
On Applying the �se-Style of Uni�ation forSimply-Typed Higher Order Uni�ation inthe Pure �-CalulusMAURICIO AYALA-RINC�ON , Departamento de Matem�atia, Universidade de Bras��lia,70910-900 Bras��lia D.F., Brasil ayala�mat.unb.brFAIROUZ KAMAREDDINE , Department of Computing and Eletrial Engineering,Heriot-Watt University, Riarton, Edinburgh EH14 4AS, Sotland fairouz�ee.hw.a.ukAbstratDowek, Hadin and Kirhner developed a higher order uni�ation (HOU) method based on the ��-style of expliit substitutions.The novelty of this method rests on the possibility to resolve HOU problems by �rst order uni�ation. This is ahieved via apre-ooking translation of the HOU problem into a �rst order uni�ation problem of the language of the ��-alulus. Solutionsto the �rst order uni�ation problem are then translated bak into the range of the pre-ooking translation and subsequently tosolutions of the original problem into the language of the �-alulus. Reently we study uni�ation in the �se-style of expliitsubstitutions. It is laimed that �se-uni�ation has the advantages of enabling quiker detetion of redies and of having alearer semantis. In this paper, we set out to provide a pre-ooking translation for applying �se-uni�ation to HOU in the�-alulus. The pre-ooking jointly with a bak translation omplement our �se-uni�ation method. Their orretness andompleteness are shown and additionally we show why avoiding the use of substitution objets makes �se-HOU more eÆientthan ��-HOU.Keywords: Higher order uni�ation, expliit substitutions, �-alulus, type and rewriting theory1 BakgroundHOU via expliit substitutions [6℄, as mentioned in the abstrat, is illustrated by Figure 1. Here we showhow to apply our �se-uni�ation method in [2℄ for resolving HOU problems. The ��- and the �se-aluliuse de Bruijn indies instead of variable names in order to be loser to implementation and to avoid theproblems that result from variable lashes. However, �� uses only one de Bruijn index (1) and buildsthe others by operations in the alulus. �se uses all the de Bruijn indies. Another di�erene betweenboth aluli is that the �se-alulus attempts to remain as lose as possible to the syntax of the �-alulusand hene only adds updating and substitutions as two new onepts and keeps the unique sort of termobjets; �� adds various ategorial operators like omposition, onsing, and lifting and has two sorts ofobjets: terms and substitutions. We fous on the advantages of using all de Bruijn indies and only termobjets when implementing the �se-HOU approah over ��-HOU and its implementation as desribed in[5℄. It should be stressed that �� and �se are two di�erent styles of expliit substitutions whih are notisomorphi. This implies that reworking the HOU method in �se is not a translation of work alreadydone in ��. Many rules and proofs of the �se-HOU di�er from those of the ��-HOU. We outline some ofthese di�erenes throughout the artile. A full version of the artile ontaining all proofs an be found atwww.e.hw.a.uk/ultra/publiations.html.For a set of operators F , we assume familiarity with the notions of an F-algebra and of a term algebraT (F ;X) built on a (ountable) set of variables X and on F . Variables in X are denoted by upper ase lastletters of the Roman alphabet X;Y; :::. For a term t 2 T (F ;X), var (t) denotes the set of variables ourringin t. We assume familiarity with the �-alulus as in [4℄ and with the basi notions of rewriting theory asin [3℄. For a redution relation !R over a set A, we denote with !�R the reexive and transitive losure of!R. The subsript R is usually omitted. Syntatial identity is denoted by a = b. We assume the usualde�nitions for Churh Rosser (CR) and Weak Normalisation (WN) of a redution relation.A valuation is a mapping from X to T (F ;X). The homeomorphi extension of a valuation, �, fromits domain X to the domain T (F ;X) is alled the grafting of �. This notion is usually alled �rst order1L. J. of the IGPL, Vol. 0 No. 0, pp. 1{11 0000 Oxford University Press

2 On Applying �se-Uni�ation for Simply-Typed HOU in the Pure �-CalulusUni�ation Problem
Pre-ooking�1

Uni�ationSolutionsBakSolutionsHOU-ProblemLanguage of the �-alulus-substitution- Language of a �-alulus-grafting-of expliit substitutions
Pre-ooking rulestranslationtranslation

