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�onFun
tional Arithmeti
 AF2 [6,8℄ and Re
ursive Type Theory TTR [15℄. BothAF2 and TTR use equations as algorithmi
 spe
i�
ations where the 
ompi-lation phase 
orresponds to formal termination proofs of the spe
i�
ations offun
tions from whi
h �-terms that 
ompute the fun
tions are extra
ted.Using the logi
al framework of TTR, an automated system 
alled ProPre,has been developed by P. Manoury and M. Simonot [11,10℄. The automatedtermination problem turns out to be a major issue in the development of thesystem. Alongside the system, where data types and spe
i�
ations of fun
tionsare introdu
ed by the user in an ML-style, an algorithm has been designedusing strategies to sear
h for formal termination proofs for ea
h spe
i�
ation.When the system su

eeds in developing a formal termination proof for aspe
i�
ation, a �-term that 
omputes the fun
tion is given.As mentioned in [11℄, the automated termination proofs in this systemdi�er from the usual te
hniques of rewriting systems be
ause they have tofollow several requirements. They must be proofs of totality in order to enablethe extra
tion of �-terms. In ProPre, one has to make sure not only thatthe programs will give an output for any input, but also that for any well-typed input the result will also be well-typed. Finally, the proofs must also beexpressed in a formal logi
al framework, namely, the natural dedu
tion style.The �-terms are obtained from the proof trees that are built in a naturaldedu
tion style a

ording to the re
ursive type theory TTR.Therefore enhan
ing automated proofs strategy is a 
entral issue in pro-gramming languages like AF2 or TTR. While termination methods for fun
-tional programing based on ordinal measures have been developed in [13,5℄relating to the formal proofs devised in [11,12℄, the purpose of this paper isto analyse in some sense the reverse of the question. That is, we analysethe possibility to in
orporate new termination te
hniques for the extra
tionof programs in the ProPre or TTR 
ontext.In order to simplify the analysis of the formal proofs obtained in the logi
alframework of ProPre, we show that the kernel of these formal proofs, 
alledformal terminal state property (ftsp), 
an be abstra
ted using a simple datastru
ture. This gives rise to a simple termination property, whi
h we 
allabstra
t terminal state property (atsp). The interest of atsp is that on onehand the termination 
ondition is suÆ
ient to show the termination usingthe ordinal measures of [5℄ independently of the parti
ular logi
al frameworkof ProPre, and on the other hand we also prove that we 
an automati
allyre
onstru
t a formal proof dire
tly from an atsp so that a lambda term 
anbe extra
ted. That is to say the �rst result of this paper is to establish a
orresponden
e between atsp with a 
lass of ordinal measures in a simple
ontext for the termination and the formal proofs built in ProPre.This 
orresponden
e implies that the termination proofs of re
ursive fun
-tions obtained in [4℄ do not admit in general a formal proof in ProPre. Indeedthe 
lass of these fun
tions is larger than those proven with the 
lass of ordinalmeasures of [13,5℄. To over
ome the fa
t that there is in general no formal2
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�onproof in ProPre for these fun
tions, the se
ond result presented in this paperallows the synthesis of these fun
tions still making use of the whole frameworkof ProPre but in a di�erent way in TTR. A
tually the result turns out to bestronger sin
e it 
an be applied to re
ursive fun
tions whose termination isproven by other automated methods su
h as te
hniques 
oming from rewritingtheory (see e.g. [1℄). The prin
iple 
onsists in simulating a semanti
 method.That is, from a well-founded ordering for whi
h ea
h re
ursive 
all is de
reas-ing, one must be able to build a formal proof by 
onsidering general indu
tionon tuples of arguments of the fun
tion. Though the prin
iple is natural, thisapproa
h be
omes diÆ
ult when we want to extra
t programs be
ause we haveto take into a

ount the logi
al framework and the stru
tures of the proofs.2 Logi
al frameworkProPre [9,11,12℄ relies on the proofs as programs paradigm that exploits theCurry-Howard isomorphism and deals with the re
ursive type theory TTR [15℄.In ProPre, the user needs to only de�ne data types and fun
tions. �-terms areautomati
ally extra
ted from the formal proofs of the termination statementsof fun
tions whi
h 
an be viewed as the 
ompilation part. ProPre deals withre
ursive fun
tions. The data types and fun
tions are de�ned in an ML likesyntax. For instan
e, if N denotes the type of natural numbers, then the listof natural numbers is de�ned by:Type Ln : Nil | Cons N Ln;and the append fun
tion is spe
i�ed by:Let append : Ln, Ln -> LnNil y => y | (Cons n x) y => (Cons n (append x y));On
e a data type is introdu
ed by the user, a se
ond order formula is auto-mati
ally generated. E.g., the following se
ond order formula is automati
allygenerated and asso
iated to the list of natural numbers:Ln(x) := 8X(X(nil)! (8n(N(n)! 8y(X(y)! X(
ons(n; y)))))! X(x)).This formula stands for the least set that 
ontains the nil element and is
losed under the 
onstru
tor 
ons. Ea
h data type will be abbreviated by aunary data symbol, as it is for instan
e with the symbol N that representsthe data type of natural numbers. Furthermore, on
e a fun
tion is spe
i�edin the system, a termination statement is automati
ally produ
ed [10℄. As anexample, the termination statement of the append fun
tion is the formula:8x(Ln(x)! 8y(Ln(y)! Ln(append(x; y)))).The system then attempts to prove the termination statement of the fun
tionusing the set of equations that de�ne the fun
tion. In a su

essful 
ase, a �-term that 
omputes the fun
tion is synthesized from the building of a formalproof in a natural dedu
tion style [11℄. Informally, if T is a �-term obtainedfor the fun
tion append and t1, t2 are �-terms that respe
tively model termsu1 of type Ln and u2 of type Ln, then the �-term ((T t1) t2) redu
es to anormal form V that represents the value of append(u1; u2) of type Ln.See [6,7,14,15℄ for details of the theory that allows to derive �-terms from3
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�ontermination proofs of the spe
i�
ation in natural dedu
tion style.2.1 The typing rules of AF2 (whi
h are also part of TTR)We assume a set F of fun
tion symbols and a 
ountable set X of individualvariables. The logi
al terms are indu
tively de�ned as follows:� individual variables are logi
al terms;� if f is an n-ary fun
tion symbol in F and t1; : : : ; tn are logi
al terms, thenf(t1; : : : ; tn) is a logi
al term.We assume a 
ountable set of predi
ate variables and de�ne Formulas by:� if X is an n-ary predi
ate variable and t1; : : : ; tn are logi
al terms, thenX(t1; : : : ; tn) is a formula;� if A and B are formulas then A! B is a formula;� if A is a formula and � is a 1st or 2nd order variable, then 8�A is a formula.We use 8xA! B to denote 8x(A! B). A formula of the form F1 ! (F2 !: : : (Fn�1 ! Fn) : : :) will also be denoted by F1; : : : ; Fn ! F . For instan
e8xD1(x); 8yD2(y)! F stands for the formula 8x(D1(x)! 8y(D2(y)! F )).A typing judgment is an expression of the form: 00x1 : F1; : : : ; xn : Fn `E t :F", where x1; : : : ; xn are distin
t �-variables, t is a �-term, F; F1; : : : ; Fn areformulas and E is a set of equations on logi
al terms. The left-hand side of thejudgment is 
alled the 
ontext. Note that we 
an freely use the same notationfor both the �-terms and the logi
al terms whi
h o

