
Strategies for Simply-Typed Higher Order Uni�ation via�se-Style of Expliit SubstitutionMauriio Ayala-Rin�on?1 and Fairouz Kamareddine21 Departamento de Matem�atia, Universidade de Bras��lia, 70910-900 Bras��lia D.F., Brasilayala�fmat.unb.br,ee.hw.a.ukg2 Department of Computing and Eletrial Engineering, Heriot-Watt University, Riarton, Edinburgh EH14 4AS,Sotland fairouz�ee.hw.a.ukAbstrat. An e�etive strategy for implementing higher order uni�ation (HOU) based on the �se-style of expliit substitution is proposed. The strategy is based on a �se-uni�ation method reentlydeveloped by the authors. A pre-ooking translation for applying the �se-style of uni�ation to HOUin the pure �-alulus is presented. Corretness and ompleteness of the proposed strategy and of thepre-ooking translation are shown and their appliability to HOU in the pure �-alulus is illustrated.1 IntrodutionIn [DHK00℄, a higher order uni�ation (HOU) method was based on the ��-style of expliit substitution[ACCL91℄. In [ARK00℄, HOU was studied in the �se-style of expliit substitution [KR97℄. It is laimed in[ARK00℄ that �se-uni�ation has the advantages of enabling quiker detetion of redies and of having alearer semantis. In this paper, we set out to provide an e�etive strategy for implementing �se-uni�ationand a pre-ooking translation for applying it to HOU in the �-alulus. It should be stressed that �� and�se are two di�erent styles of expliit substitution whih are not isomorphi. This implies that reworking theHOU method in �se is not a translation of work already done in ��. Many rules and proofs of the �se-HOUdi�er from those of the ��-HOU. We outline some of these di�erenes throughout the artile.In Setion 2, we introdue the neessary notions, the relevane of expliit substitution in HOU andthe �se- and ��-aluli. In Setion 3, we review our �se-style based uni�ation method (f. [ARK00℄). InSetions 4 and 5, we disuss our uni�ation strategy and its appliability for HOU in the pure �-alulus.Then we onlude and disuss future work in Setion 6.2 BakgroundWe assume familiarity with the notion of term algebra T (F ;X ) built on a (ountable) set of variables Xand a set of operators F . Variables in X are denoted by upper ase last letters of the Roman alphabetX;Y; :::. For a term t 2 T (F ;X ), var (t) denotes the set of variables ourring in t. We assume familiaritywith the �-alulus as in [Bar84℄ and with the basi notions and notation of rewriting theory as in [BN98℄.For a redution relation R over a set A, (A;!R), we denote with !�R the reexive and transitive losure of!R. The subsript R is usually omitted. When a !� b we say that there exists a derivation from a to b.Syntatial identity is denoted by a = b.A valuation is a mapping from X to T (F ;X ). The homeomorphi extension of a valuation, �, fromits domain X to the domain T (F ;X ) is alled the grafting of �. This notion is usually alled �rst ordersubstitution and orresponds to simple substitution without renaming. As usual, valuations and their orre-sponding grafting valuations are denoted by the same Greek letter. The domain of a grafting � is de�nedby Dom(�) = fX j X� 6= X;X 2 Xg and its range by Ran(�) = [X2Dom(�)var(X�). The set of variablesinvolved in � is var (�) = Dom(�) [ Ran(�). A valuation and its orresponding grafting � are expliitly de-noted by � = fX=X� j X 2 Dom(�)g. When neessary, expliit representations of graftings are di�erentiatedfrom substitutions by a \g" subsript: fX=X� j X 2 Dom(�)gg .? Partially supported by CAPES (BEX0384/99-2) Brazilian Foundation. Work arried out during one year visit atthe ULTRA Group, CEE, Heriot-Watt University, Edinburgh, Sotland, and is partly supported by EPSRC grantnumbers GR/L36963 and GR/L15685.



2 M. Ayala-Rin�on and F. KamareddineNeeded properties of the ��- and �se-alulus, their typed versions and normal form haraterizationsare briey inluded.2.1 The �-alulus in de Bruijn notationLet V be a (ountable) set of variables (di�erent from the ones in X ) denoted by lowerase last lettersof the Roman alphabet x; y; :::. Terms �(V), of the �-alulus with names are indutively de�ned bya ::= x j (a a) j �x:a. Terms of the forms �x:a and (a b) are alled abstrations and appliations,respetively. As it is well-known, �rst order substitution or grafting leads to problems in the �-alulus.For example, applying the �rst order substitution fu=xg to �x:(u x) results in �x:(x x) whih is wrong.Therefore, the �-alulus with names uses variable renaming via �-onversion so that (�x:(u x))fu=xg, byrenaming x (say as y), results in the orret term �y:(x y). Taking are of appropriate �-onversions, �- and�-redution rules are de�ned in �(X ) respetively by (�x:a b)! afx=bg and �x:(a x)! a; if x 62 Fvar(a),where Fvar (a) denotes the set of free variables ourring at a.Uni�ation in �(V) di�ers from the �rst order notion, beause bound variables in �(V) are untouhed byuni�ation substitutions. Uni�ation variables in the �-alulus are free variables. Thus free variables our-ring at terms of a uni�ation problem an be partitioned into true uni�ation variables and onstants,that annot be bound by the uni�ers.To di�erentiate between uni�ation and onstant variables, one ould onsider uni�ation variables asmeta-variables in a set X . Thus, �-alulus should be de�ned as the term algebra, �(V ;X ), over the setof operators f�x: j x 2 Vg [ f( )g [ V and the set of variables X . In this setting, a notion of substitutionould be adapted for meta-variables preserving the semantis of both �- and �-redution. But the mostappropriate notation for our purposes is the ones of de Bruijn indies [NGdV94℄ where bound variablesare related to their orresponding abstrators by their relative height. For instane, �x:(�z :(x z) (x z)) istranslated into �:(�:(2 1) (1 4)). Indies for free variables are appropriately seleted to avoid relating themwith abstrators.The set �dB(X ) of �-terms in de Bruijn notation is de�ned indutively as a ::= n j X j (a a) j �:awhere X 2 X and n 2 N n f0g.De�nition 21. Let a 2 �dB(X ), i 2 N. The i-lift of a, a+i, is de�ned as:a) X+i = X, for X 2 X b) (a1 a2)+i = (a+i1 a+i2 )) (�:a1)+i = �:a+(i+1)1 d) n+i = �n+ 1; if n > in; if n � i for n 2 N :The lift of a term a, that is needed to de�ne substitution, is its 0-lift, denoted briey by a+. We willdenote by a(+k)i , the i ompositions of k-lift.De�nition 22. The appliation of the substitution with b of n 2 N n f0g on a term a in �dB(X ), denotedfn=bga, is de�ned indutively as:1. fn=bgX = X, for X 2 X 2. fn=bg(a1 a2) = (fn=bga1 fn=bga2)3. fn=bg�:a1 = �:fn+ 1=b+ga1 4. fn=bgm =8<:m� 1; if m > nb; if m = nm; if m < n if m 2 N.De�nition 23. Let � = fX1=a1; : : : ; Xn=ang be a valuation from the set of meta-variables X to �dB(X ).The orresponding substitution, also denoted by �, is de�ned indutively as follows:a) �(m) = m for m 2 N b) �(X) = X�, for X 2 X) �(a1 a2) = (�(a1) �(a2)) d) ��:a1 = �:�+(a1)where �+ denotes the substitution orresponding to the valuation �+ = fX1=a+1 ; : : : ; xn=a+n g.In �dB(X ), the left side of the �-redution rule is written as �:(a0 1), where a0 stands for the orrespondingtranslation of a into the language of �dB(X ). The ondition \x 62 Fvar (a)" means, in �dB(X ), that thereare neither ourrenes in a0 of the index 1 at height zero nor of the index 2 at height one et. This means,in general, that there exists a term b suh that b+ = a. Thus �-redution is de�ned as (�:a b)! f1=bga and�-redution as �:(a 1)! b if 9b b+ = a.



