Strategies for Simply-Typed Higher Order Unification via
Ase-Style of Explicit Substitution

Mauricio Ayala-Rincén*! and Fairouz Kamareddine?

! Departamento de Matematica, Universidade de Brasilia, 70910-900 Brasilia D.F., Brasil
ayala@{mat.unb.br,cee.hw.ac.uk}
2 Department of Computing and Electrical Engineering, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS,
Scotland fairouz@cee.hw.ac.uk

Abstract. An effective strategy for implementing higher order unification (HOU) based on the As.-
style of explicit substitution is proposed. The strategy is based on a Ase-unification method recently
developed by the authors. A pre-cooking translation for applying the Ase-style of unification to HOU
in the pure A-calculus is presented. Correctness and completeness of the proposed strategy and of the
pre-cooking translation are shown and their applicability to HOU in the pure A-calculus is illustrated.

1 Introduction

In [DHKOO], a higher order unification (HOU) method was based on the Ao-style of explicit substitution
[ACCLOI1]. In [ARKO00], HOU was studied in the As.-style of explicit substitution [KR97]. It is claimed in
[ARKOO] that As.-unification has the advantages of enabling quicker detection of redices and of having a
clearer semantics. In this paper, we set out to provide an effective strategy for implementing As.-unification
and a pre-cooking translation for applying it to HOU in the A-calculus. It should be stressed that Ao and
Ase are two different styles of explicit substitution which are not isomorphic. This implies that reworking the
HOU method in As. is not a translation of work already done in Ao. Many rules and proofs of the As.-HOU
differ from those of the Ao-HOU. We outline some of these differences throughout the article.

In Section 2, we introduce the necessary notions, the relevance of explicit substitution in HOU and
the Ase- and Ao-calculi. In Section 3, we review our As.-style based unification method (cf. [ARK00]). In
Sections 4 and 5, we discuss our unification strategy and its applicability for HOU in the pure A-calculus.
Then we conclude and discuss future work in Section 6.

2 Background

We assume familiarity with the notion of term algebra 7 (F,X) built on a (countable) set of variables X
and a set of operators F. Variables in X are denoted by upper case last letters of the Roman alphabet
X,Y,.... For a term ¢t € T(F,X), var(t) denotes the set of variables occurring in ¢t. We assume familiarity
with the A-calculus as in [Bar84] and with the basic notions and notation of rewriting theory as in [BN9§].
For a reduction relation R over a set A, (A, —g), we denote with —7%, the reflexive and transitive closure of
—Rr- The subscript R is usually omitted. When a —* b we say that there exists a derivation from a to b.
Syntactical identity is denoted by a = b.

A valuation is a mapping from X to 7(F,X). The homeomorphic extension of a valuation, 8, from
its domain X' to the domain 7 (F,X) is called the grafting of 8. This notion is usually called first order
substitution and corresponds to simple substitution without renaming. As usual, valuations and their corre-
sponding grafting valuations are denoted by the same Greek letter. The domain of a grafting 6 is defined
by Dom(0) = {X | X0 # X, X € X} and its range by Ran(f)) = Uxepom(s)var(X0). The set of variables
involved in 0 is var(f) = Dom(f) U Ran(f). A valuation and its corresponding grafting 6 are explicitly de-
noted by 8 = {X/X0| X € Dom(6)}. When necessary, explicit representations of graftings are differentiated
from substitutions by a “g” subscript: {X/X6| X € Dom(0)},.

* Partially supported by CAPES (BEX0384/99-2) Brazilian Foundation. Work carried out during one year visit at

the ULTRA Group, CEE, Heriot-Watt University, Edinburgh, Scotland, and is partly supported by EPSRC grant
numbers GR/L36963 and GR/L15685.

2 M. Ayala-Rincon and F. Kamareddine

Needed properties of the Ao- and As.-calculus, their typed versions and normal form characterizations
are briefly included.

2.1 The A-calculus in de Bruijn notation

Let V be a (countable) set of variables (different from the ones in X) denoted by lowercase last letters
of the Roman alphabet z,y,.... Terms A(V), of the A-calculus with names are inductively defined by
a :=z | (a a) | Ap.a. Terms of the forms A,.a and (a b) are called abstractions and applications,
respectively. As it is well-known, first order substitution or grafting leads to problems in the A-calculus.
For example, applying the first order substitution {u/z} to A;.(u z) results in A,.(z z) which is wrong.
Therefore, the A-calculus with names uses variable renaming via a-conversion so that (A;.(u z)){u/z}, by
renaming « (say as y), results in the correct term A,.(z y). Taking care of appropriate a-conversions, 8- and
n-reduction rules are defined in A(X) respectively by (A;.a b) — a{z/b} and A\;.(a z) — a, if © & Fvar(a),
where Fuvar(a) denotes the set of free variables occurring at a.

Unification in A(V) differs from the first order notion, because bound variables in A(V) are untouched by
unification substitutions. Unification variables in the A-calculus are free variables. Thus free variables occur-
ring at terms of a unification problem can be partitioned into true unification variables and constants,
that cannot be bound by the unifiers.

To differentiate between unification and constant variables, one could consider unification variables as
meta-variables in a set X'. Thus, A-calculus should be defined as the term algebra, A(V, X’), over the set
of operators {A;._ | z € V}U{(. -)} UV and the set of variables X'. In this setting, a notion of substitution
could be adapted for meta-variables preserving the semantics of both 3- and 7-reduction. But the most
appropriate notation for our purposes is the ones of de Bruijn indices [NGdV94] where bound variables
are related to their corresponding abstractors by their relative height. For instance, A,.(A;.(z 2) (z 2)) is
translated into A.(A.(2 1) (1 4)). Indices for free variables are appropriately selected to avoid relating them
with abstractors.

The set A4p(X) of A-terms in de Bruijn notation is defined inductively as a :=n | X | (a a) | Aa
where X € X and n € N\ {0}.

Definition 21. Let a € Agp(X), i € N. The i-lift of a, a™, is defined as:

a) Xt =X, for X e X b) (a1 az)™ = (af* af?)
4y 4G i o+, dfn>q
¢) (Aa)t = Aa d) ntt = {n, ifn<i forn € N.

The lift of a term a, that is needed to define substitution, is its 0-lift, denoted briefly by a™. We will
denote by a(T%)" the i compositions of k-lift.

Definition 22. The application of the substitution with b of n € N\ {0} on a term a in Agp(X), denoted
{n/b}a, is defined inductively as:

1. {n/b} X =X, for X e X 2. {n/b} (a1 a2) = ({n/b}a; {n/b}asz)
m—1, ifm>n
3. {n/b}X.a; = \{n+1/b"}ay 4. {n/blm=<(b, ifm=n if m € N.

m, ifm<n

Definition 23. Let § = {X;/as,...,X,/a,} be a valuation from the set of meta-variables X to Aap(X).
The corresponding substitution, also denoted by 0, is defined inductively as follows:

a) O(m) =m for m € N b) 0(X)=X0, for X e X
c) B(a; az) = (6(a1) 0(az)) d) OX.a; = X0 (a1)
where 6T denotes the substitution corresponding to the valuation 0T = {X1/af,... ,xn/a}}.

In Agp(X), the left side of the n-reduction rule is written as A.(a' 1), where a’ stands for the corresponding
translation of a into the language of A4p(X’). The condition “z ¢ Fuvar(a)” means, in Agp(X), that there
are neither occurrences in a’ of the index 1 at height zero nor of the index 2 at height one etc. This means,
in general, that there exists a term b such that b* = a. Thus B-reduction is defined as (A\.a b) — {1/b}a and
n-reduction as A\.(a 1) — bif b b+ = a.

otrategies for HOU via Ase-dtyle of Explicit Substitution 3

2.2 The Ao-calculus

Definition 24. The Ao-calculus is defined as the calculus of the rewriting system Ao presented in Table 1
where TERMS a = 1| X | (a b) | Aa|als] and sUBSs == id| T |a.s|sos.