ur in the formulas, as the
ontext will 
larify whether a term is a �-term or a logi
al term. In parti
ular,the word \variable" may also refer to a \�-variable". The typing rules of AF2are given in Table 1 where E is a set of equations on logi
al terms, � is a
ontext of the form x1 : A1; : : : ; xn : An and may be empty; y (resp. Y ) is a�rst (resp. se
ond) order variable not o

urring free in A1; : : : ; An; �; u; v are�rst order terms and T is a formula.�; x : A `E x : A (ax) � `E t : A[u=y℄ E ` u = v� `E t : A[v=y℄ (eq)�; x : A `E t : B� `E �x:t : A! B (!i) � `E u : A � `E t : A! B� `E (t u) : B (!e)� `E t : A� `E t : 8yA (81i ) � `E t : 8yA� `E t : A[�=y℄ (81e)� `E t : A� `E t : 8Y A (82i ) � `E t : 8Y A� `E t : A[T=Y ℄ (82e)Table 1Rules of the Se
ond Order Fun
tional Arithmeti
 (AF2)Types and formal data types play an important role in AF2 and TTRin relation to a notion of realizability [7℄ that ensures the extra
ted �-terms
ompute the de�ned fun
tions (
f. [6,7℄). If for an n-ary fun
tion f we have:4
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�on`E t : 8x1 : : :8xn(D1(x1)! (: : :! (Dn(xn)! D(f(x1; : : : ; xn)) : : :)for some �-term t where D1; : : : ; Dn; D denote formal data types, then the�-term t 
omputes the fun
tion f a

ording to the set E .2.2 Some rules of TTRAs for AF2, we do not state the data types and the realizability notion ofTTR. In parti
ular, we do not give the se
ond order least �xed point operator� (see [14℄) whi
h allows de�ning the data types whi
h are represented hereby unary data symbols D;D0; : : : ; D1; : : : ; Dn. For the sake of 
larity we donot state all the rules (whi
h also in
lude those of AF2 ).In TTR, a binary symbol �, 
alled hiding operator in [14℄, is added. Itsmeaning is a 
onjun
tion whi
h only keeps the algorithmi
 
ontents of the leftpart in order to prevent unne
essary algorithmi
 
ontent of the terminationproof to be 
arried out in the �-terms (see [15,11℄). It is used with a relation�, made pre
ise below. The de�nition of formulas given in se
tion 2.1 is now
ompleted as follows: If A is a formula, and u; v are terms then A � (u � v) isa formula. The rules related to the hiding operator are given in Table 2.� ` t : A � `E e� `E t : A � e (�1) � `E t : A � e� ` t : A (�2) � `E t : A � e� `E e (�3)Table 2Rules of the hiding operator �.If A is a formula where a distinguished variable x o

urs, we abbreviatethe formula A[u=x℄ � (u � v) with the notation Au�v.Among the rules of TTR, several rules are used to reprodu
e, from theprogramming point of view, the reasoning by indu
tion. The rule below standsin TTR for an external indu
tion rule where the relation � denotes a well-founded partial ordering on the terms of the algebra:� `E t : 8x[8z[Dz�x ! B[z=x℄℄! [D(x) ! B℄℄� `E (T t) : 8x[D(x)! B℄ (Ext)In the rule (Ext), the lambda term T is the Turing �xed-point operator, D isa data type and x is a variable not o

urring in the formula B.From the (Ext) rule, it is possible to derive the gInd formula:gInd := 8x(Dr(x)! 8X(8y(Dr(y)! 8z(Drz�y ! X(z))! X(y))! X(x))):That is, there is a �-term that witnesses the proof of gInd. This is statedin Lemma 2.1 below, whi
h is given for the type of natural numbers in [14℄.Lemma 2.1. For ea
h re
ursive data type, there exists a �-term ind su
hthat: ` ind :gInd.The proof of Lemma 2.1 in [14℄, given only with the type of natural num-bers, 
an be applied to any data type: ind = (T �x�y�z((z y) �m((x m) z))),where T is the Turing �xed-point operator, is valid for any data type. Lemma2.1 is useful for the de�nition of a ma
ro-rule, 
alled the Ind-rule, in ProPre.5
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�on2.3 The ProPre systemWe assume that the set of fun
tions F is divided into two disjoint sets, theset F
 of 
onstru
tor symbols and the set Fd of de�ned fun
tion symbols also
alled de�ned fun
tions. Ea
h fun
tion f is supposed to have a type denotedby D1; : : : ; Dn ! D where D1; : : : ; Dn; D denote data symbols and n denotesthe arity of the fun
tion f . We may write f : D1; : : : ; Dn ! D to bothintrodu
e a fun
tion f and its type D1; : : : ; Dn ! D.De�nition 2.2. [Spe
i�
ation; termination statement; re
ursive 
all℄� A spe
i�
ation Ef of a de�ned fun
tion f : D1; : : : ; Dn ! D in Fd is a nonoverlapping set of left-linear equations f(e1; e01); : : : ; (ep; e0p)g su
h that for all1 � i � p, ei is of the form f(t1; : : : ; tn) where tj is a 
onstru
tor term (i.e.without o

urren
es of de�ned fun
tion symbols) of type Dj, j = 1; : : : ; n;and e0i is a term of type D.� The termination statement of a fun
tion f : D1; : : : ; Dn ! D is the formula8x1(D1(x1)! : : :! 8xn(Dn(xn)! D(f(x1; : : : ; xn)))).� Let Ef a spe
i�
ation of a fun
tion f . A re
ursive 
all of f is a pair (t; v)where t is the left-hand side of an equation (t; u) of Ef and v a subterm of uof the form f(v1; : : : ; vn).An equation (l; r) of a spe
i�
ation may be written l = r (as an equationalaxiom in TTR). We may also drop the bra
kets to ease the readability.The formal proofs of ProPre, 
alled I-proofs, are built upon distributingtrees, based on two main rules derived from the TTR Stru
t rule and theInd rule in [11℄. The distributing trees built in ProPre are 
hara
terized bya property 
alled formal terminal state property. This se
tion presents thesetwo main rules, the distributing trees and the formal terminal state property.Notation 2.3. If P is the formula F1; : : : ; Fk; 8xD0(x); Fk+1; : : : ; Fm ! D(t),then P�D(x), will denote the formula F1; : : : ; Fk; Fk+1; : : : ; Fm ! D(t).The above notation is 
orre
t as it will be used at the same time when thequanti�ed variable x will be substituted by a term in the formula P�D(x) withrespe
t to the 
ontext (
f. next two lemmas with Notation 2.4) or when thevariable x will be introdu
ed in the 
ontext.Notation 2.4. Let C be a 
onstru
tor symbol of a typeD1; : : : ; Dk ! D. Letx1; : : : ; xk; z be distin
t variables. Let F (x) be a formula in whi
h the variablex is free and the variables z; x1; : : : ; xk do not o

