URL: http://www.elsevier.nl/locaf;e/entcs/volumeé?.htlml 20 pages

Comparing Calculi of Explicit Substitutions
with Eta-reduction !

Mauricio Ayala-Rincén, Flavio L. C. de Moura 3

Departamento de Matemdtica
Universidade de Brasilia
Brasilia D.F., Brasil

Fairouz Kamareddine*

Computing and Electrical Engineering
Heriot-Watt University
Edinburgh, Scotland

Abstract

The past decade has seen an explosion of work on calculi of explicit substitutions.
Numerous work has illustrated the usefulness of these calculi for practical notions
like the implementation of typed functional programming languages and higher
order proof assistants. Three styles of explicit substitutions are treated in this paper:
the Ao and the As. which have proved useful for solving practical problems like
higher order unification, and the suspension calculus related to the implementation
of the language AProlog. We enlarge the suspension calculus with an adequate eta-
reduction which we show to preserve termination and confluence of the associated
substitution calculus and to correspond to the eta-reductions of the other two calculi.
Additionally, we prove that Ao and As. as well as Ao and the suspension calculus
are non comparable while \s, is more adequate than the suspension calculus.

Keywords: Calculi of explicit substitutions, lambda-calculi, eta reduction.

1 Introduction

Recent years have witnessed an explosion of work on expliciting substitutions
[1,7,9,14,15,17,19] and on establishing its usefulness to computation: e.g., to

I Partially supported by the Brazilian CNPq research council grant number 47488101-6.
2 First author partially suported by the FEMAT Brazilian foundation for research in math-
ematics, second author supported by the CAPES Brazilian foundation.

3 Email: {ayala,flavio}@mat.unb.br

* Email: fairouz@cee.hw.ac.uk

(©2002 Published by Elsevier Science B. V.

444 ALALLLIIVUUL, 40 ALV ViV AL A AalviAallgLs s

automated deduction and theorem proving [24,25], to proof theory [31], to pro-
gramming languages [8,20,23,26] and to higher order unification HOU [2,13].
This paper concentrates on three different styles of substitutions:

(i) The Ao-style [1] which introduces two different sets of entities: one for
terms and one for substitutions.

(ii) The suspension calculus [28,26], denoted Asysp, which introduces three
different sets of entities: one for terms, one for environments and one for
environment terms.

(iii) The As-style [19] which uses a philosophy of de Bruijn’s Automath [29]
elaborated in the new item notation [18]. The philosophy states that
terms are built by applications (a function applied to an argument),
abstraction (a function), substitution or updating. The advantages of
this philosophy include remaining as close as possible to the familiar \-

calculus (cf. [18]).

The desired properties of explicit substitution calculi are a) simulation of
p-reduction, b) confluence (CR) on closed terms, ¢) CR on open terms, d)
strong normalization (SN) of explicit substitutions and e) preservation of SN
of the A-calculus. Ao satisfies a), b) and d), As satisfies a)..e) but not c). As
has an extension As. for which a)..c) holds, but e) fails and d) is unknown.
The suspension calculus satisfies a)..d), but e) is unknown. This paper deals
with two useful notions for these calculi:

* Comparing the adequacy of their reduction process using the efficient simu-
lation of f-reduction of [22].

* Extending the suspension calculus with eta-reduction resulting in Agysp.
Eta-reduction for Ao was used in [13] to deal with HOU and was introduced
in [2] for the same purpose in As,.

It was shown in [22] that As and Ao are non comparable. In this paper
we prove that As, and Ao as well as Ao and Agysp are non comparable and
that As. is more adequate than the Agysp. Additionally, we show that Agysp
preserves confluence and SN of the substitution calculus associated with Agygp.

2 Preliminaries

We assume familiarity with A-calculus (cf. [6]) and the notion of term algebra
T (F,X) built on a (countable) set of variables X and a set of operators F.
Variables in X' are denoted by X,V ... and for a term a € T(F,X), var(a)
denotes the set of variables occurring in a. Throughout, we take a,b,c,... to
range over terms.

Additionally, we assume familiarity with basic notions of rewriting as in
[5]. In particular, for a reduction relation R over a set A, we denote with
—r the reflexive closure of R, with —% or just —* the reflexive and
transitive closure of R and with —}, or just —»* the transitive closure

2

444 ALALLLIIVUUULE, L0 LU VAV AL, A aAalviAllg LN

of R. When a —* b we say that there exists a derivation from a to b. By
a —™ b, we mean that the derivation consists of n steps of reduction and call
n the length of the derivation. Syntactical identity is denoted by a = b.
For a reduction relation R over A, (A, —g), we use the standard definitions of
(locally-)confluent or (weakly) Church Rosser (W)CR, normal forms and
strong and weak normalization/termination SN and WN. Suppose R
is a SN reduction relation and let ¢ be a term, then R-nf(¢) denotes its normal
form. As usual we use indiscriminately either “noetherian” or “terminating”
instead of SN.

A valuation is a mapping from X to 7(F,X). The homeomorphic ex-
tension of a valuation, #, from its domain X to the domain 7 (F, X) is called
the grafting of . As usual, valuations and their corresponding graftings are
denoted by the same Greek letter. The application of a valuation # or its
corresponding grafting to a term a € T (F, X) will be written in postfix no-
tation af. The domain of a grafting 6, is defined by Dom(f) = {X | X6 #
X,X € X}. Its range, is defined by Ran(f) = Uxepom()var(X0). We let
var(0) = Dom(0) U Ran(0). For explicit representations of a valuation and its
corresponding grafting 6, we use the notation # = {X+— X0 | X € Dom(0)}.
Note that the notion of grafting, usually called first order substitution, corre-
sponds to simple syntactic substitution without renaming.

Let V be a (countable) set of variables denoted by lowercase last letters of
the Roman alphabet x,y,

Definition 2.1 Terms A(V), of the A-calculus with names are inductively
defined by A(V) ==z | (A(V) A(V)) | \e.A(V), where x € V.
Az.a and (a b) are called abstraction and application terms, respectively.

Terms in A(V) are called closed A\-terms or terms without substitution meta-
variables. An abstraction \,.a represents a function of parameter x, whose
body is a. Its application (A\,.a b) to an argument b, returns the value
of a, where the formal parameter x is replaced by b. This replacement of
formal parameters with arguments is known as [-reduction. In the first
order context of the term algebra T ({\,.- | x € V} U{(L)}, V) and its first
order substitution or grafting, f-reduction would be defined by (A,.a b) —
a{z—b}.

But in this context problems arise forcing the use of a-conversion to
rename bound variables:

(i) Let § = {x+>b}. There are no semantic differences between the abstrac-
tions A;.z and A,.z; both abstractions represent the identity function.
But (A;.z)0 = A\;.b and (\,.2)0 = A,.z are different.

(ii) Let 0 = {x—y}. (N\,.2)0 = A\y.y and (\,.2)0 = A,.y, thus a capture is
possible.