Fig. 1. HOU method via aluli of expliit substitutionssubstitution and orresponds to simple substitution without renaming. As usual, valuations and their or-responding grafting valuations are denoted by the same Greek letter. The domain of a grafting � is de�nedby Dom(�) = fX j X� 6= X;X 2 Xg. A valuation and its orresponding grafting � are expliitly denotedby � = fX=X� j X 2 Dom(�)g. When neessary, expliit representations of graftings are di�erentiated fromsubstitutions by a \g" subsript: fX=X� j X 2 Dom(�)gg .We assume familiarity with the ��- (�; Æ; [℄ and " operators) and �se-aluli (' and � operators and skeletonnotation), their typed versions and their normal form (nf, lnf and �-nf) haraterizations as in [2℄.Let V be a (ountable) set of variables (di�erent from the ones in X) denoted by lowerase last lettersof the Roman alphabet x; y; :::. Terms �(V), of the �-alulus with names are indutively de�ned bya ::= x j (a a) j �x:a. Terms of the forms �x:a and (a b) are alled abstrations and appliations,respetively. As it is well-known, �rst order substitution or grafting leads to problems in the �-alulus.For example, applying the �rst order substitution fu=xg to �x:(u x) results in �x:(x x) whih is wrong.Therefore, the �-alulus with names uses variable renaming via �-onversion so that (�x:(u x))fu=xg, byrenaming x (say as y), results in the orret term �y:(x y). Taking are of appropriate �-onversions, �- and�-redution rules are de�ned in �(V) respetively by (�x:a b)! afx=bg and �x:(a x)! a; if x 62 Fvar(a),where Fvar (a) denotes the set of free variables ourring at a.Uni�ation in �(V) di�ers from the �rst order notion, beause bound variables in �(V) are untouhed byuni�ation substitutions.Uni�ation variables in the �-alulus are free variables. Thus free variables our-ring at terms of a uni�ation problem an be partitioned into true uni�ation variables and onstants,that annot be bound by the uni�ers.To di�erentiate between uni�ation and onstant variables, one ould onsider uni�ation variables asmeta-variables in X . Thus, �-alulus should be de�ned as the term algebra, �(V ;X), over the set of op-erators f�x: j x 2 Vg[f()g[V and the set of variables X . In this setting, a notion of substitution ouldbe adapted for meta-variables preserving the semantis of both �- and �-redution. But the most appropri-ate notation is the one of de Bruijn indies [11℄ where bound variables are related to their orrespondingabstrators by their relative height. For instane, �x:(�z :(x z) (x z)) is translated into �:(�:(2 1) (1 4)).Indies for free variables are appropriately seleted to avoid relating them with abstrators.The set �dB(X) of �-terms in de Bruijn notation is de�ned indutively by:a ::= n j X j (a a) j �:a where X 2 X and n 2 N n f0g.Definition 1.1Let a 2 �dB(X), i 2 N. The i-lift of a, a+i, is de�ned by ases as: a) X+i = X , for X 2 X ;b) (a1 a2)+i = (a+i1 a+i2);) (�:a1)+i = �:a+(i+1)1 ; d) n+i = � n+ 1; if n > in; if n � i for n 2 N :The lift of a term a, that is needed to de�ne substitution, is its 0-lift, denoted briey by a+. We willdenote by a(+k)i , the i ompositions of k-lift.

On Applying �se-Uni�ation for Simply-Typed HOU in the Pure �-Calulus 3Definition 1.2The appliation of the substitution with b of n 2N nf0g on a term a in �dB(X), denoted fn=bga, is de�nedindutively as: a) fn=bgX = X , for X 2X ; b) fn=bg(a1 a2) = (fn=bga1 fn=bga2);) fn=bg�:a1 = �:fn+ 1=b+ga1; d) fn=bgm = � m� 1; if m > n; b; if m = n; m; if m < n when m 2 N .Definition 1.3Let � = fX1=a1; : : : ; Xn=ang be a valuation from the set of meta-variables X to �dB(X). The orrespondingsubstitution, also denoted by �, is de�ned indutively as: a) �(m) = m form 2N; b) �(X) = X�, for X 2 X ;) �(a1 a2) = (�(a1) �(a2)); d) ��:a1 = �:�+(a1), where �+ denotes the valuation fX1=a+1 ; : : : ; Xn=a+n gand its assoiated substitution.In �dB(X), the left side of the �-redution rule is written as �:(a0 1), where a0 stands for the orrespondingtranslation of a into the language of �dB(X). The ondition \x 62 Fvar(a)" means, in �dB(X), that thereare neither ourrenes in a0 of the index 1 at height zero nor of the index 2 at height one et. This means,that there exists a term b suh that b+ = a. Thus �-redution is de�ned as (�:a b)! f1=bga and �-redutionas �:(a 1)! b if 9b b+ = a. We use =�� to denote the ongruene generated by �- and eta-redution.2 Uni�ation in the �se-alulusIn this setion we review the �se-uni�ation method of [2℄. Normal form haraterizations (f. normal form(nf) and long normal forms (lnf)), jointly with WN and CR properties are the essential requirements todevelop a uni�ation method for the �se-alulus, whih an be applied to HOU in the �-alulus.Let T (F ;X) be a term algebra and let A be an F-algebra. A uni�ation problem over T (F ;X) is a�rst order formula without universal quanti�er or negation, whose atoms are of the form F; T or s =?A tfor s; t 2 T (F ;X). Uni�ation problems are written as disjuntions of existentially quanti�ed onjuntionsof atomi equational uni�ation problems: D = Wj2J 9 ~wj Vi2Ij si =?A ti. When jJ j = 1, the uni�ationproblem is alled a uni�ation system. Variables in the set ~w of a uni�ation system 9~wVi2I si =?A ti arebound and all other variables are free. T and F stand for the empty onjuntion and disjuntion, respetively.The empty disjuntion orresponds to an unsatis�able problem.A uni�er of a uni�ation system 9~wVi2I si =?A ti is a grafting � suh that A j= 9~wVi2I si�j~w = ti�j~wwhere �j~w denotes the restrition of the grafting � to the domain X n ~w. A uni�er of Wj2J 9 ~wj Vi2Ij si =?A tiis a grafting � that uni�es at least one of the uni�ation systems. The set of uni�ers of a uni�ation problem,D, or system, P , is denoted by UA(D) or UA(P), respetively.A �se-uni�ation problem P is a uni�ation problem in the algebra T�se(X) modulo the equationaltheory of �se. An equation of suh a problem is denoted a =?