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Kamareddine and Monin and Ayala-Rin�onFuntional Arithmeti AF2 [6,8℄ and Reursive Type Theory TTR [15℄. BothAF2 and TTR use equations as algorithmi spei�ations where the ompi-lation phase orresponds to formal termination proofs of the spei�ations offuntions from whih �-terms that ompute the funtions are extrated.Using the logial framework of TTR, an automated system alled ProPre,has been developed by P. Manoury and M. Simonot [11,10℄. The automatedtermination problem turns out to be a major issue in the development of thesystem. Alongside the system, where data types and spei�ations of funtionsare introdued by the user in an ML-style, an algorithm has been designedusing strategies to searh for formal termination proofs for eah spei�ation.When the system sueeds in developing a formal termination proof for aspei�ation, a �-term that omputes the funtion is given.As mentioned in [11℄, the automated termination proofs in this systemdi�er from the usual tehniques of rewriting systems beause they have tofollow several requirements. They must be proofs of totality in order to enablethe extration of �-terms. In ProPre, one has to make sure not only thatthe programs will give an output for any input, but also that for any well-typed input the result will also be well-typed. Finally, the proofs must also beexpressed in a formal logial framework, namely, the natural dedution style.The �-terms are obtained from the proof trees that are built in a naturaldedution style aording to the reursive type theory TTR.Therefore enhaning automated proofs strategy is a entral issue in pro-gramming languages like AF2 or TTR. While termination methods for fun-tional programing based on ordinal measures have been developed in [13,5℄relating to the formal proofs devised in [11,12℄, the purpose of this paper isto analyse in some sense the reverse of the question. That is, we analysethe possibility to inorporate new termination tehniques for the extrationof programs in the ProPre or TTR ontext.In order to simplify the analysis of the formal proofs obtained in the logialframework of ProPre, we show that the kernel of these formal proofs, alledformal terminal state property (ftsp), an be abstrated using a simple datastruture. This gives rise to a simple termination property, whih we allabstrat terminal state property (atsp). The interest of atsp is that on onehand the termination ondition is suÆient to show the termination usingthe ordinal measures of [5℄ independently of the partiular logial frameworkof ProPre, and on the other hand we also prove that we an automatiallyreonstrut a formal proof diretly from an atsp so that a lambda term anbe extrated. That is to say the �rst result of this paper is to establish aorrespondene between atsp with a lass of ordinal measures in a simpleontext for the termination and the formal proofs built in ProPre.This orrespondene implies that the termination proofs of reursive fun-tions obtained in [4℄ do not admit in general a formal proof in ProPre. Indeedthe lass of these funtions is larger than those proven with the lass of ordinalmeasures of [13,5℄. To overome the fat that there is in general no formal2



Kamareddine and Monin and Ayala-Rin�onproof in ProPre for these funtions, the seond result presented in this paperallows the synthesis of these funtions still making use of the whole frameworkof ProPre but in a di�erent way in TTR. Atually the result turns out to bestronger sine it an be applied to reursive funtions whose termination isproven by other automated methods suh as tehniques oming from rewritingtheory (see e.g. [1℄). The priniple onsists in simulating a semanti method.That is, from a well-founded ordering for whih eah reursive all is dereas-ing, one must be able to build a formal proof by onsidering general indutionon tuples of arguments of the funtion. Though the priniple is natural, thisapproah beomes diÆult when we want to extrat programs beause we haveto take into aount the logial framework and the strutures of the proofs.2 Logial frameworkProPre [9,11,12℄ relies on the proofs as programs paradigm that exploits theCurry-Howard isomorphism and deals with the reursive type theory TTR [15℄.In ProPre, the user needs to only de�ne data types and funtions. �-terms areautomatially extrated from the formal proofs of the termination statementsof funtions whih an be viewed as the ompilation part. ProPre deals withreursive funtions. The data types and funtions are de�ned in an ML likesyntax. For instane, if N denotes the type of natural numbers, then the listof natural numbers is de�ned by:Type Ln : Nil | Cons N Ln;and the append funtion is spei�ed by:Let append : Ln, Ln -> LnNil y => y | (Cons n x) y => (Cons n (append x y));One a data type is introdued by the user, a seond order formula is auto-matially generated. E.g., the following seond order formula is automatiallygenerated and assoiated to the list of natural numbers:Ln(x) := 8X(X(nil)! (8n(N(n)! 8y(X(y)! X(ons(n; y)))))! X(x)).This formula stands for the least set that ontains the nil element and islosed under the onstrutor ons. Eah data type will be abbreviated by aunary data symbol, as it is for instane with the symbol N that representsthe data type of natural numbers. Furthermore, one a funtion is spei�edin the system, a termination statement is automatially produed [10℄. As anexample, the termination statement of the append funtion is the formula:8x(Ln(x)! 8y(Ln(y)! Ln(append(x; y)))).The system then attempts to prove the termination statement of the funtionusing the set of equations that de�ne the funtion. In a suessful ase, a �-term that omputes the funtion is synthesized from the building of a formalproof in a natural dedution style [11℄. Informally, if T is a �-term obtainedfor the funtion append and t1, t2 are �-terms that respetively model termsu1 of type Ln and u2 of type Ln, then the �-term ((T t1) t2) redues to anormal form V that represents the value of append(u1; u2) of type Ln.See [6,7,14,15℄ for details of the theory that allows to derive �-terms from3



Kamareddine and Monin and Ayala-Rin�ontermination proofs of the spei�ation in natural dedution style.2.1 The typing rules of AF2 (whih are also part of TTR)We assume a set F of funtion symbols and a ountable set X of individualvariables. The logial terms are indutively de�ned as follows:� individual variables are logial terms;� if f is an n-ary funtion symbol in F and t1; : : : ; tn are logial terms, thenf(t1; : : : ; tn) is a logial term.We assume a ountable set of prediate variables and de�ne Formulas by:� if X is an n-ary prediate variable and t1; : : : ; tn are logial terms, thenX(t1; : : : ; tn) is a formula;� if A and B are formulas then A! B is a formula;� if A is a formula and � is a 1st or 2nd order variable, then 8�A is a formula.We use 8xA! B to denote 8x(A! B). A formula of the form F1 ! (F2 !: : : (Fn�1 ! Fn) : : :) will also be denoted by F1; : : : ; Fn ! F . For instane8xD1(x); 8yD2(y)! F stands for the formula 8x(D1(x)! 8y(D2(y)! F )).A typing judgment is an expression of the form: 00x1 : F1; : : : ; xn : Fn `E t :F", where x1; : : : ; xn are distint �-variables, t is a �-term, F; F1; : : : ; Fn areformulas and E is a set of equations on logial terms. The left-hand side of thejudgment is alled the ontext. Note that we an freely use the same notationfor both the �-terms and the logial terms whih our in the formulas, as theontext will larify whether a term is a �-term or a logial term. In partiular,the word \variable" may also refer to a \�-variable". The typing rules of AF2are given in Table 1 where E is a set of equations on logial terms, � is aontext of the form x1 : A1; : : : ; xn : An and may be empty; y (resp. Y ) is a�rst (resp. seond) order variable not ourring free in A1; : : : ; An; �; u; v are�rst order terms and T is a formula.�; x : A `E x : A (ax) � `E t : A[u=y℄ E ` u = v� `E t : A[v=y℄ (eq)�; x : A `E t : B� `E �x:t : A! B (!i) � `E u : A � `E t : A! B� `E (t u) : B (!e)� `E t : A� `E t : 8yA (81i ) � `E t : 8yA� `E t : A[�=y℄ (81e)� `E t : A� `E t : 8Y A (82i ) � `E t : 8Y A� `E t : A[T=Y ℄ (82e)Table 1Rules of the Seond Order Funtional Arithmeti (AF2)Types and formal data types play an important role in AF2 and TTRin relation to a notion of realizability [7℄ that ensures the extrated �-termsompute the de�ned funtions (f. [6,7℄). If for an n-ary funtion f we have:4



