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Ayala-Rin
�on, de Moura and Kamareddineautomated dedu
tion and theorem proving [24,25℄, to proof theory [31℄, to pro-gramming languages [8,20,23,26℄ and to higher order uni�
ation HOU [2,13℄.This paper 
on
entrates on three di�erent styles of substitutions:(i) The ��-style [1℄ whi
h introdu
es two di�erent sets of entities: one forterms and one for substitutions.(ii) The suspension 
al
ulus [28,26℄, denoted �susp, whi
h introdu
es threedi�erent sets of entities: one for terms, one for environments and one forenvironment terms.(iii) The �s-style [19℄ whi
h uses a philosophy of de Bruijn's Automath [29℄elaborated in the new item notation [18℄. The philosophy states thatterms are built by appli
ations (a fun
tion applied to an argument),abstra
tion (a fun
tion), substitution or updating. The advantages ofthis philosophy in
lude remaining as 
lose as possible to the familiar �-
al
ulus (
f. [18℄).The desired properties of expli
it substitution 
al
uli are a) simulation of�-redu
tion, b) 
on
uen
e (CR) on 
losed terms, 
) CR on open terms, d)strong normalization (SN) of expli
it substitutions and e) preservation of SNof the �-
al
ulus. �� satis�es a), b) and d), �s satis�es a)..e) but not 
). �shas an extension �se for whi
h a)..
) holds, but e) fails and d) is unknown.The suspension 
al
ulus satis�es a)..d), but e) is unknown. This paper dealswith two useful notions for these 
al
uli:� Comparing the adequa
y of their redu
tion pro
ess using the eÆ
ient simu-lation of �-redu
tion of [22℄.� Extending the suspension 
al
ulus with eta-redu
tion resulting in �susp.Eta-redu
tion for �� was used in [13℄ to deal with HOU and was introdu
edin [2℄ for the same purpose in �se.It was shown in [22℄ that �s and �� are non 
omparable. In this paperwe prove that �se and �� as well as �� and �susp are non 
omparable andthat �se is more adequate than the �susp. Additionally, we show that �susppreserves 
on
uen
e and SN of the substitution 
al
ulus asso
iated with �susp.2 PreliminariesWe assume familiarity with �-
al
ulus (
f. [6℄) and the notion of term algebraT (F ;X ) built on a (
ountable) set of variables X and a set of operators F .Variables in X are denoted by X; Y; ::: and for a term a 2 T (F ;X ), var(a)denotes the set of variables o

urring in a. Throughout, we take a; b; 
; : : : torange over terms.Additionally, we assume familiarity with basi
 notions of rewriting as in[5℄. In parti
ular, for a redu
tion relation R over a set A, we denote with=!R the re
exive 
losure of R , with !�R or just !� the re
exive andtransitive 
losure of R and with !+R or just !+ the transitive 
losure2



Ayala-Rin
�on, de Moura and Kamareddineof R . When a!� b we say that there exists a derivation from a to b . Bya!n b, we mean that the derivation 
onsists of n steps of redu
tion and 
alln the length of the derivation. Synta
ti
al identity is denoted by a = b.For a redu
tion relation R over A, (A;!R), we use the standard de�nitions of(lo
ally-)
on
uent or (weakly) Chur
h Rosser (W)CR, normal forms andstrong and weak normalization/termination SN and WN. Suppose Ris a SN redu
tion relation and let t be a term, then R-nf(t) denotes its normalform. As usual we use indis
riminately either \noetherian" or \terminating"instead of SN.A valuation is a mapping from X to T (F ;X ). The homeomorphi
 ex-tension of a valuation, �, from its domain X to the domain T (F ;X ) is 
alledthe grafting of �. As usual, valuations and their 
orresponding graftings aredenoted by the same Greek letter. The appli
ation of a valuation � or its
orresponding grafting to a term a 2 T (F ;X ) will be written in post�x no-tation a�. The domain of a grafting �, is de�ned by Dom(�) = fX j X� 6=X;X 2 Xg. Its range, is de�ned by Ran(�) = [X2Dom(�)var(X�). We letvar(�) = Dom(�)[Ran(�). For expli
it representations of a valuation and its
orresponding grafting �, we use the notation � = fX 7!X� j X 2 Dom(�)g.Note that the notion of grafting, usually 
alled �rst order substitution, 
orre-sponds to simple synta
ti
 substitution without renaming.Let V be a (
ountable) set of variables denoted by lower
ase last letters ofthe Roman alphabet x; y; :::.De�nition 2.1 Terms �(V), of the �-
al
ulus with names are indu
tivelyde�ned by �(V) ::= x j (�(V) �(V)) j �x:�(V), where x 2 V.�x:a and (a b) are 
alled abstra
tion and appli
ation terms, respe
tively.Terms in �(V) are 
alled 
losed �-terms or terms without substitution meta-variables. An abstra
tion �x:a represents a fun
tion of parameter x, whosebody is a. Its appli
ation (�x:a b) to an argument b, returns the valueof a, where the formal parameter x is repla
ed by b. This repla
ement offormal parameters with arguments is known as �-redu
tion. In the �rstorder 
ontext of the term algebra T (f�x: j x 2 Vg [ f( )g;V) and its �rstorder substitution or grafting, �-redu
tion would be de�ned by (�x:a b) !afx 7!bg.But in this 
ontext problems arise for
ing the use of �-
onversion torename bound variables:(i) Let � = fx 7!bg. There are no semanti
 di�eren
es between the abstra
-tions �x:x and �z:z; both abstra
tions represent the identity fun
tion.But (�x:x)� = �x:b and (�z:z)� = �z:z are di�erent.(ii) Let � = fx 7! yg. (�y:x)� = �y:y and (�z:x)� = �z:y, thus a 
apture ispossible.Consequently, �-redu
tion, should be de�ned in a way that takes 
are of re-naming bound variables when ne
essary to avoid harmful 
apture of variables.3



