
Ele
troni
 Notes in Theoreti
al Computer S
ien
e 67 (2002)URL: http://www.elsevier.nl/lo
ate/ent
s/volume67.html 20 pagesComparing Cal
uli of Expli
it Substitutionswith Eta-redu
tion 1
Mauri
io Ayala-Rin
�on, Fl�avio L. C. de Moura 2;3Departamento de Matem�ati
aUniversidade de Bras��liaBras��lia D.F., BrasilFairouz Kamareddine 4Computing and Ele
tri
al EngineeringHeriot-Watt UniversityEdinburgh, S
otlandAbstra
tThe past de
ade has seen an explosion of work on
al
uli of expli
it substitutions.Numerous work has illustrated the usefulness of these
al
uli for pra
ti
al notionslike the implementation of typed fun
tional programming languages and higherorder proof assistants. Three styles of expli
it substitutions are treated in this paper:the �� and the �se whi
h have proved useful for solving pra
ti
al problems likehigher order uni�
ation, and the suspension
al
ulus related to the implementationof the language �Prolog. We enlarge the suspension
al
ulus with an adequate eta-redu
tion whi
h we show to preserve termination and
on
uen
e of the asso
iatedsubstitution
al
ulus and to
orrespond to the eta-redu
tions of the other two
al
uli.Additionally, we prove that �� and �se as well as �� and the suspension
al
ulusare non
omparable while �se is more adequate than the suspension
al
ulus.Keywords: Cal
uli of expli
it substitutions, lambda-
al
uli, eta redu
tion.1 Introdu
tionRe
ent years have witnessed an explosion of work on expli
iting substitutions[1,7,9,14,15,17,19℄ and on establishing its usefulness to
omputation: e.g., to1 Partially supported by the Brazilian CNPq resear
h
oun
il grant number 47488101-6.2 First author partially suported by the FEMAT Brazilian foundation for resear
h in math-emati
s, se
ond author supported by the CAPES Brazilian foundation.3 Email: fayala,flaviog�mat.unb.br4 Email: fairouz�
ee.hw.a
.uk

2002 Published by Elsevier S
ien
e B. V.

Ayala-Rin
�on, de Moura and Kamareddineautomated dedu
tion and theorem proving [24,25℄, to proof theory [31℄, to pro-gramming languages [8,20,23,26℄ and to higher order uni�
ation HOU [2,13℄.This paper
on
entrates on three di�erent styles of substitutions:(i) The ��-style [1℄ whi
h introdu
es two di�erent sets of entities: one forterms and one for substitutions.(ii) The suspension
al
ulus [28,26℄, denoted �susp, whi
h introdu
es threedi�erent sets of entities: one for terms, one for environments and one forenvironment terms.(iii) The �s-style [19℄ whi
h uses a philosophy of de Bruijn's Automath [29℄elaborated in the new item notation [18℄. The philosophy states thatterms are built by appli
ations (a fun
tion applied to an argument),abstra
tion (a fun
tion), substitution or updating. The advantages ofthis philosophy in
lude remaining as
lose as possible to the familiar �-
al
ulus (
f. [18℄).The desired properties of expli
it substitution
al
uli are a) simulation of�-redu
tion, b)
on
uen
e (CR) on
losed terms,
) CR on open terms, d)strong normalization (SN) of expli
it substitutions and e) preservation of SNof the �-
al
ulus. �� satis�es a), b) and d), �s satis�es a)..e) but not
). �shas an extension �se for whi
h a)..
) holds, but e) fails and d) is unknown.The suspension
al
ulus satis�es a)..d), but e) is unknown. This paper dealswith two useful notions for these
al
uli:� Comparing the adequa
y of their redu
tion pro
ess using the eÆ
ient simu-lation of �-redu
tion of [22℄.� Extending the suspension
al
ulus with eta-redu
tion resulting in �susp.Eta-redu
tion for �� was used in [13℄ to deal with HOU and was introdu
edin [2℄ for the same purpose in �se.It was shown in [22℄ that �s and �� are non
omparable. In this paperwe prove that �se and �� as well as �� and �susp are non
omparable andthat �se is more adequate than the �susp. Additionally, we show that �susppreserves
on
uen
e and SN of the substitution
al
ulus asso
iated with �susp.2 PreliminariesWe assume familiarity with �-
al
ulus (
f. [6℄) and the notion of term algebraT (F ;X) built on a (
ountable) set of variables X and a set of operators F .Variables in X are denoted by X; Y; ::: and for a term a 2 T (F ;X), var(a)denotes the set of variables o

urring in a. Throughout, we take a; b;
; : : : torange over terms.Additionally, we assume familiarity with basi
 notions of rewriting as in[5℄. In parti
ular, for a redu
tion relation R over a set A, we denote with=!R the re
exive
losure of R , with !�R or just !� the re
exive andtransitive
losure of R and with !+R or just !+ the transitive
losure2

Ayala-Rin
�on, de Moura and Kamareddineof R . When a!� b we say that there exists a derivation from a to b . Bya!n b, we mean that the derivation
onsists of n steps of redu
tion and
alln the length of the derivation. Synta
ti
al identity is denoted by a = b.For a redu
tion relation R over A, (A;!R), we use the standard de�nitions of(lo
ally-)
on
uent or (weakly) Chur
h Rosser (W)CR, normal forms andstrong and weak normalization/termination SN and WN. Suppose Ris a SN redu
tion relation and let t be a term, then R-nf(t) denotes its normalform. As usual we use indis
riminately either \noetherian" or \terminating"instead of SN.A valuation is a mapping from X to T (F ;X). The homeomorphi
 ex-tension of a valuation, �, from its domain X to the domain T (F ;X) is
alledthe grafting of �. As usual, valuations and their
orresponding graftings aredenoted by the same Greek letter. The appli
ation of a valuation � or its
orresponding grafting to a term a 2 T (F ;X) will be written in post�x no-tation a�. The domain of a grafting �, is de�ned by Dom(�) = fX j X� 6=X;X 2 Xg. Its range, is de�ned by Ran(�) = [X2Dom(�)var(X�). We letvar(�) = Dom(�)[Ran(�). For expli
it representations of a valuation and its
orresponding grafting �, we use the notation � = fX 7!X� j X 2 Dom(�)g.Note that the notion of grafting, usually
alled �rst order substitution,
orre-sponds to simple synta
ti
 substitution without renaming.Let V be a (
ountable) set of variables denoted by lower
ase last letters ofthe Roman alphabet x; y; :::.De�nition 2.1 Terms �(V), of the �-
al
ulus with names are indu
tivelyde�ned by �(V) ::= x j (�(V) �(V)) j �x:�(V), where x 2 V.�x:a and (a b) are
alled abstra
tion and appli
ation terms, respe
tively.Terms in �(V) are
alled
losed �-terms or terms without substitution meta-variables. An abstra
tion �x:a represents a fun
tion of parameter x, whosebody is a. Its appli
ation (�x:a b) to an argument b, returns the valueof a, where the formal parameter x is repla
ed by b. This repla
ement offormal parameters with arguments is known as �-redu
tion. In the �rstorder
ontext of the term algebra T (f�x: j x 2 Vg [f()g;V) and its �rstorder substitution or grafting, �-redu
tion would be de�ned by (�x:a b) !afx 7!bg.But in this
ontext problems arise for
ing the use of �-
onversion torename bound variables:(i) Let � = fx 7!bg. There are no semanti
 di�eren
es between the abstra
-tions �x:x and �z:z; both abstra
tions represent the identity fun
tion.But (�x:x)� = �x:b and (�z:z)� = �z:z are di�erent.(ii) Let � = fx 7! yg. (�y:x)� = �y:y and (�z:x)� = �z:y, thus a
apture ispossible.Consequently, �-redu
tion, should be de�ned in a way that takes
are of re-naming bound variables when ne
essary to avoid harmful
apture of variables.3