ur and let t = C(x1; : : : ; xk).Then �C(F (x)) and 	C(F (x)) will be respe
tively the following formulas:� �C(F (x)) is: 8x1D1(x1); : : : ; 8xkDk(xk)! F [t=x℄;� 	C(F (x)) is: 8x1D1(x1); : : : ; 8xkDk(xk); 8z(Dz�t ! F [z=x℄)! F [t=x℄.The notation may suggest some kind of formulas that are a
tually usefulin the 
onstru
tion of I-proofs whi
h are de�ned as follows:De�nition 2.5. [I-formulas and restri
tive hypothesis℄� A formula F is 
alled an I-formula i� F is of the form H1; : : : ; Hm !6
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�onD(f(t1; : : :; tn)) for some:� data type D, de�ned fun
tion f ,� formulas Hi for i = 1; : : : ; m su
h that Hi is of the form 8xD0(x) or of theform 8z(D0z�u ! F 0) for some data type D0, I-formula F 0 and term u.� An I-restri
tive hypothesis of an I-formula F of the form H1; : : : ; Hm !D(f(t1; : : :; tn)) is a formula Hi of the form 8z(D0z�u ! F 0). We say that H 0is a restri
tive hypothesis to an I-restri
tive hypothesis H = 8z(D0z�u ! F 0)if H 0 is an I-restri
tive hypothesis of the I-formula F 0.As by de�nition, an I-formula is re
ursive, it may involve sub-I-formulas.An I-restri
tive hypothesis is not an I-formula. We use the term restri
tivehypothesis to also denote I-restri
tive hypothesis. The termination statementof a de�ned fun
tion is an I-formula whi
h has no restri
tive hypothesis.The lemmas below state that one 
an use two additional rules, 
alled Stru
trule and Ind rule, in TTR as they 
an be derived from the other rules ofTTR. These rules 
orrespond to ma
ro-rules, the former one 
an be seen as areasoning by 
ases, while the last one stands for an indu
tion rule.Lemma-De�nition 2.6. [The Ind rule℄Let D be a data type and 
onsider all the 
onstru
tor fun
tions Ci of typeDi1; : : : ; Dik ! D, 0 � ik, i = 1; : : : ; q. Let P be a formula of the formF1; : : : ; Fk; 8xD(x); Fk+1; : : : ; Fm ! D0(t), and � a 
ontext. For 	Ci(P�D(x))given as in Notation 2.4, the indu
tion Ind rule on type D is:� ` 	C1(P�D(x)) : : : � ` 	Cq(P�D(x))� ` P Ind(x)Along with the Ind rule, the Stru
t rule de�ned below, whi
h is also ama
ro-rule derived from TTR, 
an be 
onsidered as a reasoning by 
ases.Lemma-De�nition 2.7. [The Stru
t rule℄Let D be a data type and 
onsider all the 
onstru
tor fun
tions Ci of typeDi1; : : : ; Dik ! D, 0 � ik, i = 1; : : : ; q. Let P be a formula of the formF1; : : : ; Fk; 8xD(x); Fk+1; : : : ; Fm ! D0(t), and � a 
ontext. For �Ci(P�D(x))given as in Notation 2.4, the Stru
t rule on type D is:� ` �C1(P�D(x)) : : : � ` �Cq (P�D(x))� ` P Stru
t(x)Due to these lemmas, two ma
ro-rules 
an be added in TTR: the Stru
t-rule (Lemma 2.7) and the Ind-rule (Lemma 2.6). From these rules, distributingtrees 
an be built in ProPre (see De�nition 2.10).Remark 2.8. I-formulas are preserved by the Stru
t-rule and the Ind-rule.That is, if P is an I-formula, then so are: �C(P�D(x)) and 	C(P�D(x)).De�nition 2.9. [Heart of formula℄ The heart of a formula of the formF = H1; : : : ; Hm ! D(t), where D is a re
ursive data type, will be the termt, denoted by H(F ). The distributing trees are de�ned as follows:De�nition 2.10. [Distributing tree℄ Let Ef be a spe
i�
ation of a fun
tionf : D1; : : : ; Dn ! D: A is a distributing tree for Ef i� A is a proof tree built7
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�ononly with the Stru
t rule and Ind rule where:(i) the root of A is the termination statement of f with the empty 
ontext,i.e.: ` 8x1D1(x1); :::; 8xnDn(xn)! D(f(x1; :::; xn)).(ii) ifL = f�1 ` F1; :::;�q ` Fqg is the set ofA's leaves, then there exists a oneto one appli
ation B: L ,! Ef su
h that B(L) = (t; u) with L = (� ` F )in L and the heart of F is H(F ) = t.Note that it 
an be indu
tively 
he
ked, from the root, using remark 2.8,that any formula in a distributing tree is an I-formula.The I-proofs found by ProPre are formal termination proofs of terminationstatements of de�ned fun
tions. They are divided into three phases:(i) the development of a distributing tree for the spe
i�
ation of a de�nedfun
tion, 
hara
terized by the so-
alled formal terminal state property;(ii) ea
h leaf of the distributing tree is extended into a new leaf by an appli-
ation of an (eq) rule;(iii) ea
h leaf, 
oming from the se
ond step, is extended with a new sub-tree,with the use of rules de�ned in [11℄, whose leaves end with axiom rules.Due to the following fa
t proven in [11℄, it is not ne
essary to 
onsider inthis paper the middle and upper parts of proof trees built in ProPre:Fa
t 2.11. A distributing tree T 
an be (automati
ally) extended into a
omplete proof tree i� T enjoys the so-
alled formal terminal state property.Hen
e, in order to 
omplete the proof tree and state the termination of thefun
tion, it suÆ
es to look at distributing trees that have the formal terminalstate property. Therefore it remains for us to state the mentioned property.De�nition 2.12. An I-formula or a restri
tive hypothesis P 
an be appliedto a term t if the heart H(P ) of P mat
hes t a

ording to a substitution �where for ea
h variable x that o

urs free in P we have �(x) = x.The relation � of De�nition 2.5 deals with the measure j : j# on the terms,ranging over natural numbers, whi
h 
ounts the number of subterms of a giventerm t (in
luding t), and is interpreted as follows:De�nition 2.13. Let Var(t) be the set of variables o

urring in t. Let u; vbe terms. We say u � v i�: juj# < jvj#, Var(u) � Var(v), and u is linear.This 
learly de�nes a well-founded ordering � on terms. We 
an now state themain property that a distributing tree must enjoy in the I-proofs of ProPre.De�nition 2.14. [Formal Terminal State Property℄ Let Ef be a spe
-i�
ation of a fun
tion f and A be a distributing tree for Ef . We say that Asatis�es the formal terminal state property (ftsp) i� for all leaves L = (� ` F )of A with the equation e 2 Ef su
h that B(L) = e, where B is the appli
ationgiven in De�nition 2.10, and for all re
ursive 
alls (t; v) of e, there exists a re-stri
tive hypothesis P = 8zDz�s; H1; : : : ; Hk ! D(w) of F and a substitution8
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�on� su
h that P 
an be applied to v a

