
M. Fernandez (Ed.): 9th Int. Workshop on Reduction Strategies
in Rewriting and Programming (WRS’09)
EPTCS 15, 2010, pp. 69–82, doi:10.4204/EPTCS.15.6

c© D. Ventura & M. Ayala-Rincón & F. Kamareddine
This work is licensed under the
Creative Commons Attribution License.

Principal Typings in a Restricted Intersection Type System
for Beta Normal Forms with de Bruijn Indices

Daniel Ventura Mauricio Ayala-Rincón
Grupo de Teoria da Computação, Dep. de Matemática

Universidade de Brası́lia∗

Brası́lia D.F., Brasil

[ventura,ayala]@mat.unb.br

Fairouz Kamareddine
School of Mathematical and Computer Sciences

Heriot-Watt University
Edinburgh, Scotland

fairouz@macs.hw.ac.uk

The λ -calculus with de Bruijn indices assembles eachα-class ofλ -terms in a unique term, using
indices instead of variable names. Intersection types provide finitary type polymorphism and can
characterise normalisableλ -terms through the property that a term is normalisable if and only if it
is typeable. To be closer to computations and to simplify theformalisation of the atomic operations
involved in β -contractions, several calculi of explicit substitution were developed mostly with de
Bruijn indices. Versions of explicit substitutions calculi without types and with simple type systems
are well investigated in contrast to versions with more elaborate type systems such as intersection
types. In a previous work, we introduced a de Bruijn version of the λ -calculus with an intersection
type system and proved that it preserves subject reduction,a basic property of type systems. In
this paper a version with de Bruijn indices of an intersection type system originally introduced to
characterise principal typings forβ -normal forms is presented. We present the characterisation in this
new system and the corresponding versions for the type inference and the reconstruction of normal
forms from principal typings algorithms. We briefly discussthe failure of the subject reduction
property and some possible solutions for it.

1 Introduction

The λ -calculus à la de Bruijn [6] was introduced by the Dutch mathematician N.G. de Bruijn in the
context of the project Automath [24] and has been adopted forseveral calculi of explicit substitutions
ever since (e.g. [7, 1, 18]). Term variables in theλ -calculus à la de Bruijn are represented by indices
instead of names, assembling eachα-class of terms in theλ -calculus [5] in a unique term with de Bruijn
indices, thus turning it more“machine-friendly” than its counterpart. Calculi with de Bruijn indices have
been investigated for both type free and simply typed versions. However, to the best of our knowledge,
apart from [19], there is no work on using de Bruijn indices with more elaborate type systems such as
intersection type systems.

Intersection types were introduced to provide a characterisation of the strongly normalisingλ -terms
[10, 11, 25]. In programming, the intersection type discipline is of interest becauseλ -terms correspond-
ing to correct programs not typeable in the standard Curry type assignment system [13], or in extensions
allowing some sort of polymorphism as in ML [23], are typeable with intersection types. In [31] an inter-
section type system for theλ -calculus with de Bruijn indices was introduced, based on the type system
given in [16], and proved to satisfy the subject reduction property (SR for short); that is the property of
preserving types underβ -reduction: wheneverΓ ⊢ M : σ andM β -reduces intoN, Γ ⊢ N : σ .

∗First (second) author supported by a CNPq PhD scholarship (grant) at the Universidade de Brası́lia. Work supported by
the Fundação de Apoio à Pesquisa do Distrito Federal [FAPDF 8-004/2007]

http://dx.doi.org/10.4204/EPTCS.15.6
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

70 PT in a Restricted Intersection Type System for Beta Normal Forms with dB Indices

A relevant problem in type theory is whether the system has principal typings (PT for short), which
means that for any typeable termM there is a type judgementΓ ⊢ M : τ representing all possible typ-
ings (Γ′,τ ′) of M in this system. Expansion variables are an important process for calculating PT [8].
Since [17] shows that a typing system similar to that of [31] would become incomplete if extended with
expansion variables, we did not study the PT property for thesystem of [31]. Instead, we consider in
this paper a restricted intersection type system for which we are able to establish the PT property for
β -normal forms (β -nf for short). The concept of amost generaltyping is usually linked to syntactic
operations and they vary from system to system. For example,the operations to obtain one typing from
another in simply typed systems areweakeningandtype substitutions, mapping type variables to types,
while in an intersection type systemexpansionis performed to obtain intersection types replicating a
simple type through some specific rules. In [32] J. Wells introduced a system-independent definition of
PT and proved that it was the correct generalisation of well known system-dependent definitions such as
Hindley’s PT for simple type systems [15]. The notion of principal typings has been studied for some
intersection type systems ([12], [26], [27], [3], [20]) andin [12, 26] it was proved that PT for some term’s
β -nf is principal for the term itself. Partial PT algorithms were proposed in [27, 20]. In [8] S. Carlier and
Wells presented the exact correspondence between the inference mechanism for their intersection type
system and theβ -reduction. They introduce theexpansion variables, integrating expansion operations
into the type system (see [9]).

We present in this paper a de Bruijn version of the intersection type system originally introduced in
[28], with the purpose of characterising the syntactic structure of PT forβ -nfs. E. Sayag and M. Mauny
intended to develop a system where, similarly to simply typed systems, the definition of PT only depends
on type substitutions and, as a consequence, their typing system in [28] does not have SR. Although SR
is the most basic property and should be satisfied by any typing system, the system infers types to all
β -nfs and, because it is a restriction of more complex and wellstudied systems, is a reasonable way to
characterise PT for intersection type systems. In fact, thesystem in [28] is a proper restriction of some
systems presented in [3].

Below, we give some definitions and properties for the untyped λ -calculus with de Bruijn indices, as
in [31]. We introduce the type system in Section 2, where someproperties are stated and counterexamples
for some other properties, such as SR, are presented. The type inference algorithm introduced here, its
soundness and completeness are at the end of Section 2. The characterisation of PT forβ -nfs and the
reconstruction algorithm are presented in Section 3. Both algorithms introduced here are similar to the
ones presented in [28].

1.1 λ -calculus with de Bruijn indices

Definition 1. The set of termsΛdB of the λdB-calculus, theλ -calculus with de Bruijn indices, is defined
inductively by: M,N ∈ ΛdB ::= n |((M N)) |λ .M where n∈N

∗=Nr{0}.

Definition 2. FI(M), theset of free indicesof M ∈ ΛdB, is defined by:
FI(n)={n} FI((M1 M2))=FI(M1)∪FI(M2) FI(λ .M)={n−1,∀n∈ FI(M),n> 1}

The free indices correspond to the notion of free variables in theλ -calculus with names, henceM is
called closed whenFI(M) = /0. The greatest value ofFI(M) is denoted bysup(M). In [31] we give the
formal definitions of those concepts. Following, a lemma stating properties aboutsuprelated with the
structure of terms.