Consequently, g-reduction, should be defined in a way that takes care of re-
naming bound variables when necessary to avoid harmful capture of variables.

444 ALALLLIIVUUULE, L0 LU VAV AL, A aAalviAllg LN

The A-calculus usually considers substitution as an atomic operation leav-
ing implicit the computational steps needed to effectively perform compu-
tational operations based on substitution such as matching and unification.
In any real higher order deductive system, the substitution required by ba-
sic operations such as [-reduction should be implemented via smaller opera-
tions. Explicit substitution is an appropriate formalism for reasoning about
the operations involved in real implementations of substitution. Since explicit
substitution is closer to real implementations than to the classic A-calculus,
it provides a more accurate theoretical model to analyze essential properties
of real systems (termination, confluence, correctness, completeness, etc.) as
well as their time/space complexity. For further details of the importance of
explicit substitution see [23,4].

a~-conversion should be performed before applying the substitution in the
body of an abstraction. The grafting of a fresh variable avoids the possibility
of capture. It is very important to remark that renaming selects fresh variables
that have not been used previously. Moreover, since fresh variables are selected
randomly, the result of the application of a substitution can be conceived as
a class of equivalence terms.

Definition 2.2 p-reduction is the rewriting relation defined by the rewrite
rule () and n-reduction is the rewriting relation defined by the rewrite rule
(n), where:

(B) (Ag-a b) — {z/b}(a) and (n) Ae-(a x) = a, if v & Fuar(a)
Fuoar(a) denotes the free variables occurring in a. Notice that our notion of
substitution is not completely satisfactory because the idea of fresh variables
is implicit and depends on the history of the renaming process.

Lambda terms with meta-variables or open lambda terms are given by the
following.

Definition 2.3 Terms A(V, X), of the A-calculus with names are induc-
tively defined by: AV, X) :=az | X | (AW, X) AV, X)) | \oe.A(V, X), where
reVand X € X.

We have seen that the names of bound variables and their correspond-
ing abstractors play a semantically irrelevant role in the A-calculus. So any
term in A(V) or A(V, X) can be seen as a syntactical representative of its
obvious equivalence class. Hence, during syntactic unification, the role that
names of bound variables and their corresponding abstractors play increases
the complexity of the process and creates confusion.

Avoiding names in the A-calculus is an effective way of clarifying the
meaning of A-terms and, for the unification process, of eliminating redun-
dant renaming. De Bruijn developed in [12] a notation where names of bound
variables are replaced by indices which relate these bound variables to their
corresponding abstractors.

It is clear that the correspondence between an occurrence of a bound vari-

444 ALALLLIIVUUULE, L0 LU VAV AL, A aAalviAllg LN

able and its associated abstractor operator is uniquely determined by its depth,
that is the number of abstractors between them. Hence, A-terms can be writ-
ten in a term algebra over the natural numbers N, representing depth in-
dices, the application operator (- _) and a sole abstractor operator A_; i.e.,
TH(), AFUN).

In de Bruijn’s notation, indexing the occurrences of free variables is given
by a referential according to a fixed enumeration of the set of variables V), say
x,Y,%,..., and prefixing all Ad-terms with ... A, A\, \;._.

Now we can define the A-calculus in de Bruijn notation with open terms
or meta-variables.

Definition 2.4 The set Ayp(X) of \-terms in de Bruijn notation is de-
fined inductively as: Agp(X) :=n| X | (Aas(X) Agp(X)) | AMyp(X), where
X € X andn € N\ {0}.

Agp(X)-terms without meta-variables are called closed lambda terms.

We write de Bruijn indices as 1,2,3,...,n,..., to distinguish them from
scripts. Since all considered calculi of explicit substitutions are built over the
language of Ayp(X), we will use A to denote Agp(X).

Defining S-reduction in de Bruijn notation by (Aa b) — {1/b}a (where
{1/b}a is the substitution of the index 1 in a with b) fails because:

e when eliminating the leading abstractor all indices associated with free vari-
able occurrences in a should be decremented;

e when propagating in a the substitution {1/b} through As, the indices of the
substitution (initially 1) and of the free variables in b should be incremented.

Hence, we need new operators for detecting, incrementing and decrement-
ing free variables which will be used in the definition of substitution.

Definition 2.5 Let a € Ayp(X). The i-lift of a, denoted a™ is defined in-
ductively as follows:

1) X=X, ,forXeX 2) (a1 ap)™ = (ai" a?)
. . . n+1, ifn>1
3) (Aay)t = Aay Ot 4)att=¢ " / for n € N.
n, ifn <1

The lift of a term a is its 0-lift and is denoted briefly as a™.

Definition 2.6 The application of the substitution with b at the depth n —
1,n € N\ {0}, denoted {n/b}a, on a term a in Ngp(X) is defined inductively
as follows:

1) {n/}X =X, for X € X 2){n/b}(a1 a2) = ({n/b}ar {n/b}as)
m—1 ifm>n
$) {n/bhar = Mot 1/ 4) {o/bhm=1_ b ifm=n fmeN

m ifm<n

444 ALALLLIIVUUULE, L0 LU VAV AL, A aAalviAllg LN

Definition 2.7 The S-reduction in the \-calculus with de Bruijn indices is
defined as (Aa b) — {1/b}a.

Observe that the rewriting system of the sole [S-reduction rule is left-linear
and non overlapping (i.e. orthogonal). Consequently, the rewriting system
defined over Ayp(X) by the S-reduction rule is CR.

In the A-calculus with names, the 7-reduction rule is defined as A\,.(a x) —
a, if © & Foar(a). In Agp(X), the left side of this rule is written as A(a’ 1),
where a' stands for the corresponding translation of ¢ under some fixed refe-
rential of variables into the language of Ayp(X). “a has no free occurrences of
z” means, in A(X'), that there are neither occurrences in @' of the index 1 at
height zero nor of the index 2 at height one nor of the index 3 at height two
etc. This means, in general, that there exists a term b such that b™ = a.

Definition 2.8 The n-reduction in the \-calculus with de Bruin indices is
defined as M(a 1) = bif I bt = a.

3 Calculi a la Ao, As. and Agusp

Rewriting systems for the Ao and the As.-calculi including the eta-rule can be
found either in [13] (for the Ao) [2] (for both the Ao and As.) or in the full
version of this work (for the three calculi).

3.1 The \o-calculus

The Ao-calculus introduced in [1] works on 2-sorted terms: (proper) terms,
and substitutions.

The rewriting system Ao is locally confluent [1], CR on substitution-closed
terms (i.e., terms without substitution variables) [30] and not CR on open
terms (i.e., terms with term and substitution variables) [11]. The possible
forms of a Ao-term in Ao-normal form were given in [30].

