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Abstract

Reducibility has been used to prove a number of properties in the λ-
calculus and is well known to offer on one hand very general proofs which
can be applied to a number of instantiations, and on the other hand, to be
quite mysterious and inflexible. In this paper, we look at two related but
different results in the literature. We show that one such result (which aims
at giving reducibility proofs of Church-Rosser, standardization and weak nor-
malisation) faces serious problems which break the reducibility method and
then we provide a proposal to partially repair the method. Then, we consider
a second result whose purpose is to use reducibility to show Church-Rosser
of β-developments (without needing to use strong normalisation). We extend
the second result to encompass both βI- and βη-reduction rather than simply
β-reduction.

1 Introduction

Reducibility is a method based on realizability semantics [Kle45], developed by
Tait [Tai67] in order to prove normalization of some functional theories. The idea
is to interpret types by sets of λ-terms closed under some properties. Since, this
method has been improved and generalized. Krivine uses it in [Kri90] to prove the
strong normalization of system D [CDCV80]. Koletsos proves in [Kol85] that the
set of simply typed λ-terms holds the Church-Rosser property. Some aspects of his
method have been reused by Gallier in [Gal97, Gal03] to prove some results such
as the strong normalization of λ-terms that are typable in systems like D or DΩ.
In his work, Gallier states some conditions a property needs to satisfy in order to
be enjoyed by some typable terms under some restrictions. Similarly, Ghilezan and
Likavec [GL02] state some conditions a property on λ-terms has to satisfy to be held
by some λ-terms typable in a system close to system DΩ. In addition, the authors
state a condition that a property needs to satisfy in order to step from “a λ-term
typable, under some restrictions on types holds the property” to “a λ-term of the
untyped lambda-calculus holds the property”. If it works, [GL02] would provide an
attractive method to establishing properties like Church-Rosser for all the untyped
λ-terms, simply by showing easier conditions on typed terms. However, we will see
in this paper that both the method fails for the typed terms, and that the step of
passing from typed to untyped terms fails. We will provide a solution to repair the
first result, however, the second result seems unrepairable.

Step of establishing properties like Church-Rosser (or confluence) for typed λ-
terms and concluding the properties for all the untyped λ-terms have been success-
fully exploited in the literature. Koletsos and Stravinos [KS08] use a reducibility
method to state that λ-terms that are typable in system D hold the Church-Rosser
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property. Then, using this result together with a method based on β-developments
[Klo80, Kri90], they show that β-developments are Church-Rosser and this in turn
will imply the confluence of the untyped λ-calculus. Although Klop proves the
confluence of β-developments [BBKV76], his proof is based on strong normalisation
whereas [KS08] only uses an embedding of β-developments in the reduction of ty-
pable λ-terms. In this paper, we apply the method of [KS08] to βI-reduction and
then generalise the method to βη-reduction.

In section 2 we introduce the formal machinery and establish the basic needed
lemmas. In section 3 we present the reducibility method of [GL02] and show that
it fails at a number of important propositions which makes it inapplicable. In
particular, we give counterexamples which show that all the conditions stated in
[GL02] are satisfied, yet the the claimed property does not hold. In section 4 we
provide subsets of types which we use to partially salvage the reducibility method
of [GL02] and we show that this can now be correctly used to establish confluence,
standardization and weak head normal forms but only for restricted sets of lambda
terms and types. In section 5 we adapt the Church-Rosser proof of [KS08] to βI-
reduction. In section 6 we generalise the method of [KS08] to handle βη-reduction.
We conclude in section 7.

2 The Formal Machinery

In this section we provide some known formal machinery and introduce new defini-
tions and lemmas that are necessary for the paper. We take as convention that if
a metavariable v ranges over a set S then the metavariables vi such that i ≥ 0 and
the metavariables v′, v′′, etc. also range over S.

2.1 Familiar background on λ-calculus

This section consists of one long definition of some familiar (mostly standard) con-
cepts of the λ-calculus and one lemma which deals with the shape of reductions.

Definition 2.1.

1. The set of terms of the λ-calculus is defined as follows:

M ∈ Λ ::= x | (λx.M) | (M1M2)

We let x, y, z, etc. range over V, a denumerably infinite set of λ-term variables,
and M,N,P, Q, etc. range over Λ. We assume the usual definition of subterms:
we write N ⊂ M if N is a subterm of M . We also assume the usual convention
for parenthesis and omit these when no confusion arises. In particular, we
write M N1...Nn instead of (...(M N1) N2...Nn−1) Nn.

We take terms modulo α-conversion and use the Barendregt convention (BC)
where the names of bound variables differ from the free ones. When two terms
M and N are equal (modulo α), we write M = N . We write FV (M) for the
set of the free variables of term M .

2. Let n ≥ 0. We define Mn(N), by induction on n, as follows: M0(N) = N
and Mn+1(N) = M(Mn(N)).

3. The set of term contexts is defined as follows:

C ∈ C ::= � | λx.C | CM | MC

We define C[M ], as the filling up of the context C with the term M , by induc-
tion on the structure of C: �[M ] = M , (λx.C)[M ] = λx.C[M ], (NC)[M ] =
NC[M ] and (CN)[M ] = C[M ]N .
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4. The set ΛI ⊂ Λ, of terms of the λI-calculus is defined by the grammar:

(a) If x ∈ V then x ∈ ΛI.

(b) If x ∈ FV (M) and M ∈ ΛI then λx.M ∈ ΛI.

(c) If M,N ∈ ΛI then MN ∈ ΛI.

5. We define as usual the substitution M [x := N ] of N for all free occurrences of
x in M . We define the substitution C[x := M ] of N for all free occurrences of
x in context C by: �[x := N ] = �, (λy.C)[x := N ] = λy.C[x := N ] (x 6= y by
(BC)), (MC)[x := N ] = M [x := N ]C[x := N ] and (CM)[x := N ] = C[x :=
N ]M [x := N ]. We let M [(xi := Ni)n

1 ] be the simultaneous substitution of Ni

for all free occurrences of xi in M for 1 ≤ i ≤ n.

6. We assume the usual definition of compatibility. For r ∈ {β, βI, βη}, we define
the reduction relation →r on Λ as the least compatible relation closed under
rule (r) : L →r R below, and we call L an r-redex and R the contractum of
L (or the L contractum). We define Rr to be the set of r-redexes.

• (β): (λx.M)N →β M [x := N ].

• (βI): (λx.M)N →βI M [x := N ] when x ∈ FV (M).

• (η): λx.Mx →η M when x 6∈ FV (M).

We define Rβη = Rβ ∪Rη and →βη=→β ∪ →η.

7. Let r ∈ {β, βI, βη}. We define Rr
M = {C | C ∈ C ∧ ∃R ∈ Rr, C[R] = M}.

If M →r N by contracting the r-redex R in M = C[R] then C ∈ Rr
M by

definition, N = C[R′] where R′ is the contractum of R and we write M
C→r N .

8. Let M ∈ Λ and F ⊆ Λ. F � M = {N | N ∈ F ∧N ⊂ M}.

9. If M = λx1. . . . xn.(λx.M0)M1 . . .Mm such that n ≥ 0 and m ≥ 1 then
(λx.M0)M1 is called the β-head redex of M .

10. If M = (λx.M0x)M1 . . .Mm such that m ≥ 1 then (λx.M0x) is called the
η-head redex of M .

11. Let r ∈ {β, η}. We write M →hr M ′ (resp. M →ir M ′) if M ′ is obtained by
reducing the r-head (resp. a non r-head) redex of M .

12. We define: →βiη=→β ∪ →iη

13. Let r ∈ {→β ,→η,→βη,→βI ,→hβ ,→hη,→iβ ,→iη,→βiη}. We use →∗
r to de-

note the reflexive transitive closure of →r. We let 'r denote the equivalence
relation induced by →r.
If the r-reduction from M to N is in k steps, we write M →k

r N .

14. Let r ∈ {βI, βη}, M not an application and n ≥ 0. A term M ′N ′
0N

′
1 . . . N ′

n is
a direct r-reduct of MN0N1 . . . Nn iff ∀i ∈ {0, . . . , n}, Ni →∗

r N ′
i and

• if r = βI then M →∗
βI M ′.

• if r = βη then M →∗
βiη M ′.

15. NFβ = {λx1. . . . λxn.x0N1 . . . Nm | n, m ≥ 0, N1, . . . , Nm ∈ NFβ}.

16. WNβ = {M ∈ Λ | ∃N ∈ NFβ ,M →∗
β N}.

17. Let r ∈ {β, βI, βη}.
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• We say that M has the Church-Rosser property for r (has r-CR) if when-
ever M →∗

r M1 and M →∗
r M2 then there is an M3 such that M1 →∗

r M3

and M2 →∗
r M3.

• CRr = {M | M has r-CR}.
• CRr

0 = {xM1 . . .Mn | n ≥ 0 ∧ x ∈ V ∧ (∀i ∈ {1, . . . , n},Mi ∈ CRr)}.
• We use CR to denote CRβ and CR0 to denote CRβ

0 .

• A term is a weak head normal form if it is an abstraction or if it starts
with a variable. A term is weakly head normalizing if it reduces to a weak
head normal form. Let Wr = {M ∈ Λ | ∃n ≥ 0,∃x ∈ V,∃P, P1, . . . , Pn ∈
Λ,M →∗

r λx.P or M →∗
r xP1 . . . Pn}. We use W to denote Wβ .

18. We say that M has the standardization property if whenever M →∗
β N then

there is an M ′ such that M →∗
h M ′ and M ′ →∗

i N . Let S = {M ∈ Λ | M has
the standardization property}.

The next lemma deals with the shape of reductions.

Lemma 2.2.

1. If M →∗
βη M ′ then FV (M ′) ⊆ FV (M).

2. If M →∗
βI M ′ then FV (M) = FV (M ′) and if M ∈ ΛI then M ′ ∈ ΛI.

3. λx.M →βη P iff either (P = λx.M ′ and M →βη M ′) or (M = Px and
x 6∈ FV (P )).

4. λx.M →βiη P iff (P = λx.M ′ and M →βη M ′).

5. Let n ≥ 0. A direct βη-reduct of (λx.M)N0N1 . . . Nn, is a term
(λx.M ′)N ′

0N
′
1 . . . N ′

n such that M →∗
βη M ′ and ∀i ∈ {0, . . . , n}, Ni →∗

βη N ′
i .

6. Let r ∈ {βI, βη}, M not an application, n ≥ 0, P is not a direct r-reduct of
MN0 . . . Nn and MN0 . . . Nn →k

r P . Then the following holds:

(a) M = λx.M ′, k ≥ 1, and if k = 1 then P = M ′[x := N0]N1 . . . Nn.

(b) There exists a direct r-reduct (λx.M ′′)N ′
0N

′
1 . . . N ′

n of MN0 . . . Nn such
that M ′′[x := N ′

0]N
′
1 . . . N ′

n →∗
r P .

7. Let r ∈ {βI, βη}, n ≥ 0 and (λx.M)N0N1 . . . Nn →∗
r P . There exist P ′ such

that P →∗
r P ′ and

(a) If r = βI and x ∈ FV (M) then M [x := N0]N1 . . . Nn →∗
r P ′.

(b) If r = βη then M [x := N0]N1 . . . Nn →∗
r P ′.

2.2 Formalising the background on developments

In this section we go through some needed background from [Kri90] on developments
and we precisely formalise and establish all the necessary properties. In order not
to clutter the paper, we have put all the proofs of this section in an appendix.
Throughout the paper, we take c to be a metavariable ranging over V. As far as we
know, this is the first precise formalisation of developments.

The next definition adapts Λc of [Kri90] to deal with βI- and βη-reduction.
Basically, ΛIc is Λc where in the abstraction construction rule (R1).2, we restrict
abstraction to ΛI. In Ληc we introduce the new rule (R4) and replace the abstraction
rule of Λc by (R1).3 and (R1).4.
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Definition 2.3 (Ληc, ΛIc).

1. We let Mc range over Ληc,ΛIc defined as follows (note that ΛIc ⊂ ΛI):

(R1) If x is a variable distinct form c then

1. x ∈Mc.
2. If M ∈ ΛIc and x ∈ FV (M) then λx.M ∈ ΛIc.
3. If M ∈ Ληc then λx.M [x := c(cx)] ∈ Ληc.
4. If Nx ∈ Ληc such that x 6∈ FV (N) and N 6= c then λx.Nx ∈ Ληc.

(R2) If M,N ∈Mc then cMN ∈Mc.

(R3) If M,N ∈Mc and M is a λ-abstraction then MN ∈Mc.

(R4) If M ∈ Ληc then cM ∈ Ληc.

2. Let C ∈ C and M ∈ Mc. If ∃R ∈ Λ such that C[R] = M then we call C a
Mc-context.

Here is a lemma related to terms of Mc.

Lemma 2.4 (Generation).

1. M [x := c(cx)] 6= x and for any N , M [x := c(cx)] 6= Nx.

2. Let x 6∈ FV (M). Then, M [y := c(cx)] 6= x and for any N , M [y := c(cx)] 6=
Nx.

3. If M ∈Mc then M 6= c.

4. If M,N ∈Mc then M [x := N ] 6= c.

5. Let MN ∈Mc. Then N ∈Mc and either

• M = cM ′ where M ′ ∈Mc or

• M = c and Mc = Ληc or

• M = λx.P is in Mc

6. If λx.P ∈ Ληc then either

• P = Nx where N,Nx ∈ Ληc where x 6∈ FV (N) and N 6= c or

• P = N [x := c(cx))] where N ∈ Ληc

7. If λx.P ∈ ΛIc then x ∈ FV (P ) and P ∈ ΛIc.

8. If M,N ∈Mc and x 6= c then M [x := N ] ∈Mc.

9. Let M ∈ Ληc.

(a) If M = λx.P then P ∈ Ληc.

(b) If M = λx.Px then Px, P ∈ Ληc, x 6∈ FV (P ) and P 6= c.

(c) Let x 6= c. If M [x := c(cx)] →βη M ′ then M ′ = N [x := c(cx)] and
M →βη N .

(d) Let n ≥ 0. If cn(M) →βη M ′ then ∃N ∈ Ληc,M
′ = cn(N) and M →βη

N .

Here is a lemma about the contexts surrounding the set of redexes in a term:
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Lemma 2.5. Let r ∈ {βI, βη}.

• If M ∈ V then Rr
M = ∅.

• If M = λx.N then:

– if M ∈ Rr then Rr
M = {�} ∪ {λx.C | C ∈ Rr

N}.
– else, Rr

M = {λx.C | C ∈ Rr
N}.

• If M = PQ then:

– if M ∈ Rr then Rr
M = {�} ∪ {CQ | C ∈ Rr

P } ∪ {PC | C ∈ Rr
Q}.

– else, Rr
M = {CQ | C ∈ Rr

P } ∪ {PC | C ∈ Rr
Q}.

Here is a lemma about the set of redexes in a term:

Lemma 2.6. Let r ∈ {βI, βη} and F ⊆ Rr
M .

• If M ∈ V then F = ∅.

• If M = λx.N then F ′ = {C | λx.C ∈ F} ⊆ Rr
N and:

– if M ∈ Rr then F \ {�} = {λx.C | C ∈ F ′}.
– else, F = {λx.C | C ∈ F ′}.

• If M = PQ then F1 = {C | CQ ∈ F} ⊆ Rr
P , F2 = {C | PC ∈ F} ⊆ Rr

Q and:

– if M ∈ Rr then F \ {�} = {CQ | C ∈ F1} ∪ {PC | C ∈ F2}.
– else, F = {CQ | C ∈ F1} ∪ {PC | C ∈ F2}.

Now we show that substitutions propagate inside contexts and redexes.

Lemma 2.7. Let r ∈ {βI, βη} and C ∈ Rr
M . We have:

M [x := N ] = C[x := N ][R] iff R = R′[x := N ] and M = C[R′].

Obviously, substitution dismisses non free variables:

Lemma 2.8. If x 6∈ FV (R) then C[x := N ][R] = C[R][x := N ].

The next lemma shows the role on redexes of substitutions involving c.

Lemma 2.9. Let r ∈ {βη, βI}. and x 6= c.

1. Let x 6= y. Then:

• if M [x := c(cx)] = y then M = y,

• if M [x := c(cx)] = Py then M = Ny and P = N [x := c(cx)] and

• if M [x := c(cx)] = λy.P then M = λy.N and P = N [x := c(cx)].

2. M ∈ Rβη iff M [x := c(cx)] ∈ Rβη.

3. C ∈ Rβη
λx.M [x:=c(cx)] iff C = λx.C ′ and C ′ ∈ Rβη

M [x:=c(cx)].

4. C ∈ Rβη
M [x:=c(cx)] iff C = C ′[x := c(cx)] and C ′ ∈ Rβη

M .

5. Let n ≥ 0 then Rβη
cn(M) = {cn(C) | C ∈ Rβη

M }.
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The next lemma shows that any element (λx.P )Q of ΛIc (resp. Ληc) is a βI-
(resp. βη-) redex.

Lemma 2.10. Let (Mc, r) ∈ {(ΛIc, βI), (Ληc, βη)} and M ∈Mc. If M = (λx.P )Q
then M ∈ Rr.

The next lemma shows that ΛIc (resp. Ληc) contains all the βI-redexes (resp.
βη-redexes) of all its terms.

Lemma 2.11. Let (Mc, r) ∈ {(ΛIc, βI), (Ληc, βη)} and M ∈Mc. If C ∈ Rr
M and

M = C[R] then R ∈Mc.

In order to deal with βI- and βη-reduction, the next lemma generalises a lemma
given in [Kri90] (and used in [KS08]). It states that Ληc and ΛIc are closed under
→βη- resp. →βI -reduction.

Lemma 2.12.

1. If M ∈ Ληc and M →βη M ′ then M ′ ∈ Ληc.

2. If M ∈ ΛIc and M →βI M ′ then M ′ ∈ ΛIc.

The next definition again taken from [Kri90], erases all the c’s from a Mc-term.

Definition 2.13 (| − |c). Let M ∈ Λ. We define |M |c inductively as follows:
• |x|c = x • |λx.N |c = λx.|N |c
• |cP |c = |P |c • |NP |c = |N |c|P |c if N 6= c.

The next definition erases all the c’s from a Mc-context.

Definition 2.14 (| − |cC). Let C ∈ C. We define |C|cC inductively as follows:
• |�|cC = � • |λx.N |cC = λx.|C|cC • |C ′N |cC = |C ′|cC |N |c
• |cC ′|cC = |C ′|cC • |NC ′|cC = |N |c|C ′|cC if N 6= c

Let F ⊆ C then we define |F|cC = {|C|cC | C ∈ F}.

Now, cn is indeed erased from |cn(M)|c.

Lemma 2.15. Let n ≥ 0 then |cn(M)|c = |M |c.

Also, cn is erased from |cn(N)|c for any cn(N) subterm of M .

Lemma 2.16. Let |M |c = P .

• If P ∈ V then ∃n ≥ 0 such that M = cn(P ).

• If P = λx.Q then ∃n ≥ 0 such that M = cn(λx.N) and |N |c = Q.

• If P = P1P2 then ∃n ≥ 0 such that M = cn(M1M2), |M1|c = P1 and |M2|c =
P2.

If the c-ersure of two reduction contexts of M are equal, then these contexts are
also equal:

Lemma 2.17. Let r ∈ {βI, βη}. If C,C ′ ∈ Rr
M and |C|cC = |C ′|cC then C = C ′.

Inside a term, substituting x by c(cx) is undone by c-erasure.

Lemma 2.18. Let x 6= c. |M [x := c(cx)]|c = |M |c.

Inside a context, substituting x by c(cx) is undone by c-erasure.

Lemma 2.19. Let x 6= c. |C[x := c(cx)]|cC = |C|cC.
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Erasure propagates through substitutions.

Lemma 2.20. If M,N ∈Mc and x 6= c then |M [x := N ]|c = |M |c[x := |N |c].

The next lemma shows that c is definitely erased from the free variables of |M |c.

Lemma 2.21. If M ∈Mc then FV (M) \ {c} = FV (|M |c).

Now, c-erasing an ΛIc-term returns an ΛI-term.

Lemma 2.22. If M ∈ ΛIc then |M |c ∈ ΛI.

The next six lemmas show that c-erasure preserves redexes, their contractum
and their contexts.

Lemma 2.23. Let (Mc, r) ∈ {(ΛIc, βI), (Ληc, βη)} and R ∈ Rr. If R ∈ Mc then
|R|c ∈ Rr and if R′ is the contractum of |R|c then R′ = |R′′|c and R′′ is the
contractum of R.

Lemma 2.24. Let (Mc, r) ∈ {(ΛIc, βI), (Ληc, βη)} and M ∈Mc. If C ∈ Rr
M and

M = C[R] then |M |c = |C|cC [|R|c].

Lemma 2.25. Let (Mc, r) ∈ {(ΛIc, βI), (Ληc, βη)}, M ∈Mc and C ∈ Rr
M . Then,

M = C[R] and |C[R]|c |C|cC→ r |C[R′]|c such that R′ is the contractum of R.

Lemma 2.26. Let (Mc, r) ∈ {(ΛIc, βI), (Ληc, βη)} and M ∈Mc. If C ∈ Rr
M and

M
C→r M ′ then |M |c |C|cC→ r |M ′|c.

Lemma 2.27. Let (Mc, r) ∈ {(ΛIc, βI), (Ληc, βη)}, (λx.M1)N1, (λx.M2)N2 ∈Mc

such that |Rr
M1
|cC ⊆ |Rr

M2
|cC, |Rr

N1
|cC ⊆ |Rr

N2
|cC, |M1|c = |M2|c and |N1|c = |N2|c.

We have |Rr
M1[x:=N1]

|cC ⊆ |Rr
M2[x:=N2]

|cC.

Lemma 2.28. Let (Mc, r) ∈ {(ΛIc, βI), (Ληc, βη)}, M1,M2 ∈ Mc such that
|Rr

M1
|cC

⊆ |Rr
M2
|cC and |M1|c = |M2|c. If M1

C1→r M ′
1, M2

C2→r M ′
2 such that |C1|cC = |C2|cC

then |Rr
M ′

1
|cC ⊆ |Rr

M ′
2
|cC.

2.3 Background on Types and Type Systems

In this section we give the background necessary for the type systems used in this
paper.

Definition 2.29. Let i ∈ {1, 2}.

1. Let A be a denumerably infinite set of type variables and let Ω 6∈ A be a
constant type. The sets of types Type1 ⊂ Type2 are defined as follows:

σ1 ∈ Type1 ::= α | σ1
1 → σ1

2 | σ1
1 ∩ σ1

2

σ2 ∈ Type2 ::= α | σ2
1 → σ2

2 | σ2
1 ∩ σ2

2 | Ω

We let α range over A; σ1, τ1, ρ1, etc. range over Type1; σ2, τ2, ρ2, etc. range
over Type2 and σ, τ, ρ, etc. range over Typei.

2. We let Bi = {Γ = {x : σ | x ∈ V, σ ∈ Typei} | ∀x : σ, y : τ ∈ Γ, if σ 6=
τ then x 6= y}. We let Γ,∆ range over Bi. We define dom(Γ) = {x | x :
σ ∈ Γ}. When x 6∈ dom(Γ), we write Γ, x : σ for Γ ∪ {x : σ}. We denote
Γ = xm : σm, . . . , xn : σn where n ≥ m ≥ 0, by (xi : σi)m

n . If m = 1, we
simply denote Γ by (xi : σi)n.
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(ref) σ ≤ σ (Ω) σ ≤ Ω
(tr) σ ≤ τ ∧ τ ≤ ρ ⇒ σ ≤ ρ (Ω′-lazy) σ → Ω ≤ Ω → Ω
(inL) σ ∩ τ ≤ σ (idem) σ ≤ σ ∩ σ
(inR) σ ∩ τ ≤ τ (Ω-η) Ω ≤ Ω → Ω
(→ -∩) (σ → τ) ∩ (σ → ρ) ≤ σ → (τ ∩ ρ) (Ω-lazy) σ → τ ≤ Ω → Ω
(mon′) σ ≤ τ ∧ σ ≤ ρ ⇒ σ ≤ τ ∩ ρ
(mon) σ ≤ σ′ ∧ τ ≤ τ ′ ⇒ σ ∩ τ ≤ σ′ ∩ τ ′

(→ -η) σ ≤ σ′ ∧ τ ′ ≤ τ ⇒ σ′ → τ ′ ≤ σ → τ

Figure 1: Ordering axioms on types

If Γ1 = (xi : σi)n, (yi : τi)p and Γ2 = (xi : σ′i)n, (zi : ρi)q where x1, . . . , xn are
the only shared variables, then Γ1 u Γ2 = (xi : σi ∩ σ′i)n, (yi : τi)p, (zi : ρi)q.
Let X ⊆ V. We define Γ � X = Γ′ ⊆ Γ where dom(Γ′) = dom(Γ) ∩X.
Let v be the reflexive transitive closure of the axioms σ∩τ v σ and σ∩τ v τ .
If Γ = (xi : σi)n and Γ′ = (xi : σ′i)n then Γ v Γ′ iff ∀i, σi v σ′i.

3. • – Let ∇1 = {(ref), (tr), (inL), (inR), (→ -∩), (mon′), (mon), (→ -η)}.
– Let ∇2 = ∇1 ∪ {(Ω), (Ω′ − lazy)}.
– Let ∇D = {(inL), (inR)}.
– Let ∇DI

= ∇D ∪ {(idem)}
• – Type∇1 = Type∇D = Type∇DI = Type1.

– Type∇2 = Type2.

• – Let ∇ be a set of axioms from Figure 1. The relation ≤∇ is defined
on types Type∇ and axioms ∇. We use ≤1 instead of ≤∇1 and ≤2

instead of ≤∇2 .
– The equivalence relation is defined by: σ ∼∇ τ ⇐⇒ σ ≤∇ τ ∧τ ≤∇

σ. We use ∼1 instead of ∼∇1 and ∼2 instead of ∼∇2 .

• – We define λ∩1 to be the type system 〈Λ,Type1,`1〉 such that `1 is
the type derivability relation on B1, Λ and Type1 generated using
the following typing rules of Figure 2: (ax), (→E), (→I), (∩I) and
(≤1)).

– We define λ∩2 to be the type system 〈Λ,Type2,`2〉 such that `2 is
type derivability relation on B2, Λ and Type2 generated using the
following typing rules of Figure 2: (ax), (→E), (→I), (∩I), (≤2)
and (Ω).

– We define D to be the type system 〈Λ,Type1,`βη〉 where `βη is the
type derivability relation on B1, Λ and Type1 generated using the
following typing rules of Figure 2: (ax), (→E), (→I), (∩I) , (∩E1)
and (∩E2).

– We define DI to be the type system 〈Λ,Type1,`βI〉 where `βI is the
type derivability relation on B1, Λ and Type1 generated using the
following typing rule of Figure 2: (axI), (→EI ), (→I), (∩I) , (∩E1)
and (∩E2). Moreover, in this type system, we assume that σ∩σ = σ.

3 Problems of the reducibility method of [GL02]

In this section we introduce the reducibility method of [GL02] and show where
exactly it fails.
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Γ, x : σ ` x : σ
(ax)

x : σ ` x : σ
(axI)

Γ ` M : σ → τ Γ ` N : σ
Γ ` MN : τ

(→E)
Γ1 ` M : σ → τ Γ2 ` N : σ

Γ1 u Γ2 ` MN : τ
(→EI )

Γ, x : σ ` M : τ

Γ ` λx.M : σ → τ
(→I)

Γ ` M : σ Γ ` M : τ
Γ ` M : σ ∩ τ

(∩I)

Γ ` M : σ ∩ τ
Γ ` M : σ

(∩E1)
Γ ` M : σ ∩ τ

Γ ` M : τ
(∩E2)

Γ ` M : σ σ ≤∇ τ

Γ ` M : τ
(≤∇) Γ ` M : Ω

(Ω)

Figure 2: Typing rules

Definition 3.1 (Type systems and reducibility of [GL02]). Let i ∈ {1, 2}.

1. Let P ⊆ Λ. The type interpretation J−Ki : Typei → 2Λ is defined by:

• JαKi = P, where α ∈ A.

• Jσ ∩ τKi = JσKi ∩ JτKi.

• JΩK2 = Λ.

• Jσ → τK1 = JσK1 ⇒ JτK1 = {M ∈ Λ|∀N ∈ JσK1,MN ∈ JτK1}.
• Jσ → τK2 = (JσK2 ⇒ JτK2) ∩ P = {M ∈ P|∀N ∈ JσK2,MN ∈ JτK2}.

2. A valuation of term variables in Λ is a function ν : V → Λ. We write v(x := M)
for the function v′ where v′(x) = M and v′(y) = v(y) if y 6= x.

3. let ν be a valuation of term variables in Λ. Then J−Kν : Λ → Λ is defined by:
JMKν = M [x1 := ν(x1), . . . , xn := ν(xn)], where FV (M) = {x1, . . . , xn}.

4. • ν |=i M : σ iff JMKν ∈ JσKi

• ν |=i Γ iff ∀(x : σ) ∈ Γ, ν(x) ∈ JσKi

• Γ |=i M : σ iff ∀ν |=i Γ, ν |=i M : σ

5. Let X ⊆ Λ. We say that:

• (V ARi) P satisfies the variable property, denoted V ARi(P,X ), if

∀x, x ∈ X

• (SAT 1) P is 1-saturated, denoted SAT 1(P,X ), if

∀M,∀x,∀N ∈ P,M [x := N ] ∈ X ⇒ (λx.M)N ∈ X

• (SAT 2) P is 2-saturated, denoted SAT 2(P,X ), if

∀M,∀N,∀x,M [x := N ] ∈ X ⇒ (λx.M)N ∈ X

• (CLO1) P is closed by variable application, denoted CLO1(P,X ), if

∀M,∀x,Mx ∈ X ⇒ M ∈ P

10



• (CLO2) P is closed by abstraction, denoted CLO2(P,X ), if

∀M,∀x,M ∈ X ⇒ λx.M ∈ P

For R ∈ {V ARi, SAT i, CLOi}, let R(P) ⇐⇒ ∀σ ∈ Typei,R(P, JσKi)

6. Let X ⊆ Λ. We say that:

• (P − V AR) X satisfies the P-variable property, denoted V AR(P,X ), if

∀x,∀n ≥ 0,∀N1, . . . , Nn ∈ P, xN1 . . . Nn ∈ X

• (P − SAT ) X is P-saturated, denoted SAT (P,X ), if

∀M,∀N,∀x,∀n ≥ 0,∀N1, . . . , Nn ∈ P,

M [x := N ]N1 . . . Nn ∈ X ⇒ (λx.M)NN1 . . . Nn ∈ X

• (P − CLO) X is P-closed, denoted CLO(P,X ), if

∀M,∀x,M ∈ X ⇒ λx.M ∈ P

7. A set P ⊆ Λ is said to be invariant under abstraction if

∀M,∀x,M ∈ P ⇐⇒ λx.M ∈ P.

Lemma 3.2 (Basic lemmas proved in [GL02]).