�se b, where a and b are �se-terms of the samesort. An equation is alled trivial when it is of the form a =?�se a.In [2℄ we present a set of rewrite rule shemata used to simplify uni�ation problems. The objetive ofapplying these rules is to obtain a desription of the set of uni�ers. Sine �se is CR and WN [8℄, the searhan be restrited to �-long normal solutions that are graftings binding funtional variables into �-long normalterms of the form �:a and atomi variables into �-long normal terms of the form (k b1 : : : bp) or a�ib or 'ika,where in the �rst ase k an be omitted and p is zero. From these rules Normalize and De-� use the fatthat �se is CR and WN to normalize equations of the form �:a =?�se �:b into a0 =?�se b0 and the rule Replaepropagates the grafting fX=ag orresponding to equations X =?�se a. Exp-� generates the grafting fX=�:Y gfor a variable X of type A! B, where Y is a new variable of type B. Rules De-App and App-Fail transformequations of the form (n a1 : : : ap) =?�se (m b1 : : : bq) into the empty disjuntion when n 6= m, as they have nosolution, or into the onjuntion Vi=1::p ai =?�se bi, when n = m. Analogously, De-' deomposes equationswith leading operator '. In (the notation of) the ��-alulus, the rule Exp-App advanes towards solutionsto equations of the form X [a1 : : : ap: "n℄ =?�se (m b1 : : : bq) where X is an unsolved variable of an atomi type.The orresponding rule has the analogous role for �se-uni�ation problems.Example 2.1Let (�:(�:(X 2) 1) Y) =?�se (�:(Z 1) U) be a uni�ation problem, where X;Y; Z and U are meta-variables.Applying the rule Normalize to the original equation we obtain ((X�2Y)�1('10Y) '10Y) =?�se (Z�1U '10U)whih after De-App, De-' and Replae gives (X�2Y)�1('10Y) =?�se Z�1Y ^ Y =?�se U . Sine X and Z

4 On Applying �se-Uni�ation for Simply-Typed HOU in the Pure �-Calulusare variables of funtional type, applying twie Exp-App and Replae we obtain ((�:X 0)�2Y)�1('10Y) =?�se(�:Z 0)�1Y ^ Y =?�se U ^ X =?�se �:X 0 ^ Z =?�se �:Z 0. Finally, after Normalize and De-� we ob-tain (X 0�3Y)�2('10Y) =?�se Z 0�2Y ^ Y =?�se U ^ X =?�se �:X 0 ^ Z =?�se �:Z 0. Solutions are built asfY=X1; U=X1g union solutions for X and Z obtained by the �rst equation. Equations as the �rst one, thatare alled Flex-Flex, are related with the notion of pre-uni�ers in [7℄. In this ase we an take, for instane,fY=X1; U=X1g S fX=�:n+ 1; Z=�:ng, where n > 2. �Definition 2.2A uni�ation system P is a �se-solved form if all its meta-variables are of atomi type and it is a onjuntionof non trivial equations of the following forms:(Solved) X =?�� a, where the variable X does not our anywhere else in P and a is in longnormal form. Both X and X =?�� a are said to be solved in P .(Flex-Flex) non solved equations between long normal terms whose root operator is � or ' whihwe represent as equations between their skeleton: jpip : : : j1i1 (X; a1; : : : ; ap) =?�se lqkq : : : l1k1(Y; b1; : : : ; bq) with X;Y of atomi type.In [2℄ it was proved that: 1) Any �se-solved form has �se-uni�ers; 2) Well-typedness: Dedution by the�se-uni�ation rules of a well-typed equation gives rise only to well-typed equations, T and F; 3) Solvedproblems are normalized for the �se-uni�ation rules and, onversely, if a system is a onjuntion of equationsthat annot be redued by the �se-uni�ation rules then it is solved.Let P and P 0 be �se-uni�ation problems, let \rule" denote the name of a �se-uni�ation rule and \!rule"its orresponding dedution relation. By orretness and ompleteness of rule we understand P !rule P 0implies U�se(P 0) � U�se(P) and P !rule P 0 implies U�se(P) � U�se (P 0), respetively.Theorem 2.3 (Corretness and ompleteness [2℄)The �se-uni�ation rules are orret and omplete.An analogous uni�ation strategy to the one for �� presented in [6℄ applies as well in this setting. Cor-retness and ompleteness proofs for these strategies essentially do not di�er beause they are based on anappropriate ordering of the appliation of the uni�ation rules whih is in a ertain way independent of thealuli [1℄.3 HOU in the pure �-alulus[2℄, reviewed in Setion 2, dealt with half of the box on the right hand side of Figure 1. That is, only with the�se-uni�ation method. For applying this method to HOU in �-alulus we need to omplete the diagramby providing the pre-ooking and Bak translations, show their orretness and ompleteness and establishthe appliability of �se-uni�ation for HOU in pure �-alulus.Initially we present one example on how to apply our �se-uni�ation method in order to solve HOUproblems in the pure �-alulus. Then we present adequate pre-ooking and bak translations (see Figure 1).Observe �rstly that unifying two terms a and b in the �-alulus onsists in �nding a substitution � suhthat �(a) =�� �(b). Thus using the notation of substitution in De�nitions 1.2 and 1.3, a uni�er in the�-alulus of the problem �:X =?