Strategies for HOU via �se-Style of Expliit Substitution 32.2 The ��-alulusDe�nition 24. The ��-alulus is de�ned as the alulus of the rewriting system �� presented in Table 1where terms a ::= 1 j X j (a b) j �a j a[s℄ and subs s ::= id j " j a:s j s Æ s:Table 1. �� Rewriting System of the ��-alulus(Beta) (�:a b) �! a [b � id℄ (Id) a[id℄ �! a(VarCons) 1 [a � s℄ �! a (App) (a b)[s℄ �! (a [s℄) (b [s℄)(Abs) (�:a)[s℄ �! �:a [1 � (s Æ ")℄ (Clos) (a [s℄)[t℄ �! a [s Æ t℄(IdL) id Æ s �! s (IdR) s Æ id �! s(ShiftCons) " Æ (a � s) �! s (Map) (a � s) Æ t �! a [t℄ � (s Æ t)(Ass) (s Æ t) Æ u �! s Æ (t Æ u) (VarShift) 1� " �! id(SCons) 1[s℄ � (" Æ s) �! s (Eta) �:(a 1) �! b if a =� b["℄The equational theory assoiated to �� de�nes a ongruene denoted by =�� . The orresponding ongrueneobtained by dropping the Beta and Eta rules is denoted by =�.The rewriting system �� satis�es the following properties: it is loally onuent [ACCL91℄, onuenton substitution-losed terms (i.e., terms without substitution variables) [R��o93℄ and not onuent on openterms (i.e., terms with term and substitution variables) [CHL96℄.Proposition 25 ([R��o93℄). Any ��-term in ��-normal form is of one of the following forms: a) �a; b)(a b1 : : : bn), where a is either 1, 1["n℄, X or X [s℄ being s a substitution term di�erent from id in normalform; or ) a1 : : : ap: "n, where a1; : : : ; ap are normal terms and ap 6= n.In �(X ) and �dB(X ), the rule Xfy=tg = X , where y is an element of V or a de Bruijn index, respetively,is neessary beause there is no way to suspend the substitution fy=tg until X is instantiated. In the ��-alulus the appliation of this substitution an be delayed, sine the term X [s℄ does not redue to X .Observe that the ondition a =� b["℄ of the Eta rule is stronger than the ondition a = b+ as X = X+, butthere exists no term b suh that X =� b["℄. The fat that the appliation of a substitution to a meta-variablean be suspended until the meta-variable is instantiated will be used to ode substitution of variables in Xby X -grafting and expliit lifting. Consequently a notion of X -substitution in ��-alulus is unneessary.2.3 The �se-alulusThe �se-alulus avoids introduing two di�erent sets of entities and insists on remaining lose to the syntaxof the �-alulus. Next to � and appliation, the �se-alulus introdues substitution (�) and updating (')operators. In the �se-alulus, we let a; b; ; et. range over the sets of terms �s. A term ontaining neithersubstitution nor updating operators is alled a pure term.De�nition 26 (�se-alulus). The rules �se of the �se-alulus are given in Table 2 and the terms arede�ned by �sop ::= X j N j �sop�sop j ��sop j �sop �j�sop j 'ik�sop for j; i � 1 ; k � 0. The �se-alulusis the redution system (�sop;!�se) where !�se is the least ompatible redution on �sop generated by theset of rules �se. The alulus of substitutions assoiated with the �se-alulus is the rewriting systemgenerated by the set of rules se = �se � f�-generation;Etag and we all it the se-alulus.The equational theory assoiated with �se de�nes a ongruene denoted by =�se . The ongruene ob-tained by dropping the �-generation and Eta rules is denoted by =se . When we restrit the redution tothese rules, we will use expressions suh as se-redution, se-normal form, et, with the obvious meaning.In order to larify di�erenes between the ��-alulus and the �se-alulus, we show the orrespondenebetween their Eta rules; i.e., the orrespondene between both onditions b["℄ = a and '20b = a. Rememberthat in the ��-alulus we only use the de Bruijn index 1 and that the other indies are odi�ed as 1["n℄.



4 M. Ayala-Rin�on and F. KamareddineTable 2. Rewriting System of the �se-alulus with �-rule(�-generation) (�:a b) �! a �1 b(�-�-transition) (�:a)�ib �! �:(a �i+1 b)(�-app-transition) (a1 a2)�ib �! ((a1 �ib) (a2 �ib))(�-destrution) n�ib �! 8<: n� 1 if n > i'i0 b if n = in if n < i('-�-transition) 'ik(�:a) �! �:('ik+1 a)('-app-transition) 'ik(a1 a2) �! (('ik a1) ('ik a2))('-destrution) 'ik n �! �n+ i� 1 if n > kn if n � k(Eta) �:(a 1) �! b if a =se '20b(�-�-transition) (a�ib)�j  �! (a �j+1 ) �i (b �j�i+1 ) if i � j(�-'-transition 1) ('ik a)�j b �! 'i�1k a if k < j < k + i(�-'-transition 2) ('ik a)�j b �! 'ik(a �j�i+1 b) if k + i � j('-�-transition) 'ik(a�j b) �! ('ik+1 a)�j ('ik+1�j b) if j � k + 1('-'-transition 1) 'ik ('jl a) �! 'jl ('ik+1�j a) if l + j � k('-'-transition 2) 'ik ('jl a) �! 'j+i�1l a if l � k < l + jExample 27 Consider the term �:((2 �:(1 3)) 1) in �dB(X ). Observe that the Eta rule applies, sine '20b ='20(1 �:(1 2)) �! ('201 '20�:(1 2)) �! ('201 �:'21(1 2)) �! ('201 �:('211 '212)) �!� (2 �:(1 3)) = a.Analogously, in the ��-alulus we have: (1 �:(1 2))["℄ = (1 �:(1 1["℄))["℄ �! (1["℄ �:(1 1["℄)["℄) �!(1["℄ �:(1 1["℄)[1: "2℄) �! (1["℄ �:(1[1: "2℄ 1["℄[1: "2℄)) �! (1["℄ �:(1[1: "2℄ 1[" Æ(1: "2)℄)) �!(1["℄ �:(1[1: "2℄ 1["2℄)) �! (1["℄ �:(1 1["2℄)) = (2 �:(1 3)). �The orrespondene between both Eta rules is the ase k = 0 of the following lemma.Lemma 28 ([ARK00℄). Let a 2 �dB and a0 its orresponding odi�ation in the language of the ��-alulus, where all indies n 2 N ourring at a are replaed with 1["n�1℄. Then, for all k � 0, the �-normalform of a0[1:1["℄: : : : :1["k�1℄: "k+1℄ is the orresponding odi�ation of the s-normal form of '2ka.The previous lemma an be straightforwardly extended for terms a 2 �dB(X ). In fat, observe that fora meta-variable X 2 X at a position i 2 O(a), the orresponding subterms of the �- and s-normal forms ofa["℄ and '20a are of the form X [1:1["℄: : : : :1["k�1℄: "k+1℄ and '2kX , respetively, supposing that the height ofthe ourrene of X at position i is k.Similarly to the ��-alulus we an desribe operators of the �se-alulus over the signature of a �rstorder sorted term algebra T�se(X ) built on X , the set of variables of sort term and its subsort nat�term.The set of variables of sort term in a term a 2 T�se (X ) is denoted by T var (a).Theorem 29 ([KR97℄). a) The se-alulus is weakly normalizing and onuent. b) The �se-alulus sim-ulates �-redution. ) The �se-alulus is onuent on open terms.As orollary of the haraterization of the se-normal forms in [KR97℄ (Theorem 8) we obtain a hara-terization of �se-normal forms.Corollary 210 (�se-normal forms). a 2 �sop is a �se-normal form i�:1. a 2 X [ N;2. a = (b ), where b;  are �se-normal forms and b is not an abstration of the form �:d;