Ayala-Rin
�on, de Moura and KamareddineThe �-
al
ulus usually
onsiders substitution as an atomi
 operation leav-ing impli
it the
omputational steps needed to e�e
tively perform
ompu-tational operations based on substitution su
h as mat
hing and uni�
ation.In any real higher order dedu
tive system, the substitution required by ba-si
 operations su
h as �-redu
tion should be implemented via smaller opera-tions. Expli
it substitution is an appropriate formalism for reasoning aboutthe operations involved in real implementations of substitution. Sin
e expli
itsubstitution is
loser to real implementations than to the
lassi
 �-
al
ulus,it provides a more a

urate theoreti
al model to analyze essential propertiesof real systems (termination,
on
uen
e,
orre
tness,
ompleteness, et
.) aswell as their time/spa
e
omplexity. For further details of the importan
e ofexpli
it substitution see [23,4℄.�-
onversion should be performed before applying the substitution in thebody of an abstra
tion. The grafting of a fresh variable avoids the possibilityof
apture. It is very important to remark that renaming sele
ts fresh variablesthat have not been used previously. Moreover, sin
e fresh variables are sele
tedrandomly, the result of the appli
ation of a substitution
an be
on
eived asa
lass of equivalen
e terms.De�nition 2.2 �-redu
tion is the rewriting relation de�ned by the rewriterule (�) and �-redu
tion is the rewriting relation de�ned by the rewrite rule(�), where:(�) (�x:a b)! fx=bg(a) and (�) �x:(a x)! a; if x 62 Fvar(a)Fvar(a) denotes the free variables o

urring in a. Noti
e that our notion ofsubstitution is not
ompletely satisfa
tory be
ause the idea of fresh variablesis impli
it and depends on the history of the renaming pro
ess.Lambda terms with meta-variables or open lambda terms are given by thefollowing.De�nition 2.3 Terms �(V;X), of the �-
al
ulus with names are indu
-tively de�ned by: �(V;X) ::= x j X j (�(V;X) �(V;X)) j �x:�(V;X), wherex 2 V and X 2 X .We have seen that the names of bound variables and their
orrespond-ing abstra
tors play a semanti
ally irrelevant role in the �-
al
ulus. So anyterm in �(V) or �(V;X)
an be seen as a synta
ti
al representative of itsobvious equivalen
e
lass. Hen
e, during synta
ti
 uni�
ation, the role thatnames of bound variables and their
orresponding abstra
tors play in
reasesthe
omplexity of the pro
ess and
reates
onfusion.Avoiding names in the �-
al
ulus is an e�e
tive way of
larifying themeaning of �-terms and, for the uni�
ation pro
ess, of eliminating redun-dant renaming. De Bruijn developed in [12℄ a notation where names of boundvariables are repla
ed by indi
es whi
h relate these bound variables to their
orresponding abstra
tors.It is
lear that the
orresponden
e between an o

urren
e of a bound vari-4

Ayala-Rin
�on, de Moura and Kamareddineable and its asso
iated abstra
tor operator is uniquely determined by its depth,that is the number of abstra
tors between them. Hen
e, �-terms
an be writ-ten in a term algebra over the natural numbers N , representing depth in-di
es, the appli
ation operator () and a sole abstra
tor operator � ; i.e.,T (f(); � g [N).In de Bruijn's notation, indexing the o

urren
es of free variables is givenby a referential a

ording to a �xed enumeration of the set of variables V, sayx; y; z; : : :, and pre�xing all �-terms with : : : �z:�y:�x: .Now we
an de�ne the �-
al
ulus in de Bruijn notation with open termsor meta-variables.De�nition 2.4 The set �dB(X) of �-terms in de Bruijn notation is de-�ned indu
tively as: �dB(X) ::= n j X j (�dB(X) �dB(X)) j ��dB(X), whereX 2 X and n 2 N n f0g.�dB(X)-terms without meta-variables are
alled
losed lambda terms.We write de Bruijn indi
es as 1; 2; 3; : : : ; n; : : :, to distinguish them froms
ripts. Sin
e all
onsidered
al
uli of expli
it substitutions are built over thelanguage of �dB(X), we will use � to denote �dB(X).De�ning �-redu
tion in de Bruijn notation by (�a b) ! f1=bga (wheref1=bga is the substitution of the index 1 in a with b) fails be
ause:� when eliminating the leading abstra
tor all indi
es asso
iated with free vari-able o

urren
es in a should be de
remented;� when propagating in a the substitution f1=bg through �s, the indi
es of thesubstitution (initially 1) and of the free variables in b should be in
remented.Hen
e, we need new operators for dete
ting, in
rementing and de
rement-ing free variables whi
h will be used in the de�nition of substitution.De�nition 2.5 Let a 2 �dB(X). The i-lift of a, denoted a+i is de�ned in-du
tively as follows:1) X+i = X , for X 2 X 2) (a1 a2)+i = (a+i1 a+i2)3) (�a1)+i = �a+(i+1)1 4) n+i = 8<: n+ 1; if n > in; if n � i for n 2 N :The lift of a term a is its 0-lift and is denoted brie
y as a+.De�nition 2.6 The appli
ation of the substitution with b at the depth n�1; n 2 N n f0g, denoted fn=bga, on a term a in �dB(X) is de�ned indu
tivelyas follows:1) fn=bgX = X, for X 2 X 2) fn=bg(a1 a2) = (fn=bga1 fn=bga2)3) fn=bg�a1 = �fn+ 1=b+ga1 4) fn=bgm = 8>>><>>>: m� 1; if m > nb; if m = nm; if m < n if m 2 N.5

Ayala-Rin
�on, de Moura and KamareddineDe�nition 2.7 The �-redu
tion in the �-
al
ulus with de Bruijn indi
es isde�ned as (�a b)! f1=bga.Observe that the rewriting system of the sole �-redu
tion rule is left-linearand non overlapping (i.e. orthogonal). Consequently, the rewriting systemde�ned over �dB(X) by the �-redu
tion rule is CR.In the �-
al
ulus with names, the �-redu
tion rule is de�ned as �x:(a x)!a; if x 62 Fvar(a). In �dB(X), the left side of this rule is written as �(a0 1),where a0 stands for the
orresponding translation of a under some �xed refe-rential of variables into the language of �dB(X). \a has no free o

urren
es ofx" means, in �(X), that there are neither o

urren
es in a0 of the index 1 atheight zero nor of the index 2 at height one nor of the index 3 at height twoet
. This means, in general, that there exists a term b su
h that b+ = a.De�nition 2.8 The �-redu
tion in the �-
al
ulus with de Bruijn indi
es isde�ned as �(a 1)! b if 9b b+ = a.3 Cal
uli �a la ��, �se and �suspRewriting systems for the �� and the �se-
al
uli in
luding the eta-rule
an befound either in [13℄ (for the ��) [2℄ (for both the �� and �se) or in the fullversion of this work (for the three
al
uli).3.1 The ��-
al
ulusThe ��-
al
ulus introdu
ed in [1℄ works on 2-sorted terms: (proper) terms,and substitutions.The rewriting system �� is lo
ally
on
uent [1℄, CR on substitution-
losedterms (i.e., terms without substitution variables) [30℄ and not CR on openterms (i.e., terms with term and substitution variables) [11℄. The possibleforms of a ��-term in ��-normal form were given in [30℄.3.2 The �se-
al
ulusThe �se-
al
ulus of [21℄ is an extension of the �s-
al
ulus ([19℄) whi
h is CR onopen terms and insists on remaining
lose to the syntax of the �-
al
ulus. Nextto abstra
tion and appli
ation, substitution (�) and updating (') operatorsare introdu
ed. A term
ontaining neither � nor ' is
alled a pure lambdaterm. This
al
ulus was originally introdu
ed without the Eta rule that wasadded in [2℄ to deal with higher order uni�
ation problems as originally donein [13℄ for the ��-
al
ulus.The �se-
al
ulus has been proved in [21℄ to be CR on open terms; tosimulate �-redu
tion: let a; b 2 �, if a !� b then a !��se b ; to be sound:let a; b 2 � , if a !��se b then a !�� b ; and its asso
iated substitution
al
ulus, that is the se-
al
ulus, to be WN and CR. The
hara
terization ofthe �se-normal forms was given in [21,2℄.6

