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Abstract. The λ-calculus with de Bruijn indices, called λdB, assem-
bles each α-class of λ-terms into a unique term, using indices instead of
variable names. Intersection types provide finitary type polymorphism
satisfying important properties like principal typing, which allows the
type system to include features such as data abstraction (modularity)
and separate compilation. To be closer to computation and to simplify
the formalisation of the atomic operations involved in β-contractions,
several explicit substitution calculi were developed most of which are
written with de Bruijn indices. Although untyped and simply types ver-
sions of explicit substitution calculi are well investigated, versions with
more elaborate type systems (e.g., with intersection types) are not. In
previous work, we presented a version for λdB of an intersection type sys-
tem originally introduced to characterise principal typings for β-normal
forms and provided the characterisation for this version. In this work we
introduce intersection type systems for two explicit substitution calculi:
the λσ and the λse. These type system are based on a type system for
λdB and satisfy the basic property of subject reduction, which guarantees
the preservation of types during computations.

1 Introduction

The λ-calculus à la de Bruijn [deBruijn72], λdB for short, was introduced by
the Dutch mathematician N.G. de Bruijn in the context of the project Au-
tomath [NGdV94] and has been adopted for several calculi of explicit substi-
tutions ever since, e.g. [deBruijn78,ACCL91,KR97]). Term variables are repre-
sented by indices instead of names in λdB, assembling each α-class of terms in
the λ-calculus [Barendregt84] into a unique term with de Bruijn indices, thus
making it more “machine-friendly” than its counterparts. The λσ- [ACCL91]
and the λse- [KR97] calculi have applications in higher order unification, HOU
for short [DHK2000,AK01]. These explicit substitution calculi with de Bruijn
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indices have been investigated for both type free and simply typed versions but
to the best of our knowledge there is no work on more elaborate type systems
such as intersection types.

Intersection types, IT for short, were introduced as an extension to simple
types, in order to provide a characterisation of strongly normalising λ-terms
[CDC78,CDC80,Pottinger80]. In programming, the IT discipline is of interest
because λ-terms corresponding to correct programs not typable in the standard
Curry type assignment system [CF58], or in some polymorphic extensions as the
one present in ML [Milner78], are typable with IT. Moreover, some IT systems
satisfy the principal typing property, PT for short, which means that for any
typable term M there is a type judgement Γ ⊢ M : τ representing all possible
typings 〈Γ ′ ⊢ τ ′〉 of M in the corresponding type system. Principal typings has
been studied for some IT systems [CDV80,RV84,Rocca88,Bakel95,KW04] and
in [CDV80,RV84] it was shown that for a term M , the principal typing of M ’s
β-normal form, β-nf for short, is principal for M itself.

In [VAK09] we introduced an IT system for the λdB, based on the type sys-
tem given in [KN07], and proved it to satisfy the subject reduction property,
SR for short, which states that types under β-reduction are preserved: whenever
Γ ⊢ M : σ and M β-reduces into N , then Γ ⊢ N : σ. Due to the interac-
tion between sequential type contexts and the subtyping relation, the system in
[VAK09] is not relevant in the sense of [DG94], whereas the system of [KN07] is.
Hence, in [VAK10] we introduce a relevant IT system for λdB. This system is a
de Bruijn version of the system originally introduced in [SM96a], for which we
established a characterisation of the syntactic structure of PT for β-nfs.

In this paper we concentrate on the SR property, with a discussion originally
presented in [VAK10], and we prove for the first time the property for the β-
contraction in λdB with some considerations. We then propose a variant for the
type system, which is a de Bruijn version of the system in [SM97]. We also give
the first IT systems for λσ and λse, which we base on this variant, and we
establish that they both have SR for the full rewriting system. As a preliminary
step to obtain the system for λse, we introduce an IT system for λs [KR95],
based on the system of [VAK10], with similar properties such as relevance and
SR for the simulation of β-contraction.

Below, we present the untyped versions of the λdB, λs, λse and λσ calculi.
Section 2 consists of two parts. In Subsection 2.1 we present the IT systems λSM

dB

and λSMr

dB , followed by the relevance property and a discussion of the SR property.
In Subsection 2.2 we present the new work on the system λSM

dB , introducing some
properties related to the proof of SR for β-contraction in the type system, which
is discussed at the end of the second part. In Section 3 we introduce the IT system
λsSM for λs and the system λse

∧ for λse, with their respective properties. In
Section 4, the IT system for λσ is introduced followed by its properties.

1.1 λ-calculus with de Bruijn indices

Definition 1 (Set ΛdB). The set of λdB-term, denoted by ΛdB, is inductively
defined for n ∈ N

∗= Nr{0} by: M, N ∈ ΛdB ::= n | (M N) |λ.M .



The index i is bound if it is inside i λ’s and otherwise it is free. We introduce
the following subsets in order to present a formal definition of the set of free
indices for some term.