Table 1. Ao Rewriting System of the Ao-calculus

(Beta) (Aa b) — alb-id] (Id) alid] — a

(VarCons) lla-s] —a (App) (a B)[s] — (a[s]) (b]s])
(Abs) (Aa)[s] — Xafl-(so1)] (Clos) (a[s])[t] — a[sot]

(IdL) idos — s (IdR) soid — s

(ShiftCons) tTo(a-s) — s (Map) (a-s)ot — alft]-(sot)
(Ass) (sot)ou —» so(tou) (VarShift) 1-1 —id

(SCons) 1[s]- (T os) — s (Eta) Ala 1) — b if a=,0b[1]

The equational theory associated to Ao defines a congruence denoted by =, . The corresponding congruence
obtained by dropping the Beta and FEta rules is denoted by =, .

The rewriting system Ao satisfies the following properties: it is locally confluent [ACCL91], confluent
on substitution-closed terms (i.e., terms without substitution variables) [Rio93] and not confluent on open
terms (i.e., terms with term and substitution variables) [CHL96].

Proposition 25 ([Rio93]). Any Ao-term in Ao -normal form is of one of the following forms: a) Aa; b)
(a by...by), where a is either 1, 1[1"], X or X[s] being s a substitution term different from id in normal
form; or ¢) a1 ...ap. T, where a1, ... ,ap are normal terms and a, # n.

In A(X) and Agp(X), the rule X{y/t} = X, where y is an element of V or a de Bruijn index, respectively,
is necessary because there is no way to suspend the substitution {y/¢} until X is instantiated. In the Ao-
calculus the application of this substitution can be delayed, since the term X[s] does not reduce to X.
Observe that the condition a =, b[1] of the Eta rule is stronger than the condition a = b™ as X = X, but
there exists no term b such that X =, b[1]. The fact that the application of a substitution to a meta-variable
can be suspended until the meta-variable is instantiated will be used to code substitution of variables in X’
by X-grafting and explicit lifting. Consequently a notion of X-substitution in Ao-calculus is unnecessary.

2.3 The \S.-calculus

The As¢-calculus avoids introducing two different sets of entities and insists on remaining close to the syntax
of the A-calculus. Next to A and application, the As.-calculus introduces substitution (o) and updating (¢)
operators. In the As.-calculus, we let a, b, ¢, etc. range over the sets of terms As. A term containing neither
substitution nor updating operators is called a pure term.

Definition 26 (As.-calculus). The rules As. of the As.-calculus are given in Table 2 and the terms are
defined by Asop := X | N | AsopAsep | AMsep | As,p 09 Asyyp | ‘Pchsw forj,i>1, k>0. The Asc-calculus
is the reduction system (Asop, —>xs.) where —xs, is the least compatible reduction on As,, generated by the
set of rules As.. The calculus of substitutions associated with the As.-calculus is the rewriting system
generated by the set of rules se = \s, — {o-generation, Eta} and we call it the s.-calculus.

The equational theory associated with As. defines a congruence denoted by =,s,. The congruence ob-
tained by dropping the o-generation and Eta rules is denoted by =, . When we restrict the reduction to
these rules, we will use expressions such as s.-reduction, s.-normal form, etc, with the obvious meaning.

In order to clarify differences between the Ao-calculus and the As.-calculus, we show the correspondence
between their Eta rules; i.e., the correspondence between both conditions b[1] = a and ¢3b = a. Remember
that in the Ao-calculus we only use the de Bruijn index 1 and that the other indices are codified as 1[1"].

4 M. Ayala-Rincon and F. Kamareddine

Table 2. Rewriting System of the As.-calculus with 7-rule

(o-generation)
(o-A-transition)

(o-app-transition)

(o-destruction)

(p-A-transition)
(p-app-transition)

(Aa b) —ac'b
(M.a)o'b — A.(ao'TtDh)

(a1 az) O'ib — ((a1 O'ib) (az O'Ib))
no'b— ¢ pob if n=1
n if n<i

e(ha) — A(pisa)
pi(ar az) — ((prar) (pkaz))

. i n+i—1if n>k
(p-destruction) ppn — {n if n<k
(Eta) A(a 1) — if a=s, pib
(o -0 -transition) (ac’b)olc — (a0’ e) ot (bo?! ") if i<j
(o-p-transition 1) (gl a)o’b— pi7la if k<j<k+i
(o-p-transition 2) (pLa)o?b — @i(ac?™) if k+i<j
(p-o -transition) pi(ad?b) — (phpra)o? (Phyr ;b)) if j<k+1
(p-p-transition 1) ¢ (¢] a) — @] (phg1-ja) if 1+j<k
(p-p-transition 2) or(pla) — @l a i I<k<Il+j

Example 27 Consider the term \.((2 A.(1 3)) 1)in A45(X). Observe that the Eta rule applies, since p3b =
P51 A (1 2)) — (951 wgA.(1 2)) — (51 A%(l 2)) — (P31 A(pf1 972)) —* (2 A(1 3)) =a.

Analogously, in the Ao-calculus we have: (1 A.(1 2))[1] = (1 A.(1 11D — (1] A2 1[D[1]) —
(A[1] At 1D 7)) — (L[] A(2[t. 12] 1[][1. TQ])) — (1] A(1[1. 17 1t o(1. 7)) —
AT AL 2] 1[17]) — (1] A1 1[1?]) = (2 A(1 3)).

The correspondence between both FEta rules is the case k = 0 of the following lemma.

Lemma 28 ([ARKO00]). Let a € Agp and o' its corresponding codification in the language of the \o-
calculus, where all indices n € N occurring at a are replaced with 1[1"~t]. Then, for all k > 0, the o-normal
form of a'[L.A[1].... .1[t*71]. t¥F1] is the corresponding codification of the s-normal form of Y2a.

The previous lemma can be straightforwardly extended for terms a € Ayp(X). In fact, observe that for
a meta-variable X € X" at a position i € O(a), the corresponding subterms of the o- and s-normal forms of
a[t] and p3a are of the form X [1.1[1].... .1[t*71]. t%71] and ¢? X, respectively, supposing that the height of
the occurrence of X at position i is k.

Similarly to the Ao-calculus we can describe operators of the Asc-calculus over the signature of a first
order sorted term algebra Ty, (X) built on X, the set of variables of sort TERM and its subsort NATC TERM.
The set of variables of sort TERM in a term a € Ty, (X) is denoted by Tvar(a).

Theorem 29 ([KR97]). a) The s.-calculus is weakly normalizing and confluent. b) The As.-calculus sim-
ulates B-reduction. ¢) The As.-calculus is confluent on open terms.

As corollary of the characterization of the s.-normal forms in [KR97] (Theorem 8) we obtain a charac-
terization of As.-normal forms.

Corollary 210 (As.-normal forms). a € As,p is a Asc-normal form iff:

1.ae XYUN;
2. a= (b c), where b,c are Ase-normal forms and b is not an abstraction of the form A\.d;

otrategies for HOU via Ase-dtyle of Explicit Substitution b}

3. a = \.b, where b is a As.-normal form excluding applications of the form (c 1) such that there ezists d
with p3d =5, ¢;

4. a =balc, where c is a Asq.-normal form and b is an As.-normal form of one of the following forms:
a) X, b) dote, with j < i or c) pid, with j < k;

5. a = p.b, where b is a As.-normal form of one of the following forms:
a) X, b)cold, withj >k+1or c) np{c, with k < 1.

2.4 Typed A-calculi

For the sake of clarity we include only the essential notation of typed Ao- and As.-calculi. Properties can be
found in detail in [ARKO00].

We recall that an environment I' in de Bruijn setting is simply a list of types and, in the case of the
Ao-calculus, substitutions receive environments as types. For all the systems we will consider, we take:
TYPES A := A| A — B and ENVIRS I ::= nil | A.I'. The rewrite rules of the corresponding typed calculi
are exactly the same except that rules involving abstractions are now typed. Reduction in the typed Ao- and
Ase-calculi is defined by adding to the rules in Ao and in As, the necessary typing information. Thus, for
the typed Ao-calculus we have the typed rules (Beta), (Abs) and (Eta) respectively as follows:

(Aa.a b) — alb-id] (Aa-a)[s] — Aa.a[l-(so1)] Aa.(a 1) — bifa =, b[1]
and for the typed As.-calculus:

(oc-generation) (Aa.a b) — ac'b (o-A-transition) (Aa.a) o'b — Aa.(a o1 b)
(p-A-transition) i (As.a) —)\A.(gofcﬂ a) (Eta) A-(a 1) — bif a =, ©2b

We denote typability in Azp(X), the Ao- and Asc-calculi by F4,, (x), Fas and by, respectively.