Strategies for HOU via �se-Style of Expliit Substitution 53. a = �:b, where b is a �se-normal form exluding appliations of the form ( 1) suh that there exists dwith '20d =se ;4. a = b�j, where  is a �se-normal form and b is an �se-normal form of one of the following forms:a) X, b) d�ie, with j < i or ) 'ikd, with j � k;5. a = 'ikb, where b is a �se-normal form of one of the following forms:a) X, b) �jd, with j > k + 1 or ) 'jl , with k < l.2.4 Typed �-aluliFor the sake of larity we inlude only the essential notation of typed ��- and �se-aluli. Properties an befound in detail in [ARK00℄.We reall that an environment � in de Bruijn setting is simply a list of types and, in the ase of the��-alulus, substitutions reeive environments as types. For all the systems we will onsider, we take:types A ::= A j A! B and envirs � ::= nil j A:� . The rewrite rules of the orresponding typed aluliare exatly the same exept that rules involving abstrations are now typed. Redution in the typed ��- and�se-aluli is de�ned by adding to the rules in �� and in �se the neessary typing information. Thus, forthe typed ��-alulus we have the typed rules (Beta), (Abs) and (Eta) respetively as follows:(�A:a b) �! a [b � id℄ (�A:a)[s℄ �! �A:a [1 � (s Æ ")℄ �A:(a 1) �! b if a =� b["℄and for the typed �se-alulus:(�-generation) (�A:a b) �! a �1 b (�-�-transition) (�A:a)�ib �! �A:(a �i+1 b)('-�-transition) 'ik(�A:a) �! �A:('ik+1 a) (Eta) �A:(a 1) �! b if a =s '20bWe denote typability in �dB(X ), the ��- and �se-aluli by `�dB(X ), `�� and `�se respetively.Charaterization of �-long normal forms in the typed ��- and �se-aluli is neessary to simplify the set ofrules of the uni�ation algorithms. Essentially, the use of �-long normal forms guarantees that meta-variablesof a funtional type A! B are instantiated with typed terms of the form �A:a.De�nition 211 (�-long normal form in ��). Let a be a ��-normal form term of type A1 ! : : :! An !B in the environment � . The �-long normal form (�-lnf) of a, written a0, is de�ned by:1. if a = �C :b then a0 = �C :b0;2. if a = (k b1 : : : bp) then a0 = �A1 : : : �An(k+ n 1 : : : p n0 : : : 10) where i is the �-lnf of the normal formof bi["n℄;3. if a = (X [s℄ b1 : : : bp) then a0 = �A1 : : : �An(X [s0℄ 1 : : : p n0 : : :10) where i is the �-lnf of bi["n℄ and ifs = d1 : : : dq : "k then s0 = e1 : : : eq: "k+n where ei is the �-lnf of di["n℄.De�nition 212 (�-long normal form in �se). Let a be a �se-normal form term of type A1 ! : : : !An ! B in the environment � . The �-long normal form (�-lnf) of a, written a0, is de�ned by:1. if a = �C :b then a0 = �C :b0;2. if a = (b1 : : : bp) then a0 = �A1 : : : �An(1 : : : p n0 : : : 10), where i is the �-lnf of the normal form of'n+10 bi;3. if a = b�i then a0 = �A1 : : : �An(d0�i+ne0 n0 : : : 10), where d0; e0 are the �-lnfs of the normal forms of'n+10 b and 'n+10 , respetively;4. if a = 'ikb then a0 = �A1 : : : �An('ik0 n0 : : : 10), where 0 is the �-lnf of the normal form of 'n+10 b.The set of uni�ation rules of both HOU methods are onstruted by ombining the di�erent types of�-lnfs enumerated in De�nitions 211 and 212 obtaining di�erent types of equational problems. For the HOUsetting based on the �se-style an additional haraterization of �se-normal terms whose main operators areeither � or ' will be useful in order to ombine diretly �-lnfs of type 2 (See subsetion 2.5) with the onesof type 3. and 4. This simpli�es the omparison of both HOU approahes.De�nition 213 (Long normal form (lnf)). Let a be either a ��-term or a �se-term. The long normalform of a is de�ned as the �-lnf of its ��-normal form.In both typed ��- and �se-aluli we have that two terms are ��-equivalent i� they have the same lnf.



6 M. Ayala-Rin�on and F. Kamareddine2.5 �se-normal formsWe present a haraterization of �se-normal terms whose main operators are either � or ' (i.e. of type 3.and 4. in Corollary 210). This is essential in order to simplify our presentation of the uni�ation rules andof the ex-ex equations.Observe that left arguments of the � operator or arguments of the ' operator at �se-normal termsare neither appliations, nor abstrations, nor de Bruijn indies. For instane, 'ji (a b) ! ('ika 'ikb),(a b)�i! (a�i b�i). Hene, the sole possibility is to have as a left argument a meta-variable. Thus onehas to onsider terms with alternating sequenes of operators ' and � whose left innermost argument is ameta-variable; for instane, (('j3i3 (('j1i1X)�i2a))�i4b)�i5.De�nition 214. Let t be a �se-normal term whose root operator is either � or ' and let X be its leftinnermost meta-variable. Denote by  jkik the operator at the kth position following the sequene of operators 'and �, onsidering only left arguments of the � operators, in the innermost outermost ordering. Additionally,if  jkik orresponds to an operator ' then jk and ik denote its super and subsripts, respetively and if  jkikorresponds to an operator � then jk = 0 and ik denotes its supersript. Let ak denote the orrespondingright argument of the kth operator if  jkik = �ik and the empty argument if  jkik = 'jkik . The skeleton of twritten sk(t) is  jpip : : :  j1i1 (X; a1; : : : ; ap).Example 215 Consider a �se-normal term t of the form (('j3i3 (('j1i1X)�i2a))�i4b)�i5. Then the skeleton oft, sk(t), is  0i5 0i4 j3i3  0i2 j1i1 (X; a; b; ). �Lemma 216. Let t be a �se-normal term whose root operator is either � or ' and let the skeleton of t,sk(t) =  jpip : : :  j1i1 (X; a1; : : : ; ap). Suessive subsripts ik and ik+1 satisfy the following onditions:1. ik > ik+1 if  k and  k+1 are both � operators or both ' operators;2. ik � ik+1 if  k and  k+1 are ' and � operators, respetively;3. ik > ik+1 + 1 if  k and  k+1 are � and ' operators, respetively.Proof. By simple analysis of the arithmeti onstraints at the �se rewrite rules. ut3 Uni�ation in the �se-alulusIn this setion we briey present uni�ation in the �se-style of expliit substitution, as is given in [ARK00℄.Normal form haraterization of �se-terms jointly with WN and CR properties are the essential requirementsto develop a uni�ation method for the �se-alulus, whih an be applied for HOU in the �-alulus.Let T (F ;X ) be a term algebra over a set of funtion symbols F and a ountable set of variables X and letA be an F-algebra. A uni�ation problem over T (F ;X ) is a �rst order formula without universal quanti�eror negation, whose atoms are of the form F; T or s =?A t. Uni�ation problems are written as disjuntions ofexistentially quanti�ed onjuntions of atomi equational uni�ation problems: D = Wj2J 9wj Vi2Ij si =?Ati. When jJ j = 1, the uni�ation problem is alled a uni�ation system. Variables in the set w of auni�ation system 9wVi2I si =?A ti are bound and all other variables are free. T and F stand for the emptyonjuntion and disjuntion, respetively. The empty disjuntion orresponds to an unsatis�able problem.A uni�er of a uni�ation system 9wVi2I si =?A ti is a grafting � suh that A j= 9wVi2I si�jw = ti�jwwhere �jw denotes the restrition of the grafting � to the domain X nw. A uni�er of Wj2J 9wj Vi2Ij si =?A tiis a grafting � that uni�es at least one of the uni�ation systems. The set of uni�ers of a uni�ation problem,D, or system, P , is denoted by UA(D) or UA(P ), respetively.De�nition 31. A �se-uni�ation problem P is a uni�ation problem in the algebra T�se(X ) modulo theequational theory of �se. An equation of suh a problem is denoted a =?�se b, where a and b are �se-termsof the same sort. An equation is alled trivial when it is of the form a =?�se a.We present a set of rewrite rule shemata used to simplify uni�ation problems. The objetive of applyingthe rules is to obtain a desription of the set of uni�ers. Basi deomposition rules for uni�ation should beapplied modulo the usual boolean simpli�ation rules as given in [DHK00℄.