ording to � with:(i) �(z) � s and(ii) for all restri
tive hypothesis H of P of the form 8yD0y�s0 ! K there is arestri
tive hypothesis H0 of F of the form 8yD0y�s0 ! K with �(s0) � s0.So, ProPre establishes the termination of a fun
tion f by showing that thedistributing tree of the spe
i�
ation of f (a partial tree whose root is thetermination statement of f) has the formal terminal state property (hen
e
an be extended to a 
omplete proof tree of the termination statement of f).3 The abstra
t terminal state propertyProof stru
tures 
an often be heavy and diÆ
ult to work with. However,in the 
onstru
tive framework of the Curry-Howard isomorphism, 
ompiling are
ursive algorithm 
orresponds to establishing a formal proof of its totality. InProPre, termination proofs play an important role as they make it possible toobtain �-terms that 
ompute programs. We set out to simplify the terminationte
hniques developed in ProPre by showing that its automated formal proofs
an be abstra
ted giving rise to a simpler property whi
h respe
ts termination.Instead of dealing with formulas, we will use the simpler 
on
ept of fun
tions.Also, instead of data symbols, we will use sorts and assume that there is a
orresponden
e between the data types of ProPre and our sorts. Instead of the
omplex 
on
ept of distributing trees of ProPre (De�nition 2.10), we will usethe simpler term distributing trees of [13℄. By living in the easier framework,we will introdu
e the new abstra
t terminal state property whi
h will play forterm distributing trees a similar role to that played by the formal terminalstate property for distributing trees. In this se
tion we present a data stru
turefor whi
h we will be able to introdu
e a new termination property.We take a 
ountable set X of individual variables, assume that ea
h variableof X has a unique sort and that for ea
h sort s there is a 
ountable numberof variables in X of sort s. For sort s, F � F , and X � X , T (F;X)s denotesthe set of terms of sort s built from F and X. If X is empty we write T (F )s.We re
all the de�nition of term distributing trees of [13℄. A term dis-tributing tree is mu
h simpler than the distributing tree of ProPre given inDe�nition 2.10. The novelty of this se
tion will be a term distributing treeequipped with abstra
t terminal state property (De�nition 3.5 below).De�nition 3.1. [Term distributing tree℄ Let Ef be a spe
i�
ation of afun
tion f : s1; : : : ; sn ! s. A tree T is a term distributing tree for Ef i�:(i) its root is of the form f(x1; : : : ; xn) where xi is a variable of sort si, i � n;(ii) ea
h leaf is a left-hand side of an equation of Ef (up to var. renaming);(iii) ea
h node f(t1; : : : ; tn) of T admits one variable x0 of a sort s0 su
h thatthe set of 
hildren of the node is ff(t1; : : : tn)[C(x01; : : : x0r)=x0℄; wherex01; : : : ; x0r are not in t1; : : : tn and C : s01; : : : ; s0r ! s0 2 F
g.A term distributing tree 
an bee seen as a skeleton form of a distributing tree9
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�onT by taking the heart of the formulas in the nodes of T , whi
h gives rise toan operator H illustrated by Figure 1.� ` PJJJJJJJ 






` FF : termination statementDistributing Tree
H - H(P )JJJJJJJ 






H(F )Term Distributing TreeFig. 1. The operator HProposition 3.2. If there is a distributing tree for a spe
i�
ation Ef of afun
tion f then there is also a term distributing tree for the spe
i�
ation Ef .A term distributing tree is easier to handle than a distributing tree. But, inboth parts of Figure 1, term distributing trees and distributing trees may haveno termination property. However, by Fa
t 2.11, a fun
tion terminates if wehave a distributing tree that satis�es a right terminal state property. Whatwe want is to de�ne a notion on the term distributing trees that also ensuresthe termination of fun
tions. We �rst give some notations and remarks.Notation 3.3. Let T be a term distributing tree with root �1.� A bran
h b from �1 to a leaf �k is denoted by (�1; y1); : : : ; (�k�1; yk�1); �kwhere for ea
h i � k � 1, yi 
orresponds to the variable x0 for node �i in thethird 
lause of De�nition 3.1. We use Lb to denote the leaf of the bran
h b.� If a node � mat
hes a term u of a re
ursive 
all (t; u) then the substitutionwill be denoted by ��;u (in parti
ular in De�nition 3.5).� For a term t of a left-hand side of an equation, b(t) will denote the bran
hin the term distributing tree that leads to t (se
ond 
lause of De�nition 3.1).Remark 3.4. � Let f : s1; : : : ; sn ! s be a fun
tion and Ef be a spe
i�
ationof f . Let T be a term distributing tree of Ef . Then for ea
h (w1; : : : ; wn) ofT (F
)s1 � : : : � T (F
)sn there is one and only one leaf � of T and a ground
onstru
tor substitution ' su
h that '(�) = f(w1; : : : ; wn).� Let T be a term distributing tree for a spe
i�
ation and let b be a bran
hfrom the root �1 of T to a leaf �k with b = (�1; x1); : : : ; (�k�1; xk�1); �k. Thenfor ea
h node �i; �j with 1 � i � j � k, there exists a 
onstru
tor substitution,denoted ��j ;�i, su
h that ��j ;�i(�i) = �j.Now, we give the abstra
t terminal state property for term distributing trees:De�nition 3.5. [Abstra
t terminal state property℄ Let T be a termdistributing tree for a spe
i�
ation. We say that T has the abstra
t terminalstate property (atsp) if there is an appli
ation � : T ! f0; 1g on the nodes ofT su
h that if L is a leaf, �(L) = 0, and for every re
ursive 
all (t; u), thereis a node (�; x) in the bran
h b(t) with �(�) = 1 su
h that � mat
hes u with��;u(x) � �Lb(t);�(x) (
f. Notations 3.3 and Remark 3.4) and for all an
estors(�0; x0) of � in b(t) with �(�0) = 1, we have ��0;u(x0) � �Lb(t);�0(x0).10
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�onNote that similarly to term distributing trees, no formula is mentioned in thede�nition of atsp and hen
e atsp is easier to handle than ftsp (De�nition 2.14)be
ause atsp only uses relations of substitutions where all proposition informa-tions have been abstra
ted. However, it is not obvious that a term distributingtree that satis�es atsp implies the termination of the given fun
tion. A way toprove this fa
t would be to infer some measures from su
h distributing treesand to show that these measures have the de
reasing property through there
ursive 
alls of the given fun
tion so that the fun
tion terminates.We will not follow this way and will instead prove in the next se
tion thestronger result that from a term distributing tree that has the atsp we 
anre
onstru
t an I-proof, whi
h implies that the given fun
tion terminates andalso enables a �-term that 
omputes the fun
tion to be extra
ted.4 Building formal proofs from skeleton formsWe show that � the atsp is an abstra
t form of the ftsp (Theorem 4.1) andthat � the atsp is a suÆ
ient 
ondition to 
onstru
t a distributing tree withthe ftsp from a term distributing tree {skeleton form{ (Theorem 4.2). This
an be illustrated with the pi
ture below.Distributing trees inFormal terminal proofswith (skeleton)- Term distributing treeswithFormal terminal state propertyTheorem 4.1-�Theorem 4.2Abstra
t terminal state propertyWe start by extending the appli
ation H (Figure 1) into a new operator H0from a distributing tree A to the term distributing tree H(A) whi
h is nowequipped with an appli
ation � : H(A)! f0; 1g de�ned on the node of H(A),so that H0(A) will be (H(A); �). A term distributing tree equipped with anappli
ation � will also be 
alled a �-term distributing tree.To de�ne the operator H0, the appli
ation � is given as follows: Let A be adistributing tree and (� ` P ) be a node of A. If (� ` P ) is a leaf, we take�(H(P )) = 0. If not, we 
onsider �(H(P )) = 1 if the rule applied on (� ` P )in A is the Ind rule and �(H(P )) = 0 otherwise.Note that H is not inje
tive: there is at least two distin
t distributing treesA and A0 su
h that H(A) = H(A0). However, H0 is inje
tive. A
tually ifwe 
onsider term distributing trees equipped with a �-appli
ation, then H0be
omes bije
tive and the inverse operator of H0 
an be stated by:Lemma-De�nition 4.1. [D, the inverse of H0℄ Let Ef be a spe
i�
ation ofa fun
tion f : s1; : : : ; sn ! s, and let (T; �) be a term distributing tree for Ef(equipped with a � appli
ation). There is one and only one distributing treeA for Ef su
h that H0(A) = (T; �). This one 
an be automati
ally obtainedfrom (T; �) and we de�ne the appli
ation D with D(T; �) = A.Proof. Let F = 8x1D1(x1); : : : ; 8xnDn(xn) ! D(f(x1; : : : ; xn)) be the ter-mination statement of f . We 
an indu
tively build a distributing tree A of the11
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�onsame size as T by taking the root of A to be ` F and assuming the existen
eof a node (� ` P ) of A, for P is an I-formula, su
h that:i) P is of the form: F1; : : : ; Fr; 8xD0(x); Fr+1; : : : ; Fp ! D(f(t1; : : : ; tn)) whereD and D0 are data symbols, and variables in the heart of P are bound,ii) T admits a level, the same as those (� ` P ) in A, su
h that the node �at this level is distin
t from a leaf, with � = f(t1; : : : ; tn) whose variablea

