A complete realisability semantics for intersection types and infinite expansion variables

Fairouz Kamareddine ${ }^{1}$, Karim Nour ${ }^{2}$, Vincent Rahli ${ }^{1}$, and J. B. Wells ${ }^{1}$
${ }^{1}$ ULTRA Group (Useful Logics, Types, Rewriting, and their Automation), http://www.macs.hw.ac.uk/ultra/
${ }^{2}$ Université de Savoie, Campus Scientifique, 73378 Le Bourget du Lac, France, nour@univ-savoie.fr

Abstract

Expansion was introduced at the end of the 1970s for calculating principal typings for λ-terms in intersection type systems. Expansion variables (E-variables) were introduced at the end of the 1990s to simplify and help mechanise expansion. Recently, E-variables have been further simplified and generalised to also allow calculating other type operators than just intersection. There has been much work on semantics for intersection type systems, but only one such work on intersection type systems with Evariables. That work established that building a semantics for E-variables is very challenging. Because it is unclear how to devise a space of meanings for E-variables, that work developed instead a space of meanings for types that is hierarchical in the sense of having many degrees (denoted by indexes). However, although the indexed calculus helped identify the serious problems of giving a semantics for expansion variables, the sound realisability semantics was only complete when one single E-variable is used and furthermore, the universal type ω was not allowed. In this paper, we are able to overcome these challenges. We develop a realisability semantics where we allow an arbitrary (possibly infinite) number of expansion variables and where ω is present. We show the soundness and completeness of our proposed semantics.

1 Introduction

Expansion is a crucial part of a procedure for calculating principal typings and thus helps support compositional type inference. For example, the λ-term $M=$ $(\lambda x . x(\lambda y . y z))$ can be assigned the typing $\Phi_{1}=\langle(z: a) \vdash(((a \rightarrow b) \rightarrow b) \rightarrow c) \rightarrow c\rangle$, which happens to be its principal typing. The term M can also be assigned the typing $\Phi_{2}=\left\langle\left(z: a_{1} \sqcap a_{2}\right) \vdash\left(\left(\left(a_{1} \rightarrow b_{1}\right) \rightarrow b_{1}\right) \sqcap\left(\left(a_{2} \rightarrow b_{2}\right) \rightarrow b_{2}\right) \rightarrow c\right) \rightarrow c\right\rangle$, and an expansion operation can obtain Φ_{2} from Φ_{1}. Because the early definitions of expansion were complicated [4], E-variables were introduced in order to make the calculations easier to mechanise and reason about. For example, in System E [2], the above typing Φ_{1} is replaced by $\Phi_{3}=\langle(z: e a) \vdash e((((a \rightarrow b) \rightarrow b) \rightarrow c) \rightarrow c)\rangle$, which differs from Φ_{1} by the insertion of the E-variable e at two places, and Φ_{2} can be obtained from Φ_{3} by substituting for e the expansion term:
$E=\left(a:=a_{1}, b:=b_{1}\right) \sqcap\left(a:=a_{2}, b:=b_{2}\right)$.
Carlier and Wells [3] have surveyed the history of expansion and also E-variables. Kamareddine, Nour, Rahli and Wells [12] showed that E-variables pose serious challenges for semantics. In the open problems published in the proceedings of the Lecture Notes in Computer Science symposium held in 1975 [6], it is suggested that an arrow type expresses functionality. Following this idea, a type's semantics is given as a set of closed λ-terms with behaviour related to the specification given by the type. In many kinds of semantics, the meaning of a type T is calculated by an expression $[T]_{\nu}$ that takes two parameters, the type T and a valuation ν that assigns
to type variables the same kind of meanings that are assigned to types. In that way, models based on term-models have been built for intersection type systems $[7,13$, 11] where intersection types (introduced to type more terms than in the Simply Typed Lambda Calculus) are interpreted by set-theoretical intersection of meanings. To extend this idea to types with E-variables, we need to devise some space of possible meanings for E-variables. Given that a type $e T$ can be turned by expansion into a new type $S_{1}(T) \sqcap S_{2}(T)$, where S_{1} and S_{2} are arbitrary substitutions (or even arbitrary further expansions), and that this can introduce an unbounded number of new variables (both E-variables and regular type variables), the situation is complicated.

This was the main motivation for [12] to develop a space of meanings for types that is hierarchical in the sense of having many degrees. When assigning meanings to types, [12] captured accurately the intuition behind E-variables by ensuring that each use of E-variables simply changes degrees and that each E-variable acts as a kind of capsule that isolates parts of the λ-term being analysed by the typing.

The semantic approach used in [12] is realisability semantics along the lines in Coquand [5] and Kamareddine and Nour [11]. Realisability allows showing soundness in the sense that the meaning of a type T contains all closed λ-terms that can be assigned T as their result type. This has been shown useful in previous work for characterising the behaviour of typed λ-terms [13]. One also wants to show the converse of soundness which is called completeness (see Hindley [8-10]), i.e., that every closed λ-term in the meaning of T can be assigned T as its result type. Moreover, [12] showed that if more than one E-variable is used, the semantics is not complete. Furthermore, the degrees used in [12] made it difficult to allow the universal type ω and this limited the study to the λI-calculus. In this paper, we are able to overcome these challenges. We develop a realisability semantics where we allow the full λ-calculus, an arbitrary (possibly infinite) number of expansion variables and where ω is present, and we show its soundness and completeness. We do so by introducing an indexed calculus as in [12]. However here, our indexes are finite sequences of natural numbers rather than single natural numbers.

In Section 2 we give the full λ-calculus indexed with finite sequences of natural numbers and show the confluence of $\beta, \beta \eta$ and weak head reduction on the indexed λ-calculus. In Section 3 we introduce the type system for the indexed λ-calculus (with the universal type ω). In this system, intersections and expansions cannot occur directly to the right of an arrow. In Section 4 we establish that subject reduction holds for \vdash. In Section 5 we show that subject β-expansion holds for \vdash but that subject η-expansion fails. In Section 6 we introduce the realisability semantics and show its soundness for \vdash. In Section 7 we establish the completeness of \vdash by introducing a special interpretation. We conclude in Section 8. Omitted proofs can be found in the appendix.

2 The pure $\lambda^{\mathcal{L}_{\mathbb{N}}}$-calculus

In this section we give the λ-calculus indexed with finite sequences of natural numbers and show the confluence of $\beta, \beta \eta$ and weak head reduction.

Let n, m, i, j, k, l be metavariables which range over the set of natural numbers $\mathbb{N}=\{0,1,2, \ldots\}$. We assume that if a metavariable v ranges over a set s then v_{i} and $v^{\prime}, v^{\prime \prime}$, etc. also range over s. A binary relation is a set of pairs. Let rel range over binary relations. We sometimes write x rel y instead of $\langle x, y\rangle \in$ rel. Let $\operatorname{dom}(r e l)=\{x /\langle x, y\rangle \in \operatorname{rel}\}$ and $\operatorname{ran}(r e l)=\{y /\langle x, y\rangle \in$ rel $\}$. A function is a binary relation fun such that if $\{\langle x, y\rangle,\langle x, z\rangle\} \subseteq$ fun then $y=z$. Let fun range over functions. Let $s \rightarrow s^{\prime}=\left\{\right.$ fun $/ \operatorname{dom}($ fun $) \subseteq s \wedge \operatorname{ran}($ fun $\left.) \subseteq s^{\prime}\right\}$. We sometimes write $x: s$ instead of $x \in s$.

First, we introduce the set $\mathcal{L}_{\mathbb{N}}$ of indexes with an order relation on indexes.
Definition 1. 1. An index is a finite sequence of natural numbers $L=\left(n_{i}\right)_{1 \leq i \leq l}$.
We denote $\mathcal{L}_{\mathbb{N}}$ the set of indexes and \oslash the empty sequence of natural numbers.
We let L, K, R range over $\mathcal{L}_{\mathbb{N}}$.
2. If $L=\left(n_{i}\right)_{1 \leq i \leq l}$ and $m \in \mathbb{N}$, we use $m:: L$ to denote the sequence $\left(r_{i}\right)_{1 \leq i \leq l+1}$ where $r_{1}=m$ and for all $i \in\{2, \ldots, l+1\}, r_{i}=n_{i-1}$. In particular, $k:: \oslash=(k)$.
3. If $L=\left(n_{i}\right)_{1 \leq i \leq n}$ and $K=\left(m_{i}\right)_{1 \leq i \leq m}$, we use $L:: K$ to denote the sequence $\left(r_{i}\right)_{1 \leq i \leq n+m}$ where for all $i \in\{1, \ldots, n\}, r_{i}=n_{i}$ and for all $i \in\{n+1, \ldots, n+$ $m\}, \bar{r}_{i}=m_{i-n}$. In particular, $L:: \oslash=\oslash:: L=L$.
4. We define on $\mathcal{L}_{\mathbb{N}}$ a binary relation \preceq by:
$L_{1} \preceq L_{2}$ (or $L_{2} \succeq L_{1}$) if there exists $L_{3} \in \mathcal{L}_{\mathbb{N}}$ such that $L_{2}=L_{1}:: L_{3}$.
Lemma 2. \preceq is an order relation on $\mathcal{L}_{\mathbb{N}}$.
The next definition gives the syntax of the indexed calculus and the notions of reduction.

Definition 3. 1. Let \mathcal{V} be a countably infinite set of variables. The set of terms \mathcal{M}, the set of free variables $\operatorname{fv}(M)$ of a term $M \in \mathcal{M}$, the degree function $d: \mathcal{M} \rightarrow \mathcal{L}_{\mathbb{N}}$ and the joinability $M \diamond N$ of terms M and N are defined by simultaneous induction as follows:

- If $x \in \mathcal{V}$ and $L \in \mathcal{L}_{\mathbb{N}}$, then $x^{L} \in \mathcal{M}, \operatorname{fv}\left(x^{L}\right)=\left\{x^{L}\right\}$ and $d\left(x^{L}\right)=L$.
- If $M, N \in \mathcal{M}, d(M) \preceq d(N)$ and $M \diamond N$ (see below), then $M N \in \mathcal{M}$, $\mathrm{fv}(M N)=\mathrm{fv}(M) \cup \mathrm{fv}(N)$ and $d(M N)=d(M)$.
- If $x \in \mathcal{V}, M \in \mathcal{M}$ and $L \succeq d(M)$, then $\lambda x^{L} . M \in \mathcal{M}, \operatorname{fv}\left(\lambda x^{L} . M\right)=$ $\mathrm{fv}(M) \backslash\left\{x^{L}\right\}$ and $d\left(\lambda x^{L} . M\right)=d(M)$.

2. - Let $M, N \in \mathcal{M}$. We say that M and N are joinable and write $M \diamond N$ iff for all $x \in \mathcal{V}$, if $x^{L} \in \mathrm{fv}(M)$ and $x^{K} \in \mathrm{fv}(N)$, then $L=K$.

- If $\mathcal{X} \subseteq \mathcal{M}$ such that for all $M, N \in \mathcal{X}, M \diamond N$, we write, $\diamond \mathcal{X}$.
- If $\mathcal{X} \subseteq \mathcal{M}$ and $M \in \mathcal{M}$ such that for all $N \in \mathcal{X}, M \diamond N$, we write, $M \diamond \mathcal{X}$. The \diamond property ensures that in any term M, variables have unique degrees.
We assume the usual definition of subterms and the usual convention for parentheses and their omission (see Barendregt [1] and Krivine [13]). Note that every subterm of $M \in \mathcal{M}$ is also in \mathcal{M}. We let x, y, z, etc. range over \mathcal{V} and M, N, P range over \mathcal{M} and use $=$ for syntactic equality.

3. The usual substitution $M\left[x^{L}:=N\right]$ of $N \in \mathcal{M}$ for all free occurrences of x^{L} in $M \in \mathcal{M}$ only matters when $d(N)=L$. Similarly, $M\left[x_{1}^{L_{1}}:=N_{1}, \ldots, x_{n}^{L_{n}}:=N_{n}\right]$, the simultaneous substitution of N_{i} for all free occurrences of $x_{i}^{L_{i}}$ in M only matters when for all $i \in\{1, \ldots, n\}, d\left(N_{i}\right)=L_{i}$. In a substitution, we sometimes write $\left(x_{i}^{L_{i}}:=N_{i}\right)_{n}$ instead of $x_{1}^{L_{1}}:=N_{1}, \ldots, x_{n}^{L_{n}}:=N_{n}$.
4. We take terms modulo α-conversion given by:
$\lambda x^{L} \cdot M=\lambda y^{L} .\left(M\left[x^{L}:=y^{L}\right]\right)$ where $y^{L} \notin \mathrm{fv}(M)$.
Moreover, we use the Barendregt convention (BC) where the names of bound variables differ from the free ones and where we rewrite terms so that not both λx^{L} and λx^{K} co-occur when $L \neq K$.
5. A relation rel on \mathcal{M} is compatible iff for all $M, N, P \in \mathcal{M}$:

- If M rel N and $\lambda x^{L} . M, \lambda x^{L} . M \in \mathcal{M}$ then $\left(\lambda x^{L} . M\right)$ rel $\left(\lambda x^{L} . N\right)$.
- If $M \operatorname{rel} N$ and $M P, N P \in \mathcal{M}($ resp. $P M, P N \in \mathcal{M})$, then $(M P) \operatorname{rel}(N P)$ (resp. $(P M)$ rel $(P N))$.

6. The reduction relation \triangleright_{β} on \mathcal{M} is defined as the least compatible relation closed under the rule: $\left(\lambda x^{L} . M\right) N \triangleright_{\beta} M\left[x^{L}:=N\right]$ if $d(N)=L$
7. The reduction relation \triangleright_{η} on \mathcal{M} is defined as the least compatible relation closed under the rule: $\lambda x^{L} .\left(M x^{L}\right) \triangleright_{\eta} M$ if $x^{L} \notin \mathrm{fv}(M)$
8. The weak head reduction \triangleright_{h} on \mathcal{M} is defined by:
$\left(\lambda x^{L} . M\right) N N_{1} \ldots N_{n} \triangleright_{h} M\left[x^{L}:=N\right] N_{1} \ldots N_{n}$ where $n \geq 0$
9. We let $\triangleright_{\beta \eta}=\triangleright_{\beta} \cup \triangleright_{\eta}$. For $r \in\{\beta, \eta, h, \beta \eta\}$, we denote by \triangleright_{r}^{*} the reflexive and transitive closure of \triangleright_{r} and $b y \simeq_{r}$ the equivalence relation induced by \triangleright_{r}^{*}.

Theorem 4. Let $M \in \mathcal{M}$ and $r \in\{\beta, \beta \eta, h\}$.

1. If $M \triangleright_{\eta}^{*} N$, then $N \in \mathcal{M}, \operatorname{fv}(N)=\mathrm{fv}(M)$ and $d(M)=d(N)$.
2. If $M \triangleright_{r}^{*} N$, then $N \in \mathcal{M}, \operatorname{fv}(N) \subseteq \mathrm{fv}(M)$ and $d(M)=d(N)$.

As expansions change the degree of a term, indexes in a term need to increase/decrease.

Definition 5. Let $i \in \mathbb{N}$ and $M \in \mathcal{M}$.

1. We define M^{+i} by:
$\bullet\left(x^{L}\right)^{+i}=x^{i:: L}$
$\bullet\left(M_{1} M_{2}\right)^{+i}=M_{1}^{+i} M_{2}^{+i}$
$\bullet\left(\lambda x^{L} \cdot M\right)^{+i}=\lambda x^{i:: L} \cdot M^{+i}$
2. If $d(M)=i:: L$, we define M^{-i} by:
$\bullet\left(x^{i: K}\right)^{-i}=x^{K} \quad \bullet\left(M_{1} M_{2}\right)^{-i}=M_{1}^{-i} M_{2}^{-i} \quad \bullet\left(\lambda x^{i: K} . M\right)^{-i}=\lambda x^{K} . M^{-i}$
Normal forms are defined as usual.
Definition 6. 1. $M \in \mathcal{M}$ is in β-normal form ($\beta \eta$-normal form, h-normal form resp.) if there is no $N \in \mathcal{M}$ such that $M \triangleright_{\beta} N\left(M \triangleright_{\beta \eta} N, M \triangleright_{h} N\right.$ resp.).
3. $M \in \mathcal{M}$ is β-normalising ($\beta \eta$-normalising, h-normalising resp.) if there is an $N \in \mathcal{M}$ such that $M \triangleright_{\beta}^{*} N\left(M \triangleright_{\beta \eta} N, M \triangleright_{h} N\right.$ resp. $)$ and N is in β-normal form ($\beta \eta$-normal form, h-normal form resp.).

Theorem 7 (Confluence). Let $M, M_{1}, M_{2} \in \mathcal{M}$ and $r \in\{\beta, \beta \eta, h\}$.

1. If $M \triangleright_{r}^{*} M_{1}$ and $M \triangleright_{r}^{*} M_{2}$, then there is M^{\prime} such that $M_{1} \triangleright_{r}^{*} M^{\prime}$ and $M_{2} \triangleright_{r}^{*} M^{\prime}$.
2. $M_{1} \simeq_{r} M_{2}$ iff there is a term M such that $M_{1} \triangleright_{r}^{*} M$ and $M_{2} \triangleright_{r}^{*} M$.

3 Typing system

This paper studies a type system for the indexed λ-calculus with the universal type ω. In this type system, in order to get subject reduction and hence completeness, intersections and expansions cannot occur directly to the right of an arrow (see \mathbb{U} below).

The next two definitions introduce the type system.
Definition 8. 1. Let a countably infinite set \mathcal{A} of atomic types and $\mathcal{E}=\left\{e_{0}, e_{1}, \ldots\right\}$ a countably infinite set of expansion variables. We define sets of types \mathbb{T} and \mathbb{U}, such that $\mathbb{T} \subseteq \mathbb{U}$, and a function $d: \mathbb{U} \rightarrow \mathcal{L}_{\mathbb{N}}$ by:

- If $a \in \mathcal{A}$, then $a \in \mathbb{T}$ and $d(a)=\oslash$.
- If $U \in \mathbb{U}$ and $T \in \mathbb{T}$, then $U \rightarrow T \in \mathbb{T}$ and $d(U \rightarrow T)=\oslash$.
- If $L \in \mathcal{L}_{\mathbb{N}}$, then $\omega^{L} \in \mathbb{U}$ and $d\left(\omega^{L}\right)=L$.
- If $U_{1}, U_{2} \in \mathbb{U}$ and $d\left(U_{1}\right)=d\left(U_{2}\right)$, then $U_{1} \sqcap U_{2} \in \mathbb{U}$ and $d\left(U_{1} \sqcap U_{2}\right)=$ $d\left(U_{1}\right)=d\left(U_{2}\right)$.
$-U \in \mathbb{U}$ and $e_{i} \in \mathcal{E}$, then $e_{i} U \in \mathbb{U}$ and $d\left(e_{i} U\right)=i:: d(U)$.
Note that d remembers the number of the expansion variables e_{i} in order to keep a trace of these variables.
We let T range over \mathbb{T}, and U, V, W range over \mathbb{U}. We quotient types by taking \sqcap to be commutative (i.e. $U_{1} \sqcap U_{2}=U_{2} \sqcap U_{1}$), associative (i.e. $U_{1} \sqcap\left(U_{2} \sqcap U_{3}\right)=$ $\left(U_{1} \sqcap U_{2}\right) \sqcap U_{3}$) and idempotent (i.e. $U \sqcap U=U$), by assuming the distributivity of expansion variables over \sqcap (i.e. $e_{i}\left(U_{1} \sqcap U_{2}\right)=e_{i} U_{1} \sqcap e_{i} U_{2}$) and by having ω^{L} as a neutral (i.e. $\omega^{L} \sqcap U=U$). We denote $U_{n} \sqcap U_{n+1} \ldots \sqcap U_{m}$ by $\sqcap_{i=n}^{m} U_{i}$ (when $n \leq m$). We also assume that for all $i \geq 0$ and $K \in \mathcal{L}_{\mathbb{N}}, e_{i} \omega^{K}=\omega^{i:: K}$.

Fig. 1. Typing rules / Subtyping rules
2. We denote $e_{i_{1}} \ldots e_{i_{n}}$ by \boldsymbol{e}_{K}, where $K=\left(i_{1}, \ldots, i_{n}\right)$ and $U_{n} \sqcap U_{n+1} \ldots \sqcap U_{m}$ by $\sqcap_{i=n}^{m} U_{i}$ (when $n \leq m$).

Definition 9. 1. A type environment is a set $\left\{x_{1}^{L_{1}}: U_{1}, \ldots, x_{n}^{L_{n}}: U_{n}\right\}$ such that for all $i \in\{1, \ldots, n\}, d\left(U_{i}\right)=L_{i}$ and for all $i, j \in\{1, \ldots, n\}$, if $x_{i}^{L_{i}}=x_{j}^{L_{j}}$ then $\left.U_{i}=U_{j}\right\}$. We use Γ, Δ to range over environments and write () for the empty environment. We define $\operatorname{dom}(\Gamma)=\left\{x^{L} / x^{L}: U \in \Gamma\right\}$. If $\operatorname{dom}\left(\Gamma_{1}\right) \cap \operatorname{dom}\left(\Gamma_{2}\right)=$ \emptyset, we write Γ_{1}, Γ_{2} for $\Gamma_{1} \cup \Gamma_{2}$. We write $\Gamma, x^{L}: U$ for $\Gamma,\left\{x^{L}: U\right\}$ and $x^{L}: U$ for $\left\{x^{L}: U\right\}$. We denote $x_{1}^{L_{1}}: U_{1}, \ldots, x_{n}^{L_{n}}: U_{n}$ by $\left(x_{i}^{L_{i}}: U_{i}\right)_{n}$.
2. If $M \in \mathcal{M}$ and $\operatorname{fv}(M)=\left\{x_{1}^{L_{1}}, \ldots, x_{n}^{L_{n}}\right\}$, we denote env ${ }_{M}^{\omega}$ the type environment $\left(x_{i}^{L_{i}}: \omega^{L_{i}}\right)_{n}$.
3. Let $\Gamma_{1}=\left(x_{i}^{L_{i}}: U_{i}\right)_{n}, \Gamma_{1}^{\prime}, \Gamma_{2}=\left(x_{i}^{L_{i}}: U_{i}^{\prime}\right)_{n}, \Gamma_{2}^{\prime}$ and $\operatorname{dom}\left(\Gamma_{1}^{\prime}\right) \cap \operatorname{dom}\left(\Gamma_{2}^{\prime}\right)=\emptyset$. We denote $\Gamma_{1} \sqcap \Gamma_{2}$ the type environment $\left(x_{i}^{L_{i}}: U_{i} \sqcap U_{i}^{\prime}\right)_{n}, \Gamma_{1}^{\prime}, \Gamma_{2}^{\prime}$. Note that $\operatorname{dom}\left(\Gamma_{1} \sqcap \Gamma_{2}\right)=\operatorname{dom}\left(\Gamma_{1}\right) \cup \operatorname{dom}\left(\Gamma_{2}\right)$ and that, on environments, $\sqcap i$ is commutative, associative and idempotent.
4. Let $\Gamma=\left(x_{i}^{L_{i}}: U_{i}\right)_{1 \leq i \leq n}$ and $e_{j} \in \mathcal{E}$. We denote $e_{j} \Gamma=\left(x_{i}^{j:: L_{i}}: e_{j} U_{i}\right)_{1 \leq i \leq n}$. Note that $e_{j}\left(\Gamma_{1} \sqcap \Gamma_{2}\right)=e_{j} \Gamma_{1} \sqcap e_{j} \Gamma_{2}$.
5. We write $\Gamma_{1} \diamond \Gamma_{2}$ iff $x^{L} \in \operatorname{dom}\left(\Gamma_{1}\right)$ and $x^{K} \in \operatorname{dom}\left(\Gamma_{2}\right)$ implies $K=L$.
6. We follow [3] and write type judgements as $M:\langle\Gamma \vdash U\rangle$ instead of the traditional format of $\Gamma \vdash M: U$, where \vdash is our typing relation. The typing rules of \vdash are given on the left hand side of Figure 6. In the last clause, the binary relation \sqsubseteq is defined on \mathbb{U} by the rules on the right hand side of Figure 6 . We let Φ denote types in \mathbb{U}, or environments Γ or typings $\langle\Gamma \vdash U\rangle$. When $\Phi \sqsubseteq \Phi^{\prime}$, then Φ and Φ^{\prime} belong to the same set ($\mathbb{U} /$ environments/typings).
7. If $L \in \mathcal{L}_{\mathbb{N}}, U \in \mathbb{U}$ and $\Gamma=\left(x_{i}^{L_{i}}: U_{i}\right)_{n}$ is a type environment, we say that:
$-d(\Gamma) \succeq L$ if and only if for all $i \in\{1, \ldots, n\}, d\left(U_{i}\right)=L_{i} \succeq L$.
$-d(\langle\Gamma \vdash U\rangle) \succeq L$ if and only if $d(\Gamma) \succeq L$ and $d(U) \succeq L$.
To illustrate how our indexed type system works, we give an example:

Example 10. Let $U=e_{3}\left(e_{2}\left(e_{1}\left(\left(e_{0} b \rightarrow c\right) \rightarrow\left(e_{0}(a \sqcap(a \rightarrow b)) \rightarrow c\right)\right) \rightarrow d\right) \rightarrow\right.$ $\left.\left(\left(\left(e_{2} d \rightarrow a\right) \sqcap b\right) \rightarrow a\right)\right)$ where $a, b, c, d \in \mathcal{A}$,
$L_{1}=3:: \oslash \preceq L_{2}=3:: 2:: \oslash \preceq L_{3}=3:: 2:: 1:: 0:: \oslash$
and
$M=\lambda x^{L_{2}} \cdot \lambda y^{L_{1}} \cdot\left(y^{L_{1}}\left(x^{L_{2}} \lambda u^{L_{3}} \cdot \lambda v^{L_{3}} \cdot\left(u^{L_{3}}\left(v^{L_{3}} v^{L_{3}}\right)\right)\right)\right)$.
We invite the reader to check that $M:\langle() \vdash U\rangle$.
Just as we did for terms, we decrease the indexes of types, environments and typings.
Definition 11. 1. If $d(U) \succeq L$, then if $L=\oslash$ then $U^{-L}=U$ else $L=i:: K$ and we inductively define the type U^{-L} as follows:
$\left(U_{1} \sqcap U_{2}\right)^{-i:: K}=U_{1}^{-i:: K} \sqcap U_{2}^{-i:: K} \quad\left(e_{i} U\right)^{-i:: K}=U^{-K}$
We write U^{-i} instead of $U^{-(i)}$.
2. If $\Gamma=\left(x_{i}^{L_{i}}: U_{i}\right)_{k}$ and $d(\Gamma) \succeq L$, then for all $i \in\{1, \ldots, k\}, L_{i}=L:: L_{i}^{\prime}$ and we denote $\Gamma^{-L}=\left(x^{L_{i}^{\prime}}: U_{i}^{-L}\right)_{k}$.
We write Γ^{-i} instead of $\Gamma^{-(i)}$.
3. If U is a type and Γ is a type environment such that $d(\Gamma) \succeq K$ and $d(U) \succeq K$, then we denote $(\langle\Gamma \vdash U\rangle)^{-K}=\left\langle\Gamma^{-K} \vdash U^{-K}\right\rangle$.
The next lemma is informative about types and their degrees.
Lemma 12. 1. If $T \in \mathbb{T}$, then $d(T)=\oslash$.
2. Let $U \in \mathbb{U}$. If $d(U)=L=\left(n_{i}\right)_{m}$, then $U=\omega^{L}$ or $U=e_{L} \sqcap_{i=1}^{p} T_{i}$ where $p \geq 1$ and for all $i \in\{1, \ldots, p\}, T_{i} \in \mathbb{T}$.
3. Let $U_{1} \sqsubseteq U_{2}$.
(a) $d\left(U_{1}\right)=d\left(U_{2}\right)$.
(b) If $U_{1}=\omega^{K}$ then $U_{2}=\omega^{K}$.
(c) If $U_{1}=\boldsymbol{e}_{K} U$ then $U_{2}=\boldsymbol{e}_{K} U^{\prime}$ and $U \sqsubseteq U^{\prime}$.
(d) If $U_{2}=\boldsymbol{e}_{K} U$ then $U_{1}=\boldsymbol{e}_{K} U^{\prime}$ and $U \sqsubseteq U^{\prime}$.
(e) If $U_{1}=\sqcap_{i=1}^{p} \boldsymbol{e}_{K}\left(U_{i} \rightarrow T_{i}\right)$ where $p \geq 1 \overline{\text { then }} U_{2}=\omega^{K}$ or $U_{2}=\sqcap_{j=1}^{q} \boldsymbol{e}_{K}\left(U_{j}^{\prime} \rightarrow\right.$ $\left.T_{j}^{\prime}\right)$ where $q \geq 1$ and for all $j \in\{1, \ldots, q\}$, there exists $i \in\{1, \ldots, p\}$ such that $U_{j}^{\prime} \sqsubseteq U_{i}$ and $T_{i} \sqsubseteq T_{j}^{\prime}$.
4. If $U \in \mathbb{U}$ such that $d(U)=L$ then $U \sqsubseteq \omega^{L}$.
5. If $U \sqsubseteq U_{1}^{\prime} \sqcap U_{2}^{\prime}$ then $U=U_{1} \sqcap U_{2}$ where $U_{1} \sqsubseteq U_{1}^{\prime}$ and $U_{2} \sqsubseteq U_{2}^{\prime}$.
6. If $\Gamma \sqsubseteq \Gamma_{1}^{\prime} \sqcap \Gamma_{2}^{\prime}$ then $\Gamma=\Gamma_{1} \sqcap \Gamma_{2}$ where $\Gamma_{1} \sqsubseteq \Gamma_{1}^{\prime}$ and $\Gamma_{2} \sqsubseteq \Gamma_{2}^{\prime}$.

The next lemma says how ordering or the decreasing of indexes propagate to environments.
Lemma 13. 1. If $\Gamma \sqsubseteq \Gamma^{\prime}, U \sqsubseteq U^{\prime}$ and $x^{L} \notin \operatorname{dom}(\Gamma)$ then $\Gamma,\left(x^{L}: U\right) \sqsubseteq \Gamma^{\prime},\left(x^{L}:\right.$ $\left.U^{\prime}\right)$.
2. $\Gamma \sqsubseteq \Gamma^{\prime}$ iff $\Gamma=\left(x_{i}^{L_{i}}: U_{i}\right)_{n}, \Gamma^{\prime}=\left(x_{i}^{L_{i}}: U_{i}^{\prime}\right)_{n}$ and for every $1 \leq i \leq n, U_{i} \sqsubseteq U_{i}^{\prime}$.
3. $\langle\Gamma \vdash U\rangle \sqsubseteq\left\langle\Gamma^{\prime} \vdash U^{\prime}\right\rangle$ iff $\Gamma^{\prime} \sqsubseteq \Gamma$ and $U \sqsubseteq U^{\prime}$.
4. If $\operatorname{dom}(\Gamma)=\mathrm{fv}(M)$, then $\Gamma \sqsubseteq e n v_{M}^{\omega}$
5. If $\Gamma \diamond \Delta$ and $d(\Gamma), d(\Delta) \succeq K$, then $\Gamma^{-K} \diamond \Delta^{-K}$.
6. If $U \sqsubseteq U^{\prime}$ and $d(U) \succeq K$ then $U^{-K} \sqsubseteq U^{\prime-K}$.
7. If $\Gamma \sqsubseteq \Gamma^{\prime}$ and $d(\Gamma) \succeq K$ then $\Gamma^{-K} \sqsubseteq \Gamma^{\prime-K}$.

The next lemma shows that we do not allow weakening in \vdash.
Lemma 14. 1. For every Γ and M such that $\operatorname{dom}(\Gamma)=\mathrm{fv}(M)$ and $d(M)=K$, we have $M:\left\langle\Gamma \vdash \omega^{K}\right\rangle$.
2. If $M:\langle\Gamma \vdash U\rangle$, then $\operatorname{dom}(\Gamma)=\mathrm{fv}(M)$.
3. If $M_{1}:\left\langle\Gamma_{1} \vdash U\right\rangle$ and $M_{2}:\left\langle\Gamma_{2} \vdash U\right\rangle$ then $\Gamma_{1} \diamond \Gamma_{2}$ iff $M_{1} \diamond M_{2}$.

Proof 1. By $\omega, M:\left\langle e n v_{M}^{\omega} \vdash \omega^{K}\right\rangle$. By Lemma 13.4, $\Gamma \sqsubseteq e n v_{M}^{\omega}$. Hence, by \sqsubseteq and $\sqsubseteq_{\langle \rangle}, M:\left\langle\Gamma \vdash \omega^{K}\right\rangle$.
2. By induction on the derivation $M:\langle\Gamma \vdash U\rangle$.
3. If) Let $x^{L} \in \operatorname{dom}\left(\Gamma_{1}\right)$ and $x^{K} \in \operatorname{dom}\left(\Gamma_{2}\right)$ then by Lemma $14.2, x^{L} \in \operatorname{fv}\left(M_{1}\right)$ and $x^{K} \in \mathrm{fv}\left(M_{2}\right)$ so $\Gamma_{1} \diamond \Gamma_{2}$. Only if) Let $x^{L} \in \mathrm{fv}\left(M_{1}\right)$ and $x^{K} \in \operatorname{fv}\left(M_{2}\right)$ then by Lemma 14.2, $x^{L} \in \operatorname{dom}\left(\Gamma_{1}\right)$ and $x^{K} \in \operatorname{dom}\left(\Gamma_{2}\right)$ so $M_{1} \diamond M_{2}$.

The next theorem states that within a typing, degrees are well behaved.
Theorem 15. Let $M:\langle\Gamma \vdash U\rangle$.

1. $d(\Gamma) \succeq d(U)=d(M)$.
2. If $d(U) \succeq K$ then $M^{-K}:\left\langle\Gamma^{-K} \vdash U^{-K}\right\rangle$.

Finally, here are two derivable typing rules.
Remark 16. 1. The rule $\frac{M:\left\langle\Gamma_{1} \vdash U_{1}\right\rangle \quad M:\left\langle\Gamma_{2} \vdash U_{2}\right\rangle}{M:\left\langle\Gamma_{1} \sqcap \Gamma_{2} \vdash U_{1} \sqcap U_{2}\right\rangle} \sqcap_{I}^{\prime}$ is derivable.
2. The rule $\frac{x^{\mathrm{d}(U)}:\left\langle\left(x^{\mathrm{d}(U)}: U\right) \vdash U\right\rangle}{} a x^{\prime}$ is derivable.

4 Subject reduction properties

In this section we show that subject reduction holds for \vdash. The proof of subject reduction uses generation and substitution. Hence the next two lemmas.

Lemma 17 (Generation for \vdash).

1. If $x^{L}:\langle\Gamma \vdash U\rangle$, then $\Gamma=\left(x^{L}: V\right)$ and $V \sqsubseteq U$.
2. If $\lambda x^{L} \cdot M:\langle\Gamma \vdash U\rangle, x^{L} \in \mathrm{fv}(M)$ and $d(U)=K$, then $U=\omega^{K}$ or $U=$ $\sqcap_{i=1}^{p} \boldsymbol{e}_{K}\left(V_{i} \rightarrow T_{i}\right)$ where $p \geq 1$ and for all $i \in\{1, \ldots, p\}, M:\left\langle\Gamma, x^{L}: \boldsymbol{e}_{K} V_{i} \vdash\right.$ $\left.\boldsymbol{e}_{K} T_{i}\right\rangle$.
3. If $\lambda x^{L} \cdot M:\langle\Gamma \vdash U\rangle, x^{L} \notin \mathrm{fv}(M)$ and $d(U)=K$, then $U=\omega^{K}$ or $U=$ $\sqcap_{i=1}^{p} \boldsymbol{e}_{K}\left(V_{i} \rightarrow T_{i}\right)$ where $p \geq 1$ and for all $i \in\{1, \ldots, p\}, M:\left\langle\Gamma \vdash \boldsymbol{e}_{K} T_{i}\right\rangle$.
4. If $M x^{L}:\left\langle\Gamma,\left(x^{L}: U\right) \vdash T\right\rangle$ and $x^{L} \notin \mathrm{fv}(M)$, then $M:\langle\Gamma \vdash U \rightarrow T\rangle$.

Lemma 18 (Substitution for \vdash). If $M:\left\langle\Gamma, x^{L}: U \vdash V\right\rangle, N:\langle\Delta \vdash U\rangle$ and $\Gamma \diamond \Delta$ then $M\left[x^{L}:=N\right]:\langle\Gamma \sqcap \Delta \vdash V\rangle$.

Since \vdash does not allow weakening, we need the next definition since when a term is reduced, it may lose some of its free variables and hence will need to be typed in a smaller environment.

Definition 19. If Γ is a type environment and $\mathcal{U} \subseteq \operatorname{dom}(\Gamma)$, then we write $\Gamma \upharpoonright \mathcal{U}$ for the restriction of Γ on the variables of \mathcal{U}. If $\mathcal{U}=\mathrm{fv}(M)$ for a term M, we write $\Gamma \upharpoonright_{M}$ instead of $\Gamma \upharpoonright_{\mathrm{fv}(M)}$.

Now we are ready to prove the main result of this section:
Theorem 20 (Subject reduction for \vdash). If $M:\langle\Gamma \vdash U\rangle$ and $M \triangleright_{\beta \eta}^{*} N$, then $N:\left\langle\Gamma \upharpoonright_{N} \vdash U\right\rangle$.