Lemma 1 ([31]). 1. sup((M1 M2)) = max(sup(M1),sup(M2)).

2. If sup(M)=0, then sup(λ .M)=0. Otherwise, sup(λ .M)=sup(M)−1.

D. Ventura & M. Ayala-Rincón & F. Kamareddine 71

Terms like((. . . ((M1 M2) M3) . . .) Mn) are written as(M1 M2 · · · Mn), as usual. Theβ -contraction
definition in this notation needs a mechanism which detects and updates free indices of terms. Intuitively,
the lift of M, denoted byM+, corresponds to an increment by 1 of all free indices occurring inM. Thus,
we are able to present the definition of the substitution usedby β -contractions, similarly to [2].

Definition 3. Let m,n∈N
∗. Theβ -substitution for free occurrences of nin M ∈ ΛdB by term N, denoted

as{n/N}M, is defined inductively by

1. {n/N}(M1 M2) = ({n/N}M1 {n/N}M2) 3. {n/N}m=

m−1, if m> n
N, if m= n
m, if m< n2. {n/N}(λ .M1) = λ .{n+1/N+}M1

Observe that in item 2 of Definition 3, the lift operator is used to avoid captures of free indices inN. We
present theβ -contraction as defined in [2].

Definition 4. β -contraction in theλdB-calculus is defined by(λ .M N)→β {1/N}M.

Notice that item 3 in Definition 3 is the mechanism which does the substitution and updates the free
indices inM as consequence of the lead abstractor elimination. Theβ -reduction is defined to be the
λ -compatible closure of theβ -contraction defined above. A term is inβ -normal form , β -nf for short,
if there is no possibleβ -reduction.

Lemma 2. A term N∈ ΛdB is a β -nf iff N is one of the following :

- N ≡ n, for any n∈ N
∗.

- N ≡ λ .N′ and N′ is a β -nf.

- N ≡ nN1 · · ·Nm, for some n∈ N
∗ and∀1≤ j≤m, Nj is a β -nf.

Proof. Necessityproof is straightforward fromβ -nf definition. Sufficiencyproof is by induction on the
structure ofN∈ΛdB.

2 The type system and properties

Definition 5. 1. LetA be a denumerably infiniteset of type variablesand letα ,β range overA .

2. The setT of restricted intersection typesis defined by:

τ ,σ ∈ T ::= A |U →T u ∈ U ::= ω |U ∧U |T

Types are quotiented by taking∧ to be commutative, associative and to haveω as the neutral
element.

3. Contextsare ordered lists of u∈ U , defined by:Γ ::= nil |u.Γ
Γi denotes the i-th element ofΓ and |Γ| denotes the length ofΓ.

ω n denotes the sequenceω .ω . · · · .ω of length n and letω 0 .Γ = Γ.

The extension of∧ to contexts is done by taking nil as the neutral element and(u1.Γ)∧ (u2.∆) =
(u1∧u2).(Γ∧∆). Hence,∧ is commutative and associative on contexts.

4. Type substitution maps type variables to types. Given a type substitution s:A → T , the cor-
responding extensions for elements inU and for contexts are straightforward. The domain of a
substitution s is defined by Dom(s)={α |s(α) 6= α} and let[α/σ] denote the substitution s such
that Dom(s)={α}. For two substitutions s1 and s2 with disjoint domains, let s1+s2 be defined by

(s1+s2)(α)

{

si(α) if α ∈ Dom(si), for i ∈ {1,2}
α if α /∈ Dom(s1)∪Dom(s2)

72 PT in a Restricted Intersection Type System for Beta Normal Forms with dB Indices

5. TV(u) is theset of type variables occurringin u∈ U . Extension to contexts is straightforward.

The setT defined here is equivalent to the one defined in [28].

Lemma 3. 1. If u∈U , then u=ω or u=∧n
i=1τi where n>0 and∀1≤ i≤n, τi ∈T .

2. If τ ∈T , thenτ =α , τ = ω →σ or τ = ∧n
i=1τi →σ , where n> 0 andσ ,τ1, . . . ,τn ∈ T .

Proof. 1. By induction onu∈U .

2. By induction onτ ∈T and Lemma 3.1.

Definition 6. 1. The typing rules for system SM are given as follows:

1:〈τ.nil ⊢ τ〉
var

M :〈u.Γ ⊢ τ〉
λ .M :〈Γ ⊢ u→τ〉

→i

n:〈Γ ⊢ τ〉
n+1:〈ω .Γ ⊢ τ〉

varn
M :〈nil ⊢ τ〉

λ .M :〈nil ⊢ ω →τ〉
→′

i

M1 :〈Γ ⊢ ω →τ〉 M2 :〈∆ ⊢ σ〉

(M1 M2) :〈Γ∧∆ ⊢ τ〉
→′

e

M1 :〈Γ ⊢ ∧n
i=1σi →τ〉 M2 :〈∆1 ⊢ σ1〉 . . . M2 :〈∆n ⊢ σn〉

(M1 M2) :〈Γ∧∆1∧·· ·∧∆n ⊢ τ〉
→e

2. System SMr is obtained from system SM, replacing rulevar by rule

1:〈σ1 → ··· → σn→α .nil ⊢ σ1 → ··· → σn→α〉
(n≥ 0) varr

Type judgements will be of the formM : 〈Γ ⊢S τ〉, meaning that termM has typeτ in systemS
providedΓ for FI(M) . Briefly, M has typeτ with Γ in Sor (Γ,τ) is a typing ofM in S. TheS is omitted
whenever its is clear to which system we are referring to.

Note thatSM is a proper extension ofSMr , hence properties stated for the systemSM are also true
for the systemSMr . The following lemma states thatSM is relevant in the sense of [14].

Lemma 4. If M :〈Γ ⊢SM τ〉, then|Γ|=sup(M) and∀1≤ i≤|Γ|, Γi 6= ω iff i ∈FI(M).

Proof. By induction on the derivationM :〈Γ ⊢ u〉.

• If
1:〈τ .nil ⊢ τ〉

, then|Γ|=1=sup(1). Note thatFI(1)={1} andΓ1=τ .

• If
n:〈Γ ⊢ τ〉

n+1:〈ω .Γ ⊢ τ〉
, then by IH one has|Γ| = sup(n) = n, Γn 6= ω and ∀1 ≤ i < n, Γi = ω .

Thus, |ω .Γ| = 1+ |Γ| = n+1 = sup(n+1), (ω .Γ)n+1 = Γn 6= ω , (ω .Γ)1 = ω and∀1 ≤ i < n,
(ω .Γ)i+1 = Γi = ω .

