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Ayala-Rin�on, de Moura and Kamareddineautomated dedution and theorem proving [24,25℄, to proof theory [31℄, to pro-gramming languages [8,20,23,26℄ and to higher order uni�ation HOU [2,13℄.This paper onentrates on three di�erent styles of substitutions:(i) The ��-style [1℄ whih introdues two di�erent sets of entities: one forterms and one for substitutions.(ii) The suspension alulus [28,26℄, denoted �susp, whih introdues threedi�erent sets of entities: one for terms, one for environments and one forenvironment terms.(iii) The �s-style [19℄ whih uses a philosophy of de Bruijn's Automath [29℄elaborated in the new item notation [18℄. The philosophy states thatterms are built by appliations (a funtion applied to an argument),abstration (a funtion), substitution or updating. The advantages ofthis philosophy inlude remaining as lose as possible to the familiar �-alulus (f. [18℄).The desired properties of expliit substitution aluli are a) simulation of�-redution, b) onuene (CR) on losed terms, ) CR on open terms, d)strong normalization (SN) of expliit substitutions and e) preservation of SNof the �-alulus. �� satis�es a), b) and d), �s satis�es a)..e) but not ). �shas an extension �se for whih a)..) holds, but e) fails and d) is unknown.The suspension alulus satis�es a)..d), but e) is unknown. This paper dealswith two useful notions for these aluli:� Comparing the adequay of their redution proess using the eÆient simu-lation of �-redution of [22℄.� Extending the suspension alulus with eta-redution resulting in �susp.Eta-redution for �� was used in [13℄ to deal with HOU and was introduedin [2℄ for the same purpose in �se.It was shown in [22℄ that �s and �� are non omparable. In this paperwe prove that �se and �� as well as �� and �susp are non omparable andthat �se is more adequate than the �susp. Additionally, we show that �susppreserves onuene and SN of the substitution alulus assoiated with �susp.2 PreliminariesWe assume familiarity with �-alulus (f. [6℄) and the notion of term algebraT (F ;X ) built on a (ountable) set of variables X and a set of operators F .Variables in X are denoted by X; Y; ::: and for a term a 2 T (F ;X ), var(a)denotes the set of variables ourring in a. Throughout, we take a; b; ; : : : torange over terms.Additionally, we assume familiarity with basi notions of rewriting as in[5℄. In partiular, for a redution relation R over a set A, we denote with=!R the reexive losure of R , with !�R or just !� the reexive andtransitive losure of R and with !+R or just !+ the transitive losure2



Ayala-Rin�on, de Moura and Kamareddineof R . When a!� b we say that there exists a derivation from a to b . Bya!n b, we mean that the derivation onsists of n steps of redution and alln the length of the derivation. Syntatial identity is denoted by a = b.For a redution relation R over A, (A;!R), we use the standard de�nitions of(loally-)onuent or (weakly) Churh Rosser (W)CR, normal forms andstrong and weak normalization/termination SN and WN. Suppose Ris a SN redution relation and let t be a term, then R-nf(t) denotes its normalform. As usual we use indisriminately either \noetherian" or \terminating"instead of SN.A valuation is a mapping from X to T (F ;X ). The homeomorphi ex-tension of a valuation, �, from its domain X to the domain T (F ;X ) is alledthe grafting of �. As usual, valuations and their orresponding graftings aredenoted by the same Greek letter. The appliation of a valuation � or itsorresponding grafting to a term a 2 T (F ;X ) will be written in post�x no-tation a�. The domain of a grafting �, is de�ned by Dom(�) = fX j X� 6=X;X 2 Xg. Its range, is de�ned by Ran(�) = [X2Dom(�)var(X�). We letvar(�) = Dom(�)[Ran(�). For expliit representations of a valuation and itsorresponding grafting �, we use the notation � = fX 7!X� j X 2 Dom(�)g.Note that the notion of grafting, usually alled �rst order substitution, orre-sponds to simple syntati substitution without renaming.Let V be a (ountable) set of variables denoted by lowerase last letters ofthe Roman alphabet x; y; :::.De�nition 2.1 Terms �(V), of the �-alulus with names are indutivelyde�ned by �(V) ::= x j (�(V) �(V)) j �x:�(V), where x 2 V.�x:a and (a b) are alled abstration and appliation terms, respetively.Terms in �(V) are alled losed �-terms or terms without substitution meta-variables. An abstration �x:a represents a funtion of parameter x, whosebody is a. Its appliation (�x:a b) to an argument b, returns the valueof a, where the formal parameter x is replaed by b. This replaement offormal parameters with arguments is known as �-redution. In the �rstorder ontext of the term algebra T (f�x: j x 2 Vg [ f( )g;V) and its �rstorder substitution or grafting, �-redution would be de�ned by (�x:a b) !afx 7!bg.But in this ontext problems arise foring the use of �-onversion torename bound variables:(i) Let � = fx 7!bg. There are no semanti di�erenes between the abstra-tions �x:x and �z:z; both abstrations represent the identity funtion.But (�x:x)� = �x:b and (�z:z)� = �z:z are di�erent.(ii) Let � = fx 7! yg. (�y:x)� = �y:y and (�z:x)� = �z:y, thus a apture ispossible.Consequently, �-redution, should be de�ned in a way that takes are of re-naming bound variables when neessary to avoid harmful apture of variables.3