Corollary 21. 1. If $M:\langle\Gamma \vdash U\rangle$ and $M \triangleright_{\beta}^{*} N$, then $N:\left\langle\Gamma \upharpoonright_{N} \vdash U\right\rangle$.
2. If $M:\langle\Gamma \vdash U\rangle$ and $M \triangleright_{h}^{*} N$, then $N:\left\langle\Gamma \upharpoonright_{N} \vdash U\right\rangle$.

5 Subject expansion properties

In this section we show that subject β-expansion holds for \vdash but that subject η expansion fails.

The next lemma is needed for expansion.
Lemma 22. If $M\left[x^{L}:=N\right]:\langle\Gamma \vdash U\rangle, d(N)=L$ and $x^{L} \in \mathrm{fv}(M)$ then there exist a type V and two type environments Γ_{1}, Γ_{2} such that $d(V)=L$ and:
$M:\left\langle\Gamma_{1}, x^{L}: V \vdash U\right\rangle \quad N:\left\langle\Gamma_{2} \vdash V\right\rangle \quad \Gamma=\Gamma_{1} \sqcap \Gamma_{2}$

Since more free variables might appear in the β-expansion of a term, the next definition gives a possible enlargement of an environment.
Definition 23. Let $m \geq n, \Gamma=\left(x_{i}^{L_{i}}: U_{i}\right)_{n}$ and $\mathcal{U}=\left\{x_{1}^{L_{1}}, \ldots, x_{m}^{L_{m}}\right\}$. We write $\Gamma \uparrow \mathcal{U}$ for $x_{1}^{L_{1}}: U_{1}, \ldots, x_{n}^{L_{n}}: U_{n}, x_{n+1}^{L_{n+1}}: \omega^{L_{n+1}}, \ldots, x_{m}^{L_{m}}: \omega^{L_{m}}$. If $\operatorname{dom}(\Gamma) \subseteq \operatorname{fv}(M)$, we write $\Gamma \uparrow^{M}$ instead of $\Gamma \uparrow^{\mathrm{fv}(M)}$.

We are now ready to establish that subject expansion holds for β (next theorem) and that it fails for η (Lemma 26).
Theorem 24 (Subject expansion for β). If $N:\langle\Gamma \vdash U\rangle$ and $M \triangleright_{\beta}^{*} N$, then $M:\left\langle\Gamma \uparrow^{M} \vdash U\right\rangle$.

Corollary 25. If $N:\langle\Gamma \vdash U\rangle$ and $M \triangleright_{h}^{*} N$, then $M:\left\langle\Gamma \uparrow^{M} \vdash U\right\rangle$.
Lemma 26 (Subject expansion fails for η). Let a be an element of \mathcal{A}. We have:

1. $\lambda y^{\varnothing} \cdot \lambda x^{\varnothing} \cdot y^{\varnothing} x^{\varnothing} \triangleright_{\eta} \lambda y^{\varnothing} \cdot y^{\varnothing}$
2. $\lambda y^{\varnothing} \cdot y^{\varnothing}:\langle() \vdash a \rightarrow a\rangle$.
3. It is not possible that
$\lambda y^{\varnothing} \cdot \lambda x^{\varnothing} \cdot y^{\varnothing} x^{\varnothing}:\langle() \vdash a \rightarrow a\rangle$.
Hence, the subject η-expansion lemmas fail for \vdash.
Proof 1. and 2. are easy. For 3., assume $\lambda y^{\oslash} \cdot \lambda x^{\oslash} \cdot y^{\oslash} x^{\varnothing}:\langle() \vdash a \rightarrow a\rangle$.
By Lemma 17.2, $\lambda x^{\varnothing} . y^{\varnothing} x^{\varnothing}:\langle(y: a) \vdash \rightarrow a\rangle$. Again, by Lemma 17.2, $a=\omega^{\varnothing}$ or there exists $n \geq 1$ such that $a=\square_{i=1}^{n}\left(U_{i} \rightarrow T_{i}\right)$, absurd.

6 The realisability semantics

In this section we introduce the realisability semantics and show its soundness for \vdash.

Crucial to a realisability semantics is the notion of a saturated set:
Definition 27. Let $\mathcal{X}, \mathcal{Y} \subseteq \mathcal{M}$.

1. We use $\mathcal{P}(\mathcal{X})$ to denote the powerset of \mathcal{X}, i.e. $\{\mathcal{Y} / \mathcal{Y} \subseteq \mathcal{X}\}$.
2. We define $\mathcal{X}^{+i}=\left\{M^{+i} / M \in \mathcal{X}\right\}$.
3. We define $\mathcal{X} \rightsquigarrow \mathcal{Y}=\{M \in \mathcal{M} / M N \in \mathcal{Y}$ for all $N \in \mathcal{X}$ such that $M \diamond N\}$.
4. We say that $\mathcal{X} \vee \mathcal{Y}$ iff for all $M \in \mathcal{X} \rightsquigarrow \mathcal{Y}$, there exists $N \in \mathcal{X}$ such that $M \diamond N$.
5. For $r \in\{\beta, \beta \eta, h\}$, we say that \mathcal{X} is r-saturated if whenever $M \triangleright_{r}^{*} N$ and $N \in \mathcal{X}$, then $M \in \mathcal{X}$.

Saturation is closed under intersection, lifting and arrows:
Lemma 28. 1. $(\mathcal{X} \cap \mathcal{Y})^{+i}=\mathcal{X}^{+i} \cap \mathcal{Y}^{+i}$.
2. If \mathcal{X}, \mathcal{Y} are r-saturated sets, then $\mathcal{X} \cap \mathcal{Y}$ is r-saturated.
3. If \mathcal{X} is r-saturated, then \mathcal{X}^{+i} is r-saturated.
4. If \mathcal{Y} is r-saturated, then, for every set $\mathcal{X}, \mathcal{X} \rightsquigarrow \mathcal{Y}$ is r-saturated.
5. $(\mathcal{X} \rightsquigarrow \mathcal{Y})^{+i} \subseteq \mathcal{X}^{+i} \rightsquigarrow \mathcal{Y}^{+i}$.
6. If $\mathcal{X}^{+} \imath \mathcal{Y}^{+}$, then $\mathcal{X}^{+} \rightsquigarrow \mathcal{Y}^{+} \subseteq(\mathcal{X} \rightsquigarrow \mathcal{Y})^{+}$.

We now give the basic step in our realisability semantics: the interpretations and meanings of types.

Definition 29. Let $\mathcal{V}_{1}, \mathcal{V}_{2}$ be countably infinite, $\mathcal{V}_{1} \cap \mathcal{V}_{2}=\emptyset$ and $\mathcal{V}=\mathcal{V}_{1} \cup \mathcal{V}_{2}$.

1. Let $L \in \mathcal{L}_{\mathbb{N}}$. We define $\mathcal{M}^{L}=\{M \in \mathcal{M} / d(M)=L\}$.
2. Let $x \in \mathcal{V}_{1}$. We define $\mathcal{N}_{x}^{L}=\left\{x^{L} N_{1} \ldots N_{k} \in \mathcal{M} / k \geq 0\right\}$.
3. Let $r \in\{\beta, \beta \eta, h\}$. An r-interpretation $\mathcal{I}: \mathcal{A} \mapsto \mathcal{P}\left(\mathcal{M}^{\varnothing}\right)$ is a function such that for all $a \in \mathcal{A}$:

- $\mathcal{I}(a)$ is r-saturated and $\quad \forall x \in \mathcal{V}_{1} . \mathcal{N}_{x}^{\ominus} \subseteq \mathcal{I}(a)$.

We extend an r-interpretation \mathcal{I} to \mathbb{U} as follows:

- $\mathcal{I}\left(\omega^{L}\right)=\mathcal{M}^{L}$
- $\mathcal{I}\left(e_{i} U\right)=\mathcal{I}(U)^{+i}$
- $\mathcal{I}\left(U_{1} \sqcap U_{2}\right)=\mathcal{I}\left(U_{1}\right) \cap \mathcal{I}\left(U_{2}\right)$
- $\mathcal{I}(U \rightarrow T)=\mathcal{I}(U) \rightsquigarrow \mathcal{I}(T)$

Let r-int $=\{\mathcal{I} / \mathcal{I}$ is an r-interpretation $\}$.
4. Let $U \in \mathbb{U}$ and $r \in\{\beta, \beta \eta, h\}$. Define $[U]_{r}$, the r-interpretation of U by:
$[U]_{r}=\left\{M \in \mathcal{M} / M\right.$ is closed and $\left.M \in \bigcap_{\mathcal{I} \in r-i n t} \mathcal{I}(U)\right\}$
Lemma 30. Let $r \in\{\beta, \beta \eta, h\}$.

1. (a) For any $U \in \mathbb{U}$ and $\mathcal{I} \in r$-int, we have $\mathcal{I}(U)$ is r-saturated.
(b) If $d(U)=L$ and $\mathcal{I} \in r$-int, then for all $x \in \mathcal{V}_{1}, \mathcal{N}_{x}^{L} \subseteq \mathcal{I}(U) \subseteq \mathcal{M}^{L}$.
2. Let $r \in\{\beta, \beta \eta, h\}$. If $\mathcal{I} \in r$-int and $U \sqsubseteq V$, then $\mathcal{I}(U) \subseteq \mathcal{I}(V)$.

Here is the soundness lemma.
Lemma 31 (Soundness). Let $r \in\{\beta, \beta \eta, h\}, M:\left\langle\left(x_{j}^{L_{j}}: U_{j}\right)_{n} \vdash U\right\rangle, \mathcal{I} \in r$-int and for all $j \in\{1, \ldots, n\}, N_{j} \in \mathcal{I}\left(U_{j}\right)$. We have $M\left[\left(x_{j}^{L_{j}}:=N_{j}\right)_{n}\right] \in \mathcal{I}(U)$.

Corollary 32. Let $r \in\{\beta, \beta \eta, h\}$. If $M:\langle() \vdash U\rangle$, then $M \in[U]_{r}$.
Proof By Lemma 31, $M \in \mathcal{I}(U)$ for any r-interpretation \mathcal{I}. By Lemma 14, $\operatorname{fv}(M)=\operatorname{dom}(())=\emptyset$ and hence M is closed. Therefore, $M \in[U]_{r}$.

Lemma 33 (The meaning of types is closed under type operations). Let $r \in\{\beta, \beta \eta, h\}$. On \mathbb{U}, the following hold:

1. $\left[e_{i} U\right]_{r}=[U]_{r}^{+i}$
2. $[U \sqcap V]_{r}=[U]_{r} \cap[V]_{r}$
3. If $U \rightarrow T \in \mathbb{U}$ then for any interpretation $\mathcal{I}, \mathcal{I}(U) \backslash \mathcal{I}(T)$.

Proof 1. and 2. are easy. 3. Let $\mathrm{d}(U)=K, M \in \mathcal{I}(U) \rightsquigarrow \mathcal{I}(T)$ and $x \in \mathcal{V}_{1}$ such that for all $L, x^{L} \notin \mathrm{fv}(M)$, hence $M \diamond x^{K}$ and $x^{K} \in \mathcal{I}(U)$.

The next definition and lemma put the realisability semantics in use.
Definition 34 (Examples). Let $a, b \in \mathcal{A}$ where $a \neq b$. We define:
$-I d_{0}=a \rightarrow a, I d_{1}=e_{1}(a \rightarrow a)$ and $I d_{1}^{\prime}=e_{1} a \rightarrow e_{1} a$.

- $D=(a \sqcap(a \rightarrow b)) \rightarrow b$.
$-N a t_{0}=(a \rightarrow a) \rightarrow(a \rightarrow a), N a t_{1}=e_{1}((a \rightarrow a) \rightarrow(a \rightarrow a))$, and $N a t_{0}^{\prime}=\left(e_{1} a \rightarrow a\right) \rightarrow\left(e_{1} a \rightarrow a\right)$.

Moreover, if M, N are terms and $n \in \mathbb{N}$, we define $(M)^{n} N$ by induction on n : $(M)^{0} N=N$ and $(M)^{m+1} N=M\left((M)^{m} N\right)$.

Lemma 35. 1. $\left[I d_{0}\right]_{\beta}=\left\{M \in \mathcal{M}^{\ominus} / M \triangleright_{\beta}^{*} \lambda y^{\ominus} y^{\varnothing}\right\}$.
2. $\left[I d_{1}\right]_{\beta}=\left[I d_{1}^{\prime}\right]_{\beta}=\left\{M \in \mathcal{M}^{(1)} / M \triangleright_{\beta}^{*} \lambda y^{(1)} . y^{(1)}\right\}$. (Note that $I d_{1}^{\prime} \notin \mathbb{U}$.)
3. $[D]_{\beta}=\left\{M \in \mathcal{M}^{\varnothing} / M \triangleright_{\beta}^{*} \lambda y^{\ominus} . y^{\ominus} y^{\ominus}\right\}$.
4. $\left[N a t_{0}\right]_{\beta}=\left\{M \in \mathcal{M}^{\oslash} / M \triangleright_{\beta}^{*} \lambda f^{\oslash} \cdot f^{\oslash}\right.$ or $M \triangleright_{\beta}^{*} \lambda f^{\oslash} \cdot \lambda y^{\oslash} \cdot\left(f^{\oslash}\right)^{n} y^{\oslash}$ where $\left.n \geq 1\right\}$.
5. $\left[N a t_{1}\right]_{\beta}=\left\{M \in \mathcal{M}^{(1)} / M \triangleright_{\beta}^{*} \lambda f^{(1)} . f^{(1)}\right.$ or $M \triangleright_{\beta}^{*} \lambda f^{(1)} \cdot \lambda x^{(1)} \cdot\left(f^{(1)}\right)^{n} y^{(1)}$ where $n \geq 1\}$. (Note that Nat $\neq \mathbb{U}$.)
6. $\left[N a t_{0}^{\prime}\right]_{\beta}=\left\{M \in \mathcal{M}^{\varnothing} / M \triangleright_{\beta}^{*} \lambda f^{\varnothing} . f^{\varnothing}\right.$ or $\left.M \triangleright_{\beta}^{*} \lambda f^{\varnothing} . \lambda y^{(1)} . f^{\ominus} y^{(1)}\right\}$.

7 The completeness theorem

In this section we set out the machinery and prove that completeness holds for \vdash. We need the following partition of the set of variables $\left\{y^{L} / y \in \mathcal{V}_{2}\right\}$.

Definition 36. 1. Let $L \in \mathcal{L}_{\mathbb{N}}$. We define $\mathbb{U}^{L}=\{U \in \mathbb{U} / d(U)=L\}$ and $\mathcal{V}^{L}=$ $\left\{x^{L} / x \in \mathcal{V}_{2}\right\}$.
2. Let $U \in \mathbb{U}$. We inductively define a set of variables \mathbb{V}_{U} as follows:

- If $d(U)=\oslash$ then:
- \mathbb{V}_{U} is an infinite set of variables of degree \oslash.
- If $U \neq V$ and $d(U)=d(V)=\oslash$, then $\mathbb{V}_{U} \cap \mathbb{V}_{V}=\emptyset$.
- $\bigcup_{U \in \mathbb{U} \varnothing} \mathbb{V}_{U}=\mathcal{V}^{\ominus}$.
- If $d(U)=L$, then we put $\mathbb{V}_{U}=\left\{y^{L} / y^{\varnothing} \in \mathbb{V}_{U-L}\right\}$.

Lemma 37. 1. If $d(U), d(V) \succeq L$ and $U^{-L}=V^{-L}$, then $U=V$.
2. If $d(U)=L$, then \mathbb{V}_{U} is an infinite subset of \mathcal{V}^{L}.
3. If $U \neq V$ and $d(U)=d(V)=L$, then $\mathbb{V}_{U} \cap \mathbb{V}_{V}=\emptyset$.
4. $\bigcup_{U \in \mathbb{U}^{L}} \mathbb{V}_{U}=\mathcal{V}^{L}$.
5. If $y^{L} \in \mathbb{V}_{U}$, then $y^{i:: L} \in \mathbb{V}_{e_{i} U}$.
6. If $y^{i:: L} \in \mathbb{V}_{U}$, then $y^{L} \in \mathbb{V}_{U^{-i}}$.

Proof 1. If $L=\left(n_{i}\right)_{m}$, we have $U=e_{n_{1}} \ldots e_{n_{m}} U^{\prime}$ and $V=e_{n_{1}} \ldots e_{n_{m}} V^{\prime}$. Then $U^{-L}=U^{\prime}, V^{-L}=V^{\prime}$ and $U^{\prime}=V^{\prime}$. Thus $U=V$.2.3. and 4. By induction on L and using 1.5. Because $\left(e_{i} U\right)^{-i}=U .6$. By definition.

Our partition of the set \mathcal{V}_{2} as above will enable us to give in the next definition useful infinite sets which will contain type environments that will play a crucial role in one particular type interpretation.

Definition 38. 1. Let $L \in \mathcal{L}_{\mathbb{N}}$. We denote $\mathbb{G}^{L}=\left\{\left(y^{L}: U\right) / U \in \mathbb{U}^{L}\right.$ and $y^{L} \in$ $\left.\mathbb{V}_{U}\right\}$ and $\mathbb{H}^{L}=\bigcup_{K \succeq L} \mathbb{G}^{K}$. Note that \mathbb{G}^{L} and \mathbb{H}^{L} are not type environments because they are infinite sets.
2. Let $L \in \mathcal{L}_{\mathbb{N}}, M \in \mathcal{M}$ and $U \in \mathbb{U}$, we write:
$-M:\left\langle\mathbb{H}^{L} \vdash U\right\rangle$ if there is a type environment $\Gamma \subset \mathbb{H}^{L}$ where $M:\langle\Gamma \vdash U\rangle$
$-M:\left\langle\mathbb{H}^{L} \vdash^{*} U\right\rangle$ if $M \triangleright_{\beta \eta}^{*} N$ and $N:\left\langle\mathbb{H}^{L} \vdash U\right\rangle$
Lemma 39. 1. If $\Gamma \subset \mathbb{H}^{L}$ then $e_{i} \Gamma \subset \mathbb{H}^{i:: L}$.
2. If $\Gamma \subset \mathbb{H}^{i:: L}$ then $\Gamma^{-i} \subset \mathbb{H}^{L}$.
3. If $\Gamma_{1} \subset \mathbb{H}^{L}, \Gamma_{2} \subset \mathbb{H}^{K}$ and $L \preceq K$ then $\Gamma_{1} \sqcap \Gamma_{2} \subset \mathbb{H}^{L}$.

Proof 1. and 2. By lemma 37. 3. First note that $\mathbb{H}^{K} \subseteq \mathbb{H}^{L}$. Let $\left(x^{R}: U_{1} \sqcap U_{2}\right) \in$ $\Gamma_{1} \sqcap \Gamma_{2}$ where $\left(x^{R}: U_{1}\right) \in \Gamma_{1} \subset \mathbb{H}^{L}$ and $\left(x^{R}: U_{2}\right) \in \Gamma_{2} \subset \mathbb{H}^{K} \subseteq \mathbb{H}^{L}$, then $\mathrm{d}\left(U_{1}\right)=\mathrm{d}\left(U_{2}\right)=R$ and $x^{R} \in \mathbb{V}_{U_{1}} \cap \mathbb{V}_{U_{2}}$. Hence, by lemma 37, $U_{1}=U_{2}$ and $\Gamma_{1} \sqcap \Gamma_{2}=\Gamma_{1} \cup \Gamma_{2} \subset \mathbb{H}^{L}$.

For every $L \in \mathcal{L}_{\mathbb{N}}$, we define the set of terms of degree L which contain some free variable x^{K} where $x \in \mathcal{V}_{1}$ and $K \succeq L$.

Definition 40. For every $L \in \mathcal{L}_{\mathbb{N}}$, let $\mathcal{O}^{L}=\left\{M \in \mathcal{M}^{L} / x^{K} \in \operatorname{fv}(M), x \in \mathcal{V}_{1}\right.$ and $K \succeq L\}$. It is easy to see that, for every $L \in \mathcal{L}_{\mathbb{N}}$ and $x \in \mathcal{V}_{1}, \mathcal{N}_{x}^{L} \subseteq \mathcal{O}^{L}$.

Lemma 41. 1. $\left(\mathcal{O}^{L}\right)^{+i}=\mathcal{O}^{i:: L}$.
2. If $y \in \mathcal{V}_{2}$ and $\left(M y^{K}\right) \in \mathcal{O}^{L}$, then $M \in \mathcal{O}^{L}$
3. If $M \in \mathcal{O}^{L}, M \diamond N$ and $L \preceq K=d(N)$, then $M N \in \mathcal{O}^{L}$.
4. If $d(M)=L, L \preceq K, M \diamond \bar{N}$ and $N \in \mathcal{O}^{K}$, then $M N \in \mathcal{O}^{L}$.

The crucial interpretation \mathbb{I} for the proof of completeness is given as follows:
Definition 42. 1. Let $\mathbb{I}_{\beta \eta}$ be the $\beta \eta$-interpretation defined by: for all type variables $a, \mathbb{I}_{\beta \eta}(a)=\mathcal{O}^{\ominus} \cup\left\{M \in \mathcal{M}^{\varnothing} / M:\left\langle\mathbb{H}^{\varnothing} \vdash^{*} a\right\rangle\right\}$.
2. Let \mathbb{I}_{β} be the β-interpretation defined by: for all type variables a, $\mathbb{I}_{\beta}(a)=\mathcal{O}^{\ominus} \cup$ $\left\{M \in \mathcal{M}^{\varnothing} / M:\left\langle\mathbb{H}^{\varnothing} \vdash a\right\rangle\right\}$.
3. Let $\mathbb{I}_{e h}$ be the h-interpretation defined by: for all type variables $a, \mathbb{I}_{h}(a)=\mathcal{O}^{\varnothing} \cup$ $\left\{M \in \mathcal{M}^{\ominus} / M:\left\langle\mathbb{H}^{\ominus} \vdash a\right\rangle\right\}$.

The next crucial lemma shows that \mathbb{I} is an interpretation and that the interpretation of a type of order L contains terms of order L which are typable in these special environments which are parts of the infinite sets of Definition 38.

Lemma 43. Let $r \in\{\beta \eta, \beta, h\}$ and $r^{\prime} \in\{\beta, h\}$

1. If $\mathbb{I}_{r} \in r$-int and $a \in \mathcal{A}$ then $\mathbb{I}_{r}(a)$ is r-saturated and for all $x \in \mathcal{V}_{1}, \mathcal{N}_{x} \subseteq \mathbb{I}_{r}(a)$.
2. If $U \in \mathbb{U}$ and $d(U)=L$, then $\mathbb{I}_{\beta \eta}(U)=\mathcal{O}^{L} \cup\left\{M \in \mathcal{M}^{L} / M:\left\langle\mathbb{H}^{L} \vdash^{*} U\right\rangle\right\}$.
3. If $U \in \mathbb{U}$ and $d(U)=L$, then $\mathbb{I}_{r^{\prime}}(U)=\mathcal{O}^{L} \cup\left\{M \in \mathcal{M}^{L} / M:\left\langle\mathbb{H}^{L} \vdash U\right\rangle\right\}$.

Proof 1. We do two cases:
Case $r=\beta \eta$. It is easy to see that $\forall x \in \mathcal{V}_{1}, \mathcal{N}_{x}^{\varnothing} \subseteq \mathcal{O}^{\varnothing} \subseteq \mathbb{I}_{\beta \eta}(a)$. Now we show that $\mathbb{I}_{\beta \eta}(a)$ is $\beta \eta$-saturated. Let $M \triangleright_{\beta \eta}^{*} N$ and $N \in \mathbb{I}_{\beta \eta}(a)$.

- If $N \in \mathcal{O}^{\ominus}$ then $N \in \mathcal{M}^{\varnothing}$ and $\exists L$ and $x \in \mathcal{V}_{1}$ such that $x^{L} \in \operatorname{fv}(N)$. By theorem 4.2, $\mathrm{fv}(N) \subseteq \mathrm{fv}(M)$ and $\mathrm{d}(M)=\mathrm{d}(N)$, hence, $M \in \mathcal{O}^{\varnothing}$
- If $N \in\left\{M \in \mathcal{M}^{\ominus} / M:\left\langle\mathbb{H}^{\ominus} \vdash^{*} a\right\rangle\right\}$ then $N \triangleright_{\beta \eta}^{*} N^{\prime}$ and $\exists \Gamma \subset \mathbb{H}^{\ominus}$, such that $N^{\prime}:\langle\Gamma \vdash a\rangle$. Hence $M \triangleright_{\beta \eta}^{*} N^{\prime}$ and since by theorem $4.2, \mathrm{~d}(M)=\mathrm{d}\left(N^{\prime}\right)$, $M \in\left\{M \in \mathcal{M}^{\ominus} / M:\left\langle\mathbb{H}^{\ominus} \vdash^{*} a\right\rangle\right\}$.

Case $r=\beta$. It is easy to see that $\forall x \in \mathcal{V}_{1}, \mathcal{N}_{x}^{\ominus} \subseteq \mathcal{O}^{\ominus} \subseteq \mathbb{I}_{\beta}(a)$. Now we show that $\mathbb{I}_{\beta}(a)$ is β-saturated. Let $M \triangleright_{\beta}^{*} N$ and $N \in \mathbb{I}_{\beta}(a)$.

- If $N \in \mathcal{O}^{\varnothing}$ then $N \in \mathcal{M}^{\varnothing}$ and $\exists L$ and $x \in \mathcal{V}_{1}$ such that $x^{L} \in \operatorname{fv}(N)$. By theorem 4.2, $\mathrm{fv}(N) \subseteq \mathrm{fv}(M)$ and $\mathrm{d}(M)=\mathrm{d}(N)$, hence, $M \in \mathcal{O}^{\varnothing}$
- If $N \in\left\{M \in \mathcal{M}^{\ominus} / M:\left\langle\mathbb{H}^{\ominus} \vdash a\right\rangle\right\}$ then $\exists \Gamma \subset \mathbb{H}^{\ominus}$, such that $N:\langle\Gamma \vdash a\rangle$. By theorem 24, $M:\left\langle\Gamma \uparrow^{M} \vdash a\right\rangle$. Since by theorem $4.2, \mathrm{fv}(N) \subseteq \mathrm{fv}(M)$, let $\operatorname{fv}(N)=\left\{x_{1}^{L_{1}}, \ldots, x_{n}^{L_{n}}\right\}$ and $\operatorname{fv}(M)=\operatorname{fv}(N) \cup\left\{x_{n+1}^{L_{n+1}}, \ldots, x_{n+m}^{L_{n+m}}\right\}$. So $\Gamma \uparrow^{M}=$ $\Gamma,\left(x_{n+1}^{L_{n+1}}: \omega^{L_{n+1}}, \ldots, x_{n+m}^{L_{n+m}}: \omega^{L_{n+m}}\right) . \forall n+1 \leq i \leq n+m$, let U_{i} such that $x_{i} \in \mathbb{V}_{U_{i}}$. Then $\Gamma,\left(x_{n+1}^{L_{n+1}}: U_{n+1}, \ldots, x_{n+m}^{L_{n+m}}: U_{n+m}\right) \subset \mathbb{H}^{\ominus}$ and by $\sqsubseteq, M:$ $\left\langle\Gamma,\left(x_{n+1}^{L_{n+1}}: U_{n+1}, \ldots, x_{n+m}^{L_{n+m}}: U_{n+m}\right) \vdash a\right\rangle$. Thus $M:\left\langle\mathbb{H}^{\ominus} \vdash a\right\rangle$ and since by theorem 4.2, $\mathrm{d}(M)=\mathrm{d}(N), M \in\left\{M \in \mathcal{M}^{\ominus} / M:\left\langle\mathbb{H}^{\ominus} \vdash a\right\rangle\right\}$.

2. By induction on U.
$-U=a$: By definition of $\mathbb{I}_{\beta \eta}$.
$-U=\omega^{L}$: By definition, $\mathbb{I}_{\beta \eta}\left(\omega^{L}\right)=\mathcal{M}^{L}$. Hence, $\mathcal{O}^{L} \cup\left\{M \in \mathcal{M}^{L} / M:\left\langle\mathbb{H}^{L} \vdash^{*}\right.\right.$ $\left.\left.\omega^{L}\right\rangle\right\} \subseteq \mathbb{I}_{\beta \eta}\left(\omega^{L}\right)$.
Let $M \in \mathbb{I}_{\beta \eta}\left(\omega^{L}\right)$ where $\operatorname{fv}(M)=\left\{x_{1}^{L_{1}}, \ldots, x_{n}^{L_{n}}\right\}$. We have $M:\left\langle\left(x_{i}^{L_{i}}: \omega^{L_{i}}\right)_{n} \vdash\right.$ $\left.\omega^{L}\right\rangle$ and $M \in \mathcal{M}^{L} . \forall 1 \leq i \leq n$, let U_{i} the type such that $x_{i}^{L_{i}} \in \mathbb{V}_{U_{i}}$. Then $\Gamma=\left(x_{i}^{L_{i}}: U_{i}\right)_{n} \subset \mathbb{H}^{L}$. By lemma 14, $M:\left\langle\Gamma \vdash \omega^{L}\right\rangle$. Hence $M:\left\langle\mathbb{H}^{L} \vdash \omega^{L}\right\rangle$. Therefore, $\mathbb{I}\left(\omega^{L}\right) \subseteq\left\{M \in \mathcal{M}^{L} / M:\left\langle\mathbb{H}^{L} \vdash^{*} \omega^{L}\right\rangle\right\}$.
We deduce $\mathbb{I}_{\beta \eta}\left(\omega^{L}\right)=\mathcal{O}^{L} \cup\left\{M \in \mathcal{M}^{L} / M:\left\langle\mathbb{H}^{L} \vdash^{*} \omega^{L}\right\rangle\right\}$.
$-U=e_{i} V: L=i:: K$ and $\mathrm{d}(V)=K$. By IH and lemma 41, $\mathbb{I}_{\beta \eta}\left(e_{i} V\right)=$ $\left(\mathbb{I}_{\beta \eta}(V)\right)^{+i}=\left(\mathcal{O}^{K} \cup\left\{M \in \mathcal{M}^{K} / M:\left\langle\mathbb{H}^{K} \vdash^{*} V\right\rangle\right\}\right)^{+i}=$ $\mathcal{O}^{i:: L} \cup\left(\left\{M \in \mathcal{M}^{K} / M:\left\langle\mathbb{H}^{K} \vdash^{*} V\right\rangle\right\}\right)^{+i}$.