Definition 2. Let N ⊂ N
∗ and k ≥ 0. We define:

1.N\k = {n − k |n ∈ N} 3.N + k = {n + k |n ∈ N}
2.N>k = {n ∈ N |n > k} 4.N≤k = {n ∈ N |n ≤ k}, N<k = {n ∈ N |n < k}

Definition 3. FI(M), the set of free indices of M ∈ ΛdB, is defined by:
FI(n) = {n } FI(M1 M2) = FI(M1) ∪ FI(M2) FI(λ.M) = FI(M)\1

The free indices correspond to the notion of free variables in the λ-calculus
with names, hence M is called closed when FI(M) ≡ ∅. The greatest value of
FI(M) is denoted by sup(M). In [VAK09] we give the formal definitions of those
concepts. Terms like ((. . . ((M1 M2) M3) . . . ) Mn) are written (M1 M2 · · · Mn),
as usual. The β-contraction definition in this notation needs a mechanism which
detects and updates free indices of terms. Intuitively, the lift of M , denoted by
M+, corresponds to an increment by 1 of all free indices occurring in M . Thus,
we are able to present the definition of the substitution used by β-contractions,
similarly to the one presented in [AK01].

Definition 4. Let m, n ∈ N
∗. The β-substitution for free occurrences of n in

M ∈ ΛdB by term N , denoted as {n/N}M , is defined inductively by

1 . {n /N}(M1 M2) = ({n /N}M1 {n /N}M2) 3 . {n /N}m =

8

<

:

m − 1 , if m > n
N, if m = n
m , if m < n2 . {n /N}(λ.M1) = λ.{n + 1 /N+}M1

Observe that in item 2 of Definition 4, the lift operator is used to avoid the
capture of free indices in N . We define β-contraction as usual (e.g. see [AK01]).

Definition 5. β-contraction in λdB is defined by (λ.M N)→β {1 /N}M .

Notice that item 3 in Definition 4 is the mechanism which does the substitution
and updating of the free indices in M as a consequence of the elimination of
the lead abstractor. β-reduction is defined to be the λ-compatible closure of
β-contraction defined above. A term is in β-normal form, β-nf for short, if
there is no β-reduction to be done.

When i /∈ FI(M), then we have that { i /N}M = M−i, where M−i is the
term M in which indices greater than i are decreased by one. We call this an
empty substitution because no index is replaced by an instance of term N .
The β-contraction (λ.M N) → { 1 /N}M is thus called an empty application.

1.2 The λse-calculus

The λs-calculus is a proper extension of the λdB-calculus. Two operators σ
and ϕ are introduced for substitution and updating, respectively, to control the
atomisation of the substitution operation by arithmetic constraints.

Definition 6 (Set Λs). The set of λs-terms, denoted by Λs, is inductively de-
fined for n, i, j ∈ N

∗ and k ∈ N by: M, N ∈Λs ::= n | (M N) |λ.M |MσiN |ϕj
kM



The term MσiN represents the procedure to obtain the term {i /N+
(i−1)

}M ;
i.e., the substitution of the free occurrences of i in M by N with its free indices
incremented by (i−1), updating the free indices on both terms. The term ϕj

kM

represents j−1 applications of the k-lift to the term M ; i.e., M+k(j−1)

. Table 1
contains the rewriting rules of the λse-calculus as given in [KR97]. The bottom
six rules of Table 1 are those which extend the λs-calculus [KR95] to λse [KR97].
They ensure the confluence of the λse-calculus on open terms and its application
to the HOU problem [AK01]. In this paper we work with the same set Λs of terms
for both calculi.

(λ.M N) −→ M σ1N (σ-generation)
(λ.M)σiN −→ λ.(Mσi+1N) (σ-λ-transition)
(M1 M2)σ

iN −→ ((M1σ
iN) (M2σ

iN)) (σ-app-trans.)

n σiN −→

8

<

:

n − 1 if n > i
ϕi

0N if n = i
n if n < i

(σ-destruction)

ϕi
k(λ.M) −→ λ.(ϕi

k+1M) (ϕ-λ-trans.)
ϕi

k(M1 M2) −→ ((ϕi
kM1) (ϕi

kM2)) (ϕ-app-trans.)

ϕi
k n −→



n + i − 1 if n > k
n if n ≤ k

(ϕ-destruction)

(M1σ
iM2)σ

jN −→ (M1σ
j+1N)σi(M2σ

j−i+1N) if i ≤ j (σ-σ-trans.)
(ϕi

kM)σjN −→ ϕi−1
k M if k < j < k + i (σ-ϕ-trans. 1)

(ϕi
kM)σjN −→ ϕi

k(Mσj−i+1N) if k + i ≤ j (σ-ϕ-trans. 2)
ϕi

k(MσjN) −→ (ϕi
k+1M)σj(ϕi

k+1−jN) if j ≤ k + 1 (ϕ-σ-trans.)

ϕi
k(ϕj

l M) −→ ϕj

l (ϕ
i
k+1−jM) if l + j ≤ k (ϕ-ϕ-trans. 1)

ϕi
k(ϕj

l M) −→ ϕj+i−1
l M if l ≤ k < l + j (ϕ-ϕ-trans. 2)

Table 1. The rewriting system of the λse-calculus

=se
denotes the equality for the associate substitution calculus, denoted as

se, induced by all the rules except (σ-generation). The rewriting system obtained
by removing from se the bottom six rules presented in Table 1 is called the s-
calculus, which is the substitution calculus associated with λs. In order to have
a syntactic characterisation related to empty applications and substitutions, as
the free indices for λdB, we present the available indices, a notion analogous to
that of available variables introduced in [LLDDvB04].