Strategies for HOU via �se-Style of Expliit Substitution 7Table 3. �se-uni�ation rules(De-�) P ^ �A:a =?�se �A:b ! P ^ a =?�se b(De-App) P ^ (n a1 : : : ap) =?�se (n b1 : : : bp) ! P Vi=1::p ai =?�se bi(App-Fail) P ^ (n a1 : : : ap) =?�se (m b1 : : : bq) ! Fif n 6= m(De-�) P ^ a�ib =?�se �id ! P ^ a =?�se  ^ b =?�se d(�-Fail) P ^ a�ib =?�se �jd ! Fif i 6= j and a�ib =?�se �jd is not ex-ex(De-') P ^ 'ika =?�se 'ikb ! P ^ a =?�se b('-Fail) P ^ 'ika =?�se 'jl b ! Fif i 6= j or k 6= l and 'ika =?�se 'jl b is not ex-ex(Exp-�) P ! 9(Y : A:� ` B); P ^X =?�se �A:Yif (X : � ` A! B) 2 T var(P ); Y 62 T var(P ), and X is a unsolved variable(Exp-App) P ^  jpip : : :  j1i1 (X; a1; : : : ; ap) =?�se (m b1 : : : bq) !P ^  jpip : : :  j1i1 (X; a1; : : : ; ap) =?�se (m b1 : : : bq) ^Wr2Rp[Ri 9H1; : : : ; Hk; X =?�se (r H1 : : : Hk)if  jpip : : :  j1i1 (X; a1; : : : ; ap) is the skeleton of a �se-normal term and X has an atomitype and is not solved where H1; : : : ; Hk are variables of appropriate types, not our-ring in P , with the environments �Hi = �X , Rp is the subset of fi1; : : : ; ipg of super-sripts of the � operator suh that (r H1 : : : Hk) has the right type, Ri = Spk=0 if ik �m+p�k�Ppl=k+1 jl > ik+1 then fm+p�k�Ppl=k+1 jlg else ;, where i0 =1; ip+1 = 0(Replae) P ^X =?�se a ! fX=agP ^X =?�se aif X 2 T var (P );X 62 T var (a) and a 2 X ) a 2 T var(P )(Normalize) P ^ a =?�se b ! P ^ a0 =?�se b0if a or b is not in lnf where a0 is the lnf of a if a is not a solved variable and a otherwise.b0 is de�ned from b identiallyDe�nition 32. The set in Table 3 de�nes the �se-uni�ation rules for the typed �se-uni�ation problems.Sine �se is CR and WN, the searh an be restrited to �-long normal solutions that are graftings bindingfuntional variables into �-long normal terms of the form �:a and atomi variables into �-long normal termsof the form (k b1 : : : bp) or a�ib or 'ika, where in the �rst ase k an be omitted and p be zero. The use of the�-rule is important to redue the number of ases (or uni�ation rules) to be onsidered when de�ning theuni�ation algorithm, but as for the ��-alulus, the �-rule an be dropped [DHK00℄. As for the ��-style ofuni�ation, Normalize and De-� use the fat that �se is CR and WN to normalize equations of the form�:a =?�se �:b into a0 =?�se b0 and the rule Replae propagates the grafting fX=ag orresponding to equationsX =?�se a. Exp-� generates the grafting fX=�:Y g for a variable X of type A! B, where Y is a new variableof type B.Equations of the form (n a1 : : : ap) =?�se (m b1 : : : bq) are transformed by the rules De-App and App-Failinto the empty disjuntion when n 6= m, as it has no solution, or into the onjuntion Vi=1::p ai =?�se bi,when n = m. Remember that by terms of the form (n a1 : : : ap) we also mean those where n is omitted orp = 0. Analogously, the rules De-� and De-' deompose equations with leading operators � and '. But,the orresponding rules �-Fail and '-Fail should omit ex-ex equations as the Example 33 shows.Example 33 Let (�:(�:(X 2) 1) Y ) =?�se (�:(Z 1) U) be a uni�ation problem, where X;Y; Z and U aremeta-variables of the same atomi type, say A.Then (�:(�:(X 2) 1) Y ) !� ((X�2Y )�1('10Y ) '10Y ) and (�:(Z 1) U)!� (Z�1U '10U). Thusapplying the rule Normalize to the original equation we obtain ((X�2Y )�1('10Y ) '10Y ) =?�se (Z�1U '10U)whih an be deomposed into (X�2Y )�1('10Y ) =?�se Z�1U ^ '10Y =?�se '10U and subsequently into(X�2Y ) =?�se Z ^ '10Y =?�se U ^ Y =?�se U .Sine 8n 2 N, '10n ! n, the equation '10Y =?�se U always has solutions, and solutions of the last twoequations are graftings of the form fY=V; U=V g. Additionally, observe that the �rst equation has a varietyof solutions: take fX=ng; thus if n > 2, fZ=n� 1g else if n = 2, fZ='20Y g else fZ=1g.



8 M. Ayala-Rin�on and F. KamareddineAnalogously, by normalization and deomposition with the ��-uni�ation rules we have:(�:(�:(X 2) 1) Y ) =?�� (�:(Z 1) U) !Normalize (X [Y:Y:id℄ Y ) =?�� (Z[U:id℄ U), whih an bedeomposed into X [Y:Y:id℄ =?�� Z[U:id℄ ^ Y =?�� U . A further step of replaement gives the orrespondingex-ex equation of the ��-alulus X [Y:Y:id℄ =?�� Z[Y:id℄. �In ��-HOU, the rule Exp-App advanes towards solutions to equations of the form X [a1 : : : ap: "n℄ =?�se(m b1 : : : bq) where X is an unsolved variable of an atomi type. The �se-uni�ation rule Exp-App has theanalogous role for �se-uni�ation problems. Use of �se-normal forms in Exp-App is not essential. This isdone with the sole objetive of simplifying the ase analysis presented in the de�nition of the rule and itsompleteness proof. In fat, this an be dropped and subsequently inorporated as an eÆient uni�ationstrategy, where before applying Exp-App, �se-uni�ation problems are normalized.Example 34 From the uni�ation problem �:(�:(Y 1) �:(X 1)) =? �:(�:V �:W ) we reah the equations:(Y [�:(X 1):id℄ �:(X 1)) =?�� V [�:W:id℄ and (Y �1�:(X 1) �:('11 1)) =?�se V �1�:W . After applying theorresponding Exp-App rules, with V =?�� (V1 V2) and V =?�se (V1 V2), additional equations appear:�:(X 1) =?�� V2[�:(X 1):id℄ and �:('11X 1) =?�se V2�1�:(X 1). Solutions result by seleting the ase V2 =?��1 or orrespondingly V2 =?�se 1. �De�nition 35. A uni�ation system P is a �se-solved form if it is a onjuntion of non trivial equationsof the following forms:(Solved) X =?�se a, where the variable X does not our anywhere else in P and a isin lnf. Suh an equation and variable are said to be solved in P .(Flex-Flex) non solved equations between long normal terms whose root operator is � or' whih an be represented as equations between their skeleton: jpip : : :  j1i1 (X; a1; : : : ; ap) =?�se  lqkq : : :  l1k1(Y; b1; : : : ; bq).Remark 36 Consider a �se-normal term t whose root operator is either � or ' and with skeleton of theform sk(t) =  jpip : : :  j1i1 (X; a1; : : : ; ap). Then by binding X with n, n > i1, one obtains the normal formt!� n+Ppk=1 jk � p. This is a diret onsequene of lemma 216. �The rest of this setion lists relevant properties of the �se-uni�ation rules. For proofs, see [ARK00℄.Lemma 37. Any �se-solved form has �se-uni�ers.Lemma 38 (Well-typedness). Dedution by the �se-uni�ation rules of a well typed equation gives riseonly to well typed equations, T and F.Lemma 39 (Equivalene of solvedness and normalization). Solved problems are normalized for the�se-uni�ation rules and, onversely, if a system is a onjuntion of equations that annot be redued by the�se-uni�ation rules then it is solved.De�nition 310. Let P and P 0 be �se-uni�ation problems, let \rule" denote the name of a �se-uni�ationrule and \!rule" its orresponding dedution relation over uni�ation problems. By orretness of rule weunderstand: P !rule P 0 implies U�se(P 0) � U�se(P ). By ompleteness of rule we understand: P !rule P 0implies U�se(P ) � U�se (P 0)Theorem 311 (Corretness and Completeness). The �se-uni�ation rules are orret and omplete.