�� �:2 is not a term t = �X suh that �:t =?�� �:2 but a term t = �Xsuh that �(�:X) = �:�+(X) = �:2. This observation an be extended to any uni�er and by translatingappropriately �-terms a; b 2 �dB(X), the HOU problem a =?�� b an be redued to equational uni�ation.Before de�ning our pre-ooking translation from �dB(X) into the �se-alulus we motivate how the searh-ing for substitution solutions of a HOU problem a =?�� b orresponds to the searhing for grafting solutionsof a uni�ation problem in �se.Example 3.1Consider the HOU problem �:(X 2) =?�� �:2, where 2 andX are of type A and A! A, respetively. Observethat applying a substitution solution � to the �dB(X)-term �:(X 2) gives �(�:(X 2)) = �:(�+(X) 2). Thenin the �se-alulus we are searhing for a grafting �0 suh that �0(�:('20(X) 2)) =�se �:2. Correspondingly,in the ��-alulus, �:(X 2) is translated or pre-ooked into �:(X ["℄ 2). This orrespondene results from

On Applying �se-Uni�ation for Simply-Typed HOU in the Pure �-Calulus 5one between both Eta rules (i.e., between b["℄ = a and '20b = a). Then we should searh for uni�ers for theproblem �:('20(X) 2) =?�se �:2.Now we apply �se-uni�ation rules to the problem �:('20(X) 2) =?�se �:2. By applying De-� and Exp-�we get ('20(X) 2) =?�se 2 and subsequently 9Y ('20(X) 2) =?�se 2 ^X =?�se �:Y . Then by applying Replaeand Normalize we obtain 9Y ('20(�:Y) 2) =?�se 2^X =?�se �:Y and 9Y ('21Y)�12 =?�se 2^X =?�se �:Y . Now,we obtain (9Y ('21Y)�12 =?�se 2 ^ X =?�se �:Y) ^ (Y =?�se 1 _ Y =?�se 2) by applyingExp-app; by applyingReplae: (('211)�12 =?�se 2 ^ X =?�se �:1) _ (('212)�12 =?�se 2 ^ X =?�se �:2); and by applying Normalize:(2 =?�se 2 ^X =?�se �:1) _ (2 =?�se 2 ^X =?�se �:2).In this way substitution solutions fX=�:1g and fX=�:2g are found.To omplete the analysis note that De�nitions 1.2, 1.3 and �-redution in �dB(X) give fX=�:1g(�:(X 2))= �:(fX=(�:1)+g(X) 2) = �:(�:1+1 2) = �:(�:1 2) =� �:2 and fX=�:2g(�:(X 2)) = �:(fX=(�:2)+g(X) 2)= �:(�:2+1 2) = �:(�:3 2) =� �:f1=2g(3) = �:2. �In general, before the uni�ation proess, a �-term a should be translated into a �se-term a0 obtainedby simultaneously replaing eah ourrene of a meta-variable X at position i in a by 'k+10 X , where k isthe number of abstrators between the root position of a and position i. If k = 0 then the ourrene ofX remains unhanged. The pre-ooking translation de�ned in [6℄ transribes all ourrenes of de Bruijnindies n into 1["n�1℄ and all ourrenes of meta-variables X into X ["k℄, with k as above. Notie that thetwo pre-ooking translations an be implemented non-reursively in an eÆient way.Definition 3.2 (Pre-ooking)Let a 2 �dB(X) suh that � `�dB(X) a : T . With every variable X of type A ourring at a we assoiatethe same type and ontext � in the �se-alulus. The pre-ooking of a from �dB(X) to the �se-alulus isde�ned by ap = PC(a; 0) where PC(a; n) is de�ned by:1) PC(�B :a; n) = �B :PC(a; n+ 1) 2) PC((a b); n) = (PC(a; n) PC(b; n))3) PC(k; n) = k 4) PC(X;n) = � X; if n = 0'n+10 X; otherwiseLemma 3.3 (Type preservation)If � `�dB(X) a : T , then � `�se ap : T .The following proposition whih relates substitution in �dB(X) and grafting in �se, justi�es pre-ooking.Proposition 3.4 (Semantis of pre-ooking)Let a; b1; : : : ; bp be terms of �dB(X). We have:(afX1=b1; : : : ; Xp=bpg)p = apfX1=b1p ; : : : ; Xp=bppgg.In ontrast to the orresponding proof in [6℄, where substitution objets are neessary for proving the ritialase of a = X (i.e., substitutions of the form [1:::k: "i+k℄) our proof uses pure term objets by seleting theappropriate super and subsripts for the ' operator (i.e., 'i+1k).The following proposition presents neessary fats for relating the existene of solutions for uni�ationproblems in the pure �-alulus and in the �se-alulus.Proposition 3.5Let a and b be terms in �dB(X). Then: 1) a!� b implies ap !��se bp; 2) If a is ��-nf then ap is �se-nf;3) a!� b implies ap !eta bp; 4) a =�� b if and only if ap =�se bp.Again, our proof di�ers from the orresponding one in [6℄ in that we avoid the use of ompliated substi-tution objets beause we pro�t from the semantis of the ' operator of the �se-alulus.Finally, we relate solutions and their existene in the pure �-alulus and for the orresponding pre-ookedterms in the �se-alulus.Proposition 3.6 (Correspondene between solutions)Let a, b in �dB(X). Then there exist terms N1; : : : ; Np 2 �dB(X) suh that afX1=N1; : : : ; Xp=Npg =��bfX1=N1; : : : ; Xp=Npg if and only if there exist �se-terms M1; : : : ;Mp suh that apfX1=M1; : : : ; Xp=Mpgg=�se bpfX1=M1; : : : ; Xp=Mpgg.In addition to pre-ooking, we need a Bak translation for giving desriptions of solutions of the original pre-ooked problems. That means, that for any uni�ation problem P , derived by applying the �se-uni�ation