- If $M \in \mathcal{M}^{K}$ and $M:\left\langle\mathbb{H}^{K} \vdash^{*} V\right\rangle$, then $M \triangleright_{\beta \eta}^{*} N$ and $N:\langle\Gamma \vdash V\rangle$ where $\Gamma \subset \mathbb{H}^{K}$. By e, lemmas 46 and $39, N^{+i}:\left\langle e_{i} \Gamma \vdash e_{i} V\right\rangle, M^{+i} \triangleright_{\beta \eta}^{*} N^{+i}$ and $e_{i} \Gamma \subset \mathbb{H}^{L}$. Thus $M^{+i} \in \mathcal{M}^{L}$ and $M^{+i}:\left\langle\mathbb{H}^{L} \vdash^{*} U\right\rangle$.
- If $M \in \mathcal{M}^{L}$ and $M:\left\langle\mathbb{H}^{L} \vdash^{*} U\right\rangle$, then $M \triangleright_{\beta \eta}^{*} N$ and $N:\langle\Gamma \vdash U\rangle$ where $\Gamma \subset \mathbb{H}^{L}$. By lemmas 46, 13, and 39, $M^{-i} \triangleright_{\beta \eta}^{*} N^{-i}, N^{-i}:\left\langle\Gamma^{-i} \vdash V\right\rangle$ and $\Gamma^{-i} \subset \mathbb{H}^{K}$. Thus by lemma 46, $M=\left(M^{-i}\right)^{+i}$ and $M^{-i} \in\left\{M \in \mathcal{M}^{K} /\right.$ $\left.M:\left\langle\mathbb{H}^{K} \vdash^{*} V\right\rangle\right\}$.
Hence $\left(\left\{M \in \mathcal{M}^{K} / M:\left\langle\mathbb{H}^{K} \vdash^{*} V\right\rangle\right\}\right)^{+i}=\left\{M \in \mathcal{M}^{L} / M:\left\langle\mathbb{H}^{L} \vdash^{*} U\right\rangle\right\}$ and $\mathbb{I}_{\beta \eta}(U)=\mathcal{O}^{L} \cup\left\{M \in \mathcal{M}^{L} / M:\left\langle\mathbb{H}^{L} \vdash^{*} U\right\rangle\right\}$.
$-U=U_{1} \sqcap U_{2}:$ By $\mathrm{IH}, \mathbb{I}_{\beta \eta}\left(U_{1} \sqcap U_{2}\right)=\mathbb{I}_{\beta \eta}\left(U_{1}\right) \cap \mathbb{I}_{\beta \eta}\left(U_{2}\right)=\left(\mathcal{O}^{L} \cup\left\{M \in \mathcal{M}^{L} /\right.\right.$
$\left.\left.M:\left\langle\mathbb{H}^{L} \vdash^{*} U_{1}\right\rangle\right\}\right) \cap\left(\mathcal{O}^{L} \cup\left\{M \in \mathcal{M}^{L} / M:\left\langle\mathbb{H}^{L} \vdash^{*} U_{2}\right\rangle\right\}\right)=\mathcal{O}^{L} \cup\left(\left\{M \in \mathcal{M}^{L}\right.\right.$
$\left.\left./ M:\left\langle\mathbb{H}^{L} \vdash^{*} U_{1}\right\rangle\right\} \cap\left\{M \in \mathcal{M}^{L} / M:\left\langle\mathbb{H}^{L} \vdash^{*} U_{2}\right\rangle\right\}\right)$.
- If $M \in \mathcal{M}^{L}, M:\left\langle\mathbb{H}^{L} \vdash^{*} U_{1}\right\rangle$ and $M:\left\langle\mathbb{H}^{L} \vdash^{*} U_{2}\right\rangle$, then $M \triangleright_{\beta \eta}^{*} N_{1}$, $M \triangleright_{\beta \eta}^{*} N_{2}, N_{1}:\left\langle\Gamma_{1} \vdash U_{1}\right\rangle$ and $N_{2}:\left\langle\Gamma_{2} \vdash U_{2}\right\rangle$ where $\Gamma_{1}, \Gamma_{2} \subset \mathbb{H}^{L}$. By confluence theorem 7 and subject reduction theorem $20, \exists M^{\prime}$ such that $M \triangleright_{\beta \eta}^{*} M^{\prime}, M^{\prime}:\left\langle\Gamma_{1} \upharpoonright_{M^{\prime}} \vdash U_{1}\right\rangle$ and $M^{\prime}:\left\langle\Gamma_{2} \upharpoonright_{M^{\prime}} \vdash U_{2}\right\rangle$. Hence by Remark 16, $M^{\prime}:\left\langle\left(\Gamma_{1} \sqcap \Gamma_{2}\right) \upharpoonright_{M^{\prime}} \vdash U_{1} \sqcap U_{2}\right\rangle$ and, by lemma $39,\left(\Gamma_{1} \sqcap \Gamma_{2}\right) \upharpoonright_{M^{\prime}} \subseteq \Gamma_{1} \sqcap \Gamma_{2} \subset \mathbb{H}^{L}$. Thus $M:\left\langle\mathbb{H}^{L} \vdash^{*} U_{1} \sqcap U_{2}\right\rangle$.
- If $M \in \mathcal{M}^{L}$ and $M:\left\langle\mathbb{H}^{L} \vdash^{*} U_{1} \sqcap U_{2}\right\rangle$, then $M \triangleright_{\beta \eta}^{*} N, N:\left\langle\Gamma \vdash U_{1} \sqcap U_{2}\right\rangle$ and $\Gamma \subset \mathbb{H}^{L}$. By $\sqsubseteq, ~ N:\left\langle\Gamma \vdash U_{1}\right\rangle$ and $N:\left\langle\Gamma \vdash U_{2}\right\rangle$.
Hence, $M:\left\langle\mathbb{H}^{L} \vdash^{*} U_{1}\right\rangle$ and $M:\left\langle\mathbb{H}^{L} \vdash^{*} U_{2}\right\rangle$.
We deduce that $\mathbb{I}_{\beta \eta}\left(U_{1} \sqcap T_{2}\right)=\mathcal{O}^{L} \cup\left\{M \in \mathcal{M}^{L} / M:\left\langle\mathbb{H}^{L} \vdash^{*} U_{1} \sqcap U_{2}\right\rangle\right\}$.
$-U=V \rightarrow T$: Let $\mathrm{d}(T)=\oslash \preceq K=\mathrm{d}(V)$. By $\mathrm{IH}, \mathbb{I}_{\beta \eta}(V)=\mathcal{O}^{K} \cup\left\{M \in \mathcal{M}^{K} /\right.$
$\left.M:\left\langle\mathbb{H}^{K} \vdash^{*} V\right\rangle\right\}$ and $\mathbb{I}_{\beta \eta}(T)=\mathcal{O}^{\ominus} \cup\left\{M \in \mathcal{M}^{\ominus} / M:\left\langle\mathbb{H}^{\ominus} \vdash^{*} T\right\rangle\right\}$. Note that $\mathbb{I}_{\beta \eta}(V \rightarrow T)=\mathbb{I}_{\beta \eta}(V) \rightsquigarrow \mathbb{I}_{\beta \eta}(T)$.
- Let $\left.M \in \mathbb{I}_{\beta \eta} V\right) \rightsquigarrow \mathbb{I}_{\beta \eta} T$) and, by lemma 37 , let $y^{K} \in \mathbb{V}_{V}$ such that $\forall K, y^{K} \notin$ $\mathrm{fv}(M)$. Then $M \diamond y^{K}$. By remark $16, y^{K}:\left\langle\left(y^{K}: V\right) \vdash^{*} V\right\rangle$. Hence y^{K} : $\left\langle\mathbb{H}^{K} \vdash^{*} V\right\rangle$. Thus, $y^{K} \in \mathbb{I}_{\beta \eta}(V)$ and $M y^{K} \in \mathbb{I}_{\beta \eta}(T)$.
* If $M y^{K} \in \mathcal{O}^{\ominus}$, then since $y \in \mathcal{V}_{2}$, by lemma $41, M \in \mathcal{O}^{\ominus}$.
* If $M y^{K} \in\left\{M \in \mathcal{M}^{\ominus} / M:\left\langle\mathbb{H}^{\ominus} \vdash^{*} T\right\rangle\right\}$ then $M y^{K} \triangleright_{\beta \eta}^{*} N$ and $N:\langle\Gamma \vdash$ $T\rangle$, hence, $\lambda y^{K} . M y^{K} \triangleright_{\beta}^{*} \lambda y^{K} . N$. We have two cases:
- If $y^{K} \in \operatorname{dom}(\Gamma)$, then $\Gamma=\Delta,\left(y^{K}: V\right)$ and by $\rightarrow_{I}, \lambda y^{K} . N:\langle\Delta \vdash$ $V \rightarrow T\rangle$.
- If $y^{K} \notin \operatorname{dom}(\Gamma)$, let $\Delta=\Gamma$. By $\rightarrow_{I}^{\prime}, \lambda y^{K} . N:\left\langle\Delta \vdash \omega^{K} \rightarrow T\right\rangle$. By \sqsubseteq, since $\left\langle\Delta \vdash \omega^{K} \rightarrow T\right\rangle \sqsubseteq\langle\Delta \vdash V \rightarrow T\rangle$, we have $\lambda y^{K} . N:\langle\Delta \vdash$ $V \rightarrow T\rangle$.
Note that $\Delta \subset \mathbb{G}$. Since $\lambda y^{K} . M y^{K} \triangleright_{\beta}^{*} M$ and $\lambda y^{K} . M y^{K} \triangleright_{\beta \eta}^{*} \lambda y^{K} . N$, by theorem 7 and theorem 20 , there is M^{\prime} such that $M \triangleright_{\beta \eta}^{*} M^{\prime}, \lambda y^{K} . N \triangleright_{\beta \eta}^{*}$ $M^{\prime}, M^{\prime}:\left\langle\Delta \upharpoonright_{M^{\prime}} \vdash V \rightarrow T\right\rangle$. Since $\Delta \upharpoonright_{M^{\prime}} \subseteq \Delta \subset \mathbb{H}^{\ominus}, M:\left\langle\mathbb{H}^{\ominus} \vdash^{*} V \rightarrow\right.$ $T\rangle$.
- Let $M \in \mathcal{O}^{\ominus} \cup\left\{M \in \mathcal{M}^{\ominus} / M:\left\langle\mathbb{H}^{\varnothing} \vdash^{*} V \rightarrow T\right\rangle\right\}$ and $N \in \mathbb{I}_{\beta \eta}(V)=$ $\mathcal{O}^{K} \cup\left\{M \in \mathcal{M}^{K} / M:\left\langle\mathbb{H}^{K} \vdash^{*} V\right\rangle\right\}$ such that $M \diamond N$. Then, $\mathrm{d}(N)=K$.
* If $M \in \mathcal{O}^{\ominus}$, then, by lemma $41, M N \in \mathcal{O}^{\ominus}$.
* If $M \in\left\{M \in \mathcal{M}^{\ominus} / M:\left\langle\mathbb{H}^{\ominus} \vdash^{*} V \rightarrow T\right\rangle\right\}$, then
- If $N \in \mathcal{O}^{K}$, then, by lemma $41, M N \in \mathcal{O}^{\circ}$.
- If $N \in\left\{M \in \mathcal{M}^{K} / M:\left\langle\mathbb{H}^{K} \vdash^{*} V\right\rangle\right\}$ then $M \triangleright_{\beta \eta}^{*} M_{1}, N \triangleright_{\beta \eta}^{*} N_{1}$, $M_{1}:\left\langle\Gamma_{1} \vdash V \rightarrow T\right\rangle$ and $N_{1}:\left\langle\Gamma_{2} \vdash V\right\rangle$ where $\Gamma_{1} \subset \mathbb{H}^{\ominus}$ and $\Gamma_{2} \subset \mathbb{H}^{K}$. By lemma 46, $M N \triangleright_{\beta \eta}^{*} M_{1} N_{1}$ and, by $\rightarrow_{E}, M_{1} N_{1}:\left\langle\Gamma_{1} \sqcap\right.$ $\left.\Gamma_{2} \vdash T\right\rangle$. By lemma 39, $\Gamma_{1} \sqcap \Gamma_{2} \subset \mathbb{H}^{\ominus}$. Therefore $M N:\left\langle\mathbb{H}^{\varnothing} \vdash^{*} T\right\rangle$.
We deduce that $\mathbb{I}_{\beta \eta}(V \rightarrow T)=\mathcal{O}^{\ominus} \cup\left\{M \in \mathcal{M}^{\ominus} / M:\left\langle\mathbb{H}^{\ominus} \vdash^{*} V \rightarrow T\right\rangle\right\}$.
3 . We only do the case $r=\beta$. By induction on U.
$-U=a$: By definition of \mathbb{I}_{β}.
$-U=\omega^{L}$: By definition, $\mathbb{I}_{\beta}\left(\omega^{L}\right)=\mathcal{M}^{L}$. Hence, $\mathcal{O}^{L} \cup\left\{M \in \mathcal{M}^{L} / M:\left\langle\mathbb{H}^{L} \vdash\right.\right.$ $\left.\left.\omega^{L}\right\rangle\right\} \subseteq \mathbb{I}_{\beta}\left(\omega^{L}\right)$.
Let $M \in \mathbb{I}_{\beta}\left(\omega^{L}\right)$ where $\operatorname{fv}(M)=\left\{x_{1}^{L_{1}}, \ldots, x_{n}^{L_{n}}\right\}$. We have $M:\left\langle\left(x_{i}^{L_{i}}: \omega^{L_{i}}\right)_{n} \vdash\right.$ $\left.\omega^{L}\right\rangle$ and $M \in \mathcal{M}^{L} . \forall 1 \leq i \leq n$, let U_{i} the type such that $x_{i}^{L_{i}} \in \mathbb{V}_{U_{i}}$. Then $\Gamma=\left(x_{i}^{L_{i}}: U_{i}\right)_{n} \subset \mathbb{H}^{L}$. By lemma 14, $M:\left\langle\Gamma \vdash \omega^{L}\right\rangle$. Hence $M:\left\langle\mathbb{H}^{L} \vdash \omega^{L}\right\rangle$. Therefore, $\mathbb{I}\left(\omega^{L}\right) \subseteq\left\{M \in \mathcal{M}^{L} / M:\left\langle\mathbb{H}^{L} \vdash \omega^{L}\right\rangle\right\}$.
We deduce $\mathbb{I}_{\beta}\left(\omega^{L}\right)=\mathcal{O}^{L} \cup\left\{M \in \mathcal{M}^{L} / M:\left\langle\mathbb{H}^{L} \vdash \omega^{L}\right\rangle\right\}$.
$-U=e_{i} V: L=i:: K$ and $\mathrm{d}(V)=K$. By IH and lemma 41, $\mathbb{I}_{\beta}\left(e_{i} V\right)=$ $\left(\mathbb{I}_{\beta}(V)\right)^{+i}=\left(\mathcal{O}^{K} \cup\left\{M \in \mathcal{M}^{K} / M:\left\langle\mathbb{H}^{K} \vdash V\right\rangle\right\}\right)^{+i}=$ $\mathcal{O}^{i:: L} \cup\left(\left\{M \in \mathcal{M}^{K} / M:\left\langle\mathbb{H}^{K} \vdash V\right\rangle\right\}\right)^{+i}$.
- If $M \in \mathcal{M}^{K}$ and $M:\left\langle\mathbb{H}^{K} \vdash V\right\rangle$, then $M:\langle\Gamma \vdash V\rangle$ where $\Gamma \subset \mathbb{H}^{K}$. By e and 39, $M^{+i}:\left\langle e_{i} \Gamma \vdash e_{i} V\right\rangle$ and $e_{i} \Gamma \subset \mathbb{H}^{L}$. Thus $M^{+i} \in \mathcal{M}^{L}$ and $M^{+i}:\left\langle\mathbb{H}^{L} \vdash U\right\rangle$.
- If $M \in \mathcal{M}^{L}$ and $M:\left\langle\mathbb{H}^{L} \vdash U\right\rangle$, then $M:\langle\Gamma \vdash U\rangle$ where $\Gamma \subset \mathbb{H}^{L}$. By lemmas 13, and 39, $M^{-i}:\left\langle\Gamma^{-i} \vdash V\right\rangle$ and $\Gamma^{-i} \subset \mathbb{H}^{K}$. Thus by lemma 46, $M=\left(M^{-i}\right)^{+i}$ and $M^{-i} \in\left\{M \in \mathcal{M}^{K} / M:\left\langle\mathbb{H}^{K} \vdash V\right\rangle\right\}$.
Hence $\left(\left\{M \in \mathcal{M}^{K} / M:\left\langle\mathbb{H}^{K} \vdash V\right\rangle\right\}\right)^{+i}=\left\{M \in \mathcal{M}^{L} / M:\left\langle\mathbb{H}^{L} \vdash U\right\rangle\right\}$ and
$\mathbb{I}_{\beta}(U)=\mathcal{O}^{L} \cup\left\{M \in \mathcal{M}^{L} / M:\left\langle\mathbb{H}^{L} \vdash U\right\rangle\right\}$.
$-U=U_{1} \sqcap U_{2}$: By $\mathrm{IH}, \mathbb{I}_{\beta}\left(U_{1} \sqcap U_{2}\right)=\mathbb{I}_{\beta}\left(U_{1}\right) \cap \mathbb{I}_{\beta}\left(U_{2}\right)=\left(\mathcal{O}^{L} \cup\left\{M \in \mathcal{M}^{L} /\right.\right.$
$\left.\left.M:\left\langle\mathbb{H}^{L} \vdash U_{1}\right\rangle\right\}\right) \cap\left(\mathcal{O}^{L} \cup\left\{M \in \mathcal{M}^{L} / M:\left\langle\mathbb{H}^{L} \vdash U_{2}\right\rangle\right\}\right)=\mathcal{O}^{L} \cup\left(\left\{M \in \mathcal{M}^{L} /\right.\right.$
$\left.\left.M:\left\langle\mathbb{H}^{L} \vdash U_{1}\right\rangle\right\} \cap\left\{M \in \mathcal{M}^{L} / M:\left\langle\mathbb{H}^{L} \vdash U_{2}\right\rangle\right\}\right)$.
- If $M \in \mathcal{M}^{L}, M:\left\langle\mathbb{H}^{L} \vdash U_{1}\right\rangle$ and $M:\left\langle\mathbb{H}^{L} \vdash U_{2}\right\rangle$, then $M:\left\langle\Gamma_{1} \vdash U_{1}\right\rangle$ and $M:\left\langle\Gamma_{2} \vdash U_{2}\right\rangle$ where $\Gamma_{1}, \Gamma_{2} \subset \mathbb{H}^{L}$. Hence by Remark 16, $M:\left\langle\Gamma_{1} \sqcap \Gamma_{2} \vdash\right.$ $\left.U_{1} \sqcap U_{2}\right\rangle$ and, by lemma $39, \Gamma_{1} \sqcap \Gamma_{2} \subset \mathbb{H}^{L}$. Thus $M:\left\langle\mathbb{H}^{L} \vdash U_{1} \sqcap U_{2}\right\rangle$.
- If $M \in \mathcal{M}^{L}$ and $M:\left\langle\mathbb{H}^{L} \vdash U_{1} \sqcap U_{2}\right\rangle$, then $M:\left\langle\Gamma \vdash U_{1} \sqcap U_{2}\right\rangle$ and $\Gamma \subset \mathbb{H}^{L}$. By $\sqsubseteq, M:\left\langle\Gamma \vdash U_{1}\right\rangle$ and $M:\left\langle\Gamma \vdash U_{2}\right\rangle$. Hence, $M:\left\langle\mathbb{H}^{L} \vdash U_{1}\right\rangle$ and $M:\left\langle\mathbb{H}^{L} \vdash U_{2}\right\rangle$.
We deduce that $\mathbb{I}_{\beta}\left(U_{1} \sqcap T_{2}\right)=\mathcal{O}^{L} \cup\left\{M \in \mathcal{M}^{L} / M:\left\langle\mathbb{H}^{L} \vdash U_{1} \sqcap U_{2}\right\rangle\right\}$.
$-U=V \rightarrow T$: Let $\mathrm{d}(T)=\oslash \preceq K=\mathrm{d}(V)$. By $\mathrm{IH}, \mathbb{I}_{\beta}(V)=\mathcal{O}^{K} \cup\left\{M \in \mathcal{M}^{K}\right.$ $\left./ M:\left\langle\mathbb{H}^{K} \vdash V\right\rangle\right\}$ and $\mathbb{I}_{\beta}(T)=\mathcal{O}^{\ominus} \cup\left\{M \in \mathcal{M}^{\ominus} / M:\left\langle\mathbb{H}^{\ominus} \vdash T\right\rangle\right\}$. Note that $\mathbb{I}_{\beta}(V \rightarrow T)=\mathbb{I}_{\beta}(V) \rightsquigarrow \mathbb{I}_{\beta}(T)$.
- Let $\left.M \in \mathbb{I}_{\beta} V\right) \rightsquigarrow \mathbb{I}_{\beta} T$) and, by lemma 37 , let $y^{K} \in \mathbb{V}_{V}$ such that $\forall K, y^{K} \notin$ $\mathrm{fv}(M)$. Then $M \diamond y^{K}$. By remark $16, y^{K}:\left\langle\left(y^{K}: V\right) \vdash^{*} V\right\rangle$. Hence y^{K} : $\left\langle\mathbb{H}^{K} \vdash V\right\rangle$. Thus, $y^{K} \in \mathbb{I}_{\beta}(V)$ and $M y^{K} \in \mathbb{I}_{\beta}(T)$.
* If $M y^{K} \in \mathcal{O}^{\ominus}$, then since $y \in \mathcal{V}_{2}$, by lemma $41, M \in \mathcal{O}^{\varnothing}$.
* If $M y^{K} \in\left\{M \in \mathcal{M}^{\varnothing} / M:\left\langle\mathbb{H}^{\varnothing} \vdash T\right\rangle\right\}$ then $M y^{K}:\langle\Gamma \vdash T\rangle$. Since by lemma 14, $\operatorname{dom}(\Gamma)=\mathrm{fv}\left(M y^{K}\right)$ and $y^{K} \in \mathrm{fv}\left(M y^{K}\right), \Gamma=\Delta,\left(y^{K}: V^{\prime}\right)$. Since $\left(y^{K}: V^{\prime}\right) \in \mathbb{H}^{\varnothing}$, by lemma $37, V=V^{\prime}$. So $M y^{K}:\left\langle\Delta,\left(y^{K}: V\right) \vdash\right.$ $T\rangle$ and by lemma $17 M:\langle\Delta \vdash V \rightarrow T\rangle$. Note that $\Delta \subset \mathbb{H}^{\varnothing}$, hence $M:\left\langle\mathbb{H}{ }^{\varnothing} \vdash V \rightarrow T\right\rangle$.
- Let $M \in \mathcal{O}^{\ominus} \cup\left\{M \in \mathcal{M}^{\varnothing} / M:\left\langle\mathbb{H}^{\varnothing} \vdash V \rightarrow T\right\rangle\right\}$ and $N \in \mathbb{I}_{\beta \eta}(V)=$ $\mathcal{O}^{K} \cup\left\{M \in \mathcal{M}^{K} / M:\left\langle\mathbb{H}^{K} \vdash V\right\rangle\right\}$ such that $M \diamond N$. Then, $\mathrm{d}(N)=K$.
* If $M \in \mathcal{O}^{\varnothing}$, then, by lemma $41, M N \in \mathcal{O}^{\varnothing}$.
* If $M \in\left\{M \in \mathcal{M}^{\ominus} / M:\left\langle\mathbb{H}^{\ominus} \vdash V \rightarrow T\right\rangle\right\}$, then
- If $N \in \mathcal{O}^{K}$, then, by lemma $41, M N \in \mathcal{O}^{\ominus}$.
- If $N \in\left\{M \in \mathcal{M}^{K} / M:\left\langle\mathbb{H}^{K} \vdash V\right\rangle\right\}$ then $M:\left\langle\Gamma_{1} \vdash V \rightarrow\right.$ $T\rangle$ and $N:\left\langle\Gamma_{2} \vdash V\right\rangle$ where $\Gamma_{1} \subset \mathbb{H}^{\ominus}$ and $\Gamma_{2} \subset \mathbb{H}^{K}$. By \rightarrow_{E}, $M N:\left\langle\Gamma_{1} \sqcap \Gamma_{2} \vdash T\right\rangle$. By lemma 39, $\Gamma_{1} \sqcap \Gamma_{2} \subset \mathbb{H}^{\ominus}$. Therefore $M N:\left\langle\mathbb{H}^{\ominus} \vdash T\right\rangle$.
We deduce that $\mathbb{I}_{\beta}(V \rightarrow T)=\mathcal{O}^{\ominus} \cup\left\{M \in \mathcal{M}^{\ominus} / M:\left\langle\mathbb{H}^{\ominus} \vdash V \rightarrow T\right\rangle\right\}$.

Now, we use this crucial \mathbb{I} to establish completeness of our semantics.
Theorem 44 (Completeness of \vdash). Let $U \in \mathbb{U}$ such that $d(U)=L$.

1. $[U]_{\beta \eta}=\left\{M \in \mathcal{M}^{L} / M\right.$ closed, $M \triangleright_{\beta \eta}^{*} N$ and $\left.N:\langle() \vdash U\rangle\right\}$.
2. $[U]_{\beta}=[U]_{h}=\left\{M \in \mathcal{M}^{L} / M:\langle() \vdash U\rangle\right\}$.
3. $[U]_{\beta \eta}$ is stable by reduction. I.e., If $M \in[U]_{\beta \eta}$ and $M \triangleright_{\beta \eta}^{*} N$ then $N \in[U]_{\beta \eta}$.

Proof Let $r \in\{\beta, h, \beta \eta\}$.

1. Let $M \in[U]_{\beta \eta}$. Then M is a closed term and $M \in \mathbb{I}_{\beta \eta}(U)$. Hence, by Lemma $43, M \in \mathcal{O}^{L} \cup\left\{M \in \mathcal{M}^{L} / M:\left\langle\mathbb{H}^{L} \vdash^{*} U\right\rangle\right\}$. Since M is closed, $M \notin \mathcal{O}^{L}$. Hence, $M \in\left\{M \in \mathcal{M}^{L} / M:\left\langle\mathbb{H}^{L} \vdash^{*} U\right\rangle\right.$ and so, $M \triangleright_{\beta \eta}^{*} N$ and $N:\langle\Gamma \vdash U\rangle$ where $\Gamma \subset \mathbb{H}^{L}$. By Theorem $4, N$ is closed and, by Lemma $14.2, N:\langle() \vdash U\rangle$. Conversely, take M closed such that $M \triangleright_{\beta}^{*} N$ and $N:\langle() \vdash U\rangle$. Let $\mathcal{I} \in \beta$-int. By Lemma 31, $N \in \mathcal{I}(U)$. By Lemma 30.1, $\mathcal{I}(U)$ is $\beta \eta$-saturated. Hence, $M \in \mathcal{I}(U)$. Thus $M \in[U]$.
2. Let $M \in[U]_{\beta}$. Then M is a closed term and $M \in \mathbb{I}_{\beta}(U)$. Hence, by Lemma 43, $M \in \mathcal{O}^{L} \cup\left\{M \in \mathcal{M}^{L} / M:\left\langle\mathbb{H}^{L} \vdash U\right\rangle\right\}$. Since M is closed, $M \notin \mathcal{O}^{L}$. Hence, $M \in\left\{M \in \mathcal{M}^{L} / M:\left\langle\mathbb{H}^{L} \vdash U\right\rangle\right.$ and so, $M:\langle\Gamma \vdash U\rangle$ where $\Gamma \subset \mathbb{H}^{L}$. By Lemma 14.2, $N:\langle() \vdash U\rangle$.
Conversely, take M such that $M:\langle() \vdash U\rangle$. By Lemma $14.2, M$ is closed. Let $\mathcal{I} \in \beta$-int. By Lemma $31, M \in \mathcal{I}(U)$. Thus $M \in[U]_{\beta}$.
It is easy to see that $[U]_{\beta}=[U]_{h}$.
3. Let $M \in[U]$ such that $M \triangleright_{\beta \eta}^{*} N$. By $1, M$ is closed, $M \triangleright_{\beta \eta}^{*} P$ and $P:\langle() \vdash U\rangle$. By confluence Theorem 7, there is Q such that $P \triangleright_{\beta \eta}^{*} Q$ and $N \triangleright_{\beta \eta}^{*} Q$. By subject reduction Theorem 20, $Q:\langle() \vdash U\rangle$. By Theorem 4, N is closed and, by $1, N \in[U]$.

8 Conclusion

Expansion may be viewed to work like a multi-layered simultaneous substitution. Moreover, expansion is a crucial part of a procedure for calculating principal typings and helps support compositional type inference. Because the early definitions of expansion were complicated, expansion variables (E-variables) were introduced to simplify and mechanise expansion. The aim of this paper is to give a complete semantics for intersection type systems with expansion variables.

The only earlier attempt (see Kamareddine, Nour, Rahli and Wells [12]) at giving a semantics for expansion variables could only handle the λI-calculus, did not allow a universal type, and was incomplete in the presence of more than one expansion variable. This paper overcomes these difficulties and gives a complete semantics for an intersection type system with an arbitrary (possibly infinite) number of expansion variables using a calculus indexed with finite sequences of natural numbers.

References

1. H. P. Barendregt. The Lambda Calculus: Its Syntax and Semantics. North-Holland, revised edition, 1984.
2. S. Carlier, J. Polakow, J. B. Wells, A. J. Kfoury. System E: Expansion variables for flexible typing with linear and non-linear types and intersection types. In Programming Languages E Systems, 13th European Symp. Programming, vol. 2986 of Lecture Notes in Computer Science. Springer, 2004.
3. S. Carlier, J. B. Wells. Expansion: the crucial mechanism for type inference with intersection types: A survey and explanation. In Proc. 3rd Int'l Workshop Intersection Types 8 Related Systems (ITRS 2004), 2005. The ITRS '04 proceedings appears as vol. 136 (2005-07-19) of Elec. Notes in Theoret. Comp. Sci.
4. M. Coppo, M. Dezani-Ciancaglini, B. Venneri. Principal type schemes and λ-calculus semantics. In J. R. Hindley, J. P. Seldin, eds., To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus, and Formalism. Academic Press, 1980.
5. T. Coquand. Completeness theorems and lambda-calculus. In P. Urzyczyn, ed., TLCA, vol. 3461 of Lecture Notes in Computer Science. Springer, 2005.
6. G. Goos, J. Hartmanis, eds. λ-Calculus and Computer Science Theory, Proceedings of the Symposium Held in Rome, March 15-27, 1975, vol. 37 of Lecture Notes in Computer Science. Springer-Verlag, 1975.
7. J. R. Hindley. The simple semantics for Coppo-Dezani-Sallé types. In M. DezaniCiancaglini, U. Montanari, eds., International Symposium on Programming, 5th Colloquium, vol. 137 of LNCS, Turin, 1982. Springer-Verlag.
8. J. R. Hindley. The completeness theorem for typing λ-terms. Theoretical Computer Science, 22, 1983.
9. J. R. Hindley. Curry's types are complete with respect to F-semantics too. Theoretical Computer Science, 22, 1983.
10. J. R. Hindley. Basic Simple Type Theory, vol. 42 of Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, 1997.
11. F. Kamareddine, K. Nour. A completeness result for a realisability semantics for an intersection type system. Ann. Pure Appl. Logic, 146(2-3), 2007.
12. F. Kamareddine, K. Nour, V. Rahli, J. B. Wells. Realisability semantics for intersection type systems and expansion variables. In ITRS'08. The file is Located at http://www. macs.hw.ac.uk/~fairouz/papers/conference-publications/semone\%.pdf, 2008.
13. J. Krivine. Lambda-Calcul : Types et Modèles. Etudes et Recherches en Informatique. Masson, 1990.

A Proofs of Section 2

The next lemma is needed in the proofs.
Lemma 45. Let $M, N, N_{1}, \ldots, N_{n} \in \mathcal{M}$.

1. If $M \diamond N$ and M^{\prime} is a subterm of M then $M^{\prime} \diamond N$.
2. If $d(M)=L$ and x^{K} occurs in M, then $K \succeq L$.
3. Let $\mathcal{X}=\{M\} \cup\left\{N_{i} / 1 \leq i \leq n\right\}$. If $\forall 1 \leq i \leq n, d\left(N_{i}\right)=L_{i}$ and $\diamond \mathcal{X}$, then $M\left[\left(x_{i}^{L_{i}}:=N_{i}\right)_{n}\right] \in \mathcal{M}$ and $d\left(M\left[\left(x_{i}^{L_{i}}:=N_{i}\right)_{n}\right]\right)=d(M)$.
4. Let $\mathcal{X}=\{M, N\} \cup\left\{N_{i} / 1 \leq i \leq n\right\}$. If $\forall 1 \leq i \leq n, d\left(N_{i}\right)=L_{i}$ and $\diamond \mathcal{X}$ then $M\left[\left(x_{i}^{L_{i}}:=N_{i}\right)_{n}\right] \diamond N\left[\left(x_{i}^{L_{i}}:=N_{i}\right)_{n}\right]$

Proof

1. By induction on M.

- Case $M=x^{L}$ is trivial.
- Case $M=\lambda x^{L} . P$ where $\forall K \in \mathcal{L}_{\mathbb{N}}, x^{K} \notin \mathrm{fv}(N)$. If $M^{\prime}=M$ then nothing to prove. Else M^{\prime} is a subterm of P. If we prove that $P \diamond N$ then we can use IH to get $M^{\prime} \diamond N$. Hence, now we prove $P \diamond N$. Let $y \in \mathcal{V}$ such that $y^{K} \in \mathrm{fv}(P)$ and $y^{K^{\prime}} \in \mathrm{fv}(N)$. Since $x^{K^{\prime}} \notin \mathrm{fv}(N)$, then $x \neq y$ and $y^{K} \neq x^{L}$. Hence $y^{K} \in \operatorname{fv}(M)$ and since $M \diamond N$ then $K=K^{\prime}$. Hence, $P \diamond N$.
- Case $M=M_{1} M_{2}$. Let $i \in\{1,2\}$. First we prove that $M_{i} \diamond N$: let $x \in \mathcal{V}$, such that $x^{L} \in \mathrm{fv}\left(M_{i}\right)$ and $x^{K} \in \mathrm{fv}(N)$, then $x^{L} \in \mathrm{fv}(M)$ and so $L=K$. Now, if $M^{\prime}=M$ then nothing to prove. Else
- Either M^{\prime} is a subterm of M_{1} and so by IH, since $M_{1} \diamond N, M^{\prime} \diamond N$.
- Or M^{\prime} is a subterm of M_{2} and so by IH, since $M_{2} \diamond N, M^{\prime} \diamond N$.

2. By induction on M.

- If $M=x^{K}$ then $\mathrm{d}(M)=K$ and since \succeq is an order relation, $K \succeq K$.
- If $M=M_{1} M_{2}$ then $\mathrm{d}(M)=\mathrm{d}\left(M_{1}\right)$. Let $L^{\prime}=\mathrm{d}\left(M_{2}\right)$ so $L^{\prime} \succeq L$. By IH, if x^{K} occurs in M_{1} then $K \succeq L$ and if x^{K} occurs in M_{2} then $K \succeq L^{\prime}$. Since x^{K} occurs in $M, K \succeq L$.
- If $M=\lambda x^{L_{1}} \cdot M_{1}$ then $L_{1} \succeq \mathrm{~d}\left(M_{1}\right)=\mathrm{d}\left(\lambda x^{L_{1}} \cdot M_{1}\right)=L$. If x^{K} occurs in M, then $x^{K}=x^{L_{1}}$ or x^{K} occurs in M_{1}. By IH, if x^{K} occurs in M_{1} then $K \succeq L$.

3. By induction on M.

- If $M=y^{K}$ then if $y^{K}=x_{i}^{L_{i}}$, for $1 \leq i \leq n$, then $M\left[\left(x_{i}^{L_{i}}:=N_{i}\right)_{n}\right]=N_{i} \in \mathcal{M}$ and $\mathrm{d}\left(M\left[\left(x_{i}^{L_{i}}:=N_{i}\right)_{n}\right]\right)=\mathrm{d}\left(N_{i}\right)=L_{i}=K$. Else, $M\left[\left(x_{i}^{L_{i}}:=N_{i}\right)_{n}\right]=y^{K} \in$ \mathcal{M} and $\mathrm{d}\left(M\left[\left(x_{i}^{L_{i}}:=N_{i}\right)_{n}\right]\right)=\mathrm{d}\left(y^{K}\right)$.
- If $M=M_{1} M_{2}$ then $\mathrm{d}(M)=\mathrm{d}\left(M_{1}\right)$ and $M\left[\left(x_{i}^{L_{i}}:=N_{i}\right)_{n}\right]=M_{1}\left[\left(x_{i}^{L_{i}}:=\right.\right.$ $\left.\left.N_{i}\right)_{n}\right] M_{2}\left[\left(x_{i}^{L_{i}}:=N_{i}\right)_{n}\right]$. Since $\forall N \in \mathcal{X}, M \diamond N$, by 1., $\forall N \in \mathcal{X}, M_{1} \diamond N$ and $M_{2} \diamond N$. Since $M_{1}, M_{2} \in \mathcal{M}$, by IH, $M_{1}\left[\left(x_{i}^{L_{i}}:=N_{i}\right)_{n}\right], M_{2}\left[\left(x_{i}^{L_{i}}:=N_{i}\right)_{n}\right] \in$ $\mathcal{M}, \mathrm{d}\left(M_{1}\left[\left(x_{i}^{L_{i}}:=N_{i}\right)_{n}\right]\right)=\mathrm{d}\left(M_{1}\right)$ and $\mathrm{d}\left(M_{2}\left[\left(x_{i}^{L_{i}}:=N_{i}\right)_{n}\right]\right)=\mathrm{d}\left(M_{2}\right)$. Let $x^{K} \in \operatorname{fv}\left(M_{1}\left[\left(x_{i}^{L_{i}}:=N_{i}\right)_{n}\right]\right)$ and $x^{K^{\prime}} \in \mathrm{fv}\left(M_{2}\left[\left(x_{i}^{L_{i}}:=N_{i}\right)_{n}\right]\right)$. If $x^{K} \in$ $\mathrm{fv}\left(M_{1}\right)$ then by $1 ., \diamond\left(\left\{M_{1}, M_{2}\right\} \cup\left\{N_{i} / 1 \leq i \leq n\right\}\right)$ hence $K=K^{\prime}$. Let $1 \leq i \leq$ n. If $x^{K} \in \operatorname{fv}\left(N_{i}\right)$ then by $1 ., \diamond\left(\left\{M_{2}\right\} \cup\left\{N_{i} / 1 \leq i \leq n\right\}\right)$ hence $K=K^{\prime}$. So $M_{1}\left[\left(x_{i}^{L_{i}}:=N_{i}\right)_{n}\right] \diamond M_{2}\left[\left(x_{i}^{L_{i}}:=N_{i}\right)_{n}\right]$. Furthermore, $\mathrm{d}\left(M_{2}\left[\left(x_{i}^{L_{i}}:=N_{i}\right)_{n}\right]\right)=$ $\mathrm{d}\left(M_{2}\right) \succeq \mathrm{d}\left(M_{1}\right)=\mathrm{d}\left(M_{1}\left[\left(x_{i}^{L_{i}}:=N_{i}\right)_{n}\right]\right)$ hence $M_{1}\left[\left(x_{i}^{L_{i}}:=N_{i}\right)_{n}\right] M_{2}\left[\left(x_{i}^{L_{i}}:=\right.\right.$ $\left.\left.N_{i}\right)_{n}\right] \in \mathcal{M}$ and $\mathrm{d}\left(M_{1}\left[\left(x_{i}^{L_{i}}:=N_{i}\right)_{n}\right] M_{2}\left[\left(x_{i}^{L_{i}}:=N_{i}\right)_{n}\right]\right)=\mathrm{d}\left(M_{1}\left[\left(x_{i}^{L_{i}}:=\right.\right.\right.$ $\left.\left.\left.N_{i}\right)_{n}\right]\right)=\mathrm{d}\left(M_{1}\right)=\mathrm{d}(M)$.
- If $M=\lambda y^{K} . M_{1}$ where $K \succeq \mathrm{~d}\left(M_{1}\right)$ and $\forall 1 \leq i \leq n, y \neq x_{i}$ and $\forall K^{\prime} \in \mathcal{L}_{\mathbb{N}}$, $y^{K^{\prime}} \notin \mathrm{fv}\left(N_{i}\right)$ then $M\left[\left(x_{i}^{L_{i}}:=N_{i}\right)_{n}\right]=\lambda y^{K} . M_{1}\left[\left(x_{i}^{L_{i}}:=N_{i}\right)_{n}\right]$. Since $M_{1} \in$ \mathcal{M}, then by 1. and IH $M_{1}\left[\left(x_{i}^{L_{i}}:=N_{i}\right)_{n}\right] \in \mathcal{M}$ and $\mathrm{d}\left(M_{1}\left[\left(x_{i}^{L_{i}}:=N_{i}\right)_{n}\right]\right)=$ $\mathrm{d}\left(M_{1}\right)$. So $\lambda y^{K} . M_{1}\left[\left(x_{i}^{L_{i}}:=N_{i}\right)_{n}\right] \in \mathcal{M}$ and $\mathrm{d}\left(\lambda y^{K} \cdot M_{1}\left[\left(x_{i}^{L_{i}}:=N_{i}\right)_{n}\right]\right)=$ $\mathrm{d}\left(M_{1}\left[\left(x_{i}^{L_{i}}:=N_{i}\right)_{n}\right]\right)=\mathrm{d}\left(M_{1}\right)=\mathrm{d}(M)$.