Ayala-Rin�on, de Moura and KamareddineThe �-alulus usually onsiders substitution as an atomi operation leav-ing impliit the omputational steps needed to e�etively perform ompu-tational operations based on substitution suh as mathing and uni�ation.In any real higher order dedutive system, the substitution required by ba-si operations suh as �-redution should be implemented via smaller opera-tions. Expliit substitution is an appropriate formalism for reasoning aboutthe operations involved in real implementations of substitution. Sine expliitsubstitution is loser to real implementations than to the lassi �-alulus,it provides a more aurate theoretial model to analyze essential propertiesof real systems (termination, onuene, orretness, ompleteness, et.) aswell as their time/spae omplexity. For further details of the importane ofexpliit substitution see [23,4℄.�-onversion should be performed before applying the substitution in thebody of an abstration. The grafting of a fresh variable avoids the possibilityof apture. It is very important to remark that renaming selets fresh variablesthat have not been used previously. Moreover, sine fresh variables are seletedrandomly, the result of the appliation of a substitution an be oneived asa lass of equivalene terms.De�nition 2.2 �-redution is the rewriting relation de�ned by the rewriterule (�) and �-redution is the rewriting relation de�ned by the rewrite rule(�), where:(�) (�x:a b)! fx=bg(a) and (�) �x:(a x)! a; if x 62 Fvar(a)Fvar(a) denotes the free variables ourring in a. Notie that our notion ofsubstitution is not ompletely satisfatory beause the idea of fresh variablesis impliit and depends on the history of the renaming proess.Lambda terms with meta-variables or open lambda terms are given by thefollowing.De�nition 2.3 Terms �(V;X ), of the �-alulus with names are indu-tively de�ned by: �(V;X ) ::= x j X j (�(V;X ) �(V;X )) j �x:�(V;X ), wherex 2 V and X 2 X .We have seen that the names of bound variables and their orrespond-ing abstrators play a semantially irrelevant role in the �-alulus. So anyterm in �(V) or �(V;X ) an be seen as a syntatial representative of itsobvious equivalene lass. Hene, during syntati uni�ation, the role thatnames of bound variables and their orresponding abstrators play inreasesthe omplexity of the proess and reates onfusion.Avoiding names in the �-alulus is an e�etive way of larifying themeaning of �-terms and, for the uni�ation proess, of eliminating redun-dant renaming. De Bruijn developed in [12℄ a notation where names of boundvariables are replaed by indies whih relate these bound variables to theirorresponding abstrators.It is lear that the orrespondene between an ourrene of a bound vari-4



Ayala-Rin�on, de Moura and Kamareddineable and its assoiated abstrator operator is uniquely determined by its depth,that is the number of abstrators between them. Hene, �-terms an be writ-ten in a term algebra over the natural numbers N , representing depth in-dies, the appliation operator ( ) and a sole abstrator operator � ; i.e.,T (f( ); � g [ N).In de Bruijn's notation, indexing the ourrenes of free variables is givenby a referential aording to a �xed enumeration of the set of variables V, sayx; y; z; : : :, and pre�xing all �-terms with : : : �z:�y:�x: .Now we an de�ne the �-alulus in de Bruijn notation with open termsor meta-variables.De�nition 2.4 The set �dB(X ) of �-terms in de Bruijn notation is de-�ned indutively as: �dB(X ) ::= n j X j (�dB(X ) �dB(X )) j ��dB(X ), whereX 2 X and n 2 N n f0g.�dB(X )-terms without meta-variables are alled losed lambda terms.We write de Bruijn indies as 1; 2; 3; : : : ; n; : : :, to distinguish them fromsripts. Sine all onsidered aluli of expliit substitutions are built over thelanguage of �dB(X ), we will use � to denote �dB(X ).De�ning �-redution in de Bruijn notation by (�a b) ! f1=bga (wheref1=bga is the substitution of the index 1 in a with b) fails beause:� when eliminating the leading abstrator all indies assoiated with free vari-able ourrenes in a should be deremented;� when propagating in a the substitution f1=bg through �s, the indies of thesubstitution (initially 1) and of the free variables in b should be inremented.Hene, we need new operators for deteting, inrementing and derement-ing free variables whih will be used in the de�nition of substitution.De�nition 2.5 Let a 2 �dB(X ). The i-lift of a, denoted a+i is de�ned in-dutively as follows:1) X+i = X , for X 2 X 2) (a1 a2)+i = (a+i1 a+i2 )3) (�a1)+i = �a+(i+1)1 4) n+i = 8<: n+ 1; if n > in; if n � i for n 2 N :The lift of a term a is its 0-lift and is denoted briey as a+.De�nition 2.6 The appliation of the substitution with b at the depth n�1; n 2 N n f0g, denoted fn=bga, on a term a in �dB(X ) is de�ned indutivelyas follows:1) fn=bgX = X, for X 2 X 2) fn=bg(a1 a2) = (fn=bga1 fn=bga2)3) fn=bg�a1 = �fn+ 1=b+ga1 4) fn=bgm = 8>>><>>>: m� 1; if m > nb; if m = nm; if m < n if m 2 N.5



Ayala-Rin�on, de Moura and KamareddineDe�nition 2.7 The �-redution in the �-alulus with de Bruijn indies isde�ned as (�a b)! f1=bga.Observe that the rewriting system of the sole �-redution rule is left-linearand non overlapping (i.e. orthogonal). Consequently, the rewriting systemde�ned over �dB(X ) by the �-redution rule is CR.In the �-alulus with names, the �-redution rule is de�ned as �x:(a x)!a; if x 62 Fvar(a). In �dB(X ), the left side of this rule is written as �(a0 1),where a0 stands for the orresponding translation of a under some �xed refe-rential of variables into the language of �dB(X ). \a has no free ourrenes ofx" means, in �(X ), that there are neither ourrenes in a0 of the index 1 atheight zero nor of the index 2 at height one nor of the index 3 at height twoet. This means, in general, that there exists a term b suh that b+ = a.De�nition 2.8 The �-redution in the �-alulus with de Bruijn indies isde�ned as �(a 1)! b if 9b b+ = a.3 Caluli �a la ��, �se and �suspRewriting systems for the �� and the �se-aluli inluding the eta-rule an befound either in [13℄ (for the ��) [2℄ (for both the �� and �se) or in the fullversion of this work (for the three aluli).3.1 The ��-alulusThe ��-alulus introdued in [1℄ works on 2-sorted terms: (proper) terms,and substitutions.The rewriting system �� is loally onuent [1℄, CR on substitution-losedterms (i.e., terms without substitution variables) [30℄ and not CR on openterms (i.e., terms with term and substitution variables) [11℄. The possibleforms of a ��-term in ��-normal form were given in [30℄.3.2 The �se-alulusThe �se-alulus of [21℄ is an extension of the �s-alulus ([19℄) whih is CR onopen terms and insists on remaining lose to the syntax of the �-alulus. Nextto abstration and appliation, substitution (�) and updating (') operatorsare introdued. A term ontaining neither � nor ' is alled a pure lambdaterm. This alulus was originally introdued without the Eta rule that wasadded in [2℄ to deal with higher order uni�ation problems as originally donein [13℄ for the ��-alulus.The �se-alulus has been proved in [21℄ to be CR on open terms; tosimulate �-redution: let a; b 2 �, if a !� b then a !��se b ; to be sound:let a; b 2 � , if a !��se b then a !�� b ; and its assoiated substitutionalulus, that is the se-alulus, to be WN and CR. The haraterization ofthe �se-normal forms was given in [21,2℄.6