6 On Applying �se-Uni�ation for Simply-Typed HOU in the Pure �-Calulusrules to the pre-ooking ap =?�se bp, we have to reassemble a problem Q in the image of the pre-ookingtranslation with the same solutions as P . Subsequently, Q should be translated to the �-alulus, by applyingthe inverse of the pre-ooking translation, into a HOU problem R (see Figure 1). Then the solutions of Poinide with the solutions of Q and are the pre-ooking of the solutions of R, whih oinide with thesolutions of the original HOU problem a =?�� b. In this way the set of solutions is given as solved forms.By the orrespondene between solutions (Proposition 3.6), we have that if a =?�� b has a solution thenso does its pre-ooking ap =?�se bp. Here we do not present the proof of the onverse whih an be donefollowing similar steps to those of the ��-HOU approah in [6℄ but adapted to the �se-alulus.The �se-uni�ation rules are extended with the following rules:(Anti-Exp-�) P ! 9Y (P ^X =?�se ('20Y 1)) if (X : A:�0X ` AX) 2 var (P);where (Y : �0X ` A! AX) 62 var(P)(Anti-De-�) P ^ a =?�se b! P ^ �A:a =?�se �A:b if a =?�se b is well-typed in an environment A:�Proposition 3.7 (Corretness and ompleteness of the Anti-rules)The �se-uni�ation rules together with the Anti-Exp-� and Anti-De-� rules are orret and omplete.The rule Anti-De-� is applied only to equations whose environments are strit extensions of �, i.e. of theform A1 : : : An:�, where n > 0. The rule Anti-Exp-� applies only to variables, whose environments are stritextensions of �. The Bak strategy onsists on applying the two new rules and the rule Replae eagerly.Proposition 3.8Let a =?�� b be a HOU problem well-typed in an environment � and P derived by the �se-uni�ation rulesfrom its pre-ooking. By applying the Bak strategy on P we obtain a system Q satisfying the followinginvariants: 1) if an equation is well-typed in environment �, then � is an extension of �;2) for every variable Y , its environment �Y is an extension of �;3) for every subterm jpip : : : j1i1 (X; a1; : : : ; ap) in P we have p � j�Y j � j�j+ 1.Proposition 3.9 (Building Bak Pre-ooking images)Let a =?�� b be a HOU problem and P an equational problem derived from its pre-ooking by using the�se-uni�ation rules. The system resulting from normalization of P by applying the Bak strategy is thepre-ooking of a problem in the �-alulus.Using previous orretness and ompleteness results we obtain the following Corollary and Theorem.Corollary 3.10 (Soundness of the onstrution of solutions)Let a =?�� b a HOU problem suh that its pre-ooking, normalised with the �se-uni�ation rules gives adisjuntion of systems that has one of its omponents, say P , solved. Let Q be the system resulting bynormalising P with the Bak strategy and let R = PC�1(Q). Then R is a �-solved form (in the sense of[12℄) and the solutions of R are solutions of the original HOU problem.Theorem 3.11 (Completeness of the onstrution of solutions)Let a =?�� b a HOU problem suh that its pre-ooking is well-typed in the environment �. Any solution ofthe initial problem an be obtained as the one of a system in �-solved form resulting from the appliationof the �se-uni�ation rules, followed by the Bak strategy and the inverse of the pre-ooking translation.4 Considerations about the implementationWe preise here why the use of the sole de Bruijn index 1 and of substitution objets make the ��-HOUapproah less eÆient than the �se-HOU one.For the sake of larity, we have omitted above both types and environments. But for the analysis of theHOU method above it is neessary to know both the types and environments of all subexpressions duringthe uni�ation proess. Therefore terms \deorated" with types and environments for all their subterms areneessary for any reasonable implementation. The general idea is to assign types and environments to allsubexpressions at the beginning of the uni�ation proess and to maintain this notational disipline duringthe proess via deorated versions of the �se-alulus, the �se-typing rules and, of ourse, the �se-uni�ationrules. We present the deorated version of the typing rules for the �se-alulus in the Table 1.