Characterization of n-long normal forms in the typed Ao- and As.-calculi is necessary to simplify the set of
rules of the unification algorithms. Essentially, the use of -long normal forms guarantees that meta-variables
of a functional type A — B are instantiated with typed terms of the form \4.a.

Definition 211 (7-long normal form in A\o). Let a be a Ao-normal form term of type A1 — ... = A, —
B in the environment I'. The n-long normal form (n-Inf) of a, written a', is defined by:

1. ifa=Ag.b then o' = A\o.V';

2. ifa=(kby...bp) thena' = A4, ... Aa,(k+mncy...cpn’...1") where ¢; is the n-Inf of the normal form
Of bl[Tn]’

3. if a = (X[s]b1...bp) then @' = Aa, ... A4, (X[s']c1...cpn' ... 1) where ¢; is the n-Inf of b;[1"] and if
s=dy...d;. t* then s’ =e1...eq X" where e; is the n-Inf of d;[1"].

Definition 212 (7-long normal form in As.). Let a be a As.-normal form term of type A; — ... —
A,, — B in the environment I'. The n-long normal form (n-Inf) of a, written o', is defined by:

1. ifa = Ag.b then a' = \o.b';
2. ifa = (bi...bp) then a' = Aa, ... Aa,(c1...cpn’ ... 1"), where ¢; is the n-Inf of the normal form of

3. if a = boic then a' = Aa, ... a, (d'o™™me'n’ ... 1), where d' €' are the n-Infs of the normal forms of
ot b and i te, respectively;
i [

4. if a=@ib then a' = Aa, ... a, (pic'n'...1"), where ¢’ is the n-Inf of the normal form of ©j*'b.

The set of unification rules of both HOU methods are constructed by combining the different types of
7-Infs enumerated in Definitions 211 and 212 obtaining different types of equational problems. For the HOU
setting based on the As.-style an additional characterization of As.-normal terms whose main operators are
either o or ¢ will be useful in order to combine directly n-lnfs of type 2 (See subsection 2.5) with the ones
of type 3. and 4. This simplifies the comparison of both HOU approaches.

Definition 213 (Long normal form (Inf)). Let a be either a Ao-term or a As.-term. The long normal
form of a is defined as the n-Inf of its Bn-normal form.

In both typed Ao- and As.-calculi we have that two terms are fSn-equivalent iff they have the same Inf.

6 M. Ayala-Rincon and F. Kamareddine

2.5 AS.-normal forms

We present a characterization of Ase-normal terms whose main operators are either o or ¢ (i.e. of type 3.
and 4. in Corollary 210). This is essential in order to simplify our presentation of the unification rules and
of the flex-flex equations.

Observe that left arguments of the o operator or arguments of the ¢ operator at As.-normal terms
are neither applications, nor abstractions, nor de Bruijn indices. For instance, ¢!(a b) — (pLa ¢ib),
(a b)oic — (acic boic). Hence, the sole possibility is to have as a left argument a meta-variable. Thus one
has to consider terms with alternating sequences of operators ¢ and o whose left innermost argument is a
meta-variable; for instance, (@7 ((¢!! X)o™a))o™b)o’>c.

Definition 214. Let t be a Asc-normal term whose root operator is either o or ¢ and let X be its left
innermost meta-variable. Denote by zpf: the operator at the k' position following the sequence of operators ¢
and o, considering only left arguments of the o operators, in the innermost outermost ordering. Additionally,
if 1/15: corresponds to an operator ¢ then j, and iy denote its super and subscripts, respectively and if 1/1{11“
corresponds to an operator o then jr = 0 and iy, denotes its superscript. Let ay, denote the corresponding
right argument of the k' operator if]* = o' and the empty argument if ¥}* = @i*. The skeleton of ¢

written sk(t) is wz: 2111 (X,a1,...,ap).

Example 215 Consider a As.-normal term ¢ of the form ((<pf§ ((np{llX)cri2 a))ottb)o’sc. Then the skeleton of
t, sk(t), is 1/}?5 ?4 f: ?2 fll (X,a,b,c). .

Lemma 216. Let t be a Ase-normal term whose root operator is either o or ¢ and let the skeleton of t,
sk(t) = Q,ZJZJ;“ PN (X a1, ... ,ap). Successive subscripts iy and i1 satisfy the following conditions:

1. i > igy1 of Yr and Y1 are both o operators or both ¢ operators;
2. ik > igy1 if Y and Ypy1 are p and o operators, respectively;
3. ik > igy1 + 1 if g and Ypy1 are o and @ operators, respectively.

Proof. By simple analysis of the arithmetic constraints at the As. rewrite rules. ad

3 Unlification in the AS.-calculus

In this section we briefly present unification in the As.-style of explicit substitution, as is given in [ARKO00].
Normal form characterization of As.-terms jointly with WN and CR properties are the essential requirements
to develop a unification method for the As.-calculus, which can be applied for HOU in the A-calculus.

Let T(F, X) be a term algebra over a set of function symbols F and a countable set of variables X and let
A be an F-algebra. A unification problem over 7 (F, X) is a first order formula without universal quantifier
or negation, whose atoms are of the form F, T or s :?A t. Unification problems are written as disjunctions of
existentially quantified conjunctions of atomic equational unification problems: D =/ jed Jw; ;e I, Si :?A
t;. When |J| = 1, the unification problem is called a unification system. Variables in the set w of a
unification system Jw /\ieI S; :?A t; are bound and all other variables are free. T and F stand for the empty
conjunction and disjunction, respectively. The empty disjunction corresponds to an unsatisfiable problem.

A unifier of a unification system Jw A, s; 234 t; is a grafting o such that A |= Jw A, 5i0)w = ti0)w
where 1, denotes the restriction of the grafting o to the domain &'\ w. A unifier of \/; ; Jw; A\, si =Y ti
is a grafting o that unifies at least one of the unification systems. The set of unifiers of a unification problem,
D, or system, P, is denoted by U4 (D) or U4(P), respectively.

Definition 31. A As.-unification problem P is a unification problem in the algebra Tys, (X) modulo the
equational theory of A\s.. An equation of such a problem is denoted a :;SE b, where a and b are \s.-terms
of the same sort. An equation is called trivial when it is of the form a :?Ase a.

We present a set of rewrite rule schemata used to simplify unification problems. The objective of applying
the rules is to obtain a description of the set of unifiers. Basic decomposition rules for unification should be
applied modulo the usual boolean simplification rules as given in [DHKO0].

otrategies for HOU via Ase-dtyle of Explicit Substitution 7

Table 3. As.-unification rules

(Dec-\) PAXs.a=}, Aab — PAa=;, b
(Dec-App) PA(nai...ap) =5, (nbi...by) — PN, a0 =1s. bi
(App-Fail) PA(nai...ap) =5, (mbi...by) — F
ifn#m
(Dec-o) P/\aa%b =1, ca’id — PAa=}, cAb=4,, d
(o-Fail) P Aac'b=},, co’d — F
if i # 7 and ac'b :I?)\se co’d is not flex-flex
(Dec-p) PA cp}:ca =}, cp}%b — PAa=},. b
(p-Fail) PAga=%, ¢ib — F
if i # j or k # 1 and pha =3,. b is not flez-flex
(Ezp-\) P — 3 : AI'FB),PAX =}, MY
if (X : I'A— B) € Tvar(P),Y € Tvar(P), and X is a unsolved variable
(Ezp-App) P A d)i}f it (Xa, . ap) :Z\SE (mby.. ._bq) -
PAYE (X a,.. . ap) :;S?e (mby...bg) A
4 VrERPURi E|H1,...,Hk,X :.Ase (rHl...Hk)
if 1/;35 -l (X, a1, ... ,ap) is the skeleton of a Ase-normal term and X has an atomic
type and is not solved where H1,... , H; are variables of appropriate types, not occur-
ring in P, with the environments I'y;, = I'x, R, is the subset of {i1,... ,4,} of super-
scripts of the o operator such that (r Hi ... Hy) has the right type, R; = (Ji_, if @ >
mAp—k—3"7_ 1 J1 > ikt then {m4+p—k—=377_, ., ji} else O, where ip = 00,ip+1 =0
(Replace) PAX :I?)\se a — {X/a}PANX :Z\SE a
if X € Tvar(P),X ¢ Tvar(a) and a € X = a € Tvar(P)
(Normalize) PAa =5, b — PAad =5,V
if @ or b is not in Inf where a’ is the Inf of a if a is not a solved variable and a otherwise.
b’ is defined from b identically

Definition 32. The set in Table 3 defines the Ase-unification rules for the typed As.-unification problems.