• Let
M :〈u.Γ ⊢ σ〉

λ .M :〈Γ ⊢ u→σ 〉
. By IH, |u.Γ| = sup(M) and∀0≤ i ≤ sup(M)−1, (u.Γ)i+1 6= ω iff i+1∈

FI(M). Hence,sup(M) = 1+|Γ| > 0 and, by Lemma 1.2,sup(λ .M) = sup(M)−1 = |Γ|. By
Definition 2,∀1 ≤ i ≤ sup(λ .M), i ∈FI(λ .M) iff i+1∈FI(M), thus,(u.Γ)i+1 = Γi 6= ω iff i ∈
FI(λ .M).

• Let
M :〈nil ⊢ σ〉

λ .M :〈nil ⊢ ω →σ〉
. By IH one has|nil |=sup(M)=0. Thus, by Lemma 1.2,sup(λ .M)=

sup(M)= |nil |. Note thatFI(M)=FI(λ .M)= /0.

D. Ventura & M. Ayala-Rincón & F. Kamareddine 73

• Let
M1 :〈Γ ⊢ ω →τ〉 M2 :〈∆ ⊢ σ〉

(M1 M2) :〈Γ∧∆ ⊢ τ〉
. By IH, |Γ|=sup(M1), ∀1≤ i ≤|Γ| one hasΓi 6= ω iff i ∈

FI(M1), |∆| = sup(M2) and∀1 ≤ j ≤ |∆| one has∆ j 6= ω iff j ∈FI(M2). By Lemma 1.1 one
hassup((M1 M2)) = max(sup(M1),sup(M2))=max(|Γ|, |∆|) = |Γ∧∆|. Let 1≤ l ≤ |Γ∧∆| and
suppose w.l.o.g. thatl ≤ |Γ|, |∆|. Thus,(Γ∧∆)l = Γl ∧∆l 6=ω iff Γl 6=ω or ∆l 6=ω iff l ∈FI(M1) or
l ∈FI(M2) iff l ∈FI(M1)∪FI(M2)=FI((M1 M2)).

• Let
M1 :〈Γ ⊢ ∧n

k=1σk→τ〉 M2 :〈∆1 ⊢ σ1〉 . . . M2 :〈∆n ⊢ σn〉

(M1 M2) :〈Γ∧∆1∧ ·· ·∧∆n ⊢ τ〉
. By IH, |Γ| = sup(M1), ∀1≤ i ≤

|Γ| one hasΓi 6= ω iff i∈FI(M1) and∀1≤k≤n, |∆k| = sup(M2) and∀1≤ j ≤|∆k| one has∆k
j 6=

ω iff j ∈FI(M2). Let ∆′ = ∆1∧ ·· · ∧∆n. Thus,|∆′| = sup(M2) and∀1≤ j ≤|∆′|, ∆′
j 6= ω iff j ∈

FI(M2). The proof is analogous to the one above.

Note that, by Lemma 4 above, systemSM is not only relevant but there is a strict relation between
the free indices of terms and the length of contexts in their typings. Following, a generation lemma is
presented for typings inSMand some specific forSMr

Lemma 5 (Generation). 1. If n:〈Γ ⊢SM τ〉, thenΓn=τ .

2. If n:〈Γ ⊢SMr τ〉, thenτ = σ1 → ··· → σk→α for k≥ 0.

3. If λ .M : 〈nil ⊢SM τ〉, then eitherτ = ω → σ and M: 〈nil ⊢ σ〉 or τ =∧n
i=1σi → σ , n > 0, and

M :〈∧n
i=1σi.nil ⊢SM σ〉 for someσ ,σ1, . . . ,σn∈T .

4. If λ .M :〈Γ ⊢SM τ〉 and |Γ|> 0, thenτ =u→σ for some u∈U andσ ∈T , where M:〈u.Γ ⊢SM σ〉.

5. If n M1 · · ·Mm : 〈Γ ⊢SMr τ〉, then Γ = (ω n−1 .σ1 → ··· → σm→τ .nil)∧ Γ1∧ ·· ·∧Γm, ∀1≤ i ≤m,
Mi :〈Γi ⊢SMr σi〉 andτ = σm+1 → ··· → σm+k→α .

Proof. 1. By induction on the derivationn:〈Γ ⊢SM τ〉. Note that(ω .Γ)n+1 = Γn.

2. By induction on the derivationn:〈Γ ⊢SMr τ〉.
3. By case analysis on the derivationλ .M :〈nil ⊢SM τ〉.
4. By case analysis on the derivationλ .M :〈Γ ⊢SM τ〉, for |Γ|> 0.

5. By induction onm.

If m = 0, then, by Lemma 5.2,τ = σ1 → ··· → σk → α . Thus, by Lemmas 4 and 5.1,Γ =
ω n−1 .τ .nil .

If m= m′+1, then by case analysis the last step of the derivation is

n M1 · · ·Mm′ :〈Γ ⊢ ∧l
j=1τ j →τ〉 Mm′+1 :〈∆1 ⊢ τ1〉 . . . Mm′+1 :〈∆l ⊢ τl 〉

(n M1 · · ·Mm′ Mm′+1) :〈Γ∧∆1∧ ·· ·∧∆l ⊢ τ〉

By IH, Γ=(ω n−1 .σ1 → ··· → σm′→(∧l
j=1τ j →τ).nil)∧Γ1∧ ·· ·∧Γm′

, ∀1≤ i≤m′, Mi :〈Γi ⊢SMr σi〉

and∧l
j=1τ j → τ =σm′+1 → ··· → σm′+k→α . Therefore,τ = σm′+2 → ··· → σm+k→α , l =1 and

τ1=σm′+1. Hence, takingΓm′+1 = ∆1 andσm′+1 = τ1, the result holds.

Following, we will give counterexamples to show that neither subject expansion nor reduction holds.

Example 1. In order to have the subject expansion property, we need to prove the statement: If{1/N}M :
〈Γ ⊢ τ〉 then((λ .M N)) : 〈Γ ⊢ τ〉. Let M≡ λ .1 and N≡ 3, hence{1/3}λ .1= λ .1. We have that, by
generation lemmas,λ .1: 〈nil ⊢ α →α〉. Thus,λ .λ .1: 〈nil ⊢ ω →α →α〉 and 3: 〈ω .ω .β .nil ⊢ β 〉, then
(λ .λ .1 3) :〈ω .ω .β .nil ⊢ α →α〉.

74 PT in a Restricted Intersection Type System for Beta Normal Forms with dB Indices

For subject reduction, we need the statement: If((λ .M N)) : 〈Γ ⊢ τ〉 then{1/N}M : 〈Γ ⊢ τ〉. Note
that if we takeM andN as in the example above, we have the same problem as before butin the other
way round. In other words, we have a restriction on the original context after theβ -reduction, since we
loose the typing information regardingN ≡ 3.

One possible solution for those problems is to replace rule→′
e by

M :〈Γ ⊢ ω →τ〉
(M N) :〈Γ ⊢ τ〉

This approach was originally presented in [29], but a new notion replacing free index should be
introduced since we would not have the typing information for all free indices occurring in a term. In
[29], and in [30], no notion is presented instead of the usualfree variables, which is wrongly used to state
things that are not actually true.