Kamareddine and Monin and Ayala-Rin�on`E t : 8x1 : : :8xn(D1(x1)! (: : :! (Dn(xn)! D(f(x1; : : : ; xn)) : : :)for some �-term t where D1; : : : ; Dn; D denote formal data types, then the�-term t omputes the funtion f aording to the set E .2.2 Some rules of TTRAs for AF2, we do not state the data types and the realizability notion ofTTR. In partiular, we do not give the seond order least �xed point operator� (see [14℄) whih allows de�ning the data types whih are represented hereby unary data symbols D;D0; : : : ; D1; : : : ; Dn. For the sake of larity we donot state all the rules (whih also inlude those of AF2 ).In TTR, a binary symbol �, alled hiding operator in [14℄, is added. Itsmeaning is a onjuntion whih only keeps the algorithmi ontents of the leftpart in order to prevent unneessary algorithmi ontent of the terminationproof to be arried out in the �-terms (see [15,11℄). It is used with a relation�, made preise below. The de�nition of formulas given in setion 2.1 is nowompleted as follows: If A is a formula, and u; v are terms then A � (u � v) isa formula. The rules related to the hiding operator are given in Table 2.� ` t : A � `E e� `E t : A � e (�1) � `E t : A � e� ` t : A (�2) � `E t : A � e� `E e (�3)Table 2Rules of the hiding operator �.If A is a formula where a distinguished variable x ours, we abbreviatethe formula A[u=x℄ � (u � v) with the notation Au�v.Among the rules of TTR, several rules are used to reprodue, from theprogramming point of view, the reasoning by indution. The rule below standsin TTR for an external indution rule where the relation � denotes a well-founded partial ordering on the terms of the algebra:� `E t : 8x[8z[Dz�x ! B[z=x℄℄! [D(x) ! B℄℄� `E (T t) : 8x[D(x)! B℄ (Ext)In the rule (Ext), the lambda term T is the Turing �xed-point operator, D isa data type and x is a variable not ourring in the formula B.From the (Ext) rule, it is possible to derive the gInd formula:gInd := 8x(Dr(x)! 8X(8y(Dr(y)! 8z(Drz�y ! X(z))! X(y))! X(x))):That is, there is a �-term that witnesses the proof of gInd. This is statedin Lemma 2.1 below, whih is given for the type of natural numbers in [14℄.Lemma 2.1. For eah reursive data type, there exists a �-term ind suhthat: ` ind :gInd.The proof of Lemma 2.1 in [14℄, given only with the type of natural num-bers, an be applied to any data type: ind = (T �x�y�z((z y) �m((x m) z))),where T is the Turing �xed-point operator, is valid for any data type. Lemma2.1 is useful for the de�nition of a maro-rule, alled the Ind-rule, in ProPre.5



Kamareddine and Monin and Ayala-Rin�on2.3 The ProPre systemWe assume that the set of funtions F is divided into two disjoint sets, theset F of onstrutor symbols and the set Fd of de�ned funtion symbols alsoalled de�ned funtions. Eah funtion f is supposed to have a type denotedby D1; : : : ; Dn ! D where D1; : : : ; Dn; D denote data symbols and n denotesthe arity of the funtion f . We may write f : D1; : : : ; Dn ! D to bothintrodue a funtion f and its type D1; : : : ; Dn ! D.De�nition 2.2. [Spei�ation; termination statement; reursive all℄� A spei�ation Ef of a de�ned funtion f : D1; : : : ; Dn ! D in Fd is a nonoverlapping set of left-linear equations f(e1; e01); : : : ; (ep; e0p)g suh that for all1 � i � p, ei is of the form f(t1; : : : ; tn) where tj is a onstrutor term (i.e.without ourrenes of de�ned funtion symbols) of type Dj, j = 1; : : : ; n;and e0i is a term of type D.� The termination statement of a funtion f : D1; : : : ; Dn ! D is the formula8x1(D1(x1)! : : :! 8xn(Dn(xn)! D(f(x1; : : : ; xn)))).� Let Ef a spei�ation of a funtion f . A reursive all of f is a pair (t; v)where t is the left-hand side of an equation (t; u) of Ef and v a subterm of uof the form f(v1; : : : ; vn).An equation (l; r) of a spei�ation may be written l = r (as an equationalaxiom in TTR). We may also drop the brakets to ease the readability.The formal proofs of ProPre, alled I-proofs, are built upon distributingtrees, based on two main rules derived from the TTR Strut rule and theInd rule in [11℄. The distributing trees built in ProPre are haraterized bya property alled formal terminal state property. This setion presents thesetwo main rules, the distributing trees and the formal terminal state property.Notation 2.3. If P is the formula F1; : : : ; Fk; 8xD0(x); Fk+1; : : : ; Fm ! D(t),then P�D(x), will denote the formula F1; : : : ; Fk; Fk+1; : : : ; Fm ! D(t).The above notation is orret as it will be used at the same time when thequanti�ed variable x will be substituted by a term in the formula P�D(x) withrespet to the ontext (f. next two lemmas with Notation 2.4) or when thevariable x will be introdued in the ontext.Notation 2.4. Let C be a onstrutor symbol of a typeD1; : : : ; Dk ! D. Letx1; : : : ; xk; z be distint variables. Let F (x) be a formula in whih the variablex is free and the variables z; x1; : : : ; xk do not our and let t = C(x1; : : : ; xk).Then �C(F (x)) and 	C(F (x)) will be respetively the following formulas:� �C(F (x)) is: 8x1D1(x1); : : : ; 8xkDk(xk)! F [t=x℄;� 	C(F (x)) is: 8x1D1(x1); : : : ; 8xkDk(xk); 8z(Dz�t ! F [z=x℄)! F [t=x℄.The notation may suggest some kind of formulas that are atually usefulin the onstrution of I-proofs whih are de�ned as follows:De�nition 2.5. [I-formulas and restritive hypothesis℄� A formula F is alled an I-formula i� F is of the form H1; : : : ; Hm !6