Ayala-Rin
�on, de Moura and Kamareddine3.3 The suspension
al
ulusThe suspension
al
ulus [28,26℄ deals with �-terms as
omputational me
ha-nisms. This was motivated by implementational questions related to �Prolog,a logi
 programming language that uses typed �-terms as data stru
tures [27℄.The suspension
al
ulus works with three di�erent types of entities:suspended terms M , N ::= Cons j n j �M j (M N) j [[M; i; j; e1℄℄environments e1, e2 ::= nil j et :: e1 j ffe1; i; j; e2ggenvironment terms et ::= �i j (M; i) j hhet; i; j; e1iiwhere Cons denotes any
onstant and i; j are non negative natural numbers.As
onstants and de Bruijn indi
es are suspended terms, the suspension
al
ulus has open terms.The suspension
al
ulus owns a generation rule �s, that initiates the simu-lation of a �-redu
tion (as for the �� and the �se, respe
tively, the Beta andthe �-generation rules do) and two sets of rules for handling the suspendedterms. The �rst set, the r rules, for reading suspensions and the se
ond set,the m rules, for merging suspensions are given in Table 1.As in [28℄ we denote by .rm the redu
tion relation de�ned by the r- andm-rules in Table 1. The asso
iated substitution
al
ulus, denoted as susp, isthe one given by the
ongruen
e =rm.De�nition 3.1 ([28℄) The length len(e) of an environment e is given by:len(nil) := 0; len(et :: e0) := len(e0) + 1 andlen(ffe1; i; j; e2gg) := len(e1) + (len(e2) : i).The index ind(et) of an environment term et, and the l-th index indl(e) ofenvironment e and natural number l, are simultaneously de�ned by indu
tionon the stru
ture of expressions:ind(�m) = m + 1 ind((t0; m)) = mind(hhet0; j; k; eii) = 8<: indm(e) + (j : k) if len(e) > j : ind(et0) = mind(et0) otherwiseindl(nil) = 0 ind0(et :: e0) = ind(et) and indl+1(et :: e0) = indl(e0)
indl(ffe1; j; k; e2gg) = 8>>>>>>>>><>>>>>>>>>:

indm(e2) + (j : k) if l < len(e1) andlen(e2) > m = j : indl(e1)indl(e1) if l < len(e1) andlen(e2) � m = j : indl(e1)indl�l1+j(e2) if l � l1 = len(e1)The index of an environment e, denoted as ind(e), is ind0(e).De�nition 3.2 ([28℄) An expression of the suspension
al
ulus is said to be7

Ayala-Rin
�on, de Moura and KamareddineTable 1Rewriting rules of the suspension
al
ulus(�s) ((�t1 t2)�! [[t1; 1; 0; (t2; 0) :: nil℄℄(r1) [[
; ol; nl; e℄℄�!
; where
 is a
onstant(r2) [[i; 0; nl; nil℄℄�!i+nl(r3) [[1; ol; nl;�l :: e℄℄�!nl-l(r4) [[1; ol; nl; (t; l) :: e℄℄�! [[t; 0; (nl-l); nil℄℄(r5) [[i; ol; nl; et :: e℄℄�! [[i-1; (ol-1); nl; e℄℄; for i > 1(r6) [[(t1 t2); ol; nl; e℄℄�!([[t1; ol; nl; e℄℄ [[t2; ol; nl; e℄℄)(r7) [[� t; ol; nl; e℄℄�!� [[t; (ol + 1); (nl + 1);�nl :: e℄℄(m1) [[[[t; ol1; nl1; e1℄℄; ol2; nl2; e2℄℄�! [[t; ol0; nl0; ffe1; nl1; ol2; e2gg℄℄; whereol0 = ol1 + (ol2 : nl1) andnl0 = nl2 + (nl1 : ol2)(m2) ffnil; nl; 0; nilgg�!nil(m3) ffnil; nl; ol; et :: egg�!ffnil; (nl-1); (ol-1); egg; for nl; ol � 1(m4) ffnil; 0; ol; egg�!e(m5) ffet :: e1; nl; ol; e2gg�!hhet; nl; ol; e2ii :: ffe1; nl; ol; e2gg(m6) hhet; nl; 0; nilii�!et(m7) hh�m;nl; ol;�l :: eii�!�(l + (nl : ol)); for nl = m+ 1(m8) hh�m;nl; ol; (t; l) :: eii�!(t; (l + (nl : ol))); for nl = m + 1(m9) hh(t; nl); nl; ol; et :: eii�!([[t; ol; l0; et :: e℄℄; m); wherel0 = ind(et) and m = l0 + (nl : ol)(m10) hhet; nl; ol; et0 :: eii�!hhet; (nl-1); (ol-1); eii; for nl 6= ind(et)well-formed if the following
onditions hold over all its subexpressions s:� if s is [[t; ol; nl; e℄℄ then len(e) = ol and ind(e) � nl� if s is et :: e then ind(e) � ind(et)� if s is hhet; j; k; eii then len(e) = k and ind(et) � j� if s is ffe1; j; k; e2gg then len(e2) = k and ind(e1) � j.In the sequel, we only deal with well-formed expressions of the suspension
al
ulus. 8

Ayala-Rin
�on, de Moura and KamareddineThe suspension
al
ulus simulates �-redu
tion and its asso
iated substitu-tion
al
ulus susp is CR (over
losed and open terms) and SN [28℄. In [26℄Nadathur
onje
tures that the suspension
al
ulus preserves strong normali-zation too. The following lemma
hara
terizes the .rm-normal forms.Lemma 3.3 ([28℄) A well-formed expression of the suspension
al
ulus x isin its .rm-nf if and only if one of the following aÆrmations holds:1) x is a pure �-term in de Bruijn notation;2) x is an environment term of the form �l or (t; l), where t is a term in its.rm-nf;3) x is the environment nil or et :: e for et and e resp. an environment termand an environment in .rm-nf.4 The suspension
al
ulus enlarged with the �-redu
tion:the �susp-
al
ulusThe suspension
al
ulus was initially formulated without �-redu
tion. Herewe introdu
e an adequate Eta rule that enlarges the suspension
al
ulus pre-serving
orre
tness,
on
uen
e, and termination of the asso
iated substitution
al
ulus. The suspension
al
ulus enlarged with this Eta rule is denoted by�susp and its asso
iated substitution
al
ulus remains as susp. The Eta ruleis formulated as follows:(Eta) (� (t1 1)) �! t2; if t1 =rm [[t2; 0; 1; nil℄℄Intuitively Eta may be interpreted as: when it is possible to apply the �-redu
tion to the redex �(t1 1) we obtain a term t2 that has the same stru
tureas t1 with all its free de Bruijn indi
es de
remented by one. This is possiblewhenever there are no free o

urren
es of the variable
orresponding to 1 in t1.Proposition 4.2 proves the
orre
tness of Eta a

ording to this interpretation.We follow [10℄ and [3℄ for �� and �se respe
tively, and implement the Eta ruleof the �susp-
al
ulus by introdu
ing a dummy symbol 3, by:�(M 1) �!Eta Nif N = .rm-nf([[M; 1; 0; (3; 0) :: nil℄℄) and 3 does not o

ur in N .The
orre
tness of this implementation is explained be
ause an �-redu
tion�(M 1)!� N gives us a term N , whi
h is obtained from M by de
rementingby one all free o

urren
es of de Bruijn indi
es, as previously mentioned, andwhi
h
orresponds exa
tly to the .rm-normalization of the term ((�M) 3)!�s[[M; 1; 0; (3; 0) :: nil℄℄, whenever 3 does not appear in this normalized term.Lemma 4.1 Let A be a well-formed term of the suspension
al
ulus. Thenthe susp-normalization of the term [[A; k; k + 1;�k :: �k � 1 :: : : : :: �1 :: nil℄℄gives a term obtained from A by in
rementing by one all its de Bruijn freeindi
es greater than k and preserving unaltered all other de Bruijn indi
es.Proof. By indu
tion on the stru
ture of A. The
onstant
ase is trivial.9