The other way to achieve the desired properties is to think about the meaning of the properties itself.
Since, by Lemma 4, the system is related to relevant logic (see [14]), the notion of restriction of contexts
is an interesting way to talk about subject reduction. This concept was presented in [16] for environments,
where environments expansion was also introduced for the sake of subject expansion. Note that this
approach is not sufficient to regain subject expansion for systemSM, since in rule→′

e it is required that
the term being applied is also typeable.

Even though, anyβ -nf is typeable with systemSMr . We introduce the type inference algorithm
Infer for β -nfs, similarly to [28].

Definition 7 (Type inference algorithm). Let N be aβ -nf:

Infer(N) =

Case N = n
let α be a fresh type variable
return (ω n−1 .α.nil ,α)

Case N = λ .N′

let (Γ′,σ) = Infer(N′)
if (Γ′ = u.Γ) then
return (Γ,u→σ)
else
return (nil ,ω →σ)

Case N = (nN1 · · · Nm)
let (Γ1,σ1) = Infer(N1)

...
(Γm,σm) = Infer(Nm)
α be a fresh type variable

return ((ω n−1 .σ1 → ··· → σm→α.nil)∧Γ1∧·· ·∧Γm,α)

Similarly to [28], the notion offresh type variablesis used to prove completeness. The freshness of a
variable is to guarantee that each time some type variable ispicked up fromA it is a new one. Therefore,
two non overlapped calls toInfer return pairs with disjoints sets of type variables. Below, arunnig
example of how the algorithm is applied is presented.

Example 2. Let N≡ 2 (λ .1) 1 λ .(1 1). For Infer(N), the term N matches the third case, for n= 2.
The algorithm is then called recursively as follows

(Γ1,σ1) = Infer(λ .1)
(Γ2,σ2) = Infer(1)

(Γ3,σ3) = Infer(λ .(1 1))

D. Ventura & M. Ayala-Rincón & F. Kamareddine 75

Below, we show how each call is treated by the algorithm.
The caseInfer(λ .1) goes down recursively to obtainInfer(1) = (α1.nil ,α1) and then one has

thatInfer(λ .1) = (nil ,α1→α1).
The caseInfer(1) returns(α2.nil ,α2). Note that we have to take a different type variable from the

one used in the previous case.
The caseInfer(λ .(1 1)) goes down recursively to returnInfer(1) = (α3.nil ,α3), for the subterm

1 on the right. For a fresh type variableα4, one has thatα3→α4.nil ∧α3.nil = (α3→α4)∧α3.nil.
Hence,Infer(1 1) = ((α3→α4)∧α3.nil ,α4). Finally, Infer(λ .(1 1)) = (nil ,(α3→α4)∧α3 → α4).

Now, letτ = (α1→α1)→ α2 → ((α3→α4)∧α3 → α4)→α5 for the fresh type variableα5. One
has that(ω .τ)∧nil ∧ (α2.nil)∧nil = α2.τ .nil. Therefore,Infer(N) = (α2.τ .nil ,α5).

Theorem 1(Soundness). If N is a β -nf andInfer(N) = (Γ,σ), then N:〈Γ ⊢SMr σ〉.

Proof. By structural induction onN.

• If N ≡ n thenInfer(n) = (ω n−1 .α .nil ,α). By rule varr , 1:〈α .nil ⊢ α〉 and, by rule varn applied
n−1 times,n:〈ω n−1 .α .nil ⊢ α〉.

• Let N ≡ λ .N′. If (Γ′,σ)= Infer(N′) then, by IH one hasN′ : 〈Γ′ ⊢ σ〉. Thus, if Γ′=u.Γ then
Infer(λ .N′)=(Γ,u→σ) and, by rule→i, λ .N′ : 〈Γ ⊢ u→σ〉, otherwise one hasInfer(λ .N′)=
(nil ,ω →σ) and, by rule→′

i, λ .N′ :〈nil ⊢ ω →σ〉.

• Let N ≡ nN1 · · ·Nm. If ∀1≤i≤m, (Γi ,σi)= Infer(Ni) then, by IH,∀1≤i≤m, Ni : 〈Γi ⊢ σi〉. Let
∆ = ω n−1 .σ1 → ··· → σm→α .nil . HenceInfer(N) = (∆∧Γ1∧ ·· ·∧Γm,α) for some fresh type
variableα . By rule varr and by rule varnn−1-times, n : 〈∆ ⊢ σ1 → ··· → σm→α〉 and, by rule
→e m-times,N :〈∆∧Γ1∧ ·· ·∧Γm⊢ α〉.

Note that, since the choice of the new type variables is not fixed, Infer is well defined up to the
name of type variables.

Corollary 1. If N is a β -nf then N is typeable in system SMr .

Theorem 2 (Completeness). If N : 〈Γ ⊢SMr σ〉, N a β -nf, then for(Γ′,σ ′) = Infer(N) exists a type
substitution s such that s(Γ′) = Γ and s(σ ′) = σ .

Proof. By structural induction onN

• Let N ≡ n. If n: 〈Γ ⊢ σ〉 then, by Lemmas 4 and 5.1,Γ=ω n−1 .σ .nil . One has thatInfer(n) =
(ω n−1 .α .nil ,α), then takes= [α/σ].

• Let N ≡ λ .N′ and suppose thatλ .N′ :〈Γ ⊢ σ〉.

If Γ= nil , then by Lemma 5.3 eitherσ =ω → τ and N′ : 〈nil ⊢ τ〉 or σ =∧n
j=1σ j → τ and N′ :

〈∧n
j=1σ j .nil ⊢ τ〉. The former, by IH,Infer(N′)= (Γ′,τ ′) and there existss s.t. s(τ ′)= τ and

s(Γ′)=nil , thusΓ′=nil . Hence,Infer(λ .N′)=(nil ,ω → τ ′) ands(ω → τ ′)=s(ω)→s(τ ′)=σ .
The latter, by IH,Infer(N′)=(Γ′,τ ′) and there existsss.t. s(τ ′)=τ ands(Γ′)=∧n

j=1σ j .nil . Then
Γ′=u.nil for s(u)=∧n

j=1σ j , henceInfer(λ .N′)=(nil ,u→τ ′) ands(u→τ ′)=s(u)→s(τ ′)=σ .

Otherwise, by Lemma 5.4,σ =u→τ andN′ :〈u.Γ ⊢ τ〉. The proof is analogous to the one above.