Definition 7. AI(M), the set of available indices of M ∈ Λs is defined by:
AI(n ) = {n } AI(λ.M) = AI(M)\1 AI(M1 M2) = AI(M1) ∪ AI(M2) and

AI(ϕi
kM) = AI(M)≤k ∪ (AI(M)>k + (i − 1))

AI(MσiN) =

{

AI(M−i) ∪ AI(ϕi
0N), if i ∈ AI(M)

AI(M−i), if i /∈ AI(M)

where AI(M−i) denotes AI(M)<i ∪ (AI(M)>i)\1.

The greatest value of AI(M) is denoted by sav(M).



1.3 The λσ-calculus

The λσ-calculus is given by a first-order rewriting system, which makes substi-
tutions explicit by extending the language with two sorts of objects: terms and
substitutions which are called λσ-expressions.

Definition 8 (Set Λσ). The set of λσ-expressions, denoted by Λσ, is formed
by the set Λσt of terms and the set Λσs of substitutions, inductively defined by:

M, N ∈ Λσt ::= 1 | (M N) |λ.M |M [S] S ∈ Λσs ::= id | ↑ |M.S |S ◦ S

Substitutions can intuitively be thought of as lists of the form N/ i indicating
that the index i ought to be replaced by the term N . The expression id rep-
resents a substitution of the form {1 /1 , 2 /2 , . . . } whereas ↑ is the substitution
{ i+1/ i | i∈N

∗}. The expression S◦S represents the composition of substitutions.
Moreover, 1 [↑n], where n ∈ N

∗, codifies the de Bruijn index n+1 and i [S] rep-
resents the value of i through the substitution S, which can be seen as a function
S(i). The substitution M.S has the form {M/1 , S(i)/i + 1 } and is called the
cons of M in S. M [N.id] starts the simulation of the β-reduction of (λ.M N)
in λσ. Thus, in addition to the substitution of the free occurrences of the index
1 by the corresponding term, free occurrences of indices should be decremented
because of the elimination of the abstractor. Table 2 lists the rewriting system
of the λσ-calculus, as presented in [DHK2000], without the (Eta) rule.

(λ.M N) −→ M [N.id] (Beta) (λ.M)[S] −→ λ.(M [1.(S◦↑)]) (Abs)
(M N)[S] −→ (M [S] N [S]) (App) ↑◦ (M.S) −→ S (ShiftCons)
M [id] −→ M (Id) (S1 ◦ S2) ◦ S3 −→ S1 ◦ (S2 ◦ S3) (AssEnv)
1[S].(↑◦S) −→ S (Scons) (M.S) ◦ T −→ M [T ].(S ◦ T ) (MapEnv)
(M [S])[T ] −→ M [S ◦ T ] (Clos) 1.↑ −→ id (V arShift)
id ◦ S −→ S (IdL) 1[M.S] −→ M (V arCons)
S ◦ id −→ S (IdR)

Table 2. The rewriting system for the λσ-calculus

This system is equivalent to that of [ACCL91]. The associated substitution
calculus, denoted by σ, is the one induced by all the rules except (Beta), and its
equality is denoted as =σ.

2 Intersection type systems for the λdB-calculus

The intersection type systems presented in this paper have the same set of types
T , of the so called restricted intersection types. The intersection types in T do
not occur immediately on the right of an →. Besides that, the intersection is
linear thus non idempotent. The type contexts in type systems with de Bruijn
indices are sequences of types. Below, we present the definitions of these concepts.

Definition 9. 1. Let A be a denumerably infinite set of type variables and
let α, β range over A.



1:〈τ.nil ⊢ τ 〉
var

n :〈Γ ⊢ τ 〉

n+1:〈ω.Γ ⊢ τ 〉
varn

M :〈u.Γ ⊢ τ 〉

λ.M :〈Γ ⊢ u→τ〉
→i

M1 :〈Γ ⊢ ω→τ〉 M2 :〈∆ ⊢ σ〉

(M1 M2) :〈Γ ∧ ∆ ⊢ τ 〉
→′

e

M :〈nil ⊢ τ 〉

λ.M :〈nil ⊢ ω→τ〉
→′

i

M1 :〈Γ ⊢ ∧n
i=1σi→τ〉 M2 :〈∆1 ⊢ σ1〉 . . . M2 :〈∆n ⊢ σn〉

(M1 M2) :〈Γ ∧ ∆1 ∧ · · · ∧ ∆n ⊢ τ 〉
→e

Fig. 1. Typing rules of system λSM
dB

2. The set T of restricted intersection types is defined by:
τ, σ ∈ T ::= A |U→T u ∈ U ::= ω | U ∧ U | T
Types are quotiented by taking ∧ to be commutative, associative and to have
ω as the neutral element.

3. Contexts are ordered lists of u ∈ U , defined by: Γ ::= nil |u.Γ . Γi denotes
the i-th element of Γ and |Γ | denotes the length of Γ . We let ω n denote the
sequence ω.ω. · · · .ω of length n, called omega context, and let ω 0 .Γ = Γ .
The extension of ∧ to contexts is done by taking nil as the neutral element
and (u1.Γ ) ∧ (u2.∆) = (u1 ∧ u2).(Γ ∧ ∆). Hence, ∧ is commutative and
associative on contexts.

4. Let u′ ⊑ u if there exists v such that u = u′ ∧ v and u′
< u if v 6= ω. Let

Γ ′ ⊑ Γ if there exists ∆ such that Γ = Γ ′ ∧ ∆, where neither Γ ′ nor ∆ are
omega contexts and Γ ′

< Γ if ∆ 6= nil.