3.2 The \s.-calculus

The As.-calculus of [21] is an extension of the As-calculus ([19]) which is CR on
open terms and insists on remaining close to the syntax of the A-calculus. Next
to abstraction and application, substitution (o) and updating () operators
are introduced. A term containing neither ¢ nor ¢ is called a pure lambda
term. This calculus was originally introduced without the Eta rule that was
added in [2] to deal with higher order unification problems as originally done
in [13] for the Ao-calculus.

The As.-calculus has been proved in [21] to be CR on open terms; to
simulate 3-reduction: let a, b € A, if a —5 b then a —3, b; to be sound:
let a,b € A, if a =5, b then a —} b; and its associated substitution
calculus, that is the s.-calculus, to be WN and CR. The characterization of
the Asc-normal forms was given in [21,2].

6

444 ALALLLIIVUUULE, L0 LU VAV AL, A aAalviAllg LN

3.3 The suspension calculus

The suspension calculus [28,26] deals with A-terms as computational mecha-
nisms. This was motivated by implementational questions related to AProlog,
a logic programming language that uses typed A-terms as data structures [27].
The suspension calculus works with three different types of entities:

SUSPENDED TERMS M, N == Cons|n|AM | (M N)|[M,i,j,e]
ENVIRONMENTS er, e = il |et:e | {er,i, 5, e}
ENVIRONMENT TERMS et = Q@i | (M,d) | (et,i,j,er)

where C'ons denotes any constant and %, j are non negative natural numbers.

As constants and de Bruijn indices are suspended terms, the suspension
calculus has open terms.

The suspension calculus owns a generation rule 3, that initiates the simu-
lation of a -reduction (as for the Ao and the As,, respectively, the Beta and
the o-generation rules do) and two sets of rules for handling the suspended
terms. The first set, the r rules, for reading suspensions and the second set,
the m rules, for merging suspensions are given in Table 1.

As in [28] we denote by >, the reduction relation defined by the - and
m-rules in Table 1. The associated substitution calculus, denoted as suUsP, is
the one given by the congruence =,,,.

Definition 3.1 ([28]) The length len(e) of an environment e is given by:

len(nil) := 0; len(et :: €') := len(e') + 1 and

len({e1,4,4,e2}) := len(er) + (len(es) = i).
The index ind(et) of an environment term et, and the [-th index ind)(e) of
environment e and natural number [, are simultaneously defined by induction
on the structure of expressions:
ind(@m) =m+1 ind((t',m)) =m

. . : o N

ind((e . k.) = indy,(e) + (j = k) if len(e) > j ~ind(et’) =m

ind(et") otherwise

indy(nil) =0 indy(et 2 €') = ind(et) and ind;, (et :: €') = ind)(e')

(indn(e) + (j = k) if I < len(e;) and
len(ey) > m = j = ind;(e;)
ind;({er, 7,k eal}) = < indi(ey) if [< len(e;) and

len(es) <m = j = ind(eq)

\ ind;_y,4;(ez) if [> 1, = len(e;)
The index of an environment e, denoted as ind(e), is indy(e).

Definition 3.2 ([28]) An expression of the suspension calculus is said to be

7

444 ALALLLIIVUUULE, L0 LU VAV AL, A aAalviAllg LN

Table 1
Rewriting rules of the suspension calculus

(Bs) ((Aty to) —[t1,1,0, (ts,0) = nal]

(r1) [¢, ol,nl, e] —> ¢, where ¢ is a constant

(r2) [1,0,nl ml]]—>1—|—n1

(r3) [1,0l,nl,Ql ::] —snl-1

(74) [1,0l,nl, (t,1) ::] —[t, 0, (nl-1), nil]

(r5) [i,0l,nl, et :: e] —[i-1, (ol-1),nl, €], for i > 1

(r6) [(t1 ta2),0l,nl,e] — ([t1, ol, nl, €] [ta, 0l, nl, €])

(r7) [At,ol,nl,e] — At, (ol + 1), (nl+1),Qnl :: €]
(my) [[t,ol1, nly, e1], ola, nls, es] — [t, ol', nl’, {e1, nly, ola, 2 }], where

ol' = oly + (oly = nly) and
nl" = nly + (nly = oly)

(ms) {nil, nl, 0, nil } — nil
(ms) {nil,nl, ol et :: e} — {nil, (ni-1), (ol-1),e}, for ni,ol > 1
(my) {nil,0,0l,e} —e
(ms) {et :: er,nl, ol ex} — ((et, nl, ol, e3)) :: {er,nl, ol e}
() {(et,nl,0,nil)) — et
(mz) {(@m,nl,ol,Ql :: e)) —@Q(l 4 (nl = ol)), for nl =m+1
(ms) (@m,nl,ol, (t,1) :: e)) —> (¢, ({ + (nl = ol))), for nl =m +1
(myg) {((t,nl),nl, ol et :: e)) — ([t,ol,l', et :: €], m), where

' = ind(et) and m = 1"+ (nl = ol)
(m1op) (et,nl,ol, et :: e)) — ((et, (nl-1), (ol-1),e)), for nl # ind(et)

well-formed if the following conditions hold over all its subexpressions s:
e if s is [t,ol,nl,e] then len(e) = ol and ind(e) < nl

e if s is et :: e then ind(e) < ind(et)

e if s is ((et, j, k,e) then len(e) = k and ind(et) < j

o if s is {e1, j, k,ex}} then len(ex) = k and ind(e;) < j.

In the sequel, we only deal with well-formed expressions of the suspension
calculus.

444 ALALLLIIVUUULE, L0 LU VAV AL, A aAalviAllg LN

The suspension calculus simulates S-reduction and its associated substitu-
tion calculus susp is CR (over closed and open terms) and SN [28]. In [26]
Nadathur conjectures that the suspension calculus preserves strong normali-
zation too. The following lemma characterizes the >,,,-normal forms.

Lemma 3.3 ([28]) A well-formed expression of the suspension calculus x is
in its Spy,-nf if and only if one of the following affirmations holds:

1) x is a pure A\-term in de Bruijn notation;

2) x is an environment term of the form QI or (t,1), where t is a term in its
Drm'nf;

3) x is the environment nil or et :: e for et and e resp. an environment term
and an environment in >..,-nf.

4 The suspension calculus enlarged with the n-reduction:
the Agusp-calculus

The suspension calculus was initially formulated without n-reduction. Here
we introduce an adequate Eta rule that enlarges the suspension calculus pre-
serving correctness, confluence, and termination of the associated substitution
calculus. The suspension calculus enlarged with this Fta rule is denoted by
Asusp and its associated substitution calculus remains as susp. The FEta rule
is formulated as follows:

(E'ta) ()\ (tl l)) — 19, if t1 =rm [[tg,o, 1,%2[]]

Intuitively Eta may be interpreted as: when it is possible to apply the n-
reduction to the redex A(t; 1) we obtain a term ¢, that has the same structure
as t; with all its free de Bruijn indices decremented by one. This is possible
whenever there are no free occurrences of the variable corresponding to 1 in ;.
Proposition 4.2 proves the correctness of Eta according to this interpretation.
We follow [10] and [3] for Ao and s, respectively, and implement the Eta rule
of the Agysp-calculus by introducing a dummy symbol <, by:
)\(M l) — Eta N
if N =p-nf([M, 1,0, (<,0) :: nil]) and & does not occur in N.
The correctness of this implementation is explained because an n-reduction
A(M 1) —, N gives us a term N, which is obtained from M by decrementing
by one all free occurrences of de Bruijn indices, as previously mentioned, and
which corresponds exactly to the >,,,-normalization of the term ((AM) &) — 5,
[M,1,0,(<,0) :: nil], whenever <& does not appear in this normalized term.

