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.ukAbstra
tDowek, Hadin and Kir
hner developed a higher order uni�
ation (HOU) method based on the ��-style of expli
it substitutions.The novelty of this method rests on the possibility to resolve HOU problems by �rst order uni�
ation. This is a
hieved via apre-
ooking translation of the HOU problem into a �rst order uni�
ation problem of the language of the ��-
al
ulus. Solutionsto the �rst order uni�
ation problem are then translated ba
k into the range of the pre-
ooking translation and subsequently tosolutions of the original problem into the language of the �-
al
ulus. Re
ently we study uni�
ation in the �se-style of expli
itsubstitutions. It is 
laimed that �se-uni�
ation has the advantages of enabling qui
ker dete
tion of redi
es and of having a
learer semanti
s. In this paper, we set out to provide a pre-
ooking translation for applying �se-uni�
ation to HOU in the�-
al
ulus. The pre-
ooking jointly with a ba
k translation 
omplement our �se-uni�
ation method. Their 
orre
tness and
ompleteness are shown and additionally we show why avoiding the use of substitution obje
ts makes �se-HOU more eÆ
ientthan ��-HOU.Keywords: Higher order uni�
ation, expli
it substitutions, �-
al
ulus, type and rewriting theory1 Ba
kgroundHOU via expli
it substitutions [6℄, as mentioned in the abstra
t, is illustrated by Figure 1. Here we showhow to apply our �se-uni�
ation method in [2℄ for resolving HOU problems. The ��- and the �se-
al
uliuse de Bruijn indi
es instead of variable names in order to be 
loser to implementation and to avoid theproblems that result from variable 
lashes. However, �� uses only one de Bruijn index (1) and buildsthe others by operations in the 
al
ulus. �se uses all the de Bruijn indi
es. Another di�eren
e betweenboth 
al
uli is that the �se-
al
ulus attempts to remain as 
lose as possible to the syntax of the �-
al
ulusand hen
e only adds updating and substitutions as two new 
on
epts and keeps the unique sort of termobje
ts; �� adds various 
ategori
al operators like 
omposition, 
onsing, and lifting and has two sorts ofobje
ts: terms and substitutions. We fo
us on the advantages of using all de Bruijn indi
es and only termobje
ts when implementing the �se-HOU approa
h over ��-HOU and its implementation as des
ribed in[5℄. It should be stressed that �� and �se are two di�erent styles of expli
it substitutions whi
h are notisomorphi
. This implies that reworking the HOU method in �se is not a translation of work alreadydone in ��. Many rules and proofs of the �se-HOU di�er from those of the ��-HOU. We outline some ofthese di�eren
es throughout the arti
le. A full version of the arti
le 
ontaining all proofs 
an be found atwww.

e.hw.a
.uk/ultra/publi
ations.html.For a set of operators F , we assume familiarity with the notions of an F-algebra and of a term algebraT (F ;X ) built on a (
ountable) set of variables X and on F . Variables in X are denoted by upper 
ase lastletters of the Roman alphabet X;Y; :::. For a term t 2 T (F ;X ), var (t) denotes the set of variables o

urringin t. We assume familiarity with the �-
al
ulus as in [4℄ and with the basi
 notions of rewriting theory asin [3℄. For a redu
tion relation !R over a set A, we denote with !�R the re
exive and transitive 
losure of!R. The subs
ript R is usually omitted. Synta
ti
al identity is denoted by a = b. We assume the usualde�nitions for Chur
h Rosser (CR) and Weak Normalisation (WN) of a redu
tion relation.A valuation is a mapping from X to T (F ;X ). The homeomorphi
 extension of a valuation, �, fromits domain X to the domain T (F ;X ) is 
alled the grafting of �. This notion is usually 
alled �rst order1L. J. of the IGPL, Vol. 0 No. 0, pp. 1{11 0000 
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ulusUni�
ation Problem
Pre-
ooking�1
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ationSolutionsBa
kSolutionsHOU-ProblemLanguage of the �-
al
ulus-substitution- Language of a �-
al
ulus-grafting-of expli
it substitutions
Pre-
ooking rulestranslationtranslation

Fig. 1. HOU method via 
al
uli of expli
it substitutionssubstitution and 
orresponds to simple substitution without renaming. As usual, valuations and their 
or-responding grafting valuations are denoted by the same Greek letter. The domain of a grafting � is de�nedby Dom(�) = fX j X� 6= X;X 2 Xg. A valuation and its 
orresponding grafting � are expli
itly denotedby � = fX=X� j X 2 Dom(�)g. When ne
essary, expli
it representations of graftings are di�erentiated fromsubstitutions by a \g" subs
ript: fX=X� j X 2 Dom(�)gg .We assume familiarity with the ��- (�; Æ; [℄ and " operators) and �se-
al
uli (' and � operators and skeletonnotation  ), their typed versions and their normal form (nf, lnf and �-nf) 
hara
terizations as in [2℄.Let V be a (
ountable) set of variables (di�erent from the ones in X ) denoted by lower
ase last lettersof the Roman alphabet x; y; :::. Terms �(V), of the �-
al
ulus with names are indu
tively de�ned bya ::= x j (a a) j �x:a. Terms of the forms �x:a and (a b) are 
alled abstra
tions and appli
ations,respe
tively. As it is well-known, �rst order substitution or grafting leads to problems in the �-
al
ulus.For example, applying the �rst order substitution fu=xg to �x:(u x) results in �x:(x x) whi
h is wrong.Therefore, the �-
al
ulus with names uses variable renaming via �-
onversion so that (�x:(u x))fu=xg, byrenaming x (say as y), results in the 
orre
t term �y:(x y). Taking 
are of appropriate �-
onversions, �- and�-redu
tion rules are de�ned in �(V) respe
tively by (�x:a b)! afx=bg and �x:(a x)! a; if x 62 Fvar(a),where Fvar (a) denotes the set of free variables o