The set T defined here is equivalent to the one defined in [SM96a]. Type
judgements will be of the form M : 〈Γ ⊢S τ〉, meaning that in system S, term
M has type τ in context Γ (where FI(M) are handled). Briefly, M has type τ
with Γ in S or 〈Γ ⊢ τ〉 is a typing of M in S. The S is omitted whenever its is
clear which system is being referred to.

2.1 The system λSM

dB

We present in this section the systems λSM

dB and λSMr

dB , introduced in [VAK10].
The system λSMr

dB is the de Bruijn version of the system presented in [SM96a],
used to characterise principal typings (PT) for β-nfs.

Definition 10. 1. The typing rules for system λSM

dB are given in Figure 1.
2. System λSMr

dB is obtained from system λSM

dB , by replacing the rule var by rule

varr: 1:〈σ1 → · · · → σn→α.nil ⊢ σ1 → · · · → σn→α〉
(n ≥ 0).

Proposition 1. λSM

dB is a proper extension of λSMr

dB .

Hence, the properties stated for the system λSM

dB are also true for the system
λSMr

dB . The following lemma states that λSM

dB is relevant in the sense of [DG94].

Lemma 1 (Relevance for λSM

dB [VAK10]). If M : 〈Γ ⊢λSM
dB

τ〉, then |Γ | =
sup(M) and ∀1≤ i≤|Γ |, Γi 6= ω iff i∈FI(M).



Note that, by Lemma 1 above, system λSM

dB is not only relevant but there is
a strict relation between the free indices of terms and the length of contexts in
their typings. In [VAK10] we give a characterisation of PT for β-nfs in λSMr

dB .
Despite the fact that all β-nfs are typable in λSMr

dB , the subject reduction
property fails for both λSMr

dB and λSM

dB . In the following, we will give counterex-
amples to show that neither subject expansion nor reduction holds.

Example 1. In order to have the subject expansion property, we need to prove
the statement: If { 1 /N}M : 〈Γ ⊢ τ〉 then (λ.M N) : 〈Γ ⊢ τ〉. Let M ≡ λ. 1 and
N ≡ 3, hence { 1 / 3 }λ. 1 = λ. 1. We have that λ. 1 : 〈nil ⊢ α→α〉. Thus, λ.λ. 1 :
〈nil ⊢ ω→α→α〉 and 3:〈ω.ω.β.nil ⊢ β〉, then (λ.λ. 1 3) :〈ω.ω.β.nil ⊢ α→α〉.

For subject reduction, we need the statement: If (λ.M N) : 〈Γ ⊢ τ〉 then
{ 1 /N}M : 〈Γ ⊢ τ〉. Note that if we take M and N as in the example above,
we get the same problem as before but the other way round. In other words, we
have a restriction on the original context after the β-reduction, since we loose
the typing information regarding N ≡ 3. �

One possible solution is to replace rule →′
e by:

M :〈Γ ⊢ ω→τ〉

(M N) :〈Γ ⊢ τ〉
.

This approach was originally presented in [SM96b]. However, the type system
obtained there does not have the property described in Lemma 1 since we would
not have the typing information for all the free indices occurring in a term. We
present a lemma at the end of the present section, stating the property related
to relevance for this variant.

The other way to try to achieve the desired properties is to think about
the meaning of the properties themselves. Since, by Lemma 1, the system is
related to relevant logic (cf. [DG94]), the notion of expansion and restriction of
contexts is an interesting way to talk about subject expansion and reduction.
These concepts were presented in [KN07] for environments. We introduce the
notion of restriction for sequential contexts in Subsection 2.2. This approach of
restriction/expansion for contexts is not sufficient to have the subject expansion
property because the rule →′

e has the typability of the argument as a premiss.
Hence, for any non typable term N , { 1 /N} 2 is typable while (λ.2 N) is not
typable in system λSM

dB . Below, we define the system which is the basis for the
IT systems we propose for λse and λσ.

Definition 11 (The system λ∧
dB). The system λ∧

dB is obtained from system

λSM

dB , replacing the rule →′
e by the following rule:

M :〈Γ ⊢ ω→τ 〉

(M N) :〈Γ ⊢ τ〉
→ω

e .

The following property is related to relevance in this system.

Lemma 2. If M : 〈Γ ⊢λ∧

dB
τ〉 and |Γ | = m > 0 then Γm 6= ω and ∀1 ≤ i ≤ |Γ |,

Γi 6=ω implies i∈FI(M).

Proof. By induction on the derivation M :〈Γ ⊢λ∧

dB
τ〉.



2.2 Subject reduction for system λSM

dB

We present here the properties of system λSM

dB used in the proof of SR, presented
at the end of this part. The generation lemmas for λSM

dB were presented in [VAK10]
and we omit them here due to lack of space. Below, we give a lemma which relates
typings and the updating operator.

Lemma 3 (Updating). Let M : 〈Γ ⊢λSM
dB

τ〉. If i≥|Γ | then M+i : 〈Γ ⊢λSM
dB

τ〉.

Otherwise, if 0≤ i< |Γ | then M+i :〈Γ≤i.ω.Γ>i ⊢λSM
dB

τ〉.