4. By 3., $M\left[\left(x_{i}^{L_{i}}:=N_{i}\right)_{n}\right], N\left[\left(x_{i}^{L_{i}}:=N_{i}\right)_{n}\right] \in \mathcal{M}$. Let $x^{L} \in \operatorname{fv}\left(M\left[\left(x_{i}^{L_{i}}:=N_{i}\right)_{n}\right]\right)$ and $x^{K} \in \operatorname{fv}\left(N\left[\left(x_{i}^{L_{i}}:=N_{i}\right)_{n}\right]\right)$. So $x^{L} \in \operatorname{fv}(M) \cup \operatorname{fv}\left(N_{1}\right) \cup \ldots \cup \operatorname{fv}\left(N_{n}\right)$ and $x^{K} \in \operatorname{fv}(N) \cup \mathrm{fv}\left(N_{1}\right) \cup \ldots \cup \mathrm{fv}\left(N_{n}\right)$. Since $\diamond \mathcal{X}$, then $K=L$. Hence, $M\left[\left(x_{i}^{L_{i}}:=\right.\right.$ $\left.\left.N_{i}\right)_{n}\right] \diamond N\left[\left(x_{i}^{L_{i}}:=N_{i}\right)_{n}\right]$

Proof [Of Theorem 4]

1. By induction on $M \triangleright_{\eta}^{*} N$, we only do the induction step:
$-M=\lambda x^{L} \cdot N x^{L} \triangleright_{\eta} N$ and $x^{L} \notin \operatorname{fv}(N)$. By definition $N \in \mathcal{M}, \operatorname{fv}(M)=$ $\mathrm{fv}\left(N x^{L}\right) \backslash\left\{x^{L}\right\}=\mathrm{fv}(N)$ and $\mathrm{d}(M)=\mathrm{d}\left(N x^{L}\right)=\mathrm{d}(N)$.
$-M=\lambda x^{L} . M_{1} \triangleright_{\eta} \lambda x^{L} . N_{1}=N$ and $M_{1} \triangleright_{\eta} N_{1}$. By IH, $N_{1} \in \mathcal{M}, \operatorname{fv}\left(N_{1}\right)=$ $\mathrm{fv}\left(M_{1}\right)$ and $\mathrm{d}\left(M_{1}\right)=\mathrm{d}\left(N_{1}\right)$. By defintion $\mathrm{d}\left(M_{1}\right) \preceq L$, so $\mathrm{d}\left(N_{1}\right) \preceq L$ hence $N \in \mathcal{M}$. By defintion $\mathrm{d}(M)=\mathrm{d}\left(M_{1}\right)=\mathrm{d}\left(N_{1}\right)=\mathrm{d}(N)$ and $\mathrm{fv}(N)=$ $\mathrm{fv}\left(N_{1}\right) \backslash\left\{x^{L}\right\}=\mathrm{fv}\left(M_{1}\right) \backslash\left\{x^{L}\right\}=\mathrm{fv}(M)$.
$-M=M_{1} M_{2} \triangleright_{\eta} N_{1} M_{2}=N, M_{1} \diamond M_{2}, N_{1} \diamond M_{2}$ and $M_{1} \triangleright_{\eta} N_{1}$. By IH, $N_{1} \in \mathcal{M}$, $\mathrm{fv}\left(N_{1}\right)=\mathrm{fv}\left(M_{1}\right)$ and $\mathrm{d}\left(M_{1}\right)=\mathrm{d}\left(N_{1}\right)$. Since $\mathrm{d}\left(N_{1}\right)=\mathrm{d}\left(M_{1}\right) \preceq \mathrm{d}\left(M_{2}\right)$, $N \in \mathcal{M}$. By defintion, $\mathrm{fv}(N)=\mathrm{fv}\left(N_{1}\right) \cup f v\left(M_{2}\right)=\mathrm{fv}\left(M_{1}\right) \cup f v\left(M_{2}\right)=\mathrm{fv}(M)$ and $\mathrm{d}(M)=\mathrm{d}\left(M_{1}\right)=\mathrm{d}\left(N_{1}\right)=\mathrm{d}(N)$.
$-M=M_{1} M_{2} \triangleright_{\eta} M_{1} N_{2}=N, M_{1} \diamond M_{2}, M_{1} \diamond N_{2}$ and $M_{2} \triangleright_{\eta} N_{2}$. By IH, $N_{2} \in \mathcal{M}$, $\mathrm{fv}\left(N_{2}\right)=\mathrm{fv}\left(M_{2}\right)$ and $\mathrm{d}\left(M_{2}\right)=\mathrm{d}\left(N_{2}\right)$. Since $\mathrm{d}\left(M_{1}\right) \preceq \mathrm{d}\left(M_{2}\right)=\mathrm{d}\left(N_{2}\right)$, $N \in \mathcal{M}$. By defintion, $\mathrm{fv}(N)=\mathrm{fv}\left(M_{1}\right) \cup f v\left(N_{2}\right)=\mathrm{fv}\left(M_{1}\right) \cup f v\left(M_{2}\right)=\mathrm{fv}(M)$ and $\mathrm{d}(M)=\mathrm{d}\left(M_{1}\right)=\mathrm{d}(N)$.
2. Case $r=\beta$. By induction on $M \triangleright_{\beta}^{*} N$, we only do the induction step:
$-M=\left(\lambda x^{L} \cdot M_{1}\right) M_{2} \triangleright_{\beta} M_{1}\left[x^{L}:=M_{2}\right]=N$ and $\mathrm{d}\left(M_{2}\right)=L .\left(\lambda x^{L} \cdot M_{1}\right) \diamond M_{2}$ by definition, so $M_{1} \diamond M_{2}$ by lemma 45.1 and $N \in \mathcal{M}$ by lemma 45.3. If $x^{L} \in \operatorname{fv}\left(M_{1}\right)$ then $\mathrm{fv}(N)=\left(\mathrm{fv}\left(M_{1}\right) \backslash\left\{x^{L}\right\}\right) \cup \mathrm{fv}\left(M_{2}\right)=\mathrm{fv}(M)$. If $x^{L} \notin$ $\mathrm{fv}\left(M_{1}\right)$ then $\mathrm{fv}(N)=\mathrm{fv}\left(M_{1}\right)=\mathrm{fv}\left(M_{1}\right) \backslash\left\{x^{L}\right\} \subseteq \mathrm{fv}(M)$. By definition, $\mathrm{d}(M)=\mathrm{d}\left(\lambda x^{L} \cdot M_{1}\right)=\mathrm{d}\left(M_{1}\right)$ and by lemma $45, \mathrm{~d}(N)=\mathrm{d}\left(M_{1}\right)$.
$-M=\lambda x^{L} \cdot M_{1} \triangleright_{\beta} \lambda x^{L} \cdot N_{1}=N$ and $M_{1} \triangleright_{\beta} N_{1}$. By IH, $N_{1} \in \mathcal{M}, \mathrm{fv}\left(N_{1}\right) \subseteq$ $\mathrm{fv}\left(M_{1}\right)$ and $\mathrm{d}\left(M_{1}\right)=\mathrm{d}\left(N_{1}\right)$. By defintion $\mathrm{d}\left(M_{1}\right) \preceq L$, so $\mathrm{d}\left(N_{1}\right) \preceq L$ hence $N \in \mathcal{M}$. By defintion $\mathrm{d}(M)=\mathrm{d}\left(M_{1}\right)=\mathrm{d}\left(N_{1}\right)=\mathrm{d}(N)$ and $\mathrm{fv}(N)=$ $\mathrm{fv}\left(N_{1}\right) \backslash\left\{x^{L}\right\} \subseteq \operatorname{fv}\left(M_{1}\right) \backslash\left\{x^{L}\right\}=\operatorname{fv}(M)$.
$-M=M_{1} M_{2} \triangleright_{\beta} N_{1} M_{2}=N, M_{1} \diamond M_{2}, N_{1} \diamond M_{2}$ and $M_{1} \triangleright{ }_{\beta} N_{1}$. By IH, $N_{1} \in \mathcal{M}$, $\mathrm{fv}\left(N_{1}\right) \subseteq \operatorname{fv}\left(M_{1}\right)$ and $\mathrm{d}\left(M_{1}\right)=\mathrm{d}\left(N_{1}\right)$. Since $\mathrm{d}\left(N_{1}\right)=\mathrm{d}\left(M_{1}\right) \preceq \mathrm{d}\left(M_{2}\right)$, $N \in \mathcal{M}$. By defintion, $\mathrm{fv}(N)=\mathrm{fv}\left(N_{1}\right) \cup f v\left(M_{2}\right) \subseteq \operatorname{fv}\left(M_{1}\right) \cup f v\left(M_{2}\right)=\mathrm{fv}(M)$ and $\mathrm{d}(M)=\mathrm{d}\left(M_{1}\right)=\mathrm{d}\left(N_{1}\right)=\mathrm{d}(N)$.
$-M=M_{1} M_{2} \triangleright_{\beta} M_{1} N_{2}=N, M_{1} \diamond M_{2}, M_{1} \diamond N_{2}$ and $M_{2} \triangleright_{\beta} N_{2}$. By IH, $N_{2} \in \mathcal{M}$, $\mathrm{fv}\left(N_{2}\right) \subseteq \mathrm{fv}\left(M_{2}\right)$ and $\mathrm{d}\left(M_{2}\right)=\mathrm{d}\left(N_{2}\right)$. Since $\mathrm{d}\left(M_{1}\right) \preceq \mathrm{d}\left(M_{2}\right)=\mathrm{d}\left(N_{2}\right)$, $N \in \mathcal{M}$. By defintion, $\mathrm{fv}(N)=\mathrm{fv}\left(M_{1}\right) \cup \mathrm{fv}\left(N_{2}\right) \subseteq \operatorname{fv}\left(M_{1}\right) \cup \mathrm{fv}\left(M_{2}\right)=\mathrm{fv}(M)$ and $\mathrm{d}(M)=\mathrm{d}\left(M_{1}\right)=\mathrm{d}(N)$.
Case $r=\beta \eta$, by the β and η cases. Case $r=h$, by the β case.

The next lemma is again needed in the proofs.
Lemma 46. Let $M, N, N_{1}, N_{2}, \ldots, N_{p} \in \mathcal{M}, \triangleright^{\prime} \in\left\{\triangleright_{\beta}, \triangleright_{\eta}, \triangleright_{\beta \eta}, \triangleright_{\beta}^{*}, \triangleright_{\eta}^{*}, \triangleright_{\beta \eta}^{*}\right\}, \downarrow \in$ $\left\{\triangleright_{\beta}, \triangleright_{\eta}, \triangleright_{\beta \eta}, \triangleright_{h}, \triangleright_{\beta}^{*}, \triangleright_{\eta}^{*}, \triangleright_{\beta}^{*}, \triangleright_{h}^{*}\right\}$, and $i, p \geq 0$. We have:

1. $M^{+i} \in \mathcal{M}$ and x^{K} occurs in M^{+i} iff $K=i:: L$ and x^{L} occurs in M.
2. If $M \diamond N$ then $M^{+i} \diamond N^{+i}$.
3. $d\left(M^{+i}\right)=i:: d(M)$ and $\left(M^{+i}\right)^{-i}=M$.
4. $\left(M\left[\left(x_{j}^{L_{j}}:=N_{j}\right)_{p}\right]\right)^{+i}=M^{+i}\left[\left(x_{j}^{i:: L_{j}}:=N_{j}^{+i}\right)_{p}\right]$.
5. If $M \triangleright N$, then $M^{+i} \triangleright N^{+i}$.
6. If $d(M)=i:: L$, then:
(a) $M=P^{+i}$ for some $P \in \mathcal{M}, d\left(M^{-i}\right)=L$ and $\left(M^{-i}\right)^{+i}=M$.
(b) If $\forall 1 \leq j \leq p, d\left(N_{j}\right)=i:: K_{j}$, then
$\left(M\left[\left(x_{j}^{i:: K_{j}}:=N_{j}\right)_{p}\right]\right)^{-i}=M^{-i}\left[\left(x_{j}^{K_{j}}:=N_{j}^{-i}\right)_{p}\right]$.
(c) If $M \triangleright N$ then $M^{-i} \triangleright N^{-i}$.
7. If $M \triangleright N, P \triangleright Q$ and $M \diamond P$ then $N \diamond Q$
8. If $M \triangleright N^{+i}$, then there is $P \in \mathcal{M}$ such that $M=P^{+i}$ and $P \triangleright N$.
9. If $M^{+i} \triangleright N$, then there is $P \in \mathcal{M}$ such that $N=P^{+i}$ and $M \triangleright P$.
10. If $M \triangleright N$ and $d(P)=L$, then $M\left[x^{L}:=P\right] \triangleright N\left[x^{L}:=P\right]$.
11. If $N \triangleright^{\prime} P$ and $d(N)=L$, then $M\left[x^{L}:=N\right] \nabla^{\prime} M\left[x^{L}:=P\right]$.
12. If $M \bullet^{\prime} M^{\prime} P P^{\prime}$ and $d(P)=L$, then $M\left[x^{L}:=P\right] \nabla^{\prime}\left[x^{L}:=P^{\prime}\right]$.

Proof

1. We only prove $M^{+i} \in \mathcal{M}$, by induction on M :

- If $M=x^{L}$ then $M^{+i}=x^{i:: L} \in \mathcal{M}$.
- If $M=\lambda x^{L} \cdot M_{1}$ then $M^{+i}=\lambda x^{i:: L} \cdot M_{1}^{+i}$. By IH, $M_{1}^{+i} \in \mathcal{M}$, so $\lambda x^{i:: L} \cdot M_{1}^{+i} \in$ \mathcal{M}.
- If $M=M_{1} M_{2}$ then $M^{+i}=M_{1}^{+i} M_{2}^{+i}$. By IH, $M_{1}^{+i}, M_{2}^{+i} \in \mathcal{M}$. If $y^{K_{1}} \in$ $\mathrm{fv}\left(M_{1}^{+i}\right)$ and $y^{K_{2}} \in \mathrm{fv}\left(M_{2}^{+i}\right)$, then $K_{1}=i:: K_{1}^{\prime}, K_{2}=i:: K_{2}^{\prime}, x^{K_{1}^{\prime}} \in \operatorname{fv}\left(M_{1}\right)$ and $x^{K_{2}^{\prime}} \in \mathrm{fv}\left(M_{2}\right)$. Thus $K_{1}^{\prime}=K_{2}^{\prime}$, so $K_{1}=K_{2}$. Hence $M_{1}^{+i} \diamond M_{2}^{+i}$ and so, $M^{+i} \in \mathcal{M}$

2. Easy, using 1.
3. By induction on M.
4. By induction on M :

- Let $M=y^{K}$. If $\forall 1 \leq j \leq p, y^{K} \neq x_{j}^{L_{j}}$ then $y^{K}\left[\left(x_{j}^{L_{j}}:=N_{j}\right)_{p}\right]=y^{K}$. Hence $\left(y^{K}\left[\left(x_{j}^{L_{j}}:=N_{j}\right)_{p}\right]\right)^{+i}=y^{i:: K}=y^{i:: K}\left[\left(x_{j}^{i: L_{j}}:=N_{j}^{+i}\right)_{p}\right]$. If $\exists 1 \leq j \leq p, y^{K}=$ $x_{j}^{L_{j}}$ then $y^{K}\left[\left(x_{j}^{L_{j}}:=N_{j}\right)_{p}\right]=N_{j}$. Hence $\left(y^{K}\left[\left(x_{j}^{L_{j}}:=N_{j}\right)_{p}\right]\right)^{+i}=N_{j}^{+i}=$ $y^{i:: K}\left[\left(x_{j}^{i:: L_{j}}:=N_{j}^{+i}\right)_{p}\right]$.
- Let $M=\lambda y^{K} \cdot M_{1} \cdot M\left[\left(x_{j}^{L_{j}}:=N_{j}\right)_{p}\right]=\lambda y^{K} \cdot M_{1}\left[\left(x_{j}^{L_{j}}:=N_{j}\right)_{p}\right]$ where $\forall 1 \leq$ $j \leq p, y^{K} \notin N_{j}$. By IH, $\left(M_{1}\left[\left(x_{j}^{L_{j}}:=N_{j}\right)_{p}\right]\right)^{+i}=M_{1}^{+i}\left[\left(x_{j}^{i: L_{j}}:=N_{j}^{+i}\right)_{p}\right]$.
Hence, $\left(M\left[\left(x_{j}^{L_{j}}:=N_{j}\right)_{p}\right]\right)^{+i}=\lambda y^{i: K} .\left(M_{1}\left[\left(x_{j}^{L_{j}}:=N_{j}\right)_{p}\right]\right)^{+i}=$
$\lambda y^{i:: K} \cdot M_{1}^{+i}\left[\left(x_{j}^{i:: L_{j}}:=N_{j}^{+i}\right)_{p}\right]=\left(\lambda y^{K} \cdot M_{1}\right)^{+i}\left[\left(x_{j}^{i: L_{j}}:=N_{j}^{+i}\right)_{p}\right]$.
- Let $M=M_{1} M_{2} . M\left[\left(x_{j}^{L_{j}}:=N_{j}\right)_{p}\right]=M_{1}\left[\left(x_{j}^{L_{j}}:=N_{j}\right)_{p}\right] M_{2}\left[\left(x_{j}^{L_{j}}:=N_{j}\right)_{p}\right]$. By IH, $\left(M_{1}\left[\left(x_{j}^{L_{j}}:=N_{j}\right)_{p}\right]\right)^{+i}=M_{1}^{+i}\left[\left(x_{j}^{i:: L_{j}}:=N_{j}^{+i}\right)_{p}\right]$ and $\left(M_{2}\left[\left(x_{j}^{L_{j}}:=\right.\right.\right.$ $\left.\left.\left.N_{j}\right)_{p}\right]\right)^{+i}=M_{2}^{+i}\left[\left(x_{j}^{i:: L_{j}}:=N_{j}^{+i}\right)_{p}\right]$.
Hence $\left(M\left[\left(x_{j}^{L_{j}}:=N_{j}\right)_{p}\right]\right)^{+i}=\left(M_{1}\left[\left(x_{j}^{L_{j}}:=N_{j}\right)_{p}\right]\right)^{+i}\left(M_{2}\left[\left(x_{j}^{L_{j}}:=N_{j}\right)_{p}\right]\right)^{+i}=$ $M_{1}^{+i}\left[\left(x_{j}^{i: L_{j}}:=N_{j}^{+i}\right)_{p}\right] M_{2}^{+i}\left[\left(x_{j}^{i:: L_{j}}:=N_{j}^{+i}\right)_{p}\right]=M^{+i}\left[\left(x_{j}^{i:: L_{j}}:=N_{j}^{+i}\right)_{p}\right]$.

5. - Let be \triangleright_{β}. By induction on $M \triangleright_{\beta} N$.

- Let $M=\left(\lambda x^{L} . M_{1}\right) M_{2} \triangleright_{\beta} M_{1}\left[x^{L}:=M_{2}\right]=N$ where $\mathrm{d}\left(M_{2}\right)=L$, then $M^{+i}=\left(\lambda x^{i:: L} \cdot M_{1}^{+i}\right) M_{2}^{+i} \triangleright_{\beta} M_{1}^{+i}\left[x^{i:: L}:=M_{2}^{+i}\right]=\left(M_{1}\left[x^{L}:=M_{2}\right]\right)^{+i}$.
- Let $M=\lambda x^{L} \cdot M_{1} \triangleright_{\beta} \lambda x^{L} N_{1}=N$ where $M_{1} \triangleright_{\beta} N_{1}$. By IH, $M_{1}^{+i} \triangleright_{\beta} N_{1}^{+i}$, hence $M^{+i}=\lambda x^{i:: L} \cdot M_{1}^{+i} \triangleright_{\beta} \lambda x^{i:: L} N_{1}^{+i}=N^{+i}$.
- Let $M=M_{1} M_{2} \triangleright_{\beta} N_{1} M_{2}=N$ where $M_{1} \diamond M_{2}, N_{1} \diamond M_{2}$ and $M_{1} \triangleright_{\beta} N_{1}$. By IH, $M_{1}^{+i} \triangleright_{\beta} N_{1}^{+i}$, hence $M^{+i}=M_{1}^{+i} M_{2}^{+i} \triangleright_{\beta} N_{1}^{+i} M_{2}^{+i}=N^{+i}$.
- Let $M=M_{1} M_{2} \triangleright_{\beta} M_{1} N_{2}=N$ where $M_{1} \diamond M_{2}, M_{1} \diamond N_{2}$ and $M_{2} \triangleright_{\beta} N_{2}$. By IH, $M_{2}^{+i} \triangleright_{\beta} N_{2}^{+i}$, hence $M^{+i}=M_{1}^{+i} M_{2}^{+i} \triangleright_{\beta} N_{1}^{+i} M_{2}^{+i}=N^{+i}$.
- Let $>$ be $\triangleright_{\beta}^{*}$. By induction on $\triangleright_{\beta}^{*}$. using \triangleright_{β}.
- Let be \triangleright_{η}. We only do the basic case. The inductive cases are as for \triangleright_{β}. Let $M=\lambda x^{L} . N x^{L} \triangleright_{\eta} N$ where $x^{L} \notin \mathrm{fv}(N)$. Then $M^{+i}=\lambda x^{i:: L} \cdot N^{+i} x^{i:: L} \triangleright_{\eta}$ N^{+i}.
- Let \triangleright be $\triangleright_{\eta}^{*}$. By induction on $\triangleright_{\eta}^{*}$ using \triangleright_{η}.
- Let be $\triangleright_{\beta \eta}, \triangleright_{\beta \eta}^{*}, \triangleright_{h}$ or \triangleright_{h}^{*}. By the previous items.

6. (a) By induction on M :

- Let $M=y^{i:: L}$. Let $N=y^{L} \in \mathcal{M}$, then $N^{+i}=M$.
- Let $M=\lambda y^{K} . M_{1}$. Since $\mathrm{d}\left(M_{1}\right)=\mathrm{d}(M)=i:: L$, by IH, $M_{1}=P^{+i}$ for some $P \in \mathcal{M}, \mathrm{~d}\left(M_{1}^{-i}\right)=L$ and $\left(M_{1}^{-i}\right)^{+i}=M_{1}$. Moreover, $K \succeq i:: L$ hence $K=i:: L:: K^{\prime}$ for some K^{\prime}. Let $Q=\lambda y^{L:: K^{\prime}}$. P. Since $P=$ $\left(P^{+i}\right)^{-i}=M_{1}^{-i}, \mathrm{~d}(P)=L$. Since $L \preceq L:: K^{\prime}, Q \in \mathcal{M}$ and $Q^{+i}=M$. $\mathrm{d}\left(M^{-i}\right)=\mathrm{d}\left(\lambda y^{L:: K^{\prime}} . P\right)=\mathrm{d}(P)=L$ and $\left(M^{-i}\right)^{+i}=P^{+i}=M$.
- Let $M=M_{1} M_{2}$. Then $\mathrm{d}(M)=\mathrm{d}\left(M_{1}\right) \preceq \mathrm{d}\left(M_{2}\right)$, so $\mathrm{d}\left(M_{2}\right)=i:: L:: L^{\prime}$ for some L^{\prime}. By IH $M_{1}=P_{1}^{+i}$ for some $P_{1} \in \mathcal{M}, \mathrm{~d}\left(M_{1}^{-i}\right)=L$ and $\left(M_{1}^{-i}\right)^{+i}=M_{1}$. Again by IH, $M_{2}=P_{2}^{+i}$ for some $P_{2} \in \mathcal{M}, \mathrm{~d}\left(M_{2}^{-i}\right)=$ $L:: L^{\prime}$ and $\left(M_{2}^{-i}\right)^{+i}=M_{2}$. If $y^{K_{1}} \in \mathrm{fv}\left(P_{1}\right)$ and $y^{K_{2}} \in \mathrm{fv}\left(P_{2}\right)$, then $K_{1}^{\prime}=i:: K_{1}, K_{2}^{\prime}=i:: K_{2}, x^{K_{1}^{\prime}} \in \mathrm{fv}\left(M_{1}\right)$ and $x^{K_{2}^{\prime}} \in \mathrm{fv}\left(M_{2}\right)$. Thus $K_{1}^{\prime}=K_{2}^{\prime}$, so $K_{1}=K_{2}$ and $P_{1} \diamond P_{2}$. Hence $M=P_{1}^{+i} P_{2}^{+i}=\left(P_{1} P_{2}\right)^{+i}$. Let $Q=P_{1} P_{2} \in \mathcal{M} . \mathrm{d}\left(P_{1}\right)=\mathrm{d}\left(M_{1}^{-i}\right)=L \preceq L:: L^{\prime}=\mathrm{d}\left(M_{2}^{-i}\right)=\mathrm{d}\left(P_{2}\right)$, so $Q \in \mathcal{M}$ and $Q^{+i}=M . \mathrm{d}\left(M^{-i}\right)=\mathrm{d}(Q)=\mathrm{d}\left(P_{1}\right)=L$ and $\left(M^{-i}\right)^{+i}=$ $Q^{+i}=M$.
(b) By induction on M :
- Let $M=y^{i:: L}$. If $\forall 1 \leq j \leq p, y^{i:: L} \neq x_{j}^{i:: K_{j}}$ then $y^{i:: L}\left[\left(x_{j}^{i:: K_{j}}:=N_{j}\right)_{p}\right]=$ $y^{i:: L}$. Hence $\left(y^{i:: L}\left[\left(x_{j}^{i:: K_{j}}:=N_{j}\right)_{p}\right]\right)^{-i}=y^{L}=y^{L}\left[\left(x_{j}^{K_{j}}:=N_{j}^{-i}\right)_{p}\right]$. If $\exists 1 \leq j \leq p, y^{i:: L}=x_{j}^{i:: K_{j}}$ then $y^{i:: L}\left[\left(x_{j}^{i:: K_{j}}:=N_{j}\right)_{p}\right]=N_{j}$. Hence $\left(y^{i:: L}\left[\left(x_{j}^{i: K_{j}}:=N_{j}\right)_{p}\right]\right)^{-i}=N_{j}^{-i}=y^{L}\left[\left(x_{j}^{K_{j}}:=N_{j}^{-i}\right)_{p}\right]$.
- Let $M=\lambda y^{K} \cdot M_{1} . M\left[\left(x_{j}^{i:: k_{j}}:=N_{j}\right)_{p}\right]=\lambda y^{K} \cdot M_{1}\left[\left(x_{j}^{i:: K_{j}}:=N_{j}\right)_{p}\right]$ where $\forall 1 \leq j \leq p, y^{K} \notin N_{j}$. By IH, $\left(M_{1}\left[\left(x_{j}^{i: K_{j}}:=N_{j}\right)_{p}\right]\right)^{-i}=M_{1}^{-i}\left[\left(x_{j}^{K_{j}}:=\right.\right.$ $\left.\left.N_{j}^{-i}\right)_{p}\right]$. Since $\mathrm{d}(i:: L) \preceq K, K=i:: L:: K^{\prime}$ for some K^{\prime}.
Hence, $\left(M\left[\left(x_{j}^{i:: K_{j}}:=N_{j}\right)_{p}\right]\right)^{-i}=\lambda y^{L:: K^{\prime}} .\left(M_{1}\left[\left(x_{j}^{i:: K_{j}}:=N_{j}\right)_{p}\right]\right)^{-i}=$ $\lambda y^{L:: K^{\prime}} . M_{1}^{-i}\left[\left(x_{j}^{K_{j}}:=N_{j}^{-i}\right)_{p}\right]=\left(\lambda y^{K} \cdot M_{1}\right)^{-i}\left[\left(x_{j}^{K_{j}}:=N_{j}^{-i}\right)_{p}\right]$.
- Let $M=M_{1} M_{2} . M\left[\left(x_{j}^{i:: K_{j}}:=N_{j}\right)_{p}\right]=M_{1}\left[\left(x_{j}^{i: K_{j}}:=N_{j}\right)_{p}\right] M_{2}\left[\left(x_{j}^{i:: K_{j}}:=\right.\right.$ $\left.\left.N_{j}\right)_{p}\right]$. By IH, $\left(M_{1}\left[\left(x_{j}^{i: K_{j}}:=N_{j}\right)_{p}\right]\right)^{-i}=M_{1}^{-i}\left[\left(x_{j}^{K_{j}}:=N_{j}^{-i}\right)_{p}\right]$ and $\left(M_{2}\left[\left(x_{j}^{i: K_{j}}:=N_{j}\right)_{p}\right]\right)^{-i}=M_{2}^{-i}\left[\left(x_{j}^{K_{j}}:=N_{j}^{-i}\right)_{p}\right]$. Hence $\left(M\left[\left(x_{j}^{i:: K_{j}}:=N_{j}\right)_{p}\right]\right)^{-i}=\left(M_{1}\left[\left(x_{j}^{i:: K_{j}}:=N_{j}\right)_{p}\right]\right)^{-i}\left(M_{2}\left[\left(x_{j}^{i:: K_{j}}:=N_{j}\right)_{p}\right]\right)^{-i}$ $=M_{1}^{-i}\left[\left(x_{j}^{K_{j}}:=N_{j}^{-i}\right)_{p}\right] M_{2}^{-i}\left[\left(x_{j}^{K_{j}}:=N_{j}^{-i}\right)_{p}\right]=M^{-i}\left[\left(x_{j}^{K_{j}}:=N_{j}^{-i}\right)_{p}\right]$.
(c) - Let be \triangleright_{β}. By induction on $M \triangleright_{\beta} N$.
- Let $M=\left(\lambda x^{K} . M_{1}\right) M_{2} \triangleright_{\beta} M_{1}\left[x^{K}:=M_{2}\right]=N$ where $\mathrm{d}\left(M_{2}\right)=K$. Since $i:: L=\mathrm{d}(M)=\mathrm{d}\left(M_{1}\right) \preceq K, K=i:: L:: K^{\prime}$. Then $M^{-i}=$ $\left(\lambda x^{L:: K^{\prime}} . M_{1}^{-i}\right) M_{2}^{-i} \triangleright_{\beta} M_{1}^{-i}\left[x^{L:: K^{\prime}}:=M_{2}^{-i}\right]=\left(M_{1}\left[x^{K}:=M_{2}\right]\right)^{-i}$.
- Let $M=\lambda x^{K} . M_{1} \triangleright_{\beta} \lambda x^{L} N_{1}=N$ where $M_{1} \triangleright_{\beta} N_{1}$. Since $i::$ $L=\mathrm{d}(M)=\mathrm{d}\left(M_{1}\right) \preceq K, K=i:: L:: K^{\prime}$ for some K^{\prime}. By IH, $M_{1}^{-i} \triangleright_{\beta} N_{1}^{-i}$, hence $M^{-i}=\lambda x^{L:: K^{\prime}} . M_{1}^{-i} \triangleright_{\beta} \lambda x^{L:: K^{\prime}} N_{1}^{-i}=N^{-i}$.
- Let $M=M_{1} M_{2} \triangleright_{\beta} N_{1} M_{2}=N$ where $M_{1} \diamond M_{2}, N_{1} \diamond M_{2}$ and $M_{1} \triangleright_{\beta} N_{1}$. Since $i:: L=\mathrm{d}(M)=\mathrm{d}\left(M_{1}\right)$, by IH, $M_{1}^{-i} \triangleright_{\beta} N_{1}^{-i}$, hence $M^{-i}=M_{1}^{-i} M_{2}^{-i} \triangleright_{\beta} N_{1}^{-i} M_{2}^{-i}=N^{-i}$.
- Let $M=M_{1} M_{2} \triangleright_{\beta} M_{1} N_{2}=N$ where $M_{1} \diamond M_{2}, M_{1} \diamond N_{2}$ and $M_{2} \triangleright_{\beta}$ N_{2}. Since $i:: L=\mathrm{d}(M)=\mathrm{d}\left(M_{1}\right) \preceq \mathrm{d}\left(M_{2}\right)$, by IH, $M_{2}^{-i} \triangleright_{\beta} N_{2}^{-i}$, hence $M^{-i}=M_{1}^{-i} M_{2}^{-i} \triangleright_{\beta} N_{1}^{-i} M_{2}^{-i}=N^{-i}$.
- Let $>$ be $\triangleright_{\beta}^{*}$. By induction on $\triangleright_{\beta}^{*}$. using \triangleright_{β}.
- Let be \triangleright_{η}. We only do the basic case. The inductive cases are as for \triangleright_{β}. Let $M=\lambda x^{K} . N x^{K} \triangleright_{\eta} N$ where $x^{K} \notin \mathrm{fv}(N)$. Since $i:: L=$ $\mathrm{d}(M)=\mathrm{d}(N) \preceq K, K=i:: L:: K^{\prime}$ for some K^{\prime}. Then $M^{-i}=$ $\lambda x^{L:: K^{\prime}} . N^{-i} x^{L:: \overline{K^{\prime}}} \triangleright_{\eta} N^{-i}$.
- Let \triangleright be $\triangleright_{\eta}^{*}$. By induction on $\triangleright_{\eta}^{*}$ using \triangleright_{η}.
- Let be $\triangleright_{\beta \eta}, \triangleright_{\beta \eta}^{*}, \triangleright_{h}$ or \triangleright_{h}^{*}. By the previous items.

7. Let $x^{L} \in \mathrm{fv}(N) \subseteq \mathrm{fv}(M)$ and $X^{K} \in \mathrm{fv}(Q) \subseteq \mathrm{fv}(P)$, since $M \diamond P, L=K$. Hence $N \diamond Q$.

Next we give a lemma that will be used in the rest of the article.
Lemma 47. 1. If $M\left[y^{L}:=x^{L}\right] \triangleright_{\beta} N$ then $M \triangleright_{\beta} N^{\prime}$ where $N=N^{\prime}\left[y^{L}:=x^{L}\right]$.
2. If $M\left[y^{L}:=x^{L}\right]$ is β-normalising then M is β-normalising.
3. Let $k \geq 1$. If $M x_{1}^{L_{1}} \ldots x_{k}^{L_{k}}$ is β-normalising, then M is β-normalising.
4. Let $k \geq 1,1 \leq i \leq k, l \geq 0, x_{i}^{L_{i}} N_{1} \ldots N_{l}$ be in normal form and M be closed. If $M x_{1}^{L_{1}} \ldots x_{k}^{L_{k}} \triangleright_{\beta}^{*} x_{i}^{L_{i}} N_{1} \ldots N_{l}$, then for some $m \geq i$ and $n \leq l, M \triangleright_{\beta}^{*}$ $\lambda x_{1}^{L_{1}} \ldots \lambda x_{m}^{L_{m}} \cdot x_{i}^{L_{i}} M_{1} \ldots M_{n}$ where $n+k=m+l, M_{j} \simeq_{\beta} N_{j}$ for every $1 \leq j \leq n$ and $N_{n+j} \simeq_{\beta} x_{m+j}^{L_{m+j}}$ for every $1 \leq j \leq k-m$.

Proof

1. By induction on $M\left[y^{L}:=x^{L}\right] \triangleright_{\beta} N$.
2. Immediate by 1.
3. By induction on $k \geq 1$. We only prove the basic case. The proof is by cases.

- If $M x_{1}^{L_{1}} \triangleright_{\beta}^{*} M^{\prime} x_{1}^{L_{1}}$ where $M^{\prime} x_{1}^{L_{1}}$ is in β-normal form and $M \triangleright_{\beta}^{*} M^{\prime}$ then M^{\prime} is in β-normal form and M is β-normalising.
- If $M x_{1}^{L_{1}} \triangleright_{\beta}^{*}\left(\lambda y^{L_{1}} . N\right) x_{1}^{L_{1}} \triangleright_{\beta} N\left[y^{L_{1}}:=x_{1}^{L_{1}}\right] \triangleright_{\beta}^{*} P$ where P is in β-normal form and $M \triangleright_{\beta}^{*} \lambda y^{L_{1}} . N$ then by $2, N$ has a β-normal form and so, $\lambda y^{L_{1}} . N$ has a β-normal form. Hence, M has a β-normal form.

4. By $3, M$ is β-normalising and, since M is closed, its β-normal form is $\lambda x_{1}^{L_{1}} \ldots . \lambda x_{m}^{L_{m}} \cdot x_{p}^{L_{p}} M_{1} \ldots M_{n}$ for $n, m \geq 0$ and $1 \leq p \leq m$.
Since by theorem $7, x_{i}^{L_{i}} N_{1} \ldots N_{l} \simeq_{\beta}\left(\lambda x_{1}^{L_{1}} \ldots . \lambda x_{m}^{L_{m}} \cdot x_{p}^{L_{p}} M_{1} \ldots M_{n}\right) x_{1}^{L_{1}} \ldots x_{k}^{L_{k}}$ then $m \leq k, x_{i}^{L_{i}} N_{1} \ldots N_{l} \simeq_{\beta} x_{p}^{L_{p}} M_{1} \ldots M_{n} x_{m+1}^{L_{m+1}} \ldots x_{k}^{L_{k}}$. Hence, $n \leq l, i=p \leq m$, $l=n+k-m$, for every $1 \leq j \leq n, M_{j} \simeq_{\beta} N_{j}$ and for every $1 \leq j \leq k-m$, $N_{n+j} \simeq_{\beta} x_{m+j}^{n_{m+j}}$.

A. 1 Confluence of $\triangleright_{\boldsymbol{\beta}}^{*}, \triangleright_{\boldsymbol{h}}^{*}$ and $\triangleright_{\boldsymbol{\beta} \eta}^{*}$

In this section we establish the confluence of $\triangleright_{\beta}^{*}, \triangleright_{h}^{*}$ and $\triangleright_{\beta \eta}^{*}$ using the standard parallel reduction method for $\triangleright_{\beta}^{*}$ and $\triangleright_{\beta \eta}^{*}$.

Definition 48. Let $r \in\{\beta, \beta \eta\}$. We define on \mathcal{M} the binary relation $\xrightarrow{\rho_{r}}$ by:
$-M \xrightarrow{\rho_{r}} M$

- If $M \xrightarrow{\rho_{r}} M^{\prime}$ then $\lambda x^{L} \cdot M \xrightarrow{\rho_{r}} \lambda x^{L} \cdot M^{\prime}$.
- If $M \xrightarrow{\rho_{r}} M^{\prime}, N \xrightarrow{\rho_{r}} N^{\prime}$ and $M \diamond N$ then $M N \xrightarrow{\rho_{r}} M^{\prime} N^{\prime}$
- If $M \xrightarrow{\rho_{r}} M^{\prime}, N \xrightarrow{\rho_{r}} N^{\prime}, d(N)=L$ and $M \diamond N$, then $\left(\lambda x^{L} . M\right) N \xrightarrow{\rho_{r}} M^{\prime}\left[x^{n}:=N^{\prime}\right]$
- If $M \xrightarrow{\rho_{\beta \eta}} M^{\prime}, \forall L \in \mathcal{L}_{\mathbb{N}}, x^{L} \notin \mathrm{fv}(M)$ and $L \succeq d(M)$ then $\lambda x^{L} . M x^{L} \xrightarrow{\rho_{\beta \eta}} M^{\prime}$

We denote the transitive closure of $\xrightarrow{\rho_{r}}$ by $\xrightarrow{\rho_{r}}$. When $M \xrightarrow{\rho_{r}} N\left(\right.$ resp. $M \xrightarrow{\rho_{r}} N$), we can also write $N \stackrel{\rho_{r}}{\leftarrow} M$ (resp. $\left.N \stackrel{\rho_{r}}{\leftarrow} M\right)$. If $R, R^{\prime} \in\left\{\xrightarrow{\rho_{r}}, \xrightarrow{\rho_{r}}, \stackrel{\rho_{r}}{\leftarrow}, \stackrel{\rho_{r}}{\leftrightarrows}\right\}$, we write $M_{1} R M_{2} R^{\prime} M_{3}$ instead of $M_{1} R M_{2}$ and $M_{2} R^{\prime} M_{3}$.

Lemma 49. Let $M \in \mathcal{M}$.

1. If $M \triangleright_{r} M^{\prime}$, then $M \xrightarrow{\rho_{r}} M^{\prime}$.
2. If $M \xrightarrow{\rho_{r}} M^{\prime}$, then $M^{\prime} \in \mathcal{M}, M \triangleright_{r}^{*} M^{\prime}, \mathrm{fv}\left(M^{\prime}\right) \subseteq \mathrm{fv}(M)$ and $d(M)=d\left(M^{\prime}\right)$.
3. If $M \xrightarrow{\rho_{r}} M^{\prime}, N \xrightarrow{\rho_{r}} N^{\prime}$ and $M \diamond N$ then $M^{\prime} \diamond N^{\prime}$

Proof 1. By induction on the derivation $M \triangleright_{r} M^{\prime}$. 2. By induction on the derivation of $M \xrightarrow{\rho_{r}} M^{\prime}$ using theorem 4 and lemma 46. 3. Let $x^{L} \in \operatorname{fv}\left(M^{\prime}\right)$ and $x^{K} \in \mathrm{fv}\left(N^{\prime}\right)$. By 2., $\mathrm{fv}\left(M^{\prime}\right) \subseteq \mathrm{fv}(M)$ and $\mathrm{fv}\left(N^{\prime}\right) \subseteq \mathrm{fv}(N)$. Hence, since $M \diamond N$, $L=K$, so $M^{\prime} \diamond N^{\prime}$.