Ayala-Rin
�on, de Moura and Kamareddine� A = n. If n > k then [[n; k; k + 1;�k :: : : : ::�1::nil℄℄ !kr5[[n� k; 0; k + 1; nil℄℄ !r2 n+ 1.If n � k then [[n; k; k + 1;�k :: : : : ::�1::nil℄℄ !n�1r5[[1; k � n+ 1; k + 1;�k � n+ 1:: : : : ::�1::nil℄℄ !r3 n;� A = (B C). we apply r6 and indu
tion hypothesis for B and C;� A = (�B). Sin
e B is bounded by an abstra
tor just its free variablesgreater than k + 1 should be in
remented by one, while the other variablesshould remain un
hanged. Sin
e [[(�B); k; k + 1;�k :: : : : :: �1 :: nil℄℄ !r7�[[B; k + 1; k + 2;�k + 1 :: : : : :: �1 :: nil℄℄, by applying indu
tion hypothe-sis over the previous term we obtain the desired result.� A = [[t; ol; nl; e℄℄. Without loss of generality A may be .rm-normalizedand by Lemma 3.3 the obtained term is of one of the forms analysed in theprevious
ases. 2Proposition 4.2 (Soundness of the Eta rule) Every appli
ation of the Etarule of �susp to the redex �(t1 1) gives e�e
tively the term t2 obtained from t1by de
rementing all its de Bruijn free indi
es by one.Proof. The proof is by indu
tion over the stru
ture of t2
onsidering thepremise t1 =rm [[t2; 0; 1; nil℄℄. The e�e
t of normalizing [[t2; 0; 1; nil℄℄ is to in-
rement by one all de Bruijn free indi
es o

urring at t2:� t2 = n. [[n; 0; 1; nil℄℄!r2 n + 1 =rm t1.� t2 = (A B). Without loss of generality we
an assume that both A and Bare in .rm-nf. Observe that [[(A B); 0; 1; nil℄℄ !r6 [[A; 0; 1; nil℄℄ [[B; 0; 1; nil℄℄.Now, by indu
tion hypothesis over A and B, we have that the normalizationof the suspended terms [[A; 0; 1; nil℄℄ and [[B; 0; 1; nil℄℄ have the desired e�e
tand
onsequently the same happens with the normalization of the suspendedterm [[(A B); 0; 1; nil℄℄.� t2 = (�A). As before, assume A is in .rm-nf. Note that [[(�A); 0; 1; nil℄℄!r7 (�[[A; 1; 2;�1::nil℄℄). By applying Lemma 4.1 to the term[[A; 1; 2;�1 :: nil℄℄ we
on
lude that all free o

urren
es of de Bruijn indi
esgreater than 1 at A are in
remented by one while the other indi
es areun
hanged.� t2 = [[t; i; j; e℄℄. If t is in .rm-nf then [[t; i; j; e℄℄ .�rm t0, where t0 is a pure�-term in de Bruijn notation by Lemma 3.3. Hen
e, the analysis given inthe previous three
ases applies here too. 2Noetherianity of susp plus the Eta rule enables us to apply the Newmandiamond lemma and the Knuth-Bendix
riti
al pair
riterion for proving its
on
uen
e.Lemma 4.3 (susp plus Eta is SN)The rewriting system asso
iated to susp10

Ayala-Rin
�on, de Moura and Kamareddineand the Eta rule is noetherian.Proof. (Sket
h) This is proved by showing that the Eta rule is also
ompatiblewith the well-founded partial ordering� that is de�ned and proved
ompatiblewith .rm in [28℄. 2A simple environment is an environment without subexpressions of theform ff ; ; ; gg or hh ; ; ; ii.Lemma 4.4 ([28℄) Let e1 be a simple environment and suppose that nl andol are naturals su
h that (nl � ind(e1)) � ol. Then ffe1; nl; ol; e2gg .�rm e1.Lemma 4.5 (Lo
al-
on
uen
e of susp plus Eta) The rewriting systemof the substitution
al
ulus susp plus the Eta rule is lo
ally-
on
uent.Proof. The rewrite relation .rm, i.e., susp, was shown in [28℄ to be (lo
ally)
on
uent. Thus for proving that the asso
iated rewriting system enlargedwith the Eta rule is lo
ally-
on
uent, it is enough to show that all additional
riti
al pairs built by overlapping between the Eta rule and the other rules ofsusp are joinable.Note that no
riti
al pairs are generated from the rule Eta and itself. Also,note that there is a unique overlapping between the set of rules in Table 1(minus (�s)) and Eta: namely, the one between Eta and (r7).This
riti
al pair is h[[t2; ol; nl; e℄℄; �[[(t1 1); ol + 1; nl + 1;�nl :: e℄℄i, wheret1 =rm [[t2; 0; 1; nil℄℄. After applying the rules r6 and r3 the right-side term ofthis
riti
al pair redu
es to �([[t1; ol + 1; nl + 1;�nl :: e℄℄ 1).We prove by analyzing the stru
ture of the term t1 that this
riti
al pairis joinable. As usual we
an
onsider the terms t1 and t2 as .rm-nf's.� t1 = n. For making possible the Eta appli
ation, we need that n > 1.A

ording to the length of the environment �nl :: e (i.e., ol + 1) we havethe following
ases:� ol + 1 < n. On the one side, �([[n; ol + 1; nl + 1;�nl :: e℄℄ 1) !ol+1r5�([[n-ol-1; 0; nl + 1; nil℄℄ 1) !r2 �(n-ol+nl 1) !Eta n-ol+nl-1. On theother side, t1 =rm [[t2; 0; 1; nil℄℄, hen
e t2 = n-1 and we have [[n-1; ol; nl; e℄℄!olr5 [[n-1-ol; 0; nl; nil℄℄ !r2 n-ol+nl-1.� ol + 1 � n. On the one side, �([[n; ol + 1; nl + 1;�nl :: e℄℄ 1) !n�1r5�([[1; ol � n+ 2; nl + 1; e1 :: e0℄℄ 1) and the subsequent derivation dependson the stru
ture of e1: when e1 = �l we apply r3 obtaining �(nl+1-l 1)!Eta nl-l and on the other side, [[n-1; ol; nl; e℄℄ !n�2r5[[1; ol � n+ 2; nl;�l :: e0℄℄ !r3 nl-l; when e1 = (t; l), where without lossof generality t is suppossed to be in .rm-nf, we have�([[1; ol � n+ 2; nl + 1; (t; l) :: e0℄℄ 1) !r4 �([[t; 0; nl � l + 1; nil℄℄ 1) !Eta.rm-nf([[[[t; 0; nl+1�l; nil℄℄; 1; 0; (3; 0) ::nil℄℄) !m1.rm-nf([[t; 0; nl�l; ffnil; nl+1�l; 1; (3; 0) ::nilgg℄℄)!m3.rm-nf([[t; 0; nl � l; ffnil; nl � l; 0; nilgg℄℄) !m2 .rm-nf([[t; 0; nl � l; nil℄℄)and on the other side, [[1; ol � n+ 2; nl; (t; l) :: e0℄℄!r4 [[t; 0; nl � l; nil℄℄.11