Since As, is CR and WN, the search can be restricted to n-long normal solutions that are graftings binding
functional variables into n-long normal terms of the form A.a and atomic variables into n-long normal terms
of the form (k by ...b,) or ac’b or ¢} a, where in the first case k can be omitted and p be zero. The use of the
n-rule is important to reduce the number of cases (or unification rules) to be considered when defining the
unification algorithm, but as for the Ao-calculus, the 7-rule can be dropped [DHKO00]. As for the Ao-style of
unification, Normalize and Dec-\ use the fact that As, is CR and WN to normalize equations of the form
Aa :?)\Se A.b into a' :?)\Se b" and the rule Replace propagates the grafting {X/a} corresponding to equations
X =},, a. Exp-X generates the grafting {X/X.Y'} for a variable X of type A — B, where Y is a new variable
of type B.

Equations of the form (n a; ...ap) :;SE (m by ...by) are transformed by the rules Dec-App and App-Fail

into the empty disjunction when n # m, as it has no solution, or into the conjunction A,_, a; =%, bis
when n = m. Remember that by terms of the form (n a;...a,) we also mean those where n is omitted or
p = 0. Analogously, the rules Dec-o and Dec-p decompose equations with leading operators o and ¢. But,

the corresponding rules o-Fail and p-Fail should omit flez-flex equations as the Example 33 shows.

Example 33 Let (\.(\.(X 2) 1) Y) =}, (A.(Z 1) U) be a unification problem, where X,Y, Z and U are
meta-variables of the same atomic type, say A.

Then (A.(A\.(X 2) 1) Y) =* (Xo?Y)ol(ppY) ¢pY) and (A.(Z 1) U)—=* (Zo'U U). Thus
applying the rule Normalize to the original equation we obtain (Xo?Y)o!(p8Y) p§Y) =%,. (Zo'U ¢§U)
which can be decomposed into (Xo?Y)o! (p§Y) =5, Zo'U A @Y =}, 94U and subsequently into
(Xo?Y)=5,.Z N oY =, U AN Y=}, U.

Since Vn € N, pin — n, the equation o}V :?)\se U always has solutions, and solutions of the last two
equations are graftings of the form {Y/V,U/V}. Additionally, observe that the first equation has a variety
of solutions: take {X/n}; thus if n > 2, {Z/n — 1} else if n = 2, {Z/p3Y } else {Z/1}.

3 M. Ayala-Rincon and F. Kamareddine

Analogously, by normalization and decomposition with the Ag-unification rules we have:

AAX 2 1) V)=, A(Z 1) U) =normatize (X[Y.Yid] Y) =%, (Z[U.id] U), which can be
decomposed into X[Y.Y.id] =%, Z[U.id] A Y =5, U. A further step of replacement gives the corresponding
flez-flex equation of the Ao-calculus X[Y.Y.id] =3, Z[Y.id]. .

In Ao-HOU, the rule Exp-App advances towards solutions to equations of the form Xlai ...ap. 1] :;se

(m by ...b;) where X is an unsolved variable of an atomic type. The As-unification rule Ezp-App has the
analogous role for As.-unification problems. Use of As.-normal forms in Ezp-App is not essential. This is
done with the sole objective of simplifying the case analysis presented in the definition of the rule and its
completeness proof. In fact, this can be dropped and subsequently incorporated as an efficient unification
strategy, where before applying Exp-App, As.-unification problems are normalized.

Example 34 From the unification problem A.(A.(Y 1) A.(X 1)) =7 A.(\.V AW) we reach the equations:
(Y[A(X 1)dd] \(X 1)) =5, V]AW.id] and (Yo'A(X 1) X(pf 1)) =5, Vo'AW. After applying the
corresponding Ezp-App rules, with V =% (V4 V) and V :;se (Vi V»), additional equations appear:
A(X 1) =5, Va[A(X 1).id]and X.(¢1 X 1) =}, Vao'A.(X 1). Solutions result by selecting the case Vo =},
1 or correspondingly V5 :Z\se 1. °

Definition 35. A unification system P is a As.-solved form if it is a conjunction of non trivial equations
of the following forms:

Solved X =% a, where the variable X does not occur anywhere else in P and a is
ASe
in Inf. Such an equation and variable are said to be solved in P.
(Flez-Flex) non solved equations between long normal terms whose root operator is o or
@ which can be represented as equations between their skeleton:

.P j ! lq
O (X s ap) =R Gt R (Vb bg).

Remark 36 Consider a Asc.-normal term ¢ whose root operator is either o or ¢ and with skeleton of the
form sk(t) = 1/1{5 le (X,a1,...,ap). Then by binding X with n, n > i1, one obtains the normal form

t =*n+>%_; jr —p- This is a direct consequence of lemma 216. .

The rest of this section lists relevant properties of the As.-unification rules. For proofs, see [ARKO00].
Lemma 37. Any As.-solved form has As.-unifiers.

Lemma 38 (Well-typedness). Deduction by the \s.-unification rules of a well typed equation gives rise
only to well typed equations, T and IF.

Lemma 39 (Equivalence of solvedness and normalization). Solved problems are normalized for the
Ase-unification rules and, conversely, if a system is a conjunction of equations that cannot be reduced by the
Ase-unification rules then it is solved.

Definition 310. Let P and P' be \s.-unification problems, let “rule” denote the name of a As.-unification
rule and “=""¢” jts corresponding deduction relation over unification problems. By correctness of rule we
understand: P —™¢ P' implies Uys, (P') C Uys, (P). By completeness of rule we understand: P —"¢ P’
implies Uxs, (P) C Uyxs, (P')

Theorem 311 (Correctness and Completeness). The As.-unification rules are correct and complete.

otrategies for HOU via Ase-dtyle of Explicit Substitution 9

Table 4. Unification replace strategy

Normalize or Dec-A or Dec-App or App-Fail or Dec-o or o-Fail or
Dec-p or ¢-Fail or Ezp-A; Replace or Exp-App ; Replace

4 A unification strategy

Ase-unification rules should be applied following some strategy that avoids non termination of the unification
process. Observe, in particular, that the rule Fzp-A can be applied infinitely many times on one variable
of a system if no replacement is done. Analogously to [DHKO00] we define a unification strategy that after
each application of either Ezp-\ or Fzp-app applies the rule Replace. Rules should, of course, be applied in a
fair manner, which means that in one disjunction of systems, none of the constitutive systems is left forever
without applying unification rules on it.

Our so called unification replace strategy, consists of a fair application of the As.-unification rules as
presented in Table 4 (A; B means A before B, and A or B means choose either A or B).

Successive applications of (Exp-A; Replace) and (Ezp-App; Replace) are denoted by Ezp-AR and FEzp-
AppR, respectively.

A unification problem, P, is divided into the non solved, say @, and solved, say R, equations. We use
the notation P = (@), R). Completeness of the unification replace strategy is proved by showing that all the
above groups of rules decrease a complexity measure based on the grafting 6 resulting from the unification
algorithm. For a solved system R consisting of only solved equations, Subst(R) denotes the canonical grafting
associated to R. For example if R = (X =}, a) then Subst(R) = {X/a}.