• Let N ≡ (nN1 · · · Nm). If nN1 · · ·Nm:〈Γ ⊢ σ〉 then, by Lemma 5.5,∀1≤ i≤m, Ni :〈Γi ⊢ σi〉 s.t. Γ=
(ω n−1 .σ1 → ··· → σm→σ .nil)∧Γ1∧ ·· ·∧Γm. By IH, ∀1≤ i≤m, Infer(Ni)=(Γi′ ,σ ′

i) and there
is asi s.t. si(σ ′

i)=σi andsi(Γi′)=Γi . One has thatInfer(N)=((ω n−1 .σ ′
1 → ··· → σ ′

m→α .nil)∧
Γ1′∧ ·· ·∧Γm′

,α), for some fresh type variableα . The domain of eachsi is compounded by the
type variables returned by each call ofInfer for the correspondingNi, consequently they are
disjoint. Thus, fors=[α/σ]+s1+ · · ·+sm the result holds.

76 PT in a Restricted Intersection Type System for Beta Normal Forms with dB Indices

Hence, the pair returned byInfer for someβ -nf N is a most general typing ofN is SMr . Note that
these typings are unique up to renaming of type variables.

Corollary 2. If N is a β -nf, then(Γ,σ) = Infer(N) is a principal typing of N in SMr .

3 Characterisation of principal typings

Following, we give some characterisation of principal typings forβ -nfs, analogue to [28]. To begin with,
we introduce proper subsets ofT andU containing the pairs returned byInfer.

Definition 8. 1. LetTC, TNF andUC be defined by:

ρ ∈ TC ::= A |TNF →TC ϕ ∈ TNF ::= A |UC→TNF v ∈ UC ::= ω |UC∧UC |TC

2. LetC be the set of contextsΓ ::= nil |v.Γ such that v∈ UC. Observe thatC is closed under∧.

Lemma 6. If Infer(N) = (Γ,σ), N aβ -nf, then(Γ,σ) ∈ C×TNF.

Proof. By structural induction onN.

Definition 9. Let Im(Infer) be defined as the set of pairs(Γ,σ) = Infer(N) for someβ -nf N.

Corollary 3. Im(Infer)⊆ C×TNF.

We use the usual notion ofpositive and negative occurrences of type variables and offinal oc-
currences for elementsu ∈ U (see [21]). For contexts, the positive and negative occurrences are the
respective occurrences in the types forming the contexts’ sequences.

Definition 10. LetΓ∈C andϕ ∈TNF. TheC -typesT are defined by: T::= Γ⇒ϕ |∆⇒ s.t.|∆|> 0

Note that, for anyβ -nf N, Infer(N) has a unique correspondingC -type TN. The corresponding
A-types in [28] are defined by taking the set of multisets associated to an environment and transforming
them in a single multiset used on the left hand of⇒. Thus, for an environmentA and typeτ , A⇒ τ is
theA-type withA being the multiset obtained fromA. On Definition 10 above the sequential structure of
contexts are preserved.

Definition 11. Let T= Γ⇒ϕ be aC -type, T′ is held in T if T ′ = Γ′⇒ or Γ′⇒ϕ , such thatΓ = Γ′∧∆
for Γ′ 6= ω n and some context∆. If T ′ 6= T then T′ is strictly held in T .

Observe that on Definition 11 above we have thatΓ′ can benil for T ′ = Γ′⇒ϕ and∆ = ω n for any
n≤ |Γ| whenΓ′ = Γ.

Definition 12. The set L(T) of theleft subtypesfor someC -type T is defined by structural induction:

- L(Γ⇒) = L(Γ).

- L(Γ⇒ϕ) = L(Γ)∪L(ϕ).

- L(v.Γ) = {v}∪L(Γ) if v 6= ω and L(Γ) otherwise.

- L(nil) = /0.

- L(v→ϕ) = {v}∪L(ϕ) if v 6= ω and L(ϕ) otherwise.

- L(α) = /0.

The notion of sign of occurrences for type variable are straightforward extended toC -types, where
the polarity changes on the left side of⇒. We have thatTV(Γ⇒ϕ) = TV(Γ)∪TV(ϕ).

D. Ventura & M. Ayala-Rincón & F. Kamareddine 77

Definition 13. A C -type T isclosed if each α ∈ TV(T) has exactly one positive and one negative
occurrences in T .

Lemma 7. 1. v.Γ⇒ϕ is closed iffΓ⇒v→ϕ is closed.

2. nil⇒ϕ is closed iff nil⇒ω →ϕ is closed.

3. If ∀1≤ i ≤m, Ti = Γi ⇒ϕi is closed and TV(Ti) are pairwise disjoint then, for any fresh type
variableα , (ω n−1.ϕ1 → ··· → ϕm→α .nil)∧Γ1∧ ·· ·∧Γm⇒α is closed.

Proof. 1. Let T = v.Γ⇒ϕ andT ′ = Γ⇒ v→ϕ. Note thatTV(T) = TV(T ′) and that the sign for
type variable occurrences inv for bothT andT ′ are exactly the same.

2. analogous to the proof above.

3. Let T = (ω n−1.ϕ1 → ··· → ϕm→α .nil)∧Γ1∧ ·· ·∧Γm⇒α . SinceTV(Ti) are pairwise disjoint,
TV(T)=∪m

i=1TV(Ti)∪{α} andT has exactly two occurrences of each type variable. Note that
∀1≤i≤m the type variable occurrences inΓi andϕi have exactly the same sign on bothTi andT
and thatα has one positive and one negative occurrence inT. Hence,T is closed.

Definition 14. A C -type T= Γ⇒ϕ is finally closed, f.c. for short, if the final occurrence ofϕ is also
the final occurrence of a type in L(T).

Lemma 8. 1. v.Γ⇒ϕ is finally closed iffΓ⇒v→ϕ is finally closed.

2. nil⇒ϕ is finally closed iff nil⇒ω →ϕ is finally closed.

Proof. 1. Let T = v.Γ⇒ϕ and T ′ =Γ⇒ v→ϕ . The final occurrence ofv→ϕ is the same as of
ϕ . If v 6=ω , by Definition 12,L(T)=L(v.Γ)∪L(ϕ)={v}∪L(Γ)∪L(ϕ)=L(Γ)∪L(v→ϕ)=L(T ′).
Otherwise,L(T)=L(ω .Γ)∪L(ϕ)=L(Γ)∪L(ϕ)=L(Γ)∪L(ω→ϕ)=L(T ′). Hence,T is f.c. iff T ′ is
f.c.

2. analogous to the proof above.

Definition 15. A C -type T isminimally closed, m.c. for short, if there is no closed T′ strictly held in T .

Lemma 9. 1. If v.Γ⇒ϕ is m.c. for v6= ω , thenΓ⇒v→ϕ is m.c.

2. ω .Γ⇒ϕ is m.c. iffΓ⇒ω→ϕ is m.c.

3. nil⇒ϕ is m.c. iff nil⇒ω →ϕ is m.c.

4. If ∀1≤ i≤m, Ti = Γi⇒ϕi is m.c. and TV(Ti) are pairwise disjoint then, for any fresh type variable
α , T = (ω n−1.ϕ1 → ··· → ϕm→α .nil)∧Γ1∧ ·· ·∧Γm⇒α is m.c..