Lemma 50. Let $M, N \in \mathcal{M}, M \diamond N$ and $N \xrightarrow{\rho_{r}} N^{\prime}$. We have:

1. $M\left[x^{L}:=N\right] \xrightarrow{\rho_{r}} M\left[x^{L}:=N^{\prime}\right]$.
2. If $M \xrightarrow{\rho_{r}} M^{\prime}$ and $d(N)=L$, then $M\left[x^{L}:=N\right] \xrightarrow{\rho_{r}} M^{\prime}\left[x^{L}:=N^{\prime}\right]$.

Proof 1. By induction on M :

- Let $M=y^{K}$. If $y^{K}=x^{L}$, then $M\left[x^{L}:=N\right]=N, M\left[x^{L}:=N^{\prime}\right]=N^{\prime}$ and by hypothesis, $N \xrightarrow{\rho_{r}} N^{\prime}$. If $y^{K} \neq x^{L}$, then $M\left[x^{L}:=N\right]=M, M\left[x^{L}:=N^{\prime}\right]=M$ and by definition, $M \xrightarrow{\rho_{r}} M$.
- Let $M=\lambda y^{K} \cdot M_{1} . M\left[x^{L}:=N\right]=\lambda y^{K} . M_{1}\left[x^{L}:=N\right]$ and since $M_{1} \diamond N$, by IH, $M_{1}\left[x^{L}:=N\right] \xrightarrow{\rho_{r}} M_{1}\left[x^{L}:=N^{\prime}\right]$ and so $\lambda y^{K} . M_{1}\left[x^{L}:=N\right] \xrightarrow{\rho_{r}} \lambda y^{K} . M_{1}\left[x^{L}:=N^{\prime}\right]$
- Let $M=M_{1} M_{2} . M\left[x^{L}:=N\right]=M_{1}\left[x^{L}:=N\right] M_{2}\left[x^{L}:=N\right]$ and since $M_{1} \diamond N$ and $M_{2} \diamond N$, by IH, $M_{1}\left[x^{L}:=N\right] \xrightarrow{\rho_{r}} M_{1}\left[x^{L}:=N^{\prime}\right]$ and $M_{2}\left[x^{L}:=N\right] \xrightarrow{\rho_{r}}$ $M_{2}\left[x^{L}:=N^{\prime}\right]$. By lemma 45.4, $M_{1}\left[x^{L}:=N\right] \diamond M_{2}\left[x^{L}:=N\right]$, so $M_{1}\left[x^{L}:=\right.$ $N] M_{2}\left[x^{L}:=N\right] \xrightarrow{\rho_{r}} M_{1}\left[x^{L}:=N^{\prime}\right] M_{2}\left[x^{L}:=N^{\prime}\right]$.

2. By induction on $M \xrightarrow{\rho_{r}} M^{\prime}$.

- If $M=M^{\prime}$, then $1 .$.
- If $\lambda y^{K} . M \xrightarrow{\rho_{r}} \lambda y^{K} \cdot M^{\prime}$ where $M \xrightarrow{\rho_{r}} M^{\prime}$, then by IH, $M\left[x^{L}:=N\right] \xrightarrow{\rho_{r}} M^{\prime}\left[x^{L}:=\right.$ $\left.N^{\prime}\right]$. Hence $\left(\lambda y^{K} \cdot M\right)\left[x^{L}:=N\right]=\lambda y^{K} \cdot M\left[x^{L}:=N\right] \xrightarrow{\rho_{r}} \lambda y^{K} \cdot M^{\prime}\left[x^{L}:=N^{\prime}\right]=$ $\left(\lambda y^{K} . M^{\prime}\right)\left[x^{L}:=N^{\prime}\right]$ where $y^{K} \notin \mathrm{fv}\left(N^{\prime}\right) \subseteq \mathrm{fv}(N)$.
- If $P Q \xrightarrow{\rho_{r}} P^{\prime} Q^{\prime}$ where $P \xrightarrow{\rho_{r}} P^{\prime}, Q \xrightarrow{\rho_{r}} Q^{\prime}$ and $P \diamond Q$, then by IH, $P\left[x^{L}:=\right.$ $N] \xrightarrow{\rho_{r}} P^{\prime}\left[x^{L}:=N^{\prime}\right]$ and $Q\left[x^{L}:=N\right] \xrightarrow{\rho_{r}} Q^{\prime}\left[x^{L}:=N^{\prime}\right]$. By lemma 45.4, $P\left[x^{L}:=\right.$ $N] \diamond Q\left[x^{L}:=N\right]$, so $P\left[x^{L}:=N\right] Q\left[x^{L}:=N\right] \xrightarrow{\rho_{r}} P^{\prime}\left[x^{L}:=N^{\prime}\right] Q^{\prime}\left[x^{L}:=N^{\prime}\right]$.
$-\left(\lambda y^{K} . P\right) Q \xrightarrow{\rho_{r}} P^{\prime}\left[y^{K}:=Q^{\prime}\right]$ where $P \xrightarrow{\rho_{r}} P^{\prime}, Q \xrightarrow{\rho_{r}} Q^{\prime}, P \diamond Q$ and $\mathrm{d}(Q)=K$, then by $\mathrm{IH}, P\left[x^{L}:=N\right] \xrightarrow{\rho_{r}} P^{\prime}\left[x^{L}:=N^{\prime}\right], Q\left[x^{L}:=N\right] \xrightarrow{\rho_{r}} Q^{\prime}\left[x^{L}:=N^{\prime}\right]$. Moreover, $\left(\left(\lambda y^{K} . P\right) Q\right)\left[x^{L}:=N\right]=\left(\lambda y^{K} . P\right)\left[x^{L}:=N\right] Q\left[x^{L}:=N\right]=\lambda y^{K} . P\left[x^{L}:=\right.$ $N] Q\left[x^{L}:=N\right]$ where $y^{K} \notin \mathrm{fv}\left(N^{\prime}\right) \subseteq \mathrm{fv}(N)$. By lemma 45.4, $P\left[x^{L}:=N\right] \diamond$ $Q\left[x^{L}:=N\right]$ and by lemma $45.3 \mathrm{~d}(Q)=\mathrm{d}\left(Q\left[x^{L}:=N\right]\right)$ so $\lambda y^{K} \cdot P\left[x^{L}:=\right.$ $N] Q\left[x^{L}:=N\right] \xrightarrow{\rho_{r}} P^{\prime}\left[x^{L}:=N^{\prime}\right]\left[y^{K}:=Q^{\prime}\left[x^{L}:=N^{\prime}\right]\right]=P^{\prime}\left[y^{K}:=Q^{\prime}\right]\left[x^{L}:=N^{\prime}\right]$.
- If $\lambda y^{K} . M y^{K} \xrightarrow{\rho_{\beta \eta}} M^{\prime}$ where $M \xrightarrow{\rho_{\beta \eta}} M^{\prime}, K \succeq \mathrm{~d}(M)$ and $\forall K \in \mathcal{L}_{\mathbb{N}}, y^{K} \notin \mathrm{fv}(M)$, then by IH $M\left[x^{L}:=N\right] \xrightarrow{\rho_{\beta \eta}} M^{\prime}\left[x^{L}:=N^{\prime}\right]$. Moreover, $\left(\lambda y^{K} . M y^{K}\right)\left[x^{L}:=N\right]=$ $\lambda y^{K} . M\left[x^{L}:=N\right] y^{K}\left[x^{L}:=N\right]=\lambda y^{K} . M\left[x^{L}:=N\right] y^{K}$ where $\forall K \in \mathcal{L}_{\mathbb{N}}, y^{K} \notin$ $\mathrm{fv}\left(N^{\prime}\right) \subseteq \mathrm{fv}(N)$. Since by lemma $45.3 \mathrm{~d}(M)=\mathrm{d}\left(M\left[x^{L}:=N\right]\right), \lambda y^{K} \cdot M\left[x^{L}:=\right.$ $N] y^{K} \xrightarrow{\rho_{\beta \eta}} M^{\prime}\left[x^{L}:=N^{\prime}\right]$.

Lemma 51. 1. If $x^{L} \xrightarrow{\rho_{r}} N$, then $N=x^{L}$.
2. If $\lambda x^{L} . P \xrightarrow{\rho_{\beta \eta}} N$ then one of the following holds:
$-N=\lambda x^{L} . P^{\prime}$ where $P \xrightarrow{\rho_{\beta \eta}} P^{\prime}$.

- $P=P^{\prime} x^{L}$ where $\forall L \in \mathcal{L}_{\mathbb{N}}, x^{L} \notin \mathrm{fv}\left(P^{\prime}\right), L \succeq d\left(P^{\prime}\right)$ and $P^{\prime} \xrightarrow{\rho_{\beta \eta}} N$.

3. If $\lambda x^{L} . P \xrightarrow{\rho_{\beta}} N$ then $N=\lambda x^{L} . P^{\prime}$ where $P \xrightarrow{\rho_{\beta}} P^{\prime}$.
4. If $P Q \xrightarrow{\rho_{r}} N$, then one of the following holds:
$-N=P^{\prime} Q^{\prime}, P \xrightarrow{\rho_{r}} P^{\prime}, Q \xrightarrow{\rho_{r}} Q^{\prime}$ and $P \diamond Q$.
$-P=\lambda x^{L} \cdot P^{\prime}, N=P^{\prime \prime}\left[x^{L}:=Q^{\prime}\right], P^{\prime} \xrightarrow{\rho_{r}} P^{\prime \prime}, Q \xrightarrow{\rho_{r}} Q^{\prime}, P^{\prime} \diamond Q$ and $d(Q)=L$.
Proof 1. By induction on the derivation $x^{L} \xrightarrow{\rho_{r}} N$.
5. By induction on the derivation $\lambda x^{L} . P \xrightarrow{\rho_{\beta \eta}} N$.
6. By induction on the derivation $\lambda x^{L} . P \xrightarrow{\rho_{\beta}} N$.
7. By induction on the derivation $P Q \xrightarrow{\rho_{r}} N$.

Lemma 52. Let $M, M_{1}, M_{2} \in \mathcal{M}$.

1. If $M_{2} \stackrel{\rho_{r}}{\leftarrow} M \xrightarrow{\rho_{r}} M_{1}$, then there is $M^{\prime} \in \mathcal{M}$ such that $M_{2} \xrightarrow{\rho_{r}} M^{\prime} \stackrel{\rho_{r}}{\leftarrow} M_{1}$.
2. If $M_{2} \stackrel{\rho_{r}}{\leftrightarrows} M \xrightarrow{\rho_{r}} M_{1}$, then there is $M^{\prime} \in \mathcal{M}$ such that $M_{2} \xrightarrow{\rho_{r}} M^{\prime} \stackrel{\rho_{r}}{\longleftrightarrow} M_{1}$.

Proof 1. By induction on M :

- Let $r=\beta \eta$:
- If $M=x^{L}$, by lemma $51, M_{1}=M_{2}=x^{L}$. Take $M^{\prime}=x^{L}$.
- If $N_{2} P_{2} \xrightarrow{\rho_{\beta \eta}} N P \xrightarrow{\rho_{\beta \eta}} N_{1} P_{1}$ where $N_{2} \stackrel{\rho_{\beta \eta}}{\leftarrow} N \xrightarrow{\rho_{\beta \eta}} N_{1}, P_{2} \xrightarrow{\rho_{\beta \eta}} P \xrightarrow{\rho_{\beta \eta}} P_{1}$ and $N \diamond P$ then, by IH, $\exists N^{\prime}, P^{\prime}$ such that $N_{2} \xrightarrow{\rho_{\beta \eta}} N^{\prime} \stackrel{\rho_{\beta \eta}}{\leftrightarrows} N_{1}$ and $P_{2} \xrightarrow{\rho_{\beta \eta}} P^{\prime} \stackrel{\rho_{\beta \eta}}{\leftarrow} P_{1}$. By lemma 49.3, $N_{1} \diamond P_{1}$ and $N_{2} \diamond P_{2}$, hence $N_{2} P_{2} \xrightarrow{\rho_{\beta \eta}} N^{\prime} P^{\prime} \stackrel{\rho_{\beta \eta}}{\leftrightarrows} N_{1} P_{1}$.
- If $\left(\lambda x^{L} . P_{1}\right) Q_{1} \stackrel{\rho_{\beta \eta}}{\leftarrow}\left(\lambda x^{L} . P\right) Q \xrightarrow{\rho_{\beta \eta}} P_{2}\left[x^{L}:=Q_{2}\right]$ where $\lambda x^{L} . P \xrightarrow{\rho_{\beta \eta}} \lambda x^{L} . P_{1}$, $P \xrightarrow{\rho_{\beta \eta}} P_{2}, Q_{1} \stackrel{\rho_{\beta \eta}}{\leftarrow} Q \xrightarrow{\rho_{\beta \eta}} Q_{2}, \mathrm{~d}(Q)=L,\left(\lambda x^{L} . P\right) \diamond Q$ and $P \diamond Q$ then, by lemma 51, $P \xrightarrow{\rho_{\beta \eta}} P_{1}$. By IH, $\exists P^{\prime}, Q^{\prime}$ such that $P_{1} \xrightarrow{\rho_{\beta \eta}} P^{\prime} \xrightarrow{\rho_{\beta \eta}} P_{2}$ and $Q_{1} \xrightarrow{\rho_{\beta \eta}}$ $Q^{\prime} \stackrel{\rho_{\beta \eta}}{\leftarrow} Q_{2}$. By lemma 49.2, $\mathrm{d}\left(Q_{1}\right)=\mathrm{d}\left(Q_{2}\right)=\mathrm{d}(Q)=L$. By lemma 49.3, $P_{1} \diamond Q_{1}$. Hence, $\left(\lambda x^{L} . P_{1}\right) Q_{1} \xrightarrow{\rho_{\beta \eta}} P^{\prime}\left[x^{L}:=Q^{\prime}\right]$.
Moreover, since $P_{2} \xrightarrow{\rho_{\beta \eta}} P^{\prime}, Q_{2} \xrightarrow{\rho_{\beta \eta}} Q^{\prime}, \mathrm{d}\left(Q_{2}\right)=L$ and by lemma 49.3, $P_{2} \diamond Q_{2}$, then, by lemma $50.2, P_{2}\left[x^{L}:=Q_{2}\right] \xrightarrow{\rho_{\beta \eta}} P^{\prime}\left[x^{L}:=Q^{\prime}\right]$.
- If $P_{1}\left[x^{L}:=Q_{1}\right] \stackrel{\rho_{\beta \eta}}{\leftarrow}\left(\lambda x^{L} . P\right) Q \xrightarrow{\rho_{\beta \eta}} P_{2}\left[x^{L}:=Q_{2}\right]$ where $P_{1} \stackrel{\rho_{\beta \eta}}{\leftarrow} P \xrightarrow{\rho_{\beta \eta}} P_{2}$, $Q_{1} \stackrel{\rho_{\beta \eta}}{\leftarrow} Q \xrightarrow{\rho_{\beta \eta}} Q_{2}, \mathrm{~d}(Q)=L$ and $P \diamond Q$, then, by IH, $\exists P^{\prime}, Q^{\prime}$ where $P_{1} \xrightarrow{\rho_{\beta \eta}}$ $P^{\prime} \stackrel{\rho_{\beta \eta}}{\leftarrow} P_{2}$ and $Q_{1} \stackrel{\rho_{\beta \eta}}{\longrightarrow} Q^{\prime} \stackrel{\rho_{\beta \eta}}{\leftarrow} Q_{2}$. By lemma 49.2, $\mathrm{d}\left(Q_{1}\right)=\mathrm{d}\left(Q_{2}\right)=\mathrm{d}(Q)=$ L. By lemma 49.3, $P_{1} \diamond Q_{1}$ and $P_{2} \diamond Q_{2}$. Hence, by lemma 50.2, $P_{1}\left[x^{L}:=\right.$ $\left.Q_{1}\right] \xrightarrow{\rho_{\beta \eta}} P^{\prime}\left[x^{L}:=Q^{\prime}\right] \stackrel{\rho_{\beta \eta}}{\leftarrow} P_{2}\left[x^{L}:=Q_{2}\right]$.
- If $\lambda x^{L} . N_{2} \xrightarrow{\rho_{\beta \eta}} \lambda x^{L} . N \xrightarrow{\rho_{\beta \eta}} \lambda x^{L} . N_{1}$ where $N_{2} \xrightarrow{\rho_{\beta \eta}} N \xrightarrow{\rho_{\beta \eta}} N_{1}$, by IH, there is N^{\prime} such that $N_{2} \xrightarrow{\rho_{\beta \eta}} N^{\prime} \xrightarrow{\rho_{\beta \eta}} N_{1}$. Hence, $\lambda x^{L} . N_{2} \xrightarrow{\rho_{\beta \eta}} \lambda x^{L} \cdot N^{\prime} \xrightarrow{\rho_{\beta \eta}} \lambda x^{L} . N_{1}$.
- If $M_{1} \stackrel{\rho_{\beta \eta}}{\leftrightarrows} \lambda x^{L} . P x^{L} \xrightarrow{\rho_{\beta \eta}} M_{2}$ where $\forall L \in \mathcal{L}_{\mathbb{N}}, x^{L} \notin \operatorname{fv}(P), L \succeq \mathrm{~d}(P)$ and $M_{1} \stackrel{\rho_{\beta \eta}}{\leftarrow} P \xrightarrow{\rho_{\beta \eta}} M_{2}$, then, by IH , there is M^{\prime} such that $M_{2} \xrightarrow{\rho_{\beta \eta}} M^{\prime} \stackrel{\rho_{\beta \eta}}{\leftarrow} M_{1}$.
- If $M_{1} \stackrel{\rho_{\beta \eta}}{\leftarrow} \lambda x^{L} . P x^{L} \xrightarrow{\rho_{\beta \eta}} \lambda x^{L} . P^{\prime}$, where $P \xrightarrow{\rho_{\beta \eta}} M_{1}, P x^{L} \xrightarrow{\rho_{\beta \eta}} P^{\prime}$ and $\forall L \in$ $\mathcal{L}_{\mathbb{N}}, x^{L} \notin \mathrm{fv}(P)$ and $L \succeq \mathrm{~d}(P)$. By lemma 51 there are two cases:
* $P^{\prime}=P^{\prime \prime} x^{L}$ and $P \xrightarrow{\rho_{\beta \eta}} P^{\prime \prime}$. By IH, there is M^{\prime} such that $P^{\prime \prime} \xrightarrow{\rho_{\beta \eta}} M^{\prime} \xrightarrow{\rho_{\beta \eta}}$ M_{1}. By lemma 49.2, $\forall L \in \mathcal{L}_{\mathbb{N}}, x^{L} \notin \mathrm{fv}\left(P^{\prime \prime}\right)$ and $L \succeq \mathrm{~d}\left(P^{\prime \prime}\right)$, hence, $\lambda x^{L} . P^{\prime}=\lambda x^{L} . P^{\prime \prime} x^{L} \xrightarrow{\rho_{\beta \eta}} M^{\prime} \stackrel{\rho_{\beta \eta}}{\leftarrow} M_{1}$.
* $P=\lambda y^{L} . Q, Q \xrightarrow{\rho_{\beta \eta}} Q^{\prime}, Q \diamond x^{L}$ and $P^{\prime}=Q^{\prime}\left[y^{L}:=x^{L}\right]$. So we have $M_{1} \stackrel{\rho_{\beta \eta}}{\leftarrow} \lambda x^{L} \cdot\left(\lambda y^{L} \cdot Q\right) x^{L} \xrightarrow{\rho_{\beta \eta}} \lambda x^{L} \cdot Q^{\prime}\left[y^{L}:=x^{L}\right]$ where $M_{1} \stackrel{\rho_{\beta \eta}}{\leftarrow} \lambda y^{L} \cdot Q=$ $\lambda x^{L} . Q\left[y^{L}:=x^{L}\right]$ since $\forall L \in \mathcal{L}_{\mathbb{N}}, x^{L} \notin \mathrm{fv}(P)$.
By lemma $50.2, \lambda x^{L} . Q\left[y^{L}:=x^{L}\right] \xrightarrow{\rho_{\beta \eta}} \lambda x^{L} . Q^{\prime}\left[y^{L}:=x^{L}\right]$. Hence by IH, there is M^{\prime} such that $M_{1} \xrightarrow{\rho_{\beta \eta}} M^{\prime} \stackrel{\rho_{\beta \eta}}{\leftarrow} \lambda x^{L} \cdot Q^{\prime}\left[y^{L}:=x^{L}\right]$.
- Let $r=\beta$:
- If $M=x^{L}$, by lemma $51, M_{1}=M_{2}=x^{L}$. Take $M^{\prime}=x^{L}$.
- If $N_{2} P_{2} \stackrel{\rho_{\beta}}{\leftarrow} N P \xrightarrow{\rho_{\beta}} N_{1} P_{1}$ where $N_{2} \stackrel{\rho_{\beta}}{\leftarrow} N \xrightarrow{\rho_{\beta}} N_{1}, P_{2} \stackrel{\rho_{\beta}}{\leftarrow} P \xrightarrow{\rho_{\beta}} P_{1}$ and $N \diamond P$, then, by IH, $\exists N^{\prime}, P^{\prime}$ such that $N_{2} \xrightarrow{\rho_{\beta}} N^{\prime} \xrightarrow{\rho_{\beta}} N_{1}$ and $P_{2} \xrightarrow{\rho_{\beta}} P^{\prime} \stackrel{\rho_{\beta}}{\leftarrow} P_{1}$. By lemma 49.3, $N_{1} \diamond P_{1}$ and $N_{2} \diamond P_{2}$. Hence, $N_{2} P_{2} \xrightarrow{\rho_{\beta}} N^{\prime} P^{\prime} \stackrel{\rho_{\beta}}{\leftarrow} N_{1} P_{1}$.
- If $\left(\lambda x^{L} . P_{1}\right) Q_{1} \stackrel{\rho_{\beta}}{\leftarrow}\left(\lambda x^{L} . P\right) Q \xrightarrow{\rho_{\beta}} P_{2}\left[x^{L}:=Q_{2}\right]$ where $\lambda x^{L} . P \xrightarrow{\rho_{\beta}} \lambda x^{L} . P_{1}, P \xrightarrow{\rho_{\beta}}$ $P_{2}, Q_{1} \stackrel{\rho_{B}}{\curvearrowleft} Q \xrightarrow{\rho_{\beta}} Q_{2}, \mathrm{~d}(Q)=L, P \diamond Q$ and $\left(\lambda x^{L} . P\right) \diamond Q$, then, by lemma 51, $P \xrightarrow{\rho_{\beta}} P_{1}$. By IH, $\exists P^{\prime}, Q^{\prime}$ such that $P_{1} \xrightarrow{\rho_{\beta}} P^{\prime} \stackrel{\rho_{\beta}}{\mathbb{B}} P_{2}$ and $Q_{1} \xrightarrow{\rho_{\beta}} Q^{\prime} \stackrel{\rho_{\beta}}{\mathbb{O}} Q_{2}$. By lemma 49.2, $\mathrm{d}\left(Q_{1}\right)=\mathrm{d}\left(Q_{2}\right)=\mathrm{d}(Q)=L$. By lemma 49.3, $P_{1} \diamond Q_{1}$. Hence, $\left(\lambda x^{L} . P_{1}\right) Q_{1} \xrightarrow{\rho_{\beta}} P^{\prime}\left[x^{L}:=Q^{\prime}\right]$.
Moreover, since $P_{2} \xrightarrow{\rho_{\beta}} P^{\prime}, Q_{2} \xrightarrow{\rho_{\beta}} Q^{\prime}, \mathrm{d}\left(Q_{2}\right)=L$ and by lemma 49.3, $P_{2} \diamond Q_{2}$., then, by lemma $50.2, P_{2}\left[x^{L}:=Q_{2}\right] \xrightarrow{\rho_{\beta}} P^{\prime}\left[x^{L}:=Q^{\prime}\right]$.
- If $P_{1}\left[x^{L}:=Q_{1}\right] \stackrel{\rho_{\beta}}{\leftarrow}\left(\lambda x^{L} . P\right) Q \xrightarrow{\rho_{\beta}} P_{2}\left[x^{L}:=Q_{2}\right]$ where $P_{1} \stackrel{\rho_{\beta}}{\leftarrow} P \xrightarrow{\rho_{\beta}} P_{2}, Q_{1} \stackrel{\rho_{B}}{\leftarrow}$ $Q \xrightarrow{\rho_{\beta}} Q_{2}, \mathrm{~d}(Q)=L$ and $P \diamond Q$ then by $\mathrm{IH}, \exists P^{\prime}, Q^{\prime}$ where $P_{1} \xrightarrow{\rho_{\beta}} P^{\prime} \xrightarrow{Q_{\beta}} P_{2}$ and $Q_{1} \stackrel{\rho_{\beta}}{\longrightarrow} Q^{\prime} \stackrel{\rho_{\beta}}{\leftarrow} Q_{2}$. By lemma 49.2, $\mathrm{d}\left(Q_{1}\right)=\mathrm{d}\left(Q_{2}\right)=\mathrm{d}(Q)=L$. By lemma 49.3, $P_{1} \diamond Q_{1}$ and $P_{2} \diamond Q_{2}$. Hence, by lemma 50.2, $P_{1}\left[x^{L}:=Q_{1}\right] \xrightarrow{\rho_{\beta}}$ $P^{\prime}\left[x^{L}:=Q^{\prime}\right] \stackrel{\rho}{\beta}_{\rho_{\beta}}^{P_{2}}\left[x^{L}:=Q_{2}\right]$.
- If $\lambda x^{L} . N_{2} \stackrel{\rho_{\beta}}{\stackrel{1}{2}} \lambda x^{L} \cdot N \xrightarrow{\rho_{\beta}} \lambda x^{L} . N_{1}$ where $N_{2} \stackrel{\rho_{\beta}}{\stackrel{~}{N}} N \xrightarrow{\rho_{\beta}} N_{1}$, by IH, there is N^{\prime} such that $N_{2} \xrightarrow{\rho_{\beta}} N^{\prime} \stackrel{\rho_{\beta}}{\leftarrow} N_{1}$. Hence, $\lambda x^{L} \cdot N_{2} \xrightarrow{\rho_{\beta}} \lambda x^{L} \cdot N^{\prime} \stackrel{\rho_{\beta}}{\longrightarrow} \lambda x^{L} \cdot N_{1}$.

2. First show by induction on $M \xrightarrow{\rho_{r}} M_{1}$ (and using 1) that if $M_{2} \stackrel{\rho_{r}}{\stackrel{\rho_{r}}{L}} M \xrightarrow{\rho_{r}} M_{1}$, then there is M^{\prime} such that $M_{2} \xrightarrow{\rho_{r}} M^{\prime} \stackrel{\rho_{r}}{\leftarrow} M_{1}$. Then use this to show 2 by induction on $M \xrightarrow{\rho_{r}} M_{2}$.

Proof [Of Theorem 7]

1. For $r \in\{\beta, \beta \eta\}$, by lemma $52.2, \xrightarrow{\rho_{r}}$ is confluent. by lemma 49.1 and 49.2 , $M \xrightarrow{\rho_{r}} N$ iff $M \triangleright_{r}^{*} N$. Then \triangleright_{r}^{*} is confluent.
For $r=h$, since if $M \triangleright_{r}^{*} M_{1}$ and $M \triangleright_{r}^{*} M_{2}, M_{1}=M_{2}$, we take $M^{\prime}=M_{1}$.
2. If) is by definition of \simeq_{r}. Only if) is by induction on $M_{1} \simeq_{r} M_{2}$ using 1 .

B Proofs of section 3

Proof [Of lemma 12]

1. By definition.
2. By induction on U.

- If $U=a(\mathrm{~d}(U)=\oslash)$, nothing to prove.
- If $U=V \rightarrow T(\mathrm{~d}(U)=\varnothing)$, nothing to prove.
- If $U=\omega^{L}$, nothing to prove.
- If $U=U_{1} \sqcap U_{2}\left(\mathrm{~d}(U)=\mathrm{d}\left(U_{1}\right)=\mathrm{d}\left(U_{2}\right)=L\right)$, by IH we have four cases:
- If $U_{1}=U_{2}=\omega^{L}$ then $U=\omega^{L}$.
- If $U_{1}=\omega^{L}$ and $U_{2}=\boldsymbol{e}_{L} \sqcap_{i=1}^{k} T_{i}$ where $k \geq 1$ and $\forall 1 \leq i \leq k, T_{i} \in \mathbb{T}$ then $U=U_{2}$ (since ω^{L} is a neutral).
- If $U_{2}=\omega^{L}$ and $U_{1}=\boldsymbol{e}_{L} \sqcap_{i=1}^{k} T_{i}$ where $k \geq 1$ and $\forall 1 \leq i \leq k, T_{i} \in \mathbb{T}$ then $U=U_{1}$ (since ω^{L} is a neutral).
- If $U_{1}=\boldsymbol{e}_{L} \sqcap_{i=1}^{p} T_{i}$ and $U_{2}=\boldsymbol{e}_{L} \sqcap_{i=p+1}^{p+q} T_{i}$ where $p, q \geq 1, \forall 1 \leq i \leq p+q$, $T_{i} \in \mathbb{T}$ then $U=e_{L} \sqcap_{i=1}^{p+q} T_{i}$.
- If $U=e_{n_{1}} V\left(L=\mathrm{d}(U)=n_{1}:: \mathrm{d}(V)=n_{1}:: K\right)$, by IH we have two cases:
- If $V=\omega^{K}, U=e_{n_{1}} \omega^{K}=\omega^{L}$.
- If $V=e_{K} \sqcap_{i=1}^{p} T_{i}$ where $p \geq 1$ and $\forall 1 \leq i \leq p, T_{i} \in \mathbb{T}$ then $U=$ $\boldsymbol{e}_{L} \sqcap_{i=1}^{p} T_{i}$ where $p \geq 1$ and $\forall 1 \leq i \leq p, T_{i} \in \mathbb{T}$.

3. (a) By induction on $U_{1} \sqsubseteq U_{2}$.
(b) By induction on $U_{1} \sqsubseteq U_{2}$.
(c) By induction on K. We do the induction step. Let $U_{1}=e_{i} U$. By induction on $e_{i} U \sqsubseteq U_{2}$ we obtain $U_{2}=e_{i} U^{\prime}$ and $U \sqsubseteq U^{\prime}$.
(d) same proof as in the previous item.
(e) By induction on $U_{1} \sqsubseteq U_{2}$:

- By ref, $U_{1}=U_{2}$.
- If $\frac{\sqcap_{i=1}^{p} \boldsymbol{e}_{K}\left(U_{i} \rightarrow T_{i}\right) \sqsubseteq U \quad U \sqsubseteq U_{2}}{\sqcap_{i=1}^{p} \boldsymbol{e}_{K}\left(U_{i} \rightarrow T_{i}\right) \sqsubseteq U_{2}}$. If $U=\omega^{K}$ then by (b), $U_{2}=\omega^{K}$. If $U=\sqcap_{j=1}^{q} e_{K}\left(U_{j}^{\prime} \rightarrow T_{j}^{\prime}\right)$ where $q \geq 1$ and $\forall 1 \leq j \leq q, \exists 1 \leq i \leq p$ such that $U_{j}^{\prime} \sqsubseteq U_{i}$ and $T_{i} \sqsubseteq T_{j}^{\prime}$ then by $\mathrm{IH}, U_{2}=\omega^{K}$ or $U_{2}=\square_{k=1}^{r} \boldsymbol{e}_{K}\left(U_{k}^{\prime \prime} \rightarrow\right.$ $T_{k}^{\prime \prime}$) where $r \geq 1$ and $\forall 1 \leq k \leq r, \exists 1 \leq j \leq q$ such that $U_{k}^{\prime \prime} \sqsubseteq U_{j}^{\prime}$ and $T_{j}^{\prime} \sqsubseteq T_{k}^{\prime \prime}$. Hence, by $t r, \forall 1 \leq k \leq r, \exists 1 \leq i \leq p$ such that $U_{k}^{\prime \prime} \sqsubseteq U_{i}$ and $T_{i} \sqsubseteq T_{k}^{\prime \prime}$.
- By $\sqcap_{E}, U_{2}=\omega^{K}$ or $U_{2}=\sqcap_{j=1}^{q} \boldsymbol{e}_{K}\left(U_{j}^{\prime} \rightarrow T_{j}^{\prime}\right)$ where $1 \leq q \leq p$ and $\forall 1 \leq j \leq q, \exists 1 \leq i \leq p$ such that $U_{i}=U_{j}^{\prime}$ and $T_{i}=T_{j}^{\prime}$.
- Case Π is by IH.
- Case \rightarrow is trivial.
- If $\frac{\Pi_{i=1}^{p} \boldsymbol{e}_{L}\left(U_{i} \rightarrow T_{i}\right) \sqsubseteq U_{2}}{\Gamma_{i=1}^{p} \boldsymbol{e}_{K}\left(U_{i} \rightarrow T_{i}\right) \sqsubseteq e_{i} U_{2}}$ where $K=i:: L$ then by IH, $U_{2}=\omega^{L}$ and so $e_{i} U_{2}=\omega^{K}$ or $U_{2}=\sqcap_{j=1}^{q} \boldsymbol{e}_{L}\left(U_{j}^{\prime} \rightarrow T_{j}^{\prime}\right)$ so $e_{i} U_{2}=\sqcap_{j=1}^{q} \boldsymbol{e}_{K}\left(U_{j}^{\prime} \rightarrow T_{j}^{\prime}\right)$ where $q \geq 1$ and $\forall 1 \leq j \leq q, \exists 1 \leq i \leq p$ such that $U_{j}^{\prime} \sqsubseteq U_{i}$ and $T_{i} \sqsubseteq T_{j}^{\prime}$.

4. By \sqcap_{E} and since ω^{L} is a neutral.
5. By induction on $U \sqsubseteq U_{1}^{\prime} \sqcap U_{2}^{\prime}$.

- Let $\overline{U_{1}^{\prime} \sqcap U_{2}^{\prime} \sqsubseteq U_{1}^{\prime} \sqcap U_{2}^{\prime}}$. By ref, $U_{1}^{\prime} \sqsubseteq U_{1}^{\prime}$ and $U_{2}^{\prime} \sqsubseteq U_{2}^{\prime}$.
- Let $\frac{U \sqsubseteq U^{\prime \prime}-U^{\prime \prime} \sqsubseteq U_{1}^{\prime} \sqcap U_{2}^{\prime}}{U \sqsubseteq U_{1}^{\prime} \sqcap U_{2}^{\prime}}$. By $\mathrm{IH}, U^{\prime \prime}=U_{1}^{\prime \prime} \sqcap U_{2}^{\prime \prime}$ such that $U_{1}^{\prime \prime} \sqsubseteq U_{1}^{\prime}$ and $U_{2}^{\prime \prime} \sqsubseteq U_{2}^{\prime}$. Again by $\mathrm{IH}, U=U_{1} \sqcap U_{2}$ such that $U_{1} \sqsubseteq U_{1}^{\prime \prime}$ and $U_{2} \sqsubseteq U_{2}^{\prime \prime}$. So by $t r, U_{1} \sqsubseteq U_{1}^{\prime}$ and $U_{2} \sqsubseteq U_{2}^{\prime}$.
- Let $\frac{}{\left(U_{1}^{\prime} \sqcap U_{2}^{\prime}\right) \sqcap U \sqsubseteq U_{1}^{\prime} \sqcap U_{2}^{\prime}}$. By ref, $U_{1}^{\prime} \sqsubseteq U_{1}^{\prime}$ and $U_{2}^{\prime} \sqsubseteq U_{2}^{\prime}$. Moreover $\mathrm{d}(U)=\mathrm{d}\left(U_{1}^{\prime} \sqcap U_{2}^{\prime}\right)=\mathrm{d}\left(U_{1}^{\prime}\right)$ then by $\sqcap_{E}, U_{1}^{\prime} \sqcap U \sqsubseteq U_{1}^{\prime}$.
- If $\frac{U_{1} \sqsubseteq U_{1}^{\prime} \& U_{2} \sqsubseteq U_{2}^{\prime}}{U_{1} \sqcap U_{2} \sqsubseteq U_{1}^{\prime} \sqcap U_{2}^{\prime}}$ there is nothing to prove.
$-\frac{V_{2} \sqsubseteq V_{1} \quad \& T_{1} \sqsubseteq T_{2}}{V_{1} \rightarrow T_{1} \sqsubseteq V_{2} \rightarrow T_{2}}$ then $U_{1}^{\prime}=U_{2}^{\prime}=V_{2} \rightarrow T_{2}$ and $U=U_{1} \sqcap U_{2}$ such that $U_{1}=U_{2}=V_{1} \rightarrow T_{1}$ and we are done.
- If $\frac{U \sqsubseteq U_{1}^{\prime} \sqcap U_{2}^{\prime}}{e_{i} U \sqsubseteq e_{i} U_{1}^{\prime} \sqcap e_{i} U_{2}^{\prime}}$ then by IH $U=U_{1} \sqcap U_{2}$ such that $U_{1} \sqsubseteq U_{1}^{\prime}$ and $U_{2} \sqsubseteq U_{2}^{\prime} . \mathrm{So}, e_{i} U=e_{i} U_{1} \sqcap e_{i} U_{2}$ and by $\sqsubseteq_{e}, e_{i} U_{1} \sqsubseteq e_{i} U_{1}^{\prime}$ and $e_{i} U_{2} \sqsubseteq e_{i} U_{2}^{\prime}$.