Ayala-Rin
�on, de Moura and KamareddineSin
e .rm-nf([[t; 0; nl � l; nil℄℄) and [[t; 0; nl � l; nil℄℄ are joinable we ob-tain the
on
uen
e.� t1 = (A B). Sin
e the sole rule of the �susp that truly \applies" appli-
ations is the �s, we
an separately
onsider Eta redu
tions for A and Band then apply the indu
tion hypothesis. That is, suppose indu
tively that�([[A; ol + 1; nl + 1;�nl :: e℄℄ 1) !Eta A00 and [[A0; ol; nl; e℄℄, where[[A0; 0; 1; nil℄℄ =rm A as well as �([[B; ol + 1; nl + 1;�nl :: e℄℄ 1)!Eta B00 and[[B0; ol; nl; e℄℄, where [[B0; 0; 1; nil℄℄ =rm B are joinable. Then sin
e�([[(A B); ol + 1; nl + 1;�nl ::e℄℄ 1) !r6�(([[A; ol + 1; nl + 1;�nl ::e℄℄ [[B; ol + 1; nl + 1;�nl ::e℄℄) 1) !Eta (A00 B00)and [[(A0 B0); ol; nl; e℄℄ !r6 ([[A0; ol; nl; e℄℄ [[B0; ol; nl; e℄℄) we
an
on
lude the
on
uen
e.� t1 = (�A). By the Eta rule implementation, it is enough to show the join-ability of the Eta redu
tion of the term �([[(�A); ol + 1; nl + 1;�nl ::e℄℄ 1)that is .rm-nf([[[[(�A); ol + 1; nl + 1;�nl ::e℄℄; 1; 0; (3; 0) ::nil℄℄) and the term[[.rm -nf([[(�A); 1; 0; (3; 0) ::nil℄℄); ol; nl; e℄℄.On the one side, [[.rm -nf([[(�A); 1; 0; (3; 0)::nil℄℄); ol; nl; e℄℄ .�rm.rm-nf([[[[(�A); 1; 0; (3; 0)::nil℄℄; ol; nl; e℄℄) !r7;r7.rm-nf((�[[[[A; 2; 1;�0::(3; 0)::nil℄℄; ol + 1; nl + 1;�nl::e℄℄)) .�rm(� .rm -nf([[[[A; 2; 1;�0::(3; 0)::nil℄℄; ol + 1; nl + 1;�nl::e℄℄)) !m1(� .rm -nf([[A; ol + 2; nl + 1; ff�0::(3; 0)::nil; 1; ol + 1;�nl::egg℄℄))and we have that ff�0::(3; 0)::nil; 1; ol + 1;�nl::egg !m5;m5hh�0; 1; ol+1;�nl::eii::hh(3; 0); 1; ol+1;�nl::eii::ffnil; 1; ol+1;�nl::egg!m7�nl::hh(3; 0); 1; ol + 1;�nl::eii::ffnil; 1; ol + 1;�nl::egg !m10�nl::hh(3; 0); 0; ol; eii::ffnil; 1; ol + 1;�nl::egg !m3;m4�nl::hh(3; 0); 0; ol; eii::e. Then we obtain the term(�.rm -nf([[A; ol + 2; nl + 1;�nl :: hh(3; 0); 0; ol; eii :: e℄℄)). On the other side,.rm-nf([[[[(�A); ol + 1; nl + 1;�nl :: e℄℄; 1; 0; (3; 0) :: nil℄℄) !r7;r7.rm-nf((�[[[[A; ol + 2; nl + 2;�nl + 1::�nl ::e℄℄; 2; 1;�0::(3; 0) ::nil℄℄)) .�rm(� .rm -nf([[[[A; ol + 2; nl + 2;�nl + 1::�nl ::e℄℄; 2; 1;�0::(3; 0) ::nil℄℄)) !m1(�.rm-nf[[A; ol + 2; nl + 1; ff�nl + 1::�nl ::e; nl + 2; 2;�0::(3; 0) ::nil℄℄) andwe have that ff�nl + 1 :: �nl :: e; nl + 2; 2;�0 :: (3; 0) :: nilgg !m5;m5hh�nl + 1; nl + 2; 2;�0 :: (3; 0) :: nilii :: hh�nl; nl + 2; 2;�0 :: (3; 0) :: nilii ::ffe; nl + 2; 2;�0 :: (3; 0) :: nilgg !m7 �nl :: hh�nl; nl + 2; 2;�0 :: (3; 0) ::nilii :: ffe; nl + 2; 2;�0 :: (3; 0) :: nilgg .�rm (By Lemma 4.4, sin
e we areworking with well-formed terms and then) ind(e) � nl)�nl :: hh�nl; nl + 2; 2;�0 :: (3; 0) :: nilii :: e !m10�nl :: hh�nl; nl + 1; 1; (3; 0) :: nilii :: e !m8 �nl :: (3; nl) :: e.Then we obtain the term (�.rm -nf([[A; ol + 2; nl + 1;�nl :: (3; nl) :: e℄℄)).The sole di�eren
e of the obtained suspended terms is the se
ond environ-ment term of their environments, that is hh(3; 0); 0; ol; eii and (3; nl). Butsin
e the Eta rule applies, when propagating the substitution between thesesuspended terms, the dummy symbol and hen
e these se
ond environmentterms should disapear. Now we
an
on
lude that these terms are joinable.12

Ayala-Rin
�on, de Moura and Kamareddine 2Finally, sin
e the rewriting system asso
iated to susp enlarged with theEta rule is lo
ally-
on
uent and noetherian, we
an apply the Newman dia-mond lemma for
on
luding its
on
uen
e.Theorem 4.6 (Con
uen
e of susp plus Eta) The
al
ulus susp jointlywith the Eta rule, is
on
uent.5 Comparing the adequa
y of the
al
uliA

ording to the
riterion of adequa
y introdu
ed in [22℄ we prove that the ��and the �susp as well as the �� and the �se are non
omparable. Additionally,we prove that the �se is more adequate than the �susp.Let a; b 2 � su
h that a!� b. A simulation of this �-redu
tion in ��, for� 2 f�; se; suspg is a ��-derivation a !r
 !�� �(
) = b, where r is the rulestarting � (beta for ��, �-generation for �se, �s for �susp) applied to the sameredex as the redex in a!� b. The
riterion of adequa
y is de�ned as follow:De�nition 5.1 (Adequa
y) Let �1; �2 2 f�; se; suspg. The ��1-
al
ulus ismore adequate (in simulating one step of �-redu
tion) than the ��2-
al
ulus,denoted ��1 � ��2, if:� for every �-redu
tion a!� b and every ��2-simulation a!n��2 b there existsa ��1-simulation a!m��1 b su
h that m � n;� there exists a �-redu
tion a !� b and a ��1-simulation a !m��1 b su
h thatfor every ��2-simulation a!n��2 b we have m < n.If neither ��1 � ��2 nor ��2 � ��1, then we say that ��1 and ��2 are non
omparable.The
ounterexamples proving that �� and �s are non
omparable presentedin [22℄ apply for the in
omparability of �� and �se sin
e �se is an extensionof �s for open terms.Proposition 5.2 The ��- and the �se-
al
uli are non
omparable.Lemma 5.3 Every ��-derivation of ((��2) 1) to its ��-nf has length greaterthan or equal to 6.Proof. In fa
t, all possible derivations are of one of the following forms.� (��1["℄) 1 !Beta (�1["℄)[1:id℄ !Abs �1["℄[1:((1:id)Æ ")℄ !Clos�1[" Æ(1:((1:id)Æ "))℄!ShiftCons �1[(1:id)Æ "℄!Map �1[1["℄:(idÆ ")℄!V arCons�1["℄ = �2;� (��1["℄) 1 !Beta (�1["℄)[1:id℄ !Abs �1["℄[1:((1:id)Æ ")℄ !Clos�1[" Æ(1:((1:id)Æ "))℄ !ShiftCons �1[(1:id)Æ "℄ !Map �1[1["℄:(idÆ ")℄ !IdL�1[1["℄: "℄ !V arCons �1["℄ = �2;� (��1["℄) 1 !Beta (�1["℄)[1:id℄ !Abs �1["℄[1:((1:id)Æ ")℄ !Clos13