ording to De�nition 3.1.iii is the variable x of sort s0 asso
iated to D0.From above, we build the 
hildren nodes of (� ` P ) in A as follows:� If �(�) = 0, the node (� ` P ) is extended by the Stru
t rule on x in P .� If �(�) = 1, the node (� ` P ) is extended using the Ind rule on x in P .In both 
ases, as P is an I-formula, if P 0j denotes either 	Cj (P�D(x)) or�Cj (P�D(x)) of De�nitions 2.6 and 2.7 as a 
hildren node of P , then P 0j isan I-formula. As the variables that o

ur in P are bound, by 
onstru
tion ofits 
hildren, the variables o

urring in the heart of P 0j are bound too. Now,due to the de�nitions of the term distributing trees and the Ind and Stru
trules, it is easy to see that there is a 
hild node �j of � su
h that C(P 0j) = �0j.Therefore, the above pro
ess allows the property ii) to be held by ea
h 
hildof (� ` P ) ex
ept if the 
orresponding node in T is a leaf. By de�nition of A,C 0(A) = (T; �) and its uniqueness results from inje
tivity of C 0. This gives theasso
iated tree A = D(T ) of T with C 0(D(T; �)) = (T; �). Hen
e we dedu
e,be
ause C 0 is inje
tive, that D(C 0(A)) = A for ea
h distributing tree. 2This means D(H0(A)) = A and H0(D(T; �)) = (T; �) for any distributing treeA and term distributing tree (T; �). D 
an be illustrated with Figure 2.D(�0)JJJJJJJ 
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�Term Distributing TreeFig. 2. The reverse operator of H0There is still no warranty on the termination of fun
tions using �-termdistributing trees. But the atsp of �-term distributing trees stands for the ftspfrom whi
h all proposition informations are abstra
ted in a simpler 
ontext:Theorem 4.1 Let Ef be a spe
i�
ation of a fun
tion f and A be a distribut-ing tree for Ef . If A has the formal terminal state property then the termdistributing tree H0(A) has the abstra
t terminal state property.Proof. Similar to the proof of Theorem 4.2 below. 2De�nition 4.2. [Nr(Q;P )℄ Let P be an I-formula and Q a restri
tive hypoth-esis of P . Nr(Q;P ) is the number of restri
tive hypotheses of P that appearbetween the outermost restri
tive hypothesis of P . E.g., if Q is the outer-12
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�onmost restri
tive hypothesis of P , then Nr(Q;P ) = 1. Ni(P ) is the number ofrestri
tive hypothesis of P .De�nition 4.3. [Trj;kb (Q)℄ Let A be a distributing tree for a spe
i�
ationEf . Let b be a bran
h and P a node in b at a level i from the root. Wede�ne Tri+1;ib (Q), where Q is a restri
tive hypothesis of P , as the restri
tivehypothesis Q0 in the 
hild P 0 of P in b as follows depending on whether therule applied on P is:� Stru
t: Q0 is the restri
tive hypothesis where Nr(Q0; P 0) = Nr(Q;P ).� Ind: Q0 is su
h that Nr(Q0; P 0) = Nr(Q;P ) + 1.We also de�ne Trj;kb (Q) with j > k as the restri
tive hypothesis of the nodeP 00 at level j in b de�ned by: Trj;kb (Q) = Trj;j�1b Æ : : : ÆTrk+2;k+1b ÆTrk+1;kb (Q).Finally Tri;ib will denote the identity on P .The next theorem is the opposite of Theorem 4.1 and shows that we 
anautomati
ally rebuild a distributing tree that has the ftsp from a skeleton formthat has the atsp. As a 
onsequen
e, a

ording to Se
tion 2.3, we 
an alsobuild an I-proof and thus extra
t a �-term that 
omputes the given fun
tion.Theorem 4.2 Let Ef be a spe
i�
ation of a fun
tion f and (T; �) be a �-termdistributing tree for Ef . If (T; �) has the abstra
t terminal state property thenthe distributing tree D(T; �) has the formal terminal state property.Proof. Let (T; �) be a term distributing tree for Ef whi
h has the Atsp. Wewant to show that D(T; �) has the ftsp. Take a re
ursive 
all (t; v) of an equa-tion of Ef . We have to �nd a restri
tive hypothesis R = 8zDz�s; F1; : : : ; Fk !D(w) in L of D(T; �) with B(L) = (t; v), where B is the appli
ation of Def-inition 2.10, su
h that 
lauses 1. and 2. of De�nition 2.14 hold. Let B bethe 
orresponding bran
h in D(T; �) of b(t) in T , and let (�; x) be the nodein b(t) given in De�nition 3.5. Consider (� ` P ) in D(T; �) that is at thesame level of (�; x) in T . As �(�) = 1, by 
onstru
tion of D(T; �), a newrestri
tive hypothesis of the form Q = 8z(Dz�s ! P�D(x)[z=x℄) is 
reated inthe 
hild P 0 of P in B. Consider R = Trj;iB (Q) the restri
tive hypothesis in Bwhere i and j are respe
tively the level of P 0 and the leaf of B. We 
an writeR = 8z(Dz�s0 ! P�D(x)[z=x℄) for some term s0 be
ause:1) The free variables in Q are those of the term s, and the applied Ind/Stru
trule is done on a variable in P 0 whi
h is out of the s
ope of Q.2) As 1) �rst holds for Q0=Tri+1;iB (Q), next holds for Tri+2;iB (Q)=Tri+2;i+1B (Q0),. . . , we have that: R = Trj;iB (Q) = 8z(Dz�s0 ! P�D(x)[z=x℄) where thevariables of C(R) are 
losed in R.Clause 1We know that � mat
hes v with a substitution ��;v, but C(P ) = �, soR 
an be applied to v a