urring at a.Uni�
ation in �(V) di�ers from the �rst order notion, be
ause bound variables in �(V) are untou
hed byuni�
ation substitutions.Uni�
ation variables in the �-
al
ulus are free variables. Thus free variables o

ur-ring at terms of a uni�
ation problem 
an be partitioned into true uni�
ation variables and 
onstants,that 
annot be bound by the uni�ers.To di�erentiate between uni�
ation and 
onstant variables, one 
ould 
onsider uni�
ation variables asmeta-variables in X . Thus, �-
al
ulus should be de�ned as the term algebra, �(V ;X ), over the set of op-erators f�x: j x 2 Vg[ f( )g[ V and the set of variables X . In this setting, a notion of substitution 
ouldbe adapted for meta-variables preserving the semanti
s of both �- and �-redu
tion. But the most appropri-ate notation is the one of de Bruijn indi
es [11℄ where bound variables are related to their 
orrespondingabstra
tors by their relative height. For instan
e, �x:(�z :(x z) (x z)) is translated into �:(�:(2 1) (1 4)).Indi
es for free variables are appropriately sele
ted to avoid relating them with abstra
tors.The set �dB(X ) of �-terms in de Bruijn notation is de�ned indu
tively by:a ::= n j X j (a a) j �:a where X 2 X and n 2 N n f0g.Definition 1.1Let a 2 �dB(X ), i 2 N. The i-lift of a, a+i, is de�ned by 
ases as: a) X+i = X , for X 2 X ;b) (a1 a2)+i = (a+i1 a+i2 ); 
) (�:a1)+i = �:a+(i+1)1 ; d) n+i = � n+ 1; if n > in; if n � i for n 2 N :The lift of a term a, that is needed to de�ne substitution, is its 0-lift, denoted brie
y by a+. We willdenote by a(+k)i , the i 
ompositions of k-lift.
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ation for Simply-Typed HOU in the Pure �-Cal
ulus 3Definition 1.2The appli
ation of the substitution with b of n 2N nf0g on a term a in �dB(X ), denoted fn=bga, is de�nedindu
tively as: a) fn=bgX = X , for X 2X ; b) fn=bg(a1 a2) = (fn=bga1 fn=bga2);
) fn=bg�:a1 = �:fn+ 1=b+ga1; d) fn=bgm = � m� 1; if m > n; b; if m = n; m; if m < n when m 2 N .Definition 1.3Let � = fX1=a1; : : : ; Xn=ang be a valuation from the set of meta-variables X to �dB(X ). The 
orrespondingsubstitution, also denoted by �, is de�ned indu
tively as: a) �(m) = m form 2N; b) �(X) = X�, for X 2 X ;
) �(a1 a2) = (�(a1) �(a2)); d) ��:a1 = �:�+(a1), where �+ denotes the valuation fX1=a+1 ; : : : ; Xn=a+n gand its asso
iated substitution.In �dB(X ), the left side of the �-redu
tion rule is written as �:(a0 1), where a0 stands for the 
orrespondingtranslation of a into the language of �dB(X ). The 
ondition \x 62 Fvar(a)" means, in �dB(X ), that thereare neither o