Lemma 4.1 Let A be a well-formed term of the suspension calculus. Then
the susp-normalization of the term [A, k, k + 1,Qk :: Qk — 1 :: ... :: Q1 :: nil]
gives a term obtained from A by incrementing by one all its de Bruijn free
indices greater than k and preserving unaltered all other de Bruijn indices.

Proof. By induction on the structure of A. The constant case is trivial.

9

444 ALALLLIIVUUULE, L0 LU VAV AL, A aAalviAllg LN

« A=n Ifn>kthen [nk k+1,Qk:. . :QL:nil] =%
[n—Xk,0,k+1,nil] =, n+1.
If n <k then [n,k, k+1,Qk:...:QLznil] -t
[L,k—n+1,k+1,Qk —n+1:...::Q1:nil] —,, n;

« A = (B C). we apply rg and induction hypothesis for B and C;

« A = (AB). Since B is bounded by an abstractor just its free variables
greater than k£ + 1 should be incremented by one, while the other variables
should remain unchanged. Since [(AB),k,k +1,Qk :: ... @1 :: nil] —,,
A[B,k+1,k+2,Qk+1:...:: @1 :: nil], by applying induction hypothe-
sis over the previous term we obtain the desired result.

« A = [t,ol,nl,e]. Without loss of generality A may be >,,,-normalized
and by Lemma 3.3 the obtained term is of one of the forms analysed in the
previous cases.

([

Proposition 4.2 (Soundness of the Eta rule) Every application of the Eta
rule of Asusp to the redex A(t; 1) gives effectively the term ty obtained from t
by decrementing all its de Bruijn free indices by one.

Proof. The proof is by induction over the structure of ¢, considering the
premise t; =, [t2,0,1,nil]. The effect of normalizing [t5,0, 1, nil] is to in-
crement by one all de Bruijn free indices occurring at ¢y:

* ty =n. [n,0,1,nil] =, n+1=., 1.

* t; = (A B). Without loss of generality we can assume that both A and B
are in b,,,-nf. Observe that [(A B),0, 1, nil] —,, [4,0,1,ni] [B,0, 1, nil].
Now, by induction hypothesis over A and B, we have that the normalization
of the suspended terms [A, 0,1, nil] and [B, 0, 1, nil] have the desired effect
and consequently the same happens with the normalization of the suspended
term [(A B),0,1, nil].

* t = (AA). As before, assume A is in >.,-nf. Note that [(AA),0, 1, nil]
—r. (A[A,1,2,@Q1::nil]). By applying Lemma 4.1 to the term
[A,1,2,@Q1 :: nil] we conclude that all free occurrences of de Bruijn indices
greater than 1 at A are incremented by one while the other indices are
unchanged.

e ty = [t,i,7,€]. If tisin >.,-nf then [t,4,7,¢e] >F, ', where t' is a pure
A-term in de Bruijn notation by Lemma 3.3. Hence, the analysis given in
the previous three cases applies here too.

(I

Noetherianity of susp plus the Fta rule enables us to apply the Newman
diamond lemma and the Knuth-Bendix critical pair criterion for proving its
confluence.

Lemma 4.3 (susp plus Eta is SN) The rewriting system associated to SUSP
10

444 ALALLLIIVUUULE, L0 LU VAV AL, A aAalviAllg LN

and the Eta rule is noetherian.

Proof. (Sketch) This is proved by showing that the Eta rule is also compatible
with the well-founded partial ordering < that is defined and proved compatible
with >, in [28]. O

A simple environment is an environment without subexpressions of the
form {_, _, , } or (L, -,).
Lemma 4.4 ([28]) Let e; be a simple environment and suppose that nl and
ol are naturals such that (nl — ind(e1)) > ol. Then {eq,nl,ol,ex}} >%, €.

Lemma 4.5 (Local-confluence of susp plus Eta) The rewriting system
of the substitution calculus SUSP plus the Eta rule is locally-confluent.

Proof. The rewrite relation >, i.e., SUSP, was shown in [28] to be (locally)
confluent. Thus for proving that the associated rewriting system enlarged
with the FEta rule is locally-confluent, it is enough to show that all additional
critical pairs built by overlapping between the Fta rule and the other rules of
SUSP are joinable.

Note that no critical pairs are generated from the rule Eta and itself. Also,
note that there is a unique overlapping between the set of rules in Table 1
(minus (f)) and Fta: namely, the one between Eta and (r7).

This critical pair is ([te, ol,nl,e], A[(t; 1),0l + 1,nl + 1,@nl :: e]), where
t1 =rm [t2,0,1,nil]. After applying the rules r4 and r3 the right-side term of
this critical pair reduces to A([t1,0l +1,nl +1,@nl :: €] 1).

We prove by analyzing the structure of the term ¢; that this critical pair
is joinable. As usual we can consider the terms ¢; and ¢y as >,p,-nf’s.

* t; = n. For making possible the FEta application, we need that n > 1.
According to the length of the environment @nl :: e (i.e., ol + 1) we have
the following cases:

- 0ol +1 < n. On the one side, A([n, ol + 1,nl +1,@nl :: e] 1) -2+
A([n-01-1,0,nl + 1,nil] 1) —,, A(n-0l4nl 1) — g, n-0l4nl-1. On the
other side, t; =, [t2,0, 1, nil], hence t, = n-1 and we have [n-1, ol, nl,]
—¢ [n-1-01,0,nl, nil] —,, n-0l4nl-1.

- 0ol 4+ 1 >n. On the one side, A([n, ol +1,nl +1,@Qnl ::] 1) =1
A[L,0l = n+2,nl+ 1,61 :: €] 1) and the subsequent derivation depends
on the structure of e;: when e; = @[we apply r3 obtaining A(nl+1-1 1)
— pie 01-1 and on the other side, [n-1, ol, nl, €] —>’:5_2
[1,0l —n+2,nl,Q[:: '] —,, nl-1; when e; = (¢,1), where without loss
of generality t is suppossed to be in >.,,-nf, we have
A[L,0l —n+2,nl+1,(t,1) €] 1) =, AM[t,0,nl =14+ 1,nil] 1) — g
Srm-n f ([[t, 0, nl4+1—1,nil], 1,0, (<, 0) i nil]) —m,

Drm=1f ([t, 0, nl—1, {nil, nl+1—1,1, (4, 0) il) —ms
Srm-nf ([t, 0, nl — 1, {nil,nl —1,0,nil }]) —m, Srm-nf([t,0,nl — 1, nil])
and on the other side, [1,0l — n + 2,nl, (¢,1) :: €'] —,, [t,0,nl — I, nil].