ording to a substitution � de�ned with �(z) = ��;v(x)and �(y) = ��;v(y) for y 6= z. We have to show that �(z) � s0. This 
anbe easily proven, by indu
tion on k � i, that if Trk;iB (Q) = 8z(Dz�sk !P�D(x)[z=x℄) for some term sk, then sk = �k;i�1(x) where the node � mat
hesthe node at level k in T with the substitution �k;i�1. By de�nition of j,13
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�on�j;i�1 = �LB ;�, so ��;v(x) � �j;i�1(x) by De�nition 3.5, and we 
an now dedu
ethat �(z) � s0 sin
e s0 = sj. Therefore 
lause 1. of De�nition 2.14 holds.Clause 2 Consider a restri
tive hypothesis H = 8zD0z�r ! K in R; we haveto �nd a restri
tive hypothesis H0 in P of the form 8zD0z�r0 ! K su
h that�(r) � r0. As H is a restri
tive hypothesis of Trj;iB (Q), H is also a restri
tivehypothesis of Q. Hen
e, one asso
iate to H a restri
tive hypothesis H 0 in P 0 =8xi1Di1(xi1); : : : ;8xikDik(xik);8z(Dz�si ! P�D(x)[z=x℄)| {z }Q ! P�D(x)[si=x℄, whereHand H 0 respe
tively appear in P�D(x)[z=x℄ and P�D(x)[si=x℄. As H is of theform 8zD0z�r ! K then H 0 is of the form 8zD0z�r0 ! K sin
e only thevariables in the term r are free in H. Now 
onsider the node (� ` N) inB at a level l su
h that 1) a new restri
tive hypothesis M is 
reated in the
hild N 0 of N in B, namely, Ni(N 0) = Ni(N) + 1 and Nr(M;N 0) = 1, and 2)Tri;lB (M) = H 0. Let (�0; x0) be the 
orresponding node in T of (� ` N) in A. Itis 
lear that �0 is an an
estor of � in T sin
e l < j in D(T; �). Furthermore asNi(N 0) = Ni(N)+1, we have �(�0) = 1. By De�nition 3.5 we have the relation��0;v(x0) � �Lb(t);�0(x0). Let us now 
hoose H0 = Trj;l+1B (M) as the restri
tivehypothesis in P 0. Using the same property of 
lause 1 as we did with Trj;iB (Q),we know that r0 is �j;l(x0) = �Lb(t);�0(x0). Let us show that �(r) = ��0;v(x0). Wenote that i� 1 � l + 1 sin
e i� 1 and l are respe
tively the level of P and Nthat are distin
t. We have Tri�1;l+1B (M) = 8z(D0z��i�1;l(x0) ! K) in P , where�i�1;l is by de�nition the substitution ��;�0 . So, a

ording to the restri
tivehypothesis Q in P 0, the term r in H is ��;�0(x0)[z=x℄. Now, by de�nition of� in 
lause 1 of De�nition 2.14, we have �(r) = ��;v fz!xg(��;�0(x0)[z=x℄) =��;v(��;�0(x0)). But the relation of substitutions gives us ��0;v = ��;v Æ ��;�0.So we �nally obtain �(r) = ��0;v(x0), and we 
an dedu
e from the above andDe�nition 3.5 that �(r) � r0. Hen
e, 
lause 2. of De�nition 2.14 holds. 2In [5℄, measures were related to given fun
tions whose de
reasing propertythrough the re
ursive 
alls were dependent on the ftsp enjoyed by distribut-ing trees. We 
laim that it is possible to infer measures dire
tly from termdistributing trees whose de
reasing property through the re
ursive 
alls of the
onsidered fun
tions now rely only on atsp. This is a straightforward 
onse-quen
e of the results of this se
tion with the previous one and [5℄.Following distributing tree with atsp makes the analysis of the I-proofseasier. In parti
ular there are no measures from [5℄ asso
iated to the quotfun
tion (
f. Se
tion 5) that have the de
reasing property (see [4℄). By theresults of this se
tion, there are no I-proofs for su
h fun
tion. The next se
tionshows that the framework of ProPre 
an be applied to new fun
tions (e.g. quotfun
tion) provided an automated termination pro
edure (e.g. [4,1,2℄) is used.5 Synthesizing programs from termination te
hniquesAs noted in Se
tion 2, if we 
an prove, in TTR, a formula that states thetotality of a fun
tion then it is possible, in term of programs, to obtain a �-term as the 
ode of the fun
tion. As earlier mentioned, this formula is 
alled14
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�ontermination statement in ProPre (De�nition 2.2). More pre
isely, assumethat Ef1 ; : : : ; Efm are spe
i�
ations of de�ned fun
tions already proven in theProPre system. Let f be a new de�ned fun
tion with a spe
i�
ation Ef . Weput E = tj=nj=1Efj , and E1f = Ef t E . In order to obtain a lambda term F that
omputes the new fun
tion f , ProPre needs to establish `E1f F : Tf in TTR.Example 5.1. Let quot : nat; nat; nat ! nat be a de�ned fun
tion withspe
i�
ation Equot given by the equations:quot(x; 0; 0) = 0 quot(s(x); s(y); z) = quot(x; y; z)quot(0; s(y); z) = 0 quot(x; 0; s(z)) = s(quot(x; s(z); s(z))The value quot(x; y; z) 
orresponds to 1+bx�yz 
 when z 6= 0 and y � x, that isto say quot(x; y; y) 
omputes bxy 
. Its spe
i�
ation does not admit an I-proofand therefore no �-term 
an be asso
iated by the ProPre system.To avoid this drawba
k, we show, 
onsidering the framework of ProPreand TTR, that it is possible to add other automated termination pro
eduresthan that of ProPre regarding the automation of the extra
tion of �-terms.When ProPre builds a formal proof of a spe
i�
ation, it needs to 
he
k atdi�erent steps that some subterm in one argument of the equations de
reasesin the re
ursive 
alls a