Ayala-Rin
�on, de Moura and KamareddineThe �-
al
ulus usually 
onsiders substitution as an atomi
 operation leav-ing impli
it the 
omputational steps needed to e�e
tively perform 
ompu-tational operations based on substitution su
h as mat
hing and uni�
ation.In any real higher order dedu
tive system, the substitution required by ba-si
 operations su
h as �-redu
tion should be implemented via smaller opera-tions. Expli
it substitution is an appropriate formalism for reasoning aboutthe operations involved in real implementations of substitution. Sin
e expli
itsubstitution is 
loser to real implementations than to the 
lassi
 �-
al
ulus,it provides a more a

urate theoreti
al model to analyze essential propertiesof real systems (termination, 
on
uen
e, 
orre
tness, 
ompleteness, et
.) aswell as their time/spa
e 
omplexity. For further details of the importan
e ofexpli
it substitution see [23,4℄.�-
onversion should be performed before applying the substitution in thebody of an abstra
tion. The grafting of a fresh variable avoids the possibilityof 
apture. It is very important to remark that renaming sele
ts fresh variablesthat have not been used previously. Moreover, sin
e fresh variables are sele
tedrandomly, the result of the appli
ation of a substitution 
an be 
on
eived asa 
lass of equivalen
e terms.De�nition 2.2 �-redu
tion is the rewriting relation de�ned by the rewriterule (�) and �-redu
tion is the rewriting relation de�ned by the rewrite rule(�), where:(�) (�x:a b)! fx=bg(a) and (�) �x:(a x)! a; if x 62 Fvar(a)Fvar(a) denotes the free variables o

urring in a. Noti
e that our notion ofsubstitution is not 
ompletely satisfa
tory be
ause the idea of fresh variablesis impli
it and depends on the history of the renaming pro
ess.Lambda terms with meta-variables or open lambda terms are given by thefollowing.De�nition 2.3 Terms �(V;X ), of the �-
al
ulus with names are indu
-tively de�ned by: �(V;X ) ::= x j X j (�(V;X ) �(V;X )) j �x:�(V;X ), wherex 2 V and X 2 X .We have seen that the names of bound variables and their 
orrespond-ing abstra
tors play a semanti
ally irrelevant role in the �-
al
ulus. So anyterm in �(V) or �(V;X ) 
an be seen as a synta
ti
al representative of itsobvious equivalen
e 
lass. Hen
e, during synta
ti
 uni�
ation, the role thatnames of bound variables and their 
orresponding abstra
tors play in
reasesthe 
omplexity of the pro
ess and 
reates 
onfusion.Avoiding names in the �-
al
ulus is an e�e
tive way of 
larifying themeaning of �-terms and, for the uni�
ation pro
ess, of eliminating redun-dant renaming. De Bruijn developed in [12℄ a notation where names of boundvariables are repla
ed by indi
es whi
h relate these bound variables to their
orresponding abstra
tors.It is 
lear that the 
orresponden
e between an o

urren
e of a bound vari-4



Ayala-Rin
�on, de Moura and Kamareddineable and its asso
iated abstra
tor operator is uniquely determined by its depth,that is the number of abstra
tors between them. Hen
e, �-terms 
an be writ-ten in a term algebra over the natural numbers N , representing depth in-di
es, the appli
ation operator ( ) and a sole abstra
tor operator � ; i.e.,T (f( ); � g [ N).In de Bruijn's notation, indexing the o

urren
es of free variables is givenby a referential a

ording to a �xed enumeration of the set of variables V, sayx; y; z; : : :, and pre�xing all �-terms with : : : �z:�y:�x: .Now we 
an de�ne the �-
al
ulus in de Bruijn notation with open termsor meta-variables.De�nition 2.4 The set �dB(X ) of �-terms in de Bruijn notation is de-�ned indu
tively as: �dB(X ) ::= n j X j (�dB(X ) �dB(X )) j ��dB(X ), whereX 2 X and n 2 N n f0g.�dB(X )-terms without meta-variables are 
alled 
losed lambda terms.We write de Bruijn indi
es as 1; 2; 3; : : : ; n; : : :, to distinguish them froms
ripts. Sin
e all 
onsidered 
al
uli of expli
it substitutions are built over thelanguage of �dB(X ), we will use � to denote �dB(X ).De�ning �-redu
tion in de Bruijn notation by (�a b) ! f1=bga (wheref1=bga is the substitution of the index 1 in a with b) fails be
ause:� when eliminating the leading abstra
tor all indi
es asso
iated with free vari-able o

urren
es in a should be de
remented;� when propagating in a the substitution f1=bg through �s, the indi
es of thesubstitution (initially 1) and of the free variables in b should be in
remented.Hen
e, we need new operators for dete
ting, in
rementing and de
rement-ing free variables whi
h will be used in the de�nition of substitution.De�nition 2.5 Let a 2 �dB(X ). The i-lift of a, denoted a+i is de�ned in-du
tively as follows:1) X+i = X , for X 2 X 2) (a1 a2)+i = (a+i1 a+i2 )3) (�a1)+i = �a+(i+1)1 4) n+i = 8<: n+ 1; if n > in; if n � i for n 2 N :The lift of a term a is its 0-lift and is denoted brie
y as a+.De�nition 2.6 The appli
ation of the substitution with b at the depth n�1; n 2 N n f0g, denoted fn=bga, on a term a in �dB(X ) is de�ned indu
tivelyas follows:1) fn=bgX = X, for X 2 X 2) fn=bg(a1 a2) = (fn=bga1 fn=bga2)3) fn=bg�a1 = �fn+ 1=b+ga1 4) fn=bgm = 8>>><>>>: m� 1; if m > nb; if m = nm; if m < n if m 2 N.5



Ayala-Rin
�on, de Moura and KamareddineDe�nition 2.7 The �-redu
tion in the �-
al
ulus with de Bruijn indi
es isde�ned as (�a b)! f1=bga.Observe that the rewriting system of the sole �-redu
tion rule is left-linearand non overlapping (i.e. orthogonal). Consequently, the rewriting systemde�ned over �dB(X ) by the �-redu
tion rule is CR.In the �-
al
ulus with names, the �-redu
tion rule is de�ned as �x:(a x)!a; if x 62 Fvar(a). In �dB(X ), the left side of this rule is written as �(a0 1),where a0 stands for the 
orresponding translation of a under some �xed refe-rential of variables into the language of �dB(X ). \a has no free o

urren
es ofx" means, in �(X ), that there are neither o

urren
es in a0 of the index 1 atheight zero nor of the index 2 at height one nor of the index 3 at height twoet
. This means, in general, that there exists a term b su
h that b+ = a.De�nition 2.8 The �-redu
tion in the �-
al
ulus with de Bruijn indi
es isde�ned as �(a 1)! b if 9b b+ = a.3 Cal
uli �a la ��, �se and �suspRewriting systems for the �� and the �se-
al
uli in
luding the eta-rule 
an befound either in [13℄ (for the ��) [2℄ (for both the �� and �se) or in the fullversion of this work (for the three 
al
uli).3.1 The ��-
al
ulusThe ��-
al
ulus introdu
ed in [1℄ works on 2-sorted terms: (proper) terms,and substitutions.The rewriting system �� is lo
ally 
on
uent [1℄, CR on substitution-
losedterms (i.e., terms without substitution variables) [30℄ and not CR on openterms (i.e., terms with term and substitution variables) [11℄. The possibleforms of a ��-term in ��-normal form were given in [30℄.3.2 The �se-
al
ulusThe �se-
al
ulus of [21℄ is an extension of the �s-
al
ulus ([19℄) whi
h is CR onopen terms and insists on remaining 
lose to the syntax of the �-
al
ulus. Nextto abstra
tion and appli
ation, substitution (�) and updating (') operatorsare introdu
ed. A term 
ontaining neither � nor ' is 
alled a pure lambdaterm. This 
al
ulus was originally introdu
ed without the Eta rule that wasadded in [2℄ to deal with higher order uni�
ation problems as originally donein [13℄ for the ��-
al
ulus.The �se-
al
ulus has been proved in [21℄ to be CR on open terms; tosimulate �-redu
tion: let a; b 2 �, if a !� b then a !��se b ; to be sound:let a; b 2 � , if a !��se b then a !�� b ; and its asso
iated substitution
al
ulus, that is the se-
al
ulus, to be WN and CR. The 
hara
terization ofthe �se-normal forms was given in [21,2℄.6