Ayala-Rin�on, de Moura and Kamareddine3.3 The suspension alulusThe suspension alulus [28,26℄ deals with �-terms as omputational meha-nisms. This was motivated by implementational questions related to �Prolog,a logi programming language that uses typed �-terms as data strutures [27℄.The suspension alulus works with three di�erent types of entities:suspended terms M , N ::= Cons j n j �M j (M N) j [[M; i; j; e1℄℄environments e1, e2 ::= nil j et :: e1 j ffe1; i; j; e2ggenvironment terms et ::= �i j (M; i) j hhet; i; j; e1iiwhere Cons denotes any onstant and i; j are non negative natural numbers.As onstants and de Bruijn indies are suspended terms, the suspensionalulus has open terms.The suspension alulus owns a generation rule �s, that initiates the simu-lation of a �-redution (as for the �� and the �se, respetively, the Beta andthe �-generation rules do) and two sets of rules for handling the suspendedterms. The �rst set, the r rules, for reading suspensions and the seond set,the m rules, for merging suspensions are given in Table 1.As in [28℄ we denote by .rm the redution relation de�ned by the r- andm-rules in Table 1. The assoiated substitution alulus, denoted as susp, isthe one given by the ongruene =rm.De�nition 3.1 ([28℄) The length len(e) of an environment e is given by:len(nil) := 0; len(et :: e0) := len(e0) + 1 andlen(ffe1; i; j; e2gg) := len(e1) + (len(e2) : i).The index ind(et) of an environment term et, and the l-th index indl(e) ofenvironment e and natural number l, are simultaneously de�ned by indutionon the struture of expressions:ind(�m) = m + 1 ind((t0; m)) = mind(hhet0; j; k; eii) = 8<: indm(e) + (j : k) if len(e) > j : ind(et0) = mind(et0) otherwiseindl(nil) = 0 ind0(et :: e0) = ind(et) and indl+1(et :: e0) = indl(e0)
indl(ffe1; j; k; e2gg) = 8>>>>>>>>><>>>>>>>>>:

indm(e2) + (j : k) if l < len(e1) andlen(e2) > m = j : indl(e1)indl(e1) if l < len(e1) andlen(e2) � m = j : indl(e1)indl�l1+j(e2) if l � l1 = len(e1)The index of an environment e, denoted as ind(e), is ind0(e).De�nition 3.2 ([28℄) An expression of the suspension alulus is said to be7



Ayala-Rin�on, de Moura and KamareddineTable 1Rewriting rules of the suspension alulus(�s) ((�t1 t2)�! [[t1; 1; 0; (t2; 0) :: nil℄℄(r1) [[; ol; nl; e℄℄�!; where  is a onstant(r2) [[i; 0; nl; nil℄℄�!i+nl(r3) [[1; ol; nl;�l :: e℄℄�!nl-l(r4) [[1; ol; nl; (t; l) :: e℄℄�! [[t; 0; (nl-l); nil℄℄(r5) [[i; ol; nl; et :: e℄℄�! [[i-1; (ol-1); nl; e℄℄; for i > 1(r6) [[(t1 t2); ol; nl; e℄℄�!([[t1; ol; nl; e℄℄ [[t2; ol; nl; e℄℄)(r7) [[� t; ol; nl; e℄℄�!� [[t; (ol + 1); (nl + 1);�nl :: e℄℄(m1) [[[[t; ol1; nl1; e1℄℄; ol2; nl2; e2℄℄�! [[t; ol0; nl0; ffe1; nl1; ol2; e2gg℄℄; whereol0 = ol1 + (ol2 : nl1) andnl0 = nl2 + (nl1 : ol2)(m2) ffnil; nl; 0; nilgg�!nil(m3) ffnil; nl; ol; et :: egg�!ffnil; (nl-1); (ol-1); egg; for nl; ol � 1(m4) ffnil; 0; ol; egg�!e(m5) ffet :: e1; nl; ol; e2gg�!hhet; nl; ol; e2ii :: ffe1; nl; ol; e2gg(m6) hhet; nl; 0; nilii�!et(m7) hh�m;nl; ol;�l :: eii�!�(l + (nl : ol)); for nl = m+ 1(m8) hh�m;nl; ol; (t; l) :: eii�!(t; (l + (nl : ol))); for nl = m + 1(m9) hh(t; nl); nl; ol; et :: eii�!([[t; ol; l0; et :: e℄℄; m); wherel0 = ind(et) and m = l0 + (nl : ol)(m10) hhet; nl; ol; et0 :: eii�!hhet; (nl-1); (ol-1); eii; for nl 6= ind(et)well-formed if the following onditions hold over all its subexpressions s:� if s is [[t; ol; nl; e℄℄ then len(e) = ol and ind(e) � nl� if s is et :: e then ind(e) � ind(et)� if s is hhet; j; k; eii then len(e) = k and ind(et) � j� if s is ffe1; j; k; e2gg then len(e2) = k and ind(e1) � j.In the sequel, we only deal with well-formed expressions of the suspensionalulus. 8