Strategies for HOU via �se-Style of Expliit Substitution 9Table 4. Uni�ation replae strategyNormalize or De-� or De-App or App-Fail or De-� or �-Fail orDe-' or '-Fail or Exp-�; Replae or Exp-App ; Replae4 A uni�ation strategy�se-uni�ation rules should be applied following some strategy that avoids non termination of the uni�ationproess. Observe, in partiular, that the rule Exp-� an be applied in�nitely many times on one variableof a system if no replaement is done. Analogously to [DHK00℄ we de�ne a uni�ation strategy that aftereah appliation of either Exp-� or Exp-app applies the rule Replae. Rules should, of ourse, be applied in afair manner, whih means that in one disjuntion of systems, none of the onstitutive systems is left foreverwithout applying uni�ation rules on it.Our so alled uni�ation replae strategy, onsists of a fair appliation of the �se-uni�ation rules aspresented in Table 4 (A;B means A before B, and A or B means hoose either A or B).Suessive appliations of (Exp-�; Replae) and (Exp-App; Replae) are denoted by Exp-�R and Exp-AppR, respetively.A uni�ation problem, P , is divided into the non solved, say Q, and solved, say R, equations. We usethe notation P = hQ;Ri. Completeness of the uni�ation replae strategy is proved by showing that all theabove groups of rules derease a omplexity measure based on the grafting � resulting from the uni�ationalgorithm. For a solved system R onsisting of only solved equations, Subst(R) denotes the anonial graftingassoiated to R. For example if R = (X =?�se a) then Subst(R) = fX=ag.Take in the rest of this setion a �se-normalized grafting solution � of a uni�ation problem P .De�nition 41. For a system of equations P = hQ;Ri and a �se-normalized grafting �, whih is a solutionof P , we de�ne the UnifStrat transformations hQ;R; �i !r hQ0; R0; �0i, where r is a group of rules of theuni�ation replae strategy, as follows:1. hQ;R; �i!Normalize hQ0; R0; �i, where Q0 and R0 are the normalized forms of Q and R as de�ned in the�se-uni�ation.2. hQ^ �A:a =?�se �A:b; R; �i!De��hQ0; R0; �i, where Q0 = Q^ a =?�se b and R0 = R when a =?�se b is notsolved with respet to Q ^R or Q0 = Q and R0 = R ^ a =?�se b when a =?�se b is solved.3. hQ ^ (n a1 : : : ap) =?�se (n b1 : : : bp); R; �i!De�App hQ0; R0; �i, where Q0 onsists in Q and the unsolvedequations (with respet to Q ^ R) in Vi=1::p ai =?�se bi and R0 onsists in R and the solved equations inVi=1::p ai =?�se bi.4. hQ;R; �i!De��hQ0; R0; �i, where Q0 onsists in Q and the unsolved equations (with respet to Q ^ R)in a =?�se  ^ b =?�se d and R0 onsists in R and the solved equations in a =?�se  ^ b =?�se d.5. hQ;R; �i!De�'hQ0; R0; �i, where if a =?�se b is unsolved with respet to Q ^ R, Q0 = Q ^ a =?�se b andR0 = R else Q0 = Q and R0 = R ^ a =?�se b.6. hQ ^X =?�se b; R; �i!ReplaehfX=bgQ;R ^X =?�se b; �i7. hQ;R; �i!Exp��RhfX=�A:Y gQ;R^X =?�se �A:Y; � n fX=�A:ag[fY=ag, when Exp-� applies on Q^R.8. hQ ^  jpip : : :  j1i1 (X; a1; : : : ; ap) =?�se (m b1 : : : bq); R; �i!Exp�AppRhfX=(r H1 : : : Hk)g(Q ^  jpip : : :  j1i1 (X; a1; : : : ; ap) =?�se (m b1 : : : bq));R ^X =?�se (r H1 : : : Hk); � n fX=(r 1 : : : k) [ fHi=igifor one of the r 2 Rp [ Ri, when Exp-App applies on Q ^ R.Lemma 42 (UnifStrat is well de�ned). The transformations Exp-�R and Exp-AppR are well de�ned.Proof. We show that the transformations applied on the grafting part � of hQ;R; �i make sense.First, observe that sine Exp-� preserves the solutions, � is also a �se-solution of the equation X =?�se�A:Y . This together with the assumption that � is �se-normalized, implies that the instantiation of X by �is of the form fX=�A:ag. Hene the transformation Exp-�R is well de�ned.Seond, sine Exp-App preserves the solutions, � is �se-solution of the equation X =?�se (r H1 : : : Hk).Thus �(X) = (r 1 : : : k), for some i, i = 1; : : : ; k. Consequently, the transformation Exp-AppR is wellde�ned too. ut



10 M. Ayala-Rin�on and F. KamareddineLemma 43 (Finiteness of UnifStrat). For a system hQ;Ri having for solution a �se-normalized grafting�, there is no in�nite derivation issued from hQ;R; �i, using the UnifStrat transformations.Proof. We de�ne the size of a grafting as the sum of the size of the terms in its range: j�j = �t2Ran�jtj.First, we prove that there are no in�nite sequenes of transformation appliations involving the trans-formations Normalize, Replae, De-�, De-App, De-� and De-'. We de�ne a omplexity measure, � , of asystem P = hQ;Ri by: �(P ) = hjvar (Q)j; f�i;max(jaij; jbij)gai=?�sebi2Qi where �i is the length of the shortest�se-normalizing derivation of ai =?�se bi. Complexities are ompared lexiographially using the ordering onnaturals for the �rst omponent and the multiset ordering for the seond omponent itself ordered by thelexiographi ordering on naturals (for ground notions on multiset ordering see [BN98℄).Now observe that for eah possible appliation of these transformations on a system P its omplexitydereases. Normalize may derease the number of variables but always dereases the size of one of the �i.Replae dereases the number of unsolved variables. De-�, De-App, De-� and De-' never inrease �i(sine the normalization derivation of a subterm is always equal or smaller than the derivation of its ontextterm) and they derease the size of the equation to whih they are applied.Seond, in order to involve in the whole argumentation transformations Exp-� R and Exp-AppR we de�nea new omplexity measure involving the size of the grafting: �(P ) = hj�j; �(P )i.Sine the transformations Normalize, Replae, De-�, De-App, De-� and De-' do not hange thegrafting, previous argumentation holds for the resulting lexiographial ordering on these omplexity usingthe ordering on naturals for the �rst omponent. Moreover, transformations Exp-� R and Exp-AppR alwaysderease the size of the urrent grafting �. Consequently the appliation of UnifStrat is terminating. utLemma 44 (Preservation of solutions). If � is a �se-solution of system Q and if hQ;R; �i !r hQ0; R0; �0ithen �0 is a �se-solution of Q0 and � Æ Subst(R) =var(Q;R)�se �0 Æ Subst(R0).Proof. For all the rules exept Exp-� R and Exp-AppR, we have �0 = �. Additionally, sine the rules Exp-�and Exp-App preserve solutions, we have that �0 is a solution of Q0. Observe that the equality modulo �seis introdued by possible normalization steps.As the proofs for Exp-�R and Exp-AppR are similar, we only do one. By the de�nition of Exp-�R, �0 is a�se-solution of Q0. Let Z be a variable in var(Q;R) then either Z = X or Z 6= X . In the �rst ase, � satis�es�(X) = (� Æ Subst(R))(X) = �(X) = �A:a, and (�0 Æ Subst(R0))(X) = �0(�A:Y ) = �A:a. In the seond ase,both graftings give the same image for Z. utLemma 45 (Constrution of solutions). Let hQ0; R0; �0i ! hQ1; R1; �1i ! � � � ! hQn; Rn; �ni be a�nite derivation applying transformations of UnifStrat starting from the problem P0 = hQ0; R0i and the�se-normalized solution �0. Then, �0 =var(Pn)�se �n Æ Subst(Rn), where �n is a solution of the solved form Qn.Proof. Observe that �0 = �0ÆSubst(R0). From Lemmas 43 and 44, the derivation originated from hQ0; R0; �0iis �nite, say of length n, and we have: �0 Æ Subst(R0) =var(P0)�se �1 Æ Subst(R1) =var(P1)�se � � � =var(Pn�1)�se�nÆSubst(Rn). By Lemma 39,Qn^Rn should be a solved form. Moreover, var (P0) � var (P1) � � � � � var (Pn)sine the set of variables of the uni�ation problems ould only derease due to the Normalize rule. Then wehave �0 =var(Pn)�se �n Æ Subst(Rn). utTheorem 46 (Completeness of UnifStrat). The �se-uni�ation rules desribe a orret and omplete�se-uni�ation proedure in the sense that, given a �se-uni�ation problem P :if the �se-uni�ation rules lead in a �nite number of steps to a disjuntion of systems having one of itsone onstitutive system solved, then the problem P is �se-uni�able and a solution to P is the solutiononstruted in Lemma 37 for a solved onstitutive system,if P has a uni�er � then the strategy UnifStrat leads in a �nite number of steps to a disjuntion ofsystems suh that one onstitutive system is solved and, like P , has a uni�er.Proof. Straightforward, using Lemma 43 and Theorem 311. ut