Ayala-Rin
�on, de Moura and Kamareddine3.3 The suspension 
al
ulusThe suspension 
al
ulus [28,26℄ deals with �-terms as 
omputational me
ha-nisms. This was motivated by implementational questions related to �Prolog,a logi
 programming language that uses typed �-terms as data stru
tures [27℄.The suspension 
al
ulus works with three di�erent types of entities:suspended terms M , N ::= Cons j n j �M j (M N) j [[M; i; j; e1℄℄environments e1, e2 ::= nil j et :: e1 j ffe1; i; j; e2ggenvironment terms et ::= �i j (M; i) j hhet; i; j; e1iiwhere Cons denotes any 
onstant and i; j are non negative natural numbers.As 
onstants and de Bruijn indi
es are suspended terms, the suspension
al
ulus has open terms.The suspension 
al
ulus owns a generation rule �s, that initiates the simu-lation of a �-redu
tion (as for the �� and the �se, respe
tively, the Beta andthe �-generation rules do) and two sets of rules for handling the suspendedterms. The �rst set, the r rules, for reading suspensions and the se
ond set,the m rules, for merging suspensions are given in Table 1.As in [28℄ we denote by .rm the redu
tion relation de�ned by the r- andm-rules in Table 1. The asso
iated substitution 
al
ulus, denoted as susp, isthe one given by the 
ongruen
e =rm.De�nition 3.1 ([28℄) The length len(e) of an environment e is given by:len(nil) := 0; len(et :: e0) := len(e0) + 1 andlen(ffe1; i; j; e2gg) := len(e1) + (len(e2) : i).The index ind(et) of an environment term et, and the l-th index indl(e) ofenvironment e and natural number l, are simultaneously de�ned by indu
tionon the stru
ture of expressions:ind(�m) = m + 1 ind((t0; m)) = mind(hhet0; j; k; eii) = 8<: indm(e) + (j : k) if len(e) > j : ind(et0) = mind(et0) otherwiseindl(nil) = 0 ind0(et :: e0) = ind(et) and indl+1(et :: e0) = indl(e0)
indl(ffe1; j; k; e2gg) = 8>>>>>>>>><>>>>>>>>>:

indm(e2) + (j : k) if l < len(e1) andlen(e2) > m = j : indl(e1)indl(e1) if l < len(e1) andlen(e2) � m = j : indl(e1)indl�l1+j(e2) if l � l1 = len(e1)The index of an environment e, denoted as ind(e), is ind0(e).De�nition 3.2 ([28℄) An expression of the suspension 
al
ulus is said to be7



Ayala-Rin
�on, de Moura and KamareddineTable 1Rewriting rules of the suspension 
al
ulus(�s) ((�t1 t2)�! [[t1; 1; 0; (t2; 0) :: nil℄℄(r1) [[
; ol; nl; e℄℄�!
; where 
 is a 
onstant(r2) [[i; 0; nl; nil℄℄�!i+nl(r3) [[1; ol; nl;�l :: e℄℄�!nl-l(r4) [[1; ol; nl; (t; l) :: e℄℄�! [[t; 0; (nl-l); nil℄℄(r5) [[i; ol; nl; et :: e℄℄�! [[i-1; (ol-1); nl; e℄℄; for i > 1(r6) [[(t1 t2); ol; nl; e℄℄�!([[t1; ol; nl; e℄℄ [[t2; ol; nl; e℄℄)(r7) [[� t; ol; nl; e℄℄�!� [[t; (ol + 1); (nl + 1);�nl :: e℄℄(m1) [[[[t; ol1; nl1; e1℄℄; ol2; nl2; e2℄℄�! [[t; ol0; nl0; ffe1; nl1; ol2; e2gg℄℄; whereol0 = ol1 + (ol2 : nl1) andnl0 = nl2 + (nl1 : ol2)(m2) ffnil; nl; 0; nilgg�!nil(m3) ffnil; nl; ol; et :: egg�!ffnil; (nl-1); (ol-1); egg; for nl; ol � 1(m4) ffnil; 0; ol; egg�!e(m5) ffet :: e1; nl; ol; e2gg�!hhet; nl; ol; e2ii :: ffe1; nl; ol; e2gg(m6) hhet; nl; 0; nilii�!et(m7) hh�m;nl; ol;�l :: eii�!�(l + (nl : ol)); for nl = m+ 1(m8) hh�m;nl; ol; (t; l) :: eii�!(t; (l + (nl : ol))); for nl = m + 1(m9) hh(t; nl); nl; ol; et :: eii�!([[t; ol; l0; et :: e℄℄; m); wherel0 = ind(et) and m = l0 + (nl : ol)(m10) hhet; nl; ol; et0 :: eii�!hhet; (nl-1); (ol-1); eii; for nl 6= ind(et)well-formed if the following 
onditions hold over all its subexpressions s:� if s is [[t; ol; nl; e℄℄ then len(e) = ol and ind(e) � nl� if s is et :: e then ind(e) � ind(et)� if s is hhet; j; k; eii then len(e) = k and ind(et) � j� if s is ffe1; j; k; e2gg then len(e2) = k and ind(e1) � j.In the sequel, we only deal with well-formed expressions of the suspension
al
ulus. 8