urren
es in a0 of the index 1 at height zero nor of the index 2 at height one et
. This means,that there exists a term b su
h that b+ = a. Thus �-redu
tion is de�ned as (�:a b)! f1=bga and �-redu
tionas �:(a 1)! b if 9b b+ = a. We use =�� to denote the 
ongruen
e generated by �- and eta-redu
tion.2 Uni�
ation in the �se-
al
ulusIn this se
tion we review the �se-uni�
ation method of [2℄. Normal form 
hara
terizations (
f. normal form(nf) and long normal forms (lnf)), jointly with WN and CR properties are the essential requirements todevelop a uni�
ation method for the �se-
al
ulus, whi
h 
an be applied to HOU in the �-
al
ulus.Let T (F ;X ) be a term algebra and let A be an F-algebra. A uni�
ation problem over T (F ;X ) is a�rst order formula without universal quanti�er or negation, whose atoms are of the form F; T or s =?A tfor s; t 2 T (F ;X ). Uni�
ation problems are written as disjun
tions of existentially quanti�ed 
onjun
tionsof atomi
 equational uni�
ation problems: D = Wj2J 9 ~wj Vi2Ij si =?A ti. When jJ j = 1, the uni�
ationproblem is 
alled a uni�
ation system. Variables in the set ~w of a uni�
ation system 9~wVi2I si =?A ti arebound and all other variables are free. T and F stand for the empty 
onjun
tion and disjun
tion, respe
tively.The empty disjun
tion 
orresponds to an unsatis�able problem.A uni�er of a uni�
ation system 9~wVi2I si =?A ti is a grafting � su
h that A j= 9~wVi2I si�j~w = ti�j~wwhere �j~w denotes the restri
tion of the grafting � to the domain X n ~w. A uni�er of Wj2J 9 ~wj Vi2Ij si =?A tiis a grafting � that uni�es at least one of the uni�
ation systems. The set of uni�ers of a uni�
ation problem,D, or system, P , is denoted by UA(D) or UA(P ), respe
tively.A �se-uni�
ation problem P is a uni�
ation problem in the algebra T�se(X ) modulo the equationaltheory of �se. An equation of su
h a problem is denoted a =?�se b, where a and b are �se-terms of the samesort. An equation is 
alled trivial when it is of the form a =?�se a.In [2℄ we present a set of rewrite rule s
hemata used to simplify uni�
ation problems. The obje
tive ofapplying these rules is to obtain a des
ription of the set of uni�ers. Sin
e �se is CR and WN [8℄, the sear
h
an be restri
ted to �-long normal solutions that are graftings binding fun
tional variables into �-long normalterms of the form �:a and atomi
 variables into �-long normal terms of the form (k b1 : : : bp) or a�ib or 'ika,where in the �rst 
ase k 
an be omitted and p is zero. From these rules Normalize and De
-� use the fa
tthat �se is CR and WN to normalize equations of the form �:a =?�se �:b into a0 =?�se b0 and the rule Repla
epropagates the grafting fX=ag 
orresponding to equations X =?�se a. Exp-� generates the grafting fX=�:Y gfor a variable X of type A! B, where Y is a new variable of type B. Rules De
-App and App-Fail transformequations of the form (n a1 : : : ap) =?�se (m b1 : : : bq) into the empty disjun
tion when n 6= m, as they have nosolution, or into the 
onjun
tion Vi=1::p ai =?�se bi, when n = m. Analogously, De
-' de
omposes equationswith leading operator '. In (the notation of) the ��-
al
ulus, the rule Exp-App advan
es towards solutionsto equations of the form X [a1 : : : ap: "n℄ =?�se (m b1 : : : bq) where X is an unsolved variable of an atomi
 type.The 
orresponding rule has the analogous role for �se-uni�
ation problems.Example 2.1Let (�:(�:(X 2) 1) Y ) =?�se (�:(Z 1) U) be a uni�
ation problem, where X;Y; Z and U are meta-variables.Applying the rule Normalize to the original equation we obtain ((X�2Y )�1('10Y ) '10Y ) =?�se (Z�1U '10U)whi
h after De
-App, De
-' and Repla
e gives (X�2Y )�1('10Y ) =?�se Z�1Y ^ Y =?�se U . Sin
e X and Z
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ation for Simply-Typed HOU in the Pure �-Cal
ulusare variables of fun
tional type, applying twi
e Exp-App and Repla
e we obtain ((�:X 0)�2Y )�1('10Y ) =?�se(�:Z 0)�1Y ^ Y =?�se U ^ X =?�se �:X 0 ^ Z =?�se �:Z 0. Finally, after Normalize and De
-� we ob-tain (X 0�3Y )�2('10Y ) =?�se Z 0�2Y ^ Y =?�se U ^ X =?�se �:X 0 ^ Z =?�se �:Z 0. Solutions are built asfY=X1; U=X1g union solutions for X and Z obtained by the �rst equation. Equations as the �rst one, thatare 
alled Flex-Flex, are related with the notion of pre-uni�ers in [7℄. In this 
ase we 
an take, for instan
e,fY=X1; U=X1g S fX=�:n+ 1; Z=�:ng, where n > 2. �Definition 2.2A uni�
ation system P is a �se-solved form if all its meta-variables are of atomi
 type and it is a 
onjun
tionof non trivial equations of the following forms:(Solved) X =?�� a, where the variable X does not o