Strategies for HOU via �se-Style of Expliit Substitution 115 HOU in the pure �-alulusWe present in an informal way two examples on how to apply our �se-uni�ation method in order to solveHOU problems in the pure �-alulus. We ompare our work to the appliation of ��-HOU.Observe �rstly that unifying two terms a and b in the �-alulus onsists in �nding a substitution �suh that �(a) =�� �(b). But in the �-alulus the notion of substitution is di�erent from the �rst orderone or grafting, as was shown in Setion 2. Thus using the notation of substitution in De�nitions 22 and23, a uni�er in the �-alulus of the problem �:X =?�� �:2 (where =�� denotes the ongruene generatedby the �- and �-rules on �dB(X )) is not a term t = �X suh that �:t =?�� �:2 but a term t = �X suhthat �(�:X) = �:�+(X) = �:2 as (�:X)fX=tg = �:XfX=t+g = �:t+ and not �:t. This observation an beextended to any uni�er and by translating appropriately �-terms a; b 2 �dB(X ), the HOU problem a =?�� ban be redued to equational uni�ation. [DHK00℄ presents a translation alled pre-ooking from �dB(X )terms into the ��-alulus suh that searhing for solutions of the orresponding ��-uni�ation problemorresponds to searhing for solutions of the HOU problem a =?�� b. In the following examples, we illustrateinformally the analogous situation in the �se-alulus.Example 51 Consider the higher order uni�ation problem �:(X 2) =?�� �:2, where 2 and X are of typeA and A ! A, respetively. Observe that applying a substitution solution � to the �dB(X )-term �:(X 2)gives �(�:(X 2)) = �:(�+(X) 2). Then in the �se-alulus we are searhing for a grafting �0 suh that�0(�:('20(X) 2)) =�se �:2. Correspondingly, in the ��-alulus, �:(X 2) is translated or pre-ooked into�:(X ["℄ 2). Observe that this orrespondene results from lemma 28. Then we should searh for uni�ers forthe problem �:('20(X) 2) =?�se �:2.Now we apply �se-uni�ation rules to the problem �:('20(X) 2) =?�se �:2. By applying De-� and Exp-�we get ('20(X) 2) =?�se 2 and subsequently 9Y ('20(X) 2) =?�se 2 ^X =?�se �:Y . Then by applying Replaeand Normalize we obtain 9Y ('20(�:Y ) 2) =?�se 2^X =?�se �:Y and 9Y ('21Y )�12 =?�se 2^X =?�se �:Y . Now,by applying rule Exp-app we obtain(9Y ('21Y )�12 =?�se 2 ^X =?�se �:Y ) ^ (Y =?�se 1 _ Y =?�se 2) whih by Replae gives(('211)�12 =?�se 2 ^X =?�se �:1) _ (('212)�12 =?�se 2 ^X =?�se �:2) and, �nally, by Normalize(2 =?�se 2^X =?�se �:1) _ (2 =?�se 2^X =?�se �:2). In this way substitution solutions fX=�:1g and fX=�:2gare found.To omplete the analysis note that by De�nitions 22, 23 and �-redution in �dB(X ) we have:fX=�:1g(�:(X 2)) = �:(fX=(�:1)+g(X) 2) = �:(�:1+1 2) = �:(�:1 2) =� �:2 andfX=�:2g(�:(X 2)) = �:(fX=(�:2)+g(X) 2) = �:(�:2+1 2) = �:(�:3 2) =� �:2:Observe that the last appliation of �-redution is as follows: (�:3 2) =� f1=2g(3) = 2. �In general, before the uni�ation proess, a �-term a should be translated into the �se-term a0 resultingby simultaneously replaing eah ourrene of a meta-variable X at position i in a with 'k+10 X , where k isthe number of abstrators between the root position of a, ", and position i. If k = 0 then the ourrene of Xremains unhanged. Essentially, what the pre-ooking translation de�ned in [DHK00℄ does is to transribeall ourrenes of de Bruijn indies n into 1["n�1℄ and all ourrenes of meta-variables X into X ["k℄, wherek is determined as above. Notie that the two pre-ooking translations an be implemented non-reursivelyin an eÆient way.Example 52 Consider the HOU problem F (f(a)) =? f(F (a)). In �dB(X ) it an be seen as (X (2 1)) =?��(2 (X 1)), where both X and 2 are of type A! A and 1 is of type A. Sine there are no abstrators at theterms of the equational problem, the equation remains unhanged: (X (2 1)) =?�se (2 (X 1)).For simpliity we omit existential quanti�ers. After one appliation of Exp-� and another of Replae weget (�:Y (2 1)) =?�se (2 (�:Y 1)) ^ X =?�se �:Y where Y is of type A. Applying Normalize we obtainY �1(2 1) =?�se (2 Y �11) ^ X =?�se �:Y And by one appliation of Exp-App we get Y �1(2 1) =?�se(2 Y �11) ^X =?�se �:Y ^ (Y =?�se 1 _ Y =?�se (3 H1)).Note that other possible ases do not produe solved forms. By Replae and Normalize we get:((2 1) =?�se (2 1) ^X =?�se �:1) _ ((2 H1�1(2 1)) =?�se (2 (2 H1�11)) ^X =?�se �:(3 H1)), from whihwe have the �rst solved system orresponding to the identity solution: fX=�:1g.



12 M. Ayala-Rin�on and F. KamareddineSubsequently, other solutions an be obtained from the equational system(2 H1�1(2 1)) =?�se (2 (2 H1�11)) ^X =?�se �:(3 H1)In fat, by De-App and Exp-App we obtainH1�1(2 1) =?�se (2 H1�11) ^X =?�se �:(3 H1) ^ (H1 =?�se 1 _H1 =?�se (3 H2))Other possible ases do not produe solved forms. By Replae and Normalize we obtain ((2 1) =?�se(2 1) ^ X =?�se �:(3 1)) _ ((2 H2�1(2 1)) =?�se (2 (2 H2�11)) ^ X =?�se �:(3 (3 H2))), from wherewe have the seond solved system orresponding to the grafting solution: fX=�:(3 1)g. This orrespondsto the solution F = f ; in fat, by replaing X with �:(3 1) in the original uni�ation problem we obtain(�:(3 1) (2 1)) =?�se (2 (�:(3 1) 1)), from where it is lear that de Bruijn indies 3 and 2 orrespond to thesame operator. Additionally, note that (�:(3 1) (2 1)) !� (2 (2 1)) and (2 (�:(3 1) 1)) !� (2 (2 1)).Hene, applying De-App, Exp-App, Replae and Normalize to the equational system ((2 H2�1(2 1))=?�se (2 (2 H2�11)) ^ X =?�se �:(3 (3 H2))) we obtain the third solved system giving the grafting so-lution fX=�:(3 (3 1))g orresponding to the solution F = ff . The uni�ation proess ontinues in�nitelyproduing solved systems orresponding to the grafting solutions fX=�:(3 (3 (3 1)))g (i.e. F = fff),fX=�:(3 (3 (3 (3 1))))g (i.e. F = ffff), et. �Now we an de�ne our pre-ooking translation.De�nition 53 (Pre-ooking). Let a 2 �dB(X ) suh that � `�dB(X ) a : T . To every variable X of typeA ourring at a we assoiate the same type and ontext � in the �se-alulus. The pre-ooking of a from�dB(X ) to the �se-alulus is de�ned by ap = PC(a; 0) where PC(a; n) is de�ned by:1. PC(�B :a; n) = �B :PC(a; n+ 1) 2. PC((a b); n) = (PC(a; n) PC(b; n))3. PC(k; n) = k 4. PC(X;n) = if n = 0 then X else 'n+10 XLemma 54. If � `�dB(X ) a : T , then � `�se ap : T .Proof. We prove the more general result: if A1 : : : An; � `�dB(X ) a : T and if to every variable ourring ata, the same type and ontext � is assoiated, then A1 : : : An; � `�se PC(a; n) : T . This is done by indutionon the struture of terms, for all n.Initially, observe that ases a = k and a = (a1 a2) are simple. Afterwards, suppose that a = �B :b.Then T = B ! C and B;A1 : : : An; � `�dB(X ) b : C. Thus B;A1 : : : An; � `�se PC(b; n + 1) : C andA1 : : : An; � `�se PC(�B :b; n) = �B :PC(b; n+ 1) : B ! C. Finally, for a = X by de�nition of � `�dB(X )X : T , � `�se X : T and A1 : : : An; � `�se 'n+10 (X) : T . utNow pre-ooking is justi�ed by the following proposition that relates substitution in �dB(X ) and graftingin �se.Proposition 55 (Semantis of pre-ooking). Let a; b1; : : : ; bp be terms of �dB(X ). We have:(afX1=b1; : : : ; Xp=bpg)p = apfX1=b1p ; : : : ; Xp=bppggProof. The more general fat PC(afX1=b+i1 ; : : : ; Xp=b+ip g; i) = PC(a; i)fX1=b1p ; : : : ; Xp=bppgg is what wewill prove. Observe that the ase i = 0 orresponds to the proposition: (afXj=bjg)p = PC(afXj=b+0j g; 0) =PC(a; 0)fXj=bjpgg = apfXj=bjpgg . The proof is done by indution on the struture of terms for all i.� a = �:b. PC((�:b)fXj=b+ij g; i) = PC(�:(bfXj=b+i+1j g); i) = �:(PC(bfXj=b+i+1j g; i+ 1)). By indutionhypothesis, the previous expression is equal to �:(PC(b; i+ 1)fXj=bjpgg) = �:(PC(b; i+ 1))fXj=bjpgg =PC(�:b; i)fXj=bjpgg.� a = (a1 a2). Observe that PC((a1 a2)fXj=b+ij g; i) = PC((a1fXj=b+ij g a2fXj=b+ij g); i) and this isequal to (PC(a1fXj=b+ij g; i) PC(a2fXj=b+ij g; i)). By applying the indution hypothesis the last expres-sion is equal to (PC(a1; i)fXj=bjpgg PC(a2; i)fXj=bjpgg). To onlude, the last expression is equal to(PC(a1; i) PC(a2; i))fXj=bjpgg = PC((a1 a2); i)fXj=bjpgg.