On Applying �se-Uni�ation for Simply-Typed HOU in the Pure �-Calulus 7Table 1. Undeorated and deorated typing rules for the �se-alulus(V ar) A:� ` 1 : A 1A:�A(V arn) � ` n : BA:� ` n+ 1 : B n�B(n+ 1)A:�B(Lambda) A:� ` b : B� ` �A:b : A! B bA:�B(�A:bA:�B)�A!B(App) � ` b : A! B � ` a : A� ` (b a) : B b�A!B ; a�A(b�A!B a�A)�B(Sigma) ��i ` b : B �<i:B:��i ` a : A� ` a �ib : A b��iB ; a�<i:B:��iA(a�<i:B:��iA �ib��iB)�A(Phi) ��k:��k+i ` a : A� ` 'ika : A a��k:��k+iA('ika��k:��k+iA)�A(Meta) �X ` X : AX X�XAXThe typing rules Var and Varn an be redued to a sole deorated rule of the form nA1:::An:�An making thedeoration of de Bruijn indies a straightforward proess whih is linear in both time and spae in n.The rule Meta is added to type open terms and should be understood as follows: for every metavariableX , there exists a unique environment �X and a unique type AX suh that the rule holds. This is done inorder to obtain ompatibility between typing and grafting. We suppose that for eah pair (�; A) there existsan in�nite set of variables X suh that �X = � and AX = A.In �� the orresponding rules are adapted for the manipulation of substitution objets. Types of sub-stitutions are environments1. Examples of these rules are: (Shift) "A:�� ; (Comp)s�� ; t�� ` (s�� Æ t��)�� ;(Clos)a�A ; s�� ` (a�A [s��℄)�A. This kind of expliit deoration was done for the ��-HOU approah in [5℄, butmaintaining this disipline in the �se-alulus is more eonomial in both spae and time. Let us omparethe previous linear deoration of a de Bruijn index, n, in �se and its orresponding ��-term 1["n�1℄:Example 4.1The deoration of 1["n�1℄ uses quadrati spae and time.(omp) (shift) "An�1:An:�An:� ; (shift) "An�2:::�An�1:An:�(omp) ("An�1:An:�An:� Æ "An�2:::�An�1:An:�)An�2:::�An:� ; (shift) "An�3:::An:�An�2:::�...(omp) (� � �("An�1:An:�An:� Æ "An�2:::�An�1:An:�)An�2:::�An:� Æ� � �)A1:::An:�An:� ; (var)1An:�An(los) (1An:�An [(� � �("An�1:An:�An:� Æ "An�2:::�An�1:An:�)An�2:::�An:� Æ� � �)A1:::An:�An:� ℄)A1:::An:�An �This, of ourse, ould be improved in the ��-HOU approah, but as far as we know, improvements havenot been inorporated. In [6℄ as well as in [5℄ all the development of the implementation of the methodis related to the sole de Bruijn index 1, the shift operator " and omposition, whih makes that approahineÆient when ompared with ours. Of ourse, we believe some improvements in this sense were done inthe implementation of the ��-HOU, but from the theoretial point of view our approah is the �rst one thathas treated this problem in a natural way, beause in �se, all de Bruijn indies are inluded.Another problem in the deoration of substitution objets of the ��-alulus is that they are deoratedwith two environments that are lists of types. While the main marks in the deoration of a term objet area sole environment and its type. This makes deorations of �se-terms heaper than those of ��-terms.1This is denoted in the undeorated setting as s . �.

8 On Applying �se-Uni�ation for Simply-Typed HOU in the Pure �-CalulusAs previously mentioned, deoration of expressions and subexpressions is only done at the beginning ofthe uni�ation proess, sine the �se and �se-uni�ation rules are supposed deorated and, of ourse, theypreserve types and environments. Initial deoration an be done using the algorithm in Table 2. Thisalgorithm is based on a straightforward propagation of the deoration of subterms omposing a �se-termaording to the deorated �se-typing rules. The kernel of the algorithm onsists of a set of rules thatpropagate environments and types between the deoration marks of the term proessed onforming to itsstruture outermost (named as +) and innermost (named as *).The previous algorithm runs in time linear on the size of the initial �se-term and on the magnitude of itsde Bruijn indies. For this algorithm it is neessary to know the main environment, but linear algorithms anbe built without suh information, based on the deomposition of the undeorated input into a �rst orderuni�ation problem of type and environment expressions generated from the typing rules of the �se-alulus.Our previous remarks point out the advantage of �se in using all de Bruijn indies, whih avoids quadratideorations in the size of the input as in the ��-HOU approah. In fat, we an take again 1["n�1℄ ofExample 4.1. Its expliit deoration is, of ourse, quadrati. Consequently we an state the following.Lemma 4.2 (Linear versus quadrati deorations)Pre-ooked �-terms in the �se-alulus have linear deorations on the size of the �-terms and the magnitudeof their de Bruijn indies, while in �� these deorations are quadrati.Moreover, notie here that the size of deorated �-terms inreases in an inadequate way when normalizingvia the ��-alulus, beause the deoration of substitution objets is not only expensive but also expansivein size and time. Furthermore, this expansion of deorated terms in the ��-HOU approah is independentof the use of other de Bruijn indies than 1 itself, and depends only on the use of substitution objets.Example 4.3To illustrate this onsider the deorated �-term (�A:(�A:X 1) 1):((�A:((�A:XA:A:A:�A)A:A:�A!A 1A:A:�A)A:A:�A)A:�A!A 1A:�A)A:�A and ompare the orresponding deorated terms inthe �se- and ��-aluli after two appliations of Beta. In the �se we have:!Beta ((�A:(XA:A:A:�A �11A:A:�A)A:A:�A)A:�A!A 