Take in the rest of this section a As.-normalized grafting solution 6 of a unification problem P.

Definition 41. For a system of equations P = (Q, R) and a Ase-normalized grafting 0, which is a solution
of P, we define the UnifStrat transformations (Q, R,0) =" (Q', R',0"), where r is a group of rules of the
unification replace strateqy, as follows:

1. (Q, R,0)—Nermalize (O 'R' @) where Q' and R' are the normalized forms of Q and R as defined in the
ASe -unification.

2. (QAXa.a :?)\Se Aa.b, R, 0)—DPec=2 Q' R, 0), where Q' = Q ANa :;SE b and R' = R when a :;SE b is not
solved with respect to Q AR or Q' =Q and R' =R Aa :?)\Se b when a :;SE b is solved.

3. (QA@may...ap) :ise (nby...b,),R,0)—Pec=422(Q" R 0), where Q' consists in Q and the unsolved
equations (with respect to Q@ A R) in /\izl__p a; :;SE b; and R' consists in R and the solved equations in
Niz1.p @i =3, bi-

4. {Q, R,0)—=Pe=7(Q' R',0), where Q' consists in Q and the unsolved equations (with respect to Q A R)
ma :Z\se cAb :Z\se d and R' consists in R and the solved equations in a :?)\se cNAb :Z\se d.

5. (Q,R,0)—=Pec=¢(Q', R, 0), where if a :?)\Se b is unsolved with respect to Q AR, Q' = Q Aa :?)\Se b and

R =R else Q' = Q and R’ :R/\azg\se b.

(QAX =5, b,R,0)—Berlece({X/b}Q, RA X =5, b,0)

(Q,R, Q)—)E”’._}‘R({X/)\A.Y}Q, RAX :?Ase AaY, 0\ {X/Aa.a} U{Y/a}, when Exp-\ applies on Q A R.

8. (@A zpf: PN (X ar, . ap) =3, (mby by, R,@)—)EEP_A’."’R

{X/(r Hy...Hp)} (@ /\1/1?5 (X a, . ap) :?)\Se (mby...by)),

RAX =}, (rHy...Hy),0\{X/(rci...cr) U{H;/c;})
for one of the r € R, U R;, when Exp-App applies on Q A R.

Lemma 42 (UnifStrat is well defined). The transformations Ezp-AR and Ezp-AppR are well defined.

N>

Proof. We show that the transformations applied on the grafting part 6 of (@), R, #) make sense.

First, observe that since Ezp-A preserves the solutions, € is also a As.-solution of the equation X :;se
A4.Y. This together with the assumption that 8 is As.-normalized, implies that the instantiation of X by 6
is of the form {X/A4.a}. Hence the transformation Ezp-AR is well defined.

Second, since Exp-App preserves the solutions, € is Ase-solution of the equation X :Z\se (r Hy ... Hy).
Thus 6(X) = (r ¢1...¢), for some ¢;, i = 1,... k. Consequently, the transformation Ezp-AppR is well
defined too. O

10 M. Ayala-Rincon and F. Kamareddine

Lemma 43 (Finiteness of UnifStrat). For a system (Q, R) having for solution a As.-normalized grafting
0, there is no infinite derivation issued from (Q, R,0), using the UnifStrat transformations.

Proof. We define the size of a grafting as the sum of the size of the terms in its range: || = Zicranolt|-
First, we prove that there are no infinite sequences of transformation applications involving the trans-

formations Normalize, Replace, Dec-\, Dec-App, Dec-o and Dec-p. We define a complexity measure, 7, of a

system P = (Q, R) by: 7(P) = (Jvar(Q)|, {x:, maz(|a;], |bi|)}aizisebieQ> where &; is the length of the shortest

Ase-normalizing derivation of a; :?)\se b;. Complexities are compared lexicographically using the ordering on
naturals for the first component and the multiset ordering for the second component itself ordered by the
lexicographic ordering on naturals (for ground notions on multiset ordering see [BN98]).

Now observe that for each possible application of these transformations on a system P its complexity
decreases. Normalize may decrease the number of variables but always decreases the size of one of the ;.
Replace decreases the number of unsolved variables. Dec-A\, Dec-App, Dec-o0 and Dec-¢ never increase k;
(since the normalization derivation of a subterm is always equal or smaller than the derivation of its context
term) and they decrease the size of the equation to which they are applied.

Second, in order to involve in the whole argumentation transformations Ezp-A R and Ezp-AppR we define
a new complexity measure involving the size of the grafting: p(P) = (|6|, 7(P)).

Since the transformations Normalize, Replace, Dec-\, Dec-App, Dec-o and Dec-p do not change the
grafting, previous argumentation holds for the resulting lexicographical ordering on these complexity using
the ordering on naturals for the first component. Moreover, transformations Ezp-A\ R and Exzp-AppR always
decrease the size of the current grafting #. Consequently the application of UnifStrat is terminating. O

Lemma 44 (Preservation of solutions). If 6 is a As.-solution of system Q and if (Q, R,0) =" (Q',R',6")
then 6' is a As.-solution of Q' and 6 o Subst(R) :K‘;:(Q’R) 0' o Subst(R').

Proof. For all the rules except Ezp-A R and Ezp-AppR, we have 6’ = §. Additionally, since the rules Fzp-\
and Fzp-App preserve solutions, we have that 6’ is a solution of)'. Observe that the equality modulo As,
is introduced by possible normalization steps.

As the proofs for Ezp-AR and Ezp-AppR are similar, we only do one. By the definition of Ezp-AR, 6’ is a
Ase-solution of)'. Let Z be a variable in var(Q, R) then either Z = X or Z # X. In the first case, 0 satisfies
O(X) = (0 o Subst(R))(X) = 0(X) = Aa.a, and (6' o Subst(R'))(X) = ¢'(Aa.Y) = Aa.a. In the second case,
both graftings give the same image for Z. O

Lemma 45 (Construction of solutions). Let (Qo, Ro,6p) — (Q1,R1,01) — -+ = (Qn, Rn,0n) be a
finite derivation applying transformations of UnifStrat starting from the problem Py = {(Qo, Ro) and the

Ase-normalized solution 6y. Then, 6 :;‘;:(P") 0, 0 Subst(Ry,), where 0y, is a solution of the solved form Q.

Proof. Observe that 8y = 6y0Subst(Ry). From Lemmas 43 and 44, the derivation originated from (Qo, Ro, o)

is finite, say of length n, and we have: 6y o Subst(Ry) —UZT(PO) 01 o Subst(Ry) Uzr(Pl) :;Z:(P”’l)

OSubst(). By Lemma 39, @, AR, should be a solved form. Moreover, var(Py) 2 var(Py) D --- D var(P,)
since the set of variables of the unification problems could only decrease due to the Normalize rule. Then we
have 6y =32""") 6, o Subst(Ry). O

Theorem 46 (Completeness of UnifStrat). The As.-unification rules describe a correct and complete
Ase-unification procedure in the sense that, given a \s.-unification problem P:

if the Ase-unification rules lead in a finite number of steps to a disjunction of systems having one of its
one constitutive system solved, then the problem P is As.-unifiable and a solution to P is the solution
constructed in Lemma 37 for a solved constitutive system,

if P has a unifier 6 then the strategy UnifStrat leads in a finite number of steps to a disjunction of
systems such that one constitutive system is solved and, like P, has a unifier.

Proof. Straightforward, using Lemma 43 and Theorem 311. O

otrategies for HOU via Ase-dtyle of Explicit Substitution 11

5 HOU in the pure A-calculus

We present in an informal way two examples on how to apply our As.-unification method in order to solve
HOU problems in the pure A-calculus. We compare our work to the application of Ao-HOU.