Strategies for HOU via �se-Style of Expliit Substitution 13� a = n. PC(nfXj=b+ij g; i) = PC(n; i) = nfXj=bjpgg = PC(n; i)fXj=bjpgg.� a = X. We have two ases: either X = Xj , for some 1 � j � p, or X 6= Xj , for all 1 � j � p. Theinteresting ase is the �rst one. Suppose that X = Xj , for some 1 � j � p. Then we should prove thatPC(b+ij ; i) = PC(Xj ; i)fXj=bjpgg = 'i+10 bjp . We will prove the more general fat that PC(b(+k)i ; i+ k) ='i+1k PC(b; k). This is done by indution on the struture of b as follows:� b = �:. PC((�:)(+k)i ; i+k) = PC(�:(+(k+1))i ; i+k) sine (�:)(+k)i = �:(+(k+1))i . The last expressionis equal to �:PC((+(k+1))i ; i+ k + 1) whih is equal to �:'i+1k+1PC(; k + 1) by the indution hypothesis. Thelast expression is equal to 'i+1k �:PC(; k + 1) = 'i+1k PC(�:; k).� b = (b1 b2). Initially, we have the following: PC((b1 b2)(+k)i ; i + k) = PC((b(+k)i1 b(+k)i2 ); i +k) = (PC(b(+k)i1 ; i+ k) PC(b(+k)i2 ; i+ k)). Then by applying the indution hypothesis this is equal to('i+1k PC(b1; k) 'i+1k PC(b2; k)) = 'i+1k PC((b1 b2); k).� b = n. Case n > k, PC(n(+k)i ; i + k) = PC(n+ i; i + k) = n+ i and 'i+1k PC(n; k) = 'i+1k n = n+ i.Case n � k, PC(n(+k)i ; i+ k) = PC(n; i+ k) = n and 'i+1k PC(n; k) = 'i+1k n = n.� b = X. PC(X(+k)i ; i+k) = PC(X; i+k) = 'i+k+10 X and 'i+1k PC(X; k) = 'i+1k 'k+10 X = 'i+k+10 X . utIn ontrast with the orresponding proof in [DHK00℄, where substitution objets are neessary for provingthe ritial ase of a = X (i.e., substitutions of the form [1:::k: "i+k℄) our proof uses pure term objets byseleting the appropriate super and subsripts for the ' operator (i.e., 'i+1k ).The following proposition presents neessary fats for relating the existene of solutions for uni�ationproblems in the pure �-alulus and in the �se-alulus.Proposition 56. Let a and b be terms in �dB(X ). Then1. a!� b implies ap !��se bp. 2. If a is ��-normal then ap is �se-normal.3. a!� b implies ap !eta bp. 4.a =�� b if and only if ap =�se bpProof. First. We will prove the more general fat that (�k+1:a b) !� (�k:a)f1=bg implies ((�k+1:a) b)p!��se ((�k :a)f1=bg)p. This is done by indution on a for all k. The ase k = 0 orresponds to our ase ofinterest. Initially, notie that ((�k+1:a) b)p = ((�k+1:PC(a; k + 1)) bp) !�se �k:(PC(a; k + 1)�k+1bp)and that (�k :a)f1=bg = �k :(afk + 1=b+kg). Thus ((�k :a)f1=bg)p = �k:PC(afk + 1=b+kg; k).� a = n. The interesting ase ours when n = k + 1. In this ase, �k :(k+ 1fk + 1=b+kg) = �k:b+k .Additionally, we have ((�k+1:n) b)p = (�k+1:n bp) !��se �k:(n�k+1bp) = �k:'k+10 bp and (�k :b+k)p =�k:PC(b+k ; k). Then we have to prove that �k:'k+10 bp !��se �k:PC(b+k ; k). We prove the more general fatthat �k+i:'k+1i PC(b; i)!��se �k+i:PC(b(+i)k ; k + i). This is done by strutural indution on b for all k > 0and i � 0.� b = m. On one side, �k+i:'k+1i PC(m; i) = �k+i:'k+1i m = ��k+i:m+ k; if n > i;�k+i:m; if m � i:On the other side, by de�nition of i-lift, �k+i:PC(m(+i)k ; k + i) = ��k+i:m+ k; if n > i;�k+i:m; if m � i:� b = X. We have two ases: either i = 0 or i > 0. In the �rst ase we have �k:'k+10 PC(X; 0) = �k:'k+10 Xand �k:PC(X+k ; k) = �k:PC(X; k) = �k :'k+10 X . If i > 0, �k+i:'k+1i PC(X; i) = �k+i:'k+1i 'i+10 X !�se�k+i:'k+i+10 X and �k+i:PC(X; k + i) = �k+i:'k+i+10 X .� b = �:. We have that �k+i:'k+1i PC(�:; i) = �k+i:'k+1i �:PC(; i+ 1) !�se �k+i:�:('k+1i+1 PC(; i+ 1))= �k+i+1:'k+1i+1 PC(; i+ 1) that �se-derives into �k+i+1:PC(b(+i+1)k ; k + i+ 1) by indution hypothesis.� b = (b1 b2). Using the hypotheses that �k+i:'k+1i PC(bj ; i) !��se �k+i:PC(b(+i)kj ; k + i), for j = 1; 2,we obtain the desired onlusion.� a = X. Observe that �k:(PC(X; k + 1)�k+1bp) = �k:('k+20 X)�k+1bp) !�se �k:'k+10 X and that�k:PC(Xfk + 1=b+kg; k) = �k:PC(X; k) = �k :'k+10 X.� a = �:. Straightforwardly by applying the indution hypothesis on the more simple term  for k + 1:((�k+2:) b)p !��se ((�k+1:)f1=bg)p.� a = (a1 a2). By indution.