ur anywhere else in P and a is in longnormal form. Both X and X =?�� a are said to be solved in P .(Flex-Flex) non solved equations between long normal terms whose root operator is � or ' whi
hwe represent as equations between their skeleton:  jpip : : :  j1i1 (X; a1; : : : ; ap) =?�se lqkq : : :  l1k1(Y; b1; : : : ; bq) with X;Y of atomi
 type.In [2℄ it was proved that: 1) Any �se-solved form has �se-uni�ers; 2) Well-typedness: Dedu
tion by the�se-uni�
ation rules of a well-typed equation gives rise only to well-typed equations, T and F; 3) Solvedproblems are normalized for the �se-uni�
ation rules and, 
onversely, if a system is a 
onjun
tion of equationsthat 
annot be redu
ed by the �se-uni�
ation rules then it is solved.Let P and P 0 be �se-uni�
ation problems, let \rule" denote the name of a �se-uni�
ation rule and \!rule"its 
orresponding dedu
tion relation. By 
orre
tness and 
ompleteness of rule we understand P !rule P 0implies U�se(P 0) � U�se(P ) and P !rule P 0 implies U�se(P ) � U�se (P 0), respe
tively.Theorem 2.3 (Corre
tness and 
ompleteness [2℄)The �se-uni�
ation rules are 
orre
t and 
omplete.An analogous uni�
ation strategy to the one for �� presented in [6℄ applies as well in this setting. Cor-re
tness and 
ompleteness proofs for these strategies essentially do not di�er be
ause they are based on anappropriate ordering of the appli
ation of the uni�
ation rules whi
h is in a 
ertain way independent of the
al
uli [1℄.3 HOU in the pure �-
al
ulus[2℄, reviewed in Se
tion 2, dealt with half of the box on the right hand side of Figure 1. That is, only with the�se-uni�
ation method. For applying this method to HOU in �-
al
ulus we need to 
omplete the diagramby providing the pre-
ooking and Ba
k translations, show their 
orre
tness and 
ompleteness and establishthe appli
ability of �se-uni�
ation for HOU in pure �-
al
ulus.Initially we present one example on how to apply our �se-uni�
ation method in order to solve HOUproblems in the pure �-
al
ulus. Then we present adequate pre-
ooking and ba
k translations (see Figure 1).Observe �rstly that unifying two terms a and b in the �-
al
ulus 
onsists in �nding a substitution � su
hthat �(a) =�� �(b). Thus using the notation of substitution in De�nitions 1.2 and 1.3, a uni�er in the�-
al
ulus of the problem �:X =?�� �:2 is not a term t = �X su
h that �:t =?�� �:2 but a term t = �Xsu
h that �(�:X) = �:�+(X) = �:2. This observation 
an be extended to any uni�er and by translatingappropriately �-terms a; b 2 �dB(X ), the HOU problem a =?�� b 
an be redu
ed to equational uni�
ation.Before de�ning our pre-
ooking translation from �dB(X ) into the �se-
al
ulus we motivate how the sear
h-ing for substitution solutions of a HOU problem a =?�� b 
orresponds to the sear
hing for grafting solutionsof a uni�
ation problem in �se.Example 3.1Consider the HOU problem �:(X 2) =?�� �:2, where 2 andX are of type A and A! A, respe
tively. Observethat applying a substitution solution � to the �dB(X )-term �:(X 2) gives �(�:(X 2)) = �:(�+(X) 2). Thenin the �se-
al
ulus we are sear
hing for a grafting �0 su
h that �0(�:('20(X) 2)) =�se �:2. Correspondingly,in the ��-
al
ulus, �:(X 2) is translated or pre-
ooked into �:(X ["℄ 2). This 
orresponden
e results from
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ulus 5one between both Eta rules (i.e., between b["℄ = a and '20b = a). Then we should sear
h for uni�ers for theproblem �:('20(X) 2) =?�se �:2.Now we apply �se-uni�
ation rules to the problem �:('20(X) 2) =?�se �:2. By applying De
-� and Exp-�we get ('20(X) 2) =?�se 2 and subsequently 9Y ('20(X) 2) =?�se 2 ^X =?�se �:Y . Then by applying Repla
eand Normalize we obtain 9Y ('20(�:Y ) 2) =?�se 2^X =?�se �:Y and 9Y ('21Y )�12 =?�se 2^X =?�se �:Y . Now,we obtain (9Y ('21Y )�12 =?�se 2 ^ X =?�se �:Y ) ^ (Y =?�se 1 _ Y =?�se 2) by applyingExp-app; by applyingRepla
e: (('211)�12 =?�se 2 ^ X =?�se �:1) _ (('212)�12 =?�se 2 ^ X =?�se �:2); and by applying Normalize:(2 =?�se 2 ^X =?�se �:1) _ (2 =?�se 2 ^X =?�se �:2).In this way substitution solutions fX=�:1g and fX=�:2g are found.To 
omplete the analysis note that De�nitions 1.2, 1.3 and �-redu
tion in �dB(X ) give fX=�:1g(�:(X 2))= �:(fX=(�:1)+g(X) 2) = �:(�:1+1 2) = �:(�:1 2) =� �:2 and fX=�:2g(�:(X 2)) = �:(fX=(�:2)+g(X) 2)= �:(�:2+1 2) = �:(�:3 2) =� �:f1=2g(3) = �:2. �In general, before the uni�
ation pro
ess, a �-term a should be translated into a �se-term a0 obtainedby simultaneously repla
ing ea
h o

urren
e of a meta-variable X at position i in a by 'k+10 X , where k isthe number of abstra
tors between the root position of a and position i. If k = 0 then the o

urren
e ofX remains un
hanged. The pre-
ooking translation de�ned in [6℄ trans
ribes all o

urren
es of de Bruijnindi
es n into 1["n�1℄ and all o

urren
es of meta-variables X into X ["k℄, with k as above. Noti
e that thetwo pre-
ooking translations 
an be implemented non-re
ursively in an eÆ
ient way.Definition 3.2 (Pre-
ooking)Let a 2 �dB(X ) su
h that � `�dB(X ) a : T . With every variable X of type A o