Observe firstly that unifying two terms a and b in the A-calculus consists in finding a substitution 6
such that 6(a) =g, 6(b). But in the A-calculus the notion of substitution is different from the first order
one or grafting, as was shown in Section 2. Thus using the notation of substitution in Definitions 22 and
23, a unifier in the A-calculus of the problem A\.X :E?n A.2 (where =g, denotes the congruence generated
by the 3- and 7-rules on Agp(X)) is not a term ¢ = #X such that A.t :én A.2 but a term ¢ = #X such
that 6(A.X) = X.07(X) = A.2 as (A.X){X/t} = A.X{X/t*} = A\.tT and not A.t. This observation can be
extended to any unifier and by translating appropriately A-terms a,b € Agp(X’), the HOU problem a :;377 b
can be reduced to equational unification. [DHKOO] presents a translation called pre-cooking from Aqp(X)
terms into the Ac-calculus such that searching for solutions of the corresponding Ac-unification problem
corresponds to searching for solutions of the HOU problem a :Efn b. In the following examples, we illustrate
informally the analogous situation in the As.-calculus.

Example 51 Consider the higher order unification problem A.(X 2) :;377 A.2, where 2 and X are of type
A and A — A, respectively. Observe that applying a substitution solution € to the A p(X)-term A.(X 2)
gives O(A\.(X 2)) = A.(AT(X) 2). Then in the As.-calculus we are searching for a grafting 6’ such that
0'(\.(p3(X) 2)) =xrs. A.2. Correspondingly, in the Ao-calculus, A\.(X 2) is translated or pre-cooked into
A.(X[1] 2). Observe that this correspondence results from lemma 28. Then we should search for unifiers for
the problem A.(¢3(X) 2) =5, A.2.

Now we apply As.-unification rules to the problem \.(¢2(X) 2) zise A.2. By applying Dec-\ and Ezp-\
we get (¢3(X) 2) =3,. 2 and subsequently 3Y (@3(X) 2) =%,. 2A X =},_ A.Y. Then by applying Replace
and Normalize we obtain 3Y (p3(A.Y) 2) =5, 2AX =], AY and IY (piY)o'2 =], 2AX =}, A.Y. Now,
by applying rule Ezp-app we obtain
@Y (piY)ol2=}, 2AX =}, AY)A(Y =}, 1VY =], 2) which by Replace gives
((pit)ot2 =%, 2A X =}, A1)V ((pi2)o'2 =}, 2A X =}, A.2) and, finally, by Normalize
(2=3,. 2AX =}, A1)V (2=}, 2A X =}, A.2). In this way substitution solutions {X/A.1} and {X/X.2}
are found.

To complete the analysis note that by Definitions 22, 23 and (-reduction in A4zp(X) we have:

{X/A11A(X 2) = A ({X/ADTHX) 2) = A (1T 2) = A (A1 2) =5 A\.2 and

{X/A2}(A(X 2)) = A({X/(A2)THX) 2) = A (\.2TF 2) = A (A3 2) =5 A.2.

Observe that the last application of f-reduction is as follows: (A.3 2) =g {1/2}(3) = 2. .

In general, before the unification process, a A-term a should be translated into the As.-term a’ resulting
by simultaneously replacing each occurrence of a meta-variable X at position ¢ in a with <p§“X , where k is
the number of abstractors between the root position of a, €, and position i. If £ = 0 then the occurrence of X
remains unchanged. Essentially, what the pre-cooking translation defined in [DHKO0O0] does is to transcribe
all occurrences of de Bruijn indices n into 1[1" '] and all occurrences of meta-variables X into X [1*], where
k is determined as above. Notice that the two pre-cooking translations can be implemented non-recursively
in an efficient way.

Example 52 Consider the HOU problem F(f(a)) = f(F(a)). In Agp(X) it can be seen as (X (2 1)) :;377
(2 (X 1)), where both X and 2 are of type A — A and 1 is of type A. Since there are no abstractors at the
terms of the equational problem, the equation remains unchanged: (X (2 1)) =5, (2 (X 1)).

For simplicity we omit existential quantifiers. After one application of Fzp-A and another of Replace we
get (A.Y (2 1)) :;SE 2 A\Y 1)AX :;SE AY where Y is of type A. Applying Normalize we obtain
Yo'(2 1) =}, (2 Yo'1) AX =}, XY And by one application of Ezp-App we get Yo'(2 1) =,
(2 Yo't)AX =}, AY A(Y =5, 1VY =}, (3 Hy)).

Note that other possible cases do not produce solved forms. By Replace and Normalize we get:

(2 1) =}, (2 DAX =}, A1)V ((2 Hio'(2 1)) =}, (2 (2 Hio™1)) AX =}, A.(3 H1)), from which
we have the first solved system corresponding to the identity solution: {X/A.1}.

12 M. Ayala-Rincon and F. Kamareddine

Subsequently, other solutions can be obtained from the equational system
(2 Hio'(2 1)) =5, (2 (2 Hio'1)) AX =, \.(3 Hi)
In fact, by Dec-App and Exp-App we obtain
Hio'(2 1) =}, (2 Hio'1) AX =}, A\.(3 Hi)A(Hy =}, 1V H, =}, (3 Hy))

Other possible cases do not produce solved forms. By Replace and Normalize we obtain ((2 1) =},
(2 DAX =, A3 1)V ((2 Hyol(2 1) =5, (2 (2 Hyo'1)) AX =}, A(3 (3 Hy))), from where
we have the second solved system corresponding to the grafting solution: {X/A.(3 1)}. This corresponds
to the solution F' = f; in fact, by replacing X with A.(3 1) in the original unification problem we obtain
(A(3 1) (2 1)) =},. (2 (A\.(3 1) 1)), from where it is clear that de Bruijn indices 3 and 2 correspond to the
same operator. Additionally, note that (A.(3 1) (2 1)) =g (2 (2 1)) and (2 (A.(3 1) 1)) =5 (2 (2 1)).

Hence, applying Dec-App, Ezp-App, Replace and Normalize to the equational system ((2 Haol(2 1))
=%s. (2 (2 Hyo'1)) A X =], A(3 (3 Ha))) we obtain the third solved system giving the grafting so-
lution {X/A.(3 (3 1))} corresponding to the solution F' = ff. The unification process continues infinitely
producing solved systems corresponding to the grafting solutions {X/A.(3 (3 (3 1)))} (i.e. F = fff),

(X/\(3 (3 3 (3 1))} (ie. F = fff]f), etc. .

Now we can define our pre-cooking translation.

Definition 53 (Pre-cooking). Let a € Aqp(X) such that I' 4, (x) a : T. To every variable X of type
A occurring at a we associate the same type and context I' in the As.-calculus. The pre-cooking of a from
Aap(X) to the As-calculus is defined by ap. = PC(a,0) where PC(a,n) is defined by:

1. PC(Ag.a,n) = Ap.PC(a,n +1) 2. PC((a b),n) = (PC(a,n) PC(b,n))
3. PC(k,n) =k 4. PC(X,n) = ifn =0 then X else pj ' X

Lemma 54. If 'y, vy a: T, then I' Fxs, ape = T

Proof. We prove the more general result: if A;...A,, 'y, (x) a: T and if to every variable occurring at
a, the same type and context I is associated, then A; ... A,,I" ks, PC(a,n) : T. This is done by induction
on the structure of terms, for all n.

Initially, observe that cases ¢ = k and a = (a; a2) are simple. Afterwards, suppose that a = Ap.b.
Then T' = B — C and B,A;...A,, I Fp,px) b: C. Thus B, Ay ... Ay, I By, PC(b,n +1) : C and
Ay An, I By, PC(Ag.byn) = Ap.PC(b,n+1) : B — C. Finally, for a = X by definition of I" 4, (x)
X:T,I'Fys, X:Tand Ay ... Ap, T Fys, o (X): T O

Now pre-cooking is justified by the following proposition that relates substitution in Agg(X’) and grafting
in Ase.