Ayala-Rin�on, de Moura and KamareddineThe suspension alulus simulates �-redution and its assoiated substitu-tion alulus susp is CR (over losed and open terms) and SN [28℄. In [26℄Nadathur onjetures that the suspension alulus preserves strong normali-zation too. The following lemma haraterizes the .rm-normal forms.Lemma 3.3 ([28℄) A well-formed expression of the suspension alulus x isin its .rm-nf if and only if one of the following aÆrmations holds:1) x is a pure �-term in de Bruijn notation;2) x is an environment term of the form �l or (t; l), where t is a term in its.rm-nf;3) x is the environment nil or et :: e for et and e resp. an environment termand an environment in .rm-nf.4 The suspension alulus enlarged with the �-redution:the �susp-alulusThe suspension alulus was initially formulated without �-redution. Herewe introdue an adequate Eta rule that enlarges the suspension alulus pre-serving orretness, onuene, and termination of the assoiated substitutionalulus. The suspension alulus enlarged with this Eta rule is denoted by�susp and its assoiated substitution alulus remains as susp. The Eta ruleis formulated as follows:(Eta) (� (t1 1)) �! t2; if t1 =rm [[t2; 0; 1; nil℄℄Intuitively Eta may be interpreted as: when it is possible to apply the �-redution to the redex �(t1 1) we obtain a term t2 that has the same strutureas t1 with all its free de Bruijn indies deremented by one. This is possiblewhenever there are no free ourrenes of the variable orresponding to 1 in t1.Proposition 4.2 proves the orretness of Eta aording to this interpretation.We follow [10℄ and [3℄ for �� and �se respetively, and implement the Eta ruleof the �susp-alulus by introduing a dummy symbol 3, by:�(M 1) �!Eta Nif N = .rm-nf([[M; 1; 0; (3; 0) :: nil℄℄) and 3 does not our in N .The orretness of this implementation is explained beause an �-redution�(M 1)!� N gives us a term N , whih is obtained from M by derementingby one all free ourrenes of de Bruijn indies, as previously mentioned, andwhih orresponds exatly to the .rm-normalization of the term ((�M) 3)!�s[[M; 1; 0; (3; 0) :: nil℄℄, whenever 3 does not appear in this normalized term.Lemma 4.1 Let A be a well-formed term of the suspension alulus. Thenthe susp-normalization of the term [[A; k; k + 1;�k :: �k � 1 :: : : : :: �1 :: nil℄℄gives a term obtained from A by inrementing by one all its de Bruijn freeindies greater than k and preserving unaltered all other de Bruijn indies.Proof. By indution on the struture of A. The onstant ase is trivial.9



Ayala-Rin�on, de Moura and Kamareddine� A = n. If n > k then [[n; k; k + 1;�k :: : : : ::�1::nil℄℄ !kr5[[n� k; 0; k + 1; nil℄℄ !r2 n+ 1.If n � k then [[n; k; k + 1;�k :: : : : ::�1::nil℄℄ !n�1r5[[1; k � n+ 1; k + 1;�k � n+ 1:: : : : ::�1::nil℄℄ !r3 n;� A = (B C). we apply r6 and indution hypothesis for B and C;� A = (�B). Sine B is bounded by an abstrator just its free variablesgreater than k + 1 should be inremented by one, while the other variablesshould remain unhanged. Sine [[(�B); k; k + 1;�k :: : : : :: �1 :: nil℄℄ !r7�[[B; k + 1; k + 2;�k + 1 :: : : : :: �1 :: nil℄℄, by applying indution hypothe-sis over the previous term we obtain the desired result.� A = [[t; ol; nl; e℄℄. Without loss of generality A may be .rm-normalizedand by Lemma 3.3 the obtained term is of one of the forms analysed in theprevious ases. 2Proposition 4.2 (Soundness of the Eta rule) Every appliation of the Etarule of �susp to the redex �(t1 1) gives e�etively the term t2 obtained from t1by derementing all its de Bruijn free indies by one.Proof. The proof is by indution over the struture of t2 onsidering thepremise t1 =rm [[t2; 0; 1; nil℄℄. The e�et of normalizing [[t2; 0; 1; nil℄℄ is to in-rement by one all de Bruijn free indies ourring at t2:� t2 = n. [[n; 0; 1; nil℄℄!r2 n + 1 =rm t1.� t2 = (A B). Without loss of generality we an assume that both A and Bare in .rm-nf. Observe that [[(A B); 0; 1; nil℄℄ !r6 [[A; 0; 1; nil℄℄ [[B; 0; 1; nil℄℄.Now, by indution hypothesis over A and B, we have that the normalizationof the suspended terms [[A; 0; 1; nil℄℄ and [[B; 0; 1; nil℄℄ have the desired e�etand onsequently the same happens with the normalization of the suspendedterm [[(A B); 0; 1; nil℄℄.� t2 = (�A). As before, assume A is in .rm-nf. Note that [[(�A); 0; 1; nil℄℄!r7 (�[[A; 1; 2;�1::nil℄℄). By applying Lemma 4.1 to the term[[A; 1; 2;�1 :: nil℄℄ we onlude that all free ourrenes of de Bruijn indiesgreater than 1 at A are inremented by one while the other indies areunhanged.� t2 = [[t; i; j; e℄℄. If t is in .rm-nf then [[t; i; j; e℄℄ .�rm t0, where t0 is a pure�-term in de Bruijn notation by Lemma 3.3. Hene, the analysis given inthe previous three ases applies here too. 2Noetherianity of susp plus the Eta rule enables us to apply the Newmandiamond lemma and the Knuth-Bendix ritial pair riterion for proving itsonuene.Lemma 4.3 (susp plus Eta is SN)The rewriting system assoiated to susp10