6. By induction on $\Gamma \sqsubseteq \Gamma_{1}^{\prime} \sqcap \Gamma_{2}^{\prime}$.

- Let $\overline{\Gamma_{1}^{\prime} \sqcap \Gamma_{2}^{\prime} \sqsubseteq \Gamma_{1}^{\prime} \sqcap \Gamma_{2}^{\prime}}$. By ref, $\Gamma_{1}^{\prime} \sqsubseteq \Gamma_{1}^{\prime}$ and $\Gamma_{2}^{\prime} \sqsubseteq \Gamma_{2}^{\prime}$.
- Let $\frac{\Gamma \sqsubseteq \Gamma^{\prime \prime} \Gamma^{\prime \prime} \sqsubseteq \Gamma_{1}^{\prime} \sqcap \Gamma_{2}^{\prime}}{\Gamma \sqsubseteq \Gamma_{1}^{\prime} \sqcap \Gamma_{2}^{\prime}}$. By IH, $\Gamma^{\prime \prime}=\Gamma_{1}^{\prime \prime} \sqcap \Gamma_{2}^{\prime \prime}$ such that $\Gamma_{1}^{\prime \prime} \sqsubseteq \Gamma_{1}^{\prime}$ and $\Gamma_{2}^{\prime \prime} \sqsubseteq \Gamma_{2}^{\prime}$. Again by IH, $\Gamma=\Gamma_{1} \sqcap \Gamma_{2}$ such that $\Gamma_{1} \sqsubseteq \Gamma_{1}^{\prime \prime}$ and $\Gamma_{2} \sqsubseteq \Gamma_{2}^{\prime \prime}$. So by $\operatorname{tr}, \Gamma_{1} \sqsubseteq \Gamma_{1}^{\prime}$ and $\Gamma_{2} \sqsubseteq \Gamma_{2}^{\prime}$.
- Let $\frac{\bar{U}_{1} \sqsubseteq U_{2}}{\Gamma,\left(y^{n}: U_{1}\right) \sqsubseteq \Gamma,\left(y^{n}: U_{2}\right)}$ where $\Gamma,\left(y^{n}: U_{2}\right)=\Gamma_{1}^{\prime} \sqcap \Gamma_{2}^{\prime}$.
- If $\Gamma_{1}^{\prime}=\Gamma_{1}^{\prime \prime},\left(y^{n}: U_{2}^{\prime}\right)$ and $\Gamma_{2}^{\prime}=\Gamma_{2}^{\prime \prime},\left(y^{n}: U_{2}^{\prime \prime}\right)$ such that $U_{2}=U_{2}^{\prime} \sqcap U_{2}^{\prime \prime}$, then by $5, U_{1}=U_{1}^{\prime} \sqcap U_{1}^{\prime \prime}$ such that $U_{1}^{\prime} \sqsubseteq U_{2}^{\prime}$ and $U_{1}^{\prime \prime} \sqsubseteq U_{2}^{\prime \prime}$. Hence $\Gamma=\Gamma_{1}^{\prime \prime} \sqcap \Gamma_{2}^{\prime \prime}$ and $\Gamma,\left(y^{n}: U_{1}\right)=\Gamma_{1} \sqcap \Gamma_{2}$ where $\Gamma_{1}=\Gamma_{1}^{\prime \prime},\left(y^{n}: U_{1}^{\prime}\right)$ and $\Gamma_{2}=\Gamma_{2}^{\prime \prime},\left(y^{n}: U_{1}^{\prime \prime}\right)$ such that $\Gamma_{1} \sqsubseteq \Gamma_{1}^{\prime}$ and $\Gamma_{2} \sqsubseteq \Gamma_{2}^{\prime}$ by \sqsubseteq_{c}.
- If $y^{n} \notin \operatorname{dom}\left(\Gamma_{1}^{\prime}\right)$ then $\Gamma=\Gamma_{1}^{\prime} \sqcap \Gamma_{2}^{\prime \prime}$ where $\Gamma_{2}^{\prime \prime},\left(y^{n}: U_{2}\right)=\Gamma_{2}^{\prime}$. Hence, $\Gamma,\left(y^{n}: U_{1}\right)=\Gamma_{1}^{\prime} \sqcap \Gamma_{2}$ where $\Gamma_{2}=\Gamma_{2}^{\prime \prime},\left(y^{n}: U_{1}\right)$. By ref and $\sqsubseteq_{c}, \Gamma_{1}^{\prime} \sqsubseteq \Gamma_{1}^{\prime}$ and $\Gamma_{2} \sqsubseteq \Gamma_{2}^{\prime}$.
- If $y^{n} \notin \operatorname{dom}\left(\Gamma_{2}^{\prime}\right)$ then similar to the above case.

Proof [Of lemma 13] 1. First show by induction on the derivation $\Gamma \sqsubseteq \Gamma^{\prime}$ that if $\Gamma \sqsubseteq \Gamma^{\prime}$ and $\Gamma,\left(x^{L}: U\right)$ is an environment, then $\Gamma,\left(x^{L}: U\right) \sqsubseteq \Gamma^{\prime},\left(x^{L}: U\right)$. Then use tr.
2. Only if) By induction on the derivation $\Gamma \sqsubseteq \Gamma^{\prime}$. If) By induction on n using 1.
3. Only if) By induction on the derivation $\langle\Gamma \vdash U\rangle \sqsubseteq\left\langle\Gamma^{\prime} \vdash U^{\prime}\right\rangle$. If) By $\sqsubseteq\rangle$.
4. Let $\operatorname{fv}(M)=\left\{x_{1}^{L_{1}}, \ldots, x_{n}^{L_{n}}\right\}$ and $\Gamma=\left(x_{i}^{L_{i}}: U_{i}\right)_{n}$. By definition, env ${ }_{M}^{\omega}=$ $\left(x_{i}^{L_{i}}, \omega^{L_{i}}\right)_{n}$. Hence, by lemma 12.4 and $2, \Gamma \sqsubseteq e n v_{M}^{\omega}$.
5. Let $x^{L_{1}} \in \operatorname{dom}\left(\Gamma^{-K}\right)$ and $x^{L_{2}} \in \operatorname{dom}\left(\Delta^{-K}\right)$, then $x^{K:: L_{1}} \in \operatorname{dom}(\Gamma)$ and $x^{K:: L_{2}} \in \operatorname{dom}(\Delta)$, hence $K:: L_{1}=K:: L_{2}$ and so $L_{1}=L_{2}$.
6 . Let $\mathrm{d}(U)=L=K:: K^{\prime}$. By lemma 12 :

- If $U=\omega^{L}$ then by lemma 12.3b, $U^{\prime}=\omega^{L}$ and by ref, $U^{-K}=\omega^{K^{\prime}} \sqsubseteq \omega^{K^{\prime}}=$ $U^{\prime-K}$.
- If $U=\boldsymbol{e}_{L} \sqcap_{i=1}^{p} T_{i}$ where $p \geq 1$ and $\forall 1 \leq i \leq p, T_{i} \in \mathbb{T}$ then by lemma 12.3c, $U^{\prime}=\boldsymbol{e}_{L} V$ and $\sqcap_{i=1}^{p} T_{i} \sqsubseteq V$. Hence, by $\sqsubseteq_{e}, U^{-K}=\boldsymbol{e}_{K^{\prime}} \sqcap_{i=1}^{p} T_{i} \sqsubseteq \boldsymbol{e}_{K^{\prime}} V=U^{\prime-K}$.

7 Let $\mathrm{d}(\Gamma)=L=K:: K^{\prime}$. Let $\Gamma=\left(x_{i}^{L_{i}}: U_{i}\right)_{n}$, so by lemma $13.2, \Gamma^{\prime}=\left(x_{i}^{L_{i}}: U_{i}^{\prime}\right)_{n}$ and $\forall 1 \leq i \leq n, U_{i} \sqsubseteq U_{i}^{\prime}$. Since $\mathrm{d}(\Gamma) \succeq K, \forall 1 \leq i \leq n, \mathrm{~d}\left(U_{i}\right)=L_{i}=\mathrm{d}\left(U_{i}^{\prime}\right) \succeq K$, so $\mathrm{d}\left(U_{i}\right)=\mathrm{d}\left(U_{i}^{\prime}\right)=K:: K^{\prime}$. By 1., $\forall 1 \leq i \leq n, U_{i}^{-K} \sqsubseteq U_{i}^{\prime-K}$ and by lemma 13.2, $\Gamma^{-K} \sqsubseteq \Gamma^{\prime-K}$.

Proof [Of theorem 15]

1. - If $\frac{x^{\varnothing}:\left\langle\left(x^{\varnothing}: T\right) \vdash T\right\rangle}{}$ then $\mathrm{d}(T)=\oslash=\mathrm{d}\left(x^{\varnothing}\right)$.

- If $\frac{M:\left\langle e n v_{M}^{\omega} \vdash \omega^{\mathrm{d}(M)\rangle}\right.}{M}$. Let $\mathrm{fv}(M)=\left\{x^{L_{1}}, \ldots, x^{L_{n}}\right\}$, so $e n v_{M}^{\omega}=\left(x_{i}^{L_{i}}\right.$: $\left.\omega^{L_{i}}\right)_{n}$ and by lemma $45, \forall 1 \leq i \leq n, L_{i} \succeq \mathrm{~d}(M)$.
- If $\frac{M:\left\langle\Gamma,\left(x^{L}: U\right) \vdash T\right\rangle}{\lambda x^{L} \cdot M:\langle\Gamma \vdash U \rightarrow T\rangle}$ then by IH, $\mathrm{d}\left(\Gamma,\left(x^{L}: U\right)\right) \succeq \mathrm{d}(T)=\mathrm{d}(M)$. Let $\Gamma=\left(x_{i}^{L_{i}}: U_{i}\right)_{n}$, so $\forall 1 \leq i \leq n, \mathrm{~d}\left(U_{i}\right) \succeq \mathrm{d}(T)=\mathrm{d}(U \rightarrow T)$ and $\mathrm{d}\left(\lambda x^{L} \cdot M\right)=$ $\mathrm{d}(M)=\mathrm{d}(T)=\mathrm{d}(U \rightarrow T)$.
- If $\frac{M:\langle\Gamma \vdash T\rangle x^{L} \notin \operatorname{dom}(\Gamma)}{\lambda x^{L} \cdot M:\left\langle\Gamma \vdash \omega^{L} \rightarrow T\right\rangle}$ then by IH, $\mathrm{d}(\Gamma) \succeq \mathrm{d}(T)=\mathrm{d}(M)$. Let $\Gamma=$ $\left(x_{i}^{L_{i}}: U_{i}\right)_{n}$, so $\forall 1 \leq i \leq n, \mathrm{~d}\left(U_{i}\right) \succeq \mathrm{d}(T)=\mathrm{d}\left(\omega^{L} \rightarrow T\right)$ and $\mathrm{d}\left(\lambda x^{L} \cdot M\right)=$ $\mathrm{d}(M)=\mathrm{d}(T)=\mathrm{d}\left(\omega^{L} \rightarrow T\right)$.
- If $\frac{M_{1}:\left\langle\Gamma_{1} \vdash U \rightarrow T\right\rangle \quad M_{2}:\left\langle\Gamma_{2} \vdash U\right\rangle \quad \Gamma_{1} \diamond \Gamma_{2}}{M_{1} M_{2}:\left\langle\Gamma_{1} \sqcap \Gamma_{2} \vdash T\right\rangle}$ then by IH, $\mathrm{d}\left(\Gamma_{1}\right) \succeq$ $\mathrm{d}(U \rightarrow T)=\mathrm{d}\left(M_{1}\right)$ and $\mathrm{d}\left(\Gamma_{2}\right) \succeq \mathrm{d}(U)=\mathrm{d}\left(M_{2}\right)$. Let $\Gamma_{1}=\left(x_{i}^{L_{i}}: U_{i}\right)_{n},\left(y_{i}^{K_{i}}\right.$: $\left.V_{i}\right)_{m}$ and $\Gamma_{2}=\left(x_{i}^{L_{i}}: U_{i}^{\prime}\right)_{n},\left(z_{i}^{K_{i}^{\prime}}: W_{i}\right)_{r}$ so $\Gamma_{1} \sqcap \Gamma_{2}=\left(x_{i}^{L_{i}}: U_{i} \sqcap U_{i}^{\prime}\right)_{n},\left(y_{i}^{K_{i}}\right.$: $\left.V_{i}\right)_{m},\left(z_{i}^{K_{i}^{\prime}}: W_{i}\right)_{r}$ and $\forall 1 \leq i \leq n, \mathrm{~d}\left(U_{i} \sqcap U_{i}^{\prime}\right)=\mathrm{d}\left(U_{i}\right) \succeq \mathrm{d}(U \rightarrow T)=\mathrm{d}(T)$, $\forall 1 \leq i \leq m, \mathrm{~d}\left(V_{i}\right) \succeq \mathrm{d}(U \rightarrow T)=\mathrm{d}(T)$ and $\forall 1 \leq i \leq r, \mathrm{~d}\left(W_{i}\right) \succeq \mathrm{d}(U) \succeq$ $\mathrm{d}(T)$. Moreover $\mathrm{d}\left(M_{1} M_{2}\right)=\mathrm{d}\left(M_{1}\right)=\mathrm{d}(U \rightarrow T)=\mathrm{d}(T)$.
- If $\frac{M:\left\langle\Gamma \vdash U_{1}\right\rangle \quad M:\left\langle\Gamma \vdash U_{2}\right\rangle}{M:\left\langle\Gamma \vdash U_{1} \sqcap U_{2}\right\rangle}$ then by IH, $\mathrm{d}(\Gamma) \succeq \mathrm{d}\left(U_{1}\right)=\mathrm{d}(M)$ and $\mathrm{d}(\Gamma) \succeq \mathrm{d}\left(U_{2}\right)=\mathrm{d}(M)$, so $\mathrm{d}(\Gamma) \succeq \mathrm{d}\left(U_{1} \sqcap U_{2}\right)=\mathrm{d}\left(U_{1}\right)=\mathrm{d}(M)$.
- If $\frac{M:\langle\Gamma \vdash U\rangle}{M^{+k}:\left\langle e_{k} \Gamma \vdash e_{k} U\right\rangle}$ then by IH, $\mathrm{d}(\Gamma) \succeq \mathrm{d}(U)=\mathrm{d}(M)$. Let $\Gamma=\left(x_{j}^{L_{j}}\right.$: $\left.U_{j}\right)_{n}$ so $e_{k} \Gamma=\left(x_{j}^{k:: L_{j}}: e_{k} U_{j}\right)_{n}$ and since $\forall 1 \leq j \leq n, \mathrm{~d}\left(U_{j}\right) \succeq \mathrm{d}(U)$ then $\forall 1 \leq j \leq n, \mathrm{~d}\left(e_{k} U_{j}\right)=k:: \mathrm{d}\left(U_{j}\right) \succeq k:: \mathrm{d}(U)=\mathrm{d}\left(e_{k} U\right)=k:: \mathrm{d}(M)=$ $\mathrm{d}\left(M^{+k}\right)$.
- If $\frac{M:\langle\Gamma \vdash U\rangle \quad\langle\Gamma \vdash U\rangle \sqsubseteq\left\langle\Gamma^{\prime} \vdash U^{\prime}\right\rangle}{M:\left\langle\Gamma^{\prime} \vdash U^{\prime}\right\rangle}$ then by IH, $\mathrm{d}(\Gamma) \succeq \mathrm{d}(U)=\mathrm{d}(M)$. Let $\Gamma=\left(x_{i}^{L_{i}}: U_{i}\right)_{n}$, so $\forall 1 \leq i \leq n, \mathrm{~d}\left(U_{i}\right) \succeq \mathrm{d}(U)$. By lemma $13.2, \Gamma^{\prime}=$
$\left(x_{i}^{L_{i}}: U_{i}^{\prime}\right)_{n}$ and $\forall 1 \leq i \leq n, U_{i} \sqsubseteq U_{i}^{\prime}$ so by lemma $12.3 \mathrm{a}, \mathrm{d}\left(U_{i}\right)=\mathrm{d}\left(U_{i}^{\prime}\right)$. By lemma $13.3, U \sqsubseteq U^{\prime}$ so by lemma $12.3 \mathrm{a}, \mathrm{d}(U)=\mathrm{d}\left(U^{\prime}\right)$. Hence $\forall 1 \leq i \leq$ $n, \mathrm{~d}\left(U_{i}^{\prime}\right) \succeq \mathrm{d}\left(U^{\prime}\right)=\mathrm{d}(M)$.

2. By induction on $M:\langle\Gamma \vdash U\rangle$. Case $K=\oslash$ is trivial, consider $K=i:: K^{\prime}$. Let $\mathrm{d}(U)=K:: L$. Since $\mathrm{d}(U) \succeq K, U^{-K}$ is well defined. Since by $1 . \mathrm{d}(\Gamma) \succeq$ $\mathrm{d}(U)=\mathrm{d}(M), M^{-K}$ and Γ^{-K} are well defined too.

- If $\frac{M:\left\langle e n v_{M}^{\omega} \vdash \omega^{\mathrm{d}(M)\rangle}\right.}{}$. By $\omega, M^{-K}:\left\langle e n v_{M^{-K}}^{\omega} \vdash \omega^{L}\right\rangle$.
$-\Pi_{I}$ is by IH .
- If $\frac{M:\langle\Gamma \vdash U\rangle}{M^{+i}:\left\langle e_{i} \Gamma \vdash e_{i} U\right\rangle}$. Since $\mathrm{d}\left(e_{i} U\right)=i:: K^{\prime}:: L, \mathrm{~d}(U)=K^{\prime}:: L$, so $\mathrm{d}(U) \succeq K^{\prime}$ and by $\mathrm{IH}, M^{-K^{\prime}}:\left\langle\Gamma^{-K^{\prime}} \vdash U^{-K^{\prime}}\right\rangle$, so by $e,\left(M^{+i}\right)^{-K}:$ $\left\langle\left(e_{i} \Gamma\right)^{-K} \vdash\left(e_{i} U^{-K}\right\rangle\right.$.
- If $\frac{M:\langle\Gamma \vdash U\rangle \quad\langle\Gamma \vdash U\rangle \sqsubseteq\left\langle\Gamma^{\prime} \vdash U^{\prime}\right\rangle}{M:\left\langle\Gamma^{\prime} \vdash U^{\prime}\right\rangle}$ then by lemma 13.3, $\Gamma^{\prime} \sqsubseteq \Gamma$ and $U \sqsubseteq U^{\prime}$. By lemma 12.3a, $\mathrm{d}(U)=\mathrm{d}\left(U^{\prime}\right) \succeq K$. By IH, $M^{-K}:\left\langle\Gamma^{-K} \vdash U^{-K}\right\rangle$. Hence by lemma 13 and $\sqsubseteq, M^{-K}:\left\langle\Gamma^{\prime-K} \vdash U^{\prime-K}\right\rangle$.

Proof [Of remark 16]

1. Let $M:\left\langle\Gamma_{1} \vdash U_{1}\right\rangle$ and $M:\left\langle\Gamma_{2} \vdash U_{2}\right\rangle$. By lemma 14.2, $\operatorname{dom}\left(\Gamma_{1}\right)=\mathrm{fv}(M)=$ $\operatorname{dom}\left(\Gamma_{2}\right)$. Let $\Gamma_{1}=\left(x_{i}^{L_{i}}: V_{i}\right)_{n}$ and $\Gamma_{2}=\left(x_{i}^{L_{i}}: V_{i}^{\prime}\right)_{n}$. Then, $\forall 1 \leq i \leq n$, $\mathrm{d}\left(V_{i}\right)=\mathrm{d}\left(V_{i}^{\prime}\right)=L_{i}$. Ву $\sqcap_{E}, V_{i} \sqcap V_{i}^{\prime} \sqsubseteq V_{i}$ and $V_{i} \sqcap V_{i}^{\prime} \sqsubseteq V_{i}^{\prime}$. Hence, by lemma 13.2, $\Gamma_{1} \sqcap \Gamma_{2} \sqsubseteq \Gamma_{1}$ and $\Gamma_{1} \sqcap \Gamma_{2} \sqsubseteq \Gamma_{2}$ and by \sqsubseteq and $\sqsubseteq{ }_{\langle \rangle}, M:\left\langle\Gamma_{1} \sqcap \Gamma_{2} \vdash U_{1}\right\rangle$ and $M:\left\langle\Gamma_{1} \sqcap \Gamma_{2} \vdash U_{2}\right\rangle$. Finally, by $\sqcap_{I}, M:\left\langle\Gamma_{1} \sqcap \Gamma_{2} \vdash U_{1} \sqcap U_{2}\right\rangle$.
2. By lemma 12, either $U=\omega^{L}$ so by $\omega, x^{L}:\left\langle\left(x^{L}: \omega^{L}\right) \vdash \omega^{L}\right\rangle$.Or $U=\sqcap_{i=1}^{p} e_{L} T_{i}$ where $p \geq 1$, and $\forall 1 \leq i \leq p, T_{i} \in \mathbb{T}$. Let $1 \leq i \leq p$.By $a x, x^{\varnothing}:\left\langle\left(x^{\varnothing}: T_{i}\right) \vdash T_{i}\right\rangle$, hence by $e, x^{L}:\left\langle\left(x^{L}: \boldsymbol{e}_{L} T_{i}\right) \vdash e_{L} T_{i}\right\rangle$. Now, by $\sqcap_{I}^{\prime}, x^{L}:\left\langle\left(x^{L}: U\right) \vdash U\right\rangle$.

C Proofs of section 4

Proof [Of lemma 17] 1. By induction on the derivation $x^{L}:\langle\Gamma \vdash U\rangle$. We have fives cases:

- If $\overline{x^{\varnothing}:\left\langle\left(x^{\varnothing}: T\right) \vdash T\right\rangle}$, nothing to prove.
- If $\frac{x^{L}:\left\langle\left(x^{L}: \omega^{L}\right) \vdash \omega^{L}\right\rangle}{}$, nothing to prove.
- If $\frac{x^{L}:\left\langle\Gamma \vdash U_{1}\right\rangle \quad x^{L}:\left\langle\Gamma \vdash U_{2}\right\rangle}{x^{L}:\left\langle\Gamma \vdash U_{1} \sqcap U_{2}\right\rangle}$. By IH, $\Gamma=\left(x^{L}: V\right), V \sqsubseteq U_{1}$ and $V \sqsubseteq U_{2}$, then by rule $\sqcap, V \sqsubseteq U_{1} \sqcap U_{2}$.
- If $\frac{x^{L}:\langle\Gamma \vdash U\rangle}{x^{i: L}:\left\langle e_{i} \Gamma \vdash e_{i} U\right\rangle}$. Then by IH, $\Gamma=\left(x^{L}: V\right)$ and $V \sqsubseteq U$, so $e_{i} \Gamma=\left(x^{i:: L}:\right.$ $\left.e_{i} V\right)$ and by $\sqsubseteq_{e}, e_{i} V \sqsubseteq e_{i} U$,
- If $\frac{x^{L}:\left\langle\Gamma^{\prime} \vdash U^{\prime}\right\rangle\left\langle\Gamma^{\prime} \vdash U^{\prime}\right\rangle \sqsubseteq\langle\Gamma \vdash U\rangle}{x^{L}:\langle\Gamma \vdash U\rangle}$. By lemma 13.3, $\Gamma \sqsubseteq \Gamma^{\prime}$ and $U^{\prime} \sqsubseteq U$ and, by $\mathrm{IH}, \Gamma^{\prime}=\left(x^{L}: V^{\prime}\right)$ and $V^{\prime} \sqsubseteq U^{\prime}$. Then, by lemma $13.2, \Gamma=\left(x^{L}: V\right)$, $V \sqsubseteq V^{\prime}$ and, by rule $t r, V \sqsubseteq U$.

2. By induction on the derivation $\lambda x^{L} \cdot M:\langle\Gamma \vdash U\rangle$. We have five cases:

- If $\frac{}{\lambda x^{L} \cdot M:\left\langle e n v_{\lambda x^{L} \cdot M}^{\omega} \vdash \omega^{\mathrm{d}\left(\lambda x^{L} \cdot M\right)}\right\rangle}$, nothing to prove.
- If $\frac{M:\left\langle\Gamma, x^{L}: U \vdash T\right\rangle}{\lambda x^{L} \cdot M:\langle\Gamma \vdash U \rightarrow T\rangle}(\mathrm{d}(U \rightarrow T)=\varnothing)$, nothing to prove.
- If $\frac{\lambda x^{L} \cdot M:\left\langle\Gamma \vdash U_{1}\right\rangle \lambda x^{L} \cdot M:\left\langle\Gamma \vdash U_{2}\right\rangle}{\lambda x^{L} \cdot M:\left\langle\Gamma \vdash U_{1} \sqcap U_{2}\right\rangle}$ then $\mathrm{d}\left(U_{1} \sqcap U_{2}\right)=\mathrm{d}\left(U_{1}\right)=\mathrm{d}\left(U_{2}\right)=K$.

By IH, we have four cases:

- If $U_{1}=U_{2}=\omega^{K}$, then $U_{1} \sqcap U_{2}=\omega^{K}$.
- If $U_{1}=\omega^{K}, U_{2}=\Pi_{i=1}^{p} e_{K}\left(V_{i} \rightarrow T_{i}\right)$ where $p \geq 1$ and $\forall 1 \leq i \leq p, M$: $\left\langle\Gamma, x^{L}: \boldsymbol{e}_{K} V_{i} \vdash \boldsymbol{e}_{K} T_{i}\right\rangle$, then $U_{1} \sqcap U_{2}=U_{2}\left(\omega^{K}\right.$ is a neutral element).
- If $U_{2}=\omega^{K}, U_{1}=\Pi_{i=1}^{p} e_{K}\left(V_{i} \rightarrow T_{i}\right)$ where $p \geq 1$ and $\forall 1 \leq i \leq p, M$: $\left\langle\Gamma, x^{L}: \boldsymbol{e}_{K} V_{i} \vdash \boldsymbol{e}_{K} T_{i}\right\rangle$, then $U_{1} \sqcap U_{2}=U_{1}$ (ω^{K} is a neutral element).
- If $U_{1}=\square_{i=1}^{p} \boldsymbol{e}_{K}\left(V_{i} \rightarrow T_{i}\right), U_{2}=\Pi_{i=p+1}^{p+q} \boldsymbol{e}_{K}\left(V_{i} \rightarrow T_{i}\right)$ (hence $U_{1} \sqcap U_{2}=$ $\left.\sqcap_{i=1}^{p+q} e_{K}\left(V_{i} \rightarrow T_{i}\right)\right)$ where $p, q \geq 1, \forall 1 \leq i \leq p+q, M:\left\langle\Gamma, x^{L}: \boldsymbol{e}_{K} V_{i} \vdash\right.$ $\left.e_{K} T_{i}\right\rangle$, we are done.
- If $\frac{\lambda x^{L} \cdot M:\langle\Gamma \vdash U\rangle}{\lambda x^{i: L L} \cdot M^{+i}:\left\langle e_{i} \Gamma \vdash e_{i} U\right\rangle} . \mathrm{d}\left(e_{i} U\right)=i:: \mathrm{d}(U)=i:: K^{\prime}=K$. By IH, we have two cases:
- If $U=\omega^{K^{\prime}}$ then $e_{i} U=\omega^{K}$.
- If $U=\sqcap_{j=1}^{p} e_{K^{\prime}}\left(V_{j} \rightarrow T_{j}\right)$, where $p \geq 1$ and for all $1 \leq j \leq p, M:\left\langle\Gamma, x^{L}:\right.$ $\left.\boldsymbol{e}_{K^{\prime}} V_{j} \vdash \boldsymbol{e}_{K^{\prime}} T_{j}\right\rangle$. So $e_{i} U=\sqcap_{j=1}^{p} \boldsymbol{e}_{K}\left(V_{j} \rightarrow T_{j}\right)$ and by e, for all $1 \leq j \leq p$, $M^{+i}:\left\langle e_{i} \Gamma, x^{i:: L}: \boldsymbol{e}_{K} V_{j} \vdash \boldsymbol{e}_{K} T_{j}\right\rangle$.
- Let $\frac{\lambda x^{L} . M:\langle\Gamma \vdash U\rangle\langle\Gamma \vdash U\rangle \sqsubseteq\left\langle\Gamma^{\prime} \vdash U^{\prime}\right\rangle}{\lambda x^{L} \cdot M:\left\langle\Gamma^{\prime} \vdash U^{\prime}\right\rangle}$. By lemma 13.3, $\Gamma^{\prime} \sqsubseteq \Gamma$ and $U \sqsubseteq$ U^{\prime} and by lemma $12.3 \mathrm{a}(U)=\mathrm{d}\left(U^{\prime}\right)=K$. By IH, we have two cases:
- If $U=\omega^{K}$, then, by lemma $12.3 \mathrm{~b}, U^{\prime}=\omega^{K}$.
- If $U=\sqcap_{i=1}^{p} e_{K}\left(V_{i} \rightarrow T_{i}\right)$, where $p \geq 1$ and for all $1 \leq i \leq p M:\left\langle\Gamma, x^{L}\right.$: $\left.\boldsymbol{e}_{K} V_{i} \vdash \boldsymbol{e}_{K} T_{i}\right\rangle$. By lemma 12.3e:
* Either $U^{\prime}=\omega^{K}$.
* Or $U^{\prime}=\Pi_{i=1}^{q} \boldsymbol{e}_{K}\left(V_{i}^{\prime} \rightarrow T_{i}^{\prime}\right)$, where $q \geq 1$ and $\forall 1 \leq i \leq q, \exists 1 \leq j_{i} \leq p$ such that $V_{i}^{\prime} \sqsubseteq V_{j_{i}}$ and $T_{j_{i}} \sqsubseteq T_{i}^{\prime}$. Let $1 \leq i \leq q$. Since, by lemma 13.3, $\left\langle\Gamma, x^{L}: \boldsymbol{e}_{K} V_{j_{i}} \vdash \boldsymbol{e}_{K} T_{j_{i}}\right\rangle \sqsubseteq\left\langle\Gamma^{\prime}, x^{L}: \boldsymbol{e}_{K} V_{i}^{\prime} \vdash \boldsymbol{e}_{K} T_{i}^{\prime}\right\rangle$, then $M:\left\langle\Gamma^{\prime}, x^{L}:\right.$ $\left.\boldsymbol{e}_{K} V_{i}^{\prime} \vdash \boldsymbol{e}_{K} T_{i}^{\prime}\right\rangle$.

3. Same proof as that of 2 .
4. By induction on the derivation $M x^{L}:\left\langle\Gamma, x^{L}: U \vdash T\right\rangle$. We have two cases:

- Let $\frac{M:\langle\Gamma \vdash V \rightarrow T\rangle x^{L}:\left\langle\left(x^{L}: U\right) \vdash V\right\rangle \quad \Gamma \diamond\left(x^{L}: U\right)}{M x^{L}:\left\langle\Gamma,\left(x^{L}: U\right) \vdash T\right\rangle}$ (where, by $1 . U \sqsubseteq$ $V)$. Since $V \rightarrow T \sqsubseteq U \rightarrow T$, we have $M:\langle\Gamma \vdash U \rightarrow T\rangle$.
- Let $\frac{M x^{L}:\left\langle\Gamma^{\prime},\left(x^{L}: U^{\prime}\right) \vdash V^{\prime}\right\rangle\left\langle\Gamma^{\prime},\left(x^{L}: U^{\prime}\right) \vdash V^{\prime}\right\rangle \sqsubseteq\left\langle\Gamma,\left(x^{L}: U\right) \vdash V\right\rangle}{M x^{L}:\left\langle\Gamma,\left(x^{L}: U\right) \vdash V\right\rangle}$ (by lemma 13).

By lemma $13, \Gamma \sqsubseteq \Gamma^{\prime}, U \sqsubseteq U^{\prime}$ and $V^{\prime} \sqsubseteq V$. By $\mathrm{IH}, M:\left\langle\Gamma^{\prime} \vdash U^{\prime} \rightarrow V^{\prime}\right\rangle$ and by $\sqsubseteq, M:\langle\Gamma \vdash U \rightarrow V\rangle$.

Proof [Of lemma 18] By induction on the derivation $M:\left\langle\Gamma, x^{L}: U \vdash V\right\rangle$.

- If $\overline{x^{\varnothing}:\left\langle\left(x^{\varnothing}: T\right) \vdash T\right\rangle}$ and $N:\langle\Delta \vdash T\rangle$, then $x^{\varnothing}\left[x^{\varnothing}:=N\right]=N:\langle\Delta \vdash T\rangle$.
 $N]:\left\langle e n v_{M\left[x^{L}:=N\right]}^{\omega} \vdash \omega^{\mathrm{d}\left(M\left[x^{L}:=N\right]\right)}\right\rangle$. By lemma $45 \mathrm{~d}\left(M\left[x^{L}:=N\right]\right)=\mathrm{d}(M)$. Since $x^{L} \in \operatorname{fv}(M)\left(\right.$ and so $\mathrm{fv}(N) \subseteq \operatorname{fv}\left(M\left[x^{L}:=N\right]\right)$), by $\sqsubseteq, M\left[x^{L}:=N\right]$: $\left\langle e n v_{\mathrm{fv}(M) \backslash\left\{x^{L}\right\}}^{\omega} \sqcap \Delta \vdash \omega^{\mathrm{d}(M)}\right\rangle$.
- Let $\frac{M:\left\langle\Gamma, x^{L}: U, y^{K}: U^{\prime} \vdash T\right\rangle}{\lambda y^{K} \cdot M:\left\langle\Gamma, x^{L}: U \vdash U^{\prime} \rightarrow T\right\rangle}$ where $y^{K} \notin \mathrm{fv}(N)$. By IH, $M\left[x^{L}:=N\right]$: $\left\langle\Gamma \sqcap \Delta, y^{K}: U^{\prime} \vdash T\right\rangle$. By $\rightarrow_{I},\left(\lambda y^{K} . M\right)\left[x^{L}:=N\right]=\lambda y^{K} . M\left[x^{L}:=N\right]:\langle\Gamma \sqcap \Delta \vdash$ $\left.U^{\prime} \rightarrow T\right\rangle$.
- Let $\frac{M:\left\langle\Gamma, x^{L}: U \vdash T\right\rangle \quad y^{K} \notin \operatorname{dom}\left(\Gamma, x^{L}: U\right)}{\lambda y^{K} \cdot M:\left\langle\Gamma, x^{L}: U \vdash \omega^{K} \rightarrow T\right\rangle}$ where $y^{K} \notin \mathrm{fv}(N)$. By IH, $M\left[x^{L}:=\right.$ $N]:\langle\Gamma \sqcap \Delta \vdash T\rangle . \mathrm{By} \rightarrow{ }_{I}^{\prime},\left(\lambda y^{K} . M\right)\left[x^{L}:=N\right]=\lambda y^{K} . M\left[x^{L}:=N\right]:\langle\Gamma \sqcap \Delta \vdash$ $\left.\omega^{K} \rightarrow T\right\rangle$.
- Let $\frac{M_{1}:\left\langle\Gamma_{1}, x^{L}: U_{1} \vdash V \rightarrow T\right\rangle \quad M_{2}:\left\langle\Gamma_{2}, x^{L}: U_{2} \vdash V\right\rangle \quad \Gamma_{1} \diamond \Gamma_{2}}{M_{1} M_{2}:\left\langle\Gamma_{1} \sqcap \Gamma_{2}, x^{L}: U_{1} \sqcap U_{2} \vdash T\right\rangle}$ where $x^{L} \in$ $\mathrm{fv}\left(M_{1}\right) \cap \mathrm{fv}\left(M_{2}\right), N:\left\langle\Delta \vdash U_{1} \sqcap U_{2}\right\rangle$ and $\left(\Gamma_{1} \sqcap \Gamma_{2}\right) \diamond \Delta$. It is easy to show that $\Gamma_{1} \diamond \Delta$ and $\Gamma_{2} \diamond \Delta$. By \sqcap_{E} and $\sqsubseteq, N:\left\langle\Delta \vdash U_{1}\right\rangle$ and $N:\left\langle\Delta \vdash U_{2}\right\rangle$. Now use IH and \rightarrow_{E}.
The cases $x^{L} \in \mathrm{fv}\left(M_{1}\right) \backslash \mathrm{fv}\left(M_{2}\right)$ or $x^{L} \in \mathrm{fv}\left(M_{2}\right) \backslash \mathrm{fv}\left(M_{1}\right)$ are easy.
- If $\frac{M:\left\langle\Gamma, x^{L}: U \vdash U_{1}\right\rangle M:\left\langle\Gamma, x^{L}: U \vdash U_{2}\right\rangle}{M:\left\langle\Gamma, x^{L}: U \vdash U_{1} \sqcap U_{2}\right\rangle}$ use IH and \sqcap_{I}.
- Let $\frac{M:\left\langle\Gamma, x^{L}: U \vdash V\right\rangle}{M^{+i}:\left\langle e_{i} \Gamma, x^{i:: L}: e_{i} U \vdash e_{i} V\right\rangle}$ where $N:\left\langle\Delta \vdash e_{i} U\right\rangle$. By lemma $15, N^{-i}:$ $\left\langle\Delta^{-i} \vdash U\right\rangle$. By IH, $M\left[x^{L}:=N^{-i}\right]:\left\langle\Gamma \sqcap \Delta^{-i} \vdash V\right\rangle$. By e and lemma 46.4, $M^{+i}\left[x^{i:: L}:=N\right]:\left\langle e_{i} \Gamma \sqcap \Delta \vdash e_{i} V\right\rangle$.
- Let $\frac{M:\left\langle\Gamma^{\prime}, x^{L}: U^{\prime} \vdash V^{\prime}\right\rangle\left\langle\Gamma^{\prime}, x^{L}: U^{\prime} \vdash V^{\prime}\right\rangle \sqsubseteq\left\langle\Gamma, x^{L}: U \vdash V\right\rangle}{M:\left\langle\Gamma, x^{L}: U \vdash V\right\rangle}$ (lemma 13). By lemma 13, $\operatorname{dom}(\Gamma)=\operatorname{dom}\left(\Gamma^{\prime}\right), \Gamma \sqsubseteq \Gamma^{\prime}, U \sqsubseteq U^{\prime}$ and $V^{\prime} \sqsubseteq V$. Hence $N:\langle\Delta \vdash$ $\left.U^{\prime}\right\rangle$ and, by IH, $M\left[x^{L}:=N\right]:\left\langle\Gamma^{\prime} \sqcap \Delta \vdash V^{\prime}\right\rangle$. It is easy to show that $\Gamma \sqcap \Delta \sqsubseteq$ $\Gamma^{\prime} \sqcap \Delta$. Hence, $\left\langle\Gamma^{\prime} \sqcap \Delta \vdash V^{\prime}\right\rangle \sqsubseteq\langle\Gamma \sqcap \Delta \vdash V\rangle$ and $M\left[x^{L}:=N\right]:\langle\Gamma \sqcap \Delta \vdash V\rangle$.