ording to the relation of De�nition 2.13. These infor-mations are given by a termination algorithm in ProPre. I.e., to 
onvey thetermination informations in the formal proof in ProPre, it is used with therelation � in
luded in formulas of the form A[u=x℄ � (u � v) due to Table 2.Now assume, for a given fun
tion that terminates, the equations admitonly one argument. This provides a natural (partial) relation on the data typeon whi
h the fun
tion is spe
i�ed so that ea
h re
ursive 
all de
reases. Alsoassume that an automated pro
edure ensures the termination of this fun
tion.Then this one 
an be used as the termination algorithm of ProPre, but wenow 
onsider the new relation instead of the earlier relation � of ProPre. Dueto the hiding rules of the operator � we 
an develop a parti
ular formal proof,as an I-Proof, for the 
onsidered fun
tion but where in parti
ular the sequent� `E (u� v) in the rule (�1) with e= (u� v) 
an be obtained with the newtermination pro
edure that provides the new relation �.If the fun
tion admits many arguments, we would like to 
luster the argu-ments of the equations of the spe
i�
ation into one argument. To do so, weshow that the use of un
urry�
ation forms of fun
tions is harmless in TTR(and in AF2) in the sense of Lemma 5.4 by 
onsidering the produ
t types. Thisenables us to follow the prin
iple of Figure 3 where ~f stands for an un
urry-�
ation form of f . The left part of Figure 3 is obtained with Theorem 5.1.A new relation �Formal Proof ofTotality of ~f Termination Proof of f givenwith an automated pro
edureProdu
t Types� -Lemma 5.4 Formal Proof of Totality of fFig. 3. A formal proof of totality of the fun
tion f .15
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�on5.1 Produ
t typesWe introdu
e parti
ular spe
i�
ations that 
orrespond in some sense to un-
urry�
ation forms of previous spe
i�
ations. To do so, we will 
onsider aprodu
t type asso
iated to a fun
tion. As we have not stated the data typesof TTR with the operator � (
f. beginning of Se
tion 2.2), for the sake ofpresentation, we present below the produ
t types in the 
ontext of AF2. Thispresentation in De�nition 5.2 is harmless be
ause Lemma 5.4 below and itsproof hold both in AF2 and TTR.De�nition 5.2. [Produ
t type of a fun
tion℄ Let f : D1; : : : ; Dn ! Dbe a de�ned fun
tion, 
p 2 F
 be a new 
onstru
tor of arity n and takeTf = 8x1 : : :8xn(D1(x1); : : : ; Dn(xn) ! D(f(x1; : : : ; xn))) to be the termina-tion statement of f . The data type K(x) de�ned by the formula: 8X 8y1 : : :8yn D1(y1); : : : ; Dn(yn) ! X(
p(y1; : : : ; yn)) ! X(x) is 
alled the produ
ttype of D1; : : : ; Dn, and is denoted by (D1 � : : :�Dn)(x).From the spe
i�
ation of a de�ned fun
tion f , we 
an get another de�nedfun
tion ~f whose spe
i�
ation E ~f takes into a

ount the produ
t type of f .De�nition 5.3. Let f : D1; : : : ; Dn ! D be a de�ned fun
tion with spe
i�-
ation Ef . Let ~f , the twin fun
tion of f , be a new de�ned symbol in Fd. Tode�ne the spe
i�
ation E ~f of ~f , we de�ne ea
h equation ~f(
p(t1; : : : ; tn)) = vof E ~f from ea
h equation f(t1; : : : ; tn) = v of Ef where 
p is the 
onstru
torsymbol of the produ
t type of f . The term v is re
ursively de�ned by:� (i) if v is a variable or a 
onstant then v = v,� (ii) if v = g(u1; : : : ; um) with g a 
onstru
tor or a symbol fun
tion distin
tfrom f , then v = g(u1; : : : ; um),� (iii) if v = f(u1; : : : ; un) then v = ~f(
p(u1; : : : ; un)).This de�nes the spe
i�
ation E ~f of the de�ned fun
tion ~f asso
iated to f . Thetermination statement of ~f is: T ~f = 8x((D1 � : : :�Dn)(x)! D( ~f(x))).Let us 
onsider the spe
i�
ation Ef of a fun
tion and the set of equationsE 0f = Ef[ff(x1; : : : ; xn) = ~f(
p(x1; : : : ; xn))g. The set E 0f is not a spe
i�
ationa

ording to De�nition 2.2 in ProPre, but we 
an still reason in TTR. Assumethe termination statement of ~f proven in TTR with E ~f and the set E ofthe spe
i�
ations already proven. Now we 
an add the equations of E ~f inthe set E before proving the termination statement Tf . Due to the form ofthe spe
i�
ations E ~f and Ef , the equation f(x1; : : : ; xn) = ~f(
p(x1; : : : ; xn))does not add any 
ontradi
tion in the set of the equational axioms Ef t E .Therefore we 
an now use the new set E 0ftE to prove the termination statementTf in TTR. So, the equation f(x1; : : : ; xn) = ~f(
p(x1; : : : ; xn)) provides the
onne
tion between Ef and E ~f from the logi
al point of view and the proof ofT ~f provides the 
omputational aspe
t of the fun
tion f . More pre
isely:Lemma 5.4. Let f : D1; : : : ; Dn ! D be a de�ned fun
tion with a spe
-i�
ation Ef , and E ~f the spe
i�
ation of the twin fun
tion ~f . Let E1; : : : ; En16
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�onbe the spe
i�
ations of the de�ned fun
tions already proven (in AF2 orTTR), E = ti=ni=1Ei. Let us note E1~f = E ~f t E and E2~f = E 0~f t E1~f withE 0f = Ef [ ff(x1; : : : ; xn) = ~f(
p(x1; : : : ; xn))g. If there is a �-term eF su
hthat `E1~f eF : T ~f , then there is a �-term F su
h that `E2~f F : Tf .Proof. This lemma holds both in AF2 and TTR, (using the rules in Table 1).We assume familiarity with AF2 and only give steps without naming the rules.Let K = (D1 � : : : � Dn) be the produ
t type of f with 
p the asso
iated
onstru
tor symbol. By de�nition of the data type K, we get in TTR:a1 : D1(x1); : : : ; an : Dn(xn)`�k(: : : ((k a1) a2) : : : an) :K(
p(x1; : : : ; xn)). Hen
e:a1 : D1(x1); : : : ; an : Dn(xn)`E1~f ( eF �k(: : : ((k a1) a2) : : : an)) :D( ~f(
p(x1; : : : ; xn))).Be
ause E1~f � E2~f we have:a1 : D1(x1); : : : ; an : Dn(xn)`E2~f ( eF �k(: : : ((k a1) a2) : : : an)) :D( ~f (
p(x1; : : : ; xn))).Now, we have the equation f(t1; : : : ; tm) = ~f(
p(t1; : : : ; tm)) in E2~f . Hen
e:a1 : D1(x1); : : : ; an : Dn(xn) `E2~f ( eF �k(: : : ((k a1) a2) : : : an)) : D(f(x1; : : : ; xn)).Finally: `E2~f F : Tf , with F = �a1 : : : �an( eF �k(: : : ((k a1) a2) : : : an)). 2We show next that the spe
i�
ation of the twin of a fun
tion admits a parti
-ular I-proof assuming its termination is proven with an automated pro
edure.5.2 Canoni
al I-proofsLet f : D1; : : : ; Dn ! D be a de�ned fun
tion, with a spe
i�
ation Ef , whi
his terminating with an automated pro
edure. As mentioned earlier, insteadof using the ordering of the terms given in De�nition 2.13, we de�ne a newordering for the symbol relation � by 
onsidering the ordering given with there
ursive 
alls of the equations of the spe
i�
ation E ~f . As in the ProPre sys-tem, we will assume that we have a subset F?d of Fd of de�ned fun
tions whosespe
i�
ation admits a proof of totality in TTR (the fun
tions already intro-du
ed by the user) so that the de�ned fun
tions o

urring in the spe
i�
ationof f for whi
h we want to prove the termination statement, are in F?d [ ffg.Now, let t be a term in T (F ;X )s0, for some sort s0 (see Se
tion 3), su
h thatall the de�ned fun
tions o

urring in t admit a spe
i�
ation and are terminat-ing. Then, for ea
h ground sorted substitution �, we 
an de�ne the groundterm pp�(t)qq as the term in T (F
)s that 
orresponds to the normal form of�(t). The de�nition of pp�(t)qq makes sense as the fun
tions o