1. (a) JMKν(x:=N) ≡ JMKν(x:=x)[x := N ]
(b) JMNKν ≡ JMKνJNKν

(c) Jλx.MKν ≡ λx.JMKν(x:=x)

2. If V AR1(P) and CLO1(P) are satisfied then

(a) ∀σ ∈ Type1, JσK1 ⊆ P.
(b) If SAT 1(P) and Γ `1 M : σ then we have Γ |=1 M : σ and M ∈ P

3. ∀σ ∈ Type2, if σ 6∼2 Ω then JσK2 ⊆ P

4. If σ ≤2 τ then JσK2 ⊆ JτK2.

5. If V AR2(P), SAT 2(P) and CLO2(P) hold then Γ `2 M : σ ⇒ Γ |=2 M : σ

6. If V AR2(P), SAT 2(P) and CLO2(P) hold then ∀σ ∈ Type2, σ 6∼2 Ω ∧ Γ `2

M : σ ⇒ M ∈ P

7. CLO(P,P) ⇒ ∀σ ∈ Type2, σ 6∼2 Ω ⇒ CLO2(P, JσK2).

Proof. We only prove 5. By induction on Γ `2 M : σ. (ax) and (Ω) are easy. (∩I)
(resp. (→E) resp. (≤2)) is by IH (resp. IH and 1, resp. IH and 4).

(→I) By IH, Γ, x : σ |=2 M : τ . Let ν |=2 Γ and N ∈ JσK2. Then ν(x := N) |=2 Γ
since x 6∈ dom(Γ) and ν(x := N) |=2 x : σ since N ∈ JσK2. Therefore
ν(x := N) |=2 M : τ , i.e. JMKν(x:=N) ∈ JτK2. Hence, by lemma 3.2.1,
JMKν(x:=x)[x := N ] ∈ JτK2. Hence by applying SAT 2(P), we get (λx.JNKν(x:=x))N ∈
JτK2. Again by lemma 3.2.1, (Jλx.MKν)N ∈ JτK2. Hence Jλx.MKν ∈ JσK2 ⇒
JτK2.
By V AR2(P), x ∈ JσK2, hence by the same argument as above we obtain
JMKν(x:=x) ∈ JτK2. So by CLO2(P), λx.JMKν(x:=x) ∈ P and by lemma 3.2.1,
Jλx.MKν ∈ P. Hence, we conclude that Jλx.MKν ∈ Jσ → τK2.

11



After giving the above definitions and lemmas, [GL02] states that since the
properties (V ARi), (SAT i) and (CLOi) for 1 ≤ i ≤ 2 have been shown to be
sufficient to develop the reducibility method, and since in order to prove these
properties one needs stronger induction hypotheses which are easier to prove, the
paper sets out to show that these stronger conditions when i = 2 are (P − V AR),
(P − SAT ) and (P − CLO). However, as we show below, this attempt fail.

Lemma 3.3 (Lemma 3.16 of [GL02] is false). The lemma of [GL02] stated below
is false.

V AR(P,P) ⇒ ∀σ ∈ Type2, σ 6∼2 Ω → τ ⇒ V AR(P, JσK2).

Proof. To show that the above statement is false, we give the following counterex-
ample. Let σ be α → Ω → α 6∼2 Ω → τ , where α ∈ A. V AR(P, JσK2) is true
if ∀x ∈ V,∀n ≥ 0,∀N1, . . . , Nn ∈ P, xN1 . . . Nn ∈ JσK2, in particular if x ∈ JσK2,
where x ∈ V. Let P be the set of strong normalizing terms. We have to notice
that V AR(P,P) is true. Since x ∈ P, xx ∈ JΩ → αK2. Since �� ∈ Λ = JΩK2,
where � = λx.xx, xx(��) ∈ JαK2 = P. But �� 6∈ P, hence xx(��) 6∈ P, so
V AR(P, JσK2) is false.

Remark 3.4 (It is not clear that Lemma 3.18 of [GL02] holds).
It is not clear that the lemma of [GL02] stated below holds.

SAT (P,P) ⇒ ∀σ ∈ Type2, σ 6∼2 Ω → τ ⇒ SAT (P, JσK2).

Of remark 3.4. The proof given in [GL02] does not go through and we have neither
been able to prove nor disprove this lemma. It remains that this lemma is not yet
proved and hence cannot be used in further proofs.

Then, [GL02] gives the following proposition which is the reducibility method
for typable terms:
Proposition 3.21 of [GL02] Let V AR(P,P), SAT (P,P) and CLO(P,P), then

∀σ ∈ Type2, σ 6∼2 Ω ∧ σ 6∼2 Ω → τ ∧ Γ `2 M : σ ⇒ M ∈ P.

However, the proof of that proposition depends on two problematic lemmas
(lemma 3.16 which we showed to fail in our lemma 3.3, and lemma 3.18 which we
explained in remark 3.4 that it is not clear why it should hold). Below, we show
that proposition 3.21 of [GL02] fails by giving a counterexample. First, here is a
lemma:

Lemma 3.5. V AR(WNβ ,WNβ), CLO(WNβ ,WNβ) and SAT (WNβ ,WNβ) hold.

Proof.

• V AR(WNβ ,WNβ) is satisfied, since ∀x ∈ V, ∀n ≥ 0, ∀N1, . . . , Nn ∈ WNβ ,
xN1 . . . Nn ∈ WNβ .

• CLO(WNβ ,WNβ) is satisfied, since if ∃n, m ≥ 0, ∃x0 ∈ V, ∃N1, . . . , Nm ∈
NFβ such that M →∗

β λx1. . . . λxn.x0N1 . . . Nm then
∀y ∈ V, λy.M →∗

β λy.λx1. . . . λxn.x0N1 . . . Nm and λy.M ∈ WNβ .

• SAT (WNβ ,WNβ) is satisfied, since if M [x := N ]N1 . . . Nn ∈ WNβ where
n ≥ 0 and N1, . . . , Nn ∈ WNβ then ∃P ∈ NFβ such that
M [x := N ]N1 . . . Nn →∗

β P .
Hence, (λx.M)NN1 . . . Nn →β M [x := N ]N1 . . . Nn →∗

β P .
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Lemma 3.6 (Proposition 3.21 of [GL02] fails).
Let V AR(P,P), SAT (P,P) and CLO(P,P), then it is not the case that
∀σ ∈ Type2, σ 6∼2 Ω ∧ σ 6∼2 Ω → τ ∧ Γ `2 M : σ ⇒ M ∈ P.

Proof. Let P be WNβ of Definition 2 and recall that � = λx.xx. Note that λy.�� 6∈
WNβ . Moreover, ∀ρ ∈ Type2, we can construct the typing judgment `2 λy. � � :
ρ → Ω. Let σ be ρ → Ω. Obviously, σ 6∼2 Ω. Let τ ∈ Type2.

If τ 6∼2 Ω then obviously σ = ρ → Ω 6∼2 Ω → τ .
If τ ∼2 Ω then let ρ 6∼2 Ω. Obviously σ = ρ → Ω 6∼2 Ω → τ .

Lemma 3.5 and the above, give a counterexample for Proposition 3.21 of [GL02].

Finally, also the proof method for untyped terms given in [GL02] fails.

Lemma 3.7 (Proposition 3.23 of [GL02] fails).
Proposition 3.23 of [GL02] which states that “If P ⊆ Λ is invariant under abstrac-
tion, V AR(P,P) and SAT (P,P) then P = Λ” fails.

Proof. The proof given in [GL02] depends on Proposition 3.21 which we have shown
to fail. Furthermore, since WNβ is invariant under abstraction and by lemma 3.5,
V AR(WNβ ,WNβ) and SAT (WNβ ,WNβ) hold, we have a counterexample for Propo-
sition 3.23.

4 Salvaging the reducibility method of [GL02]

In this section we provide subsets of types which we use to partially salvage the
reducibility method of [GL02] and we show that this can now be correctly used
to establish confluence, standardization and weak head normal forms but only for
restricted sets of lambda terms and types.

Remark 4.1. Note that in the proof of proposition 3.2.5, the properties V AR2(P),
SAT 2(P) and CLO2(P) are not needed for all types in Type2. If Γ `2 M : σ → τ ,
we only need to have V AR2(P) for σ and SAT 2(P) and CLO2(P) for τ .

Lemma 4.2. If Γ `2 M : ρ and (if ρ = σ → τ then V AR2(P, JσK2), SAT 2(P, JτK2)
and CLO2(P, JτK2)) then Γ |=2 M : ρ

Proof. By induction on Γ `2 M : ρ. The proof is exactly the same as that of the
proof of proposition 3.2.5, except with the replacement of V AR2(P) SAT 2(P) and
CLO2(P) by V AR2(P, JσK2), SAT 2(P, JτK2), and CLO2(P, JτK2) resp.

In order to salvage the reducibility method of [GL02], we introduce the following:

Definition 4.3.

• σ2+ ∈ Type2+ = {σ ∈ Type2 | σ ∼2 Ω}.

• σ2− ∈ Type2− = {σ ∈ Type2 | σ 6∼2 Ω}.

• σS1 ∈ S1 ::= α | σ2+
1 → σ2+

2 | σ2− → σS1 | σS1 ∩ σS1 .

• σS2 ∈ S2 ::= Ω → Ω | σ1.

We let σ, τ, ρ, σ1, σ2, . . . range over Type1, Type2, Type2+, Type2−, S1 or S2.

Lemma 4.4.

1. S2 ⊆ S1.

2. Let σ ∈ S1. If σ = τ → ρ ∧ τ 6∼2 Ω then ρ ∈ S1. If σ = τ ∩ ρ, then
τ, ρ ∈ S1.
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Proof.

1. Let σ ∈ S2. We prove this lemma by case on S2. Either σ = Ω → Ω then
σ ∈ S1 since Ω ∈ Type2+. Or σ ∈ Type1. Note that Type1 ⊂ Type2− and
A ⊂ S1. We prove the statement by induction on σ ∈ Type1.

• If σ = τ → ρ where τ, ρ ∈ Type1 ⊂ Type2− then by IH, ρ ∈ S1. Hence
σ ∈ S1.

• If σ = τ ∩ ρ such that τ, ρ ∈ Type1 then by IH, τ, ρ ∈ S1 and so, σ ∈ S1.

2. Easy.

Using S1, we can establish a revised version of Lemmas 3.16 and 3.18 of [GL02].

Lemma 4.5.

1. V AR(P,P) ⇒ ∀σ ∈ S1, V AR(P, JσK2).

2. SAT (P,P) ⇒ ∀σ ∈ S1, SAT (P, JσK2).

Proof. Let σ ∈ S1 and N1, . . . , Nn ∈ P such that n ≥ 0.
1. By induction on σ. Assume V AR(P,P) and let x ∈ V.

• σ ∈ A. Then use V AR(P,P) and the definition of J.K2.

• σ = τ → ρ. By V AR(P,P), xN1 . . . Nn ∈ P. Let N ∈ JτK2 (JτK2 = ∅ is
easy).

– If τ ∼2 Ω then since σ = τ → ρ ∈ S1, it should hold that ρ ∼2 Ω, so
xN1 . . . NnN ∈ Λ = JρK2. Thus xN1 . . . Nn ∈ JσK2.

– Else, τ 6∼2 Ω. Then by lemma 3.2.3, N ∈ P. Moreover, by lemma 4.4.2,
ρ ∈ S1. Hence, by IH, xN1 . . . NnN ∈ JρK2. Thus xN1 . . . Nn ∈ JσK2.

• σ = τ∩ρ. By lemma 4.4.2, τ, ρ ∈ S1. By IH, xN1, . . . , Nn ∈ JτK2∩JρK2 = JσK2.

• σ = Ω. Then xN1, . . . , Nn ∈ Λ = JΩK2.

2. By induction on σ. Assume SAT (P,P) and M [x := N ]N1 . . . Nn ∈ JσK2.

• σ ∈ A. Then use SAT (P,P) and the definition of J.K2.

• σ = τ → ρ. By lemma 3.2.3, M [x := N ]N1 . . . Nn ∈ P and by SAT (P,P)
(λx.M)NN1 . . . Nn ∈ P. Let P ∈ JτK2 (case JτK2 = ∅ is immediate).

– If τ ∼2 Ω then since σ = τ → ρ ∈ S1, it should hold that ρ ∼2 Ω, so
(λx.M)NN1 . . . NnP ∈ Λ = JρK2. Thus (λx.M)NN1 . . . Nn ∈ JσK2.

– Else, τ 6∼2 Ω. Then by lemma 3.2.3, P ∈ P. Moreover, by lemma 4.4.2,
ρ ∈ S1. Hence, since M [x := N ]N1 . . . NnP ∈ JρK2, by IH, we get
(λx.M)NN1 . . . NnP ∈ JρK2. Thus (λx.M)NN1 . . . Nn ∈ JσK2.

• σ = τ ∩ ρ. Then, M [x := N ]N1 . . . Nn ∈ JτK2 ∩ JρK2 and by lemma 4.4.2,
τ, ρ ∈ S1. By IH, (λx.M)NN1, . . . , Nn ∈ JτK2 ∩ JρK2 = JσK2.

• σ = Ω. Then (λx.M)NN1, . . . , Nn ∈ Λ = JΩK2.

Corollary 4.6.

1. V AR(P,P) ⇒ ∀σ ∈ S1, V AR2(P, JσK2).

2. SAT (P,P) ⇒ ∀σ ∈ S1, SAT 2(P, JσK2).
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Remark 4.7. σ 6∼2 Ω is not a sufficient hypothesis in Proposition 3.21. We saw in
remark 4.1 that if σ = τ → ρ, we need to have CLO2(P) only for ρ (not for all types
in Type2). Hence, since CLO(P,P) ⇒ ∀σ ∈ Type2, σ 6∼2 Ω ⇒ CLO2(P, JσK2),
at least, we need to have ρ 6∼2 Ω. The same remark holds for the hypothesis
σ 6∼2 Ω → τ . Similarly, the same remark holds if we replace σ 6∼2 Ω ∧ σ 6∼2 Ω → τ
by σ 6∼2 Ω ∧ σ ∈ S1.

Lemma 4.8 (Using S1 in Proposition 3.21 of [GL02] does not help).
If V AR(P,P), SAT (P,P) and CLO(P,P), then it is not the case that
∀σ ∈ Type2, σ 6∼2 Ω ∧ σ ∈ S1 ∧ Γ `2 M : σ ⇒ M ∈ P.

Proof. Take the same counterexample given in the proof of Lemma 3.6 and choose
ρ = Ω. Since σ belongs to S2 so to S1 by lemma 4.4.1.

However, we can rescue the reducibility method for typable terms as follows:

Proposition 4.9. Let V AR(P,P), SAT (P,P) and CLO(P,P), then

∀σ ∈ Type2, σ 6∼2 Ω ∧ Γ `2 M : σ ∧ (σ = τ → ρ ⇒ τ, ρ ∈ S1 ∧ ρ 6∼2 Ω) ⇒ M ∈ P.

Proof. By proposition 3.2.6, corollaries 4.6.1 and 4.6.2, lemma 3.2.7 and lemma 4.2.

[GL02] applied the method to confluence of β in Λ and standardisation in Λ
by showing that the method of their Proposition 3.23 is applicable to the sets CR
and S of Definition 2. It applied the method to the existence of weak head normal
forms in λ∩2 (under some restrictions on types) by showing that the method of
their Proposition 3.21 is applicable to the set W of Definition 2. However, since we
showed in lemma 3.6 that proposition 3.21 fails, we need to review the applications
and show where exactly they work. First, here is a lemma proven in [GL02].

Lemma 4.10. Let P ∈ {CR,S,W}. Then V AR(P,P), SAT (P,P) and CLO(P,P).

However, we need to reformulate Propositions 4.5, 4.12 and 4.15 of [GL02], since
the method of Proposition 3.21 does not work. We take into account the conditions
given in proposition 4.9.

Proposition 4.11. Let M ∈ Λ. If ∃Γ, σ such that Γ `2 M : σ and (σ = τ → ρ ⇒
τ, ρ ∈ S1 ∧ ρ 6∼2 Ω) then M ∈ CR, M ∈ S, and M ∈ W.

Proof. By lemma 4.10 and proposition 4.9.

5 Adapting the CR proof of [KS08] to βI-reduction

[KS08] gave a proof of Church-Rosser for β-reduction for the intersection type sys-
tem D of Definition 2.29 (studied in detail in [Kri90]) and showed that this can be
used to establish confluence of β-developments without using strong normalisation.
In this section, we adapt his proof to βI and at the same time, set the formal
ground for generalising the method for βη in the next section. First, we adapt and
formalise a number of definitions and lemmas given in [Kri90] in order to make
them applicable to βI-developments. Then, we define type interpretations for both
βI and βη, establish the soundness and Church-Rosser of both systems D and DI

(for βη- resp. βI-reduction), and finally, adapt [KS08] to establish the confluence
of βI-developments.

All proofs from this section are located in appendix B.
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5.1 Formalising βI-developments

The next definition, taken from [Kri90] (and used in [KS08]) uses the variable c to
destroy the βI-redexes of M which are not in the set F of βI-redex occurrences in
M , and to neutralise applications so that they cannot be transformed into redexes
after βI-reduction. For example, in c(λx.x)y, c is used to destroy the βI-redex
(λx.x)y.

Definition 5.1 (ΦβI(−,−)). Let M ∈ ΛI, such that c 6∈ FV (M), and F ⊆ RβI
M .

1. If M = x then F = ∅ and ΦβI(x,F) = x

2. If M = λx.N and F ′ = {C | λx.C ∈ F} ⊆ RβI
N then ΦβI(λx.N,F) =

λx.ΦβI(N,F ′)

3. If M = NP , F1 = {C | CP ∈ F} ⊆ RβI
N and F2 = {C | NC ∈ F} ⊆ RβI

P

then

ΦβI(NP,F) =
{

cΦβI(N,F1)ΦβI(P,F2) if � 6∈ F
ΦβI(N,F1)ΦβI(P,F2) otherwise

The next lemma is an adapted version of a lemma which appears in [KS08] and
which in turns adapts a lemma from [Kri90].

Lemma 5.2.

1. If M ∈ ΛI, c 6∈ FV (M), and F ⊆ RβI
M then

(a) FV (M) = FV (ΦβI(M,F)) \ {c}.
(b) ΦβI(M,F) ∈ ΛIc.

(c) |ΦβI(M,F)|c = M .

(d) |RβI
ΦβI(M,F)

|cC = F .

2. Let M ∈ ΛIc.

(a) |RβI
M |cC ⊆ RβI

|M |c and M = ΦβI(|M |c, |RβI
M |cC).

(b) (|M |βI , |RβI
M |cC) is the one and only pair (N,F) such that N ∈ ΛI, c 6∈

FV (N), F ⊆ RβI
N and ΦβI(N,F) = M .

The next lemma is needed to define βI-developments.

Lemma 5.3. Let M ∈ ΛI, such that c 6∈ FV (M), F ⊆ RβI
M , C ∈ F and M

C→βI

M ′. Then, there is a unique set F ′ ⊆ RβI
M ′ , such that ΦβI(M,F) C′

→βI ΦβI(M ′,F ′)
and |C ′|cC = C.

We follow [Kri90] and define the set of βI-residuals of a set of βI-redexes F
relative to a sequence of βI-redexes. First, we give the definition relative to one
redex.

Definition 5.4. Let M ∈ ΛI, such that c 6∈ FV (M), F ⊆ RβI
M , C ∈ F and M

C→βI

M ′. By lemma 5.3, there exists a unique F ′ ⊆ RβI
M ′ such that ΦβI(M,F) C′

→βI

ΦβI(M ′,F ′) and |C ′|βI = C. We call F ′ the set of βI-residuals of F in M ′

relative to C.
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Definition 5.5 (βI-development). Let M ∈ ΛI, where c 6∈ FV (M), and F ⊆ RβI
M .

A one-step βI-development of (M,F), denoted (M,F) →βId (M ′,F ′), is a βI-

reduction M
C→βI M ′ where C ∈ F and F ′ is the set of βI-residuals of F in

M ′ relative to C. A βI-development is the transitive closure of a one-step βI-
development. We write also M

F→βId Mn for the βI-development (M,F) →∗
βId

(Mn,Fn).

The next two lemmas are informative about developments.

Lemma 5.6. Let M ∈ ΛI, such that c 6∈ FV (M) and F ⊆ RβI
M . (M,F) →∗

βId

(M ′,F ′) ⇐⇒ ΦβI(M,F) →∗
βI ΦβI(M ′,F ′).

Lemma 5.7. Let M ∈ ΛI, such that c 6∈ FV (M) and F1 ⊆ F2 ⊆ RβI
M . If

(M,F1) →βId (M ′,F ′
1) then ∃F ′

2 ⊆ RβI
M ′ such that F1 ⊆ F ′

2 and (M,F2) →βId

(M ′,F ′
2).

5.2 Confluence of βI-developments, hence of βI-reduction

Definition 5.8. 1. Let r ∈ {βI, βη}. We define the type interpretation J−Kr :
Type1 → 2Λ by:

• JαKr = CRr, where α ∈ A.

• Jσ ∩ τKr = JσKr ∩ JτKr.

• Jσ → τKr = (JσKr ⇒ JτKr) ∩ CRr = {t ∈ CR|∀u ∈ JσKr, tu ∈ JτKr}.

2. A set X ⊆ Λ is saturated if ∀n ≥ 0,∀M,N,M1, . . . ,Mn ∈ Λ,∀x ∈ V,

M [x := N ]M1 . . .Mn ∈ X ⇒ (λx.M)NM1 . . .Mn ∈ X

3. A set X ⊆ ΛI is I-saturated if ∀n ≥ 0,∀M,N,M1, . . . ,Mn ∈ Λ,∀x ∈ V,

x ∈ FV (M) ⇒ M [x := N ]M1 . . .Mn ∈ X ⇒ (λx.M)NM1 . . .Mn ∈ X

Here is a background lemma:

Lemma 5.9.

1. If Γ `βI M : σ then M ∈ ΛI and FV (M) = dom(Γ).

2. Let Γ `βη M : σ. Then FV (M) ⊆ dom(Γ) and if Γ ⊆ Γ′ then Γ′ `βη M : σ.

3. Let r ∈ {βI, βη}. If Γ `r M : σ, σ v σ′ and Γ′ v Γ then Γ′ `r M : σ′.

The next lemma states that the interpretations of types are saturated and only
contain terms that are Church-Rosser. In [Kri90] it was shown for r = β and where
CRr

0 and CRr were replaced by the corresponding sets of strongly normalising
terms. [KS08] adapted Krivine’s lemma for β Church-Rosser instead of strong
normalisation. Here, we prove it for βI and βη.

Lemma 5.10. Let r ∈ {βI, βη}.

1. ∀σ ∈ Type1, CRr
0 ⊆ JσKr ⊆ CRr.

2. CRβI is I-saturated.

3. CRβη is saturated.
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4. ∀σ ∈ Type1, JσKβI is I-saturated.

5. ∀σ ∈ Type1, JσKβη is saturated.

Next we adapt the soundness lemma of [Kri90] to both `βI and `βη.

Lemma 5.11. Let r ∈ {βI, βη}. If x1 : σ1, . . . , xn : σn `r M : σ and ∀i ∈
{1, . . . , n}, Ni ∈ JσiKr then M [(xi := Ni)n

1 ] ∈ JσKr.

Finally, we adapt a corollary from [KS08] to show that every term of Λ typable
in system D has the βη Church-Rosser property and every term of Λ typable in
system DI has the βI Church-Rosser property.

Corollary 5.12. Let r ∈ {βI, βη}. If Γ `r M : σ then M ∈ CRr.

Proof. Let Γ = (xi : σi)n. By lemma 5.10, ∀i ∈ {1, . . . , n}, xi ∈ JσiKr, so by
lemma 5.11 and again by lemma 5.10, M ∈ JσKr ⊆ CRr.

In order to accommodate βI- and βη-reduction, the next lemma generalises a
lemma given in [Kri90] (and used in [KS08]). Basically this lemma states that every
term of ΛIc is typable in system D and every term of Ληc is typable in DI .

Lemma 5.13. Let FV (M) \ {c} = {x1, . . . , xn} ⊆ dom(Γ) where c 6∈ dom(Γ).

1. If M ∈ ΛIc then for Γ′ = Γ � FV (M), ∃σ, τ ∈ Type1 such that
if c ∈ FV (M) then Γ′, c : σ `βI M : τ , and if c 6∈ FV (M) then Γ′ `βI M : τ .

2. If M ∈ Ληc then ∃σ, τ ∈ Type1 such that Γ, c : σ `βη M : τ .

The next lemma is an adaptation of the main theorem in [KS08] where as far as
we know appears for the first time.

Lemma 5.14 (confluence of the βI-developments). Let M ∈ ΛI, such that c 6∈
FV (M). If M

F1→βId M1 and M
F2→βId M2, then there exist sets F ′

1 ⊆ RβI
M1

,

F ′
2 ⊆ RβI

M2
and a term M3 ∈ ΛI such that M1

F ′
1→βId M3 and M2

F ′
2→βId M3.

We follow [Bar84] and [KS08] and define one reduction as follows:

Notation 5.15. Let M,M ′ ∈ ΛI, such that c 6∈ FV (M). We define one reduction
by: M →1I M ′ ⇐⇒ ∃F ,F ′, (M,F) →∗

βId (M ′,F ′).

Lemma 5.16. Let c 6∈ FV (M). RβI
ΦβI(M,∅)

= ∅.

Lemma 5.17. Let c 6∈ FV (MN). RβI
ΦβI(M,∅)[x:=ΦβI(N,∅)]

= ∅.

Lemma 5.18. Let c 6∈ FV (M). If C ∈ RβI
M and ΦβI(M, {C}) →βI M ′ then

RβI
M ′ = ∅.

Lemma 5.19. Let c 6∈ FV (M). If C ∈ RβI
M and M

C→βI M ′ then (M, {C}) →βId

(M ′, ∅).

Lemma 5.20. →∗
βI=→∗

1I .

Finally, we achieve what we started to do: the confluence of βI-reduction on ΛI.

Lemma 5.21. If M ∈ ΛI such that c 6∈ FV (M) then M ∈ CRβI .
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6 Generalisation of the method to βη-reduction

In this section, we generalise the method of [KS08] to handle βη-reduction. This
generalisation is not trivial since we needed to develop developments involving η-
reduction and to establish the important result of the closure under η-reduction of
a defined set of frozen terms. It is for reasons like this that we extended the various
definitions related to developments. For example, clause (R4) of the definition of
Ληc in Definition 2.3 aims to ensure closure under η-reduction. The definition of Λc

in [Kri90] exluded such a rule and hence we lose closure under η-reduction as can
be seen in the following example: Let M = λx.cNx ∈ Λc where x 6∈ FV (N) and
N ∈ Λc, then M →η cN 6∈ Λc.

Again here, the proofs are moved to appendix C.
The next two definitions adapt definition 5.1 to deal with βη-reduction. The

variable c enables to destroy the βη-redexes of M which are not in the set F of
βη-redex occurrences in M ; to neutralise applications so that they cannot be trans-
formed into redexes after βη-reduction; and to neutralise bound variables so λ-
abstraction cannot be transformed into redexes after βη-reduction. For example, in
λx.y(c(cx)) (x 6= x), c is used to destroy the η-redex λx.yx.

Definition 6.1 (Φβη(−,−),Φβη
0 (−,−)). Let c 6∈ FV (M) and F ⊆ Rβη

M .

(P1) If M ∈ V \ {c} then F = ∅ and

Φβη(M,F) = {cn(M) | n > 0}

Φβη
0 (M,F) = {M}

(P2) If M = λx.N and F ′ = {C | λx.C ∈ F} ⊆ Rβη
N :

Φβη(M,F) =
{
{cn(λx.P [x := c(cx)]) | n ≥ 0 ∧ P ∈ Φβη(N,F ′)} if � 6∈ F
{cn(λx.N ′) | n ≥ 0 ∧N ′ ∈ Φβη

0 (N,F ′)} otherwise

Φβη
0 (M,F) =

{
{λx.N ′[x := c(cx)] | N ′ ∈ Φβη(N,F ′)} if � 6∈ F
{λx.N ′ | N ′ ∈ Φβη

0 (N,F ′)} otherwise

(P3) If M = NP , F1 = {C | CP ∈ F} ⊆ Rβη
N and F2 = {C | NC ∈ F} ⊆ Rβη

P

then:
Φβη(M,F) ={
{cn(cN ′P ′) | n ≥ 0 ∧N ′ ∈ Φβη(N,F1) ∧ P ′ ∈ Φβη(P,F2)} if � 6∈ F
{cn(N ′P ′) | n ≥ 0 ∧N ′ ∈ Φβη

0 (N,F1) ∧ P ′ ∈ Φβη(P,F2)} otherwise

Φβη
0 (M,F) =

{
{cN ′P ′ | N ′ ∈ Φβη(N,F1) ∧ P ′ ∈ Φβη

0 (P,F2)} if � 6∈ F
{N ′P ′ | N ′ ∈ Φβη

0 (N,F1) ∧ P ′ ∈ Φβη
0 (P,F2) otherwise

Lemma 6.2. If M ∈ Ληc and n ≥ 0 then cn(M) ∈ Ληc.

Proof. By induction on n ≥ 0 using (R4).

Lemma 6.3.

1. Let c 6∈ FV (M) and F ⊆ Rβη
M . We have:

(a) Φβη
0 (M,F) ⊆ Φβη(M,F).

(b) ∀N ∈ Φβη(M,F), FV (M) = FV (N) \ {c}.
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(c) Φβη(M,F) ⊆ Ληc.

(d) Let M = Nx such that x 6∈ FV (N) and P ∈ Φβη
0 (M,F). Then, Rβη

λx.P =
{�} ∪ {λx.C | C ∈ Rβη

P }.

(e) Let M = Nx. If Px ∈ Φβη(Nx,F) then Px ∈ Φβη
0 (Nx,F).

(f) ∀N ∈ Φβη(M,F),∀n ≥ 0, cn(N) ∈ Φβη(M,F).

(g) ∀N ∈ Φβη(M,F), |N |c = M .

(h) ∀N ∈ Φβη(M,F),F = |Rβη
N |cC.

2. Let M ∈ Ληc. We have:

(a) |Rβη
M |cC ⊆ Rβη

|M |c and M ∈ Φβη(|M |c, |Rβη
M |cC).

(b) (|M |c, |Rβη
M |cC) is the one and only pair (N,F) such that c 6∈ FV (N),

F ⊆ Rβη
N and M ∈ Φβη(N,F).

Lemma 6.4. Let M ∈ Λ, such that c 6∈ FV (M), F ⊆ Rβη
M , C ∈ F and M

C→βη M ′.
Then, there exists a unique set F ′ ⊆ Rβη

M ′ , such that ∀N ∈ Φβη(M,F),∃N ′ ∈
Φβη(M ′,F ′),∃C ′ ∈ Rβη

N , N
C′

→βη N ′ and |C ′|cC = C.

Definition 6.5. Let M ∈ Λ, F ⊆ Rβη
M , C ∈ F and M

C→βη M ′. By lemma 6.4,
there exists a unique F ′ ⊆ Rβη

M ′ , such that ∀N ∈ Φβη(M,F), ∃N ′ ∈ Φβη(M ′,F ′),∃C ′ ∈
Rβη

N , N
C′

→βη N ′ and |C ′|c = C. We call F ′ the set of βη-residuals of F in M ′

relative to C.

Definition 6.6 (βη-development). Let M ∈ Λ, where c 6∈ FV (M), and F ⊆ Rβη
M .

A one-step βη-development of (M,F), denoted (M,F) →βηd (M ′,F ′), is a βη-

reduction M
C→βη M ′ where C ∈ F and F ′ is the set of βη-residuals of F in

M ′ relative to C. A βη-development is the transitive closure of a one-step βη-
development. We write also M

F→βηd M ′ for the βη-development (M,F) →∗
βηd

(M ′,F ′).