11

444 ALALLLIIVUUULE, L0 LU VAV AL, A aAalviAllg LN

Since Dyp-nf([t,0,nl — [, nil]) and [t,0,nl — [, nil] are joinable we ob-
tain the confluence.

* t; = (A B). Since the sole rule of the Agysp that truly “applies” appli-
cations is the [,, we can separately consider Eta reductions for A and B
and then apply the induction hypothesis. That is, suppose inductively that
AM[A,ol +1,nl+1,Qnl :: e] 1) =g A” and [A', 0l, nl, e], where
[A',0,1,nil] =, Aas well as A([B,ol +1,nl +1,Qnl :: €] 1) =, B"” and
[B',ol,nl, €], where [B’,0,1,nil] =,,, B are joinable. Then since
A[(A B),ol +1,nl +1,@nl:ze] 1) —,,

A([A, ol +1,nl +1,@nl:e] [B,ol+1,nl+1,Qnl:e]) 1) =g, (A" B")
and [(A" B'),ol,nl,e] —,, ([A',0l,nl €] [B',ol,nl,e]) we can conclude the
confluence.

* t; = (AA). By the Eta rule implementation, it is enough to show the join-
ability of the Eta reduction of the term A([(AA),ol + 1,nl+1,@nl::e] 1)
that is by,-nf([[(AA), ol + 1,nl + 1,@nl::e], 1,0, (<, 0)::nil]) and the term
[>rm -nf([(AA), 1,0, (<, 0) :nil]), ol, nl, €].

On the one side, [>, -nf([(AA), 1,0, (<, 0):nil]), ol, nl, e] >,
Drm-nf([[(AA), 1,0, (<, 0):nil], ol, nl, €]) =1,
Drm-Df((A[[A, 2, 1, @Q0::(<, 0)::nil], ol + 1, nl + 1, @nl:e])) 2,
(A >y -nf([[A4, 2,1, @Q0::(O, 0):nil], ol + 1, nl + 1, Qnl:e])) —m,
(A >y -nf([A, 0l + 2, nl + 1, {Q0::(, 0)::nil, 1, 0ol + 1, @nle}]))
and we have that {@Q0::(<O,0):nil, 1,0l + 1, Qnize} — 5, ms
(@0, 1,0l + 1, @Qnlze))::(((<,0), 1,0l + 1, @nlze)::f nil, 1, 0l + 1, Qnl:e —,,
Qnl::{((<,0), 1,0l + 1, @Qnl:e))::f{nil, 1,0l + 1, Qnl:e} —,,,,
@Qnl:((<,0),0,0l, e)::fnil, 1,0l + 1,@nl:e}} —, m,
Qnl::{((<,0),0,0l,e)::e. Then we obtain the term

(A>ym-nf([A4, ol +2,nl + 1,@Qnl :: ((<,0),0,0l,¢)) :: €])). On the other side,

Drm-DE([[(AA), ol + 1,nl +1,@nl :: €], 1,0, (©,0) 2 nil]) =, .

Drm-Df((A[[A, ol + 2,nl + 2,@nl + 1::@nl::e],2,1,@Q0:: (<, 0) ::nil])) >k,

(A >y -nf([[A, 0l + 2,0l +2,@Qnl + 1::@Qnl::e], 2,1,@0:: (O, 0) ::nil])) —m,

(A>pmnf[A ol +2,nl + 1, {@Qnl + 1::Qnl:e,nl + 2,2,@0:: (<, 0) ::nil]) and

we have that {@nl+1:: Qnl ::e,nl+2,2,Q0 :: (4,0) il =5 ms

{@nl + 1,nl +2,2,Q0:: (©,0) :: nil)) = (Qnl,nl + 2,2,Q0:: (<,0) ::nal))

fe,nl +2,2,@Q0:: (O,0) 2 nil} —,, @nl o (Qnl,nl +2,2,Q0 = (©,0)

nil)) == {e,nl +2,2,Q0 :: (&,0) = nil}} of,, (By Lemma 4.4, since we are
working with well-formed terms and then) ind(e) < nl)

Qnl :: (Qnl,nl +2,2,Q0 :: (<,0) = nil)) = e =y,

Qnl :: (Qnl,nl 4+ 1,1, (C,0) = nil)) e =, Qnl iz (O,nl) e
Then we obtain the term (A>,,-nf([A, ol +2,nl + 1,@Qnl :: (O, nl) = ¢])).
The sole difference of the obtained suspended terms is the second environ-

ment term of their environments, that is (((<,0),0,0l,e)) and (<, nl). But

since the Eta rule applies, when propagating the substitution between these
suspended terms, the dummy symbol and hence these second environment
terms should disapear. Now we can conclude that these terms are joinable.

12

444 ALALLLIIVUUULE, L0 LU VAV AL, A aAalviAllg LN

O

Finally, since the rewriting system associated to SUSP enlarged with the
Eta rule is locally-confluent and noetherian, we can apply the Newman dia-
mond lemma for concluding its confluence.

Theorem 4.6 (Confluence of susp plus Eta) The calculus SUSP jointly
with the Eta rule, is confluent.

5 Comparing the adequacy of the calculi

According to the criterion of adequacy introduced in [22] we prove that the Ao
and the Agysp as well as the Ao and the As, are non comparable. Additionally,
we prove that the As. is more adequate than the Agygp.

Let a,b € A such that a =3 b. A simulation of this S-reduction in A, for
§ € {0, 5., 808P} is a A{-derivation a —, ¢ —¢ £(c) = b, where r is the rule
starting [(beta for Ao, o-generation for As., By for Asysp) applied to the same
redex as the redex in @ —g b. The criterion of adequacy is defined as follow:

Definition 5.1 (Adequacy) Let &,& € {0, s.,SUSP}. The A\ -calculus is
more adequate (in simulating one step of f-reduction) than the A\&,-calculus,
denoted \&; < A, if:

* for every B-reduction a —p5 b and every A&y-simulation a —X¢, b there exists
a A&i-sitmulation a =g b such that m < n;

* there exists a [3- reductzon a =g b and a A -simulation a =% b such that
for every A&z-simulation a —%,, b we have m < n.

If neither \&; < A& nor X < A&y, then we say that A& and A\ are non
comparable.

The counterexamples proving that Ao and As are non comparable presented
in [22] apply for the incomparability of Ao and As, since As, is an extension
of As for open terms.

Proposition 5.2 The \o- and the \s.-calculi are non comparable.

Lemma 5.3 FEvery \o-derivation of ((AA2) 1) to its Ao-nf has length greater
than or equal to 6.