Kamareddine and Monin and Ayala-Rin�onD(f(t1; : : :; tn)) for some:� data type D, de�ned funtion f ,� formulas Hi for i = 1; : : : ; m suh that Hi is of the form 8xD0(x) or of theform 8z(D0z�u ! F 0) for some data type D0, I-formula F 0 and term u.� An I-restritive hypothesis of an I-formula F of the form H1; : : : ; Hm !D(f(t1; : : :; tn)) is a formula Hi of the form 8z(D0z�u ! F 0). We say that H 0is a restritive hypothesis to an I-restritive hypothesis H = 8z(D0z�u ! F 0)if H 0 is an I-restritive hypothesis of the I-formula F 0.As by de�nition, an I-formula is reursive, it may involve sub-I-formulas.An I-restritive hypothesis is not an I-formula. We use the term restritivehypothesis to also denote I-restritive hypothesis. The termination statementof a de�ned funtion is an I-formula whih has no restritive hypothesis.The lemmas below state that one an use two additional rules, alled Strutrule and Ind rule, in TTR as they an be derived from the other rules ofTTR. These rules orrespond to maro-rules, the former one an be seen as areasoning by ases, while the last one stands for an indution rule.Lemma-De�nition 2.6. [The Ind rule℄Let D be a data type and onsider all the onstrutor funtions Ci of typeDi1; : : : ; Dik ! D, 0 � ik, i = 1; : : : ; q. Let P be a formula of the formF1; : : : ; Fk; 8xD(x); Fk+1; : : : ; Fm ! D0(t), and � a ontext. For 	Ci(P�D(x))given as in Notation 2.4, the indution Ind rule on type D is:� ` 	C1(P�D(x)) : : : � ` 	Cq(P�D(x))� ` P Ind(x)Along with the Ind rule, the Strut rule de�ned below, whih is also amaro-rule derived from TTR, an be onsidered as a reasoning by ases.Lemma-De�nition 2.7. [The Strut rule℄Let D be a data type and onsider all the onstrutor funtions Ci of typeDi1; : : : ; Dik ! D, 0 � ik, i = 1; : : : ; q. Let P be a formula of the formF1; : : : ; Fk; 8xD(x); Fk+1; : : : ; Fm ! D0(t), and � a ontext. For �Ci(P�D(x))given as in Notation 2.4, the Strut rule on type D is:� ` �C1(P�D(x)) : : : � ` �Cq (P�D(x))� ` P Strut(x)Due to these lemmas, two maro-rules an be added in TTR: the Strut-rule (Lemma 2.7) and the Ind-rule (Lemma 2.6). From these rules, distributingtrees an be built in ProPre (see De�nition 2.10).Remark 2.8. I-formulas are preserved by the Strut-rule and the Ind-rule.That is, if P is an I-formula, then so are: �C(P�D(x)) and 	C(P�D(x)).De�nition 2.9. [Heart of formula℄ The heart of a formula of the formF = H1; : : : ; Hm ! D(t), where D is a reursive data type, will be the termt, denoted by H(F ). The distributing trees are de�ned as follows:De�nition 2.10. [Distributing tree℄ Let Ef be a spei�ation of a funtionf : D1; : : : ; Dn ! D: A is a distributing tree for Ef i� A is a proof tree built7



Kamareddine and Monin and Ayala-Rin�ononly with the Strut rule and Ind rule where:(i) the root of A is the termination statement of f with the empty ontext,i.e.: ` 8x1D1(x1); :::; 8xnDn(xn)! D(f(x1; :::; xn)).(ii) ifL = f�1 ` F1; :::;�q ` Fqg is the set ofA's leaves, then there exists a oneto one appliation B: L ,! Ef suh that B(L) = (t; u) with L = (� ` F )in L and the heart of F is H(F ) = t.Note that it an be indutively heked, from the root, using remark 2.8,that any formula in a distributing tree is an I-formula.The I-proofs found by ProPre are formal termination proofs of terminationstatements of de�ned funtions. They are divided into three phases:(i) the development of a distributing tree for the spei�ation of a de�nedfuntion, haraterized by the so-alled formal terminal state property;(ii) eah leaf of the distributing tree is extended into a new leaf by an appli-ation of an (eq) rule;(iii) eah leaf, oming from the seond step, is extended with a new sub-tree,with the use of rules de�ned in [11℄, whose leaves end with axiom rules.Due to the following fat proven in [11℄, it is not neessary to onsider inthis paper the middle and upper parts of proof trees built in ProPre:Fat 2.11. A distributing tree T an be (automatially) extended into aomplete proof tree i� T enjoys the so-alled formal terminal state property.Hene, in order to omplete the proof tree and state the termination of thefuntion, it suÆes to look at distributing trees that have the formal terminalstate property. Therefore it remains for us to state the mentioned property.De�nition 2.12. An I-formula or a restritive hypothesis P an be appliedto a term t if the heart H(P ) of P mathes t aording to a substitution �where for eah variable x that ours free in P we have �(x) = x.The relation � of De�nition 2.5 deals with the measure j : j# on the terms,ranging over natural numbers, whih ounts the number of subterms of a giventerm t (inluding t), and is interpreted as follows:De�nition 2.13. Let Var(t) be the set of variables ourring in t. Let u; vbe terms. We say u � v i�: juj# < jvj#, Var(u) � Var(v), and u is linear.This learly de�nes a well-founded ordering � on terms. We an now state themain property that a distributing tree must enjoy in the I-proofs of ProPre.De�nition 2.14. [Formal Terminal State Property℄ Let Ef be a spe-i�ation of a funtion f and A be a distributing tree for Ef . We say that Asatis�es the formal terminal state property (ftsp) i� for all leaves L = (� ` F )of A with the equation e 2 Ef suh that B(L) = e, where B is the appliationgiven in De�nition 2.10, and for all reursive alls (t; v) of e, there exists a re-stritive hypothesis P = 8zDz�s; H1; : : : ; Hk ! D(w) of F and a substitution8