Lemma 6.7. Let M ∈ Λ, where c 6∈ FV (M), and F ⊆ Rβη
M . Then:

(M,F) →∗
βηd (M ′,F ′) ⇐⇒ ∃N ∈ Φβη(M,F),∃N ′ ∈ Φβη(M ′,F ′), N →∗

βη N ′

and

(M,F) →∗
βηd (M ′,F ′) ⇐⇒ ∀N ∈ Φβη(M,F),∃N ′ ∈ Φβη(M ′,F ′), N →∗

βη N ′.

Lemma 6.8. Let M ∈ Λ, such that c 6∈ FV (M) and F1 ⊆ F2 ⊆ Rβη
M . If (M,F1)

→βηd (M ′,F ′
1) then ∃F ′

2 ⊆ Rβη
M ′ such that F1 ⊆ F ′

2 and (M,F2) →βηd (M ′,F ′
2).

Lemma 6.9 (confluence of the βη-developments). Let M,M1,M2 ∈ Λ.
If M

F1→βηd M1 and M
F2→βηd M2, then there exists sets F ′

1 ⊆ Rβη
M1

and F ′
2 ⊆ Rβη

M2

and a term M3 ∈ Λ such that M1
F ′

1→βηd M3 and M2
F ′

2→βηd M3.

Notation 6.10. Let M,M ′ ∈ Λ. M →1 M ′ ⇐⇒ ∃F ,F ′, (M,F) →∗
βηd (M ′,F ′).
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Lemma 6.11. Let c 6∈ FV (M). ∀P ∈ Φβη(M, ∅),Rβη
P = ∅.

Lemma 6.12. Let c 6∈ FV (MN). ∀P ∈ Φβη(M, ∅),∀Q ∈ Φβη(N, ∅),Rβη
P [x:=Q] =

∅.

Lemma 6.13. Let c 6∈ FV (M). If C ∈ Rβη
M , P ∈ Φβη(M, {C}) and P →βη Q then

Rβη
Q = ∅.

Lemma 6.14. Let c 6∈ FV (M). If C ∈ Rβη
M and M

C→βη M ′ then (M, {C}) →βηd

(M ′, ∅).

Lemma 6.15. →∗
βη=→∗

1.

Lemma 6.16. If M ∈ Λ such that c 6∈ FV (M) then M ∈ CRβη.

7 Conclusion

Reducibility is a powerful method and has been applied to prove using a single
method, a number of properties of the λ-calculus (CR, SN, etc.). This paper studied
two reducibilty methods which exploit the passage from typed to untyped terms.
We showed that the first method [GL02] fails in its aim and we have only been
able to provide a partial solution. We adapted the second method [KS08] from
β to βI-reduction and we generalised it to βη-reduction. There are differences in
the typed systems chosen and the methods of reducibility used in [GL02, KS08].
[KS08] uses system D [CDCV80], which has elimination rules for intersection types
whereas [GL02] uses λ∩ and λ∩Ω with subtyping. Moreover, [KS08] depends on
the inclusion of typable λ-terms in the set of λ-terms possessing the CR property,
whereas [GL02] proves the inclusion of typable terms in an arbitrary subset of
the untyped λ-calculus closed by some properties. Moreover, [GL02] considers the
V AR(P), SAT (P) and CLO(P) whereas [KS08] uses standard reducibility methods
through saturated sets. [KS08] proves the confluence of developments using the
confluence of typable λ-terms in system D (the authors prove that even a simple
type system is sufficient). The advantage of the proof of confluence of developments
of [KS08] is that SN is not needed.

In [Gal03], Gallier considers systems D and DΩ. He states some properties
which a set of λ-terms has to satisfy to include the terms typable in D or DΩ

(under some restrictions). He states that the terms typable in DΩ by a “weakly
nontrivial type” (WNT ::= A | Type2 → WNT | WNT ∩WNT ) are weakly head
normalizable. The “weakly nontrivial types” include types in our set S1 since, for
example, the type α → Ω → α, where α ∈ A, does not belong to S1 but is a “weakly
nontrivial type”. However, unlike Gallier we only restrict functional types. There
are common properties with [GL02]: we can observe some trivial correspondences:
(P4w) implies CLO(P,P), (P1) and (P3s) imply V AR(P,P), SAT (P,P) implies
(P5n), and V AR(P,P) implies (P1). Gallier states some others properties held by
the terms typable in DΩ under some restriction (always on the use of the type Ω),
and for different conditions on the properties, in order to be adapted to different
cases. It is an attractive feature of [Gal03] that all the conditions on properties have
the same general shape. [Gal97] considers quantifiers and other type constructors
instead of intersection types.
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A Proofs of section 2

Lemma 2.2 . 1. By induction on the length of the reduction M →∗
βη M ′. If the

length is 1, use induction on M →βη M ′.

2. By induction on the length of the reduction M →∗
βI M ′. If the length is 1,

use induction on M →βI M ′.

3. If) trivial, Only if) by induction on λx.M →βη P .

4. If) If M →β M ′, then by definition λx.M →β λx.M ′ and so λx.M →βiη

λx.M ′. If M →η M ′, then by definition λx.M →iη λx.M ′ and so λx.M →βiη

λx.M ′. Only if) Since λx.M →βη P , by 3, either (P = λx.M ′ and M →βη

M ′) or (M = Px and x 6∈ FV (P )). But, since the η-head redex is not reduced,
the second case is impossible.

5. By definition a direct βη-reduct of (λx.M)N0 . . . Nn is a term PN ′
0 . . . N ′

n such
that λx.M →∗

βiη P and ∀i{0, . . . , n}, Ni →∗
βη N ′

i . Then, we conclude by 4.

6a. If M = x then P = xN ′
0N

′
1 . . . N ′

n, where ∀i ∈ {0, . . . , n}, Ni →∗
r N ′

i and so P
is a direct r-reduct of MN0N1 . . . Nn, absurd. So M = λx.M ′. If k = 0 then
P = (λx.M ′)N1N1 . . . Nn is a direct r-reduct of (λx.M ′)N0N1 . . . Nn, absurd.
Assume k = 1, we prove P = M ′[x := N0]N1 . . . Nn by induction on n ≥ 0.

– Let n = 0 and r = βI. By case on (λx.M ′)N0 →βI P .

∗ If (λx.M ′)N0 →βI M ′[x := N0] then we are done.
∗ If λx.M ′ →βI λx.M ′′ then P = (λx.M ′′)N0 is a direct βI-reduct of

(λx.M ′)N0, absurd.
∗ If N0 →βI N ′ then P = (λx.M ′)N ′ is a direct βI-reduct of

(λx.M ′)N0, absurd.

– Let n = 0 and r = βη. By case on (λx.M ′)N0 →βη P .

∗ If (λx.M ′)N0 →β M ′[x := N0], then we are done.
∗ If λx.M ′ →βη Q and P = QN0. By lemma 2.2.3,

· Either Q = λx.M ′′ and M ′ →βη M ′′. Hence, λx.M ′ →βiη

λx.M ′′ by lemma 2.2.4, so P = (λx.M ′′)N0 is a direct βη-reduct
of (λx.M ′)N0, absurd.

· Or M ′ = Qx and x 6∈ FV (Q). Hence, P = QN0 = M ′[x := N0]
and we are done.

∗ If N0 →βη N ′ then P = (λx.M ′)N ′ is a direct βη-reduct of
(λx.M ′)N0, absurd.

– Let n = m + 1 where m ≥ 0. By case on (λx.M)N0 . . . Nm+1 →r P .

∗ If (λx.M ′)N0 . . . Nm →r Q and P = QNm+1.
· If Q is a direct r-reduct of (λx.M ′)N0 . . . Nm then P is a direct

r-reduct of (λx.M ′)N0 . . . Nm+1, absurd.
· So, Q is not a direct r-reduct of (λx.M ′)N0 . . . Nm then we are

done by IH.
∗ If Nm+1 →r N ′

m+1 then P = (λx.M ′)N0 . . . NmN ′
m+1 is a direct

r-reduct of (λx.M ′)N0 . . . Nm+1, absurd.

6b. By 6a, M = λx.M ′, k ≥ 1. We prove the statement by induction on k ≥ 1.

– If k = 1 then we conclude by 6a.

– Let (λx.M ′)N0 . . . Nn →∗
r Q →r P .
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∗ If Q is a direct r-reduct of (λx.M ′)N0 . . . Nn, then
Q = (λx.M ′′)N ′

0 . . . N ′
n, such that M ′ →∗

r M ′′ (use lemma 2.2.5 if
r = βη) and ∀i ∈ {0, . . . , n}, Ni →∗

r N ′
i . Since P is not a direct r-

reduct of (λx.M ′)N0 . . . Nn, P is not a direct r-reduct of Q. Hence
by 6a, P = M ′′[x := N ′

0]N
′
1 . . . N ′

n.
∗ If Q is not a direct r-reduct of (λx.M ′)N0 . . . Nn, then by IH, there

exists a direct r-reduct (λx.M ′′)N ′
0 . . . N ′

n of (λx.M ′)N0 . . . Nn such
that M ′′[x := N ′

0]N
′
1 . . . N ′

n →∗
r Q →r P .

7. If P is a direct r-reduct of (λx.M)N0 . . . Nn then P = (λx.M ′)N ′
0 . . . N ′

n such
that M →∗

r M ′ (use lemma 2.2.5 if r = βη) and ∀i ∈ {0, . . . , n}, Ni →∗
r

N ′
i . So P →r M ′[x := N ′

0]N
′
1 . . . N ′

n (if r = βI, note that x ∈ FV (M ′) by
lemma 2.2.2) and M [x := N0]N1 . . . Nn →∗

r M ′[x := N ′
0]N

′
1 . . . N ′

n. If P is
not a direct r-reduct of (λx.M)N0 . . . Nn then by lemma 6.6b, there exists a
direct r-reduct, (λx.M ′)N ′

0 . . . N ′
n, such that M →∗

r M ′ (use lemma 2.2.5 if
r = βη) and ∀i ∈ {0, . . . , n}, Ni →∗

r N ′
i , of (λx.M)N0 . . . Nn. Let P ′ = P . We

have M [x := N0]N1 . . . Nn →∗
r M ′[x := N ′

0]N
′
1 . . . N ′

n →∗
r P .

Lemma 2.4 .

1. By induction on the structure of M .

• Let M be a variable.

– Let M = x then M [x := c(cx)] = c(cx) 6= x and for any N ,
M [x := c(cx)] = c(cx) 6= Nx (otherwise cx = x absurd).

– Let M = y 6= x then M [x := c(cx)] = y 6= x and for any N ,
M [x := c(cx)] = y 6= Nx.

• Let M = λy.P . Since M [x := c(cx)] is a λ-abstraction, M [x := c(cx)] 6=
x and for any N , M [x := c(cx)] 6= Nx.

• Let M = PQ. Since M [x := c(cx)] is an application, M [x := c(cx)] 6= x.
Let N ∈ Λ such that, M [x := c(cx)] = Nx, so Q[x := c(cx)] = x and by
IH, absurd.

2. By induction on the structure of M .

• Let M be a variable.

– Let M = y 6= x then M [y := c(cx)] = c(cx) 6= x and for any N ,
M [y := c(cx)] = c(cx) 6= Nx since cx 6= x.

– Let M = z 6= x and z 6= y then M [y := c(cx)] = z 6= x and for any
N , M [y := c(cx)] = z 6= Nx.

• Let M = λz.P . Since M [y := c(cx)] is a λ-abstraction, M [y := c(cx)] 6=
x and for any N , M [y := c(cx)] 6= Nx.

• Let M = PQ. Since M [y := c(cx)] is an application, M [y := c(cx)] 6= x.
Let N ∈ Λ such that, M [y := c(cx)] = Nx, so Q[y := c(cx)] = x and by
IH, absurd.

3. By cases on the derivation of M ∈Mc.

4. By cases on the structure of M using 3.

5. By cases on the derivation of MN ∈Mc.

6. By cases on the derivation of λx.P ∈ Ληc.

7. By cases on the derivation of λx.P ∈ ΛIc.
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8. By induction on the derivation of M ∈Mc.

• Case (R1)1. Let M = x then M [x := N ] = N ∈ Mc. Else M = y 6= x
and so M [x := N ] = M ∈Mc.

• Case (R1)2. Let M = λy.P where P ∈ ΛIc and y ∈ FV (P ). By IH,
P [x := N ] ∈ ΛIc and since y ∈ FV (P [x := N ]), M [x := N ] = λy.P [x :=
N ] ∈ ΛIc.

• Case (R1)3. Let M = λy.P [y := c(cy)] such that P ∈ Ληc. Then by IH,
P [x := N ] ∈ Ληc. So by (R1).3 M [x := N ] = λy.P [x := N ][y := c(cy)] ∈
Ληc.

• Case (R1)4. Let M = λy.Py such that Py ∈ Ληc, y 6∈ FV (P ) and P 6= c.
By IH, P [x := N ]y ∈ Ληc. By lemma 2.4.4, P [x := N ] 6= c.
Since y 6∈ FV (P [x := N ]), M [x := N ] = λy.P [x := N ]y ∈ Ληc.

• Case (R2) Let M = cM1M2 such that M1,M2 ∈Mc. Then by IH,
M1[x := N ],M2[x := N ] ∈Mc. Hence, cM1[x := N ]M2[x := N ] ∈Mc.

• Case (R3) Let M = M1M2 such that M1,M2 ∈ Mc and M1 is a λ-
abstraction. Then by IH, M1[x := N ],M2[x := N ] ∈Mc.
Hence, M1[x := N ]M2[x := N ] ∈ Mc, since M1[x := N ] is a λ-
abstraction.

• Case (R4) Let M = cP such that P ∈ Ληc. Then by IH, P [x := N ] ∈ Ληc

and by (R4), M [x := N ] ∈ Ληc.

9. (a) By lemma 2.4, either P = Nx where Nx ∈ Ληc or P = N [x := c(cx))]
where N ∈ Ληc. In the second case, since by BC and (R4), x 6= c and
c(cx) ∈ Ληc, we get by lemma 2.4.8 that N [x := c(cx))] ∈ Ληc.

(b) It is easy to show that if P,N ∈ Λ, then Px 6= N [x := c(cx)]. Hence,
by lemma 2.4, Px = Nx where N,Nx ∈ Ληc, x 6∈ FV (N) and N 6= c.
Since Px = Nx then P = N .

(c) By induction on the structure of M using lemma 2.4.
• If M is a variable distinct from c then nothing to prove.
• If M = λy.P [y := c(cy)] where P ∈ Ληc then by 9a, P [y := c(cy)] ∈

Ληc. M [x := c(cx)] →βη M ′ only if M ′ = λy.P ′ where P [y :=
c(cy)][x := c(cx)] →βη P ′. So by IH, P ′ = P ′′[x := c(cx)] and P [y :=
c(cy))] →βη P ′′. Hence M ′ = λy.P ′′[x := c(cx)] = (λy.P ′′)[x :=
c(cx)] and λy.P [y := c(cy)] →βη λy.P ′′.

• If M = λy.Py such that Py ∈ Ληc, P 6= c and y 6∈ FV (P ). Let T =
M [x := c(cx)] = λy.P [x := c(cx)]y where y 6∈ FV (P [x := c(cx)]).
– If T →η P [x := c(cx)], we are done since M →η P .
– If T →βη λy.P ′ where (Py)[x := c(cx)] = P [x := c(cx)]y →βη P ′

then P ′ = P ′′[x := c(cx)] and Py →βη P ′′ by IH. Hence, M ′ =
λy.P ′′[x := c(cx)] = (λy.P ′′)[x := c(cx)] and M →βη λy.P ′′.

• If M = cM1M2 such that M1,M2 ∈ Ληc, then let T = M [x :=
c(cx)] = cM1[x := c(cx)]M2[x := c(cx)].
– If T →βη cM ′

1M2[x := c(cx)] where M1[x := c(cx)] →βη M ′
1, by

IH, M ′
1 = M ′′

1 [x := c(cx)] and M1 →βη M ′′
1 . Hence

M ′ = (cM ′′
1 M2)[x := c(cx)] and M →βη cM ′′

1 M2.
– Case T →βη cM1[x := c(cx)]M ′

2 where M2[x := c(cx)] →βη M ′
2

is similar.
• If M = M1M2 such that M1,M2 ∈ Ληc and M1 is a λ-abstraction,

then let T = M [x := c(cx)] = M1[x := c(cx)]M2[x := c(cx)] where
M1[x := c(cx)] is a λ-abstraction. Let M1 = λz.M0, so M1[x :=
c(cx)] = λz.M0[x := c(cx)].
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– Let T →βη M ′
1M2[x := c(cx)] where M1[x := c(cx)] →βη M ′

1.
Then by IH, M ′

1 = M ′′
1 [x := c(cx)] and M1 →βη M ′′

1 . So
M ′ = M ′′

1 [x := c(cx)]M2[x := c(cx)] = (M ′′
1 M2)[x := c(cx)]

and M →βη M ′′
1 M2.

– Case T →βη M1[x := c(cx)]M ′
2 where M2[x := c(cx)] →βη M ′

2 is
similar.

– Let T →β M0[x := c(cx)][z := M2[x := c(cx)]] = M0[z :=
M2][x := c(cx)]. We are done since M →β M0[z := M2].

• If M = cP where P ∈ Ληc then M [x := c(cx)] = cP [x := c(cx)] →βη

cP ′ where P [x := c(cx)] →βη P ′. So by IH, P ′ = P ′′[x := c(cx)] and
P →βη P ′′. Hence M ′ = cP ′′[x := c(cx)] = (cP ′′)[x := c(cx)] and
M →βη cP ′′.

(d) By induction on n.

Lemma 2.5. We prove this lemma by induction on the structure of M .

• Let M ∈ V. Let C ∈ Rr
M so C ∈ C and ∃R ∈ Rr such that C[R] = M . We

prove by induction on the structure of C that this is absurd, i.e. Rr
M = ∅.

– Let C = � then M = R. absurd since M 6∈ Rr.

– Let C = λx.C ′ then λx.C ′[R] = M , absurd.

– Let C = C ′N then C ′[R]N = M , absurd.

– Let C = NC ′ then NC ′[R] = M , absurd.

• Let M = λx.N and C ∈ C.

– Let M ∈ Rr. We prove by induction on the structure of C that if
C ∈ Rr

M then C ∈ {�} ∪ {λx.C | C ∈ Rr
N}.

∗ Let C = � then ∃R ∈ Rr such that �[R] = R = M and it is done.
∗ Let C = λx.C ′ then ∃R ∈ Rr such that λx.N = λx.C ′[R]. So

N = C ′[R] and by definition, C ′ ∈ Rr
N .

∗ Let C = C ′P then 6 ∃R ∈ Rr such that λx.N = C ′[R]P .
∗ Let C = PC ′ then 6 ∃R ∈ Rr such that λx.N = PC ′[R].

Let C ∈ {�} ∪ {λx.C | C ∈ Rr
N}, we prove that C ∈ Rr

M .

∗ Let C = �. Since M ∈ Rr and C[M ] = M , by definition, C ∈ Rr
M .

∗ Let C = λx.C ′ such that C ′ ∈ Rr
N . By definition ∃R ∈ Rr such

that C ′[R] = N , so C[R] = M .

– Let M 6∈ Rr. We prove by induction on the structure of C that if
C ∈ Rr

M then C ∈ {λx.C | C ∈ Rr
N}

∗ Let C = � then 6 ∃R ∈ Rr such that �[R] = R = M , since M 6∈ Rr.
∗ Let C = λx.C ′ then ∃R ∈ Rr such that λx.N = λx.C ′[R]. So

N = C ′[R] and by definition, C ′ ∈ Rr
N .

∗ Let C = C ′P then 6 ∃R ∈ Rr such that λx.N = C ′[R]P .
∗ Let C = PC ′ then 6 ∃R ∈ Rr such that λx.N = PC ′[R].

Let C ∈ {λx.C | C ∈ Rr
N}, we prove that C ∈ Rr

M .

∗ Let C = λx.C ′ such that C ′ ∈ Rr
N . By definition ∃R ∈ Rr such

that C ′[R] = N , so C[R] = M .

• Let M = PQ and C ∈ C.
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– Let M ∈ Rr. We prove by induction on the structure of C that if
C ∈ Rr

M then C ∈ {�} ∪ {CQ | C ∈ Rr
P } ∪ {PC | C ∈ Rr

Q}.
∗ Let C = � then ∃R ∈ Rr such that �[R] = R = M and it is done.
∗ Let C = λx.C ′ then 6 ∃R ∈ Rr such that PQ = λx.C ′[R].
∗ Let C = C ′N then ∃R ∈ Rr such that PQ = C ′[R]N . So N = Q,

C ′[R] = P and by definition, C ′ ∈ Rr
P .

∗ Let C = NC ′ then ∃R ∈ Rr such that PQ = NC ′[R]. So N = P ,
C ′[R] = Q and by definition, C ′ ∈ Rr

Q.

Let C ∈ {�}∪{CQ | C ∈ Rr
P }∪{PC | C ∈ Rr

Q}, we prove that C ∈ Rr
M .

∗ Let C = �. Since M ∈ Rr and C[M ] = M , by definition, C ∈ Rr
M .

∗ Let C = C ′Q such that C ′ ∈ Rr
P . By definition ∃R ∈ Rr such that

C ′[R] = P , so C[R] = M .
∗ Let C = PC ′ such that C ′ ∈ Rr

Q. By definition ∃R ∈ Rr such that
C ′[R] = Q, so C[R] = M .

– Let M 6∈ Rr. We prove by induction on the structure of C that if
C ∈ Rr

M then C ∈ {CQ | C ∈ Rr
P } ∪ {PC | C ∈ Rr

Q}.
∗ Let C = � then 6 ∃R ∈ Rr such that �[R] = R = M , since M 6∈ Rr.
∗ Let C = λx.C ′ then 6 ∃R ∈ Rr such that PQ = λx.C ′[R].
∗ Let C = C ′N then ∃R ∈ Rr such that PQ = C ′[R]N . So N = Q,

C ′[R] = P and by definition, C ′ ∈ Rr
P .

∗ Let C = NC ′ then ∃R ∈ Rr such that PQ = NC ′[R]. So N = P ,
C ′[R] = Q and by definition, C ′ ∈ Rr

Q.

Let C ∈ {CQ | C ∈ Rr
P } ∪ {PC | C ∈ Rr

Q}, we prove that C ∈ Rr
M .

∗ Let C = C ′Q such that C ′ ∈ Rr
P . By definition ∃R ∈ Rr such that

C ′[R] = P , so C[R] = M .
∗ Let C = PC ′ such that C ′ ∈ Rr

Q. By definition ∃R ∈ Rr such that
C ′[R] = Q, so C[R] = M .

Lemma 2.6. We prove the statement by induction on the structure of M .

• Let M ∈ V, by lemma 2.5, Rr
M = ∅, so F = ∅.

• Let M = λy.N then by lemma 2.5:

– If M ∈ Rr then Rr
M = {�} ∪ {λx.C | C ∈ Rr

N}. Let F ′ = {C | λx.C ∈
F}. Let C ∈ F ′ then λx.C ∈ F , so C ∈ Rr

N .

∗ Let C ∈ F \ {�} then C = λx.C ′ such that C ′ ∈ Rr
N . So C ′ ∈ F ′

and it is done.
∗ Let C ∈ {λx.C | C ∈ F ′} then C = λx.C ′ such that C ′ ∈ F ′. So

λx.C ′ = C ∈ F \ {�}.
– If M 6∈ Rr then Rr

M = {λx.C | C ∈ Rr
N}. Let F ′ = {C | λx.C ∈ F}.

Let C ∈ F ′ then λx.C ∈ F , so C ∈ Rr
N .

∗ Let C ∈ F then C = λx.C ′ such that C ′ ∈ Rr
N . So C ′ ∈ F ′ and it

is done.
∗ Let C ∈ {λx.C | C ∈ F ′} then C = λx.C ′ such that C ′ ∈ F ′. So

λx.C ′ = C ∈ F .

• Let M = PQ then by lemma 2.5:
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– If M ∈ Rr then Rr
M = {�} ∪ {CQ | C ∈ Rr

P } ∪ {PC | C ∈ Rr
Q}. Let

F1 = {C | CQ ∈ F} and F2 = {C | PC ∈ F}. Let C ∈ F1 then CQ ∈ F ,
so C ∈ Rr

P . Let C ∈ F2 then PC ∈ F , so C ∈ Rr
Q.

∗ Let C ∈ F \ {�}. Either C = C ′Q such that C ′ ∈ Rr
P , so C ′ ∈ F1

and it is done. Or C = PC ′ such that C ′ ∈ Rr
Q, so C ′ ∈ F2 and it

is done.
∗ Let C ∈ {CQ | C ∈ F1} ∪ {PC | C ∈ F2}. Either C = C ′Q such

that C ′ ∈ F1, so C ′Q ∈ F \ {�}. Or C = PC ′ such that C ′ ∈ F2,
so PC ′ ∈ F \ {�}.

– If M 6∈ Rr then Rr
M = {CQ | C ∈ Rr

P } ∪ {PC | C ∈ Rr
Q}. Let

F1 = {C | CQ ∈ F} and F2 = {C | PC ∈ F}. Let C ∈ F1 then
CQ ∈ F , so C ∈ Rr

P . Let C ∈ F2 then PC ∈ F , so C ∈ Rr
Q.

∗ Let C ∈ F . Either C = C ′Q such that C ′ ∈ Rr
P , so C ′ ∈ F1 and it

is done. Or C = PC ′ such that C ′ ∈ Rr
Q, so C ′ ∈ F2 and it is done.

∗ Let C ∈ {CQ | C ∈ F1} ∪ {PC | C ∈ F2}. Either C = C ′Q such
that C ′ ∈ F1, so C ′Q ∈ F . Or C = PC ′ such that C ′ ∈ F2, so
PC ′ ∈ F .

Lemma 2.7.

⇒) we prove the statement by induction on M .

– M 6∈ V since by lemma 2.5, Rr
M = ∅.

– Let M = λy.P so M [x := N ] = λy.P [x := N ]. By lemma 2.5:
∗ If M ∈ Rr then:

· Either C = � so M [x := N ] = C[x := N ][R] = �[x := N ][R] =
R. Hence, R = M [x := N ] and M = �[M ].

· Or C = λy.C ′ such that C ′ ∈ Rr
P . Then, C[x := N ][R] =

λy.C ′[x := N ][R] and P [x := N ] = C ′[x := N ][R]. By IH, R =
R′[x := N ] and P = C ′[R′]. Hence, M = λy.P = λy.C ′[R′] =
C[R′].

∗ If M 6∈ Rr then C = λy.C ′ such that C ′ ∈ Rr
P . So, C[x := N ][R] =

λy.C ′[x := N ][R] and P [x := N ] = C ′[x := N ][R]. By IH, R =
R′[x := N ] and P = C ′[R′]. Hence, M = λy.P = λy.C ′[R′] = C[R′].

– Let M = PQ so M [x := N ] = P [x := N ]Q[x := N ]. By lemma 2.5:
∗ If M ∈ Rr then:

· Either C = � so M [x := N ] = C[x := N ][R] = �[x := N ][R] =
R. So R = M [x := N ] and M = �[M ].

· Or C = C ′Q such that C ′ ∈ Rr
P . Then, C[x := N ][R] = C ′[x :=

N ][R]Q[x := N ] = P [x := N ]Q[x := N ] and P [x := N ] =
C ′[x := N ][R]. By IH, R = R′[x := N ] and P = C ′[R′]. Hence,
M = PQ = C ′[R′]Q = C[R′].

· Or C = PC ′ such that C ′ ∈ Rr
Q. Then, C[x := N ][R] = P [x :=

N ]C ′[x := N ][R] = P [x := N ]Q[x := N ] and Q[x := N ] =
C ′[x := N ][R]. By IH, R = R′[x := N ] and Q = C ′[R′]. Hence,
M = PQ = PC ′[R′] = C[R′].

∗ If M 6∈ Rr then:
· Either C = C ′Q such that C ′ ∈ Rr

P . Then, C[x := N ][R] =
C ′[x := N ][R]Q[x := N ] = P [x := N ]Q[x := N ] and P [x :=
N ] = C ′[x := N ][R]. By IH, R = R′[x := N ] and P = C ′[R′].
Hence, M = PQ = C ′[R′]Q = C[R′].
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· Or C = PC ′ such that C ′ ∈ Rr
Q. Then, C[x := N ][R] = P [x :=

N ]C ′[x := N ][R] = P [x := N ]Q[x := N ] and Q[x := N ] =
C ′[x := N ][R]. By IH, R = R′[x := N ] and Q = C ′[R′]. Hence,
M = PQ = PC ′[R′] = C[R′].

⇐) We prove the statement by induction on the structure of M .

– M 6∈ V since by lemma 2.5, Rr
M = ∅.

– Let M = λy.P . By lemma 2.5:

∗ Let M ∈ Rr.
· Either C = � and R = M , so C[x := N ][R[x := N ]] = �[M [x :=

N ]] = M [x := N ].
· Or C = λy.C ′ such that C ′ ∈ Rr

P . Then, λy.P = λy.C ′[R] so
P = C ′[R]. By IH, P [x := N ] = C ′[x := N ][R[x := N ]]. Hence,
M [x := N ] = λy.P [x := N ] = λy.C ′[x := N ][R[x := N ]] =
(λy.C ′[x := N ])[R[x := N ]] = (λy.C ′)[x := N ][R[x := N ]] =
C[x := N ][R[x := N ]].

∗ Let M 6∈ Rr, then C = λy.C ′ such that C ′ ∈ Rβη
P . Then, λy.P =

λy.C ′[R] so P = C ′[R]. By IH, P [x := N ] = C ′[x := N ][R[x := N ]].
Hence, M [x := N ] = λy.P [x := N ] = λy.C ′[x := N ][R[x := N ]] =
(λy.C ′[x := N ])[R[x := N ]] = (λy.C ′)[x := N ][R[x := N ]] = C[x :=
N ][R[x := N ]].

– Let M = PQ. By lemma 2.5:

∗ Let M ∈ Rr.
· Either C = � and R = M , so C[x := N ][R[x := N ]] = �[M [x :=

N ]] = M [x := N ].
· Or C = C ′Q such that C ′ ∈ Rr

P . Then, PQ = (C ′Q)[R] =
C ′[R]Q and P = C ′[R]. By IH, P [x := N ] = C ′[x := N ][R[x :=
N ]]. Hence, M [x := N ] = P [x := N ]Q[x := N ] = C ′[x :=
N ][R[x := N ]]Q[x := N ] = (C ′[x := N ]Q[x := N ])[R[x :=
N ]] = (C ′Q)[x := N ][R[x := N ]] = C[x := N ][R[x := N ]].

· Or C = PC ′ such that C ′ ∈ Rr
Q. Then PQ = (PC ′)[R] =

PC ′[R] and Q = C ′[R]. By IH, Q[x := N ] = C ′[x := N ][R[x :=
N ]]. Hence, M [x := N ] = P [x := N ]Q[x := N ] = P [x :=
N ]C ′[x := N ][R[x := N ]] = (P [x := N ]C ′[x := N ])[R[x :=
N ]] = (PC ′)[x := N ][R[x := N ]] = C[x := N ][R[x := N ]].

∗ Let M 6∈ Rβη.
· Either C = C ′Q such that C ′ ∈ Rr

P . Then, PQ = (C ′Q)[R] =
C ′[R]Q and P = C ′[R]. By IH, P [x := N ] = C ′[x := N ][R[x :=
N ]]. Hence, M [x := N ] = P [x := N ]Q[x := N ] = C ′[x :=
N ][R[x := N ]]Q[x := N ] = (C ′[x := N ]Q[x := N ])[R[x :=
N ]] = (C ′Q)[x := N ][R[x := N ]] = C[x := N ][R[x := N ]].