Ayala-Rin�on, de Moura and Kamareddineand the Eta rule is noetherian.Proof. (Sketh) This is proved by showing that the Eta rule is also ompatiblewith the well-founded partial ordering� that is de�ned and proved ompatiblewith .rm in [28℄. 2A simple environment is an environment without subexpressions of theform ff ; ; ; gg or hh ; ; ; ii.Lemma 4.4 ([28℄) Let e1 be a simple environment and suppose that nl andol are naturals suh that (nl � ind(e1)) � ol. Then ffe1; nl; ol; e2gg .�rm e1.Lemma 4.5 (Loal-onuene of susp plus Eta) The rewriting systemof the substitution alulus susp plus the Eta rule is loally-onuent.Proof. The rewrite relation .rm, i.e., susp, was shown in [28℄ to be (loally)onuent. Thus for proving that the assoiated rewriting system enlargedwith the Eta rule is loally-onuent, it is enough to show that all additionalritial pairs built by overlapping between the Eta rule and the other rules ofsusp are joinable.Note that no ritial pairs are generated from the rule Eta and itself. Also,note that there is a unique overlapping between the set of rules in Table 1(minus (�s)) and Eta: namely, the one between Eta and (r7).This ritial pair is h[[t2; ol; nl; e℄℄; �[[(t1 1); ol + 1; nl + 1;�nl :: e℄℄i, wheret1 =rm [[t2; 0; 1; nil℄℄. After applying the rules r6 and r3 the right-side term ofthis ritial pair redues to �([[t1; ol + 1; nl + 1;�nl :: e℄℄ 1).We prove by analyzing the struture of the term t1 that this ritial pairis joinable. As usual we an onsider the terms t1 and t2 as .rm-nf's.� t1 = n. For making possible the Eta appliation, we need that n > 1.Aording to the length of the environment �nl :: e (i.e., ol + 1) we havethe following ases:� ol + 1 < n. On the one side, �([[n; ol + 1; nl + 1;�nl :: e℄℄ 1) !ol+1r5�([[n-ol-1; 0; nl + 1; nil℄℄ 1) !r2 �(n-ol+nl 1) !Eta n-ol+nl-1. On theother side, t1 =rm [[t2; 0; 1; nil℄℄, hene t2 = n-1 and we have [[n-1; ol; nl; e℄℄!olr5 [[n-1-ol; 0; nl; nil℄℄ !r2 n-ol+nl-1.� ol + 1 � n. On the one side, �([[n; ol + 1; nl + 1;�nl :: e℄℄ 1) !n�1r5�([[1; ol � n+ 2; nl + 1; e1 :: e0℄℄ 1) and the subsequent derivation dependson the struture of e1: when e1 = �l we apply r3 obtaining �(nl+1-l 1)!Eta nl-l and on the other side, [[n-1; ol; nl; e℄℄ !n�2r5[[1; ol � n+ 2; nl;�l :: e0℄℄ !r3 nl-l; when e1 = (t; l), where without lossof generality t is suppossed to be in .rm-nf, we have�([[1; ol � n+ 2; nl + 1; (t; l) :: e0℄℄ 1) !r4 �([[t; 0; nl � l + 1; nil℄℄ 1) !Eta.rm-nf([[[[t; 0; nl+1�l; nil℄℄; 1; 0; (3; 0) ::nil℄℄) !m1.rm-nf([[t; 0; nl�l; ffnil; nl+1�l; 1; (3; 0) ::nilgg℄℄)!m3.rm-nf([[t; 0; nl � l; ffnil; nl � l; 0; nilgg℄℄) !m2 .rm-nf([[t; 0; nl � l; nil℄℄)and on the other side, [[1; ol � n+ 2; nl; (t; l) :: e0℄℄!r4 [[t; 0; nl � l; nil℄℄.11



Ayala-Rin�on, de Moura and KamareddineSine .rm-nf([[t; 0; nl � l; nil℄℄) and [[t; 0; nl � l; nil℄℄ are joinable we ob-tain the onuene.� t1 = (A B). Sine the sole rule of the �susp that truly \applies" appli-ations is the �s, we an separately onsider Eta redutions for A and Band then apply the indution hypothesis. That is, suppose indutively that�([[A; ol + 1; nl + 1;�nl :: e℄℄ 1) !Eta A00 and [[A0; ol; nl; e℄℄, where[[A0; 0; 1; nil℄℄ =rm A as well as �([[B; ol + 1; nl + 1;�nl :: e℄℄ 1)!Eta B00 and[[B0; ol; nl; e℄℄, where [[B0; 0; 1; nil℄℄ =rm B are joinable. Then sine�([[(A B); ol + 1; nl + 1;�nl ::e℄℄ 1) !r6�(([[A; ol + 1; nl + 1;�nl ::e℄℄ [[B; ol + 1; nl + 1;�nl ::e℄℄) 1) !Eta (A00 B00)and [[(A0 B0); ol; nl; e℄℄ !r6 ([[A0; ol; nl; e℄℄ [[B0; ol; nl; e℄℄) we an onlude theonuene.� t1 = (�A). By the Eta rule implementation, it is enough to show the join-ability of the Eta redution of the term �([[(�A); ol + 1; nl + 1;�nl ::e℄℄ 1)that is .rm-nf([[[[(�A); ol + 1; nl + 1;�nl ::e℄℄; 1; 0; (3; 0) ::nil℄℄) and the term[[ .rm -nf([[(�A); 1; 0; (3; 0) ::nil℄℄); ol; nl; e℄℄.On the one side, [[ .rm -nf([[(�A); 1; 0; (3; 0)::nil℄℄); ol; nl; e℄℄ .�rm.rm-nf([[[[(�A); 1; 0; (3; 0)::nil℄℄; ol; nl; e℄℄) !r7;r7.rm-nf((�[[[[A; 2; 1;�0::(3; 0)::nil℄℄; ol + 1; nl + 1;�nl::e℄℄)) .�rm(� .rm -nf([[[[A; 2; 1;�0::(3; 0)::nil℄℄; ol + 1; nl + 1;�nl::e℄℄)) !m1(� .rm -nf([[A; ol + 2; nl + 1; ff�0::(3; 0)::nil; 1; ol + 1;�nl::egg℄℄))and we have that ff�0::(3; 0)::nil; 1; ol + 1;�nl::egg !m5;m5hh�0; 1; ol+1;�nl::eii::hh(3; 0); 1; ol+1;�nl::eii::ffnil; 1; ol+1;�nl::egg!m7�nl::hh(3; 0); 1; ol + 1;�nl::eii::ffnil; 1; ol + 1;�nl::egg !m10�nl::hh(3; 0); 0; ol; eii::ffnil; 1; ol + 1;�nl::egg !m3;m4�nl::hh(3; 0); 0; ol; eii::e. Then we obtain the term(�.rm -nf([[A; ol + 2; nl + 1;�nl :: hh(3; 0); 0; ol; eii :: e℄℄)). On the other side,.rm-nf([[[[(�A); ol + 1; nl + 1;�nl :: e℄℄; 1; 0; (3; 0) :: nil℄℄) !r7;r7.rm-nf((�[[[[A; ol + 2; nl + 2;�nl + 1::�nl ::e℄℄; 2; 1;�0::(3; 0) ::nil℄℄)) .�rm(� .rm -nf([[[[A; ol + 2; nl + 2;�nl + 1::�nl ::e℄℄; 2; 1;�0::(3; 0) ::nil℄℄)) !m1(�.rm-nf[[A; ol + 2; nl + 1; ff�nl + 1::�nl ::e; nl + 2; 2;�0::(3; 0) ::nil℄℄) andwe have that ff�nl + 1 :: �nl :: e; nl + 2; 2;�0 :: (3; 0) :: nilgg !m5;m5hh�nl + 1; nl + 2; 2;�0 :: (3; 0) :: nilii :: hh�nl; nl + 2; 2;�0 :: (3; 0) :: nilii ::ffe; nl + 2; 2;�0 :: (3; 0) :: nilgg !m7 �nl :: hh�nl; nl + 2; 2;�0 :: (3; 0) ::nilii :: ffe; nl + 2; 2;�0 :: (3; 0) :: nilgg .�rm (By Lemma 4.4, sine we areworking with well-formed terms and then) ind(e) � nl)�nl :: hh�nl; nl + 2; 2;�0 :: (3; 0) :: nilii :: e !m10�nl :: hh�nl; nl + 1; 1; (3; 0) :: nilii :: e !m8 �nl :: (3; nl) :: e.Then we obtain the term (�.rm -nf([[A; ol + 2; nl + 1;�nl :: (3; nl) :: e℄℄)).The sole di�erene of the obtained suspended terms is the seond environ-ment term of their environments, that is hh(3; 0); 0; ol; eii and (3; nl). Butsine the Eta rule applies, when propagating the substitution between thesesuspended terms, the dummy symbol and hene these seond environmentterms should disapear. Now we an onlude that these terms are joinable.12