Ayala-Rin
�on, de Moura and KamareddineThe suspension 
al
ulus simulates �-redu
tion and its asso
iated substitu-tion 
al
ulus susp is CR (over 
losed and open terms) and SN [28℄. In [26℄Nadathur 
onje
tures that the suspension 
al
ulus preserves strong normali-zation too. The following lemma 
hara
terizes the .rm-normal forms.Lemma 3.3 ([28℄) A well-formed expression of the suspension 
al
ulus x isin its .rm-nf if and only if one of the following aÆrmations holds:1) x is a pure �-term in de Bruijn notation;2) x is an environment term of the form �l or (t; l), where t is a term in its.rm-nf;3) x is the environment nil or et :: e for et and e resp. an environment termand an environment in .rm-nf.4 The suspension 
al
ulus enlarged with the �-redu
tion:the �susp-
al
ulusThe suspension 
al
ulus was initially formulated without �-redu
tion. Herewe introdu
e an adequate Eta rule that enlarges the suspension 
al
ulus pre-serving 
orre
tness, 
on
uen
e, and termination of the asso
iated substitution
al
ulus. The suspension 
al
ulus enlarged with this Eta rule is denoted by�susp and its asso
iated substitution 
al
ulus remains as susp. The Eta ruleis formulated as follows:(Eta) (� (t1 1)) �! t2; if t1 =rm [[t2; 0; 1; nil℄℄Intuitively Eta may be interpreted as: when it is possible to apply the �-redu
tion to the redex �(t1 1) we obtain a term t2 that has the same stru
tureas t1 with all its free de Bruijn indi
es de
remented by one. This is possiblewhenever there are no free o

urren
es of the variable 
orresponding to 1 in t1.Proposition 4.2 proves the 
orre
tness of Eta a

ording to this interpretation.We follow [10℄ and [3℄ for �� and �se respe
tively, and implement the Eta ruleof the �susp-
al
ulus by introdu
ing a dummy symbol 3, by:�(M 1) �!Eta Nif N = .rm-nf([[M; 1; 0; (3; 0) :: nil℄℄) and 3 does not o

ur in N .The 
orre
tness of this implementation is explained be
ause an �-redu
tion�(M 1)!� N gives us a term N , whi
h is obtained from M by de
rementingby one all free o

urren
es of de Bruijn indi
es, as previously mentioned, andwhi
h 
orresponds exa
tly to the .rm-normalization of the term ((�M) 3)!�s[[M; 1; 0; (3; 0) :: nil℄℄, whenever 3 does not appear in this normalized term.Lemma 4.1 Let A be a well-formed term of the suspension 
al
ulus. Thenthe susp-normalization of the term [[A; k; k + 1;�k :: �k � 1 :: : : : :: �1 :: nil℄℄gives a term obtained from A by in
rementing by one all its de Bruijn freeindi
es greater than k and preserving unaltered all other de Bruijn indi
es.Proof. By indu
tion on the stru
ture of A. The 
onstant 
ase is trivial.9



Ayala-Rin
�on, de Moura and Kamareddine� A = n. If n > k then [[n; k; k + 1;�k :: : : : ::�1::nil℄℄ !kr5[[n� k; 0; k + 1; nil℄℄ !r2 n+ 1.If n � k then [[n; k; k + 1;�k :: : : : ::�1::nil℄℄ !n�1r5[[1; k � n+ 1; k + 1;�k � n+ 1:: : : : ::�1::nil℄℄ !r3 n;� A = (B C). we apply r6 and indu
tion hypothesis for B and C;� A = (�B). Sin
e B is bounded by an abstra
tor just its free variablesgreater than k + 1 should be in
remented by one, while the other variablesshould remain un
hanged. Sin
e [[(�B); k; k + 1;�k :: : : : :: �1 :: nil℄℄ !r7�[[B; k + 1; k + 2;�k + 1 :: : : : :: �1 :: nil℄℄, by applying indu
tion hypothe-sis over the previous term we obtain the desired result.� A = [[t; ol; nl; e℄℄. Without loss of generality A may be .rm-normalizedand by Lemma 3.3 the obtained term is of one of the forms analysed in theprevious 
ases. 2Proposition 4.2 (Soundness of the Eta rule) Every appli
ation of the Etarule of �susp to the redex �(t1 1) gives e�e
tively the term t2 obtained from t1by de
rementing all its de Bruijn free indi
es by one.Proof. The proof is by indu
tion over the stru
ture of t2 
onsidering thepremise t1 =rm [[t2; 0; 1; nil℄℄. The e�e
t of normalizing [[t2; 0; 1; nil℄℄ is to in-
rement by one all de Bruijn free indi
es o

urring at t2:� t2 = n. [[n; 0; 1; nil℄℄!r2 n + 1 =rm t1.� t2 = (A B). Without loss of generality we 
an assume that both A and Bare in .rm-nf. Observe that [[(A B); 0; 1; nil℄℄ !r6 [[A; 0; 1; nil℄℄ [[B; 0; 1; nil℄℄.Now, by indu
tion hypothesis over A and B, we have that the normalizationof the suspended terms [[A; 0; 1; nil℄℄ and [[B; 0; 1; nil℄℄ have the desired e�e
tand 
onsequently the same happens with the normalization of the suspendedterm [[(A B); 0; 1; nil℄℄.� t2 = (�A). As before, assume A is in .rm-nf. Note that [[(�A); 0; 1; nil℄℄!r7 (�[[A; 1; 2;�1::nil℄℄). By applying Lemma 4.1 to the term[[A; 1; 2;�1 :: nil℄℄ we 
on
lude that all free o

urren
es of de Bruijn indi
esgreater than 1 at A are in
remented by one while the other indi
es areun
hanged.� t2 = [[t; i; j; e℄℄. If t is in .rm-nf then [[t; i; j; e℄℄ .�rm t0, where t0 is a pure�-term in de Bruijn notation by Lemma 3.3. Hen
e, the analysis given inthe previous three 
ases applies here too. 2Noetherianity of susp plus the Eta rule enables us to apply the Newmandiamond lemma and the Knuth-Bendix 
riti
al pair 
riterion for proving its
on
uen
e.Lemma 4.3 (susp plus Eta is SN)The rewriting system asso
iated to susp10



Ayala-Rin
�on, de Moura and Kamareddineand the Eta rule is noetherian.Proof. (Sket
h) This is proved by showing that the Eta rule is also 
ompatiblewith the well-founded partial ordering� that is de�ned and proved 
ompatiblewith .rm in [28℄. 2A simple environment is an environment without subexpressions of theform ff ; ; ; gg or hh ; ; ; ii.Lemma 4.4 ([28℄) Let e1 be a simple environment and suppose that nl andol are naturals su
h that (nl � ind(e1)) � ol. Then ffe1; nl; ol; e2gg .�rm e1.Lemma 4.5 (Lo
al-
on
uen
e of susp plus Eta) The rewriting systemof the substitution 
al
ulus susp plus the Eta rule is lo
ally-
on
uent.Proof. The rewrite relation .rm, i.e., susp, was shown in [28℄ to be (lo
ally)
on
uent. Thus for proving that the asso
iated rewriting system enlargedwith the Eta rule is lo
ally-
on
uent, it is enough to show that all additional
riti
al pairs built by overlapping between the Eta rule and the other rules ofsusp are joinable.Note that no 
riti
al pairs are generated from the rule Eta and itself. Also,note that there is a unique overlapping between the set of rules in Table 1(minus (�s)) and Eta: namely, the one between Eta and (r7).This 
riti
al pair is h[[t2; ol; nl; e℄℄; �[[(t1 1); ol + 1; nl + 1;�nl :: e℄℄i, wheret1 =rm [[t2; 0; 1; nil℄℄. After applying the rules r6 and r3 the right-side term ofthis 
riti
al pair redu
es to �([[t1; ol + 1; nl + 1;�nl :: e℄℄ 1).We prove by analyzing the stru
ture of the term t1 that this 
riti
al pairis joinable. As usual we 
an 
onsider the terms t1 and t2 as .rm-nf's.� t1 = n. For making possible the Eta appli
ation, we need that n > 1.A