· Or C = PC ′ such that C ′ ∈ Rr
Q. Then PQ = (PC ′)[R] =

PC ′[R] and Q = C ′[R]. By IH, Q[x := N ] = C ′[x := N ][R[x :=
N ]]. Hence, M [x := N ] = P [x := N ]Q[x := N ] = P [x :=
N ]C ′[x := N ][R[x := N ]] = (P [x := N ]C ′[x := N ])[R[x :=
N ]] = (PC ′)[x := N ][R[x := N ]] = C[x := N ][R[x := N ]].

Lemma 2.8. We prove the lemma by induction on the structure of C.
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• Let C = � then C[x := N ][R] = �[R] = R and C[R][x := N ] = R[x := N ] =
R.

• Let C = λy.C ′. By (BC), x 6= y. Then, C[x := N ][R] = λy.C ′[x :=
N ][R] =IH λy.C ′[R][x := N ] = C[R][x := N ].

• Let C = C ′P . Then, C[x := N ][R] = C ′[x := N ][R]P [x := N ] =IH

C ′[R][x := N ]P [x := N ] = (C ′[R]P )[x := N ] = C[R][x := N ].

• Let C = PC ′. Then, C[x := N ][R] = P [x := N ]C ′[x := N ][R] =IH P [x :=
N ]C ′[R][x := N ] = (PC ′[R])[x := N ] = C[R][x := N ].

Lemma 2.9.

1. By case on the structure of M .

• let M ∈ V.

– Either M = x then, M [x := c(cx)] = c(cx). Hence, c(cx) 6= y,
c(cx) 6= Py since cx 6= y and c(cx) 6= λy.P .

– Or M = z 6= x then M [x := c(cx)] = z. Hence, if z = y then M = y,
z 6= Py and z 6= λy.P .

• Let M = λz.M ′ then M [x := c(cx)] = λz.M ′[x := c(cx)]. Hence,
λz.M ′[x := c(cx)] 6= y and λz.M ′[x := c(cx)] 6= Py. By (BC), y 6∈
FV (M ′) so M = λy.M ′[z := y] and M [x := c(cx)] = λy.M ′[z := y][x :=
c(cx)] = λy.P . Hence, M ′[z := y][x := c(cx)] = P

• Let M = M1M2 then M [x := c(cx)] = M1[x := c(cx)]M2[x := c(cx)].
Hence, M1[x := c(cx)]M2[x := c(cx)] 6= y and M1[x := c(cx)]M2[x :=
c(cx)] 6= λy.P . If M1[x := c(cx)]M2[x := c(cx)] = Py then P = M1[x :=
c(cx)] and M2[x := c(cx)] = y. So M2 = y.

2. By case on the structure of M .

• Let M ∈ V then M 6∈ Rβη and M [x := c(cx)] 6∈ Rβη.

• Let M = λy.N then M [x := c(cx)] = λy.N [x := c(cx)]. By (BC),
x 6= y 6= c.

– If M ∈ Rβη then N = Py such that y 6∈ FV (P ). N [x := c(cx)] =
P [x := c(cx)]y and y 6∈ FV (P [x := c(cx)]), so M [x := c(cx)] ∈ Rβη.

– If M [x := c(cx)] ∈ Rβη then N [x := c(cx)] = Py such that y 6∈
FV (P ). By 1, N = Qy and P = Q[x := c(cx)]. So M = λy.Qy.
Since y 6∈ FV (P ), y 6∈ FV (Q). So M ∈ Rη.

• Let M = M1M2 then M [x := c(cx)] = M1[x := c(cx)]M2[x := c(cx)].

– If M ∈ Rβη then M1 = λy.M0. So M [x := c(cx)] = (λy.M0[x :=
c(cx)])M2[x := c(cx)] ∈ Rβη.

– If M [x := c(cx)] ∈ Rβη then M1[x := c(cx)] = λy.P . By 1, M1 =
λy.M0 and P = M0[x := c(cx)]. So, M ∈ Rβη

3. ⇒) Let C ∈ Rβη
λx.M [x:=c(cx)]. By lemma 2.4, λx.M [x := c(cx)] 6∈ Rβη so by

lemma 2.5, C = λx.C ′ such that C ′ ∈ Rβη
M [x:=c(cx)].

⇐) Let C ∈ Rβη
M [x:=c(cx)]. By lemma 2.5, λx.C ∈ Rβη

λx.M [x:=c(cx)].

4. ⇒) Let C ∈ Rβη
M [x:=c(cx)]. We prove the statement by induction on the

structure of M

– M 6∈ V since Rβη
M [x:=c(cx)] = ∅.
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– Let M = λy.N so M [x := c(cx)] = λy.N [x := c(cx)]. By lemma 2.5:
∗ If M ∈ Rβη then by 2, M [x := c(cx)] ∈ Rβη.
· Either C = � and C[x := c(cx)] = � ∈ Rβη

M .

· Or C = λy.C ′ such that C ′ ∈ Rβη
N [x:=c(cx)]. By IH, C ′ =

C ′′[x := c(cx)] and C ′′ ∈ Rβη
N . Hence C = λy.C ′′[x :=

c(cx)] = (λy.C ′′)[x := c(cx)] and by lemma 2.5, λy.C ′′ ∈ Rβη
M .

∗ Or M 6∈ Rβη then by 2, M [x := c(cx)] 6∈ Rβη. So, C = λy.C ′

such that C ′ ∈ Rβη
N [x:=c(cx)]. By IH, C ′ = C ′′[x := c(cx)] and

C ′′ ∈ Rβη
N . Hence C = λy.C ′′[x := c(cx)] = (λy.C ′′)[x := c(cx)]

and by lemma 2.5, λy.C ′′ ∈ Rβη
M .

– Let M = M1M2 so M [x := c(cx)] = M1[x := c(cx)]M2[x := c(cx)].
By lemma 2.5:
∗ If M ∈ Rβη then by 2, M [x := c(cx)] ∈ Rβη.
· Either C = � and C[x := c(cx)] = � ∈ Rβη

M .

· Or C = C1M2[x := c(cx)] such that C1 ∈ Rβη
M1[x:=c(cx)].

By IH, C1 = C ′
1[x := c(cx)] and C ′

1 ∈ Rβη
M1

. Hence C =
(C ′

1M2)[x := c(cx)] and by lemma 2.5, C ′
1M2 ∈ Rβη

M .

· Or C = M1[x := c(cx)]C2 such that C2 ∈ Rβη
M2[x:=c(cx)].

By IH, C2 = C ′
2[x := c(cx)] and C ′

2 ∈ Rβη
M1

. Hence C =
(M1C

′
2)[x := c(cx)] and by lemma 2.5, M1C

′
2 ∈ R

βη
M .

∗ Or M 6∈ Rβη then by 2, M [x := c(cx)] 6∈ Rβη.
· Either C = C1M2[x := c(cx)] and C1 ∈ Rβη

M1[x:=c(cx)]. By IH,

C1 = C ′
1[x := c(cx)] and C ′

1 ∈ R
βη
M1

. Hence C = (C ′
1M2)[x :=

c(cx)] and by lemma 2.5, C ′
1M2 ∈ Rβη

M .

· Or C = M1[x := c(cx)]C2 and C2 ∈ Rβη
M2[x:=c(cx)]. By IH,

C2 = C ′
2[x := c(cx)] and C ′

2 ∈ R
βη
M1

. Hence C = (M1C
′
2)[x :=

c(cx)] and by lemma 2.5, M1C
′
2 ∈ R

βη
M .

⇐) Let C ∈ Rr
M . Then C ∈ C and ∃R ∈ Rβη such that C[R] = M . So by 2,

R[x := c(cx)] ∈ Rβη and by lemma 2.7, C[x := c(cx)][R[x := c(cx)]] =
M [x := c(cx)]. Hence, by definition, C[x := c(cx)] ∈ Rr

M [x:=c(cx)].

5. We prove this statement by induction on n ≥ 0.

• Let n = 0 then trivial.

• let n = m+1 such that m ≥ 0. By lemma 2.5, Rβη
cm(M) = {Ccm(M) | C ∈

Rβη
c } ∪ {c(C) | C ∈ Rβη

cm(M)} =IH {cn(C) | C ∈ Rβη
M }.

Lemma 2.10. We prove the statement by case on r.

• Either r = βI. Since M ∈ ΛIc, M ∈ ΛI, so λx.P, Q ∈ ΛI. Hence, x ∈ FV (P )
and M ∈ RβI .

• Or r = βη. Trivial.

Lemma 2.11. We prove the statement by induction on the structure of M .

• Let M ∈ V \ {c}. Nothing to prove since by lemma 2.5, Rr
M = ∅.
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• Let M = λx.N ∈ ΛI. let C ∈ RβI
M then by definition, ∃R ∈ RβI such that

M = C[R]. Since M 6∈ RβI , by lemma 2.5, C = λx.C ′ such that C ′ ∈ RβI
N .

So λx.N = λx.C ′[R] and N = C ′[R]. By IH, R ∈ ΛIc.

• Let M = λx.N [x := c(cx)] ∈ Ληc such that N ∈ Ληc. Let C ∈ Rβη
M then by

definition ∃R ∈ Rβη such that M = C[R]. By lemma 2.9.3, C = λx.C ′ and
C ′ ∈ Rβη

N [x:=c(cx)]. By lemma 2.9.4, C ′ = C ′′[x := c(cx)] and C ′′ ∈ Rβη
N . Since

x 6∈ FV (R), by lemma 2.8, λx.N [x := c(cx)] = (λx.C ′′[x := c(cx)])[R] =
λx.C ′′[x := c(cx)][R] = λx.C ′′[R][x := c(cx)] and N = C ′′[R]. By IH, R ∈
Ληc.

• Let M = λx.Nx ∈ Ληc such that Nx ∈ Ληc, x 6∈ FV (N) and c 6= N . Let
C ∈ Rβη

M then by definition ∃R ∈ Rβη such that M = C[R]. Since M ∈ Rβη,
by lemma 2.5:

– Either C = � so �[R] = R = M and M ∈ Ληc.

– Or C = λx.C ′ such that C ′ ∈ Rβη
Nx. So M = λx.Nx = λx.C ′[R] and

Nx = C ′[R]. By IH, R ∈ Ληc.

• Let M = cNP ∈ Mc such that N,P ∈ Mc. Let C ∈ Rr
M then by definition

∃R ∈ Rr such that M = C[R]. Since M, cN 6∈ Rr, by lemma 2.5:

– Either C = cC ′P such that C ′ ∈ Rr
N . So M = cNP = (cC ′P )[R] =

cC ′[R]P and N = C ′[R]. By IH, R ∈Mc.

– Or C = cNC ′ such that C ′ ∈ RP
r . So M = cNP = (cNC ′)[R] =

cNC ′[R] and P = C ′[R]. By IH, R ∈Mc.

• Let M = (λx.N)P ∈ Mc such that λx.N, P ∈ Mc. Let C ∈ Rr
M then by

definition ∃R ∈ Rr such that M = C[R]. Since by lemma 2.10, M ∈ Rr, by
lemma 2.5:

– Either C = � so M = �[R] = R and M ∈Mc.

– Or C = C ′P such that C ′ ∈ Rr
λx.N . So M = (λx.N)P = (C ′P )[R] =

C ′[R]P and λx.N = C ′[R]. By IH, R ∈Mc.

– Or C = (λx.N)C ′ such that C ′ ∈ Rr
P . So M = (λx.N)P =

((λx.N)C ′)[R] = (λx.N)C ′[R] and P = C ′[R]. By IH, R ∈Mc.

• Let M = cN ∈ Ληc such that N ∈ Ληc. Let C ∈ Rβη
M then by definition

∃R ∈ Rβη such that M = C[R]. Since M 6∈ Rβη, by lemma 2.5, C = cC ′ such
that C ′ ∈ Rβη

N . So M = cN = cC ′[R] and N = C ′[R]. By IH, R ∈ Ληc.

Lemma 2.12.

1. By induction on M →βη M ′.

• Let M = λx.Nx →η N = M ′ where x 6∈ FV (N). By lemma 2.4,
N ∈ Ληc.

• Let M = (λx.N)P →β N [x := P ] = M ′. By lemmas 2.4 and 2.4.9,
N,P ∈ Ληc. By lemma 2.4.8, N [x := P ] ∈ Ληc.

• Let M = λx.N →βη λx.N ′ = M ′ such that N →βη N ′. By lemma 2.4:

– Either M = λx.P [x := c(cx)] where P ∈ Ληc and P [x := c(cx)] →βη

N ′. So by lemma 2.4.9.9c, N ′ = N ′′[x := c(cx)] and P →βη N ′′. By
IH, N ′′ ∈ Ληc so by BC, (R1).3, λx.N ′ ∈ Ληc.

– Or M = λx.Px where P, Px ∈ Ληc, x 6∈ FV (P ), P 6= c and Px →βη

N ′. So by IH, N ′ ∈ Ληc. One of two cases holds:
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∗ Px →βη P ′x where P →βη P ′. By IH, P ′, P ′x ∈ Ληc. By
lemmas 2.4.3 and 2.2.1, P ′ 6= c and x 6∈ FV (P ′). By (R1).4,
λx.P ′x ∈ Ληc.

∗ P = λy.P0 and Px →β P0[y := x]. So M →β λx.P0[y := x] =
P ∈ Ληc.

• Let M = M1M2 →βη M ′
1M2 = M ′ such that M1 →βη M ′

1. By
lemma 2.4:

– Either M1 = cM0 and M0,M2 ∈ Ληc. Then, M1 = cM0 →βη cM ′
0 =

M ′
1 where M0 →βη M ′

0. By IH, M ′
0 ∈ Ληc, so by (R2), M ′ ∈ Ληc.

– Or M1 = λx.M0 and M1,M2 ∈ Ληc. By lemma 2.4.9.9a, M0 ∈ Ληc

and by IH, M ′
1 ∈ Ληc.

∗ Either M = (λx.M0)M2 →βη (λx.M ′
0)M2 where M0 →βη M ′

0.
So M ′

1 = λx.M ′
0 is a λ-abstraction and by (R3), M ′ ∈ Ληc.

∗ Or M = (λx.M ′
1x)M2 →η M ′

1M2 where x 6∈ FV (M ′
1). Since

M1 ∈ Ληc, by lemma 2.4, M ′
1 6= c and M ′

1 ∈ Ληc. Since M0 =
M ′

1x ∈ Ληc, again by lemma 2.4, either M ′
1 = cM ′′

1 such that
M ′′

1 ∈ Ληc and so by (R2) M ′ ∈ Ληc, or M ′
1 ∈ Ληc is a λ-

abstraction and so by (R3) M ′ ∈ Ληc.

• Let M = M1M2 →βη M1M
′
2 = M ′ such that M2 →βη M ′

2. By
lemma 2.4, M2 ∈ Ληc so by IH, M ′

2 ∈ Ληc. By lemma 2.4, there are
3 cases:

– M1 = cM0 where M0 ∈ Ληc. Then, M ′ ∈ Ληc by (R2).
– M1 ∈ Ληc is a λ-abstraction. Then M ′ ∈ Ληc by (R3).
– M1 = c. Then M ′ ∈ Ληc by (R4).

2. By induction on M →βI M ′ in a similar fashion to the above.

Lemma ’refncstwo. We prove the statement by induction on n ≥ 0.

• Let n = 0 then by definition |cn(M)|c = |M |c.

• Let n = m+1 such that m ≥ 0 then |cn(M)|c = |c(cm(M))|c = |cm(M)|c =IH

|M |c.

Lemma 2.16.

• let P ∈ V. We prove the statement by induction on the structure of M .

– Let M ∈ V then |M |c = M = P .

– Let M = λx.N then |M |c = λx.|N |c 6= P .

– Let M = M1M2. If M1 = c then |M |c = |M2|c. By IH, ∃n ≥ 0 such that
M2 = cn(P ). If M1 6= c then |M |c = |M1|c|M2|c 6= P .

• Let P = λx.Q. We prove the statement by induction on the structure of M .

– Let M ∈ V then |M |c = M 6= λx.Q.

– Let M = λx.N then |M |c = λx.|N |c so |N |c = Q.

– Let M = M1M2. If M1 = c then |M |c = |M2|c. By IH, ∃n ≥ 0 such that
M2 = cn(λx.N) and |N |c = Q. If M1 6= c then |M |c = |M1|c|M2|c 6=
λx.Q.

• Let P = P1P2. We prove the statement by induction on the structure of M .

– Let M ∈ V then |M |c = M 6= P1P2.
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– Let M = λx.N then |M |c = λx.|N |c 6= P1P2.

– Let M = M1M2. If M1 = c then |M |c = |M2|c. By IH, ∃n ≥ 0 such
that M2 = cn(M ′

2M
′′
2 ), |M ′

2|c = P1 and |M ′′
2 |c = P2. If M1 6= c then

|M |c = |M1|c|M2|c = P1P2 so |M1|c = P1 and |M2|c = P2.

Lemma 2.17. We prove the statement by induction on M .

• Let M ∈ V then by lemma 2.5, Rr
M = ∅.

• Let M = λx.N then by lemma 2.5:

– Either M ∈ Rr then:

∗ Either C = � = C ′ so it is done.
∗ Or C = � and C ′ = λx.C ′

0 such that C ′
0 ∈ Rr

N . Nothing to prove
since � 6= λx.|C ′

0|cC .
∗ Or C = λx.C0 and C ′ = λx.C ′

0 such that C0, C
′
0 ∈ Rr

N . By hy-
pothesis, λx.|C0|cC = λx.|C ′

0|cC so |C0|cC = |C ′
0|cC . By IH, C0 = C ′

0 so
C = C ′.

– Or M 6∈ Rr then C = λx.C0 and C ′ = λx.C ′
0 such that C0, C

′
0 ∈ Rr

N .
By hypothesis, λx.|C0|cC = λx.|C ′

0|cC so |C0|cC = |C ′
0|cC . By IH, C0 = C ′

0

so C = C ′.

• Let M = PQ then by lemma 2.5:

– Either M ∈ Rr, so P is a λ-abstraction and:

∗ Either C = � = C ′ so it is done.
∗ Or C = � and C ′ = C ′

0Q such that C ′
0 ∈ Rr

P . Nothing to prove
since � 6= |C ′

0|cC |Q|c.
∗ Or C = � and C ′ = PC ′

0 such that C ′
0 ∈ Rr

Q. Since P is a λ-
abstraction, � 6= |P |c|C ′

0|cC .
∗ Or C = C0Q and C ′ = C ′

0Q such that C0, C
′
0 ∈ Rr

P . Since by
hypothesis, |C|cC = |C0|cC |Q|c = |C ′

0|cC |Q|c = |C ′|cC , then |C0|cC =
|C ′

0|cC . By IH, C0 = C ′
0 so C = C ′.

∗ Or C = C0Q and C ′ = PC ′
0 such that C0 ∈ Rr

P and C ′
0 ∈ Rr

Q. Since
P is a λ-abstraction, |C|cC = |C0|cC |Q|c 6= |P |c|C ′

0|cC = |C ′|cC .
∗ Or C = PC0 and C ′ = PC ′

0 such that C0, C
′
0 ∈ Rr

Q. Since P is a
λ-abstraction, by hypothesis, |C|cC = |P |c|C0|cC = |P |c|C ′

0|cC = |C ′|cC
so |C0|cC = |C ′

0|cC . By IH, C0 = C ′
0 so C = C ′.

– Or M 6∈ Rr, then:

∗ Or C = C0Q and C ′ = C ′
0Q such that C0, C

′
0 ∈ Rr

P . Since by
hypothesis, |C|cC = |C0|cC |Q|c = |C ′

0|cC |Q|c = |C ′|cC , then |C0|cC =
|C ′

0|cC . By IH, C0 = C ′
0 so C = C ′.

∗ Or C = C0Q and C ′ = PC ′
0 such that C0 ∈ Rr

P and C ′
0 ∈ Rr

Q.
P =6= c, otherwise, by lemma 2.5, Rr

P = ∅. Moreover, |C|cC =
|C0|cC |Q|c 6= |P |c|C ′

0|cC = |C ′|cC .
∗ Or C = PC0 and C ′ = PC ′

0 such that C0, C
′
0 ∈ Rr

Q. If P 6= c then,
by hypothesis, |C|cC = |P |c|C0|cC = |P |c|C ′

0|cC = |C ′|cC so |C0|cC =
|C ′

0|cC . By IH, C0 = C ′
0 so C = C ′. If P = c then, by hypothesis,

|C|cC = |C0|cC = |C ′
0|cC = |C ′|cC so |C0|cC = |C ′

0|cC . By IH, C0 = C ′
0 so

C = C ′.
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Lemma 2.18. We prove the statement by induction on the structure of M .

• Let M ∈ V

– Let M = x then |M [x := c(cx)]|c = |c(cx)|c = |x|c.
– Let M = y 6= x then |M [x := c(cx)]|c = |M |c.

• Let M = λy.N then |M [x := c(cx)]|c = λy.|N [x := c(cx)]|c =IH λy.|N |c =
|M |c.

• Let M = NP .

– Either N = c, so N [x := c(cx)] = c. Then, |M [x := c(cx)]|c = |P [x :=
c(cx)]|c =IH |P |c = |M |c.

– Or N 6= c, so N [x := c(cx)] 6= c. Then, |M [x := c(cx)]|c = |N [x :=
c(cx)]|c|P [x := c(cx)]|c =IH |N |c|P |c = |M |c.

Lemma 2.19. We prove the statement by induction on the structure of C.

• Let C = � then |C[x := c(cx)]|cC = � = |C|cC .

• Let C = λy.C ′ then |C[x := c(cx)]|cC = λy.|C ′[x := c(cx)]|cC =IH λy.|C ′|cC =
|C|cC .

• Let C = C ′P then |C[x := c(cx)]|cC = |C ′[x := c(cx)]|cC |P [x := c(cx)]|c =IH, 2.18

|C ′|cC |P |c = |C|cC .

• Let C = PC ′.

– Either P = c, so P [x := c(cx)] = c. Then, |C[x := c(cx)]|cC = |C ′[x :=
c(cx)]|cC =IH |C ′|cC = |C|cC .

– Or P 6= c, so P [x := c(cx)] 6= c. Then, |C[x := c(cx)]|cC = |P [x :=
c(cx)]|c|C ′[x := c(cx)]|cC =IH, 2.18 |P |c|C ′|cC = |C|cC .

Lemma 2.20. We prove this lemma by induction on the structure of M .

• Let M ∈ V \ {c}.

– Either M = x then |M [x := N ]|c = |N |c = M [x := |N |c] = |M |c[x :=
|N |c].

– Or M = y 6= x then |M [x := N ]|c = |M |c = M = M [x := |N |c] =
|M |c[x := |N |c].

• Let M = λy.P ∈ ΛI. |M [x := N ]|c = λy.|P [x := N ]|c =IH λy.|P |c[x :=
|N |c] = |M |c[x := |N |c].

• Let M = λy.P [y := c(cy)] ∈ Ληc such that P ∈ Ληc. Since y 6∈ FV (N),
|M [x := N ]|c = λy.|P [y := c(cy)][x := N ]|c = λy.|P [x := N ][y := c(cy)]|c =2.18

λy.|P [x := N ]|c =IH λy.|P |c[x := |N |c] =2.18 |P [y := c(cy)]|c[x := |N |c] =
|M |c[x := |N |c].

• Let M = λy.Py ∈ Ληc such that Py ∈ Ληc, y 6∈ FV (P ) and c 6= N . |M [x :=
N ]|c = λy.|(Py)[x := N ]|c =IH λy.|Py|c[x := |N |c] = |M |c[x := |N |c].
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• Let M = cPQ ∈ Mc such that P,Q ∈ Mc. |M [x := N ]|c = |P [x :=
N ]|c|Q[x := N ]|c =IH |P |c[x := |N |c]|Q|c[x := |N |c] = (|P |c|Q|c)[x :=
|N |c] = |M |c[x := |N |c].

• Let M = (λy.P )Q ∈ Mc such that λy.P, Q ∈ Mc. |M [x := N ]|c =
|(λy.P )[x := N ]|c|Q[x := N ]|c =IH |λy.P |c[x := |N |c]|Q|c[x := |N |c] =
(|λy.P |c|Q|c)[x := |N |c] = |M |c[x := |N |c].

• Let M = cP ∈ Ληc such that N ∈ Ληc. |M [x := N ]|c = |P [x := N ]|c =IH

|P |c[x := |N |c] = |M |c[x := |N |c].

Lemma 2.21. We prove this lemma by induction on the structure of M .

• Let M ∈ V \ {c} then |M |c = M and FV (M) \ {c} = {M} = FV (|M |c).

• Let M = λy.P ∈ ΛI then |M |c = λy.|P |c. FV (M)\{c} = FV (P )\{y, c} =IH

FV (|P |c) \ {y} = FV (|M |c).

• Let M = λy.P [y := c(cy)] ∈ Ληc such that P ∈ Ληc. |M |c = λy.|P [y :=
c(cy)]|c =2.18 λy.|P |c. FV (M) \ {c} = FV (P [y := c(cy)]) \ {c, y} = FV (P ) \
{c, y} =IH FV (|P |c) \ {y} = FV (|M |c).

• Let M = λy.Py ∈ Ληc such that Py ∈ Ληc, y 6∈ FV (P ) and c 6= N . |M |c =
λy.|Py|c. FV (M)\{c} = FV (Py)\{c, y} =IH FV (|Py|c)\{y} = FV (|M |c).

• Let M = cPQ ∈Mc such that P,Q ∈Mc. |M |c = |P |c|Q|c. FV (M) \ {c} =
(FV (P ) ∪ FV (Q)) \ {c} = (FV (P ) \ {c}) ∪ (FV (Q) \ {c}) =IH FV (|P |c) ∪
FV (|Q|c) = FV (|M |c).

• Let M = (λy.P )Q ∈ Mc such that λy.P, Q ∈ Mc. |M |c = |λy.P |c|Q|c.
FV (M) \ {c} = (FV (λy.P ) ∪ FV (Q)) \ {c} = (FV (λy.P ) \ {c}) ∪ (FV (Q) \
{c}) =IH FV (|λy.P |c) ∪ FV (|Q|c) = FV (|M |c).

• Let M = cP ∈ Ληc such that N ∈ Ληc. |M |c = |P |c. FV (M) \ {c} =
FV (P ) \ {c} =IH FV (|P |c) = FV (|M |c).

Lemma 2.22. We prove the lemma by induction on the structure of M .

• Let M ∈ V \ {c} then |M |c = M ∈ V \ {c} ⊆ ΛI.

• let M = λx.N then |M |c = λx.|N |c. By (BC), x 6= c. Since N ∈ ΛIc, by IH,
|N |c ∈ ΛI. Since x ∈ FV (N), by lemma 2.21, x 6∈ FV (|N |c), so |M |c ∈ ΛI.

• Let M = cPQ then |M |c = |P |c|Q|c. Since P,Q ∈ ΛIc, by IH, |P |c, |Q|c ∈ ΛI,
hence |M |c ∈ ΛI.

• Let M = (λx.P )Q then |M |c = |λx.P |c|Q|c. Since λx.P, Q ∈ ΛIc, by IH,
|λx.P |c, |Q|c ∈ ΛI, hence |M |c ∈ ΛI.

Lemma 2.23. We prove this lemma by case on r.

• Either r = βI, so R = (λx.M)N such that x ∈ FV (M). By (BC), x 6= c.
Since R ∈ ΛIc by lemma 2.4, (λx.M), N ∈ ΛIc and again by lemma 2.4,
M ∈ ΛIc. By lemma 2.21, x ∈ FV (|M |c), so |R|c = (λx.|M |c)|N |c ∈ RβI .
|M |c[x := |N |c] =2.20 |M [x := N ]|c is the contractum of |R|c and M [x := N ]
is the contractum of R.

• Or r = βη, so R ∈ Rβη.
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– Either R ∈ Rβ , so R = (λx.M)N . By (BC), x 6= c. Since R ∈ Ληc

by lemma 2.4, (λx.M), N ∈ Ληc and again by lemma 2.4, M ∈ Ληc.
|R|c = (λx.|M |c)|N |c ∈ Rβη. |M |c[x := |N |c] =2.20 |M [x := N ]|c is the
contractum of |R|c and M [x := N ] is the contractum of R.

– Or R ∈ Rβ , so R = λx.Mx such that x 6∈ FV (M). By (BC), x 6= c.
Since R ∈ Ληc, by lemma 2.4, M,Mx ∈ Ληc and again by lemma 2.4,
M 6= c. By lemma 2.21, x 6∈ FV (|M |c), so |R|c = λx.|M |cx ∈ Rβη.
Hence, |M |c is the contractum of |R|c and M is the contractum of R.

Lemma 2.24. We prove the statement by induction on the structure of M .

• Let M ∈ V \ {c} then by lemma 2.5, Rr
M = ∅.

• Let M = λy.P ∈ ΛI. Let C ∈ RβI
M then ∃R ∈ RβI such that M = C[R].

Since M 6∈ RβI , by lemma 2.5, C = λy.C ′ such that C ′ ∈ RβI
P . So, λy.P =

λy.C ′[R] and P = C ′[R]. By IH, |P |c = |C ′|cC [|R|c]. Hence, |M |c = λy.|P |c =
λy.|C ′|cC [|R|c] = (λy.|C ′|cC)[|R|c] = |C|cC [|R|c].

• Let M = λy.P [y := c(cy)] ∈ Ληc such that P ∈ Ληc. Let C ∈ Rβη
M then by

definition, ∃R ∈ Rβη such that M = C[R]. By lemma 2.9.3, C = λy.C ′ and
C ′ ∈ Rβη

P [y:=c(cy)]. By lemma 2.9.4, C ′ = C ′′[y := c(cy)] and C ′′ ∈ Rβη
P . Since

y 6∈ FV (R), λy.P [y := c(cy)] = λy.C ′′[y := c(cy)][R] =2.8 λy.C ′′[R][y :=
c(cy)] and P = C ′′[R]. By IH, |P |c = |C ′′|cC [|R|c]. Hence, |M |c = λy.|P [y :=
c(cy)]|c =2.18 λy.|P |c =IH λy.|C ′′|cC [|R|c] =2.19 λy.|C ′′[y := c(cy)]|cC [|R|c] =
(λy.|C ′′[y := c(cy)]|cC)[|R|c] = |C|cC [|R|c].

• Let M = λy.Py ∈ Ληc such that Py ∈ Ληc, y 6∈ FV (P ) and c 6= N . let
C ∈ Rβη

M then by definition, ∃R ∈ Rβη such that M = C[R]. Since M ∈ Rβη,
by lemma 2.5:

– Either C = � then M = C[R] = �[R] = R and |M |c = �[|M |c] =
|�|cC [|M |c] = |�|cC [|R|c].

– Or C = λy.C ′ such that C ′ ∈ Rβη
Py. So, λy.Py = λy.C ′[R] and Py =

C ′[R]. Hence, |M |c = λy.|Py|c =IH λy.|C ′|cC [|R|c] = |C|cC [|R|c].

• Let M = cPQ ∈ Mc such that P,Q ∈ Mc. let C ∈ Rr
M then by definition,

∃R ∈ RR such that M = C[R]. Since M, cP 6∈ Rr, by lemma 2.5:

– Either C = cC ′Q such that C ′ ∈ Rr
P . So, cPQ = cC ′[R]Q and P =

C ′[R]. Hence, |M |c = |P |c|Q|c =IH |C ′|cC [|R|c]|Q|c = (|C ′|cC |Q|c)[|R|c] =
|C|cC [|R|c].