Kamareddine and Monin and Ayala-Rin�on� suh that P an be applied to v aording to � with:(i) �(z) � s and(ii) for all restritive hypothesis H of P of the form 8yD0y�s0 ! K there is arestritive hypothesis H0 of F of the form 8yD0y�s0 ! K with �(s0) � s0.So, ProPre establishes the termination of a funtion f by showing that thedistributing tree of the spei�ation of f (a partial tree whose root is thetermination statement of f) has the formal terminal state property (henean be extended to a omplete proof tree of the termination statement of f).3 The abstrat terminal state propertyProof strutures an often be heavy and diÆult to work with. However,in the onstrutive framework of the Curry-Howard isomorphism, ompiling areursive algorithm orresponds to establishing a formal proof of its totality. InProPre, termination proofs play an important role as they make it possible toobtain �-terms that ompute programs. We set out to simplify the terminationtehniques developed in ProPre by showing that its automated formal proofsan be abstrated giving rise to a simpler property whih respets termination.Instead of dealing with formulas, we will use the simpler onept of funtions.Also, instead of data symbols, we will use sorts and assume that there is aorrespondene between the data types of ProPre and our sorts. Instead of theomplex onept of distributing trees of ProPre (De�nition 2.10), we will usethe simpler term distributing trees of [13℄. By living in the easier framework,we will introdue the new abstrat terminal state property whih will play forterm distributing trees a similar role to that played by the formal terminalstate property for distributing trees. In this setion we present a data struturefor whih we will be able to introdue a new termination property.We take a ountable set X of individual variables, assume that eah variableof X has a unique sort and that for eah sort s there is a ountable numberof variables in X of sort s. For sort s, F � F , and X � X , T (F;X)s denotesthe set of terms of sort s built from F and X. If X is empty we write T (F )s.We reall the de�nition of term distributing trees of [13℄. A term dis-tributing tree is muh simpler than the distributing tree of ProPre given inDe�nition 2.10. The novelty of this setion will be a term distributing treeequipped with abstrat terminal state property (De�nition 3.5 below).De�nition 3.1. [Term distributing tree℄ Let Ef be a spei�ation of afuntion f : s1; : : : ; sn ! s. A tree T is a term distributing tree for Ef i�:(i) its root is of the form f(x1; : : : ; xn) where xi is a variable of sort si, i � n;(ii) eah leaf is a left-hand side of an equation of Ef (up to var. renaming);(iii) eah node f(t1; : : : ; tn) of T admits one variable x0 of a sort s0 suh thatthe set of hildren of the node is ff(t1; : : : tn)[C(x01; : : : x0r)=x0℄; wherex01; : : : ; x0r are not in t1; : : : tn and C : s01; : : : ; s0r ! s0 2 Fg.A term distributing tree an bee seen as a skeleton form of a distributing tree9



Kamareddine and Monin and Ayala-Rin�onT by taking the heart of the formulas in the nodes of T , whih gives rise toan operator H illustrated by Figure 1.� ` PJJJJJJJ 
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H(F )Term Distributing TreeFig. 1. The operator HProposition 3.2. If there is a distributing tree for a spei�ation Ef of afuntion f then there is also a term distributing tree for the spei�ation Ef .A term distributing tree is easier to handle than a distributing tree. But, inboth parts of Figure 1, term distributing trees and distributing trees may haveno termination property. However, by Fat 2.11, a funtion terminates if wehave a distributing tree that satis�es a right terminal state property. Whatwe want is to de�ne a notion on the term distributing trees that also ensuresthe termination of funtions. We �rst give some notations and remarks.Notation 3.3. Let T be a term distributing tree with root �1.� A branh b from �1 to a leaf �k is denoted by (�1; y1); : : : ; (�k�1; yk�1); �kwhere for eah i � k � 1, yi orresponds to the variable x0 for node �i in thethird lause of De�nition 3.1. We use Lb to denote the leaf of the branh b.� If a node � mathes a term u of a reursive all (t; u) then the substitutionwill be denoted by ��;u (in partiular in De�nition 3.5).� For a term t of a left-hand side of an equation, b(t) will denote the branhin the term distributing tree that leads to t (seond lause of De�nition 3.1).Remark 3.4. � Let f : s1; : : : ; sn ! s be a funtion and Ef be a spei�ationof f . Let T be a term distributing tree of Ef . Then for eah (w1; : : : ; wn) ofT (F)s1 � : : : � T (F)sn there is one and only one leaf � of T and a groundonstrutor substitution ' suh that '(�) = f(w1; : : : ; wn).� Let T be a term distributing tree for a spei�ation and let b be a branhfrom the root �1 of T to a leaf �k with b = (�1; x1); : : : ; (�k�1; xk�1); �k. Thenfor eah node �i; �j with 1 � i � j � k, there exists a onstrutor substitution,denoted ��j ;�i, suh that ��j ;�i(�i) = �j.Now, we give the abstrat terminal state property for term distributing trees:De�nition 3.5. [Abstrat terminal state property℄ Let T be a termdistributing tree for a spei�ation. We say that T has the abstrat terminalstate property (atsp) if there is an appliation � : T ! f0; 1g on the nodes ofT suh that if L is a leaf, �(L) = 0, and for every reursive all (t; u), thereis a node (�; x) in the branh b(t) with �(�) = 1 suh that � mathes u with��;u(x) � �Lb(t);�(x) (f. Notations 3.3 and Remark 3.4) and for all anestors(�0; x0) of � in b(t) with �(�0) = 1, we have ��0;u(x0) � �Lb(t);�0(x0).10



Kamareddine and Monin and Ayala-Rin�onNote that similarly to term distributing trees, no formula is mentioned in thede�nition of atsp and hene atsp is easier to handle than ftsp (De�nition 2.14)beause atsp only uses relations of substitutions where all proposition informa-tions have been abstrated. However, it is not obvious that a term distributingtree that satis�es atsp implies the termination of the given funtion. A way toprove this fat would be to infer some measures from suh distributing treesand to show that these measures have the dereasing property through thereursive alls of the given funtion so that the funtion terminates.We will not follow this way and will instead prove in the next setion thestronger result that from a term distributing tree that has the atsp we anreonstrut an I-proof, whih implies that the given funtion terminates andalso enables a �-term that omputes the funtion to be extrated.4 Building formal proofs from skeleton formsWe show that � the atsp is an abstrat form of the ftsp (Theorem 4.1) andthat � the atsp is a suÆient ondition to onstrut a distributing tree withthe ftsp from a term distributing tree {skeleton form{ (Theorem 4.2). Thisan be illustrated with the piture below.Distributing trees inFormal terminal proofswith (skeleton)- Term distributing treeswithFormal terminal state propertyTheorem 4.1-�Theorem 4.2Abstrat terminal state propertyWe start by extending the appliation H (Figure 1) into a new operator H0from a distributing tree A to the term distributing tree H(A) whih is nowequipped with an appliation � : H(A)! f0; 1g de�ned on the node of H(A),so that H0(A) will be (H(A); �). A term distributing tree equipped with anappliation � will also be alled a �-term distributing tree.To de�ne the operator H0, the appliation � is given as follows: Let A be adistributing tree and (� ` P ) be a node of A. If (� ` P ) is a leaf, we take�(H(P )) = 0. If not, we onsider �(H(P )) = 1 if the rule applied on (� ` P )in A is the Ind rule and �(H(P )) = 0 otherwise.Note that H is not injetive: there is at least two distint distributing treesA and A0 suh that H(A) = H(A0). However, H0 is injetive. Atually ifwe onsider term distributing trees equipped with a �-appliation, then H0beomes bijetive and the inverse operator of H0 an be stated by:Lemma-De�nition 4.1. [D, the inverse of H0℄ Let Ef be a spei�ation ofa funtion f : s1; : : : ; sn ! s, and let (T; �) be a term distributing tree for Ef(equipped with a � appliation). There is one and only one distributing treeA for Ef suh that H0(A) = (T; �). This one an be automatially obtainedfrom (T; �) and we de�ne the appliation D with D(T; �) = A.Proof. Let F = 8x1D1(x1); : : : ; 8xnDn(xn) ! D(f(x1; : : : ; xn)) be the ter-mination statement of f . We an indutively build a distributing tree A of the11