Proposition 55 (Semantics of pre-cooking). Let a,b1,... ,b, be terms of Agp(X). We have:
(a{Xl/bla T :Xp/bp})pc = apc{Xl/blpc: e :Xp/bppc}g
Proof. The more general fact PC’(a{Xl/bf,... ,Xp/b;i},i) = PC(a,i){X1/b,.,---,Xp/bp,. }4 is what we

will prove. Observe that the case ¢ = 0 corresponds to the proposition: (a{X;/b;})pc = PC’(a{Xj/bj'o}, 0) =
PC(a,0){X;/bj,.}4 = ape{X;/bj,.}4. The proof is done by induction on the structure of terms for all .

o a=Xb PO(A{X;/bF },i) = PONG{X;/6F " }),i) = A(PCO{X;/bf " },i+1)). By induction
hypothesis, the previous expression is equal to A\.(PC(b,i + 1){X;/b;,.}4) = A.(PC(b,i + 1)){X;/bj,.}4 =
PC(Ab,i){X;/bj, .}y _ _ _

e a = (a1 ap). Observe that PC((a1 ax){X;/bl },i) = PC((ar{X;/b]"} a2{X;/b]"}),i) and this is
equal to (PC(al{Xj/bf},i) PC(az{Xj/bjl},i)). By applying the induction hypothesis the last expres-
sion is equal to (PC(a1,i){X;/bj,.}s PC(a2,i){X;/bj,.},). To conclude, the last expression is equal to
(PC(ar,1) PClas,0){X;/bj,.}g = PC((ar as),){X;/bj,. }g-

otrategies for HOU via Ase-dtyle of Explicit Substitution 13

e a=n PO@{X;/b]'},i) = PC(n,i) =n{X;/b;,.}, = PC(n,i)){X;/bj,.},

e a = X. We have two cases: either X = X, for some 1 < j < p, or X # X;, forall 1 < j < p. The
interesting case is the first one. Suppose that X = Xj, for some 1 < j < p. Then we should prove that
PC(bf",i) = PC(X;,i){X;/bj,.}s = 04" "'bj,.. We will prove the more general fact that PC(b(+P" i+ k) =
@i PC (b, k). This is done by induction on the structure of b as follows: _

— b= A.c. PO((Ac)*H it k) = POAFEFD) g k) since (A.c)HF)" = A (W17 The last expression
is equal to A.PC(ct(1) § 4 k + 1) which is equal to)\.np;;r_ll PC(c,k + 1) by the induction hypothesis. The
last expression is equal to @} 'A\.PC(c,k + 1) = pi ' PC(\.c, k). _ _

— b= (by bs). Initially, we have the following: PC((bi b)) P i + k) = PC(®B™" i) i +
k) = (PO®™ i+ k) PC®S™ i+ k). Then by applying the induction hypothesis this is equal to
(ep T PC (b1, k) @it PC by, k) = 0T PC((by b2), k). ' '

— b=n Casen >k, PC(mM i+ k) = PC(n+1i,i+k) =n+1iand ' PC(n, k) = ¢}'n = n +i.
Case n <k, PC(a*"" i+ k) = PC(n,i + k) =n and " PC(n,k) = ¢ 'n = n.

— b=X. PC(X"M it+k)=PC(X,i+k) ="' X and o] PC(X, k) = o T X = pitF1 X, O

In contrast with the corresponding proof in [DHKO00], where substitution objects are necessary for proving
the critical case of @ = X (i.e., substitutions of the form [1...k. 19t*]) our proof uses pure term objects by
selecting the appropriate super and subscripts for the ¢ operator (i.e., pi™).

The following proposition presents necessary facts for relating the existence of solutions for unification
problems in the pure A-calculus and in the As.-calculus.

Proposition 56. Let a and b be terms in Ag(X). Then

1. a =g b implies apc =3, byc. 2. If a is Bn-normal then ay,. is As.-normal.
3. a =, b implies ape — eta bpe. 4.a =gy, b if and only if apc =xs, bpe

Proof. First. We will prove the more general fact that (\¥*1.a b) —5 (A\¥.a){1/b} implies ((**1.a) b),.
—%s. ((A*.a){1/b})pc. This is done by induction on a for all k. The case k = 0 corresponds to our case of
interest. Initially, notice that ((A**1.a) b),c = (WHL.PC(a,k+ 1)) bpe) —rs. AF.(PC(a,k + 1)a*+1b,.)
and that (AF.a){1/b} = A*.(a{k + 1/bT"}). Thus (A¥.a){1/b})pe = M*.PC(a{k + 1/b7"}, k).

e a =n. The interesting case occurs when n = k + 1. In this case, A*.(k + 1{k + 1/b+"}) = Ak,
Additionally, we have (A**1.n) b),c = (M0 bye) =%, AF.(no"+1b,e) = Aepf b, and (Akb+H"Y . =
/\’“.PC’(b+k ,k). Then we have to prove that *.k*1b,, s, /\’“.PC’(b+k , k). We prove the more general fact
that *1.o" 1 PC (b, 19) s, Ak+i PC(H(+)" |k 4). This is done by structural induction on b for all k > 0
and 7 > 0.

— b =m. On one side, *+?. ¥ PC(m, i) = MHi. ot im = {

MNetim 4k, ifn >

AFtim, if m <.

MNetim 4k ifn >0

Aottt m, if m <.

— b = X. We have two cases: either i = 0 or i > 0. In the first case we have *.pf™ PC(X,0) = ¥ bt X
and M. PC(XT" k) = W PO(X, k) = Wb XL If i > 0, NHL oM PO(X i) = ALl ity)
NFEQE X and MFLPO(X, k + i) = A FLgftHL X .

— b= A.c. We have that MTL.of T PC(\.c,i) = AHLQF TN PC(c,i + 1) = x5, AN (01 PC(c,i + 1))
= AL R PO(c,i + 1) that Ase-derives into AL PC(B++D" k4 4 1) by induction hypothesis.

— b= (bs bs). Using the hypotheses that A+ o5t PC(by,i) =3, M+ .POBS™ "k +1), for j = 1,2,
we obtain the desired conclusion.

e a=X. Observe that *.(PC(X,k +1)o*t1b,.) = M.(oF2X)o"1b,.) —rs. A.@ET X and that
e PO(X{k +1/b7"}, k) = AF.PC(X, k) = Aokt X,

e a = A.c. Straightforwardly by applying the induction hypothesis on the more simple term ¢ for k + 1:
(N¥F2.0) B)pe =%, (WFL0){1/b})pe.

e a = (a1 a2). By induction.

On the other side, by definition of i-lift, /\’H‘i.PC(m(""')’c Jk+i) = {

14 M. Ayala-Rincon and F. Kamareddine

Second. We prove the more general fact that if a is fn-normal then for all k, PC(a, k) is As.-normal. This
is done by structural induction on the structure of a for all k, as follows.

e a = n. Obvious.

e a=X. PO(X,k) = @5 X that is As,-normal.

e a = A.b. PC(\.b,k) = \.PC(b,k + 1) and since b should be 8y-normal, PC(b, k + 1) is Ase-normal. Then
APC(b,k + 1) is As.-normal too.

e a = (b ¢). Since b and ¢ are fn-normals then (PC(a,k) PC(b,k)) is As.-normal.

Third. We prove the more general fact that if \.(A*.a 1) —, d then (A.(A*.a 1)), —¢tq dpe. Observe that
d should be of the form A*.c and such that (A¥.c)™ = A*.ct% = \F.q. Then ¢*t* = a. Notice that our case of
interest is the corresponding to & = 0. The proof is by induction on the structure of a for all k.

e a = n. Firstly, notice that \.(*.n 1) —, A*.m whenever *.n = (*.m)* = A*.(m**) = if m < k then
ANemelse A*m+1. Then m = nifn < kand m =n —1if n —1 > k. Observe that n # k + 1. Thus,
PC(A.(M*n 1),0) = A.(A*.PC(n,k+1) 1) = A.(*n 1) =, if n < k then Mn else if n — 1 > k then
A — 1, since p2A*m = A*.p?m = if m < k then *.m else if m > k then A\¥.m + 1.

e a = X. Firstly, notice that A\.(A*.X 1) —, A X since (A\F.X)T = A Xk = *F X, Afterwards, ob-
serve that PC(A\.(A\F.X 1),0) = A.(\F.PC(X,k +1) PC(1,1)) = X.(A\F. b2 X 1) =00 AFLpET X since
Q2N X)) =, N @2h X =, A phT2X. Finally, we have that PC(\F.X,0) = M\ .PC(X,k) =
)\k.tpg+1X.

e a = \.b. Suppose, \.(A*.\a 1) —, A.d. Then \f.Aa = (Af.d)T = A\.d™* and Aa = d**. Then
PC(A.(M*Xa 1),0) = A (A*.PC(A\a,k +1) 1) = A*.PC(d, k) = PC(\¥*1.c,0), for some c.

e a = (b c). Notice that \.(*.(a1 as) 1) =, A.(c1 c2) if \F.(ar a2) = (NFu(cr)T = Neu(cf® of%). Tt
should hold that ¢ * = a; fori = 1,2. Then \.(\F.a; 1) =, A¥.¢;, fori = 1,2. Now, PC(A.(*.(a; a2) 1),0) =
A\ (PC(a1,k+1) PC(az,k+ 1)) 1) and by the induction, A\.(A¥.(PC(ay, k +1) PC(as,k+1)) 1) —esq
Ak(PC(Cl,k) PC(CQ,]C)) = PC()\k.(Cl 02)70).