Observe that when i ≥ |Γ | then by the relevance of system λSM

dB we have
that i≥sup(M) thus M+i = M (cf. [VAK09]). Otherwise, the free indices of M
greater then i are incremented by one, then we need to add the ω at the (i+1)-th
position on the sequential context to guarantee the typability for term M+i. We
now can introduce the substitutions lemmas.

Lemma 4 (Substitution). Let M :〈Γ ⊢λSM
dB

τ〉.

1. If i > |Γ | then, for any N ∈ΛdB, { i /N}M :〈Γ ⊢λSM
dB

τ〉.
2. If Γi = ω where 0<i< |Γ |, then { i /N}M :〈Γ<i.Γ>i ⊢λSM

dB
τ〉.

3. Let Γi = ∧m
j=1σj , where 0 < i ≤ |Γ |, and ∀1 ≤ j ≤ m, N : 〈nil ⊢λSM

dB
σj〉.

If sup(M) = i then { i /N}M : 〈Γ<k.nil ⊢λSM
dB

τ〉 for k = sup({ i /N}M).
Otherwise, { i /N}M :〈Γ<i.Γ>i ⊢λSM

dB
τ〉.

4. Let Γi =∧m
j=1σj , where 0<i≤|Γ |, and N ∈ΛdB s.t. sup(N)≥ i. If ∀1≤j≤m,

N :〈∆j ⊢λSM
dB

σj〉 then { i /N}M :〈(Γ<i.Γ>i) ∧ ∆1 ∧ · · · ∧ ∆m ⊢λSM
dB

τ〉.

Hence, we have the relation between M and N typings and the typing for term
{ i /N}M . Note that, whenever N is typable, items 1 and 2 represent the loss of
its type information. Therefore, we need the restriction property for sequential
contexts, introduced below, to establish the SR property.

Definition 12 (FI restriction). Let Γ⇂M be a Γ ′ ⊑ Γ such that |Γ ′| = sup(M)
and that ∀1≤ i≤|Γ ′|, Γ ′

i 6= ω iff i∈FI(M).

Now we state the subject reduction property for β-contraction, using the
concept introduced above.

Theorem 1 (SR for β-contraction in λSM

dB ). If (λ.M N) : 〈Γ ⊢λSM
dB

τ〉 then
{ 1 /N}M :〈Γ⇂{ 1 /N}M ⊢λSM

dB
τ〉.

Proof. By case analysis of (λ.M N) : 〈Γ ⊢λSM
dB

τ〉. Note that there are only
two possibilities for the last inference step, the rules →′

e and →e. We present
here the case when →′

e is the last rule applied. Hence, λ.M : 〈Γ ⊢ ω→τ 〉 and
N : 〈∆ ⊢ σ〉 for some context ∆ and type σ. If Γ = nil then M : 〈nil ⊢ τ〉.
Hence, by a substitution lemma one has that { 1 /N}M : 〈nil ⊢ τ〉. Note that
FI({ 1 /N}M) = FI(M) = ∅ thus (nil ∧ ∆) ⇂{ 1 /N}M= nil. The proof when
Γ 6=nil is similar.

Since the type information lost during β-contraction can affect the type as
well, we would need a subtyping relation, and an associated inference rule, in
order to obtain the SR property for β-reduction.



(ω-ϕ)
M :〈Γ ⊢ τ 〉

ϕi
kM :〈Γ≤k.ω i−1.Γ>k ⊢ τ 〉

, |Γ | > k (ω-σ)
N :〈∆ ⊢ ρ〉 M :〈Γ ⊢ τ 〉

MσiN :〈Γ<i.Γ>i ⊢ τ 〉
, Γi = ω

(nil-ϕ)
M :〈Γ ⊢ τ 〉

ϕi
kM :〈Γ ⊢ τ 〉

, |Γ | ≤ k (nil-σ)
N :〈∆ ⊢ ρ〉 M :〈Γ ⊢ τ 〉

MσiN :〈Γ ⊢ τ 〉
, |Γ | < i

(∧-nil-σ)
N :〈nil ⊢ σ1〉 . . . N :〈nil ⊢ σm〉 M :〈ω i−1. ∧m

j=1 σj .nil ⊢ τ 〉

MσiN :〈nil ⊢ τ 〉

(∧-ω-σ)
N :〈nil ⊢ σ1〉 . . . N :〈nil ⊢ σm〉 M :〈Γ ⊢ τ 〉

MσiN :〈Γ<(i−k).nil ⊢ τ 〉
, Γi = ∧m

j=1σj (*)

(∧-σ)
N :〈∆1 ⊢ σ1〉 . . . N :〈∆m ⊢ σm〉 M :〈Γ ⊢ τ 〉

MσiN :〈(Γ<i.Γ>i) ∧ ω i−1.(∆1 ∧ · · · ∧ ∆m) ⊢ τ 〉
, Γi = ∧m

j=1σj (**)

(*) Γ = Γ<(i−k).ω
k. ∧m

j=1 σj .nil and Γ(i−k−1) 6=ω (**) ∆k 6= nil, for some 1≤k≤m,
or Γ>i 6= nil

Fig. 2. Typing rules of the system λsSM

3 An intersection type system for λse

In order to have an intersection type system for the λse-calculus, we introduce
a system for λs as a first step. While the type system for λs is based on the
system λSM

dB , the system proposed for λse is based on the system λ∧
dB.