Ayala-Rin
�on, de Moura and Kamareddine�1[" Æ(1:((1:id)Æ "))℄ !Map �1[" Æ(1:(1["℄:(idÆ ")))℄ !ShiftCons�1[1["℄:(idÆ ")℄ !V arCons �1["℄ = �2;� (��1["℄) 1 !Beta (�1["℄)[1:id℄ !Abs �1["℄[1:((1:id)Æ ")℄ !Clos�1[" Æ(1:((1:id)Æ "))℄ !Map �1[" Æ(1:(1["℄:(idÆ ")))℄ !ShiftCons�1[1["℄:(idÆ ")℄ !IdL �1[1["℄: "℄ !V arCons �1["℄ = �2;� (��1["℄) 1 !Beta (�1["℄)[1:id℄ !Abs �1["℄[1:((1:id)Æ ")℄ !Map�1["℄[1:(1["℄:(idÆ "))℄ !Clos �1[" Æ(1:(1["℄:(idÆ ")))℄ !ShiftCons�1[1["℄:(idÆ ")℄ !V arCons �1["℄ = �2;� (��1["℄) 1 !Beta (�1["℄)[1:id℄ !Abs �1["℄[1:((1:id)Æ ")℄ !Map�1["℄[1:(1["℄:(idÆ "))℄ !Clos �1[" Æ(1:(1["℄:(idÆ ")))℄ !ShiftCons�1[1["℄:(idÆ ")℄ !IdL �1[1["℄: "℄ !V arCons �1["℄ = �2;� (��1["℄) 1 !Beta (�1["℄)[1:id℄ !Abs �1["℄[1:((1:id)Æ ")℄ !Map�1["℄[1:(1["℄:(idÆ "))℄ !IdL �1["℄[1:(1["℄: ")℄ !Clos�1[" Æ(1:(1["℄: "))℄ !ShiftCons �1[1["℄: "℄ !V arCons �1["℄ = �2. 2Lemma 5.4 Every �susp-derivation of (��(2 2)) 1n to its �susp-nf has length4n+ 5.Proof. In fa
t, note that the sole possible derivation is:(��(2 2)) 1n !�s [[(�(2 2)); 1; 0; (1n; 0) ::nil℄℄ !r7�[[(2 2); 2; 1;�0::(1n; 0) ::nil℄℄ !r6�([[2; 2; 1;�0::(1n; 0) ::nil℄℄ [[2; 2; 1;�0::(1n; 0) ::nil℄℄) !2r5�([[1; 1; 1; (1n; 0) ::nil℄℄ [[1; 1; 1; (1n; 0) ::nil℄℄) !2r4�([[1n; 0; 1; nil℄℄ [[1n; 0; 1; nil℄℄) !2(n�1)r6 �(([[1; 0; 1; nil℄℄)n ([[1; 0; 1; nil℄℄)n) !2nr2�(2n 2n). 2Lemma 5.5 ([22℄) There exists a derivation of (��(2 2)) 1n to its ��-nfwhose length is n+ 9.Proof. Consider the following derivation:(��(2 2)) 1n = (��(1["℄ 1["℄)) 1n !Beta (�(1["℄ 1["℄))[1n:id℄ !Abs�((1["℄ 1["℄)[1:((1n:id)Æ ")℄) !Map�((1["℄ 1["℄)[1:(1n["℄:(idÆ "))℄) !n�1App �((1["℄ 1["℄)[1:((1["℄)n:(idÆ "))℄) !App�((1["℄[1:((1["℄)n:(idÆ "))℄) (1["℄[1:((1["℄)n:(idÆ "))℄)) !Clos�((1[" Æ(1:(1["℄)n:(idÆ "))℄) (1["℄[1:((1["℄)n:(idÆ "))℄)) !ShiftCons�((1[(1["℄)n:(idÆ ")℄) (1["℄[1:((1["℄)n:(idÆ "))℄)) !V arCons�((1["℄)n (1["℄[1:((1["℄)n:(idÆ "))℄)) !3 �((1["℄)n (1["℄)n) = �(2n 2n). 2Proposition 5.6 The ��- and �susp-
al
uli are non
omparable.Proof. On the one side, by Lemmas 5.4 and 5.5, there exists a simula-tion (��(2 2)) 1n !�� �(2 2) shorter than the shortest of the simulations(��(2 2)) 1n !�susp �(2 2). Then �susp 6� ��.On the other side,
onsider the following simulation in �susp:((��2) 1) !�s [[(�2); 1; 0; (1; 0) :: nil℄℄ !r7 �[[2; 2; 1;�0 :: (1; 0) :: nil℄℄ !r514

Ayala-Rin
�on, de Moura and Kamareddine�[[1; 1; 1; (1; 0) :: nil℄℄ !r4 �[[1; 0; 1; nil℄℄ !r2 �2.This simulation together with Lemma 5.3 allows us to
on
lude that:�� 6� �susp. 2To prove that �se is more adequate than �susp we need to estimate thelengths of derivations.De�nition 5.7 Let A;B;C 2 � and k � 0. We de�ne the fun
tions M :�! N and Qk : �� �! N by:�M(n)=1�M(�A)=M(A)+1�M(A B)=M(A)+M(B)+1 �Qk(n; B)=8>>><>>>:n if n<kn+M(B) if n=kk+1 if n>k�Qk((A B); C)=Qk(A;C)+Qk(B;C)+1 �Qk(�A;B)=Qk+1(A;B)+1Lemma 5.8 Let A 2 �. Then all se-derivations of 'ikA to its se-nf havelength M(A).Proof. By simple indu
tion over the stru
ture of A. This is an easy extensionof the same lemma formulated for the �s-
al
ulus in [22℄. 2Lemma 5.9 Let A 2 �. Then all susp-derivations of the well-formed term[[A; i; i;�i� 1 :: : : : :: �0 :: nil℄℄ to its susp-nf have length greater than or equalto M(A).Proof. By indu
tion over the stru
ture of terms.� A = n. If n > i then [[n; i; i;�i� 1 :: : : : :: �0 :: nil℄℄ !ir5 [[n� i; 0; i; nil℄℄!r2 n. The length of the derivation is i + 1 � M(A). If n � i then[[n; i; i;�i� 1:: : : : ::�0::nil℄℄!n�1r5 [[1; i� n + 1; i;�i� n :: : : : ::�0::nil℄℄!r3n. The length of the derivation is n � M(A).� A = (B C). We have that [[(B C); i; i;�i� 1 :: : : : :: �0 :: nil℄℄ !r6([[B; i; i;�i� 1 :: : : : :: �0 :: nil℄℄ [[C; i; i;�i� 1 :: : : : :: �0 :: nil℄℄). By the in-du
tion hypothesis we
on
lude that the length of the derivation is greaterthan or equal to 1 +M(B) +M(C) =M(B C) = M(A).� A = (�B). We have that [[(�B); i; i;�i� 1 :: : : : :: �0 :: nil℄℄ !r7�[[B; i+ 1; i+ 1;�i :: : : : :: �0 :: nil℄℄. By indu
tion hypothesis we
on
ludethat the length of the derivation is greater than or equal to 1 +M(B) =M(�B) = M(A). 2Lemma 5.10 Let B 2 � and i; j � 0. The derivation of the susp-term[[B; i; j;�j � 1 :: e℄℄ to its susp-nf has length greater than or equal to M(B).Proof. { Case B = n, [[n; i; j;�j � 1 :: e℄℄ rewrites to its susp-nf in one ormore steps depending on n.� Case B = (C D), we have [[(C D); i; j;�j � 1::e℄℄!r6 [[C; i; j;�j � 1::e℄℄15