Ayala-Rin�on, de Moura and Kamareddine 2Finally, sine the rewriting system assoiated to susp enlarged with theEta rule is loally-onuent and noetherian, we an apply the Newman dia-mond lemma for onluding its onuene.Theorem 4.6 (Conuene of susp plus Eta) The alulus susp jointlywith the Eta rule, is onuent.5 Comparing the adequay of the aluliAording to the riterion of adequay introdued in [22℄ we prove that the ��and the �susp as well as the �� and the �se are non omparable. Additionally,we prove that the �se is more adequate than the �susp.Let a; b 2 � suh that a!� b. A simulation of this �-redution in ��, for� 2 f�; se; suspg is a ��-derivation a !r  !�� �() = b, where r is the rulestarting � (beta for ��, �-generation for �se, �s for �susp) applied to the sameredex as the redex in a!� b. The riterion of adequay is de�ned as follow:De�nition 5.1 (Adequay) Let �1; �2 2 f�; se; suspg. The ��1-alulus ismore adequate (in simulating one step of �-redution) than the ��2-alulus,denoted ��1 � ��2, if:� for every �-redution a!� b and every ��2-simulation a!n��2 b there existsa ��1-simulation a!m��1 b suh that m � n;� there exists a �-redution a !� b and a ��1-simulation a !m��1 b suh thatfor every ��2-simulation a!n��2 b we have m < n.If neither ��1 � ��2 nor ��2 � ��1, then we say that ��1 and ��2 are nonomparable.The ounterexamples proving that �� and �s are non omparable presentedin [22℄ apply for the inomparability of �� and �se sine �se is an extensionof �s for open terms.Proposition 5.2 The ��- and the �se-aluli are non omparable.Lemma 5.3 Every ��-derivation of ((��2) 1) to its ��-nf has length greaterthan or equal to 6.Proof. In fat, all possible derivations are of one of the following forms.� (��1["℄) 1 !Beta (�1["℄)[1:id℄ !Abs �1["℄[1:((1:id)Æ ")℄ !Clos�1[" Æ(1:((1:id)Æ "))℄!ShiftCons �1[(1:id)Æ "℄!Map �1[1["℄:(idÆ ")℄!V arCons�1["℄ = �2;� (��1["℄) 1 !Beta (�1["℄)[1:id℄ !Abs �1["℄[1:((1:id)Æ ")℄ !Clos�1[" Æ(1:((1:id)Æ "))℄ !ShiftCons �1[(1:id)Æ "℄ !Map �1[1["℄:(idÆ ")℄ !IdL�1[1["℄: "℄ !V arCons �1["℄ = �2;� (��1["℄) 1 !Beta (�1["℄)[1:id℄ !Abs �1["℄[1:((1:id)Æ ")℄ !Clos13