urring at a we asso
iatethe same type and 
ontext � in the �se-
al
ulus. The pre-
ooking of a from �dB(X ) to the �se-
al
ulus isde�ned by ap
 = PC(a; 0) where PC(a; n) is de�ned by:1) PC(�B :a; n) = �B :PC(a; n+ 1) 2) PC((a b); n) = (PC(a; n) PC(b; n))3) PC(k; n) = k 4) PC(X;n) = � X; if n = 0'n+10 X; otherwiseLemma 3.3 (Type preservation)If � `�dB(X ) a : T , then � `�se ap
 : T .The following proposition whi
h relates substitution in �dB(X ) and grafting in �se, justi�es pre-
ooking.Proposition 3.4 (Semanti
s of pre-
ooking)Let a; b1; : : : ; bp be terms of �dB(X ). We have:(afX1=b1; : : : ; Xp=bpg)p
 = ap
fX1=b1p
 ; : : : ; Xp=bpp
gg.In 
ontrast to the 
orresponding proof in [6℄, where substitution obje
ts are ne
essary for proving the 
riti
al
ase of a = X (i.e., substitutions of the form [1:::k: "i+k℄) our proof uses pure term obje
ts by sele
ting theappropriate super and subs
ripts for the ' operator (i.e., 'i+1k ).The following proposition presents ne
essary fa
ts for relating the existen
e of solutions for uni�
ationproblems in the pure �-
al
ulus and in the �se-
al
ulus.Proposition 3.5Let a and b be terms in �dB(X ). Then: 1) a!� b implies ap
 !��se bp
; 2) If a is ��-nf then ap
 is �se-nf;3) a!� b implies ap
 !eta bp
; 4) a =�� b if and only if ap
 =�se bp
.Again, our proof di�ers from the 
orresponding one in [6℄ in that we avoid the use of 
ompli
ated substi-tution obje
ts be
ause we pro�t from the semanti
s of the ' operator of the �se-
al
ulus.Finally, we relate solutions and their existen
e in the pure �-
al
ulus and for the 
orresponding pre-
ookedterms in the �se-
al
ulus.Proposition 3.6 (Corresponden
e between solutions)Let a, b in �dB(X ). Then there exist terms N1; : : : ; Np 2 �dB(X ) su
h that afX1=N1; : : : ; Xp=Npg =��bfX1=N1; : : : ; Xp=Npg if and only if there exist �se-terms M1; : : : ;Mp su
h that ap
fX1=M1; : : : ; Xp=Mpgg=�se bp
fX1=M1; : : : ; Xp=Mpgg.In addition to pre-
ooking, we need a Ba
k translation for giving des
riptions of solutions of the original pre-
ooked problems. That means, that for any uni�
ation problem P , derived by applying the �se-uni�
ation
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ulusrules to the pre-
ooking ap
 =?�se bp
, we have to reassemble a problem Q in the image of the pre-
ookingtranslation with the same solutions as P . Subsequently, Q should be translated to the �-
al
ulus, by applyingthe inverse of the pre-
ooking translation, into a HOU problem R (see Figure 1). Then the solutions of P
oin
ide with the solutions of Q and are the pre-
ooking of the solutions of R, whi
h 
oin
ide with thesolutions of the original HOU problem a =?�� b. In this way the set of solutions is given as solved forms.By the 
orresponden
e between solutions (Proposition 3.6), we have that if a =?�� b has a solution thenso does its pre-
ooking ap
 =?�se bp
. Here we do not present the proof of the 
onverse whi
h 
an be donefollowing similar steps to those of the ��-HOU approa
h in [6℄ but adapted to the �se-
al
ulus.The �se-uni�
ation rules are extended with the following rules:(Anti-Exp-�) P ! 9Y (P ^X =?�se ('20Y 1)) if (X : A:�0X ` AX ) 2 var (P );where (Y : �0X ` A! AX) 62 var(P )(Anti-De
-�) P ^ a =?�se b! P ^ �A:a =?�se �A:b if a =?�se b is well-typed in an environment A:�Proposition 3.7 (Corre
tness and 
ompleteness of the Anti-rules)The �se-uni�
ation rules together with the Anti-Exp-� and Anti-De
-� rules are 
orre
t and 
omplete.The rule Anti-De
-� is applied only to equations whose environments are stri
t extensions of �, i.e. of theform A1 : : : An:�, where n > 0. The rule Anti-Exp-� applies only to variables, whose environments are stri
textensions of �. The Ba
k strategy 
onsists on applying the two new rules and the rule Repla
e eagerly.Proposition 3.8Let a =?�� b be a HOU problem well-typed in an environment � and P derived by the �se-uni�
ation rulesfrom its pre-
ooking. By applying the Ba
k strategy on P we obtain a system Q satisfying the followinginvariants: 1) if an equation is well-typed in environment �, then � is an extension of �;2) for every variable Y , its environment �Y is an extension of �;3) for every subterm  jpip : : :  j1i1 (X; a1; : : : ; ap) in P we have p � j�Y j � j�j+ 1.Proposition 3.9 (Building Ba
k Pre-
ooking images)Let a =?�� b be a HOU problem and P an equational problem derived from its pre-
ooking by using the�se-uni�
ation rules. The system resulting from normalization of P by applying the Ba
k strategy is thepre-
ooking of a problem in the �-
al
ulus.Using previous 
orre
tness and 
ompleteness results we obtain the following Corollary and Theorem.Corollary 3.10 (Soundness of the 
onstru
tion of solutions)Let a =?�� b a HOU problem su
h that its pre-
ooking, normalised with the �se-uni�
ation rules gives adisjun
tion of systems that has one of its 
omponents, say P , solved. Let Q be the system resulting bynormalising P with the Ba
k strategy and let R = PC�1(Q). Then R is a �-solved form (in the sense of[12℄) and the solutions of R are solutions of the original HOU problem.Theorem 3.11 (Completeness of the 
onstru
tion of solutions)Let a =?�� b a HOU problem su
h that its pre-
ooking is well-typed in the environment �. Any solution ofthe initial problem 
an be obtained as the one of a system in �-solved form resulting from the appli
ationof the �se-uni�
ation rules, followed by the Ba
k strategy and the inverse of the pre-
ooking translation.4 Considerations about the implementationWe pre
ise here why the use of the sole de Bruijn index 1 and of substitution obje
ts make the ��-HOUapproa
h less eÆ
ient than the �se-HOU one.For the sake of 
larity, we have omitted above both types and environments. But for the analysis of theHOU method above it is ne
essary to know both the types and environments of all subexpressions duringthe uni�
ation pro
ess. Therefore terms \de
orated" with types and environments for all their subterms arene
essary for any reasonable implementation. The general idea is to assign types and environments to allsubexpressions at the beginning of the uni�
ation pro
ess and to maintain this notational dis
ipline duringthe pro
ess via de
orated versions of the �se-
al
ulus, the �se-typing rules and, of 
ourse, the �se-uni�
ationrules. We present the de
orated version of the typing rules for the �se-
al
ulus in the Table 1.
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ulus 7Table 1. Unde
orated and de
orated typing rules for the �se-
al
ulus(V ar) A:� ` 1 : A 1A:�A(V arn) � ` n : BA:� ` n+ 1 : B n�B(n+ 1)A:�B(Lambda) A:� ` b : B� ` �A:b : A! B bA:�B(�A:bA:�B )�A!B(App) � ` b : A! B � ` a : A� ` (b a) : B b�A!B ; a�A(b�A!B a�A)�B(Sigma) ��i ` b : B �<i:B:��i ` a : A� ` a �ib : A b��iB ; a�<i:B:��iA(a�<i:B:��iA �ib��iB )�A(Phi) ��k:��k+i ` a : A� ` 'ika : A a��k:��k+iA('ika��k:��k+iA )�A(Meta) �X ` X : AX X�XAXThe typing rules Var and Varn 
an be redu
ed to a sole de
orated rule of the form nA1:::An:�An making thede
oration of de Bruijn indi
es a straightforward pro
ess whi
h is linear in both time and spa
e in n.The rule Meta is added to type open terms and should be understood as follows: for every metavariableX , there exists a unique environment �X and a unique type AX su
h that the rule holds. This is done inorder to obtain 
ompatibility between typing and grafting. We suppose that for ea
h pair (�; A) there existsan in�nite set of variables X su
h that �X = � and AX = A.In �� the 
orresponding rules are adapted for the manipulation of substitution obje
ts. Types of sub-stitutions are environments1. Examples of these rules are: (Shift) "A:�� ; (Comp)s�� ; t�� ` (s�� Æ t��)�� ;(Clos)a�A ; s�� ` (a�A [s��℄)�A. This kind of expli
it de
oration was done for the ��-HOU approa
h in [5℄, butmaintaining this dis
ipline in the �se-
al
ulus is more e
onomi
al in both spa
e and time. Let us 
omparethe previous linear de
oration of a de Bruijn index, n, in �se and its 
orresponding ��-term 1["n�1℄:Example 4.1The de
oration of 1["n�1℄ uses quadrati
 spa
e and time.(
omp) (shift) "An�1:An:�An:� ; (shift) "An�2:::�An�1:An:�(
omp) ("An�1:An:�An:� Æ "An�2:::�An�1:An:�)An�2:::�An:� ; (shift) "An�3:::An:�An�2:::�...(
omp) (� � �("An�1:An:�An:� Æ "An�2:::�An�1:An:�)An�2:::�An:� Æ� � �)A1:::An:�An:� ; (var)1An:�An(
los) (1An:�An [(� � �("An�1:An:�An:� Æ "An�2:::�An�1:An:�)An�2:::�An:� Æ� � �)A1:::An:�An:� ℄)A1:::An:�An �This, of 
ourse, 
ould be improved in the ��-HOU approa
h, but as far as we know, improvements havenot been in
orporated. In [6℄ as well as in [5℄ all the development of the implementation of the methodis related to the sole de Bruijn index 1, the shift operator " and 
omposition, whi
h makes that approa
hineÆ
ient when 
ompared with ours. Of 
ourse, we believe some improvements in this sense were done inthe implementation of the ��-HOU, but from the theoreti
al point of view our approa
h is the �rst one thathas treated this problem in a natural way, be
ause in �se, all de Bruijn indi
es are in
luded.Another problem in the de
oration of substitution obje
ts of the ��-
al
ulus is that they are de
oratedwith two environments that are lists of types. While the main marks in the de
oration of a term obje
t area sole environment and its type. This makes de
orations of �se-terms 
heaper than those of ��-terms.1This is denoted in the unde
orated setting as s . �.



8 On Applying �se-Uni�
ation for Simply-Typed HOU in the Pure �-Cal
ulusAs previously mentioned, de
oration of expressions and subexpressions is only done at the beginning ofthe uni�
ation pro
ess, sin
e the �se and �se-uni�
ation rules are supposed de
orated and, of 
ourse, theypreserve types and environments. Initial de
oration 
an be done using the algorithm in Table 2. Thisalgorithm is based on a straightforward propagation of the de
oration of subterms 
omposing a �se-terma

ording to the de
orated �se-typing rules. The kernel of the algorithm 
onsists of a set of rules thatpropagate environments and types between the de
oration marks of the term pro
essed 
onforming to itsstru
ture outermost (named as +) and innermost (named as *).The previous algorithm runs in time linear on the size of the initial �se-term and on the magnitude of itsde Bruijn indi
es. For this algorithm it is ne
essary to know the main environment, but linear algorithms 
anbe built without su
h information, based on the de
omposition of the unde
orated input into a �rst orderuni�
ation problem of type and environment expressions generated from the typing rules of the �se-
al
ulus.Our previous remarks point out the advantage of �se in using all de Bruijn indi
es, whi
h avoids quadrati
de
orations in the size of the input as in the ��-HOU approa
h. In fa
t, we 
an take again 1["n�1℄ ofExample 4.1. Its expli
it de
oration is, of 
ourse, quadrati
. Consequently we 
an state the following.Lemma 4.2 (Linear versus quadrati
 de
orations)Pre-
ooked �-terms in the �se-
al
ulus have linear de
orations on the size of the �-terms and the magnitudeof their de Bruijn indi
es, while in �� these de
orations are quadrati
.Moreover, noti
e here that the size of de
orated �-terms in
reases in an inadequate way when normalizingvia the ��-
al
ulus, be
ause the de
oration of substitution obje
ts is not only expensive but also expansivein size and time. Furthermore, this expansion of de
orated terms in the ��-HOU approa
h is independentof the use of other de Bruijn indi
es than 1 itself, and depends only on the use of substitution obje
ts.Example 4.3To illustrate this 
onsider the de
orated �-term (�A:(�A:X 1) 1):((�A:((�A:XA:A:A:�A )A:A:�A!A 1A:A:�A )A:A:�A )A:�A!A 1A:�A )A:�A and 
ompare the 
orresponding de
orated terms inthe �se- and ��-
al
uli after two appli
ations of Beta. In the �se we have:!Beta ((�A:(XA:A:A:�A �11A:A:�A )A:A:�A )A:�A!A 1A:�A )A:�A !Beta ((XA:A:A:�A �11A:A:�A )A:A:�A �11A:�A )A:�A and inthe ��-
al
ulus we have: !Beta ((�A:(XA:A:A:�A [(1A:A:�A :idA:A:�A:A:�)A:A:�A:A:A:�℄)A:A:�A )A:�A!A 1A:�A )A:�A !Beta((XA:A:A:�A [(1A:A:�A :idA:A:�A:A:�)A:A:�A:A:A:�℄)A:A:�A [(1A:�A :idA:�A:�)A:�A:A:�℄)A:�A . �This expansion problem in the ��-
al
ulus is a 
onsequen
e of the fa
t that some rules used in the genera-tion of substitution obje
ts in
rease the number of subterms whi
h are substitution obje
ts. In Example 4.3,we only used the Beta rule of the ��-
al
ulus(i.e., (�A:a b) ! a[b:id ℄) whi
h generates two new substitu-tion subterms to be marked in a de
orated term: id and b:id , while for the Beta rule of the �se-
al
ulus,(�A:a b) ! a�1b, the number of subterms is redu
ed by one. Criti
al is the 
ase of the Abs rule of the��-
al
ulus, (�A:a)[s℄ ! �A:a[1:(sÆ ")℄, that enlarges the number of subterms to be marked in de
oratedterms from four to eight. Rules that enlarge the number of subterms to be de
orated in the �se are �-app-transition, '-app-transition, �-�-transition and '-�-transition; i.e., all those related to the App rule of the��-
al
ulus, that enlarges the number of subterms to be de
orated from �ve to seven.All the rules of the �se-
al
ulus are supposed de
orated. For example, the de
orated Eta rule has thefollowing form: (Eta) (�A:(aA:�A!B 1A:�A )A:�B )�A!B ! b�A!B if aA:�A!B =se ('20 b�A!B)A:�A!BEx
ept for this rule, appli
ation of the rules of the �se-
al
ulus is easy to de
ide: rules are either non-
onditional or have simple arithmeti
 
onditions that 
an be resolved via any arithmeti
 dedu
tion algorithmusually built-in between any interesting programming language.The test for applying the Eta rule 
an be implemented a

ording to the 
orresponden
e between the twoEta rules and following the idea suggested for the ��-HOU approa
h in [5℄. We 
an extend the languageof the �se-
al
ulus with a dummy symbol � and verify for o

urren
es of this symbol after se-normalizingthe term (aA:�A!B�1��A)�A!B . In the 
ase that the previous term has no o

urren
es of � the Eta rule appliesbeing the redu
t that se-normalization. In pra
ti
e we have the easy to implement rule:(Eta) (�A:(aA:�A!B 1A:�A )A:�B )�A!B ! se-normalization((aA:�A!B�1��A)�A!B) if � doesn't o

ur in this term.Lemma 4.4The previous implementation of the Eta rule is 
orre
t.
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he
king / de
orating algorithm for the �se-
al
ulusINPUT: a a �se-term and � an environment.OUTPUT: If a is well-typed in � then a 
orresponding de
orated term a0, whose main environ-ment is �. Else it reports that a is ill-typed in �.NOTATION: ? denotes unknown types and environments.ALGORITHM: Initially, a is de
orated in su
h a way that the sole environment known is itsmain one marked as �. All other types and environments in the de
oration of a are marked as?. Afterwards, apply nondeterministi
ally to the de
orated term the following rules until anirredu
ible term is obtained.(Varn) nA1:::: :An:�? ! nA1:::: :An:�An(�� +) (�A:a??)�? ! (�A:aA:�? )�?(�� *) (�A:aA:�B )�? ! (�A:aA:�B )�A!B(app-+) (a?? b??)�? ! (a�? b�?)�?(app-*) (a�A!B b�A)�? ! (a�A!B b�A)�B(�� +) (a??�ib??)�? ! (a�<i:?:��i? �ib��i? )�?(�� )) (a�<i:?:��i? �ib��iB )�? ! (a�<i:B:��i? �ib��iB )�?(�� *) (a�<i:B:��iA �ib��iB )�? ! (a�<i:B:��iA �ib��iB )�A('� +) ('ika??)�? ! ('ika��k:��k+i? )�?('� *) ('ika��k:��k+iA )�? ! ('ika��k:��k+iA )�A(Meta) X�X? ! X�XAXFinally, if the main type of the resulting de
orated term a0 is known then return a0. Otherwisereport that a is ill-typed under environment �.Turning ba
k to ��-HOU (see [5℄), the 
ondition in the implementation of the Eta rule is seen as: \if �doesn't o

ur in the �-normalization((aA:�A!B [(��A:id��)�A:�℄)�A!B)"This implementation is less eÆ
ient than in the �se-
al
ulus and on
e more the problem depends on theuse of substitution obje
ts in the ��-
al
ulus. This is a simple 
onsequen
e of the fa
t that when propagatingthe above substitution obje
ts between the stru
ture of aA:�A!B we need to apply the rules Abs and App thatare expansive, as mentioned early. More pre
isely, the rule Abs, (�A:a)[s℄ ! �A:(a[1:(sÆ ")℄), enlarges thenumber of substitution obje
ts to be marked in de
orated terms from one (s) to four: s, ", sÆ ", and 1:(sÆ ");and the rule App, (a b)[s℄! (a[s℄ b[s℄), from one to two. In 
ontrast, in the �se-
al
ulus the 
orrespondingpropagation of the � operator is exe
uted by applying the rules �-�-transition and �-app-transition. The�-�-transition, (�A:a)�ib ! �A:a�i+1b, does not enlarge the number of subterms to be marked. And the�-app-transition, (a1 a2)�ib ! (a1�ib a2�ib), in
reases the number of subterms to be marked by two asthe App rule, but without in
luding substitution obje
ts.5 Con
lusionsFollowing the ��-HOU approa
h introdu
ed in [6℄, we have developed a pre-
ooking translation that tran-s
ribes pure �-terms in de Bruijn notation into �se-terms, for whi
h the sear
h of grafting solutions 
orre-sponds to substitution solutions in the pure �-
al
ulus.Our pre-
ooking translation trans
ribes a term a by repla
ing ea
h o

urren
e of a meta-variable X with'k+10 X while the ��-
al
ulus uses X ["k℄, where k is the number of abstra
tors between the position of theo

urren
e of X and the root position. Additionally, the pre-
ooking translation in [6℄ trans
ribes ea
ho

urren
e of a de Bruijn index n in a into 1["n�1℄. Conformity of the two pre-
ooking translations istherefore evident. But our proofs di�er from the 
orresponding ones in [6℄ in that we don't need the use
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ulusof 
omplex substitution obje
ts be
ause of the appropriate semanti
s and 
exibility of the ' operator inthe �se-
al
ulus. This 
an be observed in the proof of the 
orre
t semanti
s of the pre-
ooking translation(Proposition 3.4) and the proof of Proposition 3.5 whi
h relates the existen
e of uni�
ation solutions inthe �- and the �se-
al
ulus. In these proofs, only a 
orre
t sele
tion of the s
ripts for the operator ' wasne
essary, avoiding the manipulation of substitution obje
ts as is the 
ase in the ��-HOU approa
h.Pre-
ooking is 
omplemented with a ba
k translation that enables the re
onstru
tion of solved forms ofuni�
ation problems in �se into a des
ription of solutions of the 
orresponding HOU problems in the pure�-
al
ulus.Furthermore, by 
omparing the implementation of our method and that of the ��-HOU given in [5℄, weobserved that pre-
ooked �-terms in the �se-
al
ulus have linear de
orations on the size of the �-termsand the magnitude of their de Bruijn indi
es, while in �� these de
orations are quadrati
. For that, wedon't make any 
onsideration about use of eÆ
ient data stru
tures. For a reasonable implementation of the��-HOU approa
h, a variation of the ��-
al
ulus whi
h in
ludes all de Bruijn indi
es should be used, buta

ording to the implementation of that method in [5℄, this has remained ineÆ
ient. From the theoreti
alpoint of view, our approa
h is the �rst one that has treated this problem in a natural way, be
ause of thesimple syntax of the �se-
al
ulus, where all de Bruijn indi
es are in
luded.But it is not the sole use of all de Bruijn indi
es that makes the �se approa
h more eÆ
ient. Anotherproblem in the de
oration of substitution obje
ts of the ��-
al
ulus is that they are de
orated with twoenvironments that are lists of types. While the main marks in the de
oration of a term obje
t are a soleenvironment and its type. This makes de
orations of �se-terms smaller than the ones of ��-terms. Moreover,the size of de
orated �-terms in
reases in an inadequate way when normalizing via the ��-
al
ulus, be
ausesome rules in the ��-
al
ulus are expensive in that they enlarge the number of substitution obje
ts to bemarked in de
orated terms. Also, the la
k of substitution obje
ts in �se makes the proofs easier.Mu
h work remains to be done and in parti
ular, to be 
on
lusive, a prototype implementation of thismethod is ne
essary. Additionally, a formal distin
tion, from the pra
ti
al point of view, between the �se-
al
ulus (and our pro
edure) and the suspension 
al
ulus developed by Nadathur and Wilson in [10, 9℄ (andused in the implementation of the higher order logi
al programming language �Prolog) should be elaborated.This is meaningful, sin
e the �se-
al
ulus and the 
al
ulus of [10, 9℄ have 
orrelated ni
e properties. Forinstan
e the laziness in the substitution needed in implementations of �-redu
tion, that arises naturallyin the �se-
al
ulus, is provided as the informal but empiri
al 
on
ept of suspension of substitutions bythe rewrite rules of Nadathur and Wilson. Establishing these 
onne
tions is important for estimating theappropriateness of the �se-HOU approa
h in that pra
ti
al framework.Referen
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