1A:�A)A:�A !Beta ((XA:A:A:�A �11A:A:�A)A:A:�A �11A:�A)A:�A and inthe ��-alulus we have: !Beta ((�A:(XA:A:A:�A [(1A:A:�A :idA:A:�A:A:�)A:A:�A:A:A:�℄)A:A:�A)A:�A!A 1A:�A)A:�A !Beta((XA:A:A:�A [(1A:A:�A :idA:A:�A:A:�)A:A:�A:A:A:�℄)A:A:�A [(1A:�A :idA:�A:�)A:�A:A:�℄)A:�A . �This expansion problem in the ��-alulus is a onsequene of the fat that some rules used in the genera-tion of substitution objets inrease the number of subterms whih are substitution objets. In Example 4.3,we only used the Beta rule of the ��-alulus(i.e., (�A:a b) ! a[b:id ℄) whih generates two new substitu-tion subterms to be marked in a deorated term: id and b:id , while for the Beta rule of the �se-alulus,(�A:a b) ! a�1b, the number of subterms is redued by one. Critial is the ase of the Abs rule of the��-alulus, (�A:a)[s℄ ! �A:a[1:(sÆ ")℄, that enlarges the number of subterms to be marked in deoratedterms from four to eight. Rules that enlarge the number of subterms to be deorated in the �se are �-app-transition, '-app-transition, �-�-transition and '-�-transition; i.e., all those related to the App rule of the��-alulus, that enlarges the number of subterms to be deorated from �ve to seven.All the rules of the �se-alulus are supposed deorated. For example, the deorated Eta rule has thefollowing form: (Eta) (�A:(aA:�A!B 1A:�A)A:�B)�A!B ! b�A!B if aA:�A!B =se ('20 b�A!B)A:�A!BExept for this rule, appliation of the rules of the �se-alulus is easy to deide: rules are either non-onditional or have simple arithmeti onditions that an be resolved via any arithmeti dedution algorithmusually built-in between any interesting programming language.The test for applying the Eta rule an be implemented aording to the orrespondene between the twoEta rules and following the idea suggested for the ��-HOU approah in [5℄. We an extend the languageof the �se-alulus with a dummy symbol � and verify for ourrenes of this symbol after se-normalizingthe term (aA:�A!B�1��A)�A!B . In the ase that the previous term has no ourrenes of � the Eta rule appliesbeing the redut that se-normalization. In pratie we have the easy to implement rule:(Eta) (�A:(aA:�A!B 1A:�A)A:�B)�A!B ! se-normalization((aA:�A!B�1��A)�A!B) if � doesn't our in this term.Lemma 4.4The previous implementation of the Eta rule is orret.

On Applying �se-Uni�ation for Simply-Typed HOU in the Pure �-Calulus 9Table 2. Type heking / deorating algorithm for the �se-alulusINPUT: a a �se-term and � an environment.OUTPUT: If a is well-typed in � then a orresponding deorated term a0, whose main environ-ment is �. Else it reports that a is ill-typed in �.NOTATION: ? denotes unknown types and environments.ALGORITHM: Initially, a is deorated in suh a way that the sole environment known is itsmain one marked as �. All other types and environments in the deoration of a are marked as?. Afterwards, apply nondeterministially to the deorated term the following rules until anirreduible term is obtained.(Varn) nA1:::: :An:�? ! nA1:::: :An:�An(�� +) (�A:a??)�? ! (�A:aA:�?)�?(�� *) (�A:aA:�B)�? ! (�A:aA:�B)�A!B(app-+) (a?? b??)�? ! (a�? b�?)�?(app-*) (a�A!B b�A)�? ! (a�A!B b�A)�B(�� +) (a??�ib??)�? ! (a�<i:?:��i? �ib��i?)�?(��)) (a�<i:?:��i? �ib��iB)�? ! (a�<i:B:��i? �ib��iB)�?(�� *) (a�<i:B:��iA �ib��iB)�? ! (a�<i:B:��iA �ib��iB)�A('� +) ('ika??)�? ! ('ika��k:��k+i?)�?('� *) ('ika��k:��k+iA)�? ! ('ika��k:��k+iA)�A(Meta) X�X? ! X�XAXFinally, if the main type of the resulting deorated term a0 is known then return a0. Otherwisereport that a is ill-typed under environment �.Turning bak to ��-HOU (see [5℄), the ondition in the implementation of the Eta rule is seen as: \if �doesn't our in the �-normalization((aA:�A!B [(��A:id��)�A:�℄)�A!B)"This implementation is less eÆient than in the �se-alulus and one more the problem depends on theuse of substitution objets in the ��-alulus. This is a simple onsequene of the fat that when propagatingthe above substitution objets between the struture of aA:�A!B we need to apply the rules Abs and App thatare expansive, as mentioned early. More preisely, the rule Abs, (�A:a)[s℄ ! �A:(a[1:(sÆ ")℄), enlarges thenumber of substitution objets to be marked in deorated terms from one (s) to four: s, ", sÆ ", and 1:(sÆ ");and the rule App, (a b)[s℄! (a[s℄ b[s℄), from one to two. In ontrast, in the �se-alulus the orrespondingpropagation of the � operator is exeuted by applying the rules �-�-transition and �-app-transition. The�-�-transition, (�A:a)�ib ! �A:a�i+1b, does not enlarge the number of subterms to be marked. And the�-app-transition, (a1 a2)�ib ! (a1�ib a2�ib), inreases the number of subterms to be marked by two asthe App rule, but without inluding substitution objets.5 ConlusionsFollowing the ��-HOU approah introdued in [6℄, we have developed a pre-ooking translation that tran-sribes pure �-terms in de Bruijn notation into �se-terms, for whih the searh of grafting solutions orre-sponds to substitution solutions in the pure �-alulus.Our pre-ooking translation transribes a term a by replaing eah ourrene of a meta-variable X with'k+10 X while the ��-alulus uses X ["k℄, where k is the number of abstrators between the position of theourrene of X and the root position. Additionally, the pre-ooking translation in [6℄ transribes eahourrene of a de Bruijn index n in a into 1["n�1℄. Conformity of the two pre-ooking translations istherefore evident. But our proofs di�er from the orresponding ones in [6℄ in that we don't need the use