3.1 The system λsSM

Definition 13 (The system λsSM). The system λsSM is the extension of sys-
tem λSM

dB , introduced in Definition 10, by the rules presented in Figure 2.

Observe that, compared with the simple type system for λs and λse, which
introduces one type inference rule for each operator (cf. [AK01]), there are mul-
tiple rules introduced in Figure 2 for the σ and ϕ operators. This multiplicity
reproduces the cases for the updating and substitution lemmas for λSM

dB . For in-
stance, the rule (nil-ϕ) maintains the same context, since the updating operator
will not affect any of the available indices of the corresponding term. Hence, we
have a relevance property related to AI(M) instead of FI(M), as stated below.

Lemma 5 (Relevance for λsSM). If M : 〈Γ ⊢λsSM τ〉, then |Γ |=sav(M) and
∀1≤ i≤|Γ |, Γi 6= ω iff i∈AI(M).

Proof. By induction on the derivation of M : 〈Γ ⊢λsSM τ〉. We present the case
for the application of the rule (nil-ϕ). Hence, ϕi

kM : 〈Γ ⊢ τ〉 where M : 〈Γ ⊢ τ〉
and |Γ | ≤ k. By the induction hypothesis (IH) one has that |Γ | = sav(M) and
∀1 ≤ j ≤ |Γ |, Γj 6= ω iff j ∈ AI(M). Observe that AI(ϕi

kM) = AI(M)≤k ∪

(AI(M)>k + (i − 1)) = AI(M) thus sav(ϕi
kM) = sav(M).



Despite the fact that the type system is relevant, we have SR for the full
s-calculus.

Theorem 2 (SR for s in λsSM). Let M : 〈Γ ⊢λsSM τ〉. If M →s M ′, then
M ′ :〈Γ ⊢λsSM τ〉.

Proof. By the verification of SR for each rewriting rule of the s-calculus.

Observe that the type information associated to the empty application disap-
pears when it becomes an empty substitution, since the rules (nil-σ) and (ω-σ)
discard the corresponding contexts. Therefore, we need a restriction notion sim-
ilar to the one introduced in Definition 12, which is related to the available
indices, to have an SR statement for the simulation of β-contraction.

Definition 14 (AI restriction). Let Γ ↾M be a Γ ′ ⊑ Γ such that |Γ ′| =
sav(M) and that ∀1≤ i≤|Γ ′|, Γ ′

i 6= ω iff i∈AI(M).

Theorem 3 (SR for simulation of β-contraction in λsSM). If (λ.M M ′) :
〈Γ ⊢λsSM τ〉, then { 1/M ′}M :〈Γ↾{ 1/M ′}M ⊢λsSM τ〉, for any (λ.M M ′) ∈ ΛdB.

Proof. The proof consists in the verification of SR with context restriction for
(λ.M M ′) : 〈Γ ⊢λsSM τ〉 when the rule (σ-generation) is applied and then of SR
for the s-calculus.

3.2 The system λse
∧

While the λs-calculus has the preservation of strong normalisation property
[KR95], PSN for short, the rules allowing the composition of substitution in
the λse-calculus invalidate this property for the calculus. B. Guillaume presents
in [Guillaume2000] a counter example of some simply typed term in λse which
has an infinite reduction strategy. We present an example below, to give an
intuition on how to change the system λsSM to have an intersection type system
for λse with the subject reduction property.

Example 2. Let A ≡ ( 1 1 ), M ≡ ( 3 σ1A)σ1λ.A, M ′ ≡ ( 3 σ2λ.A)σ1(Aσ1λ.A).
We have that M →λse

M ′, where M is typable in λsSM and M ′ is not typable.
Observe that one cannot obtain M ′ from M in λs and that M is obtained from
the term M0 ≡ (λ.(λ.3 A) λ.A) in both calculi. �

The non typability of the term M0 above in the system λsSM is due to the
inclusion of type information from the context of an argument to an empty
application. Note that the typability of both M0 and Aσ1λ.A reduces to the
typability of Ω ≡ (λ.A λ.A) which has no type in systems like the Barendregt
et al. [BCD83] other then the universal ω type. Hence, we drop the typability
requirement on rules →′

e, (nil-σ) and (ω-σ) , obtaining the system λse
∧ below.



1:〈τ.nil ⊢ τ 〉
var

n :〈Γ ⊢ τ 〉

n+1:〈ω.Γ ⊢ τ 〉
varn

M :〈u.Γ ⊢ τ 〉

λ.M :〈Γ ⊢ u→τ〉
→i

M1 :〈Γ ⊢ ω→τ〉

(M1 M2) :〈Γ ⊢ τ 〉
→ω

e

M :〈nil ⊢ τ 〉

λ.M :〈nil ⊢ ω→τ〉
→′

i

M1 :〈Γ ⊢ ∧n
i=1σi→τ〉 M2 :〈∆1 ⊢ σ1〉 . . . M2 :〈∆n ⊢ σn〉

(M1 M2) :〈Γ ∧ ∆1 ∧ · · · ∧ ∆n ⊢ τ 〉
→e

(nil-σ)
M :〈Γ ⊢ τ 〉

MσiN :〈Γ ⊢ τ 〉
, |Γ | < i (ω-σ)