Proof. 1. Let T = v.Γ⇒ϕ be m.c. forv 6=ω and letT ′ = Γ⇒v→ϕ . Let T ′′ be strictly held inT ′.
If T ′′ = Γ′⇒v→ϕ thenT ′′′ = v.Γ′⇒ϕ is strictly held inT. By Lemma 7.1,T ′′ is closed iffT ′′′

is closed. Thus, sinceT is m.c.,T ′′ cannot be closed. IfT ′′=Γ′⇒ then one has similarly thatT ′′

cannot be closed. Hence,T ′ is m.c..

2. Let T be strictly held inω .Γ⇒ϕ . One has thatT = ω .Γ′ ⇒ϕ is strictly held inω .Γ⇒ϕ iff
T ′ = Γ′⇒ω →ϕ is strictly held inΓ⇒ω →ϕ. There is a correspondingT ′ for T = nil ⇒ϕ and
for T = ω .Γ′⇒ . Therefore, by Lemma 7.1, there is a closedT strictly held inω .Γ⇒ϕ iff there is
a closedT ′ strictly held inΓ⇒ω →ϕ.

3. analogous to the proof above.

78 PT in a Restricted Intersection Type System for Beta Normal Forms with dB Indices

4. LetT ′ be held inT defined above and suppose thatT ′ is closed. IfT ′ = Γ′⇒ then, since|Γ′|>0,
Γ′ = ∆i ∧Γ′′ for somei s.t. Γi = ∆i ∧∆′, |∆i|>0. Note thatTV(Γi) are pairwise disjoint, thus
if ∆i 6=Γi (∆′ 6=nil) then∆i ⇒ would be closed and strictly held inT i. Hence,∆i =Γi (∆′=nil)
and similarlyϕ1 → ··· → ϕm→α must be inΓ′, giving a non closedC -type T ′. If T ′ = Γ′⇒
α then with a similar argument one has thatΓ′=(ω n−1.ϕ1 → ··· → ϕm→α .nil)∧Γ1∧ ·· ·∧Γm.
Therefore,T ′ is closed iffT is closed andT ′=T. Hence,T is m.c.

Definition 16. A C -type T is calledcompleteif T is closed, finally closed and minimally closed.

Lemma 10. 1. If v.Γ⇒ϕ is complete for v6= ω thenΓ⇒v→ϕ is complete.

2. ω .Γ⇒ϕ is complete iffΓ⇒ω →ϕ is complete.

3. nil⇒ϕ is complete iff nil⇒ω →ϕ is complete.

4. If ∀1≤i≤m, Ti = Γi ⇒ϕi is complete and TV(Ti) are pairwise disjoint then, for any fresh type
variableα , T = (ω n−1.ϕ1 → ··· → ϕm→α .nil)∧Γ1∧ ·· ·∧Γm⇒α is complete.

Proof. 1. By Lemmas 7.1, 8.1 and 9.1.

2. By Lemmas 7.1, 8.1 and 9.2.

3. By Lemmas 7.2, 8.2 and 9.3.

4. By Lemmas 7.3 and 9.4 one has that theT described above is respectively closed and m.c. Note
that(ϕ1 → ··· → ϕm→α)∧ (Γ1∧ ·· ·∧Γm)n∈L(T), thusT is f.c.

Lemma 11. If N is a β -nf then TN is complete.

Proof. By structural induction onN.

• Let N ≡ n. One has thatInfer(N) = (ω n−1 .α .nil ,α), henceTN = ω n−1 .α .nil ⇒α . Note that
L(TN) = {α}. Thus,TN is closed and finally closed. The only twoC -types strictly held inTN are
ω n−1 .α .nil ⇒ andnil ⇒α which are not closed, henceTN is minimally closed.

• Let N ≡ λ .N′. If (Γ′,ϕ)=Infer(N′) then, by IH,TN′
=Γ′⇒ϕ is complete.

If Γ′=v.Γ thenInfer(λ .N′)=(Γ,v→ϕ) andTN=Γ⇒v→ϕ. If v 6=ω , then by Lemma 10.1TN

is complete. Otherwise, by Lemma 10.2,TN is complete.

If Γ′=nil thenInfer(λ .N′)=(nil ,ω →ϕ) and, by Lemma 10.3,TN is complete.

• Let N ≡ nN1 · · ·Nm. If ∀1≤i≤m, (Γi ,ϕi)=Infer(Ni) then, by IH,TNi is complete. Observe that
TV(TNi) are pairwise disjoint because they correspond to disjoint calls of Infer. One has that
Infer(N)= ((ω n−1 .ϕ1 → ··· → ϕm→α .nil)∧Γ1∧ ·· ·∧Γm,α), for some fresh type variableα .
Thus, by Lemma 10.4,TN is complete.

Note that on items 1 and 4 in Lemma 10 we only havesufficiencyproofs. Following we give coun-
terexamples for eachnecessarycondition.

Example 3. Let T = Γ⇒ϕ be complete. Then, for any freshα ∈A , take T′ = Γ⇒ (α →α)→ϕ .
Therefore, T′ is complete butα →α .Γ⇒ϕ is not m.c.

Example 4. Let T=β1→(β2→β3)→β4.(β1→β4)→(β3→β2)→α .nil ⇒α . Note that T is complete
but there is no such a partition of completeC -types.

Hence, to have completeC -types which satisfy thosenecessaryconditions, we present the notion of
principalC -types, as done in [28].

D. Ventura & M. Ayala-Rincón & F. Kamareddine 79

Definition 17. Let T be a completeC -type. T is called principal if:

- T = ω n−1 .α .nil ⇒α .

- T = nil ⇒ω →ϕ and nil⇒ϕ is principal.

- T = Γ⇒v→ϕ such that eitherΓ 6= nil or v 6= ω and v.Γ⇒ϕ is principal.

- T =Γ⇒α and there areΓ1, . . . ,Γm∈C and n∈N∗ such thatΓ=(ω n−1 .ϕ1 → ··· → ϕm→α .nil)∧
Γ1∧ ·· ·∧Γm and∀1≤i≤m,Γi ⇒ϕi is principal.

Observe that in Definition 17 above we explicitly require theexistence of the corresponding partition
in the caseT =Γ⇒α for Γ 6=ω n−1 .α .nil and thatv.Γ⇒ϕ is also principal thus complete forT=Γ⇒
v→ϕ such thatΓ 6=nil or v 6=ω . Although we have that, by Lemma 10.2,T=nil ⇒ω →ϕ is complete iff
T ′=nil ⇒ϕ is complete, this case has to be defined similarly. If in Definition 17 we only have instead:
“T = nil ⇒ω →ϕ” then we would guarantee only the completeness ofT ′, letting a counterexample as
in Example 3 to be presented.

Lemma 12. If N is a β -nf then TN is principal.

Proof. By structural induction onN. By Lemma 11,TN is complete:

• If N ≡ n thenTN = ω n−1 .α .nil ⇒α .

