies don't di�erbe
ause these strategies are based on an appropriate ordering of the appli
ation of the uni�
ation ruleswhi
h is in a 
ertain way independent of the 
al
uli. Of 
ourse, the strategies di�er on the uni�
ationtransformations, be
ause these are built on di�erent uni�
ation rules, whi
h is the subje
t of [ARK00℄.However, our proofs for the �se-HOU di�er from the ones for the ��-HOU mainly be
ause of the di�er-en
es between the two 
al
uli. Moreover, proofs of 
orre
tness of the semanti
s and preservation of solutionsfor our pre-
ooking translation are very di�erent from the ones for the ��-HOU, sin
e our de�nition ofpre-
ooking translation depends dire
tly on the synta
ti
 properties and semanti
s of the �se-
al
ulus.More 
on
retely, our pre-
ooking translation trans
ribes a term a by repla
ing ea
h o

urren
e of a meta-variable X with 'k+10 X while the ��-
al
ulus uses X ["k℄, where k is the number of abstra
tors between theposition of the o

urren
e of X and the root position. Additionally, the pre-
ooking translation in [DHK00℄trans
ribes ea
h o

urren
e of a de Bruijn index n in a into 1["n�1℄. Conformity of the two pre-
ookingtranslations is therefore evident. But our proofs di�er from the 
orresponding ones in [DHK00℄ in that wedon't need the use of 
omplex substitution obje
ts be
ause of the appropriate semanti
s and 
exibility ofthe ' operator in the �se-
al
ulus. This 
an be observed in the proof of the 
orre
t semanti
s of the pre-
ooking translation (Proposition 55) and the proof of Proposition 56 whi
h relates the existen
e of uni�
ationsolutions in the �- and the �se-
al
ulus. In these proofs, only a 
orre
t sele
tion of the s
ripts for the operator' was ne
essary, avoiding the manipulation of substitution obje
ts as in the ��-HOU approa
h.Of 
ourse, mu
h work remains to be done in order to obtain a 
omplete HOU theoreti
al frameworkwhi
h 
ould be implemented. In parti
ular, it is ne
essary to present a ba
k translation that enables there
onstru
tion of solved forms of uni�
ation problems in the �se-
al
ulus into a des
ription of solutions ofthe 
orresponding HOU problems in the pure �-
al
ulus.Additionally, a formal distin
tion, from the pra
ti
al point of view, between the �se-
al
ulus (and ourpro
edure) and the suspension 
al
ulus developed by Nadathur and Wilson in [NW98,NW99℄ (and used inthe implementation of the higher order logi
al programming language �Prolog) should be elaborated. Thisis meaningful, sin
e the �se-
al
ulus and the 
al
ulus of [NW98,NW99℄ have 
orrelated ni
e properties. Forinstan
e the laziness in the substitution needed in implementations of �-redu
tion, that arises naturally inthe �se-
al
ulus, is provided as the informal but empiri
al 
on
ept of suspension of substitutions by Nadathurand Wilson rewrite rules. Establishing these pre
ise distin
tions and 
orrelations is important for estimatingthe appropriateness of the �se-HOU approa
h in that pra
ti
al framework.Referen
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