14 M. Ayala-Rin�on and F. KamareddineSeond. We prove the more general fat that if a is ��-normal then for all k, PC(a; k) is �se-normal. Thisis done by strutural indution on the struture of a for all k, as follows.� a = n. Obvious.� a = X . PC(X; k) = 'k+10 X that is �se-normal.� a = �:b. PC(�:b; k) = �:PC(b; k + 1) and sine b should be ��-normal, PC(b; k+1) is �se-normal. Then�:PC(b; k + 1) is �se-normal too.� a = (b ). Sine b and  are ��-normals then (PC(a; k) PC(b; k)) is �se-normal.Third. We prove the more general fat that if �:(�k :a 1) !� d then (�:(�k :a 1))p !eta dp. Observe thatd should be of the form �k: and suh that (�k :)+ = �k:+k = �k :a. Then +k = a. Notie that our ase ofinterest is the orresponding to k = 0. The proof is by indution on the struture of a for all k.� a = n. Firstly, notie that �:(�k :n 1) !� �k:m whenever �k :n = (�k:m)+ = �k:(m+k) = if m � k then�k:m else �k:m+ 1. Then m = n if n � k and m = n � 1 if n � 1 > k. Observe that n 6= k + 1. Thus,PC(�:(�k :n 1); 0) = �:(�k :PC(n; k + 1) 1) = �:(�k :n 1) !eta if n � k then �k:n else if n � 1 > k then�k:n� 1, sine '20�k:m = �k :'2km = if m � k then �k:m else if m > k then �k:m+ 1.� a = X . Firstly, notie that �:(�k :X 1) !� �k :X sine (�k :X)+ = �k :X+k = �k:X . Afterwards, ob-serve that PC(�:(�k :X 1); 0) = �:(�k :PC(X; k + 1) PC(1; 1)) = �:(�k :'k+20 X 1) !eta �k:'k+10 X, sine'20(�k:'k+10 X) =se �k:'2k'k+10 X =se �k :'k+20 X. Finally, we have that PC(�k :X; 0) = �k:PC(X; k) =�k:'k+10 X.� a = �:b. Suppose, �:(�k :�:a 1) !� �k:d. Then �k:�:a = (�k :d)+ = �k :d+k and �:a = d+k. ThenPC(�:(�k :�:a 1); 0) = �:(�k :PC(�:a; k + 1) 1) !eta �k:PC(d; k) = PC(�k+1:; 0), for some .� a = (b ). Notie that �:(�k :(a1 a2) 1)!� �k:(1 2) if �k:(a1 a2) = (�k:(1 2))+ = �k:(+k1 +k2 ). Itshould hold that +ki = ai for i = 1; 2. Then �:(�k :ai 1)!� �k:i, for i = 1; 2. Now, PC(�:(�k :(a1 a2) 1); 0) =�:(�k :(PC(a1; k + 1) PC(a2; k + 1)) 1) and by the indution, �:(�k :(PC(a1; k + 1) PC(a2; k + 1)) 1)!eta�k:(PC(1; k) PC(2; k)) = PC(�k :(1 2); 0).Fourth. On one side, that a =�� b implies ap =�se bp is proved by indution on the length of the proof ofa =�� b using the previous �rst and seond items.On the other side, suppose that ap =�se bp and selet a0 and b0 normal forms of a and b, respetively.By previous items, terms ap and bp redue to a0p and b0p, respetively. Consequently, a0p =�se b0p anda0p = b0p sine these terms should be �se-normal. To onlude, by the fat that the pre-ooking translationis injetive on �dB(X ), a0 = b0. Then we obtain that a =�� b. utAgain, our proof di�ers from the orresponding in [DHK00℄ in that we avoid the use of ompliatedsubstitution objets beause we pro�t from the semantis of the ' operator of the �se-alulus.Finally, we relate solutions and their existene in the pure �-alulus and for the orresponding pre-ookedterms in the �se-alulus.Proposition 57 (Correspondene between solutions). Let a and b be terms in �dB(X ). Then thereexist terms N1; : : : ; Np in �dB(X ) suh that afX1=N1; : : : ; Xp=Npg =�� bfX1=N1; : : : ; Xp=Npg if and onlyif there exist �se-terms M1; : : : ;Mp suh that apfX1=M1; : : : ; Xp=Mpgg =�se bpfX1=M1; : : : ; Xp=Mpgg.Proof. On the one side, suppose that fXi=Nigi=1::p is a solution of the uni�ation problem a =?�� b. ThenafXi=Nig =�� bfXi=Nig. By the fourth item of the Proposition 56, (afXi=Nig)p =�se (bfXi=Nig)p andby the Proposition 55 we obtain that apfXi=Nipgg =�se bpfXi=Nipgg.On the other side, suppose that apfXi=M 0igg =�se bpfXi=M 0igg. We selet terms Ni, i = 1; :::; p, in therange of the pre-ooking translation suh that Ni =�se M 0i and let Mi be terms in �dB(X ) suh that Mip =Ni. Then apfXi=Mipgg =�se bpfXi=Mipgg and by the Proposition 55 we obtain that (afXi=Mig)p =�se(bfXi=Mig)p. This jointly with the Proposition 56 implies that afXi=Mig =�� bfXi=Mig. ut6 ConlusionsFollowing the ��-uni�ation approah introdued in [DHK00℄, we have developed an e�etive strategy forimplementing the �se-uni�ation rules presented in [ARK00℄. Additionally, we presented a pre-ooking trans-lation that transribes pure �-terms in de Bruijn notation into �se-terms, for whih the searh of graftingsolutions orresponds to substitution solutions in the pure �-alulus.



Strategies for HOU via �se-Style of Expliit Substitution 15Note that orretness and ompleteness proofs for the ��- and the �se-uni�ation strategies don't di�erbeause these strategies are based on an appropriate ordering of the appliation of the uni�ation ruleswhih is in a ertain way independent of the aluli. Of ourse, the strategies di�er on the uni�ationtransformations, beause these are built on di�erent uni�ation rules, whih is the subjet of [ARK00℄.However, our proofs for the �se-HOU di�er from the ones for the ��-HOU mainly beause of the di�er-enes between the two aluli. Moreover, proofs of orretness of the semantis and preservation of solutionsfor our pre-ooking translation are very di�erent from the ones for the ��-HOU, sine our de�nition ofpre-ooking translation depends diretly on the syntati properties and semantis of the �se-alulus.More onretely, our pre-ooking translation transribes a term a by replaing eah ourrene of a meta-variable X with 'k+10 X while the ��-alulus uses X ["k℄, where k is the number of abstrators between theposition of the ourrene of X and the root position. Additionally, the pre-ooking translation in [DHK00℄transribes eah ourrene of a de Bruijn index n in a into 1["n�1℄. Conformity of the two pre-ookingtranslations is therefore evident. But our proofs di�er from the orresponding ones in [DHK00℄ in that wedon't need the use of omplex substitution objets beause of the appropriate semantis and exibility ofthe ' operator in the �se-alulus. This an be observed in the proof of the orret semantis of the pre-ooking translation (Proposition 55) and the proof of Proposition 56 whih relates the existene of uni�ationsolutions in the �- and the �se-alulus. In these proofs, only a orret seletion of the sripts for the operator' was neessary, avoiding the manipulation of substitution objets as in the ��-HOU approah.Of ourse, muh work remains to be done in order to obtain a omplete HOU theoretial frameworkwhih ould be implemented. In partiular, it is neessary to present a bak translation that enables thereonstrution of solved forms of uni�ation problems in the �se-alulus into a desription of solutions ofthe orresponding HOU problems in the pure �-alulus.Additionally, a formal distintion, from the pratial point of view, between the �se-alulus (and ourproedure) and the suspension alulus developed by Nadathur and Wilson in [NW98,NW99℄ (and used inthe implementation of the higher order logial programming language �Prolog) should be elaborated. Thisis meaningful, sine the �se-alulus and the alulus of [NW98,NW99℄ have orrelated nie properties. Forinstane the laziness in the substitution needed in implementations of �-redution, that arises naturally inthe �se-alulus, is provided as the informal but empirial onept of suspension of substitutions by Nadathurand Wilson rewrite rules. Establishing these preise distintions and orrelations is important for estimatingthe appropriateness of the �se-HOU approah in that pratial framework.Referenes[ACCL91℄ M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. L�evy. Expliit Substitutions. Journal of Funtional Pro-gramming, 1(4):375{416, 1991.[ARK00℄ M. Ayala-Rin�on and F. Kamareddine. Uni�ation via �se-Style of Expliit Substitution. In Seond Inter-national Conferene on Priniples and Pratie of Delarative Programming, Montreal, Canada, September2000. Tehnial Report Higher Order Uni�ation via �s-Style of Expliit Substitution, Computer and Ele-trial Engineering, Heriot-Watt University, De. 1999. Available at http://www.ee.hw.a.uk/ultra.[Bar84℄ H. Barendregt. The Lambda Calulus : Its Syntax and Semantis (revised edition). North Holland, 1984.[BN98℄ F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press, 1998.[CHL96℄ P.-L. Curien, T. Hardin, and J.-J. L�evy. Conuene Properties of Weak and Strong Caluli of ExpliitSubstitutions. Journal of the ACM, 43(2):362{397, 1996. Also as Rapport de Reherhe INRIA 1617, 1992.[DHK00℄ Gilles Dowek, Th�er�ese Hardin, and Claude Kirhner. Higher-order Uni�ation via Expliit Substitutions.Information and Computation, 157(1/2):183{235, 2000.[KR97℄ F. Kamareddine and A. R��os. Extending a �-alulus with Expliit Substitution whih Preserves StrongNormalisation into a Conuent Calulus on Open Terms. Journal of Funtional Programming, 7:395{420,1997.[NGdV94℄ R. P. Nederpelt, J. H. Geuvers, and R. C. de Vrijer. Seleted papers on Automath. North-Holland,Amsterdam, 1994.[NW98℄ G. Nadathur and D. S. Wilson. A Notation for Lambda Terms A Generalization of Environments. Theo-retial Computer Siene, 198:49{98, 1998.[NW99℄ G. Nadathur and D. S. Wilson. A Fine-Grained Notation for Lambda Terms and Its Use in IntensionalOperations. The Journal of Funtional and Logi Programming, 1999(2):1{62, 1999.[R��o93℄ A. R��os. Contribution �a l'�etude des �-aluls ave substitutions expliites. PhD thesis, Universit�e de Paris7, 1993.