The next lemma is needed in the proofs.
Lemma 53. 1. If $\mathrm{fv}(N) \subseteq \mathrm{fv}(M)$, then $e n v_{\omega}^{M} \upharpoonright_{N}=e n v_{\omega}^{N}$.
2. If $\mathrm{fv}(M) \subseteq \operatorname{dom}\left(\Gamma_{1}\right)$ and $\mathrm{fv}(N) \subseteq \operatorname{dom}\left(\Gamma_{2}\right)$, then
$\left(\Gamma_{1} \sqcap \Gamma_{2}\right) \upharpoonright_{M N} \sqsubseteq\left(\Gamma_{1} \upharpoonright_{M}\right) \sqcap\left(\Gamma_{2} \upharpoonright_{N}\right)$.
3. $e_{i}\left(\Gamma \upharpoonright_{M}\right)=\left(e_{i} \Gamma\right) \upharpoonright_{M^{+i}}$

Proof 1. Easy. 2. First, note that $\operatorname{dom}\left(\left(\Gamma_{1} \sqcap \Gamma_{2}\right) \upharpoonright_{M N}\right)=\mathrm{fv}(M N)=\mathrm{fv}(M) \cup$ $\operatorname{fv}(N)=\operatorname{dom}\left(\Gamma_{1} \upharpoonright_{M}\right) \cup \operatorname{dom}\left(\Gamma_{2} \upharpoonright_{N}\right)=\operatorname{dom}\left(\left(\Gamma_{1} \upharpoonright_{M}\right) \sqcap\left(\Gamma_{2} \upharpoonright_{N}\right)\right)$. Now, we show by cases that if $\left(x^{L}: U_{1}\right) \in\left(\Gamma_{1} \sqcap \Gamma_{2}\right) \upharpoonright_{M N}$ and $\left(x^{L}: U_{2}\right) \in\left(\Gamma_{1} \upharpoonright_{M}\right) \sqcap\left(\Gamma_{2} \upharpoonright_{N}\right)$ then $U_{1} \sqsubseteq U_{2}:$

- If $x^{L} \in \operatorname{fv}(M) \cap \mathrm{fv}(N)$ then $\left(x^{L}: U_{1}^{\prime}\right) \in \Gamma_{1},\left(x^{L}: U_{1}^{\prime \prime}\right) \in \Gamma_{2}$ and $U_{1}=U_{1}^{\prime} \sqcap U_{1}^{\prime \prime}=$ U_{2}.
- If $x^{L} \in \mathrm{fv}(M) \backslash \mathrm{fv}(N)$ then
- If $x^{L} \in \operatorname{dom}\left(\Gamma_{2}\right)$ then $\left(x^{L}: U_{2}\right) \in \Gamma_{1},\left(x^{L}: U_{1}^{\prime}\right) \in \Gamma_{2}$ and $U_{1}=U_{1}^{\prime} \sqcap U_{2} \sqsubseteq U_{2}$.
- If $x^{L} \notin \operatorname{dom}\left(\Gamma_{2}\right)$ then $\left(x^{L}: U_{2}\right) \in \Gamma_{1}$ and $U_{1}=U_{2}$.
- If $x^{L} \in \mathrm{fv}(N) \backslash \mathrm{fv}(M)$ then
- If $x^{L} \in \operatorname{dom}\left(\Gamma_{1}\right)$ then $\left(x^{L}: U_{1}^{\prime}\right) \in \Gamma_{1},\left(x^{L}: U_{2}\right) \in \Gamma_{2}$ and $U_{1}=U_{1}^{\prime} \sqcap U_{2} \sqsubseteq U_{2}$.
- If $x^{L} \notin \operatorname{dom}\left(\Gamma_{1}\right)$ then $x^{L}: U_{2} \in \Gamma_{2}$ and $U_{1}=U_{2}$.

3. Let $\Gamma=\left(x_{j}^{L_{j}}: U_{j}\right)_{n}$ and let $\operatorname{fv}(M)=\left\{y_{1}^{K_{1}}, \ldots, y_{m}^{K_{m}}\right\}$ where $m \leq n$ and $\forall 1 \leq k \leq m \exists 1 \leq j \leq n$ such that $y_{k}^{K_{k}}=x_{j}^{L_{j}}$. So $\Gamma \upharpoonright_{M}=\left(y_{k}^{K_{k}}: U_{k}\right)_{m}$ and $e_{i}\left(\Gamma \upharpoonright \upharpoonright_{M}\right)=\left(y_{k}^{i:: K_{k}}: e_{i} U_{k}\right)_{m}$. Since $e_{i} \Gamma=\left(x_{j}^{i:: L_{j}}: e_{i} U_{j}\right)_{n}, \operatorname{fv}\left(M^{+i}\right)=$ $\left\{y_{1}^{i:: K_{1}}, \ldots, y_{m}^{i:: K_{m}}\right\}$ and $\forall 1 \leq k \leq m \exists 1 \leq j \leq n$ such that $y_{k}^{i:: K_{k}}=x_{j}^{i:: L_{j}}$ then $\left(e_{i} \Gamma\right) \upharpoonright_{M^{+i}}=\left(y_{k}^{i:: K_{k}}: U_{k}\right)_{m}$.

The next two theorems are needed in the proof of subject reduction.
Theorem 54. If $M:\langle\Gamma \vdash U\rangle$ and $M \triangleright_{\beta} N$, then $N:\left\langle\Gamma \upharpoonright_{N} \vdash U\right\rangle$.
Proof By induction on the derivation $M:\langle\Gamma \vdash U\rangle$.

- Rule ω follows by theorem 4.2 and lemma 53.1.
- If $\frac{M:\left\langle\Gamma,\left(x^{L}: U\right) \vdash T\right\rangle}{\lambda x^{L} \cdot M:\langle\Gamma \vdash U \rightarrow T\rangle}$ then $N=\lambda x^{L} N^{\prime}$ and $M \triangleright_{\beta} N^{\prime}$. By IH, $N^{\prime}:\left\langle\left(\Gamma,\left(x^{L}:\right.\right.\right.$ $\left.U)) \upharpoonright_{N^{\prime}} \vdash T\right\rangle$. If $x^{L} \in \mathrm{fv}\left(N^{\prime}\right)$ then $N^{\prime}:\left\langle\Gamma \upharpoonright_{\mathrm{fv}\left(N^{\prime}\right) \backslash\left\{x^{L}\right\}},\left(x^{L}: U\right) \vdash T\right\rangle$ and by $\rightarrow_{I}, \lambda x^{L} . N^{\prime}:\left\langle\Gamma \upharpoonright_{\lambda x^{L} . N^{\prime}} \vdash U \rightarrow T\right\rangle$. Else $N^{\prime}:\left\langle\Gamma \upharpoonright_{\mathrm{fv}\left(N^{\prime}\right) \backslash\left\{x^{L}\right\}} \vdash T\right\rangle$ so by $\rightarrow_{I}^{\prime}, \lambda x^{L} . N^{\prime}:\left\langle\Gamma \upharpoonright_{\lambda x^{L} . N^{\prime}} \vdash \omega^{L} \rightarrow T\right\rangle$ and since by lemma $12.4, U \sqsubseteq \omega^{L}$, by \sqsubseteq, $\lambda x^{L} . N^{\prime}:\left\langle\Gamma \upharpoonright \upharpoonright_{\lambda x^{L} . N^{\prime}} \vdash U \rightarrow T\right\rangle$.
- If $\frac{M:\langle\Gamma \vdash T\rangle \quad x^{L} \notin \operatorname{dom}(\Gamma)}{\lambda x^{L} . M:\left\langle\Gamma \vdash \omega^{L} \rightarrow T\right\rangle}$ then $N=\lambda x^{L} N^{\prime}$ and $M \triangleright_{\beta} N^{\prime}$. Since $x^{L} \notin$ $\mathrm{fv}(M)$, by theorem $4.2, x^{L} \notin \mathrm{fv}\left(N^{\prime}\right)$. By IH, $N^{\prime}:\left\langle\Gamma \upharpoonright_{\mathrm{fv}\left(N^{\prime}\right) \backslash\left\{x^{L}\right\}^{\vdash}} T\right\rangle$ so by \rightarrow_{I}^{\prime}, $\lambda x^{L} . N^{\prime}:\left\langle\Gamma \upharpoonright_{\lambda x^{L} . N^{\prime}} \vdash \omega^{L} \rightarrow T\right\rangle$.
- If $\frac{M_{1}:\left\langle\Gamma_{1} \vdash U \rightarrow T\right\rangle \quad M_{2}:\left\langle\Gamma_{2} \vdash U\right\rangle \quad \Gamma_{1} \diamond \Gamma_{2}}{M_{1} M_{2}:\left\langle\Gamma_{1} \sqcap \Gamma_{2} \vdash T\right\rangle}$. Using lemma 53.2, case $M_{1} \triangleright_{\beta}$ N_{1} and $N=N_{1} M_{2}$ and case $M_{2} \triangleright_{\beta} N_{2}$ and $N=M_{1} N_{2}$ are easy. Let $M_{1}=$ $\lambda x^{L} . M_{1}^{\prime}$ and $N=M_{1}^{\prime}\left[x^{L}:=M_{2}\right]$. If $x^{L} \in F V\left(M_{1}^{\prime}\right)$ then by lemma 17.2, M_{1}^{\prime} : $\left\langle\Gamma_{1}, x^{L}: U \vdash T\right\rangle$. By lemma 18, $M_{1}^{\prime}\left[x^{L}:=M_{2}\right]:\left\langle\Gamma_{1} \sqcap \Gamma_{2} \vdash T\right\rangle$. If $x^{L} \notin$ $F V\left(M_{1}^{\prime}\right)$ then by lemma $17.3, M_{1}^{\prime}\left[x^{L}:=M_{2}\right]=M_{1}^{\prime}:\left\langle\Gamma_{1} \vdash T\right\rangle$ and by \sqsubseteq, $N:\left\langle\left(\Gamma_{1} \sqcap \Gamma_{2}\right) \upharpoonright_{N} \vdash T\right\rangle$.
- Case Π_{I} is by IH.
- If $\frac{M:\langle\Gamma \vdash U\rangle}{M^{+i}:\left\langle e_{i} \Gamma \vdash e_{i} U\right\rangle}$ and $M^{+i} \triangleright_{\beta} N$, then by lemma 46.9 , there is $P \in \mathcal{M}$ such that $P^{+i}=N$ and $M \triangleright_{\beta} P$. By IH, $P:\left\langle\Gamma \upharpoonright_{P} \vdash U\right\rangle$ and by e and lemma 53.3, $N:\left\langle\left(e_{i} \Gamma\right) \upharpoonright_{N} \vdash e_{i} U\right\rangle$.
- If $\frac{M:\langle\Gamma \vdash U\rangle \quad\langle\Gamma \vdash U\rangle \sqsubseteq\left\langle\Gamma^{\prime} \vdash U^{\prime}\right\rangle}{M:\left\langle\Gamma^{\prime} \vdash U^{\prime}\right\rangle}$ then by IH, lemma 13.3 and $\sqsubseteq, N:$ $\left\langle\Gamma^{\prime} \upharpoonright_{N} \vdash U^{\prime}\right\rangle$.

Theorem 55. If $M:\langle\Gamma \vdash U\rangle$ and $M \triangleright_{\eta} N$, then $N:\langle\Gamma \vdash U\rangle$.
Proof By induction on the derivation $M:\langle\Gamma \vdash U\rangle$.

- If $\frac{M:\left\langle e n v_{M}^{\omega} \vdash \omega^{\mathrm{d}(M)\rangle}\right.}{}$ then by lemma 4.1, $\mathrm{d}(M)=\mathrm{d}(N)$ and $\mathrm{fv}(M)=\mathrm{fv}(N)$ and by $\omega, N:\left\langle e n v_{M}^{\omega} \vdash \omega^{\mathrm{d}(M)}\right\rangle$.
- If $\frac{M:\left\langle\Gamma,\left(x^{L}: U\right) \vdash T\right\rangle}{\lambda x^{L} \cdot M:\langle\Gamma \vdash U \rightarrow T\rangle}$ then we have two cases:
- $M=N x^{L}$ and so by lemma 17.4, $N:\langle\Gamma \vdash U \rightarrow T\rangle$.
- $N=\lambda x^{L} N^{\prime}$ and $M \triangleright_{\eta} N^{\prime}$. By IH, $N^{\prime}:\left\langle\Gamma,\left(x^{L}: U\right) \vdash T\right\rangle$ and by \rightarrow_{I}, $N:\langle\Gamma \vdash U \rightarrow T\rangle$.
- if $\frac{M:\langle\Gamma \vdash T\rangle \quad x^{L} \notin \operatorname{dom}(\Gamma)}{\lambda x^{L} . M:\left\langle\Gamma \vdash \omega^{L} \rightarrow T\right\rangle}$ then $N=\lambda x^{L} N^{\prime}$ and $M \triangleright_{\eta} N^{\prime}$. By IH, $N^{\prime}:\langle\Gamma \vdash$ $T\rangle$ and by $\rightarrow_{I}^{\prime}, N:\left\langle\Gamma \vdash \omega^{L} \rightarrow T\right\rangle$.
- If $\frac{M_{1}:\left\langle\Gamma_{1} \vdash U \rightarrow T\right\rangle \quad M_{2}:\left\langle\Gamma_{2} \vdash U\right\rangle \quad \Gamma_{1} \diamond \Gamma_{2}}{M_{1} M_{2}:\left\langle\Gamma_{1} \sqcap \Gamma_{2} \vdash T\right\rangle}$, then we have two cases:
- $M_{1} \triangleright_{\eta} N_{1}$ and $N=N_{1} M_{2}$. By IH $N_{1}:\left\langle\Gamma_{1} \vdash U \rightarrow T\right\rangle$ and by \rightarrow_{E}, $N:\left\langle\Gamma_{1} \sqcap \Gamma_{2} \vdash T\right\rangle$.
- $M_{2} \triangleright_{\eta} N_{2}$ and $N=M_{1} N_{2}$. By IH $N_{2}:\left\langle\Gamma_{2} \vdash U\right\rangle$ and by $\rightarrow_{E}, N:\left\langle\Gamma_{1} \sqcap \Gamma_{2} \vdash\right.$ $T\rangle$.
- Case Π_{I} is by IH and Π_{I}.
- If $\frac{M:\langle\Gamma \vdash U\rangle}{M^{+i}:\left\langle e_{i} \Gamma \vdash e_{i} U\right\rangle}$ then by lemma 46.9, there is $P \in \mathcal{M}$ such that $P^{+i}=N$ and $M \triangleright_{\eta} P$. By IH, $P:\langle\Gamma \vdash U\rangle$ and by $e, N:\left\langle e_{i} \Gamma \vdash e_{i} U\right\rangle$.
- If $\frac{M:\langle\Gamma \vdash U\rangle \quad\langle\Gamma \vdash U\rangle \sqsubseteq\left\langle\Gamma^{\prime} \vdash U^{\prime}\right\rangle}{M:\left\langle\Gamma^{\prime} \vdash U^{\prime}\right\rangle}$ then by IH, lemma 13.3 and $\sqsubseteq, N:$ $\left\langle\Gamma^{\prime} \vdash U^{\prime}\right\rangle$.

The next auxiliary lemma is needed in proofs.
Lemma 56. Let $i \in\{1,2\}$ and $M:\langle\Gamma \vdash U\rangle$. We have:

1. If $\left(x^{L}: U_{1}\right) \in \Gamma$ and $\left(y^{K}: U_{2}\right) \in \Gamma$, then:
(a) If $\left(x^{L}: U_{1}\right) \neq\left(y^{K}: U_{2}\right)$, then $x^{L} \neq y^{K}$.
(b) If $x=y$, then $L=K$ and $U_{1}=U_{2}$.
2. If $\left(x^{L}: U_{1}\right) \in \Gamma$ and $\left(y^{K}: U_{2}\right) \in \Gamma$ and $\left(x^{L}: U_{1}\right) \neq\left(y^{K}: U_{2}\right)$, then $x \neq y$ and $x^{L} \neq y^{K}$.
Proof 1. By induction on the derivation of $M:\langle\Gamma \vdash U\rangle$. 2. Corollary of 1 .
Proof [Of theorem 20] Proofs are by induction on derivations using theorem 54 and theorem 55.

D Proofs for section 5

Proof [Of lemma 22] By induction on the derivation $M\left[x^{L}:=N\right]:\langle\Gamma \vdash U\rangle$.

- If $\overline{y^{\varnothing}:\left\langle\left(y^{\varnothing}: T\right) \vdash T\right\rangle}$ then $M=x^{\varnothing}$ and $N=y^{\varnothing}$. By $a x, x^{\varnothing}:\left\langle\left(x^{\varnothing}: T\right) \vdash T\right\rangle$.
- If $\overline{M\left[x^{L}:=N\right]:\left\langle e n v_{M\left[x^{L}:=N\right]}^{\omega} \vdash \omega^{\mathrm{d}\left(M\left[x^{L}:=N\right]\right)}\right\rangle}$ then by lemma $45, \mathrm{~d}(M)=\mathrm{d}\left(M\left[x^{L}:=\right.\right.$ $N])$. By $\omega, M:\left\langle e n v_{\mathrm{fV}(M) \backslash\left\{x^{L}\right\}}^{\omega},\left(x^{L}: \omega^{L}\right) \vdash \omega^{\mathrm{d}(M)}\right\rangle$ and $N:\left\langle e n v_{N}^{\omega} \vdash \omega^{L}\right\rangle$ and it's easy to see that $e n v_{\mathrm{fv}(M) \backslash\left\{x^{L}\right\}}^{\omega} \sqcap e n v_{N}^{\omega}=e n v_{M\left[x^{L}:=N\right]}^{\omega}$.
- If $\frac{M\left[x^{L}:=N\right]:\left\langle\Gamma,\left(y^{K}: W\right) \vdash T\right\rangle}{\lambda y^{K} \cdot M\left[x^{L}:=N\right]:\langle\Gamma \vdash W \rightarrow T\rangle}$ where $y^{K} \notin \mathrm{fv}(N)$. By IH, $\exists V$ type such that $\mathrm{d}(V)=L$ and $\exists \Gamma_{1}, \Gamma_{2}$ type environments such that $M:\left\langle\Gamma_{1}, x^{L}: V \vdash T\right\rangle$, $N:\left\langle\Gamma_{2} \vdash V\right\rangle$ and $\Gamma, y^{K}: W=\Gamma_{1} \sqcap \Gamma_{2}$. Since $y^{K} \in \mathrm{fv}(M)$ and $y^{K} \notin \mathrm{fv}(N)$, $\Gamma_{1}=\Delta_{1}, y^{K}: W$. Hence $M:\left\langle\Delta_{1}, y^{K}: W, x^{L}: V \vdash T\right\rangle$. By rule $\rightarrow_{I}, \lambda y^{K} . M:$ $\left\langle\Delta_{1}, x^{L}: V \vdash W \rightarrow T\right\rangle$. Finally $\Gamma=\Delta_{1} \sqcap \Gamma_{2}$.
- If $\frac{M\left[x^{L}:=N\right]:\langle\Gamma \vdash T\rangle \quad y^{K} \notin \operatorname{dom}(\Gamma)}{\lambda y^{K} . M\left[x^{L}:=N\right]:\left\langle\Gamma \vdash \omega^{K} \rightarrow T\right\rangle}$. By IH, $\exists V$ type such that $\mathrm{d}(V)=L$ and $\exists \Gamma_{1}, \Gamma_{2}$ type environments such that $M:\left\langle\Gamma_{1}, x^{L}: V \vdash T\right\rangle, N:\left\langle\Gamma_{2} \vdash V\right\rangle$ and $\Gamma=\Gamma_{1} \sqcap \Gamma_{2}$. Since $y^{K} \neq x^{L}, \lambda y^{K} . M:\left\langle\Gamma_{1}, x^{L}: V \vdash \omega^{K} \rightarrow T\right\rangle$.
- If $\frac{M_{1}\left[x^{L}:=N\right]:\left\langle\Gamma_{1} \vdash W \rightarrow T\right\rangle \quad M_{2}\left[x^{L}:=N\right]:\left\langle\Gamma_{2} \vdash W\right\rangle \quad \Gamma_{1} \diamond \Gamma_{2}}{M_{1}\left[x^{L}:=N\right] M_{2}\left[x^{L}:=N\right]:\left\langle\Gamma_{1} \sqcap \Gamma_{2} \vdash T\right\rangle}$ where $M=$ $M_{1} M_{2}$, then we have three cases:
- If $x^{L} \in \mathrm{fv}\left(M_{1}\right) \cap \mathrm{fv}\left(M_{2}\right)$ then by IH, $\exists V_{1}, V_{2}$ types and $\exists \Delta_{1}, \Delta_{2}, \nabla_{1}, \nabla_{2}$ type environments such that $M_{1}:\left\langle\Delta_{1},\left(x^{L}: V_{1}\right) \vdash W \rightarrow T\right\rangle, M_{2}:\left\langle\nabla_{1},\left(x^{L}:\right.\right.$ $\left.\left.V_{2}\right) \vdash W\right\rangle, N:\left\langle\Delta_{2} \vdash V_{1}\right\rangle, N:\left\langle\nabla_{2} \vdash V_{2}\right\rangle, \Gamma_{1}=\Delta_{1} \sqcap \Delta_{2}$ and $\Gamma_{2}=\nabla_{1} \sqcap \nabla_{2}$. Since $\Gamma_{1} \diamond \Gamma_{2}, \Delta_{1} \diamond \nabla_{1}$ and since $\Delta_{1},\left(x^{L}: V_{1}\right)$ and $\nabla_{1},\left(x^{L}: V_{2}\right)$ are type environments, by lemma $56,\left(\Delta_{1},\left(x^{L}: V_{1}\right)\right) \diamond\left(\nabla_{1},\left(x^{L}: V_{2}\right)\right)$. Then, by rules \sqcap_{I} and $\rightarrow_{E}, M_{1} M_{2}:\left\langle\Delta_{1} \sqcap \nabla_{1},\left(x^{L}: V_{1} \sqcap V_{2}\right) \vdash T\right\rangle$ and by \sqsubseteq and \sqcap_{I}, $N:\left\langle\Delta_{2} \sqcap \nabla_{2} \vdash V_{1} \sqcap V_{2}\right\rangle$. Finally, $\Gamma_{1} \sqcap \Gamma_{2}=\left(\Delta_{1} \sqcap \Delta_{2}\right) \sqcap\left(\nabla_{1} \sqcap \nabla_{2}\right)$.
- If $x^{L} \in \mathrm{fv}\left(M_{1}\right) \backslash \mathrm{fv}\left(M_{2}\right)$ then by IH, $\exists V$ types and $\exists \Delta_{1}, \Delta_{1}$ type environments such that $M_{1}:\left\langle\Delta_{1},\left(x^{L}: V\right) \vdash W \rightarrow T\right\rangle, N:\left\langle\Delta_{2} \vdash V\right\rangle$ and $\Gamma_{1}=\Delta_{1} \sqcap \Delta_{2}$. Since $\Gamma_{1} \diamond \Gamma_{2}, \Delta_{1} \diamond \Gamma_{2}$ and since $\Gamma_{1} \sqcap \Gamma_{2}$ is a type environment, by lemma $56,\left(\Delta_{1},\left(x^{L}: V\right)\right) \diamond \Gamma_{2}$. By $\rightarrow_{E}, M_{1} M_{2}:\left\langle\Delta_{1} \sqcap \Gamma_{2},\left(x^{L}: V\right) \vdash T\right\rangle$ and $\Gamma_{1} \sqcap \Gamma_{2}=\left(\Delta_{1} \sqcap \Delta_{2}\right) \sqcap \Gamma_{2}$.
- If $x^{L} \in \operatorname{fv}\left(M_{2}\right) \backslash \operatorname{fv}\left(M_{1}\right)$ then by IH, $\exists V$ types and $\exists \Delta_{1}, \Delta_{2}$ type environments such that $M_{2}:\left\langle\Delta_{1},\left(x^{L}: V\right) \vdash W\right\rangle, N:\left\langle\Delta_{2} \vdash V\right\rangle$ and $\Gamma_{2}=\Delta_{1} \sqcap \Delta_{2}$. Since $\Gamma_{1} \diamond \Gamma_{2}, \Gamma_{1} \diamond \Delta_{1}$ and since $\Gamma_{1} \sqcap \Gamma_{2}$ is a type environment, by lemma $56,\left(\Delta_{1},\left(x^{L}: V\right)\right) \diamond \Gamma_{1}$. By $\rightarrow_{E}, M_{1} M_{2}:\left\langle\Gamma_{1} \sqcap \Delta_{1},\left(x^{L}: V\right) \vdash T\right\rangle$ and $\Gamma_{1} \sqcap \Gamma_{2}=\Gamma_{1} \sqcap\left(\Delta_{1} \sqcap \Delta_{2}\right)$.
- Let $\frac{M\left[x^{L}:=N\right]:\left\langle\Gamma \vdash U_{1}\right\rangle M\left[x^{L}:=N\right]:\left\langle\Gamma \vdash U_{2}\right\rangle}{M\left[x^{L}:=N\right]:\left\langle\Gamma \vdash U_{1} \sqcap U_{2}\right\rangle}$. By IH, $\exists V_{1}, V_{2}$ types and $\exists \Delta_{1}, \Delta_{2}, \nabla_{1}, \nabla_{2}$ type environments such that $M:\left\langle\Delta_{1}, x^{L}: V_{1} \vdash U_{1}\right\rangle, M$: $\left\langle\nabla_{1}, x^{L}: V_{2} \vdash U_{2}\right\rangle, N:\left\langle\Delta_{2} \vdash V_{1}\right\rangle, N:\left\langle\nabla_{2} \vdash V_{2}\right\rangle, \Gamma=\Delta_{1} \sqcap \Delta_{2}$ and $\Gamma=\nabla_{1} \sqcap \nabla_{2}$. Then, by rule $\Pi_{I}^{\prime}, M:\left\langle\Delta_{1} \sqcap \nabla_{1}, x^{L}: V_{1} \sqcap V_{2} \vdash U_{1} \sqcap U_{2}\right\rangle$ and $N:\left\langle\Delta_{2} \sqcap \nabla_{2} \vdash\right.$ $\left.V_{1} \sqcap V_{2}\right\rangle$. Finally, $\Gamma=\left(\Delta_{1} \sqcap \Delta_{2}\right) \sqcap\left(\nabla_{1} \sqcap \nabla_{2}\right)$.
- If $\frac{M\left[x^{L}:=N\right]:\langle\Gamma \vdash U\rangle}{M^{+j}\left[x^{j: L}:=N^{+j}\right]:\left\langle e_{j} \Gamma \vdash e_{j} U\right\rangle}$ then by IH, $\exists V$ type and $\exists \Gamma_{1}, \Gamma_{2}$ type environments such that $M:\left\langle\Gamma_{1}, x^{L}: V \vdash U\right\rangle, N:\left\langle\Gamma_{2} \vdash V\right\rangle$ and $\Gamma=\Gamma_{1} \sqcap \Gamma_{2}$. So by $e, M^{+j}:\left\langle e_{j} \Gamma_{1}, x^{j: L L}: e_{j} V \vdash e_{j} U\right\rangle, N:\left\langle e_{j} \Gamma_{2} \vdash e_{j} V\right\rangle$ and $e_{j} \Gamma=e_{j} \Gamma_{1} \sqcap e_{j} \Gamma_{2}$.
- If $\frac{M\left[x^{L}:=N\right]:\left\langle\Gamma^{\prime} \vdash U^{\prime}\right\rangle\left\langle\Gamma^{\prime} \vdash U^{\prime}\right\rangle \sqsubseteq\langle\Gamma \vdash U\rangle}{M\left[x^{L}:=N\right]:\langle\Gamma \vdash U\rangle}$ then by lemma 13.2, $\Gamma \sqsubseteq \Gamma^{\prime}$ and $U^{\prime} \sqsubseteq U$. By IH, $\exists V$ type and $\exists \Gamma_{1}, \Gamma_{2}$ type environments such that M : $\left\langle\Gamma_{1}^{\prime}, x^{L}: V \vdash U^{\prime}\right\rangle, N:\left\langle\Gamma_{2}^{\prime} \vdash V\right\rangle$ and $\Gamma^{\prime}=\Gamma_{1}^{\prime} \sqcap \Gamma_{2}^{\prime}$. Then by lemma 12.6, $\Gamma=\Gamma_{1} \sqcap \Gamma_{2}$ and $\Gamma_{1} \sqsubseteq \Gamma_{1}^{\prime}$ and $\Gamma_{2} \sqsubseteq \Gamma_{2}^{\prime}$. So by $\sqsubseteq, M:\left\langle\Gamma_{1}, x^{L}: V \vdash U\right\rangle$ and $N:\left\langle\Gamma_{2} \vdash V\right\rangle$.

The next lemma is basic for the proof of subject expansion for β.
Lemma 57. If $M\left[x^{L}:=N\right]:\langle\Gamma \vdash U\rangle, d(N)=L, d(U)=K, x^{L} \notin \mathrm{fv}(N)$ and $\mathcal{U}=\operatorname{fv}\left(\left(\lambda x^{L} \cdot M\right) N\right)$, then $\left(\lambda x^{L} \cdot M\right) N:\langle\Gamma \uparrow \mathcal{U} \vdash U\rangle$.
Proof By lemma 45 and theorem 15.1, $K=\mathrm{d}\left(M\left[x^{L}:=N\right]\right)=\mathrm{d}(M)=$ $\mathrm{d}\left(\left(\lambda x^{L} \cdot M\right) N\right)$. We have two cases:

- If $x^{L} \in \mathrm{fv}(M)$, then, by lemma $22, \exists V$ type and $\exists \Gamma_{1}, \Gamma_{2}$ type environments such that $M:\left\langle\Gamma_{1}, x^{L}: V \vdash U\right\rangle, N:\left\langle\Gamma_{2} \vdash V\right\rangle$ and $\Gamma=\Gamma_{1} \sqcap \Gamma_{2}$. By lemma 45, $L \succeq K$, so $L=K:: K^{\prime}$. By lemma 12, we have two cases :
- If $U=\omega^{K}$, then by lemma 14.1, $\left(\lambda x^{L} . M\right) N:\left\langle\Gamma \uparrow^{U} \vdash U\right\rangle$.
- If $U=e_{K} \sqcap_{i=1}^{p} T_{i}$ where $p \geq 1$ and $\forall 1 \leq i \leq p, T_{i} \in \mathbb{T}$, then by theorem 15.2, $M^{-K}:\left\langle\Gamma_{1}^{-K}, x^{K^{\prime}}: V^{-K} \vdash \Pi_{i=1}^{p} T_{i}\right\rangle$. By $\sqsubseteq, ~ \forall 1 \leq i \leq p, M^{-K}:$ $\left\langle\Gamma_{1}^{-K}, x^{K^{\prime}}: V^{-K} \vdash T_{i}\right\rangle$, so by $\rightarrow{ }_{I}, \lambda x^{K^{\prime}} . M^{-K}:\left\langle\Gamma_{1}^{-K} \vdash V^{-K} \rightarrow T_{i}\right\rangle$. Again by theorem 15.2, $N^{-K}:\left\langle\Gamma_{2}^{-K} \vdash V^{-K}\right\rangle$ and since $\Gamma_{1} \diamond \Gamma_{2}, \Gamma_{1}^{-K} \diamond \Gamma_{2}^{-K}$, so by $\rightarrow_{E}, \forall 1 \leq i \leq p,\left(\lambda x^{K^{\prime}} . M^{-K}\right) N^{-K}:\left\langle\Gamma_{1}^{-K} \sqcap \Gamma_{2}^{-K} \vdash T_{i}\right\rangle$. Finally by \sqcap_{I} and $e,\left(\lambda x^{L} . M\right) N:\left\langle\Gamma_{1} \sqcap \Gamma_{2} \vdash U\right\rangle$, so $\left(\lambda x^{L} . M\right) N:\left\langle\Gamma \uparrow^{\mathcal{U}} \vdash U\right\rangle$.
- If $x^{L} \notin \operatorname{fv}(M)$, then $M:\langle\Gamma \vdash U\rangle$ and, by rule $\rightarrow_{I}^{\prime}, \lambda x^{L} . M:\left\langle\Gamma \vdash \omega^{L} \rightarrow U\right\rangle$. By rule $\omega, N:\left\langle e n v_{N}^{\omega} \vdash \omega^{L}\right\rangle$, then, since $M \diamond N$, by rule $\rightarrow_{E},\left(\lambda x^{L} . M\right) N$: $\left\langle\Gamma \sqcap e n v_{N}^{\omega} \vdash U\right\rangle$. Since $\operatorname{fv}\left(\left(\lambda x^{L} . M\right) N\right)=\operatorname{fv}\left(M\left[x^{L}:=N\right]\right) \cup \mathrm{fv}(N)$, then $\Gamma \uparrow^{\mathcal{U}}=$ $\Gamma \sqcap e n v_{N}^{\omega}$.

Next, we give the main block for the proof of subject expansion for β.
Theorem 58. If $N:\langle\Gamma \vdash U\rangle$ and $M \triangleright_{\beta} N$, then $M:\left\langle\Gamma \uparrow^{M} \vdash U\right\rangle$.
Proof By induction on the derivation $N:\langle\Gamma \vdash U\rangle$.