M :〈Γ ⊢ τ 〉

MσiN :〈Γ<i.Γ>i ⊢ τ 〉
, Γi = ω

(∧-nil-σ)
N :〈nil ⊢ σ1〉 . . . N :〈nil ⊢ σm〉 M :〈ω i−1. ∧m

j=1 σj .nil ⊢ τ 〉

MσiN :〈nil ⊢ τ 〉

(∧-ω-σ)
N :〈nil ⊢ σ1〉 . . . N :〈nil ⊢ σm〉 M :〈Γ ⊢ τ 〉

MσiN :〈Γ<(i−k).nil ⊢ τ 〉
, Γi = ∧m

j=1σj (*)

(∧-σ)
N :〈∆1 ⊢ σ1〉 . . . N :〈∆m ⊢ σm〉 M :〈Γ ⊢ τ 〉

MσiN :〈(Γ<i.Γ>i) ∧ ω i−1.(∆1 ∧ · · · ∧ ∆m) ⊢ τ 〉
, Γi = ∧m

j=1σj (**)

(ω-ϕ)
M :〈Γ ⊢ τ 〉

ϕi
kM :〈Γ≤k.ω i−1.Γ>k ⊢ τ 〉

, |Γ | > k (nil-ϕ)
M :〈Γ ⊢ τ 〉

ϕi
kM :〈Γ ⊢ τ 〉

, |Γ | ≤ k

(*) Γ = Γ<(i−k).ω
k. ∧m

j=1 σj .nil and Γ(i−k−1) 6=ω (**) ∆k 6= nil, for some 1≤k≤m,
or Γ>i 6= nil

Fig. 3. Typing rules of the system λse
∧

Definition 15 (The system λse
∧). The inference rules for λse

∧ are given by
the rules of the system λSM

dB in Figure 1 and the system λsSM in Figure 2, where
the inference rule →′

e, (nil-σ) and (ω-σ) are replaced by the rules below:

M :〈Γ ⊢ ω→τ〉

(M N) :〈Γ ⊢ τ 〉
→ω

e (nil-σ)
M :〈Γ ⊢ τ 〉

MσiN :〈Γ ⊢ τ 〉
, |Γ | ≤ i

(ω-σ)
M :〈Γ ⊢ τ 〉

MσiN :〈Γ<i.Γ>i ⊢ τ 〉
, Γi = ω

The system λse
∧ is presented in Figure 3.

The system λse
∧ does not have a defined correspondence relating some syn-

tactic characterisation and relevance. However, the system has a property related
to relevance, stated below.

Lemma 6. If M : 〈Γ ⊢λse
∧ τ〉 for |Γ | = m > 0, then Γm 6= ω and ∀1 ≤ i ≤ m,

Γi 6= ω implies i ∈ AI(M).

Proof. By induction on the derivation of M :〈Γ ⊢λse
∧ τ〉 when Γ 6= nil.



1:〈τ.nil ⊢ τ 〉
(var)

M :〈u.Γ ⊢ τ 〉

λ.M :〈Γ ⊢ u→τ〉
→i

M1 :〈Γ ⊢ ω→τ〉

(M1 M2) :〈Γ ⊢ τ 〉
→ω

e

M :〈nil ⊢ τ 〉

λ.M :〈nil ⊢ ω→τ〉
→′

i

M1 :〈Γ ⊢ ∧m
i=1σi→τ〉 M2 :〈∆1 ⊢ σ1〉 . . . M2 :〈∆m ⊢ σm〉

(M1 M2) :〈Γ ∧ ∆1 ∧ · · · ∧ ∆m ⊢ τ 〉
→e

(clos)
S :〈Γ � Γ ′〉 M :〈Γ ′ ⊢ τ 〉

M [S] :〈Γ ⊢ τ 〉

(∧-cons)
M :〈∆1 ⊢ σ1〉 . . . M :〈∆m ⊢ σm〉 S :〈∆ � ∆′〉

M.S :〈∆ ∧ ∆1 ∧ · · · ∧ ∆m
� (∧m

i=1σi).∆
′〉

(id)
Γ 6= ∆.ω m

id :〈Γ � Γ 〉
(comp)

S :〈Γ � Γ ′′〉 S′ :〈Γ ′′
� Γ ′〉

S′ ◦ S :〈Γ � Γ ′〉

(nil-shift)
↑ :〈nil � nil〉

(nil-cons)
S :〈∆ � nil〉

M.S :〈∆ � nil〉

(ω-shift)
Γ 6= ∆.ω n

↑ :〈ω.Γ � Γ 〉
(ω-cons)

S :〈∆ � ∆′〉

M.S :〈∆ � ω.∆′〉
, ∆′ 6= ω n

Fig. 4. The inference rules for the system λσ∧

We can prove the subject reduction property for the λse-calculus in a stan-
dard way, proving some generation lemmas first, where only the Γm 6= ω piece of
the statement above is needed. Below, we present the subject reduction theorem.

Theorem 4 (SR for λse
∧). If M : 〈Γ ⊢λse

∧ τ〉 and M →λse
M ′, then M ′ :

〈Γ ⊢λse
∧ τ〉.

Proof. By the verification of SR for each λse rewriting rule.

4 An intersection type system for λσ

Similar to the intersection type system proposed for λse, the type system for
λσ discards any type information from contexts of terms which are related to
empty applications.

Definition 16 (The system λσ∧). The typing rules for the system λσ∧ are
presented in Figure 4, where m > 0 and n ≥ 0 .