Fourth. On one side, that a =g, b implies a,. =xs, bpe is proved by induction on the length of the proof of
a =gy, b using the previous first and second items.

On the other side, suppose that a,c =xs, bpe and select a’ and b’ normal forms of a and b, respectively.
By previous items, terms a,. and by. reduce to a,. and b, respectively. Consequently, a;,. =xs. by, and
a;m = b;c since these terms should be As.-normal. To conclude, by the fact that the pre-cooking translation
is injective on A4p(X), a' = b'. Then we obtain that a =g, b. O

Again, our proof differs from the corresponding in [DHKO00] in that we avoid the use of complicated
substitution objects because we profit from the semantics of the ¢ operator of the Asc-calculus.

Finally, we relate solutions and their existence in the pure A-calculus and for the corresponding pre-cooked
terms in the As.-calculus.

Proposition 57 (Correspondence between solutions). Let a and b be terms in Agp(X). Then there
exist terms N1, ..., Ny in Agg(X) such that a{X1/N1,..., Xp/Np} =pn b{X1/N1,... ,Xp/Np} if and only
if there exist Asc-terms My, ..., M, such that ap.{X1/M,... , Xp/Mp}y =xs. bpe{ Xa /M, ..., Xp/My},.

Proof. On the one side, suppose that {X;/N;}i=1., is a solution of the unification problem a :an b. Then
a{X;/N;} =p, b{Xi/N;}. By the fourth item of the Proposition 56, (a{X;/Ni})pc =xs. (0{Xi/Ni})pc and
by the Proposition 55 we obtain that a,.{Xi/Ni,.}s =xs. bpe{Xi/Ni,.}q-

On the other side, suppose that apc{X;/M/}s =xs. bpe{Xi/M]}4. We select terms N;, i = 1,...,p, in the
range of the pre-cooking translation such that N; =5,, M and let M; be terms in Aqp(X’) such that M;, =
Ni. Then ap {X;/M;, .}y =xs. bpe{Xi/M;, }, and by the Proposition 55 we obtain that (a{X;/M;})pc =xs.
(b{Xi/M;})pc. This jointly with the Proposition 56 implies that a{X;/M;} =a, b{X;/M;}. O

6 Conclusions

Following the Ac-unification approach introduced in [DHKO00], we have developed an effective strategy for
implementing the As.-unification rules presented in [ARKO00]. Additionally, we presented a pre-cooking trans-
lation that transcribes pure A-terms in de Bruijn notation into As.-terms, for which the search of grafting
solutions corresponds to substitution solutions in the pure A-calculus.

otrategies for HOU via Ase-dtyle of Explicit Substitution 15

Note that correctness and completeness proofs for the Ao- and the As.-unification strategies don’t differ
because these strategies are based on an appropriate ordering of the application of the unification rules
which is in a certain way independent of the calculi. Of course, the strategies differ on the unification
transformations, because these are built on different unification rules, which is the subject of [ARKO00].

However, our proofs for the As,-HOU differ from the ones for the Ao-HOU mainly because of the differ-
ences between the two calculi. Moreover, proofs of correctness of the semantics and preservation of solutions
for our pre-cooking translation are very different from the ones for the Ag-HOU, since our definition of
pre-cooking translation depends directly on the syntactic properties and semantics of the As.-calculus.

More concretely, our pre-cooking translation transcribes a term a by replacing each occurrence of a meta-
variable X with o§ ™ X while the Ao-calculus uses X [t*], where k is the number of abstractors between the
position of the occurrence of X and the root position. Additionally, the pre-cooking translation in [DHKO0O]
transcribes each occurrence of a de Bruijn index n in a into 1[$"!]. Conformity of the two pre-cooking
translations is therefore evident. But our proofs differ from the corresponding ones in [DHKO00] in that we
don’t need the use of complex substitution objects because of the appropriate semantics and flexibility of
the ¢ operator in the As.-calculus. This can be observed in the proof of the correct semantics of the pre-
cooking translation (Proposition 55) and the proof of Proposition 56 which relates the existence of unification
solutions in the A- and the As.-calculus. In these proofs, only a correct selection of the scripts for the operator
 was necessary, avoiding the manipulation of substitution objects as in the Ao-HOU approach.

Of course, much work remains to be done in order to obtain a complete HOU theoretical framework
which could be implemented. In particular, it is necessary to present a back translation that enables the
reconstruction of solved forms of unification problems in the As.-calculus into a description of solutions of
the corresponding HOU problems in the pure A-calculus.

Additionally, a formal distinction, from the practical point of view, between the As.-calculus (and our
procedure) and the suspension calculus developed by Nadathur and Wilson in [NW98,NW99] (and used in
the implementation of the higher order logical programming language AProlog) should be elaborated. This
is meaningful, since the As.-calculus and the calculus of [NW98,NW99] have correlated nice properties. For
instance the laziness in the substitution needed in implementations of 8-reduction, that arises naturally in
the Ase-calculus, is provided as the informal but empirical concept of suspension of substitutions by Nadathur
and Wilson rewrite rules. Establishing these precise distinctions and correlations is important for estimating
the appropriateness of the As.-HOU approach in that practical framework.

References

[ACCL91] M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy. Explicit Substitutions. Journal of Functional Pro-
gramming, 1(4):375-416, 1991.

[ARK00] M. Ayala-Rincén and F. Kamareddine. Unification via As.-Style of Explicit Substitution. In Second Inter-
national Conference on Principles and Practice of Declarative Programming, Montreal, Canada, September
2000. Technical Report Higher Order Unification via As-Style of Explicit Substitution, Computer and Elec-
trical Engineering, Heriot-Watt University, Dec. 1999. Available at http://www.cee.hw.ac.uk/ultra.

[Bar84] H. Barendregt. The Lambda Calculus : Its Syntaz and Semantics (revised edition). North Holland, 1984.

[BN98] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press, 1998.

[CHL96] P.-L. Curien, T. Hardin, and J.-J. Lévy. Confluence Properties of Weak and Strong Calculi of Explicit
Substitutions. Journal of the ACM, 43(2):362-397, 1996. Also as Rapport de Recherche INRIA 1617, 1992.

[DHKO00] Gilles Dowek, Thérése Hardin, and Claude Kirchner. Higher-order Unification via Explicit Substitutions.
Information and Computation, 157(1/2):183-235, 2000.

[KR97] F. Kamareddine and A. Rios. Extending a A-calculus with Explicit Substitution which Preserves Strong
Normalisation into a Confluent Calculus on Open Terms. Journal of Functional Programming, 7:395-420,
1997.

[NGdV94] R. P. Nederpelt, J. H. Geuvers, and R. C. de Vrijer. Selected papers on Automath. North-Holland,
Amsterdam, 1994.

[NW98] G. Nadathur and D. S. Wilson. A Notation for Lambda Terms A Generalization of Environments. Theo-
retical Computer Science, 198:49-98, 1998.

[NW99] G. Nadathur and D. S. Wilson. A Fine-Grained Notation for Lambda Terms and Its Use in Intensional
Operations. The Journal of Functional and Logic Programming, 1999(2):1-62, 1999.

[Rio93] A. Rios. Contribution o l’étude des A-calculs avec substitutions explicites. PhD thesis, Université de Paris
7, 1993.