– Or C = cPC ′ such that C ′ ∈ Rr
Q. So, cPQ = cPC ′[R] and Q =

C ′[R]. Hence, |M |c = |P |c|Q|c =IH |P |c|C ′|cC [|R|c] = (|P |c|C ′|cC)[|R|c] =
|C|cC [|R|c].

• Let M = (λy.P )Q ∈ Mc such that λy.P, Q ∈ Mc. Let C ∈ Rr
M then by

definition, ∃R ∈ Rr such that M = C[R]. Since by lemma 2.11, M ∈ Rr, by
lemma 2.5:

– Either C = � then M = C[R] = �[R] = R and |M |c = �[|M |c] =
|�|cC [|M |c] = |�|cC [|R|c].

– Or C = C ′Q such that C ′ ∈ Rr
λy.P . So, (λy.P )Q = C ′[R]Q and λy.P =

C ′[R]. Hence,
|M |c = |λy.P |c|Q|c =IH |C ′|cC [|R|c]|Q|c = (|C ′|cC |Q|c)[|R|c] = |C|cC [|R|c].
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– Or C = (λy.P )C ′ such that C ′ ∈ Rr
Q. So, (λy.P )Q = (λy.P )C ′[R] and

Q = C ′[R]. Now, |M |c = |λy.P |c|Q|c =IH

|λy.P |c|C ′|cC [|R|c] = (|λy.P |c|C ′|cC)[|R|c] = |C|cC [|R|c].

• Let M = cP ∈ Ληc such that N ∈ Ληc. Let C ∈ Rβη
M then ∃R ∈ Rβη such

that M = C[R]. Since M 6∈ Rβη, by lemma 2.5, C = cC ′ such that C ′ ∈ Rβη
P .

cP = cC ′[R] and P = C ′[R]. |M |c = |P |c =IH |C ′|cC [|R|c] = |C|cC [|R|c].

Lemma 2.25. Since C ∈ Rr
M , then by definition, ∃R ∈ Rr such that C[R] = M .

By lemma 2.11, R ∈ Mc. By lemma 2.23, |R|c ∈ Rr. By lemma 2.24, |M |c =

|C|cC [|R|c]. So by definition, |C|cC ∈ Rr
M and |C|cC [|R|c]

|C|cC→ r |C|cC [R′′] such that R′′

is the contractum of |R|c. So, by lemma 2.23, R′′ = |R′|c and R′ is the contractum
of R. By lemma 2.24, |C|cC [|R′|c] = |C[R′]|c.

Lemma 2.26. Let C ∈ Rr
M , then by definition, ∃R ∈ Rr such that M = C[R].

So M ′ = C[R′] such that R′ is the contractum of R. By lemma 2.25, |M |c =

|C[R]|c |C|cC→ r |C[R′]|c = |M ′|c.

Lemma 2.27. By (BC), x 6= c. The proof is by induction on the structure of M1.

• Let M1 ∈ V. Then M1 = |M1|c = |M2|c = M2.

– Either M1 = x, then M1[x := N1] = N1 and M2[x := N2] = N2. By
hypothesis |Rr

N1
|cC ⊆ |Rr

N2
|cC

– Or M1 = y 6= x then M1[x := N1] = y = M2[x := N2].

• Let M1 = λy.M ′
1 ∈ ΛIc then |M1|c = λy.M ′

1 = |M2|c. By lemma 2.16 and
since M2 ∈ ΛIc, M2 = λy.M ′

2 such that |M ′
2|c = |M ′

1|c. Since M1,M2 ∈
ΛIc and are λ-abstractions, M1N1,M2N2 ∈ ΛIc. Since |M1|c = λy.|M ′

1|c =
λy.|M ′

2|c = |M2|c, |M ′
1|c = |M ′

2|c. By lemma 2.5, RβI
M1

= {λy.C | C ∈ RβI
M ′

1
}

and RβI
M2

= {λy.C | C ∈ RβI
M ′

2
}. So, |RβI

M1
|cC = {λy.C | C ∈ |RβI

M ′
1
|cC} and

|RβI
M2
|cC = {λy.C | C ∈ |RβI

M ′
2
|cC}. Let C ∈ |RβI

M ′
1
|cC , then λy.C ∈ |RβI

M1
|cC ⊆

|RβI
M2
|cC . So C ∈ |RβI

M ′
2
|cC , i.e. |RβI

M ′
1
|cC ⊆ |RβI

M ′
2
|cC . By IH, |RβI

M ′
1[x:=N1]

|cC ⊆
|RβI

M ′
2[x:=N2]

|cC . Since M1[x := N1] = λy.M ′
1[x := N1] and M2[x := N2] =

λy.M ′
2[x := N2], by lemma 2.5, RβI

M1[x:=N1]
= {λy.C | C ∈ RβI

M ′
1[x:=N1]

} and

RβI
M2[x:=N2]

= {λy.C | C ∈ RβI
M ′

2[x:=N2]
}. So |RβI

M1[x:=N1]
|cC = {λy.C | C ∈

|RβI
M ′

1[x:=N1]
|cC} and |RβI

M2[x:=N2]
|cC = {λy.C | C ∈ |RβI

M ′
2[x:=N2]

|cC}. Let C ∈
|RβI

M1[x:=N1]
|cC then C = λy.C ′ such that C ′ ∈ |RβI

M ′
1[x:=N1]

|cC ⊆ |RβI
M ′

2[x:=N2]
|cC .

So C ∈ |RβI
M2[x:=N2]

|cC .

• Let M1 = λy.M ′
1[y := c(cy)] ∈ Ληc such that M ′

1 ∈ Ληc, then |M1|c =2.18

λy.|M ′
1|c. We prove the statement by induction on the structure of M2.

– Let M2 ∈ V \ {c} then |M2|c = M2 6= λy.|M ′
1|c.

– Let M2 = λy.M ′
2[y := c(cy)] such that M ′

2 ∈ Ληc, so M1N1,M2N2 ∈
Ληc. Since |M1|c = λy.|M ′

1[y := c(cy)]|c = λy.|M ′
2[y := c(cy)]|c =

|M2|c, |M ′
1[y := c(cy)]|c = |M ′

2[y := c(cy)]|c. Rβη
M1

=2.9.3 {λy.C | C ∈
Rβη

M ′
1[y:=c(cy)]}. R

βη
M2

=2.9.3 {λy.C | C ∈ Rβη
M ′

2[y:=c(cy)]}.
So |Rβη

M1
|cC = {λy.C | C ∈ |Rβη

M ′
1[y:=c(cy)]|

c
C} and |Rβη

M2
|cC = {λy.C | C ∈

|Rβη
M ′

2[y:=c(cy)]|
c
C}. Let C ∈ |Rβη

M ′
1[y:=c(cy)]|

c
C then λy.C ∈ rdbeEM1 ⊆
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|Rβη
M2
|cC , so C ∈ |Rβη

M ′
2[y:=c(cy)]|

c
C , i.e. |Rβη

M ′
1[y:=c(cy)]|

c
C ⊆ |Rβη

M ′
2[y:=c(cy)]|

c
C .

By IH, |Rβη
M ′

1[y:=c(cy)][x:=N1]
|cC = |Rβη

M ′
2[y:=c(cy)][x:=N2]

|cC .
Since M1[x := N1] = λy.M ′

1[y := c(cy)][x := N1] = λy.M ′
1[x := N1][y :=

c(cy)] and M2[x := N2] = λy.M ′
2[y := c(cy)][x := N2] = λy.M ′

2[x :=
N2][y := c(cy)], Rβη

M1[x:=N1]
=2.9.3 {λy.C | C ∈ Rβη

M ′
1[y:=c(cy)][x:=N1]

} and

Rβη
M2[x:=N2]

=2.9.3 {λy.C | C ∈ Rβη
M ′

2[y:=c(cy)][x:=N2]
}. So |Rβη

M1[x:=N1]
|cC =

{λy.C | C ∈ |Rβη
M ′

1[y:=c(cy)][x:=N1]
|cC} and |Rβη

M2[x:=N2]
|cC = {λy.C | C ∈

|Rβη
M ′

2[y:=c(cy)][x:=N2]
|cC}. Let C ∈ |RβI

M1[x:=N1]
|cC then C = λy.C ′ ∈

|RβI
M2[x:=N2]

|cC and C ′ ∈ |RβI
M ′

1[y:=c(cy)][x:=N1]
|cC ⊆ |RβI

M ′
2[y:=c(cy)][x:=N2]

|cC .

– Let M2 = λy.M ′
2y such that M ′

2y ∈ Ληc, y 6∈ FV (M ′
2) and M ′

2 6= c, so
M1N1,M2N2 ∈ Ληc. Since |M1|c = λy.|M ′

1[y := c(cy)]|c = λy.|M ′
2y|c =

|M2|c, |M ′
1[y := c(cy)]|c = |M ′

2y|c. R
βη
M1

=2.9.3 {λy.C | C ∈ Rβη
M ′

1[y:=c(cy)]}.
Since M2 ∈ Rβη, by lemma 2.5, Rβη

M2
= {�} ∪ {λy.C | C ∈ Rβη

M ′
2y}. So

|Rβη
M1
|cC = {λy.C | C ∈ |Rβη

M ′
1[y:=c(cy)]|

c
C} and |Rβη

M2
|cC = {�}∪{λy.C | C ∈

|Rβη
M ′

2y|
c
C}. Let C ∈ |Rβη

M ′
1[y:=c(cy)]|

c
C then λy.C ∈ rdbeEM1 ⊆ |Rβη

M2
|cC , so

C ∈ |Rβη
M ′

2y|
c
C , i.e. |Rβη

M ′
1[y:=c(cy)]|

c
C ⊆ |Rβη

M ′
2y|

c
C .

By IH, |Rβη
M ′

1[y:=c(cy)][x:=N1]
|cC = |Rβη

(M ′
2y)[x:=N2]

|cC . Since M1[x := N1] =
λy.M ′

1[y := c(cy)][x := N1] = λy.M ′
1[x := N1][y := c(cy)], M2[x :=

N2] = λy.(M ′
2y)[x := N2] = λy.M ′

2[x := N2]y and y 6∈ FV (N2), we have
M2[x := N2] ∈ Rβη, Rβη

M1[x:=N1]
=2.9.3 {λy.C | C ∈ Rβη

M ′
1[y:=c(cy)][x:=N1]

}
and Rβη

M2[x:=N2]
= {�} ∪ {λy.C | C ∈ Rβη

(M ′
2y)[x:=N2]

}.
So |Rβη

M1[x:=N1]
|cC = {λy.C | C ∈ |Rβη

M ′
1[y:=c(cy)][x:=N1]

|cC} and

|Rβη
M2[x:=N2]

|cC = {�} ∪ {λy.C | C ∈ |Rβη
(M ′

2y)[x:=N2]
|cC}.

Let C ∈ |RβI
M1[x:=N1]

|cC then C = λy.C ′ such that

C ′ ∈ |RβI
M ′

1[y:=c(cy)][x:=N1]
|cC ⊆ |RβI

(M ′
2y)[x:=N2]

|cC . So C ∈ |RβI
M2[x:=N2]

|cC .

– Let M2 = cP2Q2 such that P2, Q2 ∈ Ληc, then |M2|c = |P2|c|Q2|c 6=
λy.|M ′

1|c.
– Let M2 = P2Q2 such that P2, Q2 ∈ Ληc and P2 is a λ-abstraction, then
|M2|c = |P2|c|Q2|c 6= λy.|M ′

1|c.
– Let M2 = cM ′

2 such that M ′
2 ∈ Ληc. So |M2|c = |M ′

2|c. By lemma 2.9.5,
Rβη

M2
= {cC | C ∈ Rβη

M ′
2
}, so |Rβη

M1
|cC ⊆ |Rβη

M2
|cC = |Rβη

M ′
2
|cC . Again by

lemma 2.9.5, Rβη
M2[x:=N2]

= Rβη
cM ′

2[x:=N2]
= {cC | C ∈ Rβη

M ′
2[x:=N2]

}, so

|Rβη
M2[x:=N2]

|cC = |Rβη
M ′

2[x:=N2]
|cC . Since (λx.M ′

2)N2 ∈ Ληc, |Rβη
M1[x:=N1]

|cC
⊆IH |Rβη

M ′
2[x:=N2]

|cC = |Rβη
M2[x:=N2]

|cC .

• Let M1 = λy.M ′
1y ∈ Ληc such that M ′

1y ∈ Ληc, M ′
1 6= c and y 6∈ FV (M ′

1), then
|M1|c = λy.|M ′

1y|c. We prove the statement by induction on the structure of
M2.

– Let M2 ∈ V \ {c} then |M2|c = M2 6= λy.|M ′
1y|c.

– Let M2 = λy.M ′
2[y := c(cy)] such that M ′

2 ∈ Ληc. Since M1 ∈ Rβη,
Rβη

M1
= {�} ∪ {λy.C | C ∈ Rβη

M ′
1[y:=c(cy)]}. Moreover,

Rβη
M2

=2.9.3 {λy.C | C ∈ Rβη
M ′

2[y:=c(cy)]}, so � ∈ Rβη
M1

but � 6∈ Rβη
M2

.

– Let M2 = λy.M ′
2y such that M ′

2y ∈ Ληc, y 6∈ FV (M ′
2) and M ′

2 6= c,
so M1N1,M2N2 ∈ Ληc. Since |M1|c = λy.|M ′

1y|c = λy.|M ′
2y|c = |M2|c,
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|M ′
1y|c = |M ′

2y|c. Since M1,M2 ∈ Rβη, by lemma 2.5, Rβη
M1

= {�} ∪
{λy.C | C ∈ Rβη

M ′
1y} and Rβη

M2
= {�}∪{λy.C | C ∈ Rβη

M ′
2y}. So |Rβη

M1
|cC =

{�}∪{λy.C | C ∈ |Rβη
M ′

1y|
c
C} and |Rβη

M2
|cC = {�}∪{λy.C | C ∈ |Rβη

M ′
2y|

c
C}.

Let C ∈ |Rβη
M ′

1y|
c
C then λy.C ∈ rdbeEM1 ⊆ |Rβη

M2
|cC , so C ∈ |Rβη

M ′
2y|

c
C ,

i.e. |Rβη
M ′

1y|
c
C ⊆ |Rβη

M ′
2y|

c
C . By IH, |Rβη

(M ′
1y)[x:=N1]

|cC = |Rβη
(M ′

2y)[x:=N2]
|cC .

Since M1[x := N1] = λy.(M ′
1y)[x := N1] = λy.M ′

1[x := N1]y, M2[x :=
N2] = λy.(M ′

2y)[x := N2] = λy.M ′
2[x := N2]y and y 6∈ FV (N1) ∪

FV (N2), we have M1[x := N1],M2[x := N2] ∈ Rβη, Rβη
M1[x:=N1]

=

{�} ∪ {λy.C | C ∈ Rβη
(M ′

1y)[x:=N1]
} and Rβη

M2[x:=N2]
= {�} ∪ {λy.C | C ∈

Rβη
(M ′

2y)[x:=N2]
}. So |Rβη

M1[x:=N1]
|cC = {�}∪{λy.C | C ∈ |Rβη

(M ′
1y)[x:=N1]

|cC}
and |Rβη

M2[x:=N2]
|cC = {�} ∪ {λy.C | C ∈ |Rβη

(M ′
2y)[x:=N2]

|cC}. Let C ∈
|RβI

M1[x:=N1]
|cC then either C = � ∈ |Rβη

M2[x:=N2]
|cC or C = λy.C ′ such

that C ′ ∈ |RβI
(M ′

1y)[x:=N1]
|cC ⊆ |RβI

(M ′
2y)[x:=N2]

|cC . So C ∈ |RβI
M2[x:=N2]

|cC .

– Let M2 = cP2Q2 such that P2, Q2 ∈ Ληc, then |M2|c = |P2|c|Q2|c 6=
λy.|M ′

1y|c.
– Let M2 = P2Q2 such that P2, Q2 ∈ Ληc and P2 is a λ-abstraction, then
|M2|c = |P2|c|Q2|c 6= λy.|M ′

1y|c.
– Let M2 = cM ′

2 such that M ′
2 ∈ Ληc. So |M2|c = |M ′

2|c. By lemma 2.9.5,
Rβη

M2
= {cC | C ∈ Rβη

M ′
2
}, so |Rβη

M1
|cC ⊆ |Rβη

M2
|cC = |Rβη

M ′
2
|cC . Again by

lemma 2.9.5, Rβη
M2[x:=N2]

= Rβη
cM ′

2[x:=N2]
= {cC | C ∈ Rβη

M ′
2[x:=N2]

}, so

|Rβη
M2[x:=N2]

|cC = |Rβη
M ′

2[x:=N2]
|cC . Since (λx.M ′

2)N2 ∈ Ληc, |Rβη
M1[x:=N1]

|cC
⊆IH |Rβη

M ′
2[x:=N2]

|cC = |Rβη
M2[x:=N2]

|cC .

• Let M1 = cP1Q1 then |M1|c = |P1|c|Q1|c = |M2|c. M1 6∈ Rr. We prove the
statement by induction on the structure of M2:

– Let M2 ∈ V \ {c} then |M2|c = M2 6= |P1|c|Q1|c.
– Let M2 = λy.M ′

2 ∈ ΛIc then |M2|c = λy.|M ′
2|c 6= |P1|c|Q1|c.

– Let M2 = λy.M ′
2[x := c(cx)] ∈ Ληc then |M2|c = λy.|M ′

2[x := c(cx)]|c 6=
|P1|c|Q1|c.

– Let M2 = λy.M ′
2y ∈ Ληc then |M2|c = λy.|M ′

2y|c 6= |P1|c|Q1|c.
– Let M2 = P2Q2 ∈Mc such that P2, Q2 ∈Mc and P2 is a λ-abstraction,

then |P2|c = |P1|c and |Q2|c = |Q1|c. By lemma 2.10, since M2 ∈ Mc,
M2 ∈ Rr. By lemma 2.4.8, M2[x := N2] ∈ Mc and by lemma 2.10,
M2[x := N2] ∈ Rr. By lemma 2.5, Rr

M1
= {cCQ1 | C ∈ RP1

r } ∪
{cP1C | C ∈ Rr

Q1
} and RM2

r = {�} ∪ {CQ2 | C ∈ Rr
P2
} ∪ {P2C | C ∈

Rr
Q2
}. So |Rr

M1
|cC = {C|Q1|c | C ∈ |Rr

P1
|cC} ∪ {|P1|cC | C ∈ |Rr

Q1
|cC} and

|Rr
M2
|cC = {�} ∪ {C|Q2|c | C ∈ |Rr

P2
|cC} ∪ {|P2|cC | C ∈ |Rr

Q2
|cC}. Let

C ∈ |Rr
P1
|cC then C|Q1|c = C|Q2|c ∈ |Rr

M1
|cC ⊆ |Rr

M2
|cC . So C ∈ |Rr

P2
|cC ,

i.e. |Rr
P1
|cC ⊆ |Rr

P2
|cC . Let C ∈ |Rr

Q1
|cC then |P1|cC = |P2|cC ∈ |Rr

M1
|cC ⊆

|Rr
M2
|cC . So C ∈ |Rr

Q2
|cC , i.e. |Rr

Q1
|cC ⊆ |Rr

Q2
|cC . Since x ∈ FV (M1):

∗ Either x ∈ FV (P1) and x ∈ FV (Q1). By lemma 2.21, x ∈ FV (P2)
and x ∈ FV (Q2). Since P1, Q1, P2, Q2 ∈Mc then
(λx.P1)N1, (λx.Q1)N1, (λx.P2)N2, (λx.Q2)N2 ∈Mc. Hence, by IH,
|Rr

P1[x:=N1]
|cC ⊆ |Rr

P2[x:=N2]
|cC and |Rr

Q1[x:=N1]
|cC ⊆ |Rr

Q2[x:=N2]
|cC .

By lemma 2.20, |P1[x := N1]|c = |P1|c[x := |N1|c] = |P2|c[x :=
|N2|c] = |P2[x := N2]|c and |Q1[x := N1]|c = |Q1|c[x := |N1|c] =
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|Q2|c[x := |N2|c] = |Q2[x := N2]|c. By lemma 2.5, Rr
M1[x:=N1]

=
Rr

cP1[x:=N1]Q1[x:=N1]
= {cCQ1[x := N1] | C ∈ Rr

P1[x:=N1]
}∪

{cP1[x := N1]C | C ∈ Rr
Q1[x:=N1]

} and
Rr

M2[x:=N2]
= Rr

P2[x:=N2]Q2[x:=N2]
= {�} ∪ {CQ2[x := N2] | C ∈

Rr
P2[x:=N2]

}∪{P2[x := N2]C | C ∈ Rr
Q2[x:=N2]

}. So, |Rr
M1[x:=N1]

|cC =
|Rr

cP1[x:=N1]Q1[x:=N1]
|cC = {C|Q1[x := N1]|c | C ∈ |Rr

P1[x:=N1]
|cC} ∪

{|P1[x := N1]|cC | C ∈ |Rr
Q1[x:=N1]

|cC} and |Rr
M2[x:=N2]

|cC =
|Rr

P2[x:=N2]Q2[x:=N2]
|cC = {�}∪{C|Q2[x := N2]|c | C ∈ |Rr

P2[x:=N2]
|cC}

∪{|P2[x := N2]|cC | C ∈ |Rr
Q2[x:=N2]

|cC}. Let C ∈ |Rr
M1[x:=N1]

|cC :
· Either C = C ′|Q1[x := N1]|c = C ′|Q2[x := N2]|c such that

C ′ ∈ |Rr
P1[x:=N1]

|cC ⊆ |Rr
P2[x:=N2]

|cC . So C ∈ |Rr
M2[x:=N2]

|cC .
· Or C = |P1[x := N1]|cC ′ = |P2[x := N2]|cC ′ such that C ′ ∈
|Rr

Q1[x:=N1]
|cC ⊆ |Rr

Q2[x:=N2]
|cC . So C ∈ |Rr

M2[x:=N2]
|cC .

∗ Or x ∈ FV (P1) and x 6∈ FV (Q1). By lemma 2.21, x ∈ FV (P2) and
x 6∈ FV (Q2). Since P1, P2 ∈ Mc then (λx.P1)N1, (λx.P2)N2 ∈
Mc. So by IH, |Rr

P1[x:=N1]
|cC ⊆ |Rr

P2[x:=N2]
|cC . By lemma 2.20,

|P1[x := N1]|c = |P1|c[x := |N1|c] = |P2|c[x := |N2|c] = |P2[x :=
N2]|c. By lemma 2.5, Rr

M1[x:=N1]
= Rr

cP1[x:=N1]Q1
= {cCQ1 | C ∈

Rr
P1[x:=N1]

}∪{cP1[x := N1]C | C ∈ Rr
Q1
} andRr

M2[x:=N2]
= Rr

P2[x:=N2]Q2
=

{�} ∪ {CQ2 | C ∈ Rr
P2[x:=N2]

} ∪ {P2[x := N2]C | C ∈ Rr
Q2
}. So,

|Rr
M1[x:=N1]

|cC = |Rr
cP1[x:=N1]Q1

|cC = {C|Q1|c | C ∈ |Rr
P1[x:=N1]

|cC} ∪
{|P1[x := N1]|cC | C ∈ |Rr

Q1
|cC} and |Rr

M2[x:=N2]
|cC = |Rr

P2[x:=N2]Q2
|cC

= {�} ∪ {C|Q2|c | C ∈ |Rr
P2[x:=N2]

|cC} ∪ {|P2[x := N2]|cC | C ∈
|Rr

Q2
|cC}. Let C ∈ |Rr

M1[x:=N1]
|cC :

· Either C = C ′|Q1|c = C ′|Q2|c such that C ′ ∈ |Rr
P1[x:=N1]

|cC ⊆
|Rr

P2[x:=N2]
|cC . So C ∈ |Rr

M2[x:=N2]
|cC .

· Or C = |P1[x := N1]|cC ′ = |P2[x := N2]|cC ′ such that C ′ ∈
|Rr

Q1
|cC ⊆ |Rr

Q2
|cC . So C ∈ |Rr

M2[x:=N2]
|cC .

∗ Or x 6∈ FV (P1) and x ∈ FV (Q1). By lemma 2.21, x 6∈ FV (P2) and
x ∈ FV (Q2). Since Q1, Q2 ∈ Mc then (λx.Q1)N1, (λx.Q2)N2 ∈
Mc. So by IH, |Rr

Q1[x:=N1]
|cC ⊆ |Rr

Q2[x:=N2]
|cC . By lemma 2.20,

|Q1[x := N1]|c = |Q1|c[x := |N1|c] = |Q2|c[x := |N2|c] = |Q2[x :=
N2]|c. By lemma 2.5, Rr

M1[x:=N1]
= Rr

cP1Q1[x:=N1]
= {cCQ1[x :=

N1] | C ∈ Rr
P1
} ∪ {cP1C | C ∈ Rr

Q1[x:=N1]
} and Rr

M2[x:=N2]
=

Rr
P2Q2[x:=N2]

= {�} ∪ {CQ2[x := N2] | C ∈ Rr
P2
} ∪ {P2C | C ∈

Rr
Q2[x:=N2]

}. So, |Rr
M1[x:=N1]

|cC = |Rr
cP1Q1[x:=N1]

|cC = {C|Q1[x :=
N1]|c | C ∈ |Rr

P1
|cC}∪{|P1|cC | C ∈ |Rr

Q1[x:=N1]
|cC} and |Rr

M2[x:=N2]
|cC

= |Rr
P2Q2[x:=N2]

|cC = {�} ∪ {C|Q2[x := N2]|c | C ∈ |Rr
P2
|cC} ∪

{|P2|cC | C ∈ |Rr
Q2[x:=N2]

|cC}. Let C ∈ |Rr
M1[x:=N1]

|cC :
· Either C = C ′|Q1[x := N1]|c = C ′|Q2[x := N2]|c such that

C ′ ∈ |Rr
P1
|cC ⊆ |Rr

P2
|cC . So C ∈ |Rr

M2[x:=N2]
|cC .

· Or C = |P1|cC ′ = |P2|cC ′ such that C ′ ∈ |Rr
Q1[x:=N1]

|cC ⊆
|Rr

Q2[x:=N2]
|cC . So C ∈ |Rr

M2[x:=N2]
|cC .

– Let M2 = cP2Q2 ∈ Mc such that P2, Q2 ∈ Mc, then |cP2|c = |P2|c =
|P1|c and |Q1|c = |Q2|c. Since M2 6∈ Rr, by lemma 2.5,
Rr

M1
= {cCQ1 | C ∈ Rr

P1
} ∪ {cP1C | C ∈ Rr

Q1
} and Rr

M2
=

{cCQ2 | C ∈ Rr
P2
} ∪ {cP2C | C ∈ Rr

Q2
}. So |Rr

M1
|cC = {C|Q1|c | C ∈

|Rr
P1
|cC} ∪ {|P1|cC | C ∈ |Rr

Q1
|cC} and |Rr

M2
|cC = {C|Q2|c | C ∈ |Rr

P2
|cC} ∪
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{|P2|cC | C ∈ |Rr
Q2
|cC}. Let C ∈ |Rr

P1
|cC then C|Q1|c = C|Q2|c ∈

|Rr
M1
|cC ⊆ |Rr

M2
|cC . So C ∈ |Rr

P2
|cC , i.e. |Rr

P1
|cC ⊆ |Rr

P2
|cC . Let C ∈

|Rr
Q1
|cC then |P1|cC = |P2|cC ∈ |Rr

M1
|cC ⊆ |Rr

M2
|cC . So C ∈ |Rr

Q2
|cC , i.e.

|Rr
Q1
|cC ⊆ |Rr

Q2
|cC . Since x ∈ FV (M1):

∗ Either x ∈ FV (P1) and x ∈ FV (Q1). By lemma 2.21, x ∈ FV (P2)
and x ∈ FV (Q2). Since P1, Q1, P2, Q2 ∈Mc then
(λx.P1)N1, (λx.Q1)N1, (λx.P2)N2, (λx.Q2)N2 ∈Mc. So by IH,
|Rr

P1[x:=N1]
|cC ⊆ |Rr

P2[x:=N2]
|cC and |Rr

Q1[x:=N1]
|cC ⊆ |Rr

Q2[x:=N2]
|cC . By

lemma 2.20,
|P1[x := N1]|c = |P1|c[x := |N1|c] = |P2|c[x := |N2|c] = |P2[x :=
N2]|c and |Q1[x := N1]|c = |Q1|c[x := |N1|c] = |Q2|c[x := |N2|c] =
|Q2[x := N2]|c. By lemma 2.5, Rr

M1[x:=N1]
= Rr

cP1[x:=N1]Q1[x:=N1]
=

{cCQ1[x := N1] | C ∈ Rr
P1[x:=N1]

}∪
{cP1[x := N1]C | C ∈ Rr

Q1[x:=N1]
} and

Rr
M2[x:=N2]

= Rr
cP2[x:=N2]Q2[x:=N2]

=
{cCQ2[x := N2] | C ∈ Rr

P2[x:=N2]
}∪

{cP2[x := N2]C | C ∈ Rr
Q2[x:=N2]

}. So, |Rr
M1[x:=N1]

|cC
= |Rr

cP1[x:=N1]Q1[x:=N1]
|cC = {C|Q1[x := N1]|c | C ∈ |Rr

P1[x:=N1]
|cC} ∪

{|P1[x := N1]|cC | C ∈ |Rr
Q1[x:=N1]

|cC} and
|Rr

M2[x:=N2]
|cC = |Rr

cP2[x:=N2]Q2[x:=N2]
|cC = {C|Q2[x := N2]|c | C ∈

|Rr
P2[x:=N2]

|cC} ∪ {|P2[x := N2]|cC | C ∈ |Rr
Q2[x:=N2]

|cC}. Let C ∈
|Rr

M1[x:=N1]
|cC :

· Either C = C ′|Q1[x := N1]|c = C ′|Q2[x := N2]|c such that
C ′ ∈ |Rr

P1[x:=N1]
|cC ⊆ |Rr

P2[x:=N2]
|cC . So C ∈ |Rr

M2[x:=N2]
|cC .

· Or C = |P1[x := N1]|cC ′ = |P2[x := N2]|cC ′ such that C ′ ∈
|Rr

Q1[x:=N1]
|cC ⊆ |Rr

Q2[x:=N2]
|cC . So C ∈ |Rr

M2[x:=N2]
|cC .

∗ Or x ∈ FV (P1) and x 6∈ FV (Q1). By lemma 2.21, x ∈ FV (P2) and
x 6∈ FV (Q2). Since P1, P2 ∈ Mc then (λx.P1)N1, (λx.P2)N2 ∈
Mc. So by IH, |Rr

P1[x:=N1]
|cC ⊆ |Rr

P2[x:=N2]
|cC . By lemma 2.20,

|P1[x := N1]|c = |P1|c[x := |N1|c] = |P2|c[x := |N2|c] = |P2[x :=
N2]|c. By lemma 2.5, Rr

M1[x:=N1]
= Rr

cP1[x:=N1]Q1
= {cCQ1 | C ∈

Rr
P1[x:=N1]

}∪{cP1[x := N1]C | C ∈ Rr
Q1
} andRr

M2[x:=N2]
= Rr

cP2[x:=N2]Q2
=

{cCQ2 | C ∈ Rr
P2[x:=N2]

} ∪ {cP2[x := N2]C | C ∈ Rr
Q2
}. So,

|Rr
M1[x:=N1]

|cC = |Rr
cP1[x:=N1]Q1

|cC = {C|Q1|c | C ∈ |Rr
P1[x:=N1]

|cC} ∪
{|P1[x := N1]|cC | C ∈ |Rr

Q1
|cC} and |Rr

M2[x:=N2]
|cC = |Rr

P2[x:=N2]Q2
|cC

= {C|Q2|c | C ∈ |Rr
P2[x:=N2]

|cC} ∪ {|P2[x := N2]|cC | C ∈ |Rr
Q2
|cC}.