The next lemma states the property of the system λσ∧ related to relevance.

Lemma 7. If M : 〈Γ ⊢λσ∧ τ〉 and |Γ | = m > 0, then Γm 6= ω. In particular, if
S :〈Γ �λσ∧ Γ ′〉 and |Γ |=m>0 then Γm 6=ω and if |Γ ′|=m′>0 then Γ ′

m′ 6=ω.

Proof. By induction on the derivation of M : 〈Γ ⊢λσ∧ τ〉 when Γ 6= nil, with
subinduction on the derivation of S :〈Γ �λσ∧ Γ ′〉 when Γ 6= nil or Γ ′ 6= nil.



Now we establish the SR property for the λσ-calculus in this system.

Theorem 5 (SR for λσ∧). If M : 〈Γ ⊢λσ∧ τ〉 and M →λσ M ′ then M ′ :
〈Γ ⊢λσ∧ τ〉. In particular, if S :〈Γ �λσ∧ Γ ′〉 and S →λσ S′ then S′ :〈Γ �λσ∧ Γ ′〉.

Proof. By the verification of SR for each λσ rewriting rule.

5 Conclusion

In this paper, we proved the subject reduction property for β-contraction in
the system λSM

dB [VAK10], using an adaptation for sequential contexts of the
restricted environments, introduced in [KN07] to prove SR in a relevant in-
tersection type system. Then, we introduced intersection type systems for two
explicit substitution calculi, the λσ and the λse, and established that our two
new systems satisfy the SR property. The simply typed version of these calculi
have applications on the HOU problem [DHK2000,AK01] and, to the best of our
knowledge, the IT systems presented here are the first polymorphic type systems
proposed for them.

We intend to use the systems presented here as the basic system for studying
the PT property in IT systems for both calculi. The PT property allows one to
include features in a type system which include separate compilation, data ab-
straction and smartest recompilation [Jim96]. The system λ∧

dB, briefly mentioned
at the end of Subsection 2.1, is a de Bruijn version of the system in [SM97], were
the PT property for β-nfs described in [SM96a] is extended for any normalis-
able term. Hence, as a first step towards the PT for explicit substitutions, we
need to extend the results presented in [VAK10] to normalisable terms in λdB.
Besides that, we believe that the systems λSM

dB and λsSM are able to provide a
characterisation for strongly normalising terms in λdB and λs, respectively. On
the other hand, it seems that λ∧

dB, λse
∧ and λσ∧ can provide a characterisation

of weak normalisation for λdB, λse and λσ, respectively.
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J. func. program., 1(4):375–416, 1991.

[AK01] M. Ayala-Rincón and F. Kamareddine. Unification via the λse-Style of
Explicit Substitution. Logical journal of the IGPL, 9(4):489–523, 2001.

[Bakel95] S. van Bakel. Intersection Type Assignment Systems. Theoret. comput. sci.,
151:385-435, 1995.

[BCD83] H. Barendregt, M. Coppo, and M. Dezani-Ciancaglini. A filter lambda model
and the completeness of type assignment. J. symbolic logic, 48:931–940,
1983.

[Barendregt84] H. Barendregt, The Lambda Calculus: Its Syntax and Semantics.
North-Holland, 1984.

[deBruijn72] N.G. de Bruijn. Lambda-Calculus Notation with Nameless Dummies, a
Tool for Automatic Formula Manipulation, with Application to the Church-
Rosser Theorem. Indag. Mat., 34(5):381–392, 1972.



[deBruijn78] N.G. de Bruijn. A namefree lambda calculus with facilities for internal
definition of expressions and segments. T.H.-Report 78-WSK-03, Technische
Hogeschool Eindhoven, Nederland, 1978.

[CDC78] M. Coppo and M. Dezani-Ciancaglini. A new type assignment for lambda-
terms. Archiv für mathematische logik, 19:139–156, 1978.

[CDC80] M. Coppo and M. Dezani-Ciancaglini. An Extension of the Basic Function-
ality Theory for the λ-Calculus. Notre dame j. formal logic, 21(4):685–693,
1980.

[CDV80] M. Coppo, M. Dezani-Ciancaglini and B. Venneri. Principal Type Schemes
and λ-calculus Semantics. In J.P. Seldin and J.R. Hindley (eds), To

H.B. Curry: Essays on combinatory logic, lambda calculus and formalism,
pp. 536–560. Academic Press, 1980.

[CF58] H. B. Curry and R. Feys. Combinatory Logic, vol. 1. North Holland, 1958.
[DG94] F. Damiani and P. Giannini. A Decidable Intersection Type System based on

Relevance. In Proc. of TACS94, LNCS 789:707725. Springer-Verlag, 1994.
[DHK2000] G. Dowek, T. Hardin, and C. Kirchner. Higher-order Unification via Ex-

plicit Substitutions. Information and Computation, 157(1/2):183–235, 2000.
[Guillaume2000] B. Guillaume. The λse-calculus does not preserve strong normalisa-

tion. J. of func. program., 10(4):321–325, 2000
[Jim96] T. Jim. What are principal typings and what are they good for?. In Proc.

of POPL’95: Symp. on Principles of Programming Languages, 42–53, ACM,
1996.

[KN07] F. Kamareddine and K. Nour. A completeness result for a realisability
semantics for an intersection type system. Annals pure and appl. logic,
146:180–198, 2007.
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