ording to the length of the environment �nl :: e (i.e., ol + 1) we havethe following 
ases:� ol + 1 < n. On the one side, �([[n; ol + 1; nl + 1;�nl :: e℄℄ 1) !ol+1r5�([[n-ol-1; 0; nl + 1; nil℄℄ 1) !r2 �(n-ol+nl 1) !Eta n-ol+nl-1. On theother side, t1 =rm [[t2; 0; 1; nil℄℄, hen
e t2 = n-1 and we have [[n-1; ol; nl; e℄℄!olr5 [[n-1-ol; 0; nl; nil℄℄ !r2 n-ol+nl-1.� ol + 1 � n. On the one side, �([[n; ol + 1; nl + 1;�nl :: e℄℄ 1) !n�1r5�([[1; ol � n+ 2; nl + 1; e1 :: e0℄℄ 1) and the subsequent derivation dependson the stru
ture of e1: when e1 = �l we apply r3 obtaining �(nl+1-l 1)!Eta nl-l and on the other side, [[n-1; ol; nl; e℄℄ !n�2r5[[1; ol � n+ 2; nl;�l :: e0℄℄ !r3 nl-l; when e1 = (t; l), where without lossof generality t is suppossed to be in .rm-nf, we have�([[1; ol � n+ 2; nl + 1; (t; l) :: e0℄℄ 1) !r4 �([[t; 0; nl � l + 1; nil℄℄ 1) !Eta.rm-nf([[[[t; 0; nl+1�l; nil℄℄; 1; 0; (3; 0) ::nil℄℄) !m1.rm-nf([[t; 0; nl�l; ffnil; nl+1�l; 1; (3; 0) ::nilgg℄℄)!m3.rm-nf([[t; 0; nl � l; ffnil; nl � l; 0; nilgg℄℄) !m2 .rm-nf([[t; 0; nl � l; nil℄℄)and on the other side, [[1; ol � n+ 2; nl; (t; l) :: e0℄℄!r4 [[t; 0; nl � l; nil℄℄.11



Ayala-Rin
�on, de Moura and KamareddineSin
e .rm-nf([[t; 0; nl � l; nil℄℄) and [[t; 0; nl � l; nil℄℄ are joinable we ob-tain the 
on
uen
e.� t1 = (A B). Sin
e the sole rule of the �susp that truly \applies" appli-
ations is the �s, we 
an separately 
onsider Eta redu
tions for A and Band then apply the indu
tion hypothesis. That is, suppose indu
tively that�([[A; ol + 1; nl + 1;�nl :: e℄℄ 1) !Eta A00 and [[A0; ol; nl; e℄℄, where[[A0; 0; 1; nil℄℄ =rm A as well as �([[B; ol + 1; nl + 1;�nl :: e℄℄ 1)!Eta B00 and[[B0; ol; nl; e℄℄, where [[B0; 0; 1; nil℄℄ =rm B are joinable. Then sin
e�([[(A B); ol + 1; nl + 1;�nl ::e℄℄ 1) !r6�(([[A; ol + 1; nl + 1;�nl ::e℄℄ [[B; ol + 1; nl + 1;�nl ::e℄℄) 1) !Eta (A00 B00)and [[(A0 B0); ol; nl; e℄℄ !r6 ([[A0; ol; nl; e℄℄ [[B0; ol; nl; e℄℄) we 
an 
on
lude the
on
uen
e.� t1 = (�A). By the Eta rule implementation, it is enough to show the join-ability of the Eta redu
tion of the term �([[(�A); ol + 1; nl + 1;�nl ::e℄℄ 1)that is .rm-nf([[[[(�A); ol + 1; nl + 1;�nl ::e℄℄; 1; 0; (3; 0) ::nil℄℄) and the term[[ .rm -nf([[(�A); 1; 0; (3; 0) ::nil℄℄); ol; nl; e℄℄.On the one side, [[ .rm -nf([[(�A); 1; 0; (3; 0)::nil℄℄); ol; nl; e℄℄ .�rm.rm-nf([[[[(�A); 1; 0; (3; 0)::nil℄℄; ol; nl; e℄℄) !r7;r7.rm-nf((�[[[[A; 2; 1;�0::(3; 0)::nil℄℄; ol + 1; nl + 1;�nl::e℄℄)) .�rm(� .rm -nf([[[[A; 2; 1;�0::(3; 0)::nil℄℄; ol + 1; nl + 1;�nl::e℄℄)) !m1(� .rm -nf([[A; ol + 2; nl + 1; ff�0::(3; 0)::nil; 1; ol + 1;�nl::egg℄℄))and we have that ff�0::(3; 0)::nil; 1; ol + 1;�nl::egg !m5;m5hh�0; 1; ol+1;�nl::eii::hh(3; 0); 1; ol+1;�nl::eii::ffnil; 1; ol+1;�nl::egg!m7�nl::hh(3; 0); 1; ol + 1;�nl::eii::ffnil; 1; ol + 1;�nl::egg !m10�nl::hh(3; 0); 0; ol; eii::ffnil; 1; ol + 1;�nl::egg !m3;m4�nl::hh(3; 0); 0; ol; eii::e. Then we obtain the term(�.rm -nf([[A; ol + 2; nl + 1;�nl :: hh(3; 0); 0; ol; eii :: e℄℄)). On the other side,.rm-nf([[[[(�A); ol + 1; nl + 1;�nl :: e℄℄; 1; 0; (3; 0) :: nil℄℄) !r7;r7.rm-nf((�[[[[A; ol + 2; nl + 2;�nl + 1::�nl ::e℄℄; 2; 1;�0::(3; 0) ::nil℄℄)) .�rm(� .rm -nf([[[[A; ol + 2; nl + 2;�nl + 1::�nl ::e℄℄; 2; 1;�0::(3; 0) ::nil℄℄)) !m1(�.rm-nf[[A; ol + 2; nl + 1; ff�nl + 1::�nl ::e; nl + 2; 2;�0::(3; 0) ::nil℄℄) andwe have that ff�nl + 1 :: �nl :: e; nl + 2; 2;�0 :: (3; 0) :: nilgg !m5;m5hh�nl + 1; nl + 2; 2;�0 :: (3; 0) :: nilii :: hh�nl; nl + 2; 2;�0 :: (3; 0) :: nilii ::ffe; nl + 2; 2;�0 :: (3; 0) :: nilgg !m7 �nl :: hh�nl; nl + 2; 2;�0 :: (3; 0) ::nilii :: ffe; nl + 2; 2;�0 :: (3; 0) :: nilgg .�rm (By Lemma 4.4, sin
e we areworking with well-formed terms and then) ind(e) � nl)�nl :: hh�nl; nl + 2; 2;�0 :: (3; 0) :: nilii :: e !m10�nl :: hh�nl; nl + 1; 1; (3; 0) :: nilii :: e !m8 �nl :: (3; nl) :: e.Then we obtain the term (�.rm -nf([[A; ol + 2; nl + 1;�nl :: (3; nl) :: e℄℄)).The sole di�eren
e of the obtained suspended terms is the se
ond environ-ment term of their environments, that is hh(3; 0); 0; ol; eii and (3; nl). Butsin
e the Eta rule applies, when propagating the substitution between thesesuspended terms, the dummy symbol and hen
e these se
ond environmentterms should disapear. Now we 
an 
on
lude that these terms are joinable.12