Ayala-Rin�on, de Moura and Kamareddine�1[" Æ(1:((1:id)Æ "))℄ !Map �1[" Æ(1:(1["℄:(idÆ ")))℄ !ShiftCons�1[1["℄:(idÆ ")℄ !V arCons �1["℄ = �2;� (��1["℄) 1 !Beta (�1["℄)[1:id℄ !Abs �1["℄[1:((1:id)Æ ")℄ !Clos�1[" Æ(1:((1:id)Æ "))℄ !Map �1[" Æ(1:(1["℄:(idÆ ")))℄ !ShiftCons�1[1["℄:(idÆ ")℄ !IdL �1[1["℄: "℄ !V arCons �1["℄ = �2;� (��1["℄) 1 !Beta (�1["℄)[1:id℄ !Abs �1["℄[1:((1:id)Æ ")℄ !Map�1["℄[1:(1["℄:(idÆ "))℄ !Clos �1[" Æ(1:(1["℄:(idÆ ")))℄ !ShiftCons�1[1["℄:(idÆ ")℄ !V arCons �1["℄ = �2;� (��1["℄) 1 !Beta (�1["℄)[1:id℄ !Abs �1["℄[1:((1:id)Æ ")℄ !Map�1["℄[1:(1["℄:(idÆ "))℄ !Clos �1[" Æ(1:(1["℄:(idÆ ")))℄ !ShiftCons�1[1["℄:(idÆ ")℄ !IdL �1[1["℄: "℄ !V arCons �1["℄ = �2;� (��1["℄) 1 !Beta (�1["℄)[1:id℄ !Abs �1["℄[1:((1:id)Æ ")℄ !Map�1["℄[1:(1["℄:(idÆ "))℄ !IdL �1["℄[1:(1["℄: ")℄ !Clos�1[" Æ(1:(1["℄: "))℄ !ShiftCons �1[1["℄: "℄ !V arCons �1["℄ = �2. 2Lemma 5.4 Every �susp-derivation of (��(2 2)) 1n to its �susp-nf has length4n+ 5.Proof. In fat, note that the sole possible derivation is:(��(2 2)) 1n !�s [[(�(2 2)); 1; 0; (1n; 0) ::nil℄℄ !r7�[[(2 2); 2; 1;�0::(1n; 0) ::nil℄℄ !r6�([[2; 2; 1;�0::(1n; 0) ::nil℄℄ [[2; 2; 1;�0::(1n; 0) ::nil℄℄) !2r5�([[1; 1; 1; (1n; 0) ::nil℄℄ [[1; 1; 1; (1n; 0) ::nil℄℄) !2r4�([[1n; 0; 1; nil℄℄ [[1n; 0; 1; nil℄℄) !2(n�1)r6 �(([[1; 0; 1; nil℄℄)n ([[1; 0; 1; nil℄℄)n) !2nr2�(2n 2n). 2Lemma 5.5 ( [22℄) There exists a derivation of (��(2 2)) 1n to its ��-nfwhose length is n+ 9.Proof. Consider the following derivation:(��(2 2)) 1n = (��(1["℄ 1["℄)) 1n !Beta (�(1["℄ 1["℄))[1n:id℄ !Abs�((1["℄ 1["℄)[1:((1n:id)Æ ")℄) !Map�((1["℄ 1["℄)[1:(1n["℄:(idÆ "))℄) !n�1App �((1["℄ 1["℄)[1:((1["℄)n:(idÆ "))℄) !App�((1["℄[1:((1["℄)n:(idÆ "))℄) (1["℄[1:((1["℄)n:(idÆ "))℄)) !Clos�((1[" Æ(1:(1["℄)n:(idÆ "))℄) (1["℄[1:((1["℄)n:(idÆ "))℄)) !ShiftCons�((1[(1["℄)n:(idÆ ")℄) (1["℄[1:((1["℄)n:(idÆ "))℄)) !V arCons�((1["℄)n (1["℄[1:((1["℄)n:(idÆ "))℄)) !3 �((1["℄)n (1["℄)n) = �(2n 2n). 2Proposition 5.6 The ��- and �susp-aluli are non omparable.Proof. On the one side, by Lemmas 5.4 and 5.5, there exists a simula-tion (��(2 2)) 1n !�� �(2 2) shorter than the shortest of the simulations(��(2 2)) 1n !�susp �(2 2). Then �susp 6� ��.On the other side, onsider the following simulation in �susp:((��2) 1) !�s [[(�2); 1; 0; (1; 0) :: nil℄℄ !r7 �[[2; 2; 1;�0 :: (1; 0) :: nil℄℄ !r514



Ayala-Rin�on, de Moura and Kamareddine�[[1; 1; 1; (1; 0) :: nil℄℄ !r4 �[[1; 0; 1; nil℄℄ !r2 �2.This simulation together with Lemma 5.3 allows us to onlude that:�� 6� �susp. 2To prove that �se is more adequate than �susp we need to estimate thelengths of derivations.De�nition 5.7 Let A;B;C 2 � and k � 0. We de�ne the funtions M :�! N and Qk : �� �! N by:�M(n)=1�M(�A)=M(A)+1�M(A B)=M(A)+M(B)+1 �Qk(n; B)=8>>><>>>:n if n<kn+M(B) if n=kk+1 if n>k�Qk((A B); C)=Qk(A;C)+Qk(B;C)+1 �Qk(�A;B)=Qk+1(A;B)+1Lemma 5.8 Let A 2 �. Then all se-derivations of 'ikA to its se-nf havelength M(A).Proof. By simple indution over the struture of A. This is an easy extensionof the same lemma formulated for the �s-alulus in [22℄. 2Lemma 5.9 Let A 2 �. Then all susp-derivations of the well-formed term[[A; i; i;�i� 1 :: : : : :: �0 :: nil℄℄ to its susp-nf have length greater than or equalto M(A).Proof. By indution over the struture of terms.� A = n. If n > i then [[n; i; i;�i� 1 :: : : : :: �0 :: nil℄℄ !ir5 [[n� i; 0; i; nil℄℄!r2 n. The length of the derivation is i + 1 � M(A). If n � i then[[n; i; i;�i� 1:: : : : ::�0::nil℄℄!n�1r5 [[1; i� n + 1; i;�i� n :: : : : ::�0::nil℄℄!r3n. The length of the derivation is n � M(A).� A = (B C). We have that [[(B C); i; i;�i� 1 :: : : : :: �0 :: nil℄℄ !r6([[B; i; i;�i� 1 :: : : : :: �0 :: nil℄℄ [[C; i; i;�i� 1 :: : : : :: �0 :: nil℄℄). By the in-dution hypothesis we onlude that the length of the derivation is greaterthan or equal to 1 +M(B) +M(C) =M(B C) = M(A).� A = (�B). We have that [[(�B); i; i;�i� 1 :: : : : :: �0 :: nil℄℄ !r7�[[B; i+ 1; i+ 1;�i :: : : : :: �0 :: nil℄℄. By indution hypothesis we onludethat the length of the derivation is greater than or equal to 1 +M(B) =M(�B) = M(A). 2Lemma 5.10 Let B 2 � and i; j � 0. The derivation of the susp-term[[B; i; j;�j � 1 :: e℄℄ to its susp-nf has length greater than or equal to M(B).Proof. { Case B = n, [[n; i; j;�j � 1 :: e℄℄ rewrites to its susp-nf in one ormore steps depending on n.� Case B = (C D), we have [[(C D); i; j;�j � 1::e℄℄!r6 [[C; i; j;�j � 1::e℄℄15