• Let N ≡ λ .N′ andTN′
=Γ′⇒ϕ . By IH TN′

is principal.

If Γ′=v.Γ thenTλ .N′
=Γ⇒v→ϕ. If Γ=nil then, by Lemma 4,v 6=ω . Hence,Tλ .N′

is principal.

OtherwiseTλ .N′
=nil ⇒ω →ϕ, henceTλ .N′

is principal.

• Let N ≡ nN1 · · ·Nm and∀1≤i≤m, TNi = Γi ⇒ϕi. Hence, for some fresh type variableα , TN =
(ω n−1 .ϕ1 → ··· → ϕm→α .nil)∧Γ1∧ ·· ·∧Γm⇒α and, by IH,TNi is principal∀1≤i≤m. Thus,
TN is principal.

Therefore, the syntactic definition of principalC -types contains the PT forβ -nfs returned byInfer.

Definition 18. LetP = {(Γ,ϕ) ∈ C×TNF |Γ⇒ϕ is principal}.

In other words, by Lemma 12 and analogously to [28]:Im(Infer)⊆ P

Definition 19. Let FO(α ,Γ) = {(i,Γi) |α is the final occurrence ofΓi ,∀1≤i≤|Γ|}.

The setFO(α ,Γ) for T = Γ⇒α principal, specifically closed and finally closed, has properties used
in the reconstruction algorithm’s definition.

Lemma 13. Let T= Γ⇒α be aC -type. If T is finally closed then FO(α ,Γ) 6= /0. If T is also closed then
FO(α ,Γ) has exactly one element(i,v), s.t. v= (ϕ1 → ··· → ϕm→α)∧v′, for m≥ 0 andα /∈ TV(v′).

Proof. Let T=Γ⇒α . By Definition 12,L(T)={Γi 6=ω ,∀1≤i≤|Γ|}, hence ifT is f.c. then at least one
element ofΓ hasα as its final occurrence. Let(i,v)∈FO(α ,Γ). If T is also closed thenΓ has exactly one
positive occurrence ofα , henceα occurs uniquely inv=Γi . Note thatv∈UC. If v∈TC then by induction
on its structurev=ϕ1 → ··· → ϕm→α for m≥0 (v=α if m=0). Otherwise,v= v1∧ v2 andα occurs
positively either inv1 or in v2. Thus, by induction on the structure of elements inUC, commutativity and
associativity of∧, the result holds.

We introduce the algorithmRecon, to reconstruct aβ -nf N from (Γ,ϕ) ∈ P such thatInfer(N) =
(Γ,ϕ), similar to the algorithm introduced in [28].

80 PT in a Restricted Intersection Type System for Beta Normal Forms with dB Indices

Definition 20 (Reconstruction algorithm). .
Recon(Γ,τ) =

Case (nil ,α)
fail

Case (Γ,α)
let {(i1,u1), . . . ,(im,um)} = FO(α,Γ)
if m= 1 and u1 = (τ1 → ··· → τn→α)∧u′ s.t. α /∈TV(u′)

then if ∀1≤i≤n there isΓi s.t. Γ = Γi ∧Xi andΓi ⇒τi is principal
then let (N1,∆1) = Recon(Γ1,τ1)

...
(Nn,∆n) = Recon(Γn,τn)

∆′ = ω i1−1.τ1 → ··· → τn→α.nil
Γ′ = ∆′∧Γ1∧·· ·∧Γn

Γ = Γ′∧∆, s.t.∆ 6= ω j , ∀1≤ j≤|Γ|
return (i1N1 · · · Nn,∆∧∆1∧·· ·∧∆n)
else fail

else fail
Case (Γ,u→τ)

if Γ = nil and u= ω
then let (N,∆) = Recon(nil ,τ)
else let(N,∆) = Recon(u.Γ,τ)

if ∆ = nil
then return (λ .N,∆)
else fail

Lemma 14. Let (Γ,ϕ) ∈ P. ThenRecon(Γ,ϕ) = (N,nil), N aβ -nf such thatInfer(N) = (Γ,ϕ).

Proof. By recurrence on the number of calls toRecon.
• Case(Γ,α). Let T = Γ⇒α .

By hypothesis(Γ,α) ∈ P, thusT is principal and in particular closed and f.c.. By Lemma 13,
FO(α ,Γ)={(i,(ϕ1 → ··· → ϕm→α)∧ v′)} whereα /∈ TV(v′). SinceΓi is the only occurrence
of α in Γ, Γ=(ω i−1.ϕ1 → ··· → ϕm→α .nil)∧∆′′ s.t. α /∈TV(∆′′).
If m= 0, then inRecon one hasΓ′ =∆′ =ω i−1.α .nil , henceT =Γ′∧∆′′⇒α . T is m.c., thus
∆′′ = nil andΓ = Γ′. Then,Recon(Γ,α) = (i ,nil) andInfer(i) = (ω i−1 .α .nil ,α).
Otherwise, there areΓ1, . . . ,Γm andn∈N

∗ s.t. Γ = (ω n−1 .ϕ1 → ··· → ϕm→α .nil)∧Γ1∧ ·· ·∧Γm

and∀1≤ j≤m, Γ j ⇒ϕ j is principal. Hence,n= i and by IH∀1≤ j≤m, Recon(Γ j ,ϕ j) = (Nj ,nil),
Nj a β -nf s.t. Infer(Nj) = (Γ j ,ϕ j). Hence inRecon one has thatΓ=Γ′, consequently∆=nil .
Then,Recon(Γ,α)=(i N1 · · · Nm,nil) andInfer(i N1 · · ·Nm)=((ω i−1 .ϕ1 → ··· → ϕm→α .nil)∧
Γ1∧ ·· ·∧Γm,α).

• Case(Γ,v→ϕ). Let T = Γ⇒v→ϕ .

By hypothesis(Γ,v→ϕ) ∈ P, thusT is principal.
If Γ = nil andv= ω thenT ′ = nil ⇒ϕ is principal and, by IH,Recon(nil ,ϕ) = (N,nil), N a β -nf
s.t.Infer(N) = (nil ,ϕ). Thus,Recon(nil ,ω →ϕ) = (λ .N,nil) andInfer(λ .N) = (nil ,ω →ϕ).
Otherwise,T ′=v.Γ⇒ϕ is principal. By IH,Recon(v.Γ,ϕ)=(N,nil), N a β -nf s.t. Infer(N)=
(v.Γ,ϕ). Hence,Recon(Γ,v→ϕ) = (λ .N,nil) andInfer(λ .N) = (Γ,v→ϕ).

Observe that, by Lemma 14, we have that:P ⊆ Im(Infer). Thus,P is the set of all, and only,
principal typings forβ -nfs in SMr . Therefore,P = Im(Infer).