10 On Applying �se-Uni�ation for Simply-Typed HOU in the Pure �-Calulusof omplex substitution objets beause of the appropriate semantis and exibility of the ' operator inthe �se-alulus. This an be observed in the proof of the orret semantis of the pre-ooking translation(Proposition 3.4) and the proof of Proposition 3.5 whih relates the existene of uni�ation solutions inthe �- and the �se-alulus. In these proofs, only a orret seletion of the sripts for the operator ' wasneessary, avoiding the manipulation of substitution objets as is the ase in the ��-HOU approah.Pre-ooking is omplemented with a bak translation that enables the reonstrution of solved forms ofuni�ation problems in �se into a desription of solutions of the orresponding HOU problems in the pure�-alulus.Furthermore, by omparing the implementation of our method and that of the ��-HOU given in [5℄, weobserved that pre-ooked �-terms in the �se-alulus have linear deorations on the size of the �-termsand the magnitude of their de Bruijn indies, while in �� these deorations are quadrati. For that, wedon't make any onsideration about use of eÆient data strutures. For a reasonable implementation of the��-HOU approah, a variation of the ��-alulus whih inludes all de Bruijn indies should be used, butaording to the implementation of that method in [5℄, this has remained ineÆient. From the theoretialpoint of view, our approah is the �rst one that has treated this problem in a natural way, beause of thesimple syntax of the �se-alulus, where all de Bruijn indies are inluded.But it is not the sole use of all de Bruijn indies that makes the �se approah more eÆient. Anotherproblem in the deoration of substitution objets of the ��-alulus is that they are deorated with twoenvironments that are lists of types. While the main marks in the deoration of a term objet are a soleenvironment and its type. This makes deorations of �se-terms smaller than the ones of ��-terms. Moreover,the size of deorated �-terms inreases in an inadequate way when normalizing via the ��-alulus, beausesome rules in the ��-alulus are expensive in that they enlarge the number of substitution objets to bemarked in deorated terms. Also, the lak of substitution objets in �se makes the proofs easier.Muh work remains to be done and in partiular, to be onlusive, a prototype implementation of thismethod is neessary. Additionally, a formal distintion, from the pratial point of view, between the �se-alulus (and our proedure) and the suspension alulus developed by Nadathur and Wilson in [10, 9℄ (andused in the implementation of the higher order logial programming language �Prolog) should be elaborated.This is meaningful, sine the �se-alulus and the alulus of [10, 9℄ have orrelated nie properties. Forinstane the laziness in the substitution needed in implementations of �-redution, that arises naturallyin the �se-alulus, is provided as the informal but empirial onept of suspension of substitutions bythe rewrite rules of Nadathur and Wilson. Establishing these onnetions is important for estimating theappropriateness of the �se-HOU approah in that pratial framework.Referenes[1℄ M. Ayala-Rin�on and F. Kamareddine. Strategies for Simply-Typed Higher Order Uni�ation via �se-Style of ExpliitSubstitution. In R. Kennaway, editor, Third International Workshop on Expliit Substitutions Theory and Appliations toPrograms and Proofs (WESTAPP 2000), pages 3{17, Norwih, England, 2000.[2℄ M. Ayala-Rin�on and F. Kamareddine. Uni�ation via the �se-Style of Expliit Substitution. Logial Journal of the InterestGroup in Pure and Applied Logis - IGPL, 9(4):521{555, 2001.[3℄ F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press, 1998.[4℄ H. Barendregt. The Lambda Calulus : Its Syntax and Semantis (revised edition). North Holland, 1984.[5℄ P. Borovansk�y. Implementation of Higher-Order Uni�ation Based on Calulus of Expliit Substitutions. In M. Barto�sek,J. Staudek, and J. Wiedermann, editors, Proeedings of the SOFSEM'95: Theory and Pratie of Informatis, volume1012 of Leture Notes on Computer Siene, pages 363{368. Springer Verlag, 1995.[6℄ G. Dowek, T. Hardin, and C. Kirhner. Higher-order Uni�ation via Expliit Substitutions. Information and Computation,157(1/2):183{235, 2000.[7℄ G. P. Huet. A Uni�ation Algorithm for Typed �-Calulus. Theoretial Computer Siene, 1:27{57, 1975.[8℄ F. Kamareddine and A. R��os. Extending a �-alulus with Expliit Substitution whih Preserves Strong Normalisation intoa Conuent Calulus on Open Terms. Journal of Funtional Programming, 7:395{420, 1997.[9℄ G. Nadathur. A Fine-Grained Notation for Lambda Terms and Its Use in Intensional Operations. The Journal of Funtionaland Logi Programming, 1999(2):1{62, 1999.[10℄ G. Nadathur and D. S. Wilson. A Notation for Lambda Terms A Generalization of Environments. Theoretial ComputerSiene, 198:49{98, 1998.[11℄ R. P. Nederpelt, J. H. Geuvers, and R. C. de Vrijer. Seleted papers on Automath. North-Holland, 1994.[12℄ W. Snyder and J. Gallier. Higher-Order Uni�ation Revisited: Complete Sets of Transformations. Journal of SymboliComputation, 8:101{140, 1989.

On Applying �se-Uni�ation for Simply-Typed HOU in the Pure �-Calulus 11