Kamareddine and Monin and Ayala-Rin�onsame size as T by taking the root of A to be ` F and assuming the existeneof a node (� ` P ) of A, for P is an I-formula, suh that:i) P is of the form: F1; : : : ; Fr; 8xD0(x); Fr+1; : : : ; Fp ! D(f(t1; : : : ; tn)) whereD and D0 are data symbols, and variables in the heart of P are bound,ii) T admits a level, the same as those (� ` P ) in A, suh that the node �at this level is distint from a leaf, with � = f(t1; : : : ; tn) whose variableaording to De�nition 3.1.iii is the variable x of sort s0 assoiated to D0.From above, we build the hildren nodes of (� ` P ) in A as follows:� If �(�) = 0, the node (� ` P ) is extended by the Strut rule on x in P .� If �(�) = 1, the node (� ` P ) is extended using the Ind rule on x in P .In both ases, as P is an I-formula, if P 0j denotes either 	Cj (P�D(x)) or�Cj (P�D(x)) of De�nitions 2.6 and 2.7 as a hildren node of P , then P 0j isan I-formula. As the variables that our in P are bound, by onstrution ofits hildren, the variables ourring in the heart of P 0j are bound too. Now,due to the de�nitions of the term distributing trees and the Ind and Strutrules, it is easy to see that there is a hild node �j of � suh that C(P 0j) = �0j.Therefore, the above proess allows the property ii) to be held by eah hildof (� ` P ) exept if the orresponding node in T is a leaf. By de�nition of A,C 0(A) = (T; �) and its uniqueness results from injetivity of C 0. This gives theassoiated tree A = D(T ) of T with C 0(D(T; �)) = (T; �). Hene we dedue,beause C 0 is injetive, that D(C 0(A)) = A for eah distributing tree. 2This means D(H0(A)) = A and H0(D(T; �)) = (T; �) for any distributing treeA and term distributing tree (T; �). D an be illustrated with Figure 2.D(�0)JJJJJJJ 
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�Term Distributing TreeFig. 2. The reverse operator of H0There is still no warranty on the termination of funtions using �-termdistributing trees. But the atsp of �-term distributing trees stands for the ftspfrom whih all proposition informations are abstrated in a simpler ontext:Theorem 4.1 Let Ef be a spei�ation of a funtion f and A be a distribut-ing tree for Ef . If A has the formal terminal state property then the termdistributing tree H0(A) has the abstrat terminal state property.Proof. Similar to the proof of Theorem 4.2 below. 2De�nition 4.2. [Nr(Q;P )℄ Let P be an I-formula and Q a restritive hypoth-esis of P . Nr(Q;P ) is the number of restritive hypotheses of P that appearbetween the outermost restritive hypothesis of P . E.g., if Q is the outer-12



Kamareddine and Monin and Ayala-Rin�onmost restritive hypothesis of P , then Nr(Q;P ) = 1. Ni(P ) is the number ofrestritive hypothesis of P .De�nition 4.3. [Trj;kb (Q)℄ Let A be a distributing tree for a spei�ationEf . Let b be a branh and P a node in b at a level i from the root. Wede�ne Tri+1;ib (Q), where Q is a restritive hypothesis of P , as the restritivehypothesis Q0 in the hild P 0 of P in b as follows depending on whether therule applied on P is:� Strut: Q0 is the restritive hypothesis where Nr(Q0; P 0) = Nr(Q;P ).� Ind: Q0 is suh that Nr(Q0; P 0) = Nr(Q;P ) + 1.We also de�ne Trj;kb (Q) with j > k as the restritive hypothesis of the nodeP 00 at level j in b de�ned by: Trj;kb (Q) = Trj;j�1b Æ : : : ÆTrk+2;k+1b ÆTrk+1;kb (Q).Finally Tri;ib will denote the identity on P .The next theorem is the opposite of Theorem 4.1 and shows that we anautomatially rebuild a distributing tree that has the ftsp from a skeleton formthat has the atsp. As a onsequene, aording to Setion 2.3, we an alsobuild an I-proof and thus extrat a �-term that omputes the given funtion.Theorem 4.2 Let Ef be a spei�ation of a funtion f and (T; �) be a �-termdistributing tree for Ef . If (T; �) has the abstrat terminal state property thenthe distributing tree D(T; �) has the formal terminal state property.Proof. Let (T; �) be a term distributing tree for Ef whih has the Atsp. Wewant to show that D(T; �) has the ftsp. Take a reursive all (t; v) of an equa-tion of Ef . We have to �nd a restritive hypothesis R = 8zDz�s; F1; : : : ; Fk !D(w) in L of D(T; �) with B(L) = (t; v), where B is the appliation of Def-inition 2.10, suh that lauses 1. and 2. of De�nition 2.14 hold. Let B bethe orresponding branh in D(T; �) of b(t) in T , and let (�; x) be the nodein b(t) given in De�nition 3.5. Consider (� ` P ) in D(T; �) that is at thesame level of (�; x) in T . As �(�) = 1, by onstrution of D(T; �), a newrestritive hypothesis of the form Q = 8z(Dz�s ! P�D(x)[z=x℄) is reated inthe hild P 0 of P in B. Consider R = Trj;iB (Q) the restritive hypothesis in Bwhere i and j are respetively the level of P 0 and the leaf of B. We an writeR = 8z(Dz�s0 ! P�D(x)[z=x℄) for some term s0 beause:1) The free variables in Q are those of the term s, and the applied Ind/Strutrule is done on a variable in P 0 whih is out of the sope of Q.2) As 1) �rst holds for Q0=Tri+1;iB (Q), next holds for Tri+2;iB (Q)=Tri+2;i+1B (Q0),. . . , we have that: R = Trj;iB (Q) = 8z(Dz�s0 ! P�D(x)[z=x℄) where thevariables of C(R) are losed in R.Clause 1We know that � mathes v with a substitution ��;v, but C(P ) = �, soR an be applied to v aording to a substitution � de�ned with �(z) = ��;v(x)and �(y) = ��;v(y) for y 6= z. We have to show that �(z) � s0. This anbe easily proven, by indution on k � i, that if Trk;iB (Q) = 8z(Dz�sk !P�D(x)[z=x℄) for some term sk, then sk = �k;i�1(x) where the node � mathesthe node at level k in T with the substitution �k;i�1. By de�nition of j,13