Ayala-Rin
�on, de Moura and Kamareddine 2Finally, sin
e the rewriting system asso
iated to susp enlarged with theEta rule is lo
ally-
on
uent and noetherian, we 
an apply the Newman dia-mond lemma for 
on
luding its 
on
uen
e.Theorem 4.6 (Con
uen
e of susp plus Eta) The 
al
ulus susp jointlywith the Eta rule, is 
on
uent.5 Comparing the adequa
y of the 
al
uliA

ording to the 
riterion of adequa
y introdu
ed in [22℄ we prove that the ��and the �susp as well as the �� and the �se are non 
omparable. Additionally,we prove that the �se is more adequate than the �susp.Let a; b 2 � su
h that a!� b. A simulation of this �-redu
tion in ��, for� 2 f�; se; suspg is a ��-derivation a !r 
 !�� �(
) = b, where r is the rulestarting � (beta for ��, �-generation for �se, �s for �susp) applied to the sameredex as the redex in a!� b. The 
riterion of adequa
y is de�ned as follow:De�nition 5.1 (Adequa
y) Let �1; �2 2 f�; se; suspg. The ��1-
al
ulus ismore adequate (in simulating one step of �-redu
tion) than the ��2-
al
ulus,denoted ��1 � ��2, if:� for every �-redu
tion a!� b and every ��2-simulation a!n��2 b there existsa ��1-simulation a!m��1 b su
h that m � n;� there exists a �-redu
tion a !� b and a ��1-simulation a !m��1 b su
h thatfor every ��2-simulation a!n��2 b we have m < n.If neither ��1 � ��2 nor ��2 � ��1, then we say that ��1 and ��2 are non
omparable.The 
ounterexamples proving that �� and �s are non 
omparable presentedin [22℄ apply for the in
omparability of �� and �se sin
e �se is an extensionof �s for open terms.Proposition 5.2 The ��- and the �se-
al
uli are non 
omparable.Lemma 5.3 Every ��-derivation of ((��2) 1) to its ��-nf has length greaterthan or equal to 6.Proof. In fa
t, all possible derivations are of one of the following forms.� (��1["℄) 1 !Beta (�1["℄)[1:id℄ !Abs �1["℄[1:((1:id)Æ ")℄ !Clos�1[" Æ(1:((1:id)Æ "))℄!ShiftCons �1[(1:id)Æ "℄!Map �1[1["℄:(idÆ ")℄!V arCons�1["℄ = �2;� (��1["℄) 1 !Beta (�1["℄)[1:id℄ !Abs �1["℄[1:((1:id)Æ ")℄ !Clos�1[" Æ(1:((1:id)Æ "))℄ !ShiftCons �1[(1:id)Æ "℄ !Map �1[1["℄:(idÆ ")℄ !IdL�1[1["℄: "℄ !V arCons �1["℄ = �2;� (��1["℄) 1 !Beta (�1["℄)[1:id℄ !Abs �1["℄[1:((1:id)Æ ")℄ !Clos13



Ayala-Rin
�on, de Moura and Kamareddine�1[" Æ(1:((1:id)Æ "))℄ !Map �1[" Æ(1:(1["℄:(idÆ ")))℄ !ShiftCons�1[1["℄:(idÆ ")℄ !V arCons �1["℄ = �2;� (��1["℄) 1 !Beta (�1["℄)[1:id℄ !Abs �1["℄[1:((1:id)Æ ")℄ !Clos�1[" Æ(1:((1:id)Æ "))℄ !Map �1[" Æ(1:(1["℄:(idÆ ")))℄ !ShiftCons�1[1["℄:(idÆ ")℄ !IdL �1[1["℄: "℄ !V arCons �1["℄ = �2;� (��1["℄) 1 !Beta (�1["℄)[1:id℄ !Abs �1["℄[1:((1:id)Æ ")℄ !Map�1["℄[1:(1["℄:(idÆ "))℄ !Clos �1[" Æ(1:(1["℄:(idÆ ")))℄ !ShiftCons�1[1["℄:(idÆ ")℄ !V arCons �1["℄ = �2;� (��1["℄) 1 !Beta (�1["℄)[1:id℄ !Abs �1["℄[1:((1:id)Æ ")℄ !Map�1["℄[1:(1["℄:(idÆ "))℄ !Clos �1[" Æ(1:(1["℄:(idÆ ")))℄ !ShiftCons�1[1["℄:(idÆ ")℄ !IdL �1[1["℄: "℄ !V arCons �1["℄ = �2;� (��1["℄) 1 !Beta (�1["℄)[1:id℄ !Abs �1["℄[1:((1:id)Æ ")℄ !Map�1["℄[1:(1["℄:(idÆ "))℄ !IdL �1["℄[1:(1["℄: ")℄ !Clos�1[" Æ(1:(1["℄: "))℄ !ShiftCons �1[1["℄: "℄ !V arCons �1["℄ = �2. 2Lemma 5.4 Every �susp-derivation of (��(2 2)) 1n to its �susp-nf has length4n+ 5.Proof. In fa
t, note that the sole possible derivation is:(��(2 2)) 1n !�s [[(�(2 2)); 1; 0; (1n; 0) ::nil℄℄ !r7�[[(2 2); 2; 1;�0::(1n; 0) ::nil℄℄ !r6�([[2; 2; 1;�0::(1n; 0) ::nil℄℄ [[2; 2; 1;�0::(1n; 0) ::nil℄℄) !2r5�([[1; 1; 1; (1n; 0) ::nil℄℄ [[1; 1; 1; (1n; 0) ::nil℄℄) !2r4�([[1n; 0; 1; nil℄℄ [[1n; 0; 1; nil℄℄) !2(n�1)r6 �(([[1; 0; 1; nil℄℄)n ([[1; 0; 1; nil℄℄)n) !2nr2�(2n 2n). 2Lemma 5.5 ( [22℄) There exists a derivation of (��(2 2)) 1n to its ��-nfwhose length is n+ 9.Proof. Consider the following derivation:(��(2 2)) 1n = (��(1["℄ 1["℄)) 1n !Beta (�(1["℄ 1["℄))[1n:id℄ !Abs�((1["℄ 1["℄)[1:((1n:id)Æ ")℄) !Map�((1["℄ 1["℄)[1:(1n["℄:(idÆ "))℄) !n�1App �((1["℄ 1["℄)[1:((1["℄)n:(idÆ "))℄) !App�((1["℄[1:((1["℄)n:(idÆ "))℄) (1["℄[1:((1["℄)n:(idÆ "))℄)) !Clos�((1[" Æ(1:(1["℄)n:(idÆ "))℄) (1["℄[1:((1["℄)n:(idÆ "))℄)) !ShiftCons�((1[(1["℄)n:(idÆ ")℄) (1["℄[1:((1["℄)n:(idÆ "))℄)) !V arCons�((1["℄)n (1["℄[1:((1["℄)n:(idÆ "))℄)) !3 �((1["℄)n (1["℄)n) = �(2n 2n). 2Proposition 5.6 The ��- and �susp-
al
uli are non 
omparable.Proof. On the one side, by Lemmas 5.4 and 5.5, there exists a simula-tion (��(2 2)) 1n !�� �(2 2) shorter than the shortest of the simulations(��(2 2)) 1n !�susp �(2 2). Then �susp 6� ��.On the other side, 
onsider the following simulation in �susp:((��2) 1) !�s [[(�2); 1; 0; (1; 0) :: nil℄℄ !r7 �[[2; 2; 1;�0 :: (1; 0) :: nil℄℄ !r514