Proof. In fact, all possible derivations are of one of the following forms.

© (AMP]) L = peta (M[T[Lid] = aps AL ((Lid)o 1)] = cios
)\l[T O(_ ((l Zd)))] _>ShzftCons)‘l[(l Zd) ﬂ _>Map)\l[l[ﬂ(Zdo T)] —VarCons
AT = A2;

* (AMP]) L = peta (M[T])[L4d] = aps AL[T][L((Lid)o 1)] = cios
)\l[T O(l((lld)o T))] —?ShiftCons)\1[(1 Zd) T] — Map)\1[[T](ldo T)] —IdL
)\l[l[/l\]] —?VarCons Al[T] -)\2

© (MM L = seta (M[T[Lid] = aps ML ((Lid)o 1)] = cios

13

LA ALLIVA LR, A AUV Al A aAanialvy Ly 4

((Lad)o 1)} = map AL o(L.(1[1]-(ido 1)))] = shisicons
’LdO)] —VarCons Al[ﬂ -)‘2

1 —peta (AL[M])[L-id] — aps AL[T][L.((L-2d)o 1)] —Cros
((Lid)o 1)) = map AL[T o(L.(L[1]-(ido 1)))] = sniftcons
ido 1)) —rar AL[L[T]. 1] =varcons AL[T] = A2;

—peta (AL[T])[Lid] = a5 M[P][L.((1.id)o 1)] = arap
(ido 1))] = cuos AL[T o(L.(2[1].(ido 1)))] = sniftcons
T)] —?VarCons Al[ﬂ =)\2

— eta (AL[T])[L4d] = aps AL][L((Lid)o 1)] = prap
(1do 1))] = cios AL[T o(L.(L[1].(ido 1)))] = snifrcons
T)] —IdL)‘1[[ﬂ ﬂ —VarCons)‘1”] —)‘2

— et (M[T)[L-7d] = aps ALM[L.((Lid)o T)] = pap

Zdo] = rar ALTLQA] D] = ctos
))] _>ShzftC ons)\1[[T] T] —VarCons)\l[T] -)\2

.—.
—
=
—'/\

O

Lemma 5.4 Fvery Asysp-derivation of (A(2 2)) 1" to its Asysp-nf has length
dn + 5.

Proof. In fact, note that the sole possible derivation is:
()‘)‘(2 2)) 1" B [[()‘(2 2))7 L,0, (lnv 0) ’r”’l]] —ry
Al(2 2),2,1,@0::(1",0) ::nil] —

A[2,2,1,@0::(1",0) ::ndl] [2,2, 16 @0:: (1", 0) nil]) —2,

A([1, 1,1, (1", 0) = nil] [1,1,1 () nil]) —2,

A([1™, 0,1, nal] [1,0,1,nil]) — A(([1, 0, 1 ,nal])™ ([1,0,1,nil])") _>3;L
A(2" 2"). .

Lemma 5.5 ([22]) There exists a derivation of (AN(2 2)) 1" to its Ao-nf
whose length is n + 9.

Proof. Consider the following derivation:

(AM2 2)) 17 = (AL 2[1])) 1" = Bewa (AL L[T]))L"0d] — aps

A 2D ((A"id)o T)]) = arap

A((L[] 2[DIL- (1] (ido 1))]) =7y, ML) L)L (L))" (ido 1))]) = app
(AL ()™ (do 1))]) (LL[L-(ALT)™(ido 1)) = cios

A(0(_ (@[t])" (ido 1)) (A[TL-((L[1])" (ido 1))])) = snisecons

A(" (ido 1)]) (A[M[L-([])"™(ido T))])) = varcons

I (@I (do D)) =¥ AID™ A" = A" 27). =

Proposition 5.6 The \o- and Agysp-calculi are non comparable.

1t
1
1
1l
1

Proof. On the one side, by Lemmas 5.4 and 5.5, there exists a simula-
tion (AA(22)) 1" —,, A(2 2) shorter than the shortest of the simulations
(AX(2 2)) 1" —agygp A(2 2). Then Agysp A Ao

On the other side, consider the following simulation in Agysp:
((AA2) 1) =5, [(A2),1,0,(1,0) :: nil] —,, A[2,2,1,@Q0 :: (1,0) :: nil] —,,

14

444 ALALLLIIVUUULE, L0 LU VAV AL, A aAalviAllg LN

AlL,1,1,(1,0) = nil] —,, A[1,0,1,nil] —,, A2.
This simulation together with Lemma 5.3 allows us to conclude that:
Ao 74)\SUSP- (I

To prove that As. is more adequate than Agysp we need to estimate the
lengths of derivations.

Definition 5.7 Let A,B,C € A and k > 0. We define the functions M :
A—=Nand Qr: A xA—N by:

eM(n)=1 n ifn<k
o M(AA)=M(A)+1 *Qi(n,B)=S n+MB) if n=k
o M(A B)=M(A)+M(B)+1 k41 if n>k

0Qu((A B),C)=Qi(A4,C)+Qu(B,C)+1 Qu(\A, B)=Qps1(A, B)+1

Lemma 5.8 Let A € A. Then all s.-derivations of p,A to its s.-nf have
length M(A).

Proof. By simple induction over the structure of A. This is an easy extension
of the same lemma formulated for the As-calculus in [22]. a

Lemma 5.9 Let A € A. Then all susp-derivations of the well-formed term

[A,iyi,@i—1:: ... @0 :: nil] to its SUSP-nf have length greater than or equal

to M(A).

Proof. By induction over the structure of terms.

« A=n Ifn>ithen [n,i,7,Q@ —1:...:@0:nil] »! [n—1i,0,1,ni]
—, 0. The length of the derivation is i + 1 > M(A). If n < i then
[m, 4,4, @i — 1. @Q0unil] =7t 1,0 —n+1,4,@i — . Q0 ndl] =,
n. The length of the derivation is n > M(A).

* A= (B C). We have that [(B C),,i,@Qi — 1 = ... Q0 = nil] —,
([B,i,i,@Qi —1::...:@Q0::nil] [C,i,i,@Qi —1:...::@0 :: nil]). By the in-

duction hypothesis we conclude that the length of the derivation is greater
than or equal to 1+ M(B) + M(C) = M (B C) = M(A).

« A = (AB). We have that [(AB),i,i,@i —1::...:: Q0 :: nil] —,
A[B,i+1,i41,@¢::...:: @0 :: nil]. By induction hypothesis we conclude
that the length of the derivation is greater than or equal to 1 + M(B) =
M(AB) = M(A).

a

Lemma 5.10 Let B € A and i,5 > 0. The derivation of the SUSP-term
[B,i,j, @5 —1::e] to its SUSP-nf has length greater than or equal to M(B).

Proof. — Case B = n, [n,i,j,@j — 1 :: ¢] rewrites to its susp-uf in one or
more steps depending on n.

» Case B = (C D), we have [(C D),i,5,Qj — 1::e] =, [C,1,5,Qj — 1::¢€]
15

444 ALALLLIIVUUULE, L0 LU VAV AL, A aAalviAllg LN

[D,i,j,@j —1:¢e]. By the induction hypothesis we obtain the desired
result.
» Case B = (AC), we have [(\C),i,j,@j —1::e] —,,
AC)i+ 1,7+ 1,@j :: €], that by induction hypothesis completes the proof.
O

Proposition 5.11 Let A,B € A and k > 0. Then every Susp-derivation of
[A kb —1,@Qk —2 ... @0 :: (B,1) :: nil] to its SUSP-nf has length greater
than or equal to Qi(A, B).

Proof. By structural induction over A.

« A=n. Ifn <kthen [nk k—1,Qk —2:...:Q0:(B,1)=nil] =7t
[L,k—n+1,k—1,@Qk —n—1:...:@Q0::(B,[)::nil] — r3 n. This deriva-
tion has length n > Qx(n, B).

If n =k then [n, k, k —1,@k — 2::...::@0:: (B, 1) :nil] =7

[1, 1,k —1,(B,l)=nil] — r4 [B,0,k —1—1[,nil]. By Lemma 5.10 the last
term rewrites to its susp-nf in M(B) or more rewrite steps. The whole
derivation has length greater than or equal to n + M(B) = Q(n, B) =
Qk(Aa B)

If n >k then [n, &k, k —1,@k — 2::...::@Q0:: (B, 1) :nil] =% [n-k, 0, k-1, nil]
—, 0 — 1. Derivation Whose length is k+1 > Qr(n, B) = Qk (A, B).

« A= (C D). [(C D), k,k—1,Qk —2::...::Q0:: (B, 1) ::nil] —,

(IC, k, k-1, Qk-2::...::@Q0:: (B0) :: nil] [[D,k,k 1,@Qk-2::...::@0:: (B0) :: mil]).
By the induction hypothesis the derivation has length greater than or equal
to 1+Qk(C, B)+Qi(D, B)=Q((C' D), B)=Qx(A, B).

e A= (AC). [(A\C),k,k—1,Qk —2::...::@0::(B, 1) ::nil] —,

AMC k+1,k,@Qk —1::...::@Q0:: (B, [)::nil]. By the induction hypothesis we
can conclude that this derivation has length greater than or equal to
14+ Qr+1(C, B) = Qx(\C, B) = Q(4, B).

([

Proposition 5.12 Let A,B € A and k > 1. s.-derivations of Ac*B to its
se-nf have length < Qr(A, B).

Proof. By structural induction over the pure lambda term A.

* A = n. By applying the o-destruction rule, in the case n # k, we obtain
either n — 1 or n and in the case n = k, ¢fB. In the case that n # k,
the derivation has length equal to 1 < Qk(n,B). In the other case, we
apply Lemma 5.8 obtaining that the complete s.-normalization has length
1 4+ M(B). In both cases the derivation has length less than or equal to
Qu(n, B).

«+ A = (CD). (CD)d*B — (Co*B Do*B). By applying the induction
hypothesis we conclude that the complete derivation has length less than
or equal to 1+ Qx(C, B) + Qi(D, B) = Q«((C D), B).

16

444 ALALLLIIVUUULE, L0 LU VAV AL, A aAalviAllg LN

« A = (AC). (\C)o*B — X\Co"B). By the induction hypothesis we
conclude that the whole derivation has length less than or equal to 1 +
Qk+1(07 B) = Qk()‘ca B)

([

Theorem 5.13 (s, < Asusp) The As, is more adequate than the Asysp-calculus.

Proof. We prove the stronger result that if A € A and A —5, B —gygp
susp-nf(B) is a Agysp-simulation of a f-reduction then: A —,_jeneration C
—7 se-nf(C) has length n +1 <m +1.

In Agusp, for any redex of 3 we have (AD) E —5, [D, 1,0, (E,0)::nil] =&ysp
susp-nf([D, 1,0, (E,0) ::nil]). In the As,, (AD) E —_generation D' E —7. 5,
nf(Dol'E). By Propositions 5.11 and 5.12, m > Q.(D, E) > n. Hence, the
length of a Asysp-simulation of a [-contraction is not shorter than that of
some As.-simulation.

The 2nd part of being more adequate is shown by comparing the length
of simulations. E.g., let (A2) 1 —5 1. In Agysp the only possible three
steps simulation is: (A2) 1 —p, [2,1,0,(1,0):nil] —,, [1,0,0,nil] —,, 1.
In As. the only possible two steps simulation is: (A2) 1 —4_generation 201
—o—destruction l =

As mentioned in the above proof, we prove a stronger result than simple
better adequacy of As, as in [22]. In fact, we prove that the length of all As,-
simulations are shorter than the length of any Agygp-simulation. Examining
the proofs of Propositions 5.11 and 5.12 which relate the length of derivations
with the measure operator (), it appears evident that both calculi work simi-
larly except that after having propagated suspended terms between the body
of abstractors, Asysp deals with the substitutions in a less efficient way. To ex-
plain that, compare the simulations of S-reduction from the term (A(A"1)) j,
where n > 0: a
(A(A"1))] —ro- gen ()‘ 1)‘7 J 76 A trans)‘n(lanﬂl) =it
(A(A"1))j—p, [A"1,1,0,G0) ::n]]—>77)\"[[1,n+l,n,@n—l::...::@0::(1,0)::712’1]]
= tg

After that the As. complete the simulation in one or two steps by checking
arithmetic inequations:

A ifi<n+1

b1 —o—dest)\nl — 1 ife>n+1

)‘n(nHJ)—><p dest A" J+n ife=n+1

But in the Asysp we have to destruct the environment list, environment by
environment:

17

444 ALALLLIIVUUULE, L0 LU VAV AL, A aAalviAllg LN

—>ﬁ;1 AL, -1+ 2,n, @n-gir. @0 (3, 0) mndl] =, AL, i <n41
t2q =0t A [i=n = 1,0,n,nal] =, A"1 -1, ifi>n+1

—i P AL, 1, n, (3,0) nal] =, A*[3,0,n,nil] —,, A"j +n, ifi=n+1

These simple considerations lead us to believe that the main difference
of the two calculus (at least in the simulation of f-reduction) is given by
the manipulation of indices: although Asysp includes all de Bruijn indices,
it does not profit from the existence of the built-in arithmetic for indices.
These observations may be relevant for the treatment of the open question of
preservation of strong normalization of Asysp (conjectured positively in [26]),
since the As, has been proved to answer this question negatively in [16].

6 Future Work and Conclusion

[13,2] showed that n-reduction is of great interest for adapting substitution
calculi (Ao and As.) for important practical problems like higher order uni-
fication. In this paper we have enlarged the suspension calculus of [28,26]
with an adequate Fta rule for n-reduction and showed that this extended sus-
pension calculus Agysp enjoys confluence and termination of the associated
substitution calculus susp.

Additionally, we used the notion of adequacy of [22] for comparing these
three calculi when simulating one step [-reduction. We concluded that Ao
and A¢ are mutually non comparable for £ € {s., SUSP} but that As, is more
adequate than Agysp. After all, although Ao is a first order calculus and the
other two calculi are second order, comparing them is not unfair since the use
of (built-in) arithmetic is standard in all modern programming environments.

An immediate work to be done is to study two open questions: 1) whether
the se-calculus has strong normalization (SN), 2) whether Agygp preserves SN.
Interesting points arise in this context since: a) As, is more adequate than

Asusp, b) As. does not preserves SN [16] and ¢) the substitution calculus of
)\SUSP has SN.

References

[1] M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy. Explicit Substitutions.
Journal of Functional Programming, 1(4):375-416, 1991.

[2] M. Ayala-Rincén and F. Kamareddine. Unification via As.-Style of Explicit
Substitution. In Journal of the IGPL 9(4):521-555, 2001.

[3] M. Ayala-Rincén and F. Kamareddine. On Applying the Asc-Style of
Unification for Simply-Typed Higher Order Unification in the Pure lambda

Calculus. In Pre-Proceedings Eighth Workshop on Logic, Language, Information
and Computation - WoLLIC 2001, pages 41-54, 2001.

18

444 ALALLLIIVUUULE, L0 LU VAV AL, A aAalviAllg LN

[4] M. Ayala-Rincén and C. Munioz. Explicit Substitutions and All That. Revista
Colombiana de Computacion, 1(1):47-71, 2000.

[5] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University
Press, 1998.

[6] H. Barendregt. The Lambda Calculus : Its Syntax and Semantics (revised
edition). North Holland, 1984.

[7] Z.-el-A. Benaissa, D. Briaud, P. Lescanne, and J. Rouyer-Degli. Av, a Calculus
of Explicit Substitutions which Preserves Strong Normalization. Journal of
Functional Programming, 6(5):699-722, 1996.

[8] Z.-el-A. Benaissa, P. Lescanne, and K. H. Rose. Modeling Sharing and
Recursion for Weak Reduction Strategies using Explicit Substitution. In
PLILP’96,LNCS 1140, 393-407. Springer, 1996.

[9] R. Bloo. Preservation of Termination for Ezplicit Substitution. PhD thesis,
Department of Mathematics and Computing Science, Eindhoven University of
Technology, 1997.

[10] P. Borovansky. Implementation of Higher-Order Unification Based on Calculus
of Explicit Substitutions. In M. BartoSek, J. Staudek, and J. Wiedermann,
editors, Proceedings of the SOFSEM’95: Theory and Practice of Informatics,
volume 1012 of Lecture Notes on Computer Science, pages 363—-368. Springer
Verlag, 1995.

[11] P.-L. Curien, T. Hardin, and J.-J. Lévy. Confluence Properties of Weak and
Strong Calculi of Explicit Substitutions. Journal of the ACM, 43(2):362-397,
1996. Also as Rapport de Recherche INRIA 1617, 1992.

[12] N. G. de Bruijn. Lambda-Calculus Notation with Nameless Dummies, a Tool
for Automatic Formula Manipulation, with Application to the Church-Rosser
Theorem. Indag. Mat., 34(5):381-392, 1972.

[13] G. Dowek, T. Hardin, and C. Kirchner. Higher-order Unification via Explicit
Substitutions. Information and Computation, 157(1/2):183-235, 2000.

[14] M. C. F. Ferreira, D. Kesner, and L. Puel. A-Calculi with Explicit Substitutions
and Composition which Preserve [-Strong Normalisation. In Algebraic and
Logic Programming, ALP’96, LNCS 1139, 284-298. Springer, 1996.

[15] B. Guillaume. Un calcul des substitutions avec etiquettes. PhD thesis,
Université de Savoie, Chambéry, 1999.

[16] B. Guillaume. The As.-calculus Does Not Preserve Strong Normalization.
Journal of Functional Programming, 10(4):321-325, 2000.

[17] F. Kamareddine and R. P. Nederpelt. On stepwise explicit substitution.
International Journal of Foundations of Computer Science, 4(3):197-240, 1993.

[18] F. Kamareddine and R. P. Nederpelt. A useful A-notation. Theoretical
Computer Science, 155:85-109, 1996.

19

444 ALALLLIIVUUULE, L0 LU VAV AL, A aAalviAllg LN

[19] F. Kamareddine and A. Rios. A A-calculus & la de Bruijn with Explicit
Substitutions. In Proc. of PLILP’95, LNCS 982 , 45—62. Springer, 1995.

[20] T. Hardin, L. Maranget, and B. Pagano. Functional runtime systems within
the lambda-sigma calculus. Functional Programming, 8(2):131-176, 1998.

[21] F. Kamareddine and A. Rios. Extending a A-calculus with Explicit Substitution
which Preserves Strong Normalisation into a Confluent Calculus on Open
Terms. Journal of Functional Programming, 7:395-420, 1997.

[22] F. Kamareddine and A. Rios. Relating the Ao- and As-Styles of Explicit
Substitutions. Journal of Logic and Computation, 10(3):349-380, 2000.

[23] F. Kamareddine, A. Rios, and J.B. Wells. Calculi of Generalised S-reduction
and explicit substitution: Type Free and Simply Typed Versions. Journal of
Functional and Logic Programming, 1998(Article 5):1-44, 1998.

[24] L. Magnusson. The implementation of ALF - a proof editor based on Martin
Lof’s Type Theory with explicit substitutions. PhD thesis, Chalmers, 1995.

[25] C. Munoz. Un calcul de substitutions pour la représentation de preuves partielles
en théorie de types. PhD thesis, Université Paris 7, 1997. English version in
Rapport de recherche INRIA RR-3309, 1997.

[26] G. Nadathur. A Fine-Grained Notation for Lambda Terms and Its Use in
Intensional Operations. The Journal of Functional and Logic Programming,
1999(2):1-62, 1999.

[27] G. Nadathur and D. Miller. An Overview of AProlog. In K.A. Bowen and
R.A. Kowalski, editors, Proc. 5th Int. Logic Programming Conference, pages
810-827. MIT Press, 1988.

[28] G. Nadathur and D. S. Wilson. A Notation for Lambda Terms A Generalization
of Environments. Theoretical Computer Science, 198:49-98, 1998.

[29] R. Nederpelt, J. H. Geuvers and R. de Vrijer. Selected Papers on Automath.
North-Holland, Amsterdam, 1994.

[30] A. Rios. Contribution a l’étude des A-calculs avec substitutions explicites. PhD
thesis, Université de Paris 7, 1993.

[31] R. Vestergaard and J. B. Wells. Cut Rules and Explicit Substitutions.
Mathematical Structures in Computer Science 11(1), pages 131-168, 2001.

20