urring in thespe
i�
ation f are terminating whi
h gives the existen
e of the normal formwhile the de�nition of the spe
i�
ations (De�nition 2.2) gives the uniquenessof the normal form. Therefore, we 
an state formally the relation � ~f below.De�nition 5.5. Let E ~f be a spe
i�
ation of the twin fun
tion of a de�nedand terminating fun
tion f su
h that the fun
tions o

urring in the spe
i�-
ation E ~f admit a spe
i�
ation and are terminating. Let K be the produ
ttype (D1 � : : : � Dn) asso
iated to f and 
p the 
onstru
tor asso
iated toK. We de�ne a relation � ~f on K su
h that for ea
h re
ursive 
all of E ~f ,(f(
p(t1; :::; tn)); f(
p(v1; : : : ; vn))), we have 
p(pp�(v1)qq; : : : ; pp�(vn)qq) � ~f17
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�on�(
p(t1; : : : ; tn)) for any ground sorted substitution �.Hen
e, we get the straightforward but useful following fa
t.Fa
t 5.6. The above relation � ~f is a well-founded ordering on K.Theorem 5.1 says that if a fun
tion f is terminating and if we have adistributing tree for the spe
i�
ation E ~f of its twin fun
tion, having or la
kingthe formal terminal state property, it is then possible to get a new one havingthe ftsp. The idea 
onsists of 
hanging, in the initial distributing tree, theStru
t and Ind rules in su
h way that we now have a new tree with ftsp whi
h
an be 
alled a 
anoni
al distributing tree. Hen
e, the formal proofs we aregoing to build will depend on the abilities of � building a distributing treewhatever its properties, and � showing the termination of the fun
tion.Theorem 5.1 Let Ef be a spe
i�
ation of a de�ned fun
tion f : D1; : : : ; Dn !D su
h that the de�ned symbols that o

ur on the right-hand side of the equa-tions of Ef are in F?d [ ffg. Let A be a distributing tree for the spe
i�
ationE ~f of the twin fun
tion ~f . Assume the fun
tion f is proven terminating bya termination pro
edure. Then there is a distributing tree A0 for E ~f , whi
h
an be automati
ally obtained from A, that satis�es the formal terminal stateproperty with the relation � ~f .Proof. Let Ef be a spe
i�
ation of a de�ned fun
tion f : D1; : : : ; Dn ! s su
hthat the de�ned symbols that o

ur in the right-hand side of the equations ofEf are in F?d [ffg. Let A be a distributing tree for the spe
i�
ation E ~f of thetwin fun
tion ~f . We assume f is proven terminating by a termination pro
e-dure. Sin
e we know that the fun
tion is terminating given by an automatedpro
edure we 
an introdu
e the ordering � ~f . From the term distributing treeA we 
an asso
iate a new distributing tree A0 with the ordering � ~f , illustratedwith Figure 4, whi
h 
an be 
alled the 
anoni
al distributing tree of A.A0JJJJJJJ 






` T ~fDistributing Tree for E ~f withformal terminal state property
g Stru
tInd(x)-AJJJJJJJ 






` Termination statement of ~fA Distributing Tree of E ~fFig. 4. The 
anoni
al distributing tree A0 of ANote that A0 
an be built automati
ally from A. We show that A0 sat-is�es the formal terminal state property. The root of A0 is ` T ~f , with T ~f =8x(K(x) ! D( ~f(x))) the termination statement of ~f where K denotes theprodu
t type (D1 � : : :�Dn) and 
p its asso
iated 
onstru
tor.Let L = (� ` P ) be a leaf of A0 and e = (t; u) be the equation of E ~f withH(P ) = t. Let (t; v) be a re
ursive 
all of e. A

ording to the de�nition of18
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�ona spe
i�
ation and a re
ursive 
all, the terms t and v are respe
tively of theform f(
p(t1; : : : ; tn)) and f(
p(v1; : : : ; vn)). Be
ause of the 
onstru
tion of the
anoni
al distributing tree A0 that uses a parti
ular order of the appli
ationrules Stru
t and Ind (also illustrated with Figure 4), P is of the form:8x0i1D0i1(x0i1 ); : : : ;8x0imD0im(x0im );8z(Kz�
p(h1;:::;hn) ! K(f(z)))! K(f(
p(h1; : : : ; hn))).As the heart of P is H(P ) = t, we have hj = tj for any 1 � j � n.Now, let Q be the restri
tive hypothesis 8z(Kz�
p(t1 ;:::;tn) ! K(f(z))) of P .Let us show that Q 
an be applied to the term v a

ording to a substitution.By the de�nition of Q, we have H(Q) = f(z), so we 
an take a substitution� with �(z) = 
p(v1; : : : ; vn). We also take the value �(y) = y for any freevariable y in Q, that is any variable y in 
p(t1; : : : ; tn). Hen
e Q 
an beapplied to v a

ording to the above substitution �. We now have to show thetwo items of De�nition 2.14. As we are in the 
onditions of De�nition 5.5,we know that 
p(pp�(v1)qq; : : : ; pp�(vn)qq) � ~f �(
p(t1; : : : ; tn)) for any groundsorted substitution �. But �(z) = 
p(v1; : : : ; vn), thus we get the �rst item.The se
ond item be
omes straightforward: be
ause of the form of Q, the setof restri
tive hypotheses of Q is empty. Hen
e, we 
on
lude that the 
anoni
aldistributing tree A0 satis�es the formal terminal state property. 2The next theorem (and its proof) expresses Figure 3. It tells that if weknow that a fun
tion f is terminating, and if we have already a proof oftotality of ea
h de�ned fun
tion that o

urs in the spe
i�
ation of f (apartfrom f), and if we have a term distributing tree asso
iated to the spe
i�
ationof f , then we are able to get a �-term that 
omputes f in the sense of TTR.Theorem 5.2 Let Ef be a spe
i�
ation of a de�ned fun
tion f : D1; : : : ; Dn !D and D be a given distributing tree for the spe
i�
ation Ef su
h that thede�ned symbols that o

ur on the right-hand side of the equations of Ef are inF?d [ ffg. Assume the termination of f is given by an automated pro
edure.Then there is a proof of totality of f in TTR that 
an be found automati
ally.Proof. Let ~f be the twin fun
tion of f and E ~f its spe
i�
ation given in Def-inition 5.3. By De�nition 5.3, a distributing tree A asso
iated to E ~f 
an beautomati
ally obtained from D. Hen
e, with Theorem 5.1, we now have a(
anoni
al) distributing tree A0 asso
iated to E ~f whi
h has the ftsp with � ~f asthe ordering relation. As Fa
t 2.11 still holds with the new ordering relation,we get an I-proof of E ~f that 
an be 
alled 
anoni
al proof. Thus we obtain aformal proof of the termination statement T ~f in TTR. Hen
e, by Lemma 5.4we �nally obtain a proof of totality of f in TTR. 26 Con
lusionThe programming paradigms using logi
s built in ProPre uses the Curry-Howard isomorphism where a �-term is extra
ted from the proof. Howeverbe
ause of the logi
al framework, it is often diÆ
ult to make use of terminationte
hniques from di�erent areas. This paper showed that for the automatedsystem ProPre, the extra
tion part of �-terms 
an be released from the ter-19
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