Ayala-Rin�on, de Moura and Kamareddine[[D; i; j;�j � 1 :: e℄℄. By the indution hypothesis we obtain the desiredresult.� Case B = (�C), we have [[(�C); i; j;�j � 1 :: e℄℄ !r7�[[C; i+ 1; j + 1;�j :: e0℄℄, that by indution hypothesis ompletes the proof.2Proposition 5.11 Let A;B 2 � and k � 0. Then every susp-derivation of[[A; k; k � 1;�k � 2 :: : : : :: �0 :: (B; l) :: nil℄℄ to its susp-nf has length greaterthan or equal to Qk(A;B).Proof. By strutural indution over A.� A = n. If n < k then [[n; k; k � 1;�k � 2:: : : : ::�0:: (B; l) ::nil℄℄ !n�1r5[[1; k � n+ 1; k � 1;�k � n� 1:: : : : ::�0:: (B; l) ::nil℄℄ ! r3 n. This deriva-tion has length n � Qk(n; B).If n = k then [[n; k; k � 1;�k � 2:: : : : ::�0:: (B; l) ::nil℄℄ !n�1r5[[1; 1; k � 1; (B; l) ::nil℄℄ ! r4 [[B; 0; k � 1� l; nil℄℄. By Lemma 5.10 the lastterm rewrites to its susp-nf in M(B) or more rewrite steps. The wholederivation has length greater than or equal to n + M(B) = Qk(n; B) =Qk(A;B).If n > k then [[n; k; k � 1;�k � 2:: : : : ::�0:: (B; l) ::nil℄℄ !kr5 [[n-k; 0; k-1; nil℄℄!r2 n� 1. Derivation whose length is k + 1 � Qk(n; B) = Qk(A;B).� A = (C D). [[(C D); k; k � 1;�k � 2:: : : : ::�0:: (B; l) ::nil℄℄ !r6([[C; k; k-1;�k-2 :: : : : ::�0:: (B;0) ::nil℄℄ [[D; k; k-1;�k-2 :: : : : ::�0:: (B;0) ::nil℄℄).By the indution hypothesis the derivation has length greater than or equalto 1+Qk(C;B)+Qk(D;B)=Qk((C D); B)=Qk(A;B).� A = (�C). [[(�C); k; k � 1;�k � 2:: : : : ::�0:: (B; l) ::nil℄℄ !r7�[[C; k + 1; k;�k � 1:: : : : ::�0:: (B; l) ::nil℄℄. By the indution hypothesis wean onlude that this derivation has length greater than or equal to1 +Qk+1(C;B) = Qk(�C;B) = Qk(A;B). 2Proposition 5.12 Let A;B 2 � and k � 1. se-derivations of A�kB to itsse-nf have length � Qk(A;B).Proof. By strutural indution over the pure lambda term A.� A = n. By applying the �-destrution rule, in the ase n 6= k, we obtaineither n� 1 or n and in the ase n = k, 'k0B. In the ase that n 6= k,the derivation has length equal to 1 � Qk(n; B). In the other ase, weapply Lemma 5.8 obtaining that the omplete se-normalization has length1 +M(B). In both ases the derivation has length less than or equal toQk(n; B).� A = (C D). (C D)�kB ! (C�kB D�kB). By applying the indutionhypothesis we onlude that the omplete derivation has length less thanor equal to 1 +Qk(C;B) +Qk(D;B) = Qk((C D); B).16



Ayala-Rin�on, de Moura and Kamareddine� A = (�C). (�C)�kB ! �(C�k+1B). By the indution hypothesis weonlude that the whole derivation has length less than or equal to 1 +Qk+1(C;B) = Qk(�C;B). 2Theorem 5.13 (�se��susp)The �se is more adequate than the �susp-alulus.Proof. We prove the stronger result that if A 2 � and A !�s B !msuspsusp-nf(B) is a �susp-simulation of a �-redution then: A !��generation C!nse se-nf(C) has length n+ 1 � m+ 1 .In �susp, for any redex of �s we have (�D) E !�s [[D; 1; 0; (E; 0) ::nil℄℄!msuspsusp-nf([[D; 1; 0; (E; 0) ::nil℄℄). In the �se, (�D) E !��generation D�1E !nse se-nf(D�1E). By Propositions 5.11 and 5.12, m � Q1(D;E) � n. Hene, thelength of a �susp-simulation of a �-ontration is not shorter than that ofsome �se-simulation.The 2nd part of being more adequate is shown by omparing the lengthof simulations. E.g., let (�2) 1 !� 1. In �susp the only possible threesteps simulation is: (�2) 1 !�s [[2; 1; 0; (1; 0) ::nil℄℄ !r5 [[1; 0; 0; nil℄℄ !r2 1.In �se the only possible two steps simulation is: (�2) 1 !��generation 2�11!��destrution 1. 2As mentioned in the above proof, we prove a stronger result than simplebetter adequay of �se as in [22℄. In fat, we prove that the length of all �se-simulations are shorter than the length of any �susp-simulation. Examiningthe proofs of Propositions 5.11 and 5.12 whih relate the length of derivationswith the measure operator Qk, it appears evident that both aluli work simi-larly exept that after having propagated suspended terms between the bodyof abstrators, �susp deals with the substitutions in a less eÆient way. To ex-plain that, ompare the simulations of �-redution from the term (�(�ni)) j,where n � 0:(�(�ni))j !��gen (�ni)�1j !n����trans �n(i�n+1j) =: t1(�(�ni))j!�s [[�ni; 1; 0; (j;0) ::nil℄℄!nr7 �n[[i; n+ 1; n;�n-1 :: : : : ::�0:: (j;0) ::nil℄℄=: t2After that the �se omplete the simulation in one or two steps by hekingarithmeti inequations:t1 !��dest 8>>><>>>:�ni; if i < n + 1�ni� 1; if i > n + 1�n('n+10 j)!'�dest �nj+ n; if i = n + 1But in the �susp we have to destrut the environment list, environment byenvironment: 17
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