Let C ∈ |Rr
M1[x:=N1]

|cC :
· Either C = C ′|Q1|c = C ′|Q2|c such that C ′ ∈ |Rr

P1[x:=N1]
|cC ⊆

|Rr
P2[x:=N2]

|cC . So C ∈ |Rr
M2[x:=N2]

|cC .
· Or C = |P1[x := N1]|cC ′ = |P2[x := N2]|cC ′ such that C ′ ∈
|Rr

Q1
|cC ⊆ |Rr

Q2
|cC . So C ∈ |Rr

M2[x:=N2]
|cC .

∗ Or x 6∈ FV (P1) and x ∈ FV (Q1). By lemma 2.21, x 6∈ FV (P2) and
x ∈ FV (Q2). Since Q1, Q2 ∈ Mc then (λx.Q1)N1, (λx.Q2)N2 ∈
Mc. So by IH, |Rr

Q1[x:=N1]
|cC ⊆ |Rr

Q2[x:=N2]
|cC . By lemma 2.20,

|Q1[x := N1]|c = |Q1|c[x := |N1|c] = |Q2|c[x := |N2|c] = |Q2[x :=
N2]|c. By lemma 2.5, Rr

M1[x:=N1]
= Rr

cP1Q1[x:=N1]
= {cCQ1[x :=

N1] | C ∈ R}
P1
∪ {cP1C | C ∈ Rr

Q1[x:=N1]
} and Rr

M2[x:=N2]
=

Rr
cP2Q2[x:=N2]

= {cCQ2[x := N2] | C ∈ Rr
P2
} ∪ {cP2C | C ∈

Rr
Q2[x:=N2]

}. So, |Rr
M1[x:=N1]

|cC = |Rr
cP1Q1[x:=N1]

|cC = {C|Q1[x :=
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N1]|c | C ∈ |Rr
P1
|cC}∪{|P1|cC | C ∈ |Rr

Q1[x:=N1]
|cC} and |Rr

M2[x:=N2]
|cC

= |Rr
cP2Q2[x:=N2]

|cC = {cC|Q2[x := N2]|c | C ∈ |Rr
P2
|cC}∪{c|P2|cC | C

∈ |Rr
Q2[x:=N2]

|cC}. Let C ∈ |Rr
M1[x:=N1]

|cC :
· Either C = C ′|Q1[x := N1]|c = C ′|Q2[x := N2]|c such that

C ′ ∈ |Rr
P1
|cC ⊆ |Rr

P2
|cC . So C ∈ |Rr

M2[x:=N2]
|cC .

· Or C = |P1|cC ′ = |P2|cC ′ such that C ′ ∈ |Rr
Q1[x:=N1]

|cC ⊆
|Rr

Q2[x:=N2]
|cC . So C ∈ |Rr

M2[x:=N2]
|cC .

– Let M2 = cM ′
2 such that M ′

2 ∈ Ληc. So |M2|c = |M ′
2|c. By lemma 2.9.5,

Rβη
M2

= {cC | C ∈ Rβη
M ′

2
}, so |Rβη

M1
|cC ⊆ |Rβη

M2
|cC = |Rβη

M ′
2
|cC . Again by

lemma 2.9.5, Rβη
M2[x:=N2]

= Rβη
cM ′

2[x:=N2]
= {cC | C ∈ Rβη

M ′
2[x:=N2]

}, so

|Rβη
M2[x:=N2]

|cC = |Rβη
M ′

2[x:=N2]
|cC . Since (λx.M ′

2)N2 ∈ Ληc, |Rβη
M1[x:=N1]

|cC
⊆IH |Rβη

M ′
2[x:=N2]

|cC = |Rβη
M2[x:=N2]

|cC .

• Let M1 = P1Q1 ∈ Mc such that P1, Q1 ∈ Mc and P1 is a λ-abstraction.
Then |M1|c = |P1|c|Q1|c = |M2|c. By lemma 2.10, since M1 ∈Mc, M1 ∈ Rr.
By lemma 2.4.8, M1[x := N1] ∈ Mc and by lemma 2.10, M1[x := N1] ∈ Rr.
So by lemma 2.5, � ∈ Rr

M1
, so � ∈ |Rr

M1
|cC . We prove the statement by

induction on the structure of M2.

– Let M2 ∈ V \ {c} then |M2|c = M2 6= |P1|c|Q1|c.
– Let M2 = λy.M ′

2 ∈ ΛIc then |M2|c = λy.|M ′
2|c 6= |P1|c|Q1|c.

– Let M2 = λy.M ′
2[y := c(cy)] ∈ Ληc then |M2|c = λy.|M ′

2[y := c(cy)]|c 6=
|P1|c|Q1|c.

– Let M2 = λy.M ′
2y ∈ Ληc then |M2|c = λy.|M ′

2y|c 6= |P1|c|Q1|c.
– Let M2 = cP2Q2 ∈ Mc such that P2, Q2 ∈ Mc, so M2 6∈ Rr. Hence, by

lemma 2.5, � 6∈ Rr
M2

, so � 6∈ |Rr
M2
|cC , i.e. |Rr

M1
|cC 6⊆ |Rr

M2
|cC .

– Let M2 = P2Q2 ∈Mc such that P2, Q2 ∈Mc and P2 is a λ-abstraction,
then |P2|c = |P1|c and |Q2|c = |Q1|c. By lemma 2.10, since M2 ∈ Mc,
M2 ∈ Rr. By lemma 2.4.8, M2[x := N2] ∈ Mc and by lemma 2.10,
M2[x := N2] ∈ Rr.By lemma 2.5, Rr

M1
= {�} ∪ {CQ1 | C ∈ Rr

P1
} ∪

{P1C | C ∈ Rr
Q1
} andRr

M2
= {�}∪{CQ2 | C ∈ Rr

P2
}∪{P2C | C ∈ Rr

Q2
}.

So, |Rr
M1
|cC = {�} ∪ {C|Q1|c | C ∈ |Rr

P1
|cC} ∪ {|P1|cC | C ∈ |Rr

Q1
|cC} and

|Rr
M2
|cC = {�} ∪ {C|Q2|c | C ∈ |Rr

P2
|cC} ∪ {|P2|cC | C ∈ |Rr

Q2
|cC}. Let

C ∈ |Rr
P1
|cC then C|Q1|c = C|Q2|c ∈ |Rr

M1
|cC ⊆ |Rr

M2
|cC . So C ∈ |Rr

P2
|cC ,

i.e. |Rr
P1
|cC ⊆ |Rr

P2
|cC . let C ∈ |Rr

Q1
|cC then |P1|cC = |P2|cC ∈ |Rr

M1
|cC ⊆

|Rr
M2
|cC . So, C ∈ |Rr

Q2
|cC , i.e. |Rr

Q1
|cC ⊆ |Rr

Q2
|cC . Since x ∈ FV (M1):

∗ Either x ∈ FV (P1) and x ∈ FV (Q1). By lemma 2.21, x ∈ FV (P2)
and x ∈ FV (Q2). Since P1, Q1, P2, Q2 ∈Mc then
(λx.P1)N1, (λx.Q1)N1, (λx.P2)N2, (λx.Q2)N2 ∈Mc. So by IH,
|Rr

P1[x:=N1]
|cC ⊆ |Rr

P2[x:=N2]
|cC and |Rr

Q1[x:=N1]
|cC ⊆ |Rr

Q2[x:=N2]
|cC .

By lemma 2.20, |P1[x := N1]|c = |P1|c[x := |N1|c] = |P2|c[x :=
|N2|c] = |P2[x := N2]|c and |Q1[x := N1]|c = |Q1|c[x := |N1|c] =
|Q2|c[x := |N2|c] = |Q2[x := N2]|c. By lemma 2.5, Rr

M1[x:=N1]
=

Rr
P1[x:=N1]Q1[x:=N1]

= {�} ∪ {CQ1[x := N1] | C ∈ Rr
P1[x:=N1]

} ∪
{P1[x := N1]C | C ∈ Rr

Q1[x:=N1]
} and

Rr
M2[x:=N2]

= Rr
P2[x:=N2]Q2[x:=N2]

= {�} ∪ {CQ2[x := N2] | C ∈
Rr

P2[x:=N2]
}∪{P2[x := N2]C | C ∈ Rr

Q2[x:=N2]
}. So, |Rr

M1[x:=N1]
|cC =

|Rr
P1[x:=N1]Q1[x:=N1]

|cC = {�}∪{C|Q1[x := N1]|c | C ∈ |Rr
P1[x:=N1]

|cC}
∪{|P1[x := N1]|cC | C ∈ |Rr

Q1[x:=N1]
|cC} and |Rr

M2[x:=N2]
|cC =
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|Rr
P2[x:=N2]Q2[x:=N2]

|cC = {�}∪{C|Q2[x := N2]|c | C ∈ |Rr
P2[x:=N2]

|cC}
∪{|P2[x := N2]|cC | C ∈ |Rr

Q2[x:=N2]
|cC}. Let C ∈ |Rr

M1[x:=N1]
|cC :

· Either C = � ∈ |Rr
M2[x:=N2]

|cC .
· Or C = C ′|Q1[x := N1]|c = C ′|Q2[x := N2]|c such that C ′ ∈
|Rr

P1[x:=N1]
|cC ⊆ |Rr

P2[x:=N2]
|cC . So C ∈ |Rr

M2[x:=N2]
|cC .

· Or C = |P1[x := N1]|cC ′ = |P2[x := N2]|cC ′ such that C ′ ∈
|Rr

Q1[x:=N1]
|cC ⊆ |Rr

Q2[x:=N2]
|cC . So C ∈ |Rr

M2[x:=N2]
|cC .

∗ Or x ∈ FV (P1) and x 6∈ FV (Q1). By lemma 2.21, x ∈ FV (P2) and
x 6∈ FV (Q2). Since P1, P2 ∈ Mc then (λx.P1)N1, (λx.P2)N2 ∈ Mc.
So by IH, |Rr

P1[x:=N1]
|cC ⊆ |Rr

P2[x:=N2]
|cC . By lemma 2.20, |P1[x :=

N1]|c = |P1|c[x := |N1|c] = |P2|c[x := |N2|c] = |P2[x := N2]|c.
By lemma 2.5, Rr

M1[x:=N1]
= Rr

P1[x:=N1]Q1
= {�} ∪ {CQ1 | C ∈

Rr
P1[x:=N1]

} ∪ {P1[x := N1]C | C ∈ Rr
Q1
} and Rr

M2[x:=N2]
=

Rr
P2[x:=N2]Q2

= {�}∪{CQ2 | C ∈ Rr
P2[x:=N2]

}∪{P2[x := N2]C | C ∈
Rr

Q2
}. So, |Rr

M1[x:=N1]
|cC = |Rr

P1[x:=N1]Q1
|cC = {�} ∪ {C|Q1|c | C ∈

|Rr
P1[x:=N1]

|cC}∪{|P1[x := N1]|cC | C ∈ |Rr
Q1
|cC} and |Rr

M2[x:=N2]
|cC =

|Rr
P2[x:=N2]Q2

|cC = {�} ∪ {C|Q2|c | C ∈ |Rr
P2[x:=N2]

|cC} ∪ {|P2[x :=
N2]|cC | C ∈ |Rr

Q2
|cC}. Let C ∈ |Rr

M1[x:=N1]
|cC :

· Either C = � ∈ |Rr
M2[x:=N2]

|cC .
· Or C = C ′|Q1|c = C ′|Q2|c such that C ′ ∈ |Rr

P1[x:=N1]
|cC ⊆

|Rr
P2[x:=N2]

|cC . So C ∈ |Rr
M2[x:=N2]

|cC .
· Or C = |P1[x := N1]|cC ′ = |P2[x := N2]|cC ′ such that C ′ ∈
|Rr

Q1
|cC ⊆ |Rr

Q2
|cC . So C ∈ |Rr

M2[x:=N2]
|cC .

∗ Or x 6∈ FV (P1) and x ∈ FV (Q1). By lemma 2.21, x 6∈ FV (P2) and
x ∈ FV (Q2). Since Q1, Q2 ∈ Mc then (λx.Q1)N1, (λx.Q2)N2 ∈
Mc. So by IH, |Rr

Q1[x:=N1]
|cC ⊆ |Rr

Q2[x:=N2]
|cC . By lemma 2.20,

|Q1[x := N1]|c = |Q1|c[x := |N1|c] = |Q2|c[x := |N2|c] = |Q2[x :=
N2]|c. By lemma 2.5,Rr

M1[x:=N1]
= Rr

P1Q1[x:=N1]
= {�}∪{CQ1[x :=

N1] | C ∈ Rr
P1
} ∪ {P1C | C ∈ Rr

Q1[x:=N1]
} and Rr

M2[x:=N2]
=

Rr
P2Q2[x:=N2]

= {�} ∪ {CQ2[x := N2] | C ∈ Rr
P2
} ∪ {P2C | C ∈

Rr
Q2[x:=N2]

}. So, |Rr
M1[x:=N1]

|cC = |Rr
P1Q1[x:=N1]

|cC =
{�}∪{C|Q1[x := N1]|c | C ∈ |Rr

P1
|cC}∪{|P1|cC | C ∈ |Rr

Q1[x:=N1]
|cC}

and |Rr
M2[x:=N2]

|cC = |Rr
P2Q2[x:=N2]

|cC = {�}∪{C|Q2[x := N2]|c | C ∈
|Rr

P2
|cC} ∪ {|P2|cC | C ∈ |Rr

Q2[x:=N2]
|cC}. Let C ∈ |Rr

M1[x:=N1]
|cC :

· Either C = � ∈ |Rr
M2[x:=N2]

|cC .
· Or C = C ′|Q1[x := N1]|c = C ′|Q2[x := N2]|c such that C ′ ∈
|Rr

P1
|cC ⊆ |Rr

P2
|cC . So C ∈ |Rr

M2[x:=N2]
|cC .

· Or C = |P1|cC ′ = |P2|cC ′ such that C ′ ∈ |Rr
Q1[x:=N1]

|cC ⊆
|Rr

Q2[x:=N2]
|cC . So C ∈ |Rr

M2[x:=N2]
|cC .

– Let M2 = cM ′
2 such that M ′

2 ∈ Ληc. So |M2|c = |M ′
2|c. By lemma 2.9.5,

Rβη
M2

= {cC | C ∈ Rβη
M ′

2
}, so |Rβη

M1
|cC ⊆ |Rβη

M2
|cC = |Rβη

M ′
2
|cC . Again by

lemma 2.9.5, Rβη
M2[x:=N2]

= Rβη
cM ′

2[x:=N2]
= {cC | C ∈ Rβη

M ′
2[x:=N2]

}, so

|Rβη
M2[x:=N2]

|cC = |Rβη
M ′

2[x:=N2]
|cC . Since (λx.M ′

2)N2 ∈ Ληc, |Rβη
M1[x:=N1]

|cC
⊆IH |Rβη

M ′
2[x:=N2]

|cC = |Rβη
M2[x:=N2]

|cC .

• Let M1 = cM ′
1 ∈ Ληc such that M ′

1 ∈ Ληc. So |M1|c = |M ′
1|c. By lemma 2.9.5,

Rβη
M1

= {cC | C ∈ Rβη
M ′

1
}, so |Rβη

M ′
1
|cC = |Rβη

M1
|cC ⊆ |Rβη

M2
|cC . Again by
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lemma 2.9.5,Rβη
M1[x:=N1]

= Rβη
cM ′

1[x:=N1]
= {cC | C ∈ Rβη

M ′
1[x:=N1]

}, so |Rβη
M1[x:=N1]

|cC =

|Rβη
M ′

1[x:=N1]
|cC . Since (λx.M ′

1)N1 ∈ Ληc, |Rβη
M1[x:=N1]

|cC = |Rβη
M ′

1[x:=N1]
|cC =⊆IH

|Rβη
M2[x:=N2]

|cC .

Lemma 2.28. Since M1
C1→r M ′

1, C1 ∈ Rr
M1

and ∃R1 ∈ Rr such that M1 = C1[R1].

So M ′
1 = C1[R′

1] such that R′
1 is the contractum of R1. Since M2

C2→r M ′
2, C2 ∈ Rr

M2

and ∃R2 ∈ Rr such that M2 = C2[R2]. So M ′
2 = C2[R′

2] such that R′
2 is the

contractum of R2. We prove this lemma by induction on the structure of M1.

1. Let M1 ∈ V \ {c} then nothing to prove since M1 does not reduce.

2. Let M1 = λx.N1 ∈ ΛIc. So |M1|c = λx.|N1|c = |M2|c. By lemma 2.16, since
M2 ∈ ΛIc and by lemma 2.4, M2 = λx.N2 and |N2|c = |N1|c. Since M1,M2 6∈
RβI , by lemma 2.5, RβI

M1
= {λx.C | C ∈ RβI

N1
} and RβI

M2
= {λx.C | C ∈ RβI

N2
}

so |RβI
M1
|cC = {|λx.C|cC | C ∈ RβI

N1
} = {λx.C | C ∈ |RβI

N1
|cC} and |RβI

M2
|cC =

{|λx.C|cC | C ∈ RβI
N2
} = {λx.C | C ∈ |RβI

N2
|cC}. Let C ∈ |RβI

N1
|cC then λx.C ∈

|RβI
M1
|cC , so by hypothesis, λx.C ∈ |RβI

M2
|cC . Hence, C ∈ |RβI

N2
|cC , i.e. |RβI

N1
|cC ⊆

|RβI
N2
|cC . Since C1 ∈ RβI

M1
, C1 = λx.C ′

1 such that C ′
1 ∈ R

βI
N1

. Since C2 ∈ RβI
M2

,
C2 = λx.C ′

2 such that C ′
2 ∈ R

βI
N2

. Since |C1|cC = |C2|cC , |C ′
1|cC = |C ′

2|cC . Hence,

M1 = λx.N1 = λx.C ′
1[R1]

C1→βI λx.C ′
1[R

′
1] = λx.N ′

1 = M ′
1, M2 = λx.N2 =

λx.C ′
2[R2]

C2→βI λx.C ′
2[R

′
2] = λx.N ′

2 = M ′
2, N1

C′
1→βI N ′

1 and N2
C′

2→βI N ′
2. By

IH, |RβI
N ′

1
|cC ⊆ |RβI

N ′
2
|cC . By lemma 2.5, RβI

M ′
1

= {λx.C | C ∈ RβI
N ′

1
} and RβI

M ′
2

=

{λx.C | C ∈ RβI
N ′

2
}, so |RβI

M ′
1
|cC = {|λx.C|cC | C ∈ RβI

N ′
1
} = {λx.C | C ∈ |RβI

N ′
1
|cC}

and |RβI
M ′

2
|cC = {|λx.C|cC | C ∈ RβI

N ′
2
} = {λx.C | C ∈ |RβI

N ′
2
|cC}. Let C ∈ |RβI

M ′
1
|cC ,

then C = λx.C ′ such that C ′ ∈ |RβI
N ′

1
|cC ⊆IH |RβI

N ′
2
|cC , so λx.C ′ ∈ |RβI

M ′
2
|cC .

3. Let M1 = λx.N1[x := c(cx)] ∈ Ληc such that N1 ∈ Ληc then |M1|c =
λx.|N1[x := c(cx)]|c =2.18 λx.|N1|c. We prove the statement by induction
on the structure of M2:

• Let M2 ∈ V \ {c} then |M2|c = M2 6= λx.|N1|c.
• Let M2 = λx.N2[x := c(cx)] such that N2 ∈ Ληc. Since |M2|c =

λx.|N2[x := c(cx)]|c =2.18 λx.|N2|c, |N1|c = |N2|c. Rβη
M1

=2.9.3 {λx.C | C ∈
Rβη

N1[x:=c(cx)]} =2.9.4 {λx.C[x := c(cx)] | C ∈ Rβη
N1
} and Rβη

M2
=2.9.3

{λx.C | C ∈ Rβη
N2[x:=c(cx)]} =2.9.4 {λx.C[x := c(cx)] | C ∈ Rβη

N2
}. So,

|Rβη
M1
|cC =2.19 {λx.C | C ∈ |Rβη

N1
|cC} and |Rβη

M2
|cC =2.19 {λx.C | C ∈

|Rβη
N2
|cC}. Let C ∈ |Rβη

N1
|cC then λx.C ∈ |Rβη

M1
|cC ⊆ |Rβη

M2
|cC , so C ∈ |Rβη

N2
|cC ,

i.e. |Rβη
N1
|cC ⊆ |Rβη

N2
|cC . Since C1 ∈ Rβη

M1
, C1 = λx.C ′

1[x := c(cx)] such
that C ′

1 ∈ R
βη
N1

. Since C2 ∈ Rβη
M2

, C2 = λx.C ′
2[x := c(cx)] such that C ′

2 ∈
Rβη

N2
. Since λx.|C ′

1|cC =2.19 |C1|cC = |C2|cC =2.19 λx.|C ′
2|cC , |C ′

1|cC = |C ′
2|cC .

So M1 = λx.N1[x := c(cx)] = λx.C ′
1[x := c(cx)][R1] =2.8 λx.C ′

1[R1][x :=
c(cx)] C1→βη λx.C ′

1[R
′
1][c := c(cx)] = λx.N ′

1[x := c(cx)] = M ′
1, M2 =

λx.N2[x := c(cx)] = λx.C ′
2[x := c(cx)][R2] =2.8 λx.C ′

2[R2][x := c(cx)] C2→βη

λx.C ′
2[R

′
2][c := c(cx)] = λx.N ′

2[x := c(cx)] = M ′
2, N1 = C ′

1[R1]
C′

1→βη

C ′
1[R

′
1] = N ′

1 and N2 = C ′
2[R2]

C′
2→βη C ′

2[R
′
2] = N ′

2. By IH, |Rβη
N ′

1
|cC ⊆

|Rβη
N ′

2
|cC . Hence, Rβη

M ′
1

=2.9.3 {λx.C | C ∈ Rβη
N ′

1[x:=c(cx)]} =2.9.4 {λx.C[x :=
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c(cx)] | C ∈ Rβη
N ′

1
} and Rβη

M ′
2

=2.9.3 {λx.C | C ∈ Rβη
N ′

2[x:=c(cx)]}
=2.9.4 {λx.C[x := c(cx)] | C ∈ Rβη

N ′
2
}. So, |Rβη

M ′
1
|cC =2.19 {λx.C | C ∈

|Rβη
N ′

1
|cC} and |Rβη

M ′
2
|cC =2.19 {λx.C | C ∈ |Rβη

N ′
2
|cC}. Let C ∈ |Rβη

M ′
1
|cC

then C = λx.C ′ such that C ′ ∈ |Rβη
N ′

1
|cC ⊆ |Rβη

N ′
2
|cC , so C ∈ |Rβη

M ′
2
|cC , i.e.

|Rβη
M ′

1
|cC ⊆ |Rβη

M ′
2
|cC .

• Let M2 = λx.N2x such that N2x ∈ Ληc, x 6∈ FV (N2) and N2 6= c,
then M2 ∈ Rβη. Since |M2|c = λx.|N2x|c, |N1|c = |N2x|c. Rβη

M1
=2.9.3

{λx.C | C ∈ Rβη
N1[x:=c(cx)]} =2.9.4 {λx.C[x := c(cx)] | C ∈ Rβη

N1
} and

Rβη
M2

=2.5 {�} ∪ {λx.C | C ∈ Rβη
N2x}. So, |Rβη

M1
|cC =2.19 {λx.C | C ∈

|Rβη
N1
|cC} and |Rβη

M2
|cC = {�} ∪ {λx.C | C ∈ |Rβη

N2x|cC}. Let C ∈ |Rβη
N1
|cC

then λx.C ∈ |Rβη
M1
|cC ⊆ |Rβη

M2
|cC , so C ∈ |Rβη

N2x|cC , i.e. |Rβη
N1
|cC ⊆ |Rβη

N2x|cC .
Since C1 ∈ Rβη

M1
, C1 = λx.C ′

1[x := c(cx)] such that C ′
1 ∈ Rβη

N1
. Since

C2 ∈ Rβη
M2

and |C1|cC = |C2|cC , C2 = λx.C ′
2 such that C ′

2 ∈ Rβη
N2x.

Since λx.|C ′
1|cC =2.19 |C1|cC = |C2|cC = λx.|C ′

2|cC , |C ′
1|cC = |C ′

2|cC . So
M1 = λx.N1[x := c(cx)] = λx.C ′

1[x := c(cx)][R1] =2.8 λx.C ′
1[R1][x :=

c(cx)] C1→βη λx.C ′
1[R

′
1][c := c(cx)] = λx.N ′

1[x := c(cx)] = M ′
1, M2 =

λx.N2x = λx.C ′
2[R2]

C2→βη λx.C ′
2[R

′
2] = λx.N ′

2 = M ′
2, N1 = C ′

1[R1]
C′

1→βη

C ′
1[R

′
1] = N ′

1 and N2x = C ′
2[R2]

C′
2→βη C ′

2[R
′
2] = N ′

2. By IH, |Rβη
N ′

1
|cC ⊆

|Rβη
N ′

2
|cC . Hence, Rβη

M ′
1

=2.9.3 {λx.C | C ∈ Rβη
N ′

1[x:=c(cx)]} =2.9.4 {λx.C[x :=

c(cx)] | C ∈ Rβη
N ′

1
} and Rβη

M ′
2
\ {�} =2.5 {λx.C | C ∈ Rβη

N ′
2
}. So,

|Rβη
M ′

1
|cC =2.19 {λx.C | C ∈ |Rβη

N ′
1
|cC} and |Rβη

M ′
2
|cC \ {�} = {λx.C | C ∈

|Rβη
N ′

2
|cC}. Let C ∈ |Rβη

M ′
1
|cC then C = λx.C ′ such that C ′ ∈ |Rβη

N ′
1
|cC ⊆

|Rβη
N ′

2
|cC , so C ∈ |Rβη

M ′
2
|cC \ {�}, i.e. |Rβη

M ′
1
|cC ⊆ |Rβη

M ′
2
|cC .

• Let M2 = cP2Q2 such that P2, Q2 ∈ Ληc then |M2|c = |P2|c|Q2|c 6=
λx.|N1|c.

• Let M2 = P2Q2 such that P2, Q2 ∈ Ληc and P2 is a λ-abstraction then
|M2|c = |P2|c|Q2|c 6= λx.|N1|c.

• Let M2 = cN2 such that N2 ∈ Ληc. So |N2|c = |M2|c = |M1|c. By
lemma 2.9.5, Rβη

M2
= {cC | C ∈ Rβη

N2
}, so |Rβη

M1
|cC ⊆ |Rβη

M2
|cC = |Rβη

N2
|cC .

Since C2 ∈ Rβη
M2

, C2 = cC ′
2 such that C ′

2 ∈ Rβη
N2

. So, M2 = cN2 =

cC ′
2[R2]

cC′
2→ βη cC ′

2[R
′
2] = cN ′

2 = M ′
2 and N2 = C ′

2[R2]
C′

2→βη C ′
2[R

′
2] = N ′

2.
Since |C ′

2|cC = |C2|cC = |C1|cC , by IH, |Rβη
M ′

1
|cC ⊆ |Rβη

N ′
2
|cC . By lemma 2.9.5,

Rβη
M ′

2
= {cC | C ∈ Rβη

N ′
2
}, so |Rβη

M ′
1
|cC ⊆ |Rβη

N ′
2
|cC = |Rβη

M ′
2
|cC .

4. Let M1 = λx.N1x ∈ Ληc such that N1x ∈ Ληc, x 6∈ FV (N1) and N1 6= c, then
M1 ∈ Rβη and |M1|c = λx.|N1x|c = λx.|N1|cx. We prove the statement by
induction on the structure of M2:

(a) Let M2 ∈ V \ {c} then |M2|c = M2 6= λx.|N1x|c.

(b) Let M2 = λx.N2[x := c(cx)] such that N2 ∈ Ληc. Rβη
M1

=2.5 {�} ∪
{λx.C | C ∈ Rβη

N1x} and Rβη
M2

=2.9.3 {λx.C | C ∈ Rβη
N2[x:=c(cx)]} =2.9.4

{λx.C[x := c(cx)] | C ∈ Rβη
N2
}. So, |Rβη

M1
|cC = {�} ∪ {λx.C | C ∈

|Rβη
N1x|cC} and |Rβη

M2
|cC =2.19 {λx.C | C ∈ |Rβη

N2
|cC}. Hence, � ∈ |Rβη

M1
|cC

but � 6∈ |Rβη
M2
|cC .
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(c) Let M2 = λx.N2x such that N2x ∈ Ληc, x 6∈ FV (N2) and N2 6= c,
then M2 ∈ Rβη. Since |M2|c = λx.|N2x|c = λx.|N2|cx, |N1x|c = |N2x|c
and |N1|c = |N2|c. Rβη

M1
=2.5 {�} ∪ {λx.C | C ∈ Rβη

N1x} and Rβη
M2

=2.5

{�}∪{λx.C | C ∈ Rβη
N2x}. So, |Rβη

M1
|cC = {�}∪{λx.C | C ∈ |Rβη

N1x|cC} and
|Rβη

M2
|cC = {�} ∪ {λx.C | C ∈ |Rβη

N2x|cC}. Let C ∈ |Rβη
N1x|cC then λx.C ∈

|Rβη
M1
|cC ⊆ |Rβη

M2
|cC , so C ∈ |Rβη

N2x|cC , i.e. |Rβη
N1x|cC ⊆ |Rβη

N2x|cC . Moreover,
Rβη

N1x \{�} =2.5 {Cx | C ∈ Rβη
N1
} and Rβη

N2x \{�} =2.5 {Cx | C ∈ Rβη
N2
},

so |Rβη
N1x|cC \ {�} = {Cx | C ∈ |Rβη

N1
|cC} and |Rβη

N2x|cC \ {�} = {Cx | C ∈
|Rβη

N2
|cC}. Let C ∈ |Rβη

N1
|cC then Cx ∈ |Rβη

N1x|cC\{�} ⊆ |Rβη
N1x|cC ⊆ |Rβη

N2x|cC ,
so C ∈ |Rβη

N2
|cC , i.e. |Rβη

N1
|cC ⊆ |Rβη

N2
|cC . Since C1 ∈ Rβη

M1
:

• Either C1 = �. Since C2 ∈ Rβη
M2

and |C1|cC = |C2|cC , C2 = �. So

M1
�→βη N1 and M2

�→βη N2. It is done since |Rβη
N1
|cC ⊆ |Rβη

N2
|cC .

• C1 = λx.C ′
1 such that C ′

1 ∈ Rβη
N1x. Since C2 ∈ Rβη

M2
and |C1|cC =

|C2|cC , C2 = λx.C ′
2 such that C ′

2 ∈ R
βη
N2x. Since λx.|C ′

1|cC = |C1|cC =

|C2|cC = λx.|C ′
2|cC , |C ′

1|cC = |C ′
2|cC . So M1 = λx.N1x = λx.C ′

1[R1]
C1→βη

λx.C ′
1[R

′
1] = λx.N ′

1 = M ′
1, M2 = λx.N2x = λx.C ′

2[R2]
C2→βη

λx.C ′
2[R

′
2] = λx.N ′

2 = M ′
2, N1x = C ′

1[R1]
C′

1→βη C ′
1[R

′
1] = N ′

1 and

N2x = C ′
2[R2]

C′
2→βη C ′

2[R
′
2] = N ′

2. By IH, |Rβη
N ′

1
|cC ⊆ |Rβη

N ′
2
|cC .

– Either M ′
1 ∈ Rβη, then M ′

1 = λx.Px such that x 6∈ FV (P ). We
prove the statement by case on the belonging of N1x in Rβη.
∗ Either N1x ∈ Rβη, so by lemma 2.5, Rβη

N1x = {�}∪{Cx | C ∈
Rβη

N1
} and so N1 = λy.P1. Since |Rβη

N1x|cC ⊆ |Rβη
N2x|cC , � ∈

Rβη
N2x and by lemma 2.5, Rβη

N2x = {�} ∪ {Cx | C ∈ Rβη
N2
} and

so N2 = λy.P2.
· Let C ′

1 = �. Since |C ′
1|cC = |C ′

2|cC , C ′
2 = �. So M1 =

λx.(λy.P1)x = λx.�[R1]
C1→βη λx.�[R′

1] = λx.P1[y := x] =

M ′
1, M2 = λx.(λy.P2)x = λx.�[R2]

C2→βη λx.�[R′
2] =

λx.P2[y := x] = M ′
2. Since x 6∈ FV (N1) ∪ FV (N2), M ′

1 =
N1 and M ′

2 = N2. It is done since |Rβη
N1
|cC ⊆ |Rβη

N2
|cC .

· Let C ′
1 = C ′′

1 x such that C ′′
1 ∈ Rβη

N1
. Since |C ′

1|cC = |C ′
2|cC ,

C ′
2 = C ′′

2 x such that C ′′
2 ∈ Rβη

N2
. So M1 = λx.N1x =

λx.C ′′
1 [R1]x

C1→βη λx.C ′′
1 [R′

1]x = λx.N ′′
1 x = λx.N ′

1 = M ′
1,

M2 = λx.N2x = λx.C ′′
2 [R2]x

C2→βη λx.C ′′
2 [R′

2]x = λx.N ′′
2 x =

λx.N ′
2 = M ′

2, N1 = C ′′
1 [R1]

C′′
1→βη C ′′

1 [R′
1] = N ′′

1 and N2 =

C ′′
2 [R2]

C′′
2→βη C ′′

2 [R′
2] = N ′′

2 . Since x 6∈ FV (N1) ∪ FV (N2),
by lemma 2.2.1, x 6∈ FV (N ′′

1 )∪FV (N ′′
2 ). So, M ′

1,M
′
2 ∈ Rβη

and by lemma 2.5, Rβη
M ′

1
= {�}∪{λx.C | C ∈ Rβη

N ′
1
}, Rβη

M ′
2

=

{�} ∪ {λx.C | C ∈ Rβη
N ′

2
}, |Rβη

M ′
1
|cC = {�} ∪ {λx.C | C ∈

|Rβη
N ′

1
|cC}, |R

βη
M ′

2
|cC = {�} ∪ {λx.C | C ∈ |Rβη

N ′
2
|cC}. Since

|Rβη
N ′

1
|cC ⊆ |Rβη

N ′
2
|cC , |R

βη
M ′

1
|cC = {�} ∪ {λx.C | C ∈ |Rβη

N ′
1
|cC} ⊆

{�} ∪ {λx.C | C ∈ |Rβη
N ′

2
|cC} = |Rβη

M ′
2
|cC .

∗ Else by lemma 2.5, Rβη
N1x = {Cx | C ∈ Rβη

N1
}. Since |Rβη

N1x|cC ⊆
|Rβη

N2x|cC , � 6∈ Rβη
N2x and by lemma 2.5, Rβη

N2x = {Cx | C ∈
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Rβη
N2
} and so N2 = λy.P2. Let C ′

1 = C ′′
1 x such that C ′′

1 ∈
Rβη

N1
. C ′

2 = C ′′
2 x such that C ′′

2 ∈ Rβη
N2

. So M1 = λx.N1x =

λx.C ′′
1 [R1]x

C1→βη λx.C ′′
1 [R′

1]x = λx.N ′′
1 x = λx.N ′

1 = M ′
1,

M2 = λx.N2x = λx.C ′′
2 [R2]x

C2→βη λx.C ′′
2 [R′

2]x = λx.N ′′
2 x =

λx.N ′
2 = M ′

2, N1 = C ′′
1 [R1]

C′′
1→βη C ′′

1 [R′
1] = N ′′

1 and N2 =

C ′′
2 [R2]

C′′
2→βη C ′′

2 [R′
2] = N ′′

2 . Since x 6∈ FV (N1) ∪ FV (N2), by
lemma 2.2.1, x 6∈ FV (N ′′

1 )∪FV (N ′′
2 ). So, M ′

1,M
′
2 ∈ Rβη and

by lemma 2.5, Rβη
M ′

1
= {�}∪{λx.C | C ∈ Rβη

N ′
1
}, Rβη

M ′
2

= {�}∪
{λx.C | C ∈ Rβη

N ′
2
}, |Rβη

M ′
1
|cC = {�} ∪ {λx.C | C ∈ |Rβη

N ′
1
|cC},

|Rβη
M ′

2
|cC = {�}∪{λx.C | C ∈ |Rβη

N ′
2
|cC}. Since |Rβη

N ′
1
|cC ⊆ |Rβη

N ′
2
|cC ,

|Rβη
M ′

1
|cC = {�} ∪ {λx.C | C ∈ |Rβη

N ′
1
|cC} ⊆ {�} ∪ {λx.C | C ∈

|Rβη
N ′

2
|cC} = |Rβη

M ′
2
|cC .

– Else,Rβη
M ′

1
=2.5 {λx.C | C ∈ Rβη

N ′
1
} andRβη

M ′
2
\{�} =2.5 {λx.C | C ∈

Rβη
N ′

2
}. So, |Rβη

M ′
1
|cC = {λx.C | C ∈ |Rβη

N ′
1
|cC} and |Rβη

M ′
2
|cC \ {�} =

{λx.C | C ∈ |Rβη
N ′

2
|cC}. Let C ∈ |Rβη

M ′
1
|cC then C = λx.C ′ such

that C ′ ∈ |Rβη
N ′

1
|cC ⊆ |Rβη

N ′
2
|cC , so C ∈ |Rβη

M ′
2
|cC \ {�}, i.e. |Rβη

M ′
1
|cC ⊆

|Rβη
M ′

2
|cC .

(d) Let M2 = cP2Q2 such that P2, Q2 ∈ Ληc then |M2|c = |P2|c|Q2|c 6=
λx.|N1x|c.

(e) Let M2 = P2Q2 such that P2, Q2 ∈ Ληc and P2 is a λ-abstraction then
|M2|c = |P2|c|Q2|c 6= λx.|N1x|c.

(f) Let M2 = cN2 such that N2 ∈ Ληc. So |N2|c = |M2|c = |M1|c. By
lemma 2.9.5, Rβη

M2
= {cC | C ∈ Rβη

N2
}, so |Rβη

M1
|cC ⊆ |Rβη

M2
|cC = |Rβη

N2
|cC .

Since C2 ∈ Rβη
M2

, C2 = cC ′
2 such that C ′

2 ∈ Rβη
N2

. So, M2 = cN2 =

cC ′
2[R2]

cC′
2→ βη cC ′

2[R
′
2] = cN ′

2 = M ′
2 and N2 = C ′

2[R2]
C′

2→βη C ′
2[R

′
2] = N ′

2.
Since |C ′

2|cC = |C2|cC = |C1|cC , by IH, |Rβη
M ′

1
|cC ⊆ |Rβη

N ′
2
|cC . By lemma 2.9.5,

Rβη
M ′

2
= {cC | C ∈ Rβη

N ′
2
}, so |Rβη

M ′
1
|cC ⊆ |Rβη

N ′
2
|cC = |Rβη

M ′
2
|cC .

5. Let M1 = cP1Q1 ∈ Mc such that P1, P2 ∈ Mc. So |M1|c = |P1|c|Q1|c =
|M2|c. We prove the statement by induction on the structure of M2:

• Let M2 ∈ V \ {c} then |M2|c = M2 6= |P1|c|Q1|c.
• Let M2 = λx.N2 ∈ ΛI then |M2|c = λx.|N2|c 6= |P1|c|Q1|c.
• Let M2 = λx.N2[x := c(cx)] ∈ Ληc then |M2|c = λx.|N2[x := c(cx)]|c 6=
|P1|c|Q1|c.

• Let M2 = λx.N2x ∈ Ληc then |M2|c = λx.|N2x|c 6= |P1|c|Q1|c.
• Let M2 = cP2Q2 ∈ Mc such that P2, Q2 ∈ Mc, then |cP2|c = |P2|c =
|P1|c and |Q2|c = |Q1|c. Since M1 6∈ Rr, by lemma 2.5,
Rr

M1
= {cCQ1 | C ∈ Rr

P1
} ∪ {cP1C | C ∈ Rr

Q1
}. So, |Rr

M1
|cC =

{|cCQ1|cC | C ∈ Rr
P1
} ∪ {|cP1C|cC | C ∈ Rr

Q1
} = {C|Q1|c | C ∈ |Rr

P1
|cC} ∪

{|P1|cC | C ∈ |Rr
Q1
|cC}. Again by lemma 2.5, since M2 6∈ Rr, Rr

M2
=

{cCQ2 | C ∈ Rr
P2
} ∪ {cP2C | C ∈ Rr

Q2
}. So, |Rr

M2
|cC = {|cCQ2|cC | C ∈

Rr
P2
} ∪ {|cP2C|cC | C ∈ Rr

Q2
} = {C|Q2|c | C ∈ |Rr

P2
|cC} ∪ {|P2|cC | C ∈

|Rr
Q2
|cC}. Let C ∈ |Rr

P1
|cC then C|Q1|c = C|Q2|c ∈ |Rr

M1
|cC ⊆ |Rr

M2
|cC .

Hence, C ∈ |Rr
P2
|cC , i.e. |Rr

P1
|cC ⊆ |Rr

P2
|cC . Let C ∈ |Rr

Q1
|cC then |P1|cC =
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|P2|cC ∈ |Rr
M1
|cC ⊆ |Rr

M2
|cC . Hence, C ∈ |Rr

Q2
|cC , i.e. |Rr

Q1
|cC ⊆ |Rr

Q2
|cC .

Since C1 ∈ Rr
M1

:

– Either C1 = cC ′
1Q1 such that C ′

1 ∈ Rr
P1

. |C1|cC = |C ′
1|cC |Q1|c =

|C ′
1|cC |Q2|c = |C2|cC . Since C2 ∈ Rr

M2
, |C2|cC ∈ |Rr

M2
|cC , so |C ′

1|cC ∈
|Rr

P2
|cC and C2 = cC ′

2Q2 such that |C ′
2|cC = |C ′

1|cC and C ′
2 ∈ Rr

P2
.

Hence, M1 = cP1Q1 = cC ′
1[R1]Q1

C1→r cC ′
1[R

′
1]Q1 = cP ′

1Q1 =
M ′

1, M2 = cP2Q2 = cC ′
2[R2]Q2

C2→r cC ′
2[R

′
2]Q2 = cP ′

2Q2 = M ′
2,

P1 = C ′
1[R1]

C′
1→r C ′

1[R
′
1] = P ′

1 and P2C
′
2[R2]

C′
2→r C ′

2[R
′
2] = P ′

2.

By lemma 2.26, |M1|c =
|C1|cC→ r |M ′

1|c = |P ′
1|c|Q1|c and |M2|c

|C2|cC→ r

|M ′
2|c = |P ′

2|c|Q2|c. Since |M1|c = |M2|c and |C1|cC = |C2|cC , |P ′
1|c =

|P ′
2|c. By IH, |Rr

P ′
1
|cC ⊆ |Rr

P ′
2
|cC . By lemma 2.5, Rr

M ′
1

= {cCQ1 | C ∈
Rr

P ′
1
} ∪ {cP ′

1C | C ∈ Rr
Q1
} and Rr

M ′
2

= {cCQ2 | C ∈ Rr
P ′

2
} ∪

{cP ′
2C | C ∈ Rr

Q2
}, so |Rr

M ′
1
|cC = {C|Q1|c | C ∈ |Rr

P ′
1
|cC}∪{|P ′

1|cC | C ∈
|Rr

Q1
|cC} and |Rr

M ′
2
|cC = {C|Q2|c | C ∈ |Rr

P ′
2
|cC} ∪ {|P ′

2|cC | C ∈
|Rr

Q2
|cC}. Let C ∈ |Rr

M ′
1
|cC . Either C = C ′|Q1|c = C ′|Q2|c such that

C ′ ∈ |Rr
P ′

1
|cC ⊆IH |Rr

P ′
2
|cC . So C ∈ |Rr

M ′
2
|cC . Or C = |P ′

1|cC ′ = |P ′
2|cC ′

such that C ′ ∈ |Rr
Q1
|cC ⊆ |Rr

Q2
|cC . So C ∈ |Rr

M ′
2
|cC .

– Or C1 = cP1C
′
1 such that C ′

1 ∈ Rr
Q1

. |C1|cC = |P1|c|C ′
1|cC = |P2|c|C ′

1|cC
= |C2|cC . Since C2 ∈ Rr

M2
, |C2|cC ∈ |Rr

M2
|cC , so |C ′

1|cC ∈ |Rr
Q2
|cC

and C2 = cP2C
′
2 such that |C ′

2|cC = |C ′
1|cC . Hence, M1 = cP1Q1 =

cP1C
′
1[R1]

C1→r cP1C
′
1[R

′
1] = cP1Q

′
1 = M ′

1, M2 = cP2Q2 = cP2C
′
2[R2]

C2→r cP2C
′
2[R

′
2] = cP2Q

′
2 = M ′

2, Q1
C′

1→r Q′
1 and Q2

C′
2→r Q′

2. By

lemma 2.26, |M1|c =
|C1|cC→ r |M ′

1|c = |P1|c|Q′
1|c and |M2|c

|C2|cC→ r

|M ′
2|c = |P2|c|Q′

2|c. Since |M1|c = |M2|c and |C1|cC = |C2|cC , |Q′
1|c =

|Q′
2|c. By IH, |Rr

Q′
1
|cC ⊆ |Rr

Q′
2
|cC . By lemma 2.5, Rr

M ′
1

= {cCQ′
1 | C ∈

Rr
P1
} ∪ {cP1C | C ∈ Rr

Q′
1
} and Rr

M ′
2

= {cCQ′
2 | C ∈ Rr

P2
} ∪

{cP2C | C ∈ Rr
Q′

2
}, so |Rr

M ′
1
|cC = {C|Q′

1|c | C ∈ |Rr
P1
|cC}∪{|P1|cC | C ∈

|Rr
Q′

1
|cC} and |Rr

M ′
2
|cC = {C|Q′

2|c | C ∈ |Rr
P2
|cC} ∪ {|P2|cC | C ∈

|Rr
Q′

2
|cC}. Let C ∈ |Rr

M ′
1
|cC . Either C = C ′|Q′

1|c = C ′|Q′
2|c such that

C ′ ∈ |Rr
P1
|cC ⊆ |Rr

P2
|cC . So C ∈ |Rr

M ′
2
|cC . Or C = |P1|cC ′ = |P2|cC ′

such that C ′ ∈ |Rr
Q′

1
|cC ⊆IH |Rr

Q′
2
|cC . So C ∈ |Rr

M ′
2
|cC .

• Let M2 = P2Q2 ∈Mc such that P2, Q2 ∈Mc and P2 is a λ-abstraction.
Then |P2|c = |P1|c and |Q2|c = |Q1|c. Since M1 6∈ Rr, by lemma 2.5,
Rr

M1
= {cCQ1 | C ∈ Rr

P1
} ∪ {cP1C | C ∈ Rr

Q1
}. So, |Rr

M1
|cC =

{|cCQ1|cC | C ∈ Rr
P1
} ∪ {|cP1C|cC | C ∈ Rr

Q1
} = {C|Q1|c | C ∈ |Rr

P1
|cC} ∪

{|P1|cC | C ∈ |Rr
Q1
|cC}. Again by lemma 2.5, since M2 ∈ Rr by

lemma 2.10, Rr
M2

= {�} ∪ {CQ2 | C ∈ Rr
P2
} ∪ {P2C | C ∈ Rr

Q2
}. So,

|Rr
M2
|cC = {|CQ2|cC | C ∈ Rr

P2
} ∪ {|P2C|cC | C ∈ Rr

Q2
} = {C|Q2|c | C ∈

|Rr
P2
|cC} ∪ {|P2|cC | C ∈ |Rr

Q2
|cC}. Let C ∈ |Rr

P1
|cC then C|Q1|c =

C|Q2|c ∈ |Rr
M1
|cC ⊆ |Rr

M2
|cC . Hence, C ∈ |Rr

P2
|cC , i.e. |Rr

P1
|cC ⊆ |Rr

P2
|cC .

Let C ∈ |Rr
Q1
|cC then |P1|cC = |P2|cC ∈ |Rr

M1
|cC ⊆ |Rr

M2
|cC . Hence,

C ∈ |Rr
Q2
|cC , i.e. |Rr

Q1
|cC ⊆ |Rr

Q2
|cC . Since C1 ∈ Rr

M1
:

– Either C1 = cC ′
1Q1 such that C ′

1 ∈ Rr
P1

. |C1|cC = |C ′
1|cC |Q1|c =

|C ′
1|cC |Q2|c = |C2|cC . Since C2 ∈ Rr

M2
, |C2|cC ∈ |Rr

M2
|cC , so |C ′

1|cC ∈
|Rr

P2
|cC and C2 = C ′

2Q2 such that |C ′
2|cC = |C ′

1|cC and C ′
2 ∈ Rr

P2
.

Hence, M1 = cP1Q1 = cC ′
1[R1]Q1

C1→r cC ′
1[R

′
1]Q1 = cP ′

1Q1 = M ′
1,

M2 = P2Q2 = C ′
2[R2]Q2

C2→r C ′
2[R

′
2]Q2 = P ′

2Q2 = M ′
2, P1

C′
1→r P ′

1
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and P2
C′

2→r P ′
2. By lemma 2.26, |M1|c =

|C1|cC→ r |M ′
1|c = |P ′

1|c|Q1|c and

|M2|c
|C2|cC→ r |M ′

2|c = |P ′
2|c|Q2|c. Since |M1|c = |M2|c and |C1|cC =

|C2|cC , |P ′
1|c = |P ′

2|c. By IH, |Rr
P ′

1
|cC ⊆ |Rr

P ′
2
|cC . By lemma 2.5, Rr

M ′
1

=
{cCQ1 | C ∈ Rr

P ′
1
}∪{cP ′

1C | C ∈ Rr
Q1
} andRr

M ′
2
\{�} = {CQ2 | C ∈

Rr
P ′

2
} ∪ {P ′

2C | C ∈ Rr
Q2
}, so |Rr

M ′
1
|cC = {C|Q1|c | C ∈ |Rr

P ′
1
|cC} ∪

{|P ′
1|cC | C ∈ |Rr

Q1
|cC} and |Rr

M ′
2
|cC \ {�} = {C|Q2|c | C ∈ |Rr

P ′
2
|cC}∪

{|P ′
2|cC | C ∈ |Rr

Q2
|cC}. Let C ∈ |Rr

M ′
1
|cC . Either C = C ′|Q1|c =

C ′|Q2|c such that C ′ ∈ |Rr
P ′

1
|cC ⊆IH |Rr

P ′
2
|cC . So C ∈ |Rr

M ′
2
|cC . Or C =

|P ′
1|cC ′ = |P ′

2|cC ′ such that C ′ ∈ |Rr
Q1
|cC ⊆ |Rr

Q2
|cC . So C ∈ |Rr

M ′
2
|cC .

– Or C1 = cP1C
′
1 such that C ′

1 ∈ Rr
Q1

. |C1|cC = |P1|c|C ′
1|cC = |P2|c|C ′

1|cC
= |C2|cC . Since C2 ∈ Rr

M2
, |C2|cC ∈ |Rr

M2
|cC , so |C ′

1|cC ∈ |Rr
Q2
|cC

and C2 = P2C
′
2 such that |C ′

2|cC = |C ′
1|cC . Hence, M1 = cP1Q1 =

cP1C
′
1[R1]

C1→r cP1C
′
1[R

′
1] = cP1Q

′
1 = M ′

1, M2 = P2Q2 = P2C
′
2[R2]

C2→r P2C
′
2[R

′
2] = P2Q

′
2 = M ′

2, Q1
C′

1→r Q′
1 and Q2

C′
2→r Q′

2. By

lemma 2.26, |M1|c =
|C1|cC→ r |M ′

1|c = |P1|c|Q′
1|c and |M2|c

|C2|cC→ r

|M ′
2|c = |P2|c|Q′

2|c. Since |M1|c = |M2|c and |C1|cC = |C2|cC , |Q′
1|c =

|Q′
2|c. By IH, |Rr

Q′
1
|cC ⊆ |Rr

Q′
2
|cC . By lemma 2.5, Rr

M ′
1

= {cCQ′
1 | C ∈

Rr
P1
} ∪ {cP1C | C ∈ Rr

Q′
1
} and Rr

M ′
2
\ {�} = {CQ′

2 | C ∈ Rr
P2
} ∪

{P2C | C ∈ Rr
Q′

2
}, so |Rr

M ′
1
|cC = {C|Q′

1|c | C ∈ |Rr
P1
|cC}∪{|P1|cC | C ∈

|Rr
Q′

1
|cC} and |Rr

M ′
2
|cC \ {�} = {C|Q′

2|c | C ∈ |Rr
P2
|cC} ∪ {|P2|cC | C ∈

|Rr
Q′

2
|cC}. Let C ∈ |Rr

M ′
1
|cC . Either C = C ′|Q′

1|c = C ′|Q′
2|c such that

C ′ ∈ |Rr
P1
|cC ⊆ |Rr

P2
|cC . So C ∈ |Rr

M ′
2
|cC . Or C = |P1|cC ′ = |P2|cC ′

such that C ′ ∈ |Rr
Q′

1
|cC ⊆IH |Rr

Q′
2
|cC . So C ∈ |Rr

M ′
2
|cC .

• Let M2 = cN2 ∈ Ληc such that N2 ∈ Ληc. So |N2|c = |M2|c = |M1|c. By
lemma 2.9.5, Rβη

M2
= {cC | C ∈ Rβη

N2
}, so |Rβη

M1
|cC ⊆ |Rβη

M2
|cC = |Rβη

N2
|cC .

Since C2 ∈ Rβη
M2

, C2 = cC ′
2 such that C ′

2 ∈ Rβη
N2

. So, M2 = cN2 =

cC ′
2[R2]

cC′
2→ βη cC ′

2[R
′
2] = cN ′

2 = M ′
2 and N2 = C ′

2[R2]
C′

2→βη C ′
2[R

′
2] = N ′

2.
Since |C ′

2|cC = |C2|cC = |C1|cC , by IH, |Rβη
M ′

1
|cC ⊆ |Rβη

N ′
2
|cC . By lemma 2.9.5,

Rβη
M ′

2
= {cC | C ∈ Rβη

N ′
2
}, so |Rβη

M ′
1
|cC ⊆ |Rβη

N ′
2
|cC = |Rβη

M ′
2
|cC .

6. Let M1 = (λx.P1)Q1 ∈Mc such that λx.P1, Q1 ∈Mc.
So |M1|c = |λx.P1|c|Q1|c = |M2|c. By lemma 2.10, M1 ∈ Rr, so by lemma 2.5,
Rr

M1
= {�} ∪ {CQ1 | C ∈ Rr

λx.P1
} ∪ {(λx.P1)C | C ∈ Rr

Q1
} = {�} ∪

{(λx.C)Q1 | C ∈ Rr
P1
} ∪ {(λx.P1)C | C ∈ Rr

Q1
} and so |Rr

M1
|cC = {�} ∪

{C|Q1|c | C ∈ |Rr
λx.P1

|cC}∪{|λx.P1|cC | C ∈ |Rr
Q1
|cC} = {�}∪{(λx.C)|Q1|c | C

∈ |Rr
P1
|cC} ∪ {|λx.P1|cC | C ∈ |Rr

Q1
|cC}. We prove this statement by induction

on the structure of M2:

• Let M2 ∈ V \ {c} then |M2|c = M2 6= |P1|c|Q1|c.
• Let M2 = λx.N2 ∈ ΛI then |M2|c = λx.|N2|c 6= |P1|c|Q1|c.
• Let M2 = λx.N2[x := c(cx)] ∈ Ληc then |M2|c = λx.|N2[x := c(cx)]|c 6=
|P1|c|Q1|c.

• Let M2 = λx.N2x ∈ Ληc then |M2|c = λx.|N2x|c 6= |P1|c|Q1|c.
• Let M2 = cP2Q2 ∈ Mc such that P2, Q2 ∈ Mc. By lemma 2.5, Rr

M2
=

{cCQ2 | C ∈ Rr
P2
} ∪ {cP2C | C ∈ Rr

Q2
}, so |Rr

M2
|cC = {C|Q2|c | C ∈

|Rr
P2
|cC}∪{|P2|cC | C ∈ |Rr

Q2
|cC}. Since � ∈ |Rr

M1
|cC and � 6∈ rdGEM2r,

|Rr
M1
|cC 6⊆ |Rr

M2
|cC .
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• Let M2 = (λx.P2)Q2 ∈Mc such that λx.P2, Q2 ∈Mc, then |P1|c = |P2|c
and |Q1|c = |Q2|c. By lemma 2.5, Rr

M2
= {�} ∪ {CQ2 | C ∈ Rr

λx.P2
} ∪

{(λx.P2)C | C ∈ Rr
Q2
} = {�}∪{(λx.C)Q2 | C ∈ Rr

P2
}∪{(λx.P2)C | C ∈

Rr
Q2
}, so |Rr

M2
|cC = {�} ∪ {C|Q2|c | C ∈ |Rr

λx.P2
|cC} ∪ {|λx.P2|cC | C ∈

|Rr
Q2
|cC} = {�}∪{(λx.C)|Q2|c | C ∈ |Rr

P2
|cC}∪{|λx.P2|cC | C ∈ |Rr

Q2
|cC}.

let C ∈ |Rr
λx.P1

|cC then C|Q1|c = C|Q2|c ∈ |Rr
M1
|cC ⊆ |Rr

M2
|cC . So

C ∈ |Rr
λx.P2

|cC , i.e. |Rr
λx.P1

|cC ⊆ |Rr
λx.P2

|cC . Let C ∈ |Rr
P1
|cC then

(λx.C)|Q1|c = (λx.C)|Q2|c ∈ |Rr
M1
|cC ⊆ |Rr

M2
|cC . So C ∈ |Rr

P2
|cC ,

i.e. |Rr
P1
|cC ⊆ |Rr

P2
|cC . let C ∈ |Rr

Q1
|cC then |λx.P1|cC = |λx.P2|cC ∈

|Rr
M1
|cC ⊆ |Rr

M2
|cC . So C ∈ |Rr

Q2
|cC , i.e. |Rr

Q1
|cC ⊆ |Rr

Q2
|cC . Since

C1 ∈ Rr
M1

:

– Either C1 = �, so C2 = �. Hence, M1 = (λx.P1)Q1
�→r P1[x :=

Q1] = M ′
1 and M2 = (λx.P2)Q2

�→r P2[x := Q2] = M ′
2. By

lemma 2.27, |Rr
M ′

1
|cC ⊆ |Rr

M ′
2
|cC .

– Or C1 = (λx.C ′
1)Q1 such that C ′

1 ∈ Rr
P1

. |C1|cC = (λx.|C ′
1|cC)|Q1|c =

(λx.|C ′
1|cC)|Q2|c = |C2|cC . Since C2 ∈ Rr

M2
, |C2|cC ∈ |Rr

M2
|cC , so

|C ′
1|cC ∈ |Rr

P2
|cC and C2 = (λx.C ′

2)Q2 such that |C ′
2|cC = |C ′

1|cC and

C ′
2 ∈ Rr

P2
. Hence, M1 = (λx.P1)Q1 = (λx.C ′

1[R1])Q1
C1→r

(λx.C ′
1[R

′
1])Q1 = (λx.P ′

1)Q1 = M ′
1,

M2 = (λx.P2)Q2 = (λx.C ′
2[R2])Q2

C2→r (λx.C ′
2[R

′
2])Q2 = (λx.P ′

2)Q2

= M ′
2, P1

C′
1→r P ′

1 and P2
C′

2→r P ′
2. By lemma 2.26, |M1|c =

|C1|cC→ r

|M ′
1|c = |λx.P ′

1|c|Q1|c and |M2|c
|C2|cC→ r |M ′

2|c = |λx.P ′
2|c|Q2|c. Since

|M1|c = |M2|c and |C1|cC = |C2|cC , |P ′
1|c = |P ′

2|c. By IH, |Rr
P ′

1
|cC ⊆

|Rr
P ′

2
|cC . Since M1,M2 ∈ Mc, by lemma 2.12, M ′

1,M
′
2 ∈ Mc. By

lemma 2.5 and lemma 2.10, Rr
M ′

1
= {�} ∪ {(λx.C)Q1 | C ∈ Rr

P ′
1
} ∪

{(λx.P ′
1)C | C ∈ Rr

Q1
} and Rr

M ′
2

= {�} ∪ {(λx.C)Q2 | C ∈ Rr
P ′

2
} ∪

{(λx.P ′
2)C | C ∈ Rr

Q2
}, so |Rr

M ′
1
|cC = {�} ∪ {(λx.C)|Q1|c | C ∈

|Rr
P ′

1
|cC} ∪ {|λx.P ′

1|cC | C ∈ |Rr
Q1
|cC} and

|Rr
M ′

2
|cC = {�} ∪ {(λx.C)|Q2|c | C ∈ |Rr

P ′
2
|cC} ∪ {|λx.P ′

2|cC | C ∈
|Rr

Q2
|cC}. Let C ∈ |Rr

M ′
1
|cC . Either C = � then C ∈ |Rr

M ′
2
|cC .

Or C = (λx.C ′)|Q1|c = (λx.C ′)|Q2|c such that C ′ ∈ |Rr
P ′

1
|cC ⊆IH

|Rr
P ′

2
|cC . So C ∈ |Rr

M ′
2
|cC . Or C = |λx.P ′

1|cC ′ = |λx.P ′
2|cC ′ such that

C ′ ∈ |Rr
Q1
|cC ⊆ |Rr

Q2
|cC . So C ∈ |Rr

M ′
2
|cC .

– Or C1 = (λx.P1)C ′
1 such that C ′

1 ∈ Rr
Q1

. |C1|cC = |λx.P1|c|C ′
1|cC =

|λx.P2|c|C ′
1|cC = |C2|cC . Since C2 ∈ Rr

M2
, |C2|cC ∈ |Rr

M2
|cC , so |C ′

1|cC ∈
|Rr

Q2
|cC and C2 = (λx.P2)C ′

2 such that |C ′
2|cC = |C ′

1|cC . Hence, M1 =

(λx.P1)Q1 = (λx.P1)C ′
1[R1]

C1→r (λx.P1)C ′
1[R

′
1] = (λx.P1)Q′

1 = M ′
1,

M2 = (λx.P2)Q2 = (λx.P2)C ′
2[R2]

C2→r (λx.P2)C ′
2[R

′
2] = (λx.P2)Q′

2

= M ′
2, Q1

C′
1→r Q′

1 and Q2
C′

2→r Q′
2. By lemma 2.26, |M1|c =

|C1|cC→ r

|M ′
1|c = |λx.P1|c|Q′

1|c and |M2|c
|C2|cC→ r |M ′

2|c = |λx.P2|c|Q′
2|c. Since

|M1|c = |M2|c and |C1|cC = |C2|cC , |Q′
1|c = |Q′

2|c. By IH, |Rr
Q′

1
|cC ⊆

|Rr
Q′

2
|cC . Since M1,M2 ∈ Mc, by lemma 2.12, M ′

1,M
′
2 ∈ Mc.

By lemma 2.5 and lemma 2.10, Rr
M ′

1
= {�} ∪ {(λx.C)Q′

1 | C ∈
Rr

P1
} ∪ {(λx.P1)C | C ∈ Rr

Q′
1
} and Rr

M ′
2

= {�} ∪ {(λx.C)Q′
2 | C ∈

Rr
P2
}∪{(λx.P2)C | C ∈ Rr

Q′
2
}, so |Rr

M ′
1
|cC = {�}∪{(λx.C)|Q′

1|c | C ∈
|Rr

P1
|cC} ∪ {|λx.P1|cC | C ∈ |Rr

Q′
1
|cC} and

|Rr
M ′

2
|cC = {�} ∪ {(λx.C)|Q′

2|c | C ∈ |Rr
P2
|cC} ∪ {|λx.P2|cC | C ∈
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|Rr
Q′

2
|cC}. Let C ∈ |Rr

M ′
1
|cC . Either C = (λx.C ′)|Q′

1|c = (λx.C ′)|Q′
2|c

such that C ′ ∈ |Rr
P1
|cC ⊆ |Rr

P2
|cC . So C ∈ |Rr

M ′
2
|cC . Or C =

|λx.P1|cC ′ = |λx.P2|cC ′ such that C ′ ∈ |Rr
Q′

1
|cC ⊆IH |Rr

Q′
2
|cC . So

C ∈ |Rr
M ′

2
|cC .

• Let M2 = cN2 ∈ Ληc such that N2 ∈ Ληc. So |N2|c = |M2|c = |M1|c. By
lemma 2.9.5, Rβη

M2
= {cC | C ∈ Rβη

N2
}, so |Rβη

M1
|cC ⊆ |Rβη

M2
|cC = |Rβη

N2
|cC .

Since C2 ∈ Rβη
M2

, C2 = cC ′
2 such that C ′

2 ∈ Rβη
N2

. So, M2 = cN2 =

cC ′
2[R2]

cC′
2→ βη cC ′

2[R
′
2] = cN ′

2 = M ′
2 and N2 = C ′

2[R2]
C′

2→βη C ′
2[R

′
2] = N ′

2.
Since |C ′

2|cC = |C2|cC = |C1|cC , by IH, |Rβη
M ′

1
|cC ⊆ |Rβη

N ′
2
|cC . By lemma 2.9.5,

Rβη
M ′

2
= {cC | C ∈ Rβη

N ′
2
}, so |Rβη

M ′
1
|cC ⊆ |Rβη

N ′
2
|cC = |Rβη

M ′
2
|cC .

7. Let M1 = cN1 ∈ Ληc such that N1 ∈ Ληc. So |N1|c = |M1|c = |M2|c. By
lemma 2.9.5, Rβη

M1
= {cC | C ∈ Rβη

N1
}, so |Rβη

N1
|cC = |Rβη

M1
|cC ⊆ |Rβη

M2
|cC . Since

C1 ∈ Rβη
M1

, C1 = cC ′
1 such that C ′

1 ∈ Rβη
N1

. So, M1 = cN1 = cC ′
1[R1]

cC′
1→ βη

cC ′
1[R

′
1] = cN ′

1 = M ′
1 and N1

C′
1→βη N ′

1. Since |C ′
1|cC = |C1|cC = |C2|cC , by IH,

|Rβη
N ′

1
|cC ⊆ |Rβη

M ′
2
|cC . By lemma 2.9.5, Rβη

M ′
1

= {cC | C ∈ Rβη
N ′

1
}, so |Rβη

M ′
1
|cC =

|Rβη
N ′

1
|cC ⊆ |Rβη

M ′
2
|cC .

B Proofs of section 5

Lemma 5.2. 1. (a) By induction on the structure of M ∈ ΛI.

• Let M = x 6= c. Then ΦβI(x,F) = x, F = ∅ and FV (x) =
FV (x) \ {c}.

• Let M = λx.N and F ′ = {C | λx.C ∈ F} ⊆ RβI
N . FV (M) =

FV (N) \ {x} =IH FV (ΦβI(N,F ′)) \ {c, x} = FV (λx.ΦβI(N,F ′)) \
{c} = ΦβI(M,F).

• Let M = M1M2, F1 = {C | CM2 ∈ F} ⊆ RβI
M1

and
F2 = {C | M1C ∈ F} ⊆ RβI

M2
.

– If � ∈ F then, ΦβI(M,F) = ΦβI(M1,F1)ΦβI(M2,F2).
– Else, ΦβI(M,F) = cΦβI(M1,F1)ΦβI(M2,F2).

In both cases, FV (M) = FV (M1) ∪ FV (M2) =IH

(FV (ΦβI(M1,F1)) \ {c}) ∪ (FV (ΦβI(M2,F2)) \ {c}) =
FV (ΦβI(M,F)) \ {c}.

(b) By induction on the structure of M ∈ ΛI.

• Let M ∈ V, then M 6= c. So F = ∅ and ΦβI(M,F) = M ∈ ΛIc.
• Let M = λx.N and F ′ = {C | λx.C ∈ F} ⊆ RβI

N . By IH,
ΦβI(N,F ′) ∈ ΛIc. Since by (BC), x 6= c, by lemma 5.2.1a, x ∈
FV (ΦβI(N,F ′)). Hence, ΦβI(M,F) = λx.ΦβI(N,F ′) ∈ ΛIc.

• Let M = M1M2, F1 = {C | CM2 ∈ F} ⊆ RβI
M1

and
F2 = {C | M1C ∈ F} ⊆ RβI

M2
.

– If � ∈ F then ΦβI(M,F) = ΦβI(M1,F1)ΦβI(M2,F2). By IH,
ΦβI(M1,F1),ΦβI(M2,F2) ∈ ΛIc and as M1 is a λ-abstraction,
ΦβI(M1,F1) is a λ-abstraction. Hence ΦβI(M,F) ∈ ΛIc.

– Else, ΦβI(M,F) = cΦβI(M1,F1)ΦβI(M2,F2).
By IH, ΦβI(M1,F1),ΦβI(M2,F2) ∈ ΛIc, hence, ΦβI(M,F) ∈
ΛIc.
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(c) By induction on M ∈ ΛI.

• Let M = x 6= c. Then, F = ∅ and ΦβI(x,F) = x = |x|c.
• Let M = λx.N and F ′ = {C | λx.C ∈ F} ⊆ RβI

N . |ΦβI(M,F)|c =
|λx.ΦβI(N,F ′)|c = λx.|ΦβI(N,F ′)|c =IH λx.N .

• Let M = M1M2, F1 = {C | CM2 ∈ F} ⊆ RβI
M1

and
F2 = {C | M1C ∈ F} ⊆ RβI

M2
.

– If � ∈ F then M1 is a λ-abstraction, hence, ΦβI(M1,F1) is a λ-
abstraction. So, |ΦβI(M,F)|c = |ΦβI(M1,F1)ΦβI(M2,F2)|c =
|ΦβI(M1,F1)|c|ΦβI(M2,F2)|c =IH M1M2 = M .

– Else, |ΦβI(M,F)|c = |cΦβI(M1,F1)ΦβI(M2,F2)|c =
|ΦβI(M1,F1)|c|ΦβI(M2,F2)|c =IH M1M2 = M .

(d) By induction on M ∈ ΛI.

• If M = x 6= c then ΦβI(M,F) = M and F = ∅ = |RβI
M |cC .

• Let M = λx.N and F ′ = {C | λx.C ∈ F} ⊆ RβI
N . F =2.6

{λx.C | C ∈ F ′} =IH {λx.C | C ∈ |RβI
ΦβI(P,F ′)

|cC} = {λx.|C|cC | C ∈
RβI

ΦβI(P,F ′)
}

= {|λx.C|cC | C ∈ RβI
ΦβI(P,F ′)

} =2.5 |RβI
ΦβI(M,F)

|cC .

• Let M = M1M2, F1 = {C | CM2 ∈ F} ⊆ RβI
M1

and
F2 = {C | M1C ∈ F} ⊆ RβI

M2
.

– If � ∈ F then ΦβI(M,F) = ΦβI(M1,F1)ΦβI(M2,F2). Since
M1 is a λ-abstraction then ΦβI(M1,F1) too. By lemma 5.2.1b,
ΦβI(M,F) ∈ ΛIc then ΦβI(M,F) ∈ RβI .
F =2.6 {�} ∪ {CM2 | C ∈ F1} ∪ {M1C | C ∈ F2} =IH {�} ∪
{CM2 | C ∈ |RβI

ΦβI(M1,F1)
|cC} ∪ {M1C | C ∈ |RβI

ΦβI(M2,F2)
|cC} =

{�}∪{|C|cCM2 | C ∈ RβI
ΦβI(M1,F1)

}∪{M1|C|cC | C ∈ RβI
ΦβI(M2,F2)

}
=5.2.1c {�} ∪ {|CΦβI(M2,F2)|cC | C ∈ RβI

ΦβI(M1,F1)
}∪

{|ΦβI(M1,F1)C|cC | C ∈ RβI
ΦβI(M2,F2)

} =2.5 |RβI
ΦβI(M,F)

|cC .
– Else, ΦβI(M,F) = cΦβI(M1,F1)ΦβI(M2,F2).
F =2.6 {CM2 | C ∈ F1} ∪ {M1C | C ∈ F2} =IH {CM2 | C ∈
|RβI

ΦβI(M1,F1)
|cC}∪{M1C | C ∈ |RβI

ΦβI(M2,F2)
|cC} = {|C|cCM2 | C ∈

RβI
ΦβI(M1,F1)

} ∪ {M1|C|cC | C ∈ RβI
ΦβI(M2,F2)

} =5.2.1c

{|cCΦβI(M2,F2)|cC | C ∈ RβI
ΦβI(M1,F1)

}∪
{|cΦβI(M1,F1)C|cC | C ∈ RβI

ΦβI(M2,F2)
} =2.5 |RβI

ΦβI(M,F)
|cC .

2. (a) By induction on the construction of M ∈ ΛIc. By lemma 2.22, |M |c ∈ ΛI

• Let M ∈ V \ {c}. Hence |M |c = M , by lemma 2.5, |RβI
M |cC = ∅ =

RβI
|M |c and M = ΦβI(|M |c, |RβI

M |cC).
• Let M = λx.P where P ∈ ΛIc and x ∈ FV (P ). |M |c = λx.|P |c.

By IH, |RβI
P |cC ⊆ RβI

|P |c and P = ΦβI(|P |c, |RβI
P |cC). |RβI

M |cC =2.5

{|λx.C|cC | C ∈ RβI
P } = {λx.C | C ∈ |RβI

P |cC} ⊆ {λx.C | C ∈
RβI
|P |c} =2.5 RβI

|M |c . Moreover, M = ΦβI(|M |c, |RβI
M |cC).

• Let M = cPQ where P,Q ∈ ΛIc. Let |M |c = |P |c|Q|c. By IH,
|RβI

P |cC ⊆ RβI
|P |c , |R

βI
Q |cC ⊆ RβI

|Q|c , P = ΦβI(|P |c, |RβI
P |cC) and Q =

ΦβI(|Q|c, |RβI
Q |cC). |R

βI
M |cC =2.5 {|cCQ|cC | C ∈ RβI

P } ∪ {|cPC|cC | C ∈
RβI

Q } = {C|Q|c | C ∈ |RβI
P |cC}∪{|P |cC | C ∈ |RβI

Q |cC} ⊆ {C|Q|c | C ∈
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RβI
|P |c} ∪ {|P |

cC | C ∈ RβI
|Q|c} ⊆

2.5 RβI
|M |c .

Moreover M = ΦβI(|M |βI , |RβI
M |cC).

• Let M = PQ where P,Q ∈ ΛIc and P is a λ-abstraction. Let |M |c =
|P |c|Q|c, where |P |c is a λ-abstraction. By IH, |RβI

P |cC ⊆ RβI
|P |c ,

|RβI
Q |cC ⊆ RβI

|Q|c , P = ΦβI(|P |c, |RβI
P |cC) and Q = ΦβI(|Q|c, |RβI

Q |cC).
|RβI

M |cC =2.5 {�}∪{|CQ|cC | C ∈ RβI
P }∪{|PC|cC | C ∈ RβI

Q } = {�}∪
{C|Q|c | C ∈ |RβI

P |cC} ∪ {|P |cC | C ∈ |RβI
Q |cC} ⊆ {�} ∪ {C|Q|c | C ∈

RβI
|P |c} ∪ {|P |

cC | C ∈ RβI
|Q|c} =2.5 RβI

|M |c .

Moreover M = ΦβI(|M |βI , |RβI
M |cC).

(b) By lemma 2.22, |M |c ∈ ΛI. By lemma 2.21 c 6∈ FV (|M |c). By lemma 5.2.2a,
|RβI

M |cC ⊆ RβI
|M |c and M = ΦβI(|M |c, |RβI

M |cC). To prove unicity, assume

that (N ′,F ′) is another such pair. So F ′ ⊆ RβI
N ′ and M = ΦβI(N ′,F ′).

Then, |M |c = |ΦβI(N ′,F ′)|c =5.2.1c N ′ and F ′ =5.2.1d |RβI
ΦβI(N ′,F ′)

|cC =

|RβI
M |cC .

Lemma 5.3. By lemma 5.2.1c and lemma 2.17, there exists a unique C ′ ∈ RβI
ΦβI(M,F)

,
such that |C ′|cC = C. By definition ∃R ∈ RβI such that ΦβI(M,F) = C ′[R].

By lemma 5.2.1c, |C ′[R]|c = M . By lemma 2.25, |C ′[R]|c |C′|cC→ βI |C ′[R′]|c such

that R′ is the contractum of R. So M
C→βI |C ′[R′]|c, then M ′ = |C ′[R′]|c. Let

F ′ = |RβI
C′[R′]|

c
C . Since, ΦβI(M,F) = C ′[R] C′

→βI C ′[R′], by lemma 2.12 and

lemma 5.2.1b, C ′[R′] ∈ ΛIc. By lemma 5.2.2a, C ′[R′] = ΦβI(M ′,F ′) and F ′ ⊆ RβI
M ′ .

By lemma 5.2.2b, F ′ is unique.

Lemma 5.6. It sufficient to prove:

(M,F) →βId (M ′,F ′) ⇐⇒ ΦβI(M,F) →βI ΦβI(M ′,F ′)

• ⇒) let (M,F) →βId (M ′,F ′). Then by definition 5.5, ∃C ∈ F such that

M
C→βI M ′ and F ′ is the set of βI-residuals in M ′ relative to C. By defini-

tion 5.4 we obtain ΦβI(M,F) →βI ΦβI(M ′,F ′).

• ⇐) Let ΦβI(M,F) C→βI ΦβI(M ′,F ′) such that C ∈ RβI
ΦβI(M,F)

. Since, by
lemma 5.2.1b, ΦβI(M,F) ∈ ΛIc, by lemma 2.26 and lemma 5.2.1c, M =

|ΦβI(M,F)|c |C|cC→ βI |ΦβI(M ′,F ′)|c = M ′. By definition 5.4, F ′ is the set
of βI-residuals of F in M ′ relative to |C|cC . By definition 5.5 we obtain
(M,F) →βd (M ′,F ′).

Lemma 5.7. By lemma 5.2.1b, ΦβI(M,F1),ΦβI(M,F2) ∈ ΛIc.
By lemma 5.2.1c, |ΦβI(M,F1)|c = |ΦβI(M,F2)|c. By lemma 5.2.1d, |RβI

ΦβI(M,F1)
|cC =

F1 ⊆ F2 = |RβI
ΦβI(M,F2)

|cC .
If (M,F1) →βId (M ′,F ′

1) then by lemma 5.6, ΦβI(M,F1) →βI ΦβI(M ′,F ′
1).

Let ΦβI(M,F1)
C1→βI ΦβI(M ′,F ′

1) such that C1 ∈ RβI
ΦβI(M,F1)

. Let C0 = |C1|cC , so

by lemma 5.2.1d, C0 ∈ F1. By lemma 2.26 and lemma 5.2.1c, M
C0→βI M ′.

By lemma 5.3 there exists a unique set F ′ ⊆ RβI
M ′ , such that ΦβI(M,F1)

C′

→βI

ΦβI(M ′,F ′) and |C ′|cC = C0 where C ′ ∈ RβI
ΦβI(M,F1)

. Since C ′, C1 ∈ RβI
ΦβI(M,F1)

, by
lemma 2.17, C ′ = C1. So, ΦβI(M ′,F ′) = ΦβI(M ′,F ′

1). By lemma 5.2.1d, F ′ = F ′
1.

By lemma 5.2.1c, F ′
1 = |RβI

ΦβI(M ′,F ′
1)
|cC .
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By lemma 5.3 there exists a unique set F ′
2 ⊆ RβI

M ′ , such that ΦβI(M,F2)
C2→βI

ΦβI(M ′,F ′
2) and |C2|cC = C0 where C2 ∈ ΦβI(M,F2). By lemma 5.2.1c, F ′

2 =
|RβI

ΦβI(M ′,F ′
2)
|cC .

Hence, by lemma 2.28, F ′
1 ⊆ F ′

2 and by lemma 5.6, (M,F2) →βId (M ′,F ′
2).

Lemma 5.9. 1. By induction on Γ `βI M : σ. 2. By induction on Γ `βη M : σ.
3. First prove (*): if Γ `r M : σ, and σ v σ′ then Γ `r M : σ′ by induction on
σ v σ′. Then, do the proof of 3. by induction on Γ `r M : σ. For the latter we do:

• Case (ax): If Γ, x : σ `βη x : σ, Γ′, x : σ′ v Γ, x : σ and σ v σ′′ then σ′ v σ
and so σ′ v σ′′. By (ax) Γ′, x : σ′ `βη x : σ′. By (*), Γ′, x : σ′ `βη x : σ′′.

• Case (→EI ): If Γ`βIM :σ→τ ∆`βIN :σ
Γu∆`βIMN :τ

, Γ = Γ1,Γ2, ∆ = ∆1,∆2, Γ u ∆ =
Γ3,Γ2,∆2, Γ′ = Γ′3,Γ

′
2,∆

′
2 v Γ where, Γ1 = (xi : σi)n, Γ2 = (yj , τj)m,

Γ3 = (xi : σi ∩σ′i)n, ∆1 = (xi : σ′i)n, ∆2 = (zl, ρl)k, dom(Γ2)∩ dom(∆2) = ∅,
Γ′3 = (xi : σi)n, Γ′2 = (yj , τ j)m, ∆′

2 = (zl, ρl)k, σi v σi ∩ σ′i, τj v τj and
ρl v ρl then Γ′3,Γ

′
2 v Γ and Γ′3,∆

′
2 v ∆. By IH, Γ′3,Γ

′
2 `βI M : σ → τ and

Γ′3,∆
′
2 `βI N : σ, so by (→EI ), Γ′3uΓ′3,Γ

′
2,∆

′
2 `βI MN : τ . By (*), and since

Γ′3 u Γ′3 = Γ′3, we have: Γ′3,Γ
′
2,∆

′
2 `βI MN : τ .

Lemma 5.10. When M →∗
r N and M →∗

r P , we write M →∗
r {N,P}.

1. By induction on σ ∈ Type1.

• If σ ∈ A then CRr
0 ⊆ CRr.

• If σ = τ ∩ ρ then by IH, CRr
0 ⊆ JτKr, JρKr ⊆ CRr, so CRr

0 ⊆ Jτ ∩ ρKr ⊆
CRr.

• If σ = τ → ρ then by IH, CRr
0 ⊆ JτKr, JρKr ⊆ CRr and JσKr ⊆ CRr

by definition. Let M ∈ CRr
0, so M = xN1 . . . Nn, where n ≥ 0 and

N1, . . . , Nn ∈ CRr. Let P ∈ JτKr so P ∈ CRr, hence, MP ∈ CRr
0 ⊆ JρKr

and M ∈ JσKr.

2. Let M [x := N ]N1 . . . Nn ∈ CRβI where n ≥ 0, x ∈ FV (M), and
(λx.M)NN1 . . . Nn →∗

βI {M1,M2}. By lemma 2.2.7, ∃M ′
1 and M ′

2 such that
M1 →∗

βI M ′
1, M [x := N ]N1 . . . Nn →∗

βI M ′
1, M2 →∗

βI M ′
2 and M [x :=

N ]N1 . . . Nn →∗
βI M ′

2. Then we conclude using M [x := N ]N1 . . . Nn ∈ CRβI .

3. Let M [x := N ]N1 . . . Nn ∈ CRβη where n ≥ 0 and (λx.M)NN1 . . . Nn →∗
βη

{M1,M2}. By lemma 2.2.7, ∃M ′
1 and M ′

2 such that M1 →∗
βη M ′

1, M [x :=
N ]N1 . . . Nn →∗

βη M ′
1, M2 →∗

βη M ′
2 and M [x := N ]N1 . . . Nn →∗

βη M ′
2. Then

we conclude using M [x := N ]N1 . . . Nn ∈ CRβη.

4. By induction on σ.

• If σ ∈ A, then the statement is true by 2.

• If σ = τ ∩ ρ, then by IH, JτKβI and JρKβI are I-saturated. Let M , N ,
N1,. . ., Nn ∈ Λ, x ∈ FV (M), n ≥ 0, and M [x := N ]N1 . . . Nn ∈ JσKβI =
JτKβI ∩ JρKβI . Then by I-saturation, (λx.M)NN1 . . . Nn ∈ JτKβI and
(λx.M)NN1 . . . Nn ∈ JρKβI . Done.

• If σ = τ → ρ, then by IH, JτKβI and JρKβI are I-saturated. Let n ≥
0, M,N,N1, . . . , Nn ∈ Λ, x ∈ FV (M), and M [x := N ]N1 . . . Nn ∈
JσKβI . Let P ∈ JτKβI 6= ∅, then M [x := N ]N1 . . . NnP ∈ JρKβI .
By I-saturation, (λx.M)NN1 . . . NnP ∈ JρKβI so (λx.M)NN1 . . . Nn ∈
JτKβI ⇒ JρKβI . Since, M [x := N ]N1 . . . Nn ∈ JσKβI ⊆ CRβI and CRβI

is saturated by 2, then (λx.M)NN1 . . . Nn ∈ CRβI .
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5. By induction on σ.

• If σ ∈ A, then the statement is true by 3.

• If σ = τ ∩ ρ, then by IH, JτKβη and JρKβη are saturated.
Let M [x := N ]N1 . . . Nn ∈ JσKβη = JτKβη ∩ JρKβη. Then by saturation,
(λx.M)NN1 . . . Nn ∈ JτKβη and (λx.M)NN1 . . . Nn ∈ JρKβη. Done.

• If σ = τ → ρ, then by IH, JτKβη and JρKβη are saturated. Let n ≥ 0,
M,N,N1, . . . , Nn ∈ Λ, x ∈ V, and M [x := N ]N1 . . . Nn ∈ JσKβη. Let
P ∈ JτKβη 6= ∅, then M [x := N ]N1 . . . NnP ∈ JρKβη. By saturation,
(λx.M)NN1 . . . NnP ∈ JρKβη so (λx.M)NN1 . . . Nn ∈ JτKβη ⇒ JρKr.
Since, M [x := N ]N1 . . . Nn ∈ JσKβη ⊆ CRβη and CRβη is saturated by
3, then (λx.M)NN1 . . . Nn ∈ CRβη.

Lemma 5.11. By induction on x1 : σ1, . . . , xn : σn `r M : σ.

• If the last rule is (ax) or (axI), use the hypothesis.

• If the last rule is (→EI ). Let Γ1 u Γ2 = (xi : σi ∩ σ′i)n, (yi : τi)p, (zi : ρi)q

such that Γ1 = (xi : σi)n, (yi : τi)p and Γ2 = (xi : σ′i)n, (zi : ρi)q. Let
∀i ∈ {1, . . . , n}, Ni ∈ Jσi ∩ σ′iKβI so Ni ∈ JσiKβI and Ni ∈ Jσ′iKβI , ∀i ∈
{1, . . . , p}, Pi ∈ JτiKβI and ∀i ∈ {1, . . . , q}, P ′

i ∈ JρiKβI . So by IH, M [(xi :=
Ni)n, (yi := Pi)p] ∈ Jσ → τKβI and N [(xi := Ni)n, (zi := P ′

i )q] ∈ JσKβI .
Hence, (MN)[(xi := Ni)n, (yi := Pi)p, (zi := P ′

i )q] ∈ JτKβI .

• If the last rule is (→E). Let Γ = (xi : σi)n and ∀i ∈ {1, . . . , n}, Ni ∈ JσiKβη.
So by IH, M [(xi := Ni)n] ∈ Jσ → τKβη and N [(xi := Ni)n] ∈ JσKβη. Hence,
(MN)[(xi := Ni)n] ∈ JτKβη.

• If the last rule is (→I). Let Γ = (xi : σi)n and ∀i ∈ {1, . . . , n}, Ni ∈ JσiKr.
Let P ∈ JσKr 6= ∅. So by IH, M [(xi := Ni)n, x := P ] ∈ JτKr. Moreover
((λx.M)[(xi := Ni)n])P = (λx.M [(xi := Ni)n])P .

– For `βI , since x ∈ FV (M) by lemma 2.2.2, (λx.M [(xi := Ni)n]) →βI

M [(xi := Ni)n, x := P ] and since by lemma 5.10, JτKβI is I-saturated,
((λx.M)[(xi := Ni)n])P ∈ JτKβI .

– For `βη, (λx.M [(xi := Ni)n]) →β M [(xi := Ni)n, x := P ] and since by
lemma 5.10, JτKβη is saturated, ((λx.M)[(xi := Ni)n])P ∈ JτKβη.

So (λx.M)[(xi := Ni)n] ∈ JσKr ⇒ JτKr. Since x ∈ JσKr, M [(xi := Ni)n] ∈
JτKr ⊆ CRr, so λx.M [(xi := Ni)n] = (λx.M)[(xi := Ni)n] ∈ CRr.

• If the last rule is (∩I). Let Γ = (xi : σi)n and ∀i ∈ {1, . . . , n}, Ni ∈ JσiKr.
So by IH, M [(xi := Ni)n] ∈ JτKr and M [(xi := Ni)n] ∈ JρKr. So M [(xi :=
Ni)n] ∈ JσKr.

• If the last rule is (∩E1). Let Γ = (xi : σi)n and ∀i ∈ {1, . . . , n}, Ni ∈ JσiKr.
So by IH, M [(xi := Ni)n] ∈ Jσ ∩ τKr, so M [(xi := Ni)n] ∈ JσKr.

• If the last rule is (∩E2). Let Γ = (xi : σi)n and ∀i ∈ {1, . . . , n}, Ni ∈ JσiKr.
So by IH, M [(xi := Ni)n] ∈ Jσ ∩ τKr, so M [(xi := Ni)n] ∈ JτKr.

Lemma 5.13. By induction on M . Note that by Lemma 2.4, M 6= c.

• Let M = x 6= c. Then Γ = Γ1, x : τ , Γ′ = x : τ , Γ′ `βI x : τ and ∀σ,
Γ1, x : τ, c : σ `βη x : τ .
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• Let M = λx.N ∈ ΛIc then by lemma 2.4, N ∈ ΛIc and x ∈ FV (N). ∀ρ:

– If c ∈ FV (M) then c ∈ FV (N) and by IH, ∃σ, τ where Γ′, x : ρ, c : σ `βI

N : τ , hence Γ′, c : σ `βI λx.N : ρ → τ .

– If c 6∈ FV (M) then by IH, ∃τ where Γ′, x : ρ `βI N : τ , hence Γ′ `βI

λx.N : τ .

• Let M = λx.N ∈ Ληc then by lemma 2.4.9.9a, N ∈ Ληc. By IH, ∀ρ, ∃σ, τ
such that Γ, x : ρ, c : σ `βη N : τ . Hence, Γ, c : σ `βη λx.N : τ .

• Let M = cNP where N,P ∈ ΛIc. Let Γ′1 = Γ � FV (N) and Γ′2 = Γ � FV (P ).
Note that Γ′ = Γ � FV (cNP ) = Γ′1 u Γ′2.

– If c 6∈ FV (N) ∪ FV (P ) then by IH, ∃τ1, τ2 such that Γ′1 `βI N : τ1 and
Γ′2 `βI P : τ2. Let ρ ∈ Type1 and σ = τ1 → τ2 → ρ. By (→EI

) twice,
Γ′1 u Γ′2, c : σ `βI cNP : ρ.

– If c ∈ FV (N) and c 6∈ FV (P ) then by IH, ∃σ1, τ1, τ2 such that Γ′1, c :
σ1 `βI N : τ1 and Γ′2 `βI P : τ2. Let ρ ∈ Type1 and let σ = σ1 ∩ (τ1 →
τ2 → ρ). By (axI) and (∩E), c : σ `βI c : τ1 → τ2 → ρ. By lemma 5.9.3,
Γ′1, c : σ `βI N : τ1. By (→EI

) twice, Γ′1 u Γ′2, c : σ `βI cNP : ρ.

– If c ∈ FV (N)∩FV (P ) then by IH, ∃σ1, σ2, τ1, τ2 such that Γ′1, c : σ1 `βI

N : τ1 and Γ′2, c : σ2 `βI N : τ2. Let ρ ∈ Type1 and let σ = σ1 ∩ (σ2 ∩
(τ1 → τ2 → ρ)). By (axI) and (∩E), c : σ `βI c : τ1 → τ2 → ρ. By
lemma 5.9.3, Γ′1, c : σ `βI N : τ1, and Γ′2, c : σ `βI P : τ2. By (→EI

)
twice, Γ′1 u Γ′2, c : σ `βI cNP : ρ.

• Let M = cNP where N,P ∈ Ληc. by IH, ∃σ1, σ2, τ1, τ2 such that Γ, c :
σ1 `βη N : τ1 and Γ, c : σ2 `βη N : τ2. Let ρ ∈ Type1 and let σ = σ1 ∩
(σ2 ∩ (τ1 → τ2 → ρ)). By (axI) and (∩E), c : σ `βη c : τ1 → τ2 → ρ. By
lemma 5.9.3, Γ, c : σ `βη N : τ1, and Γ, c : σ `βη P : τ2. By (→EI

) twice,
Γ, c : σ `βη cNP : ρ.

• Let M = NP where N,P ∈ ΛIc and N = λx.N0. So N0 ∈ ΛIc and x ∈
FV (N0). Let Γ′1 = Γ � FV (N) and Γ′2 = Γ � FV (P ). Note that Γ′ = Γ �
FV (NP ) = Γ′1 u Γ′2. By BC, x 6= c and x 6∈ FV (P ).x

– If c 6∈ FV (λx.N0) ∪ FV (P ) then by IH, ∃τ2 such that Γ′2 `βI P : τ2 and
again by IH, ∃τ1 such that Γ′1, x : τ2 `βI N0 : τ1. By (→I) and (→EI

),
Γ′1 u Γ′2 `βI (λx.N0)P : τ1.

– If c ∈ FV (λx.N0) and c 6∈ FV (P ) then by IH, ∃τ2 such that Γ′2 `βI P :
τ2. