On Applying the As.-Style of Unification for
Simply-Typed Higher Order Unification in
the Pure \-Calculus

MAURICIO AYALA-RINCON |, Departamento de Matemdtica, Universidade de Brasilia,
70910-900 Brasilia D.F'., Brasil ayala@mat.unb.br

FATIROUZ KAMAREDDINE , Department of Computing and FElectrical Engineering,
Heriot-Watt University, Riccarton, Edinburgh EH14 JAS, Scotland fairouz@cee.hw.ac.uk

Abstract

Dowek, Hadin and Kirchner developed a higher order unification (HOU) method based on the Ao-style of explicit substitutions.
The novelty of this method rests on the possibility to resolve HOU problems by first order unification. This is achieved via a
pre-cooking translation of the HOU problem into a first order unification problem of the language of the Ao-calculus. Solutions
to the first order unification problem are then translated back into the range of the pre-cooking translation and subsequently to
solutions of the original problem into the language of the A-calculus. Recently we study unification in the Ase-style of explicit
substitutions. It is claimed that Asc-unification has the advantages of enabling quicker detection of redices and of having a
clearer semantics. In this paper, we set out to provide a pre-cooking translation for applying Ase-unification to HOU in the
A-calculus. The pre-cooking jointly with a back translation complement our Asc-unification method. Their correctness and
completeness are shown and additionally we show why avoiding the use of substitution objects makes Ase-HOU more efficient
than Ao-HOU.

Keywords: Higher order unification, explicit substitutions, A-calculus, type and rewriting theory

1 Background

HOU via explicit substitutions [6], as mentioned in the abstract, is illustrated by Figure 1. Here we show
how to apply our As.-unification method in [2] for resolving HOU problems. The Ao- and the As,-calculi
use de Bruijn indices instead of variable names in order to be closer to implementation and to avoid the
problems that result from variable clashes. However, Ao uses only one de Bruijn index (1) and builds
the others by operations in the calculus. As. uses all the de Bruijn indices. Another difference between
both calculi is that the As.-calculus attempts to remain as close as possible to the syntax of the A-calculus
and hence only adds updating and substitutions as two new concepts and keeps the unique sort of term
objects; Ao adds various categorical operators like composition, consing, and lifting and has two sorts of
objects: terms and substitutions. We focus on the advantages of using all de Bruijn indices and only term
objects when implementing the As.-HOU approach over Ac-HOU and its implementation as described in
[5]. It should be stressed that Ao and As. are two different styles of explicit substitutions which are not
isomorphic. This implies that reworking the HOU method in As. is not a translation of work already
done in Ao. Many rules and proofs of the As.-HOU differ from those of the Ao-HOU. We outline some of
these differences throughout the article. A full version of the article containing all proofs can be found at
www.cce.hw.ac.uk/ultra/publications.html.

For a set of operators F, we assume familiarity with the notions of an F-algebra and of a term algebra
T(F,X) built on a (countable) set of variables X and on F. Variables in X are denoted by upper case last
letters of the Roman alphabet XY For a term ¢t € T(F, X), var(t) denotes the set of variables occurring
in t. We assume familiarity with the A-calculus as in [4] and with the basic notions of rewriting theory as
in [3]. For a reduction relation — g over a set A, we denote with —7%, the reflexive and transitive closure of
—pg. The subscript R is usually omitted. Syntactical identity is denoted by a = b. We assume the usual
definitions for Church Rosser (CR) and Weak Normalisation (WN) of a reduction relation.

A valuation is a mapping from X to T(F,X). The homeomorphic extension of a valuation, 6, from
its domain X to the domain 7 (F,X) is called the grafting of §. This notion is usually called first order

L. J. of the IGPL, Vol. 0 No. 0, pp. 1-11 0000 1 © Oxford University Press

2 On Applying As.-Unification for Simply-Typed HOU in the Pure A-Calculus

Unification Problem

Pre-cooking
translation Unification
rules
HOU-Problem Solutions
______________________________ Back
translation
Pre-cooking™*
Solutions

Language of the A-calculus P

Language of a A-calculus

of explicit substitutions
-grafting-

-substitution-

FiG. 1. HOU method via calculi of explicit substitutions

substitution and corresponds to simple substitution without renaming. As usual, valuations and their cor-
responding grafting valuations are denoted by the same Greek letter. The domain of a grafting 8 is defined
by Dom(f) = {X | X0 # X, X € X}. A valuation and its corresponding grafting 6 are explicitly denoted
by 8§ = {X/X60| X € Dom(f)}. When necessary, explicit representations of graftings are differentiated from
substitutions by a “g” subscript: {X/X8| X € Dom(6)},.

We assume familiarity with the Ao- (-, o, [] and 1 operators) and As.-calculi (¢ and o operators and skeleton
notation), their typed versions and their normal form (nf, Inf and 7-nf) characterizations as in [2].

Let V be a (countable) set of variables (different from the ones in X) denoted by lowercase last letters
of the Roman alphabet z,y,.... Terms A(V), of the A-calculus with names are inductively defined by
a =1z | (a a) | A\p.a. Terms of the forms \,.a and (a b) are called abstractions and applications,
respectively. As it is well-known, first order substitution or grafting leads to problems in the A-calculus.
For example, applying the first order substitution {u/z} to A;.(u z) results in A,.(z) which is wrong.
Therefore, the A-calculus with names uses variable renaming via a-conversion so that (A;.(u x)){u/z}, by
renaming « (say as y), results in the correct term A,.(2 y). Taking care of appropriate a-conversions, 8- and
n-reduction rules are defined in A(V) respectively by (A,.a b) = a{z/b} and A;.(a z) — a, if z & Fvar(a),
where Fuvar(a) denotes the set of free variables occurring at a.

Unification in A(V) differs from the first order notion, because bound variables in A(V) are untouched by
unification substitutions.Unification variables in the A-calculus are free variables. Thus free variables occur-
ring at terms of a unification problem can be partitioned into true unification variables and constants,
that cannot be bound by the unifiers.

To differentiate between unification and constant variables, one could consider unification variables as
meta-variables in X'. Thus, A-calculus should be defined as the term algebra, A(V, X), over the set of op-
erators {\,.- |z € V}U{(L)} UV and the set of variables X'. In this setting, a notion of substitution could
be adapted for meta-variables preserving the semantics of both 8- and n-reduction. But the most appropri-
ate notation is the one of de Bruijn indices [11] where bound variables are related to their corresponding
abstractors by their relative height. For instance, A;.(\..(z z) (z z)) is translated into A.(A.(2 1) (1 4)).
Indices for free variables are appropriately selected to avoid relating them with abstractors.

The set Agp(X) of A-terms in de Bruijn notation is defined inductively by:

a:=n|X|(a a)| Xa where X € X and n € N\ {0}.

DEFINITION 1.1
Let a € Agp(X), i € N. The i-lift of a, a*, is defined by cases as: a) X! = X, for X € &;

b) (a1 a2)+i _ (a1+i a;—i); c) (/_al)ﬂ' — /_aii-(i-i-l); d) nti — { n+1,ifn>i

n, ifn <i for n € N.

The lift of a term a, that is needed to define substitution, is its 0-lift, denoted briefly by a®. We will
denote by a(T*)", the i compositions of k-lift.

On Applying As.-Unification for Simply-Typed HOU in the Pure A-Calculus 3

DEFINITION 1.2

The application of the substitution with b of n € N\{0} on a term a in Agp(X), denoted {n/b}a, is defined
inductively as: a) {n/b}X = X, for X € X; b) {n/b}(a1 a2) = ({n/b}a; {n/b}as);

c) {n/b}r.a; =AX{n+1/b"}ta;; d) {n/blm={ m—1,ifm>n; b, ifm=n; mifrn<n whenmeN.

DEFINITION 1.3

Let § = {X1/a1,...,X,/ay} be a valuation from the set of meta-variables X’ to Agp(X). The corresponding
substitution, also denoted by 6, is defined inductively as: a) (m) = mfor m €N; b) (X) = X0, for X € X;
c) O(ar a2) = (B(a1) B(az)); d) OA.a; = X607 (a;), where #1 denotes the valuation {X;/a],..., X, /a}}
and its associated substitution.

In Ayp(X), the left side of the n-reduction rule is written as A\.(a’ 1), where a’ stands for the corresponding
translation of a into the language of Agp(X). The condition “x ¢ Fvar(a)” means, in Agp(X), that there
are neither occurrences in a’ of the index 1 at height zero nor of the index 2 at height one etc. This means,
that there exists a term b such that b™ = a. Thus 8-reduction is defined as (A\.a b) — {1/b}a and n-reduction
as A.(a 1) = bif 3b b = a. We use =g, to denote the congruence generated by - and eta-reduction.

2 Unification in the \s.-calculus

In this section we review the Asc-unification method of [2]. Normal form characterizations (cf. normal form
(nf) and long normal forms (lnf)), jointly with WN and CR properties are the essential requirements to
develop a unification method for the As.-calculus, which can be applied to HOU in the A-calculus.

Let T(F,X) be a term algebra and let A be an F-algebra. A unification problem over 7(F,X) is a
first order formula without universal quantifier or negation, whose atoms are of the form F, T or s :34 t
for s,t € T(F,X). Unification problems are written as disjunctions of existentially quantified conjunctions
of atomic equational unification problems: D = \/,.; 3uj A;ep, si =’ t;, When |J| = 1, the unification
problem is called a unification system. Variables in the set « of a unification system Juf A;c; s; :?A t; are
bound and all other variables are free. T and F stand for the empty conjunction and disjunction, respectively.
The empty disjunction corresponds to an unsatisfiable problem.

A unifier of a unification system 3@ A, s; =} t; is a grafting o such that A |= JF A,
where 0|5 denotes the restriction of the grafting o to the domain X'\ . A unifier of \/ ;¢ ; 3uj /\ielj s;i =Y ti
is a grafting o that unifies at least one of the unification systems. The set of unifiers of a unification problem,
D, or system, P, is denoted by U4 (D) or U4(P), respectively.

A Ase-unification problem P is a unification problem in the algebra Tys, (X)) modulo the equational
theory of As.. An equation of such a problem is denoted a :?)\Se b, where a and b are As.-terms of the same
sort. An equation is called trivial when it is of the form a =}, _a.

In [2] we present a set of rewrite rule schemata used to simplify unification problems. The objective of
applying these rules is to obtain a description of the set of unifiers. Since As. is CR and WN [8], the search
can be restricted to n-long normal solutions that are graftings binding functional variables into 7-long normal
terms of the form \.a and atomic variables into 7-long normal terms of the form (k by ...b,) or ac’b or ¢ia,
where in the first case k can be omitted and p is zero. From these rules Normalize and Dec-\ use the fact
that As. is CR and WN to normalize equations of the form A.a =}, A.binto a’ =}, b' and the rule Replace
propagates the grafting {X/a} corresponding to equations X zise a. Exp-)\ generates the grafting {X/\.Y'}
for a variable X of type A — B, where Y is a new variable of type B. Rules Dec-App and App-Fail transform
equations of the form (na;...ap) :?)\Se (m by ...b,) into the empty disjunction when n # m, as they have no

501w = ti0|@

solution, or into the conjunction A,_, a; =%s. bi, when n = m. Analogously, Dec-¢ decomposes equations
with leading operator . In (the notation of) the Ao-calculus, the rule Exp-App advances towards solutions
to equations of the form XJa; ... ap. 1] :;SE (m by ...by) where X is an unsolved variable of an atomic type.
The corresponding rule has the analogous role for As.-unification problems.

EXAMPLE 2.1
Let (\.(A\.(X 2) 1) Y) =}, (A.(Z 1) U) be a unification problem, where X,Y, Z and U are meta-variables.

Applying the rule Normalize to the original equation we obtain ((Xo?Y)o!(¢5Y) @§Y) =3, (Zo'U @§U)
which after Dec-App, Dec-p and Replace gives (Xo?Y)o' (ppY) =3,. Zo'Y A Y =}, U. Since X and Z

4 On Applying As.-Unification for Simply-Typed HOU in the Pure A\-Calculus

?

are variables of functional type, applying twice Ezp-App and Replace we obtain ((A.X")o?Y)o!(psY) =3s.
AZYo'Y AY =, UAX =, AX'AZ =}, AZ' Finally, after Normalize and Dec-A we ob-
tain (X'0®Y)o?(pY) =3,. Z'0’Y AY =, UAX =}, AX'AZ =}, XZ'. Solutions are built as
{Y/X1,U/X1} union solutions for X and Z obtained by the first equation. Equations as the first one, that
are called Flez-Flez, are related with the notion of pre-unifiers in [7]. In this case we can take, for instance,
{Y/X,,U/X 1} U {X/An+1,Z/An}, where n > 2.)

DEFINITION 2.2
A unification system P is a As.-solved form if all its meta-variables are of atomic type and it is a conjunction
of non trivial equations of the following forms:

(Solved) X =}, a, where the variable X does not occur anywhere else in P and a is in long
normal form. Both X and X :?M a are said to be solved in P.
Flex-Flex) non solved equations between long normal terms whose root operator is o or ¢ which
g ! 4

we represent as equations between their skeleton: wz: (X ar, . ap) :?Ase
qpf;q (Vb .., by) with X, Y of atomic type.

In [2] it was proved that: 1) Any As.-solved form has As.-unifiers; 2) Well-typedness: Deduction by the
Ase-unification rules of a well-typed equation gives rise only to well-typed equations, T and F; 3) Solved
problems are normalized for the As.-unification rules and, conversely, if a system is a conjunction of equations
that cannot be reduced by the Asc-unification rules then it is solved.

Let P and P’ be As.-unification problems, let “rule” denote the name of a \s.-unification rule and “—
its corresponding deduction relation. By correctness and completeness of rule we understand P —"“¢ P’
implies Uys, (P') C Uys, (P) and P —"™!¢ P implies Uys, (P) C Uys, (P'), respectively.

rulen

THEOREM 2.3 (Correctness and completeness [2])
The As.-unification rules are correct and complete.

An analogous unification strategy to the one for Ao presented in [6] applies as well in this setting. Cor-
rectness and completeness proofs for these strategies essentially do not differ because they are based on an
appropriate ordering of the application of the unification rules which is in a certain way independent of the
calculi [1].

3 HOU in the pure A-calculus

[2], reviewed in Section 2, dealt with half of the box on the right hand side of Figure 1. That is, only with the
Ase-unification method. For applying this method to HOU in A-calculus we need to complete the diagram
by providing the pre-cooking and Back translations, show their correctness and completeness and establish
the applicability of Ase-unification for HOU in pure A-calculus.

Initially we present one example on how to apply our As.-unification method in order to solve HOU
problems in the pure A-calculus. Then we present adequate pre-cooking and back translations (see Figure 1).

Observe firstly that unifying two terms a and b in the A-calculus consists in finding a substitution € such
that #(a) =g, 0(b). Thus using the notation of substitution in Definitions 1.2 and 1.3, a unifier in the
A-calculus of the problem A.X :?Bn A.2 is not a term t = X such that \.t :?Bn A.2 but a term ¢t = X
such that §(A.X) = A.07(X) = A.2. This observation can be extended to any unifier and by translating
appropriately A-terms a,b € Agp(X), the HOU problem a :,?877 b can be reduced to equational unification.

Before defining our pre-cooking translation from Ayp(X) into the As.-calculus we motivate how the search-
ing for substitution solutions of a HOU problem « :?Bn b corresponds to the searching for grafting solutions
of a unification problem in As..

ExXAMPLE 3.1

Consider the HOU problem A.(X 2) :?Bn .2, where 2 and X are of type A and A — A, respectively. Observe
that applying a substitution solution 6 to the Agp(X)-term A.(X 2) gives (A\.(X 2)) = A\.(67(X) 2). Then
in the \s.-calculus we are searching for a grafting 6’ such that 8’ (\.(¢3(X) 2)) =xs. A\.2. Correspondingly,
in the Ao-calculus, A.(X 2) is translated or pre-cooked into A.(X[f1] 2). This correspondence results from

On Applying As.-Unification for Simply-Typed HOU in the Pure A-Calculus 5

one between both Fta rules (i.e., between b[f] = a and p3b = a). Then we should search for unifiers for the
problem \.(p3(X) 2) =%, A.2.

Now we apply Asc-unification rules to the problem A.(¢2(X) 2) :?)\Se A.2. By applying Dec-\ and Ezp-\
we get (¢5(X) 2) =},. 2 and subsequently 3Y (¢3(X) 2) =3, 2A X =}, A.Y. Then by applying Replace
and Normalize we obtain 3V (93 (X.Y) 2) =}, 2AX =], AY and IV (LY)o'2 =}, 2AX =], A.Y. Now,
we obtain (Y (Y)o'2 =}, 2A X =}, AY) A (Y =}, 1VY =}, 2) by applyingEzp-app; by applying
Replace: ((pi1)o'2 =5, 2 A X =}, A1)V ((pi2)0'2 =], 2 A X =}, A.2); and by applying Normalize:
(2_?)\3 QAX:AS >‘1) (_?)\s 2/\X—>\s >‘2)

In this way substitution solutions {X/A.1} and {X/A.2} are found.

To complete the analysis note that Definitions 1.2, 1.3 and S-reduction in Agp(X) give {X/A\.1}(A.(X 2))
=A{X/AD)THX) 2) = A (A1 2) = A (A1 2) =5 A2 and {X/A2}(\.(X 2)) = A.({X/(A2)T}HX) 2)
= A(A2% 2) = A(A3 2) =5 A.{1/2}(3) = \.2. .

In general, before the unification process, a A-term a should be translated into a As.-term o' obtained
by simultaneously replacing each occurrence of a meta-variable X at position ¢ in a by <p0+1X where k is
the number of abstractors between the root position of a and position i. If £ = 0 then the occurrence of
X remains unchanged. The pre-cooking translation defined in [6] transcribes all occurrences of de Bruijn
indices n into 1[1"71] and all occurrences of meta-variables X into X [t*], with k as above. Notice that the
two pre-cooking translations can be implemented non-recursively in an efficient way.

DEFINITION 3.2 (Pre-cooking)
Let a € Agp(X) such that I Fp,,(x) a : T. With every variable X of type A occurring at a we associate
the same type and context ' in the As.-calculus. The pre-cooking of a from Ayp(X) to the As.-calculus is
defined by ap. = PC(a,0) where PC(a,n) is defined by:

1) PC(Ag.a,n) = Ap.PC(a,n+1) 2) PC((a b),n) = (PC(a,n) PC(b,n))

X,ifn=0

3) PC(k,n) =k 4) PC(X,n) = { AILX, otherwise
LemMA 3.3 (Type preservation)
T Fp pxya:T, then I'kys, ape : T

The following proposition which relates substitution in Agp(X’) and grafting in As., justifies pre-cooking.

PROPOSITION 3.4 (Semantics of pre-cooking)
Let a,b1,... ,b, be terms of Agp(X). We have:
(G{Xl/bla--- /bp})pe —apc{Xl/blpc:--- Xp/bp,.}g-

In contrast to the corresponding proof in | GT where substitution objects are necessary for proving the critical
case of a = X (i.e., substitutions of the form [1...k. 17*]) our proof uses pure term objects by selecting the
appropriate super and subscripts for the ¢ operator (i.e., @Z“).

The following proposition presents necessary facts for relating the existence of solutions for unification
problems in the pure A-calculus and in the As.-calculus.

PROPOSITION 3.5
Let a and b be terms in Agp(X). Then: 1) a —5 b implies aye =3, bye; 2) If a is fy-nf then ap. is Ase-nf;
3) a—, bimplies ap. —veta bpe; 4) a =gy, bif and only if ap. =xs, bpe.

Again, our proof differs from the corresponding one in [6] in that we avoid the use of complicated substi-
tution objects because we profit from the semantics of the ¢ operator of the As.-calculus.

Finally, we relate solutions and their existence in the pure A-calculus and for the corresponding pre-cooked
terms in the As.-calculus.

PROPOSITION 3.6 (Correspondence between solutions)

Let a, b in Agp(X). Then there exist terms Ny,...,N, € Agp(X) such that a{X:/Ni,..., X,/Np} =5y
b{X1/N1,...,Xp/Np} if and only if there exist As.-terms Mj, ... , M, such that apc{X1/M,... ,Xp/Mp},
=xs. Ope{X1/Mn,..., Xp/Mp},.

In addition to pre-cooking, we need a Back translation for giving descriptions of solutions of the original pre-
cooked problems. That means, that for any unification problem P, derived by applying the As.-unification

6 On Applying As.-Unification for Simply-Typed HOU in the Pure A-Calculus

rules to the pre-cooking a,. :;SE bpe, we have to reassemble a problem () in the image of the pre-cooking
translation with the same solutions as P. Subsequently, @) should be translated to the A-calculus, by applying
the inverse of the pre-cooking translation, into a HOU problem R (see Figure 1). Then the solutions of P
coincide with the solutions of) and are the pre-cooking of the solutions of R, which coincide with the
solutions of the original HOU problem a :?Bn b. In this way the set of solutions is given as solved forms.

By the correspondence between solutions (Proposition 3.6), we have that if a :?Bn b has a solution then
so does its pre-cooking a,. :Z\se bpc. Here we do not present the proof of the converse which can be done
following similar steps to those of the Ao-HOU approach in [6] but adapted to the As.-calculus.

The As.-unification rules are extended with the following rules:

(Anti-Ezp-\) P —3Y(PAX =}, (Y 1))if (X : AD F Ax) € var(P),
where (Y : Ty F A — Ax) & var(P)
(Anti-Dec-\) P Aa zg\se b= PAMlsa zg\se Aabifa zg\se b is well-typed in an environment A.T’

ProposITION 3.7 (Correctness and completeness of the Anti-rules)
The Asc-unification rules together with the Anti-Ezp-A and Anti-Dec-\ rules are correct and complete.

The rule Anti-Dec-) is applied only to equations whose environments are strict extensions of I'; i.e. of the
form A; ... A,.I', where n > 0. The rule Anti-Exp-\ applies only to variables, whose environments are strict
extensions of I'. The Back strategy consists on applying the two new rules and the rule Replace eagerly.

PROPOSITION 3.8
Let a :;377 b be a HOU problem well-typed in an environment I' and P derived by the As.-unification rules
from its pre-cooking. By applying the Back strategy on P we obtain a system () satisfying the following
invariants: 1) if an equation is well-typed in environment A, then A is an extension of T';

2) for every variable Y, its environment I'y is an extension of T;

3) for every subterm wz: fll (X,a1,...,ap) in P we have p < |T'y|— |T'| + L.

PropoSITION 3.9 (Building Back Pre-cooking images)

Let a :,?877 b be a HOU problem and P an equational problem derived from its pre-cooking by using the
Ase-unification rules. The system resulting from normalization of P by applying the Back strategy is the
pre-cooking of a problem in the A-calculus.

Using previous correctness and completeness results we obtain the following Corollary and Theorem.

COROLLARY 3.10 (Soundness of the construction of solutions)

Let a :;377 b a HOU problem such that its pre-cooking, normalised with the As.-unification rules gives a
disjunction of systems that has one of its components, say P, solved. Let () be the system resulting by
normalising P with the Back strategy and let R = PC~!(Q). Then R is a A-solved form (in the sense of
[12]) and the solutions of R are solutions of the original HOU problem.

THEOREM 3.11 (Completeness of the construction of solutions)

Let a :;377 b a HOU problem such that its pre-cooking is well-typed in the environment I'. Any solution of
the initial problem can be obtained as the one of a system in A-solved form resulting from the application
of the As.-unification rules, followed by the Back strategy and the inverse of the pre-cooking translation.

4 Considerations about the implementation

We precise here why the use of the sole de Bruijn index 1 and of substitution objects make the Ao-HOU
approach less efficient than the As.-HOU one.

For the sake of clarity, we have omitted above both types and environments. But for the analysis of the
HOU method above it is necessary to know both the types and environments of all subexpressions during
the unification process. Therefore terms “decorated” with types and environments for all their subterms are
necessary for any reasonable implementation. The general idea is to assign types and environments to all
subexpressions at the beginning of the unification process and to maintain this notational discipline during
the process via decorated versions of the As.-calculus, the As.-typing rules and, of course, the As.-unification
rules. We present the decorated version of the typing rules for the As.-calculus in the Table 1.

On Applying As.-Unification for Simply-Typed HOU in the Pure A-Calculus 7

TABLE 1. Undecorated and decorated typing rules for the As.-calculus

(Var) ATF1: A 4
+n:B nh
Varn) ATra+1:8 @+ 15T
ATFb:B b
Lambd — B
(Lambda) OabADL
(App) ''kb:A—-B TFa:A b g, dy
F(® a):B (bg_ﬂg at)y
Si Is;bb:B T BTsiFa:A b2t a P
(Sigma) I'ktacib: A (aF<i'B'F>l le>z)
(Phi) e Lopyitar A aisk'FMJﬂ
F'Fyla:A (%aiﬁ’“'rz’““)g
(Meta) Txt X:Ax Xhx

The typing rules Var and Varn can be reduced to a sole decorated rule of the form n‘g ~AnD making the

decoration of de Bruijn indices a straightforward process which is linear in both time and space in n.

The rule Meta is added to type open terms and should be understood as follows: for every metavariable
X, there exists a unique environment I'y and a unique type Ax such that the rule holds. This is done in
order to obtain compatibility between typing and grafting. We suppose that for each pair (T, A) there exists
an infinite set of variables X such that 'x =T and Ax = A.

In Ao the corresponding rules are adapted for the manipulation of substitution objects. Types of sub-
stitutions are environments'. Examples of these rules are: (Shift) 141 (Comp)s® | t§ F (s§ o t5)F;
(Clos)ay , s\ F (a%[sL])4. This kind of explicit decoration was done for the A\o-HOU approach in [5], but
maintaining this discipline in the As.-calculus is more economical in both space and time. Let us compare
the previous linear decoration of a de Bruijn index, n, in As. and its corresponding Ao-term 1[17~1]:

ExAaMPLE 4.1
The decoration of 1[1"~!] uses quadratic space and time.

ne1.An.T
(comp) (shift) TA r , (shift) TA 1A T
An A, T An_2.T A T

(wmp)(1 TAn LA, F)A r2 , (shift) TA
(comp) A, 1A, T A, _2..T Ay A, T A,.T

(Tl TA A F)A FORCIRD I it , (var)Ly”
(CZOS)AF A, 1.A, T A T A;. A, T\A; .. A, T

(5 (R Gt TAn LA, r)A"fr2 SRR St A) o

This, of course, could be improved in the Ao-HOU approach, but as far as we know, improvements have
not been incorporated. In [6] as well as in [5] all the development of the implementation of the method
is related to the sole de Bruijn index 1, the shift operator 1 and composition, which makes that approach
inefficient when compared with ours. Of course, we believe some improvements in this sense were done in
the implementation of the Ao-HOU, but from the theoretical point of view our approach is the first one that
has treated this problem in a natural way, because in As., all de Bruijn indices are included.

Another problem in the decoration of substitution objects of the Ao-calculus is that they are decorated
with two environments that are lists of types. While the main marks in the decoration of a term object are
a sole environment and its type. This makes decorations of Ase-terms cheaper than those of Ao-terms.

1 This is denoted in the undecorated setting as s > I,

8 On Applying As.-Unification for Simply-Typed HOU in the Pure A-Calculus

As previously mentioned, decoration of expressions and subexpressions is only done at the beginning of
the unification process, since the As. and As.-unification rules are supposed decorated and, of course, they
preserve types and environments. Initial decoration can be done using the algorithm in Table 2. This
algorithm is based on a straightforward propagation of the decoration of subterms composing a As.-term
according to the decorated As.-typing rules. The kernel of the algorithm consists of a set of rules that
propagate environments and types between the decoration marks of the term processed conforming to its
structure outermost (named as {}) and innermost (named as 1}).

The previous algorithm runs in time linear on the size of the initial As.-term and on the magnitude of its
de Bruijn indices. For this algorithm it is necessary to know the main environment, but linear algorithms can
be built without such information, based on the decomposition of the undecorated input into a first order
unification problem of type and environment expressions generated from the typing rules of the As.-calculus.

Our previous remarks point out the advantage of As. in using all de Bruijn indices, which avoids quadratic
decorations in the size of the input as in the Ao-HOU approach. In fact, we can take again 1[1"~!] of
Example 4.1. Its explicit decoration is, of course, quadratic. Consequently we can state the following.

LEMMA 4.2 (Linear versus quadratic decorations)
Pre-cooked A-terms in the As.-calculus have linear decorations on the size of the A-terms and the magnitude
of their de Bruijn indices, while in Ao these decorations are quadratic.

Moreover, notice here that the size of decorated A-terms increases in an inadequate way when normalizing
via the Ao-calculus, because the decoration of substitution objects is not only expensive but also expansive
in size and time. Furthermore, this expansion of decorated terms in the Ao-HOU approach is independent
of the use of other de Bruijn indices than 1 itself, and depends only on the use of substitution objects.

EXAMPLE 4.3
To illustrate this consider the decorated A-term (As.(As.X 1) 1):
(Aa.(Aa.xgAAD AL 44D AADAL AT AT and compare the corresponding decorated terms in

the Ase- and Ao-calculi after two applications of Beta. In the As. we have:

_>Beta (()\A.(Xﬁ'A'A'Fal1£'A'F)£'A'F)’2£A 1,21‘),21‘ _>Beta ((XQ.A.A.Fal1£.A.F)£.A.F011£.F)£.F and in

JAAT
the Ao-calculus we have: = gegg (Aa. (X444 4d 3T A A% DA DAL 4 18DAT 2 Beta

JAAT AT
(XAAAT i) Aa oA A i) A r DA .

This expansion problem in the Ao-calculus is a consequence of the fact that some rules used in the genera-
tion of substitution objects increase the number of subterms which are substitution objects. In Example 4.3,
we only used the Beta rule of the Ao-calculus(i.e., (As.a b) — a[b.id]) which generates two new substitu-
tion subterms to be marked in a decorated term: id and b.id, while for the Beta rule of the As.-calculus,
(Aa.a b) — ao'b, the number of subterms is reduced by one. Critical is the case of the Abs rule of the
Ao-calculus, (Ag.a)[s] = Aa.a[l.(so 1)], that enlarges the number of subterms to be marked in decorated
terms from four to eight. Rules that enlarge the number of subterms to be decorated in the As. are o-app-
transition, p-app-transition, o-o-transition and @-o-transition; i.e., all those related to the App rule of the
Ao-calculus, that enlarges the number of subterms to be decorated from five to seven.

All the rules of the As.-calculus are supposed decorated. For example, the decorated Eta rule has the
following form: (Eta) (Aa.(adlp 14")5")ase — Yaop if adlp = (¥304.,p)4%s

Except for this rule, application of the rules of the As.-calculus is easy to decide: rules are either non-
conditional or have simple arithmetic conditions that can be resolved via any arithmetic deduction algorithm
usually built-in between any interesting programming language.

The test for applying the Eta rule can be implemented according to the correspondence between the two
FEta rules and following the idea suggested for the A\o-HOU approach in [5]. We can extend the language
of the As.-calculus with a dummy symbol ¢ and verify for occurrences of this symbol after s.-normalizing
the term (a4, zotoL)y 5. In the case that the previous term has no occurrences of ¢ the Eta rule applies
being the reduct that se.-normalization. In practice we have the easy to implement rule:

(Bta) (Aa.(a4Lp 1404 Y5 — se-normalization((a4h goto)h , 5) if o doesn’t occur in this term.

LEMMA 4.4
The previous implementation of the Eta rule is correct.

On Applying As.-Unification for Simply-Typed HOU in the Pure A-Calculus 9

TABLE 2. Type checking / decorating algorithm for the As.-calculus

INPUT: a a Ase-term and I' an environment.

OUTPUT: If a is well-typed in " then a corresponding decorated term a’, whose main environ-
ment is I'. Else it reports that a is ill-typed in T'.

NOTATION: L denotes unknown types and environments.

ALGORITHM: Initially, a is decorated in such a way that the sole environment known is its
main one marked as I'. All other types and environments in the decoration of a are marked as
1. Afterwards, apply nondeterministically to the decorated term the following rules until an
irreducible term is obtained.

(Varn) nfl---- AnD nﬁl..___An_F
A=1) Aa. aL) - (Aaadhr
(A—1) Aa.adD)D o (AgadD)L
(app-{) aT) — (a b))}

(
(
(a1
(appf) (al,p BRI = (ddyp Vi)p
(7=4) (afobDL > (@5 2]
(0__ 9) (Pei LI bF>z) N (I<;. B.ina_ibl“zi)
(0—=1) (a4
(=4
(p=1) (¥
(Meta) XEX = XX

a 1

F<l B. F>l sz>l)L (i<l.B.F>l br>l)g
I'cp.I

9019%_) ((p;gank >L+z)5‘_

F<k F>k+z)F (‘pk E<k F>k+z)g

Finally, if the main type of the resulting decorated term a’ is known then return a'. Otherwise
report that a is ill-typed under environment I'.

Turning back to A\o-HOU (see [5]), the condition in the implementation of the FEta rule is seen as: “if ¢
doesn’t occur in the a—normalization((aﬁiB[(og.idll:)g_r])g_,B)”

This implementation is less efficient than in the As.-calculus and once more the problem depends on the
use of substitution objects in the Ag-calculus. Thisis a simple consequence of the fact that when propagating
the above substitution objects between the structure of a’ e % p we need to apply the rules Abs and App that
are expansive, as mentioned early. More precisely, the rule Abs, (Aa.a)[s] = Aa.(a[l.(so 1)]), enlarges the
number of substitution objects to be marked in decorated terms from one (s) to four: s, 1, so 1, and 1.(so 1);
and the rule App, (a b)[s] = (a[s] b[s]), from one to two. In contrast, in the As.-calculus the corresponding
propagation of the o operator is executed by applying the rules o-A-transition and o-app-transition. The
o-A-transition, (As.a)o'b — As.ac't1bh, does not enlarge the number of subterms to be marked. And the
o-app-transition, (a; az)o'b — (ayo'b ax0'b), increases the number of subterms to be marked by two as
the App rule, but without including substitution objects.

5 Conclusions

Following the Ao-HOU approach introduced in [6], we have developed a pre-cooking translation that tran-
scribes pure A-terms in de Bruijn notation into As.-terms, for which the search of grafting solutions corre-
sponds to substitution solutions in the pure A-calculus.