Kamareddine and Monin and Ayala-Rin�on�j;i�1 = �LB ;�, so ��;v(x) � �j;i�1(x) by De�nition 3.5, and we an now deduethat �(z) � s0 sine s0 = sj. Therefore lause 1. of De�nition 2.14 holds.Clause 2 Consider a restritive hypothesis H = 8zD0z�r ! K in R; we haveto �nd a restritive hypothesis H0 in P of the form 8zD0z�r0 ! K suh that�(r) � r0. As H is a restritive hypothesis of Trj;iB (Q), H is also a restritivehypothesis of Q. Hene, one assoiate to H a restritive hypothesis H 0 in P 0 =8xi1Di1(xi1); : : : ;8xikDik(xik);8z(Dz�si ! P�D(x)[z=x℄)| {z }Q ! P�D(x)[si=x℄, whereHand H 0 respetively appear in P�D(x)[z=x℄ and P�D(x)[si=x℄. As H is of theform 8zD0z�r ! K then H 0 is of the form 8zD0z�r0 ! K sine only thevariables in the term r are free in H. Now onsider the node (� ` N) inB at a level l suh that 1) a new restritive hypothesis M is reated in thehild N 0 of N in B, namely, Ni(N 0) = Ni(N) + 1 and Nr(M;N 0) = 1, and 2)Tri;lB (M) = H 0. Let (�0; x0) be the orresponding node in T of (� ` N) in A. Itis lear that �0 is an anestor of � in T sine l < j in D(T; �). Furthermore asNi(N 0) = Ni(N)+1, we have �(�0) = 1. By De�nition 3.5 we have the relation��0;v(x0) � �Lb(t);�0(x0). Let us now hoose H0 = Trj;l+1B (M) as the restritivehypothesis in P 0. Using the same property of lause 1 as we did with Trj;iB (Q),we know that r0 is �j;l(x0) = �Lb(t);�0(x0). Let us show that �(r) = ��0;v(x0). Wenote that i� 1 � l + 1 sine i� 1 and l are respetively the level of P and Nthat are distint. We have Tri�1;l+1B (M) = 8z(D0z��i�1;l(x0) ! K) in P , where�i�1;l is by de�nition the substitution ��;�0 . So, aording to the restritivehypothesis Q in P 0, the term r in H is ��;�0(x0)[z=x℄. Now, by de�nition of� in lause 1 of De�nition 2.14, we have �(r) = ��;v fz!xg(��;�0(x0)[z=x℄) =��;v(��;�0(x0)). But the relation of substitutions gives us ��0;v = ��;v Æ ��;�0.So we �nally obtain �(r) = ��0;v(x0), and we an dedue from the above andDe�nition 3.5 that �(r) � r0. Hene, lause 2. of De�nition 2.14 holds. 2In [5℄, measures were related to given funtions whose dereasing propertythrough the reursive alls were dependent on the ftsp enjoyed by distribut-ing trees. We laim that it is possible to infer measures diretly from termdistributing trees whose dereasing property through the reursive alls of theonsidered funtions now rely only on atsp. This is a straightforward onse-quene of the results of this setion with the previous one and [5℄.Following distributing tree with atsp makes the analysis of the I-proofseasier. In partiular there are no measures from [5℄ assoiated to the quotfuntion (f. Setion 5) that have the dereasing property (see [4℄). By theresults of this setion, there are no I-proofs for suh funtion. The next setionshows that the framework of ProPre an be applied to new funtions (e.g. quotfuntion) provided an automated termination proedure (e.g. [4,1,2℄) is used.5 Synthesizing programs from termination tehniquesAs noted in Setion 2, if we an prove, in TTR, a formula that states thetotality of a funtion then it is possible, in term of programs, to obtain a �-term as the ode of the funtion. As earlier mentioned, this formula is alled14



Kamareddine and Monin and Ayala-Rin�ontermination statement in ProPre (De�nition 2.2). More preisely, assumethat Ef1 ; : : : ; Efm are spei�ations of de�ned funtions already proven in theProPre system. Let f be a new de�ned funtion with a spei�ation Ef . Weput E = tj=nj=1Efj , and E1f = Ef t E . In order to obtain a lambda term F thatomputes the new funtion f , ProPre needs to establish `E1f F : Tf in TTR.Example 5.1. Let quot : nat; nat; nat ! nat be a de�ned funtion withspei�ation Equot given by the equations:quot(x; 0; 0) = 0 quot(s(x); s(y); z) = quot(x; y; z)quot(0; s(y); z) = 0 quot(x; 0; s(z)) = s(quot(x; s(z); s(z))The value quot(x; y; z) orresponds to 1+bx�yz  when z 6= 0 and y � x, that isto say quot(x; y; y) omputes bxy . Its spei�ation does not admit an I-proofand therefore no �-term an be assoiated by the ProPre system.To avoid this drawbak, we show, onsidering the framework of ProPreand TTR, that it is possible to add other automated termination proeduresthan that of ProPre regarding the automation of the extration of �-terms.When ProPre builds a formal proof of a spei�ation, it needs to hek atdi�erent steps that some subterm in one argument of the equations dereasesin the reursive alls aording to the relation of De�nition 2.13. These infor-mations are given by a termination algorithm in ProPre. I.e., to onvey thetermination informations in the formal proof in ProPre, it is used with therelation � inluded in formulas of the form A[u=x℄ � (u � v) due to Table 2.Now assume, for a given funtion that terminates, the equations admitonly one argument. This provides a natural (partial) relation on the data typeon whih the funtion is spei�ed so that eah reursive all dereases. Alsoassume that an automated proedure ensures the termination of this funtion.Then this one an be used as the termination algorithm of ProPre, but wenow onsider the new relation instead of the earlier relation � of ProPre. Dueto the hiding rules of the operator � we an develop a partiular formal proof,as an I-Proof, for the onsidered funtion but where in partiular the sequent� `E (u� v) in the rule (�1) with e= (u� v) an be obtained with the newtermination proedure that provides the new relation �.If the funtion admits many arguments, we would like to luster the argu-ments of the equations of the spei�ation into one argument. To do so, weshow that the use of unurry�ation forms of funtions is harmless in TTR(and in AF2) in the sense of Lemma 5.4 by onsidering the produt types. Thisenables us to follow the priniple of Figure 3 where ~f stands for an unurry-�ation form of f . The left part of Figure 3 is obtained with Theorem 5.1.A new relation �Formal Proof ofTotality of ~f Termination Proof of f givenwith an automated proedureProdut Types� -Lemma 5.4 Formal Proof of Totality of fFig. 3. A formal proof of totality of the funtion f .15