Ayala-Rin
�on, de Moura and Kamareddine[[D; i; j;�j � 1 :: e℄℄. By the indu
tion hypothesis we obtain the desiredresult.� Case B = (�C), we have [[(�C); i; j;�j � 1 :: e℄℄ !r7�[[C; i+ 1; j + 1;�j :: e0℄℄, that by indu
tion hypothesis
ompletes the proof.2Proposition 5.11 Let A;B 2 � and k � 0. Then every susp-derivation of[[A; k; k � 1;�k � 2 :: : : : :: �0 :: (B; l) :: nil℄℄ to its susp-nf has length greaterthan or equal to Qk(A;B).Proof. By stru
tural indu
tion over A.� A = n. If n < k then [[n; k; k � 1;�k � 2:: : : : ::�0:: (B; l) ::nil℄℄ !n�1r5[[1; k � n+ 1; k � 1;�k � n� 1:: : : : ::�0:: (B; l) ::nil℄℄ ! r3 n. This deriva-tion has length n � Qk(n; B).If n = k then [[n; k; k � 1;�k � 2:: : : : ::�0:: (B; l) ::nil℄℄ !n�1r5[[1; 1; k � 1; (B; l) ::nil℄℄ ! r4 [[B; 0; k � 1� l; nil℄℄. By Lemma 5.10 the lastterm rewrites to its susp-nf in M(B) or more rewrite steps. The wholederivation has length greater than or equal to n + M(B) = Qk(n; B) =Qk(A;B).If n > k then [[n; k; k � 1;�k � 2:: : : : ::�0:: (B; l) ::nil℄℄ !kr5 [[n-k; 0; k-1; nil℄℄!r2 n� 1. Derivation whose length is k + 1 � Qk(n; B) = Qk(A;B).� A = (C D). [[(C D); k; k � 1;�k � 2:: : : : ::�0:: (B; l) ::nil℄℄ !r6([[C; k; k-1;�k-2 :: : : : ::�0:: (B;0) ::nil℄℄ [[D; k; k-1;�k-2 :: : : : ::�0:: (B;0) ::nil℄℄).By the indu
tion hypothesis the derivation has length greater than or equalto 1+Qk(C;B)+Qk(D;B)=Qk((C D); B)=Qk(A;B).� A = (�C). [[(�C); k; k � 1;�k � 2:: : : : ::�0:: (B; l) ::nil℄℄ !r7�[[C; k + 1; k;�k � 1:: : : : ::�0:: (B; l) ::nil℄℄. By the indu
tion hypothesis we
an
on
lude that this derivation has length greater than or equal to1 +Qk+1(C;B) = Qk(�C;B) = Qk(A;B). 2Proposition 5.12 Let A;B 2 � and k � 1. se-derivations of A�kB to itsse-nf have length � Qk(A;B).Proof. By stru
tural indu
tion over the pure lambda term A.� A = n. By applying the �-destru
tion rule, in the
ase n 6= k, we obtaineither n� 1 or n and in the
ase n = k, 'k0B. In the
ase that n 6= k,the derivation has length equal to 1 � Qk(n; B). In the other
ase, weapply Lemma 5.8 obtaining that the
omplete se-normalization has length1 +M(B). In both
ases the derivation has length less than or equal toQk(n; B).� A = (C D). (C D)�kB ! (C�kB D�kB). By applying the indu
tionhypothesis we
on
lude that the
omplete derivation has length less thanor equal to 1 +Qk(C;B) +Qk(D;B) = Qk((C D); B).16

Ayala-Rin
�on, de Moura and Kamareddine� A = (�C). (�C)�kB ! �(C�k+1B). By the indu
tion hypothesis we
on
lude that the whole derivation has length less than or equal to 1 +Qk+1(C;B) = Qk(�C;B). 2Theorem 5.13 (�se��susp)The �se is more adequate than the �susp-
al
ulus.Proof. We prove the stronger result that if A 2 � and A !�s B !msuspsusp-nf(B) is a �susp-simulation of a �-redu
tion then: A !��generation C!nse se-nf(C) has length n+ 1 � m+ 1 .In �susp, for any redex of �s we have (�D) E !�s [[D; 1; 0; (E; 0) ::nil℄℄!msuspsusp-nf([[D; 1; 0; (E; 0) ::nil℄℄). In the �se, (�D) E !��generation D�1E !nse se-nf(D�1E). By Propositions 5.11 and 5.12, m � Q1(D;E) � n. Hen
e, thelength of a �susp-simulation of a �-
ontra
tion is not shorter than that ofsome �se-simulation.The 2nd part of being more adequate is shown by
omparing the lengthof simulations. E.g., let (�2) 1 !� 1. In �susp the only possible threesteps simulation is: (�2) 1 !�s [[2; 1; 0; (1; 0) ::nil℄℄ !r5 [[1; 0; 0; nil℄℄ !r2 1.In �se the only possible two steps simulation is: (�2) 1 !��generation 2�11!��destru
tion 1. 2As mentioned in the above proof, we prove a stronger result than simplebetter adequa
y of �se as in [22℄. In fa
t, we prove that the length of all �se-simulations are shorter than the length of any �susp-simulation. Examiningthe proofs of Propositions 5.11 and 5.12 whi
h relate the length of derivationswith the measure operator Qk, it appears evident that both
al
uli work simi-larly ex
ept that after having propagated suspended terms between the bodyof abstra
tors, �susp deals with the substitutions in a less eÆ
ient way. To ex-plain that,
ompare the simulations of �-redu
tion from the term (�(�ni)) j,where n � 0:(�(�ni))j !��gen (�ni)�1j !n����trans �n(i�n+1j) =: t1(�(�ni))j!�s [[�ni; 1; 0; (j;0) ::nil℄℄!nr7 �n[[i; n+ 1; n;�n-1 :: : : : ::�0:: (j;0) ::nil℄℄=: t2After that the �se
omplete the simulation in one or two steps by
he
kingarithmeti
 inequations:t1 !��dest 8>>><>>>:�ni; if i < n + 1�ni� 1; if i > n + 1�n('n+10 j)!'�dest �nj+ n; if i = n + 1But in the �susp we have to destru
t the environment list, environment byenvironment: 17

Ayala-Rin
�on, de Moura and Kamareddinet28>>><>>>:!i�1r5 �n[[1; n-i+ 2; n;�n-i :: : : : ::�0:: (j; 0) ::nil℄℄ !r3 �ni; if i < n+ 1!n+1r5 �n[[i� n� 1; 0; n; nil℄℄!r2 �ni� 1; if i > n+ 1!i�1r5 �n[[1; 1; n; (j; 0) ::nil℄℄!r4 �n[[j; 0; n; nil℄℄!r2 �nj+ n; if i = n+ 1These simple
onsiderations lead us to believe that the main di�eren
eof the two
al
ulus (at least in the simulation of �-redu
tion) is given bythe manipulation of indi
es: although �susp in
ludes all de Bruijn indi
es,it does not pro�t from the existen
e of the built-in arithmeti
 for indi
es.These observations may be relevant for the treatment of the open question ofpreservation of strong normalization of �susp (
onje
tured positively in [26℄),sin
e the �se has been proved to answer this question negatively in [16℄.6 Future Work and Con
lusion[13,2℄ showed that �-redu
tion is of great interest for adapting substitution
al
uli (�� and �se) for important pra
ti
al problems like higher order uni-�
ation. In this paper we have enlarged the suspension
al
ulus of [28,26℄with an adequate Eta rule for �-redu
tion and showed that this extended sus-pension
al
ulus �susp enjoys
on
uen
e and termination of the asso
iatedsubstitution
al
ulus susp.Additionally, we used the notion of adequa
y of [22℄ for
omparing thesethree
al
uli when simulating one step �-redu
tion. We
on
luded that ��and �� are mutually non
omparable for � 2 fse; suspg but that �se is moreadequate than �susp. After all, although �� is a �rst order
al
ulus and theother two
al
uli are se
ond order,
omparing them is not unfair sin
e the useof (built-in) arithmeti
 is standard in all modern programming environments.An immediate work to be done is to study two open questions: 1) whetherthe se-
al
ulus has strong normalization (SN), 2) whether �susp preserves SN.Interesting points arise in this
ontext sin
e: a) �se is more adequate than�susp, b) �se does not preserves SN [16℄ and
) the substitution
al
ulus of�susp has SN.Referen
es[1℄ M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. L�evy. Expli
it Substitutions.Journal of Fun
tional Programming, 1(4):375{416, 1991.[2℄ M. Ayala-Rin
�on and F. Kamareddine. Uni�
ation via �se-Style of Expli
itSubstitution. In Journal of the IGPL 9(4):521-555, 2001.[3℄ M. Ayala-Rin
�on and F. Kamareddine. On Applying the �se-Style ofUni�
ation for Simply-Typed Higher Order Uni�
ation in the Pure lambdaCal
ulus. In Pre-Pro
eedings Eighth Workshop on Logi
, Language, Informationand Computation - WoLLIC 2001, pages 41{54, 2001.18

Ayala-Rin
�on, de Moura and Kamareddine[4℄ M. Ayala-Rin
�on and C. Mu~noz. Expli
it Substitutions and All That. RevistaColombiana de Computa
i�on, 1(1):47{71, 2000.[5℄ F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge UniversityPress, 1998.[6℄ H. Barendregt. The Lambda Cal
ulus : Its Syntax and Semanti
s (revisededition). North Holland, 1984.[7℄ Z.-el-A. Benaissa, D. Briaud, P. Les
anne, and J. Rouyer-Degli. ��, a Cal
ulusof Expli
it Substitutions whi
h Preserves Strong Normalization. Journal ofFun
tional Programming, 6(5):699{722, 1996.[8℄ Z.-el-A. Benaissa, P. Les
anne, and K. H. Rose. Modeling Sharing andRe
ursion for Weak Redu
tion Strategies using Expli
it Substitution. InPLILP'96,LNCS 1140, 393{407. Springer, 1996.[9℄ R. Bloo. Preservation of Termination for Expli
it Substitution. PhD thesis,Department of Mathemati
s and Computing S
ien
e, Eindhoven University ofTe
hnology, 1997.[10℄ P. Borovansk�y. Implementation of Higher-Order Uni�
ation Based on Cal
ulusof Expli
it Substitutions. In M. Barto�sek, J. Staudek, and J. Wiedermann,editors, Pro
eedings of the SOFSEM'95: Theory and Pra
ti
e of Informati
s,volume 1012 of Le
ture Notes on Computer S
ien
e, pages 363{368. SpringerVerlag, 1995.[11℄ P.-L. Curien, T. Hardin, and J.-J. L�evy. Con
uen
e Properties of Weak andStrong Cal
uli of Expli
it Substitutions. Journal of the ACM, 43(2):362{397,1996. Also as Rapport de Re
her
he INRIA 1617, 1992.[12℄ N. G. de Bruijn. Lambda-Cal
ulus Notation with Nameless Dummies, a Toolfor Automati
 Formula Manipulation, with Appli
ation to the Chur
h-RosserTheorem. Indag. Mat., 34(5):381{392, 1972.[13℄ G. Dowek, T. Hardin, and C. Kir
hner. Higher-order Uni�
ation via Expli
itSubstitutions. Information and Computation, 157(1/2):183{235, 2000.[14℄ M. C. F. Ferreira, D. Kesner, and L. Puel. �-Cal
uli with Expli
it Substitutionsand Composition whi
h Preserve �-Strong Normalisation. In Algebrai
 andLogi
 Programming, ALP'96, LNCS 1139, 284{298. Springer, 1996.[15℄ B. Guillaume. Un
al
ul des substitutions ave
 etiquettes. PhD thesis,Universit�e de Savoie, Chamb�ery, 1999.[16℄ B. Guillaume. The �se-
al
ulus Does Not Preserve Strong Normalization.Journal of Fun
tional Programming, 10(4):321{325, 2000.[17℄ F. Kamareddine and R. P. Nederpelt. On stepwise expli
it substitution.International Journal of Foundations of Computer S
ien
e, 4(3):197{240, 1993.[18℄ F. Kamareddine and R. P. Nederpelt. A useful �-notation. Theoreti
alComputer S
ien
e, 155:85{109, 1996.19

Ayala-Rin
�on, de Moura and Kamareddine[19℄ F. Kamareddine and A. R��os. A �-
al
ulus �a la de Bruijn with Expli
itSubstitutions. In Pro
. of PLILP'95, LNCS 982 , 45{62. Springer, 1995.[20℄ T. Hardin, L. Maranget, and B. Pagano. Fun
tional runtime systems withinthe lambda-sigma
al
ulus. Fun
tional Programming, 8(2):131{176, 1998.[21℄ F. Kamareddine and A. R��os. Extending a �-
al
ulus with Expli
it Substitutionwhi
h Preserves Strong Normalisation into a Con
uent Cal
ulus on OpenTerms. Journal of Fun
tional Programming, 7:395{420, 1997.[22℄ F. Kamareddine and A. R��os. Relating the ��- and �s-Styles of Expli
itSubstitutions. Journal of Logi
 and Computation, 10(3):349{380, 2000.[23℄ F. Kamareddine, A. R��os, and J.B. Wells. Cal
uli of Generalised �-redu
tionand expli
it substitution: Type Free and Simply Typed Versions. Journal ofFun
tional and Logi
 Programming, 1998(Arti
le 5):1{44, 1998.[24℄ L. Magnusson. The implementation of ALF - a proof editor based on MartinL�of's Type Theory with expli
it substitutions. PhD thesis, Chalmers, 1995.[25℄ C. Mu~noz. Un
al
ul de substitutions pour la repr�esentation de preuves partiellesen th�eorie de types. PhD thesis, Universit�e Paris 7, 1997. English version inRapport de re
her
he INRIA RR-3309, 1997.[26℄ G. Nadathur. A Fine-Grained Notation for Lambda Terms and Its Use inIntensional Operations. The Journal of Fun
tional and Logi
 Programming,1999(2):1{62, 1999.[27℄ G. Nadathur and D. Miller. An Overview of �Prolog. In K.A. Bowen andR.A. Kowalski, editors, Pro
. 5th Int. Logi
 Programming Conferen
e, pages810{827. MIT Press, 1988.[28℄ G. Nadathur and D. S. Wilson. A Notation for Lambda Terms A Generalizationof Environments. Theoreti
al Computer S
ien
e, 198:49{98, 1998.[29℄ R. Nederpelt, J. H. Geuvers and R. de Vrijer. Sele
ted Papers on Automath.North-Holland, Amsterdam, 1994.[30℄ A. R��os. Contribution �a l'�etude des �-
al
uls ave
 substitutions expli
ites. PhDthesis, Universit�e de Paris 7, 1993.[31℄ R. Vestergaard and J. B. Wells. Cut Rules and Expli
it Substitutions.Mathemati
al Stru
tures in Computer S
ien
e 11(1), pages 131{168, 2001.
20