Ayala-Rin
�on, de Moura and Kamareddine�[[1; 1; 1; (1; 0) :: nil℄℄ !r4 �[[1; 0; 1; nil℄℄ !r2 �2.This simulation together with Lemma 5.3 allows us to 
on
lude that:�� 6� �susp. 2To prove that �se is more adequate than �susp we need to estimate thelengths of derivations.De�nition 5.7 Let A;B;C 2 � and k � 0. We de�ne the fun
tions M :�! N and Qk : �� �! N by:�M(n)=1�M(�A)=M(A)+1�M(A B)=M(A)+M(B)+1 �Qk(n; B)=8>>><>>>:n if n<kn+M(B) if n=kk+1 if n>k�Qk((A B); C)=Qk(A;C)+Qk(B;C)+1 �Qk(�A;B)=Qk+1(A;B)+1Lemma 5.8 Let A 2 �. Then all se-derivations of 'ikA to its se-nf havelength M(A).Proof. By simple indu
tion over the stru
ture of A. This is an easy extensionof the same lemma formulated for the �s-
al
ulus in [22℄. 2Lemma 5.9 Let A 2 �. Then all susp-derivations of the well-formed term[[A; i; i;�i� 1 :: : : : :: �0 :: nil℄℄ to its susp-nf have length greater than or equalto M(A).Proof. By indu
tion over the stru
ture of terms.� A = n. If n > i then [[n; i; i;�i� 1 :: : : : :: �0 :: nil℄℄ !ir5 [[n� i; 0; i; nil℄℄!r2 n. The length of the derivation is i + 1 � M(A). If n � i then[[n; i; i;�i� 1:: : : : ::�0::nil℄℄!n�1r5 [[1; i� n + 1; i;�i� n :: : : : ::�0::nil℄℄!r3n. The length of the derivation is n � M(A).� A = (B C). We have that [[(B C); i; i;�i� 1 :: : : : :: �0 :: nil℄℄ !r6([[B; i; i;�i� 1 :: : : : :: �0 :: nil℄℄ [[C; i; i;�i� 1 :: : : : :: �0 :: nil℄℄). By the in-du
tion hypothesis we 
on
lude that the length of the derivation is greaterthan or equal to 1 +M(B) +M(C) =M(B C) = M(A).� A = (�B). We have that [[(�B); i; i;�i� 1 :: : : : :: �0 :: nil℄℄ !r7�[[B; i+ 1; i+ 1;�i :: : : : :: �0 :: nil℄℄. By indu
tion hypothesis we 
on
ludethat the length of the derivation is greater than or equal to 1 +M(B) =M(�B) = M(A). 2Lemma 5.10 Let B 2 � and i; j � 0. The derivation of the susp-term[[B; i; j;�j � 1 :: e℄℄ to its susp-nf has length greater than or equal to M(B).Proof. { Case B = n, [[n; i; j;�j � 1 :: e℄℄ rewrites to its susp-nf in one ormore steps depending on n.� Case B = (C D), we have [[(C D); i; j;�j � 1::e℄℄!r6 [[C; i; j;�j � 1::e℄℄15