Kamareddine and Monin and Ayala-Rin�on5.1 Produt typesWe introdue partiular spei�ations that orrespond in some sense to un-urry�ation forms of previous spei�ations. To do so, we will onsider aprodut type assoiated to a funtion. As we have not stated the data typesof TTR with the operator � (f. beginning of Setion 2.2), for the sake ofpresentation, we present below the produt types in the ontext of AF2. Thispresentation in De�nition 5.2 is harmless beause Lemma 5.4 below and itsproof hold both in AF2 and TTR.De�nition 5.2. [Produt type of a funtion℄ Let f : D1; : : : ; Dn ! Dbe a de�ned funtion, p 2 F be a new onstrutor of arity n and takeTf = 8x1 : : :8xn(D1(x1); : : : ; Dn(xn) ! D(f(x1; : : : ; xn))) to be the termina-tion statement of f . The data type K(x) de�ned by the formula: 8X 8y1 : : :8yn D1(y1); : : : ; Dn(yn) ! X(p(y1; : : : ; yn)) ! X(x) is alled the produttype of D1; : : : ; Dn, and is denoted by (D1 � : : :�Dn)(x).From the spei�ation of a de�ned funtion f , we an get another de�nedfuntion ~f whose spei�ation E ~f takes into aount the produt type of f .De�nition 5.3. Let f : D1; : : : ; Dn ! D be a de�ned funtion with spei�-ation Ef . Let ~f , the twin funtion of f , be a new de�ned symbol in Fd. Tode�ne the spei�ation E ~f of ~f , we de�ne eah equation ~f(p(t1; : : : ; tn)) = vof E ~f from eah equation f(t1; : : : ; tn) = v of Ef where p is the onstrutorsymbol of the produt type of f . The term v is reursively de�ned by:� (i) if v is a variable or a onstant then v = v,� (ii) if v = g(u1; : : : ; um) with g a onstrutor or a symbol funtion distintfrom f , then v = g(u1; : : : ; um),� (iii) if v = f(u1; : : : ; un) then v = ~f(p(u1; : : : ; un)).This de�nes the spei�ation E ~f of the de�ned funtion ~f assoiated to f . Thetermination statement of ~f is: T ~f = 8x((D1 � : : :�Dn)(x)! D( ~f(x))).Let us onsider the spei�ation Ef of a funtion and the set of equationsE 0f = Ef[ff(x1; : : : ; xn) = ~f(p(x1; : : : ; xn))g. The set E 0f is not a spei�ationaording to De�nition 2.2 in ProPre, but we an still reason in TTR. Assumethe termination statement of ~f proven in TTR with E ~f and the set E ofthe spei�ations already proven. Now we an add the equations of E ~f inthe set E before proving the termination statement Tf . Due to the form ofthe spei�ations E ~f and Ef , the equation f(x1; : : : ; xn) = ~f(p(x1; : : : ; xn))does not add any ontradition in the set of the equational axioms Ef t E .Therefore we an now use the new set E 0ftE to prove the termination statementTf in TTR. So, the equation f(x1; : : : ; xn) = ~f(p(x1; : : : ; xn)) provides theonnetion between Ef and E ~f from the logial point of view and the proof ofT ~f provides the omputational aspet of the funtion f . More preisely:Lemma 5.4. Let f : D1; : : : ; Dn ! D be a de�ned funtion with a spe-i�ation Ef , and E ~f the spei�ation of the twin funtion ~f . Let E1; : : : ; En16



Kamareddine and Monin and Ayala-Rin�onbe the spei�ations of the de�ned funtions already proven (in AF2 orTTR), E = ti=ni=1Ei. Let us note E1~f = E ~f t E and E2~f = E 0~f t E1~f withE 0f = Ef [ ff(x1; : : : ; xn) = ~f(p(x1; : : : ; xn))g. If there is a �-term eF suhthat `E1~f eF : T ~f , then there is a �-term F suh that `E2~f F : Tf .Proof. This lemma holds both in AF2 and TTR, (using the rules in Table 1).We assume familiarity with AF2 and only give steps without naming the rules.Let K = (D1 � : : : � Dn) be the produt type of f with p the assoiatedonstrutor symbol. By de�nition of the data type K, we get in TTR:a1 : D1(x1); : : : ; an : Dn(xn)`�k(: : : ((k a1) a2) : : : an) :K(p(x1; : : : ; xn)). Hene:a1 : D1(x1); : : : ; an : Dn(xn)`E1~f ( eF �k(: : : ((k a1) a2) : : : an)) :D( ~f(p(x1; : : : ; xn))).Beause E1~f � E2~f we have:a1 : D1(x1); : : : ; an : Dn(xn)`E2~f ( eF �k(: : : ((k a1) a2) : : : an)) :D( ~f (p(x1; : : : ; xn))).Now, we have the equation f(t1; : : : ; tm) = ~f(p(t1; : : : ; tm)) in E2~f . Hene:a1 : D1(x1); : : : ; an : Dn(xn) `E2~f ( eF �k(: : : ((k a1) a2) : : : an)) : D(f(x1; : : : ; xn)).Finally: `E2~f F : Tf , with F = �a1 : : : �an( eF �k(: : : ((k a1) a2) : : : an)). 2We show next that the spei�ation of the twin of a funtion admits a parti-ular I-proof assuming its termination is proven with an automated proedure.5.2 Canonial I-proofsLet f : D1; : : : ; Dn ! D be a de�ned funtion, with a spei�ation Ef , whihis terminating with an automated proedure. As mentioned earlier, insteadof using the ordering of the terms given in De�nition 2.13, we de�ne a newordering for the symbol relation � by onsidering the ordering given with thereursive alls of the equations of the spei�ation E ~f . As in the ProPre sys-tem, we will assume that we have a subset F?d of Fd of de�ned funtions whosespei�ation admits a proof of totality in TTR (the funtions already intro-dued by the user) so that the de�ned funtions ourring in the spei�ationof f for whih we want to prove the termination statement, are in F?d [ ffg.Now, let t be a term in T (F ;X )s0, for some sort s0 (see Setion 3), suh thatall the de�ned funtions ourring in t admit a spei�ation and are terminat-ing. Then, for eah ground sorted substitution �, we an de�ne the groundterm pp�(t)qq as the term in T (F)s that orresponds to the normal form of�(t). The de�nition of pp�(t)qq makes sense as the funtions ourring in thespei�ation f are terminating whih gives the existene of the normal formwhile the de�nition of the spei�ations (De�nition 2.2) gives the uniquenessof the normal form. Therefore, we an state formally the relation � ~f below.De�nition 5.5. Let E ~f be a spei�ation of the twin funtion of a de�nedand terminating funtion f suh that the funtions ourring in the spei�-ation E ~f admit a spei�ation and are terminating. Let K be the produttype (D1 � : : : � Dn) assoiated to f and p the onstrutor assoiated toK. We de�ne a relation � ~f on K suh that for eah reursive all of E ~f ,(f(p(t1; :::; tn)); f(p(v1; : : : ; vn))), we have p(pp�(v1)qq; : : : ; pp�(vn)qq) � ~f17