- If $\overline{x^{\varnothing}:\left\langle\left(x^{\varnothing}: T\right) \vdash T\right\rangle}$ and $M \triangleright_{\beta} x^{\varnothing}$, then $M=\left(\lambda y^{K} \cdot M_{1}\right) M_{2}$ where $y^{K} \notin$ $\mathrm{fv}\left(M_{2}\right)$ and $x^{\varnothing}=M_{1}\left[y^{K}:=M_{2}\right]$. By lemma $57, M:\left\langle\left(x^{\varnothing}: T\right) \uparrow^{M} \vdash T\right\rangle$.
- If $\frac{N:\left\langle e n v_{N}^{\omega} \vdash \omega^{\mathrm{d}(N)\rangle}\right.}{}$ and $M \triangleright_{\beta} N$, then since by theorem $4.2, \mathrm{fv}(N) \subseteq \mathrm{fv}(M)$ and $\mathrm{d}(M)=\mathrm{d}(N),\left(e n v_{N}^{\omega}\right) \uparrow^{M}=e n v_{M}^{\omega}$. By $\omega, M:\left\langle e n v_{M}^{\omega} \vdash \omega^{\mathrm{d}(M)}\right\rangle$. Hence, $M:\left\langle\left(e n v_{\omega}^{N}\right) \uparrow^{M} \vdash \omega^{\mathrm{d}(N)}\right\rangle$.
- If $\frac{N:\left\langle\Gamma, x^{L}: U \vdash T\right\rangle}{\lambda x^{L} \cdot N:\langle\Gamma \vdash U \rightarrow T\rangle}$ and $M \triangleright_{\beta} \lambda x^{L} . N$, then we have two cases:
- If $M=\lambda x . M^{\prime}$ where $M^{\prime} \triangleright_{\beta} N$, then by IH, $M^{\prime}:\left\langle\left(\Gamma,\left(x^{L}: U\right)\right) \uparrow^{M^{\prime}} \vdash T\right\rangle$. Since by theorem 4.2 and lemma $14.2, x^{L} \in \mathrm{fv}(N) \subseteq \mathrm{fv}\left(M^{\prime}\right)$, then we have $\left(\Gamma,\left(x^{L}: U\right)\right) \uparrow^{\mathrm{fv}\left(M^{\prime}\right)}=\Gamma \uparrow^{\mathrm{fv}\left(M^{\prime}\right) \backslash\left\{x^{L}\right\}},\left(x^{L}: U\right)$ and $\Gamma \uparrow \mathrm{fv}\left(M^{\prime}\right) \backslash\left\{x^{L}\right\}=$ $\Gamma \uparrow \lambda x^{L} \cdot M^{\prime}$. Hence, $M^{\prime}:\left\langle\Gamma \uparrow \lambda x^{L} \cdot M^{\prime},\left(x^{L}: U\right) \vdash T\right\rangle$ and finally, by \rightarrow_{I}, $\lambda x^{L} \cdot M^{\prime}:\left\langle\Gamma \uparrow \lambda^{L} \cdot M^{\prime} \vdash U \rightarrow T\right\rangle$.
- If $M=\left(\lambda y^{K} . M_{1}\right) M_{2}$ where $y^{K} \notin \mathrm{fv}\left(M_{2}\right)$ and $\lambda x^{L} \cdot N=M_{1}\left[y^{K}:=M_{2}\right]$, then, by lemma 57 , since $y^{K} \notin \mathrm{fv}\left(M_{2}\right)$ and $M_{1}\left[y^{K}:=M_{2}\right]:\langle\Gamma \vdash U \rightarrow T\rangle$, we have $\left(\lambda y^{K} . M_{1}\right) M_{2}:\left\langle\Gamma \uparrow\left(\lambda y^{K} \cdot M_{1}\right) M_{2} \vdash U \rightarrow T\right\rangle$.
- If $\frac{N:\langle\Gamma \vdash T\rangle x^{L} \notin \operatorname{dom}(\Gamma)}{\lambda x^{L} . N:\left\langle\Gamma \vdash \omega^{L} \rightarrow T\right\rangle}$ and $M \triangleright_{\beta} N$ then similar to the above case.
- If $\frac{N_{1}:\left\langle\Gamma_{1} \vdash U \rightarrow T\right\rangle \quad N_{2}:\left\langle\Gamma_{2} \vdash U\right\rangle \quad \Gamma_{1} \diamond \Gamma_{2}}{N_{1} N_{2}:\left\langle\Gamma_{1} \sqcap \Gamma_{2} \vdash T\right\rangle}$ and $M \triangleright_{\beta} N_{1} N_{2}$, we have three cases:
- $M=M_{1} N_{2}$ where $M_{1} \triangleright_{\beta} N_{1}$ and $M_{1} \diamond N_{2}$. By IH, $M_{1}:\left\langle\Gamma_{1} \uparrow^{M_{1}} \vdash U \rightarrow T\right\rangle$. It is easy to show that $\left(\Gamma_{1} \sqcap \Gamma_{2}\right) \uparrow^{M_{1} N_{2}}=\Gamma_{1} \uparrow^{M_{1}} \sqcap \Gamma_{2}$. Since $M_{1} \diamond N_{2}, \Gamma_{1} \uparrow^{M_{1}} \diamond \Gamma_{2}$, hence use \rightarrow_{E}.
- $M=N_{1} M_{2}$ where $M_{2} \triangleright_{\beta} N_{2}$. Similar to the above case.
- $M=\left(\lambda x^{L} . M_{1}\right) M_{2}$ where $x^{L} \notin \mathrm{fv}\left(M_{2}\right)$ and $N_{1} N_{2}=M_{1}\left[x^{L}:=M_{2}\right]$. By lemma 57, $\left(\lambda x^{L} . M_{1}\right) M_{2}:\left\langle\left(\Gamma_{1} \sqcap \Gamma_{2}\right) \uparrow\left(\lambda x^{L} . M_{1}\right) M_{2} \vdash T\right\rangle$.
- If $\frac{N:\left\langle\Gamma \vdash U_{1}\right\rangle \quad N:\left\langle\Gamma \vdash U_{2}\right\rangle}{N:\left\langle\Gamma \vdash U_{1} \sqcap U_{2}\right\rangle}$ and $M \triangleright_{\beta} N$ then use IH.
- If $\frac{N:\langle\Gamma \vdash U\rangle}{N^{+j}:\left\langle e_{j} \Gamma \vdash e_{j} U\right\rangle}$ then by lemma 46.8 then there is $P \in \mathcal{M}$ such that $M=P^{+j}$ and $P \triangleright_{\beta} N$. By IH, $P:\langle\Gamma \uparrow P \vdash U\rangle$ and by $e, M:\left\langle\left(e_{j} \Gamma\right) \uparrow^{M} \vdash e_{j} U\right\rangle$.
- If $\frac{N:\langle\Gamma \vdash U\rangle \quad\langle\Gamma \vdash U\rangle \sqsubseteq\left\langle\Gamma^{\prime} \vdash U^{\prime}\right\rangle}{N:\left\langle\Gamma^{\prime} \vdash U^{\prime}\right\rangle}$ and $M \triangleright_{\beta} N$. By lemma $13.3, \Gamma^{\prime} \sqsubseteq \Gamma$ and $U \sqsubseteq U^{\prime}$. It is easy to show that $\Gamma^{\prime} \uparrow^{M} \sqsubseteq \Gamma \uparrow^{M}$ and hence by lemma 13.3, $\left\langle\Gamma \uparrow^{M} \vdash U\right\rangle \sqsubseteq\left\langle\Gamma^{\prime} \uparrow^{M} \vdash U^{\prime}\right\rangle$. By IH, $M \uparrow^{M}:\langle\Gamma \vdash U\rangle$. Hence, by $\sqsubseteq_{\langle \rangle}$, we have $M:\left\langle\Gamma^{\prime} \uparrow^{M} \vdash U^{\prime}\right\rangle$.

Proof [Of theorem 24] By induction on the length of the derivation $M \triangleright_{\beta}^{*} N$ using theorem 58 and the fact that if $\mathrm{fv}(P) \subseteq \mathrm{fv}(Q)$, then $\left(\Gamma \uparrow^{P}\right) \uparrow^{Q}=\Gamma \uparrow^{Q}$.

E Proofs of section 6

Proof [Of lemma 28] 1. and 2. are easy. 3. If $M \triangleright_{r}^{*} N^{+i}$ where $N \in \mathcal{X}$, then, by lemma 46.8, $M=P^{+i}$ and $P \triangleright_{r} N$. As \mathcal{X} is r-saturated, $P \in \mathcal{X}$ and so $P^{+i}=M \in$ \mathcal{X}^{+i}.
4. Let $M \in \mathcal{X} \rightsquigarrow \mathcal{Y}$ and $N \triangleright_{r}^{*} M$. If $P \in \mathcal{X}$ such that $P \diamond N$, then $P \diamond M$ and $N P \triangleright_{r}^{*} M P$. Since $M P \in \mathcal{Y}$ and \mathcal{Y} is r-saturated, $N P \in \mathcal{Y}$. Hence, $N \in \mathcal{X} \rightsquigarrow \mathcal{Y}$. 5. Let $M \in(\mathcal{X} \rightsquigarrow \mathcal{Y})^{+i}$, then $M=N^{+i}$ and $N \in \mathcal{X} \rightsquigarrow \mathcal{Y}$. If $P \in \mathcal{X}^{+i}$ such that $M \diamond$, then $P=Q^{+i}, Q \in \mathcal{X}, M P=N^{+i} Q^{+i}=(N Q)^{+i}$ and $N \diamond Q$. Hence $N Q \in \mathcal{Y}$ and $M P \in \mathcal{Y}^{+i}$. Thus $M \in \mathcal{X}^{+i} \rightsquigarrow \mathcal{Y}^{+i}$.
6. Let $M \in \mathcal{X}^{+i} \rightsquigarrow \mathcal{Y}^{+i}$ such that $\mathcal{X}^{+} \imath \mathcal{Y}^{+}$. If $P \in \mathcal{X}^{+i}$ such that $M \diamond P$, then $M P \in \mathcal{Y}^{+i}$ hence $M P=Q^{+i}$ such that $Q \in \mathcal{Y}$. Hence, $M=M_{1}^{+}$. Let $N_{1} \in \mathcal{X}$ such that $M_{1} \diamond N_{1}$. By lemma $46, M \diamond N_{1}^{+}$and we have $\left(M_{1} N_{1}\right)^{+}=M_{1}^{+} N_{1}^{+} \in \mathcal{Y}^{+}$. Hence $M_{1} N_{1} \in \mathcal{Y}$. Thus $M_{1} \in \mathcal{X} \rightsquigarrow \mathcal{Y}$ and $M=M_{1}^{+} \in(\mathcal{X} \rightsquigarrow \mathcal{Y})^{+}$.

Proof [Of lemma 30] 1.1a. By induction on T using lemma 28.
1.1b. We prove $\forall x \in \mathcal{V}_{1}, \mathcal{N}_{x}^{L} \subseteq \mathcal{I}(U) \subseteq \mathcal{M}^{L}$ by induction on U. Case $U=a$: by definition. Case $U=\omega^{L}$: We have $\forall x \in \mathcal{V}_{1}, \mathcal{N}_{x}^{L} \subseteq \mathcal{M}^{L} \subseteq \mathcal{M}^{L}$. Case $U=$ $U_{1} \sqcap U_{2}$ (resp. $\left.U=e_{i} V\right):$ use IH since $\mathrm{d}\left(U_{1}\right)=\mathrm{d}\left(U_{2}\right)($ resp. $\mathrm{d}(U)=i:: \mathrm{d}(V)$, $\forall x \in \mathcal{V}_{1},\left(\mathcal{N}_{x}^{K}\right)^{+i}=\mathcal{N}_{x}^{i:: K}$ and $\left.\left(\mathcal{M}^{K}\right)^{+i}=\mathcal{M}^{i:: K}\right)$. Case $U=V \rightarrow T:$ by definition, $K=\mathrm{d}(V) \succeq \mathrm{d}(T)=\varnothing$.

- Let $x \in \mathcal{V}_{1}, N_{1}, \ldots, N_{k}$ such that $\forall 1 \leq i \leq k, \mathrm{~d}\left(N_{i}\right) \succeq \oslash$ and let $N \in \mathcal{I}(V)$ such that $\left(x^{\oslash} N_{1} \ldots N_{k}\right) \diamond N$. By IH, $\mathrm{d}(N)=K \succeq \oslash$. Again, by IH, $x^{\oslash} N_{1} \ldots N_{k} N \in$ $\mathcal{I}(T)$. Thus $x^{\oslash} N_{1} \ldots N_{k} \in \mathcal{I}(V \rightarrow T)$.
- Let $M \in \mathcal{I}(V \rightarrow T)$. Let $x \in \mathcal{V}_{1}$ such that $\forall L, x^{L} \notin \mathrm{fv}(M)$. By IH, $x^{K} \in \mathcal{I}(V)$, then $M x^{K} \in \mathcal{I}(T)$ and, by IH, $\mathrm{d}\left(M x^{K}\right)=\oslash$. Thus $\mathrm{d}(M)=\oslash$.

2. By induction of the derivation $U \sqsubseteq V$.

Proof [Of lemma 31] By induction on the derivation $M:\left\langle\left(x_{j}^{L_{j}}: U_{j}\right)_{n} \vdash U\right\rangle$.

- If $\overline{x^{\varnothing}:\left\langle\left(x^{\varnothing}: T\right) \vdash T\right\rangle}$ and $N \in \mathcal{I}(T)$, then $x^{\varnothing}\left[x^{\varnothing}:=N\right]=N \in \mathcal{I}(T)$.
- If $\frac{M:\left\langle e n v_{M}^{\omega} \vdash \omega^{\mathrm{d}(M)\rangle}\right.}{M}$. Let $e n v_{M}^{\omega}=\left(x_{j}^{L_{j}}: U_{j}\right)_{n}$ so $\operatorname{fv}(M)=\left\{x_{1}^{L_{1}}, \ldots, x_{n}^{L_{n}}\right\}$. Since $\forall 1 \leq j \leq n, \mathrm{~d}\left(U_{j}\right)=L_{j}$ by lemma $30.1, \mathcal{I}\left(U_{j}\right) \subseteq \mathcal{M}^{L_{j}}$, hence, $\mathrm{d}\left(N_{j}\right)=L_{j}$. Then, by lemma $45, \mathrm{~d}\left(M\left[\left(x_{j}^{L_{j}}:=N_{j}\right)_{n}\right]\right)=\mathrm{d}(M)$ and $M\left[\left(x_{j}^{L_{j}}:=N_{j}\right)_{n}\right] \in$ $\mathcal{M}^{\mathrm{d}(M)}=\mathcal{I}\left(\omega^{\mathrm{d}(M)}\right)$.
- If $\frac{M:\left\langle\left(x_{j}^{L_{j}}: U_{j}\right)_{n},\left(x^{K}: V\right) \vdash T\right\rangle}{\lambda x^{K} \cdot M:\left\langle\left(x_{j}^{L_{j}}: U_{j}\right)_{n} \vdash V \rightarrow T\right\rangle}, \forall 1 \leq j \leq n, N_{j} \in \mathcal{I}\left(U_{j}\right)$ and $N \in \mathcal{I}(V)$ such that $\left(\lambda x^{K} . M\right) \diamond N$.
$\left(\lambda x^{K} . M\right)\left[\left(x_{j}^{L_{j}}:=N_{j}\right)_{n}\right]=\lambda x^{K} . M\left[\left(x_{j}^{L_{j}}:=N_{j}\right)_{n}\right]$, where $\forall 1 \leq j \leq n, y^{K} \notin$ $\operatorname{fv}\left(N_{j}\right)$. Since $N \in \mathcal{I}(V)$ and by lemma 30.1, $\mathcal{I}(V) \subseteq \mathcal{M}^{K}, \mathrm{~d}(N)=K$. Hence, $\left(\lambda x^{K} \cdot M\left[\left(x_{j}^{L_{j}}:=N_{j}\right)_{n}\right]\right) N \triangleright_{r} M\left[\left(x_{j}^{L_{j}}:=N_{j}\right)_{n},\left(x^{K}:=N\right)\right]$. By IH, $M\left[\left(x_{j}^{L_{j}}:=\right.\right.$ $\left.\left.N_{j}\right)_{n},\left(x^{K}:=N\right)\right] \in \mathcal{I}(T)$. Since, by lemma $30.1 \mathcal{I}(T)$ is r-saturated, then $\left(\lambda x^{K} \cdot M\left[\left(x_{j}^{L_{j}}:=N_{j}\right)_{n}\right]\right) N \in \mathcal{I}(T)$ and so $\lambda x^{K} \cdot M\left[\left(x_{j}^{L_{j}}:=N_{j}\right)_{n}\right] \in \mathcal{I}(V) \rightsquigarrow$ $\mathcal{I}(T)=\mathcal{I}(V \rightarrow T)$.
- If $\frac{M:\left\langle\left(x_{j}^{L_{j}}: U_{j}\right)_{n} \vdash T\right\rangle x^{K} \notin \operatorname{dom}\left(\left(x_{j}^{L_{j}}: U_{j}\right)_{n}\right)}{\lambda x^{K} . M:\left\langle\left(x_{j}^{L_{j}}: U_{j}\right)_{n} \vdash \omega^{K} \rightarrow T\right\rangle}, \forall 1 \leq j \leq n, x^{K} \neq x_{i}^{L_{j}}, N_{j} \in$ $\mathcal{I}\left(U_{j}\right)$ and $N \in \mathcal{I}\left(\omega^{K}\right)$ such that $\left(\lambda x^{K} . M\right) \diamond N$.
$\left(\lambda x^{K} \cdot M\right)\left[\left(x_{j}^{L_{j}}:=N_{j}\right)_{n}\right]=\lambda x^{K} \cdot M\left[\left(x_{j}^{L_{j}}:=N_{j}\right)_{n}\right]$, where $\forall 1 \leq j \leq n, y^{K} \notin$ $\operatorname{fv}\left(N_{j}\right)$. Since $N \in \mathcal{I}\left(\omega^{K}\right)$ and by lemma 30.1, $\mathcal{I}\left(\omega^{K}\right)=\mathcal{M}^{K}$, then $\mathrm{d}(N)=$ K. Hence, $\left(\lambda x^{K} . M\left[\left(x_{j}^{L_{j}}:=N_{j}\right)_{n}\right]\right) N \triangleright_{r} M\left[\left(x_{j}^{L_{j}}:=N_{j}\right)_{n}\right]$. By IH, $M\left[\left(x_{j}^{L_{j}}:=\right.\right.$ $\left.\left.N_{j}\right)_{n}\right] \in \mathcal{I}(T)$. Since, by lemma $30.1 \mathcal{I}(T)$ is r-saturated, then $\left(\lambda x^{K} . M\left[\left(x_{j}^{L_{j}}:=\right.\right.\right.$ $\left.\left.\left.N_{j}\right)_{n}\right]\right) N \in \mathcal{I}(T)$ and so $\lambda x^{K} . M\left[\left(x_{j}^{L_{j}}:=N_{j}\right)_{n}\right] \in \mathcal{I}\left(\omega^{K}\right) \rightsquigarrow \mathcal{I}(T)=\mathcal{I}\left(\omega^{K} \rightarrow T\right)$.
- Let $\frac{M_{1}:\left\langle\Gamma_{1} \vdash V \rightarrow T\right\rangle \quad M_{2}:\left\langle\Gamma_{2} \vdash V\right\rangle \quad \Gamma_{1} \diamond \Gamma_{2}}{M_{1} M_{2}:\left\langle\Gamma_{1} \sqcap \Gamma_{2} \vdash T\right\rangle}$ where $\Gamma_{1}=\left(x_{j}^{L_{j}}: U_{j}\right)_{n},\left(y_{j}^{K_{j}}:\right.$ $\left.V_{j}\right)_{m}, \Gamma_{2}=\left(x_{j}^{L_{j}}: U_{j}^{\prime}\right)_{n},\left(z_{j}^{S_{j}}: W_{j}\right)_{p}$ and $\Gamma_{1} \sqcap \Gamma_{2}=\left(x_{j}^{L_{j}}: U_{j} \sqcap U_{j}^{\prime}\right)_{n},\left(y_{j}^{K_{j}}:\right.$ $\left.V_{j}\right)_{m},\left(z_{j}^{S_{j}}: W_{j}\right)_{p}$.
Let $\forall 1 \leq j \leq n, P_{j} \in \mathcal{I}\left(U_{j} \sqcap U_{j}^{\prime}\right), \forall 1 \leq j \leq m, Q_{j} \in \mathcal{I}\left(V_{j}\right)$ and $\forall 1 \leq j \leq$ $p, R_{j} \in \mathcal{I}\left(W_{j}\right)$. Let $A=M_{1}\left[\left(x_{j}^{L_{j}}:=P_{j}\right)_{n},\left(y_{j}^{K_{j}}:=Q_{j}\right)_{m}\right]$ and $B=M_{2}\left[\left(x_{j}^{L_{j}}:=\right.\right.$ $\left.\left.P_{j}\right)_{n},\left(z_{j}^{S_{j}}:=R_{j}\right)_{p}\right]$.
By lemma 14, $\operatorname{fv}\left(M_{1}\right)=\operatorname{dom}\left(\Gamma_{1}\right)$ and $\operatorname{fv}\left(M_{2}\right)=\operatorname{dom}\left(\Gamma_{2}\right)$. Hence,
$\left(M_{1} M_{2}\right)\left[\left(x_{j}^{L_{j}}:=P_{j}\right)_{n},\left(y_{j}^{K_{j}}:=Q_{j}\right)_{m},\left(z_{j}^{S_{j}}:=R_{j}\right)_{p}\right]=A B$.
By IH, $A \in \mathcal{I}(V) \rightsquigarrow \mathcal{I}(T)$ and $B \in \mathcal{I}(V)$. Hence, $A B=$
$\left(M_{1} M_{2}\right)\left[\left(x_{j}^{L_{j}}:=P_{j}\right)_{n},\left(y_{j}^{K_{j}}:=Q_{j}\right)_{m},\left(z_{j}^{S_{j}}:=R_{j}\right)_{p}\right] \in \mathcal{I}(T)$.
- Let $\frac{M:\left\langle\left(x_{j}^{L_{j}}: U_{j}\right)_{n} \vdash V_{1}\right\rangle M:\left\langle\left(x_{j}^{L_{j}}: U_{j}\right)_{n} \vdash V_{2}\right\rangle}{M:\left\langle\left(x_{j}^{L_{j}}: U_{j}\right)_{n} \vdash V_{1} \sqcap V_{2}\right\rangle}$. By IH, $M\left[\left(x_{j}^{L_{j}}:=N_{j}\right)_{n}\right] \in$ $\mathcal{I}\left(V_{1}\right)$ and $M\left[\left(x_{j}^{L_{j}}:=N_{j}\right)_{n}\right] \in \mathcal{I}\left(V_{2}\right)$. Hence, $M\left[\left(x_{j}^{L_{j}}:=N_{j}\right)_{n}\right] \in \mathcal{I}\left(V_{1} \sqcap V_{2}\right)$.
- Let $\frac{M:\left\langle\left(x_{k}^{L_{k}}: U_{k}\right)_{n} \vdash U\right\rangle}{M^{+j}:\left\langle\left(x_{k}^{j:: L_{k}}: e_{j} U_{k}\right)_{n} \vdash e_{j} U\right\rangle}$ and $\forall 1 \leq k \leq n, N_{k} \in \mathcal{I}\left(e_{j} T_{k}\right)=\mathcal{I}\left(T_{k}\right)^{+j}$. Then $\forall 1 \leq k \leq n, N_{k}=P_{k}^{+j}$ where $P_{k} \in \mathcal{I}\left(U_{k}\right)$. By IH, $M\left[\left(x_{k}^{L_{k}}:=P_{k}\right)_{n}\right] \in$ $\mathcal{I}(T)$. Hence, by lemma 46, $M^{+j}\left[\left(x_{k}^{j: L_{k}}:=N_{k}\right)_{n}\right]=\left(M\left[\left(x_{k}^{L_{k}}:=P_{k}\right)_{n}\right]\right)^{+j} \in$ $\mathcal{I}(U)^{+j}=\mathcal{I}\left(e_{j} U\right)$.
- Let $\frac{M: \Phi \Phi \sqsubseteq \Phi^{\prime}}{M: \Phi^{\prime}}$ where $\Phi^{\prime}=\left\langle\left(x_{j}^{L_{j}}: U_{j}\right)_{n} \vdash U\right\rangle$. By lemma 13, we have $\Phi=\left\langle\left(x_{j}^{L_{j}}: U_{j}^{\prime}\right)_{n} \vdash U^{\prime}\right\rangle$, where for every $1 \leq j \leq n, U_{j} \sqsubseteq U_{j}^{\prime}$ and $U^{\prime} \sqsubseteq U$. By lemma $30.2, N_{j} \in \mathcal{I}\left(U_{j}^{\prime}\right)$, then, by $\mathrm{IH}, M\left[\left(x_{j}^{L_{j}}:=N_{j}\right)_{n}\right] \in \mathcal{I}\left(U^{\prime}\right)$ and, by lemma $30.2, M\left[\left(x_{j}^{L_{j}}:=N_{j}\right)_{n}\right] \in \mathcal{I}(U)$.

Proof [Of lemma 35]

1. Let $y \in \mathcal{V}_{2}$ and $\mathcal{X}=\left\{M \in \mathbb{M}^{\ominus} / M \triangleright_{\beta}^{*} x^{\oslash} N_{1} \ldots N_{k}\right.$ where $k \geq 0$ and $x \in \mathcal{V}_{1}$ or $\left.M \triangleright_{\beta}^{*} y^{\varnothing}\right\}$. \mathcal{X} is β-saturated and $\forall x \in \mathcal{V}_{1}, \mathcal{N}_{x}^{\ominus} \subseteq \mathcal{X} \subseteq \mathcal{M}^{\ominus}$. Take an β interpretation \mathcal{I} such that $\mathcal{I}(a)=\mathcal{X}$. If $M \in\left[I d_{0}\right]_{\beta}$, then M is closed and $M \in \mathcal{X} \rightsquigarrow \mathcal{X}$. Since $y^{\varnothing} \in \mathcal{X}$ and $m \diamond Y^{\varnothing}$ then $M y^{\varnothing} \in \mathcal{X}$ and $M y^{\varnothing} \triangleright^{*} x^{\varnothing} N_{1} \ldots N_{k}$ where $k \geq 0$ and $x \in \mathcal{V}_{1}$ or $M y^{\varnothing} \triangleright_{\beta}^{*} y^{\varnothing}$. Since M is closed and $x^{\varnothing} \neq y^{\varnothing}$, by lemma 4.2, $M y^{\varnothing} \triangleright_{\beta}^{*} y^{\varnothing}$. Hence, by lemma $47.4, M \triangleright_{\beta}^{*} \lambda y^{\varnothing} . y^{\varnothing}$ and, by lemma 4 , $M \in \mathcal{M}^{\ominus}$.
Conversely, let $M \in \mathcal{M}^{\varnothing}$ such that $M \triangleright_{\beta}^{*} \lambda y^{\varnothing} . y^{\varnothing}$. Let \mathcal{I} be an β-interpretation and $N \in \mathcal{I}(a)$. Since $\mathcal{I}(a)$ is β-saturated and $M N \triangleright_{\beta}^{*} N, M N \in \mathcal{I}(a)$ and hence $M \in \mathcal{I}(a) \rightsquigarrow \mathcal{I}(a)$. Hence, $M \in\left[I d_{0}\right]_{\beta}$.
2. By lemma 33, $\left[I d_{1}^{\prime}\right]_{\beta}=\left[e_{1} a \rightarrow e_{1} a\right]_{\beta}=\left[e_{1}(a \rightarrow a)\right]_{\beta}=\left[I d_{1}\right]=[a \rightarrow a]_{\beta}^{+1}=$ $\left[I d_{0}\right]_{\beta}^{+1}$. By 1., $\left[I d_{0}\right]_{\beta}^{+1}=\left\{M \in \mathcal{M}^{(1)} / M \triangleright_{\beta}^{*} \lambda y^{(1)} . y^{(1)}\right\}$.
3. Let $y \in \mathcal{V}_{2}, \mathcal{X}=\left\{M \in \mathcal{M}^{\varnothing} / M \triangleright_{\beta}^{*} y^{\varnothing}\right.$ or $M \triangleright_{\beta}^{*} x^{\oslash} N_{1} \ldots N_{k}$ where $k \geq 0$ and $\left.x \in \mathcal{V}_{1}\right\}$ and $\mathcal{Y}=\left\{M \in \mathcal{M}^{\varnothing} / M \triangleright_{\beta}^{*} y^{\ominus} y^{\varnothing}\right.$ or $M \triangleright_{\beta}^{*} x^{\varnothing} N_{1} \ldots N_{k}$ or $M \triangleright_{\beta}^{*} y^{\oslash}\left(x^{\oslash} N_{1} \ldots N_{k}\right)$ where $k \geq 0$ and $\left.x \in \mathcal{V}_{1}\right\} . \mathcal{X}, \mathcal{Y}$ are β-saturated and $\forall x \in \mathcal{V}_{1}, \mathcal{N}_{x}^{\ominus} \subseteq \mathcal{X}, \mathcal{Y} \subseteq \mathcal{M}^{\ominus}$. Let \mathcal{I} be an β-interpretation such that $\mathcal{I}(a)=\mathcal{X}$ and $\mathcal{I}(b)=\mathcal{Y}$. If $M \in[D]_{\beta}$, then M is closed (hence $M \diamond y^{\varnothing}$) and $M \in$ $(\mathcal{X} \cap(\mathcal{X} \rightsquigarrow \mathcal{Y})) \rightsquigarrow \mathcal{Y}$. Since $y^{\varnothing} \in \mathcal{X}$ and $y^{\varnothing} \in \mathcal{X} \rightsquigarrow \mathcal{Y}, y^{\varnothing} \in \mathcal{X} \cap(\mathcal{X} \rightsquigarrow \mathcal{Y})$ and $M y^{\varnothing} \in \mathcal{Y}$. Since $x^{\varnothing} \neq y^{\varnothing}$, by lemma $4.2, M y^{\varnothing} \triangleright_{\beta}^{*} y^{\varnothing} y^{\varnothing}$. Hence, by lemma 47.4, $M \triangleright_{\beta}^{*} \lambda y^{\varnothing} \cdot y^{\varnothing} y^{\varnothing}$ and, by lemma $4, \mathrm{~d}(M)=\oslash$ and $M \in \mathcal{M}^{\varnothing}$.
Conversely, let $M \in \mathcal{M}^{\varnothing}$ such that $M \triangleright_{\beta}^{*} \lambda y^{\ominus} . y^{\ominus} y^{\ominus}$. Let \mathcal{I} be an β-interpretation and $N \in \mathcal{I}(a \sqcap(a \rightarrow b))=\mathcal{I}(a) \cap(\mathcal{I}(a) \rightsquigarrow \mathcal{I}(b))$. Since $\mathcal{I}(b)$ is β-saturated,
$N N \in \mathcal{I}(b)$ and $M N \triangleright_{\beta}^{*} N N$, we have $M N \in \mathcal{I}(b)$ and hence $M \in \mathcal{I}(a \sqcap(a \rightarrow$ $b)) \rightsquigarrow \mathcal{I}(b)$. Therefore, $M \in[D]_{\beta}$.
4. Let $f, y \in \mathcal{V}_{2}$ and take $\mathcal{X}=\left\{M \in \mathcal{M}^{\ominus} / M \triangleright_{\beta}^{*}\left(f^{\oslash}\right)^{n}\left(x^{\oslash} N_{1} \ldots N_{k}\right)\right.$ or $M \triangleright_{\beta}^{*}$ $\left(f^{\varnothing}\right)^{n} y^{\varnothing}$ where $k, n \geq 0$ and $\left.x \in \mathcal{V}_{1}\right\} . \mathcal{X}$ is β-saturated and $\forall x \in \mathcal{V}_{1}, \mathcal{N}_{x}^{\varnothing} \subseteq \mathcal{X} \subseteq$ $\mathcal{M}^{\varnothing}$. Let \mathcal{I} be an β-interpretation such that $\mathcal{I}(a)=\mathcal{X}$. If $M \in\left[N a t_{0}\right]_{\beta}$, then M is closed and $M \in(\mathcal{X} \rightsquigarrow \mathcal{X}) \rightsquigarrow(\mathcal{X} \rightsquigarrow \mathcal{X})$. We have $f^{\varnothing} \in \mathcal{X} \rightsquigarrow \mathcal{X}, y^{\varnothing} \in \mathcal{X}$ and $\diamond\left\{M, f^{\varnothing}, y^{\varnothing}\right\}$ then $M f^{\varnothing} y^{\varnothing} \in \mathcal{X}$ and $M f^{\varnothing} y^{\varnothing} \triangleright_{\beta}^{*}\left(f^{\varnothing}\right)^{n}\left(x^{\varnothing} N_{1} \ldots N_{k}\right)$ or $M f^{\varnothing} y^{\varnothing} \triangleright_{\beta}^{*}\left(f^{\varnothing}\right)^{n} y^{\varnothing}$ where $n \geq 0$ and $x \in \mathcal{V}_{1}$. Since M is closed and $\left\{x^{\varnothing}\right\} \cap$ $\left\{y^{\varnothing}, f^{\varnothing}\right\}=\emptyset$, by lemma 4.2, $M f^{\varnothing} y^{\varnothing} \triangleright_{\beta}^{*}\left(f^{\varnothing}\right)^{n} y^{\varnothing}$ where $n \geq 1$. Hence, by lemma 47.4, $M \triangleright_{\beta}^{*} \lambda f^{\varnothing} . f^{\varnothing}$ or $M \triangleright_{\beta}^{*} \lambda f^{\varnothing} \cdot \lambda y^{\varnothing} \cdot\left(f^{\varnothing}\right)^{n} y^{\varnothing}$ where $n \geq 1$. Moreover, by lemma $4, \mathrm{~d}(M)=\varnothing$ and $M \in \mathcal{M}^{\ominus}$.
Conversely, let $M \in \mathcal{M}^{\varnothing}$ such that $M \triangleright_{\beta}^{*} \lambda f^{\varnothing} \cdot f^{\varnothing}$ or $M \triangleright_{\beta}^{*} \lambda f^{\varnothing} \cdot \lambda y^{\varnothing} \cdot\left(f^{\varnothing}\right)^{n} y^{\varnothing}$ where $n \geq 1$. Let \mathcal{I} be an β-interpretation, $N \in \mathcal{I}(a \rightarrow a)=\mathcal{I}(a) \rightsquigarrow \mathcal{I}(a)$ and $N^{\prime} \in \mathcal{I}(a)$. We show, by induction on $m \geq 0$, that $(N)^{m} N^{\prime} \in \mathcal{I}(a)$. Since $M N N^{\prime} \triangleright_{\beta}^{*}(N)^{m} N^{\prime}$ where $m \geq 0$ and $(N)^{m} N^{\prime} \in \mathcal{I}(a)$ which is β-saturated, then $M N N^{\prime} \in \mathcal{I}(a)$. Hence, $M \in(\mathcal{I}(a) \rightsquigarrow \mathcal{I}(a)) \rightarrow(\mathcal{I}(a) \rightsquigarrow \mathcal{I}(a))$ and $M \in\left[N a t_{0}\right]_{\beta}$.
5. By lemma 33, $\left[N a t_{1}\right]=\left[e N a t_{0}\right]=\left[N a t_{0}\right]^{+}$. Let \mathcal{I} be an β-interpretation. By lemma 33, $\mathcal{I}\left(e_{1}(a \rightarrow a) \rightarrow\left(e_{1} a \rightarrow e_{1} a\right)\right)=\mathcal{I}((a \rightarrow a) \rightarrow(a \rightarrow a))^{+1}$ and hence $\left[N a t_{1}^{\prime}\right]=\left[N a t_{0}\right]^{+1}$. By 4., $\left[N a t_{1}\right]=\left[N a t_{1}^{\prime}\right]=\left[N a t_{0}\right]^{+1}=\left\{M \in \mathcal{M}^{(1)} /\right.$ $M \triangleright_{\beta}^{*} \lambda f^{(1)} . f^{(1)}$ or $M \triangleright_{\beta}^{*} \lambda f^{(1)} \cdot \lambda y^{(1)} .\left(f^{(1)}\right)^{n} y^{(1)}$ where $\left.n \geq 1\right\}$.
6. Let $f, y \in \mathcal{V}_{2}$ and take $\mathcal{X}=\left\{M \in \mathcal{M}^{\oslash} / M \triangleright_{\beta}^{*} x^{\oslash} P_{1} \ldots P_{l}\right.$ or $M \triangleright{ }_{\beta}^{*} f^{\oslash}\left(x^{\oslash} Q_{1} \ldots Q_{n}\right)$ or $M \triangleright_{\beta}^{*} y^{\varnothing}$ or $M \triangleright_{\beta}^{*} f^{\varnothing} y^{(1)}$ where $l, n \geq 0$ and $\left.\mathrm{d}\left(Q_{i}\right) \succeq(1)\right\}$. \mathcal{X} is β-saturated and $\forall x \in \mathcal{V}_{1}, \mathcal{N}_{x}^{\ominus} \subseteq \mathcal{X} \subseteq \mathcal{M}^{\varnothing}$. Let \mathcal{I} be an β-interpretation such that $\mathcal{I}(a)=\mathcal{X}$. If $M \in\left[N a t_{0}^{\prime}\right]_{\beta}$, then M is closed and $M \in\left(\mathcal{X}^{+1} \rightsquigarrow \mathcal{X}\right) \rightsquigarrow\left(\mathcal{X}^{+1} \rightsquigarrow \mathcal{X}\right)$. Let $N \in \mathcal{X}^{+1}$ such that $N \diamond f^{\varnothing}$. We have $N \triangleright_{\beta}^{*} x^{(1)} P_{1}^{+1} \ldots P_{k}^{+1}$ or $N \triangleright_{\beta}^{*} y^{(1)}$, then $f^{\oslash} N \triangleright_{\beta}^{*} f^{\oslash}\left(\varkappa^{(1)} P_{1}^{+1} \ldots P_{k}^{+1}\right) \in \mathcal{X}$ or $N \triangleright_{\beta}^{*} f^{\oslash} y^{(1)} \in \mathcal{X}$, thus $f^{\oslash} \in \mathcal{X}^{+1} \rightsquigarrow \mathcal{X}$. We have $f^{\oslash} \in \mathcal{X}^{+1} \rightsquigarrow \mathcal{X}, y^{(1)} \in \mathcal{X}^{+1}$ and $\diamond\left\{M, f^{\varnothing}, y^{(1)}\right\}$, then $M f^{\varnothing} y^{(1)} \in \mathcal{X}$. Since M is closed and $\left\{x^{\oslash}, x^{(1)}\right\} \cap\left\{y^{(1)}, f^{\oslash}\right\}=\emptyset$, by lemma $4.2, M f^{\ominus} y^{(1)} \triangleright_{\beta}^{*} f^{\ominus} y^{(1)}$. Hence, by lemma $47.4, M \triangleright_{\beta}^{*} \lambda f^{\varnothing} . f^{\varnothing}$ or $M \triangleright_{\beta}^{*} \lambda f^{\varnothing} . \lambda y^{(1)} . f^{\ominus} y^{(1)}$. Moreover, by lemma $4, \mathrm{~d}(M)=\oslash$ and $M \in \mathcal{M}^{\varnothing}$.
Conversely, let $M \in \mathcal{M}^{\oslash}$ and $M \triangleright_{\beta}^{*} \lambda f^{\varnothing} . f \oslash$ or $M \triangleright_{\beta}^{*} \lambda f^{\varnothing} \cdot \lambda y^{(1)} . f^{\varnothing} y^{(1)}$. Let \mathcal{I} be an β-interpretation, $N \in \mathcal{I}\left(e_{1} a \rightarrow a\right)=\mathcal{I}(a)^{+1} \rightsquigarrow \mathcal{I}(a)$ and $N^{\prime} \in \mathcal{I}(a)^{+1}$ where $\diamond\left\{M, N, N^{\prime}\right\}$. Since $M N N^{\prime} \triangleright_{\beta}^{*} N N^{\prime}, N N^{\prime} \in \mathcal{I}(a)$ and $\mathcal{I}(a)$ is β-saturated, then $M N N^{\prime} \in \mathcal{I}(a)$. Hence, $M \in\left(\mathcal{I}(a)^{+1} \rightsquigarrow \mathcal{I}(a)\right) \rightarrow\left(\mathcal{I}(a)^{+1} \rightsquigarrow \mathcal{I}(a)\right)$ and $M \in\left[N a t_{0}^{\prime}\right]$.