Ayala-Rin
�on, de Moura and Kamareddine[[D; i; j;�j � 1 :: e℄℄. By the indu
tion hypothesis we obtain the desiredresult.� Case B = (�C), we have [[(�C); i; j;�j � 1 :: e℄℄ !r7�[[C; i+ 1; j + 1;�j :: e0℄℄, that by indu
tion hypothesis 
ompletes the proof.2Proposition 5.11 Let A;B 2 � and k � 0. Then every susp-derivation of[[A; k; k � 1;�k � 2 :: : : : :: �0 :: (B; l) :: nil℄℄ to its susp-nf has length greaterthan or equal to Qk(A;B).Proof. By stru
tural indu
tion over A.� A = n. If n < k then [[n; k; k � 1;�k � 2:: : : : ::�0:: (B; l) ::nil℄℄ !n�1r5[[1; k � n+ 1; k � 1;�k � n� 1:: : : : ::�0:: (B; l) ::nil℄℄ ! r3 n. This deriva-tion has length n � Qk(n; B).If n = k then [[n; k; k � 1;�k � 2:: : : : ::�0:: (B; l) ::nil℄℄ !n�1r5[[1; 1; k � 1; (B; l) ::nil℄℄ ! r4 [[B; 0; k � 1� l; nil℄℄. By Lemma 5.10 the lastterm rewrites to its susp-nf in M(B) or more rewrite steps. The wholederivation has length greater than or equal to n + M(B) = Qk(n; B) =Qk(A;B).If n > k then [[n; k; k � 1;�k � 2:: : : : ::�0:: (B; l) ::nil℄℄ !kr5 [[n-k; 0; k-1; nil℄℄!r2 n� 1. Derivation whose length is k + 1 � Qk(n; B) = Qk(A;B).� A = (C D). [[(C D); k; k � 1;�k � 2:: : : : ::�0:: (B; l) ::nil℄℄ !r6([[C; k; k-1;�k-2 :: : : : ::�0:: (B;0) ::nil℄℄ [[D; k; k-1;�k-2 :: : : : ::�0:: (B;0) ::nil℄℄).By the indu
tion hypothesis the derivation has length greater than or equalto 1+Qk(C;B)+Qk(D;B)=Qk((C D); B)=Qk(A;B).� A = (�C). [[(�C); k; k � 1;�k � 2:: : : : ::�0:: (B; l) ::nil℄℄ !r7�[[C; k + 1; k;�k � 1:: : : : ::�0:: (B; l) ::nil℄℄. By the indu
tion hypothesis we
an 
on
lude that this derivation has length greater than or equal to1 +Qk+1(C;B) = Qk(�C;B) = Qk(A;B). 2Proposition 5.12 Let A;B 2 � and k � 1. se-derivations of A�kB to itsse-nf have length � Qk(A;B).Proof. By stru
tural indu
tion over the pure lambda term A.� A = n. By applying the �-destru
tion rule, in the 
ase n 6= k, we obtaineither n� 1 or n and in the 
ase n = k, 'k0B. In the 
ase that n 6= k,the derivation has length equal to 1 � Qk(n; B). In the other 
ase, weapply Lemma 5.8 obtaining that the 
omplete se-normalization has length1 +M(B). In both 
ases the derivation has length less than or equal toQk(n; B).� A = (C D). (C D)�kB ! (C�kB D�kB). By applying the indu
tionhypothesis we 
on
lude that the 
omplete derivation has length less thanor equal to 1 +Qk(C;B) +Qk(D;B) = Qk((C D); B).16



Ayala-Rin
�on, de Moura and Kamareddine� A = (�C). (�C)�kB ! �(C�k+1B). By the indu
tion hypothesis we
on
lude that the whole derivation has length less than or equal to 1 +Qk+1(C;B) = Qk(�C;B). 2Theorem 5.13 (�se��susp)The �se is more adequate than the �susp-
al
ulus.Proof. We prove the stronger result that if A 2 � and A !�s B !msuspsusp-nf(B) is a �susp-simulation of a �-redu
tion then: A !��generation C!nse se-nf(C) has length n+ 1 � m+ 1 .In �susp, for any redex of �s we have (�D) E !�s [[D; 1; 0; (E; 0) ::nil℄℄!msuspsusp-nf([[D; 1; 0; (E; 0) ::nil℄℄). In the �se, (�D) E !��generation D�1E !nse se-nf(D�1E). By Propositions 5.11 and 5.12, m � Q1(D;E) � n. Hen
e, thelength of a �susp-simulation of a �-
ontra
tion is not shorter than that ofsome �se-simulation.The 2nd part of being more adequate is shown by 
omparing the lengthof simulations. E.g., let (�2) 1 !� 1. In �susp the only possible threesteps simulation is: (�2) 1 !�s [[2; 1; 0; (1; 0) ::nil℄℄ !r5 [[1; 0; 0; nil℄℄ !r2 1.In �se the only possible two steps simulation is: (�2) 1 !��generation 2�11!��destru
tion 1. 2As mentioned in the above proof, we prove a stronger result than simplebetter adequa
y of �se as in [22℄. In fa
t, we prove that the length of all �se-simulations are shorter than the length of any �susp-simulation. Examiningthe proofs of Propositions 5.11 and 5.12 whi
h relate the length of derivationswith the measure operator Qk, it appears evident that both 
al
uli work simi-larly ex
ept that after having propagated suspended terms between the bodyof abstra
tors, �susp deals with the substitutions in a less eÆ
ient way. To ex-plain that, 
ompare the simulations of �-redu
tion from the term (�(�ni)) j,where n � 0:(�(�ni))j !��gen (�ni)�1j !n����trans �n(i�n+1j) =: t1(�(�ni))j!�s [[�ni; 1; 0; (j;0) ::nil℄℄!nr7 �n[[i; n+ 1; n;�n-1 :: : : : ::�0:: (j;0) ::nil℄℄=: t2After that the �se 
omplete the simulation in one or two steps by 
he
kingarithmeti
 inequations:t1 !��dest 8>>><>>>:�ni; if i < n + 1�ni� 1; if i > n + 1�n('n+10 j)!'�dest �nj+ n; if i = n + 1But in the �susp we have to destru
t the environment list, environment byenvironment: 17
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�on, de Moura and Kamareddinet28>>><>>>:!i�1r5 �n[[1; n-i+ 2; n;�n-i :: : : : ::�0:: (j; 0) ::nil℄℄ !r3 �ni; if i < n+ 1!n+1r5 �n[[i� n� 1; 0; n; nil℄℄!r2 �ni� 1; if i > n+ 1!i�1r5 �n[[1; 1; n; (j; 0) ::nil℄℄!r4 �n[[j; 0; n; nil℄℄!r2 �nj+ n; if i = n+ 1These simple 
onsiderations lead us to believe that the main di�eren
eof the two 
al
ulus (at least in the simulation of �-redu
tion) is given bythe manipulation of indi
es: although �susp in
ludes all de Bruijn indi
es,it does not pro�t from the existen
e of the built-in arithmeti
 for indi
es.These observations may be relevant for the treatment of the open question ofpreservation of strong normalization of �susp (
onje
tured positively in [26℄),sin
e the �se has been proved to answer this question negatively in [16℄.6 Future Work and Con
lusion[13,2℄ showed that �-redu
tion is of great interest for adapting substitution
al
uli (�� and �se) for important pra
ti
al problems like higher order uni-�
ation. In this paper we have enlarged the suspension 
al
ulus of [28,26℄with an adequate Eta rule for �-redu
tion and showed that this extended sus-pension 
al
ulus �susp enjoys 
on
uen
e and termination of the asso
iatedsubstitution 
al
ulus susp.Additionally, we used the notion of adequa
y of [22℄ for 
omparing thesethree 
al
uli when simulating one step �-redu
tion. We 
on
luded that ��and �� are mutually non 
omparable for � 2 fse; suspg but that �se is moreadequate than �susp. After all, although �� is a �rst order 
al
ulus and theother two 
al
uli are se
ond order, 
omparing them is not unfair sin
e the useof (built-in) arithmeti
 is standard in all modern programming environments.An immediate work to be done is to study two open questions: 1) whetherthe se-
al
ulus has strong normalization (SN), 2) whether �susp preserves SN.Interesting points arise in this 
ontext sin
e: a) �se is more adequate than�susp, b) �se does not preserves SN [16℄ and 
) the substitution 
al
ulus of�susp has SN.Referen
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