Our pre-cooking translation transcribes a term a by replacing each occurrence of a meta-variable X with
go’é“X while the Ao-calculus uses X[1*], where k is the number of abstractors between the position of the
occurrence of X and the root position. Additionally, the pre-cooking translation in [6] transcribes each
occurrence of a de Bruijn index n in a into 1[1"~!]. Conformity of the two pre-cooking translations is
therefore evident. But our proofs differ from the corresponding ones in [6] in that we don’t need the use

10 On Applying As.-Unification for Simply-Typed HOU in the Pure A-Calculus

of complex substitution objects because of the appropriate semantics and flexibility of the ¢ operator in
the As.-calculus. This can be observed in the proof of the correct semantics of the pre-cooking translation
(Proposition 3.4) and the proof of Proposition 3.5 which relates the existence of unification solutions in
the A- and the As.-calculus. In these proofs, only a correct selection of the scripts for the operator ¢ was
necessary, avoiding the manipulation of substitution objects as is the case in the A\o-HOU approach.

Pre-cooking is complemented with a back translation that enables the reconstruction of solved forms of
unification problems in As. into a description of solutions of the corresponding HOU problems in the pure
A-calculus.

Furthermore, by comparing the implementation of our method and that of the Ao-HOU given in [5], we
observed that pre-cooked A-terms in the As.-calculus have linear decorations on the size of the A-terms
and the magnitude of their de Bruijn indices, while in Ao these decorations are quadratic. For that, we
don’t make any consideration about use of efficient data structures. For a reasonable implementation of the
Ao-HOU approach, a variation of the Ao-calculus which includes all de Bruijn indices should be used, but
according to the implementation of that method in [5], this has remained inefficient. From the theoretical
point of view, our approach is the first one that has treated this problem in a natural way, because of the
simple syntax of the As.-calculus, where all de Bruijn indices are included.

But it is not the sole use of all de Bruijn indices that makes the As. approach more efficient. Another
problem in the decoration of substitution objects of the Ao-calculus is that they are decorated with two
environments that are lists of types. While the main marks in the decoration of a term object are a sole
environment and its type. This makes decorations of As.-terms smaller than the ones of Ao-terms. Moreover,
the size of decorated A-terms increases in an inadequate way when normalizing via the Ao-calculus, because
some rules in the Ao-calculus are expensive in that they enlarge the number of substitution objects to be
marked in decorated terms. Also, the lack of substitution objects in As. makes the proofs easier.

Much work remains to be done and in particular, to be conclusive, a prototype implementation of this
method is necessary. Additionally, a formal distinction, from the practical point of view, between the As.-
calculus (and our procedure) and the suspension calculus developed by Nadathur and Wilson in [10, 9] (and
used in the implementation of the higher order logical programming language AProlog) should be elaborated.
This is meaningful, since the As.-calculus and the calculus of [10, 9] have correlated nice properties. For
instance the laziness in the substitution needed in implementations of S-reduction, that arises naturally
in the Asc-calculus, is provided as the informal but empirical concept of suspension of substitutions by
the rewrite rules of Nadathur and Wilson. Establishing these connections is important for estimating the
appropriateness of the As.-HOU approach in that practical framework.

References

[1] M. Ayala-Rincén and F. Kamareddine. Strategies for Simply-Typed Higher Order Unification via Asc-Style of Explicit
Substitution. In R. Kennaway, editor, Third International Workshop on Ezplicit Substitutions Theory and Applications to
Programs and Proofs (WESTAPP 2000), pages 3-17, Norwich, England, 2000.

[2] M. Ayala-Rincén and F. Kamareddine. Unification via the As.-Style of Explicit Substitution. Logical Journal of the Interest
Group in Pure and Applied Logics - IGPL, 9(4):521-555, 2001.

[3] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press, 1998.

[4] H. Barendregt. The Lambda Calculus : Its Syntaxz and Semantics (revised edition). North Holland, 1984.

[5] P. Borovansky. Implementation of Higher-Order Unification Based on Calculus of Explicit Substitutions. In M. Bartosek,
J. Staudek, and J. Wiedermann, editors, Proceedings of the SOFSEM’95: Theory and Practice of Informatics, volume
1012 of Lecture Notes on Computer Science, pages 363—-368. Springer Verlag, 1995.

[6] G. Dowek, T. Hardin, and C. Kirchner. Higher-order Unification via Explicit Substitutions. Information and Computation,
157(1/2):183-235, 2000.

[7] G. P. Huet. A Unification Algorithm for Typed A-Calculus. Theoretical Computer Science, 1:27-57, 1975.

[8] F. Kamareddine and A. Rios. Extending a A-calculus with Explicit Substitution which Preserves Strong Normalisation into
a Confluent Calculus on Open Terms. Journal of Functional Programming, 7:395-420, 1997.

[9] G. Nadathur. A Fine-Grained Notation for Lambda Terms and Its Use in Intensional Operations. The Journal of Functional
and Logic Programming, 1999(2):1-62, 1999.

[10] G. Nadathur and D. S. Wilson. A Notation for Lambda Terms A Generalization of Environments. Theoretical Computer
Science, 198:49-98, 1998.

[11] R. P. Nederpelt, J. H. Geuvers, and R. C. de Vrijer. Selected papers on Automath. North-Holland, 1994.

[12] W. Snyder and J. Gallier. Higher-Order Unification Revisited: Complete Sets of Transformations. Journal of Symbolic
Computation, 8:101-140, 1989.

On Applying As.-Unification for Simply-Typed HOU in the Pure A-Calculus 11