Kamareddine and Monin and Ayala-Rin�on�(p(t1; : : : ; tn)) for any ground sorted substitution �.Hene, we get the straightforward but useful following fat.Fat 5.6. The above relation � ~f is a well-founded ordering on K.Theorem 5.1 says that if a funtion f is terminating and if we have adistributing tree for the spei�ation E ~f of its twin funtion, having or lakingthe formal terminal state property, it is then possible to get a new one havingthe ftsp. The idea onsists of hanging, in the initial distributing tree, theStrut and Ind rules in suh way that we now have a new tree with ftsp whihan be alled a anonial distributing tree. Hene, the formal proofs we aregoing to build will depend on the abilities of � building a distributing treewhatever its properties, and � showing the termination of the funtion.Theorem 5.1 Let Ef be a spei�ation of a de�ned funtion f : D1; : : : ; Dn !D suh that the de�ned symbols that our on the right-hand side of the equa-tions of Ef are in F?d [ ffg. Let A be a distributing tree for the spei�ationE ~f of the twin funtion ~f . Assume the funtion f is proven terminating bya termination proedure. Then there is a distributing tree A0 for E ~f , whihan be automatially obtained from A, that satis�es the formal terminal stateproperty with the relation � ~f .Proof. Let Ef be a spei�ation of a de�ned funtion f : D1; : : : ; Dn ! s suhthat the de�ned symbols that our in the right-hand side of the equations ofEf are in F?d [ffg. Let A be a distributing tree for the spei�ation E ~f of thetwin funtion ~f . We assume f is proven terminating by a termination proe-dure. Sine we know that the funtion is terminating given by an automatedproedure we an introdue the ordering � ~f . From the term distributing treeA we an assoiate a new distributing tree A0 with the ordering � ~f , illustratedwith Figure 4, whih an be alled the anonial distributing tree of A.A0JJJJJJJ 






` T ~fDistributing Tree for E ~f withformal terminal state property
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` Termination statement of ~fA Distributing Tree of E ~fFig. 4. The anonial distributing tree A0 of ANote that A0 an be built automatially from A. We show that A0 sat-is�es the formal terminal state property. The root of A0 is ` T ~f , with T ~f =8x(K(x) ! D( ~f(x))) the termination statement of ~f where K denotes theprodut type (D1 � : : :�Dn) and p its assoiated onstrutor.Let L = (� ` P ) be a leaf of A0 and e = (t; u) be the equation of E ~f withH(P ) = t. Let (t; v) be a reursive all of e. Aording to the de�nition of18



Kamareddine and Monin and Ayala-Rin�ona spei�ation and a reursive all, the terms t and v are respetively of theform f(p(t1; : : : ; tn)) and f(p(v1; : : : ; vn)). Beause of the onstrution of theanonial distributing tree A0 that uses a partiular order of the appliationrules Strut and Ind (also illustrated with Figure 4), P is of the form:8x0i1D0i1(x0i1 ); : : : ;8x0imD0im(x0im );8z(Kz�p(h1;:::;hn) ! K(f(z)))! K(f(p(h1; : : : ; hn))).As the heart of P is H(P ) = t, we have hj = tj for any 1 � j � n.Now, let Q be the restritive hypothesis 8z(Kz�p(t1 ;:::;tn) ! K(f(z))) of P .Let us show that Q an be applied to the term v aording to a substitution.By the de�nition of Q, we have H(Q) = f(z), so we an take a substitution� with �(z) = p(v1; : : : ; vn). We also take the value �(y) = y for any freevariable y in Q, that is any variable y in p(t1; : : : ; tn). Hene Q an beapplied to v aording to the above substitution �. We now have to show thetwo items of De�nition 2.14. As we are in the onditions of De�nition 5.5,we know that p(pp�(v1)qq; : : : ; pp�(vn)qq) � ~f �(p(t1; : : : ; tn)) for any groundsorted substitution �. But �(z) = p(v1; : : : ; vn), thus we get the �rst item.The seond item beomes straightforward: beause of the form of Q, the setof restritive hypotheses of Q is empty. Hene, we onlude that the anonialdistributing tree A0 satis�es the formal terminal state property. 2The next theorem (and its proof) expresses Figure 3. It tells that if weknow that a funtion f is terminating, and if we have already a proof oftotality of eah de�ned funtion that ours in the spei�ation of f (apartfrom f), and if we have a term distributing tree assoiated to the spei�ationof f , then we are able to get a �-term that omputes f in the sense of TTR.Theorem 5.2 Let Ef be a spei�ation of a de�ned funtion f : D1; : : : ; Dn !D and D be a given distributing tree for the spei�ation Ef suh that thede�ned symbols that our on the right-hand side of the equations of Ef are inF?d [ ffg. Assume the termination of f is given by an automated proedure.Then there is a proof of totality of f in TTR that an be found automatially.Proof. Let ~f be the twin funtion of f and E ~f its spei�ation given in Def-inition 5.3. By De�nition 5.3, a distributing tree A assoiated to E ~f an beautomatially obtained from D. Hene, with Theorem 5.1, we now have a(anonial) distributing tree A0 assoiated to E ~f whih has the ftsp with � ~f asthe ordering relation. As Fat 2.11 still holds with the new ordering relation,we get an I-proof of E ~f that an be alled anonial proof. Thus we obtain aformal proof of the termination statement T ~f in TTR. Hene, by Lemma 5.4we �nally obtain a proof of totality of f in TTR. 26 ConlusionThe programming paradigms using logis built in ProPre uses the Curry-Howard isomorphism where a �-term is extrated from the proof. Howeverbeause of the logial framework, it is often diÆult to make use of terminationtehniques from di�erent areas. This paper showed that for the automatedsystem ProPre, the extration part of �-terms an be released from the ter-19
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