D. Ventura & M. Ayala-Rincón & F. Kamareddine 81

4 Conclusion

In this paper, we introduced the first intersection type system in de Bruijn indices for which the principle
typings property forβ -normal forms holds.

The restriction in the system of [28] prevents both that system and our own system presented here,
from having SR in the usual sense. This is not the case howeverfor the system of [31]. However, every
β -nf is typeable in the introduced system, as in the one in [28], a property that does not hold for the
simply typed system. We then prove the PT property forβ -nfs and a characterisation of PT is given.
This de Bruijn version of the typing system in [28] was introduced as a first step towards some extended
systems in which PT depends on more complex syntactic operations such as expansion [17].

As future work, we will introduce a de Bruijn version for systems such as the ones in [12] and [26]
and try to add similar systems to bothλσ andλse. There are works on intersection types and explicit
substitution, e.g. [22], but no work for systems where the composition of substitutions is allowed.

References

[1] M. Abadi, L. Cardelli, P.-L. Curien and J.-J. Lévy (1991): Explicit Substitutions. J. func. program., 1(4):375–
416.

[2] M. Ayala-Rincón and F. Kamareddine (2001):Unification via theλse-Style of Explicit Substitution. Logical
journal of the IGPL, 9(4):489–523.

[3] S. van Bakel (1995):Intersection Type Assignment Systems. Theoret. comput. sci., 151:385-435.

[4] H. Barendregt, M. Coppo and M. Dezani-Ciancaglini (1983): A filter lambda model and the completeness of
type assignment. J. symbolic logic, 48:931–940.

[5] H. Barendregt (1984):The Lambda Calculus: Its Syntax and Semantics. North-Holland.

[6] N.G. de Bruijn (1972): Lambda-Calculus Notation with Nameless Dummies, a Tool forAutomatic Formula
Manipulation, with Application to the Church-Rosser Theorem. Indag. Mat., 34(5):381–392.

[7] N.G. de Bruijn (1978):A namefree lambda calculus with facilities for internal definition of expressions and
segments. T.H.-Report 78-WSK-03, Technische Hogeschool Eindhoven, Nederland.

[8] S. Carlier and J. B. Wells (2004):Type Inference with Expansion Variables and Intersection Types in System
E and an Exact Correspondence withβ -reduction. In Proc. of PPDP ’04, pp. 132–143. ACM.

[9] S. Carlier and J. B. Wells (2005):Expansion: the Crucial Mechanism for Type Inference with Intersection
Types: a Survey and Explanation. In Proc. of ITRS ’04, ENTCS 136:173–202. Elsevier.

[10] M. Coppo and M. Dezani-Ciancaglini (1978):A new type assignment for lambda-terms. Archiv für mathe-
matische logik, 19:139–156.

[11] M. Coppo and M. Dezani-Ciancaglini (1980):An Extension of the Basic Functionality Theory for theλ -
Calculus. Notre dame j. formal logic, 21(4):685–693.

[12] M. Coppo, M. Dezani-Ciancaglini and B. Venneri (1980):Principal Type Schemes andλ -calculus Semantics.
In J.P. Seldin and J.R. Hindley (eds),To H.B. Curry: Essays on combinatory logic, lambda calculusand
formalism, pp. 536–560. Academic Press.

[13] H. B. Curry and R. Feys (1958):Combinatory Logic, vol. 1. North Holland.

[14] F. Damiani and P. Giannini (1994):A Decidable Intersection Type System based on Relevance. In Proc. of
TACS94, LNCS 789:707725. Springer-Verlag.

[15] J. R. Hindley (1997):Basic Simple Type Theory. Cambridge Tracts in Theoretical Computer Science, 42.
Cambridge University Press.

[16] F. Kamareddine and K. Nour (2007):A completeness result for a realisability semantics for an intersection
type system. Annals pure and appl. logic, 146:180–198.

82 PT in a Restricted Intersection Type System for Beta Normal Forms with dB Indices

[17] F. Kamareddine, K. Nour, Vincent Rahli and J.B. Wells (2009): On Realisability Semantics for Intersection
Types with Expansion variables. Submitted for Publication.

[18] F. Kamareddine and A. Rı́os (1995):A λ -calculusà la de Bruijn with Explicit Substitutions. In Proc. of
PLILP’95, LNCS 982:45–62. Springer.

[19] Fairouz Kamareddine and Alejandro Rı́os (2002): Pure Type Systems with de Bruijn Indices, Computer
Journal 45(2): 187–201.

[20] A.J. Kfoury and J.B. Wells (2004):Principality and type inference for intersection types using expansion
variables. Theoret. comput. sci., 311(1–3):1–70.

[21] J-L. Krivine (1993):Lambda-calculus, types and models. Ellis Horwood.

[22] S. Lengrand, P. Lescanne, D. Dougherty, M. Dezani-Ciancaglini and S. van Bakel (2004):Intersection types
for explicit substitutions. Inform. and comput., 189(1):17-42.

[23] R. Milner (1978): A theory of type polymorphism in programming. J. comput. and system sci., 17(3):348–
375.

[24] R. P. Nederpelt, J. H. Geuvers and R. C. de Vrijer (1994):Selected papers on Automath. North-Holland.

[25] G. Pottinger (1980):A type assignment for the strongly normalizableλ -terms. In J.P. Seldin and J. R. Hindley
(eds),To H. B. Curry: Essays on combinatory logic, lambda calculusand formalism, pp. 561–578. Academic
Press.

[26] S. Ronchi Della Rocca and B. Venneri (1984):Principal Type Scheme for an Extended Type Theory. Theoret.
comput. sci., 28:151–169.

[27] S. Ronchi Della Rocca (1988):Principal Type Scheme and Unification for Intersection TypeDiscipline.
Theoret. comput. sci., 59:181–209.

[28] E. Sayag and M. Mauny (1996):Characterization of principal type of normal forms in intersection type
system. In Proc. of FSTTCS’96, LNCS, 1180:335–346. Springer.

[29] E. Sayag and M. Mauny (1996):A new presentation of the intersection type discipline through principal
typings of normal forms. Tech. rep. RR-2998, INRIA.

[30] E. Sayag and M. Mauny (1997):Structural properties of intersection types. In Proc. of LIRA’97, pp. 167-175.
Novi Sad, Yugoslavia.

[31] D. Ventura, M. Ayala-Rincón and F. Kamareddine (2009): Intersection Type System with de Bruijn Indices.
Available athttp://www.mat.unb.br/ventura/papers/longSLALM2008.pdf - revised version to appear
in The many sides of logic. Studies in logic, College publications. London.

[32] J.B. Wells (2002):The essence of principal typings. In Proc. of ICALP 2002, LNCS, 2380:913–925.Springer.

http://www.mat.unb.br/ventura/papers/longSLALM2008.pdf

	1 Introduction
	1.1 -calculus with de Bruijn indices

	2 The type system and properties
	3 Characterisation of principal typings
	4 Conclusion

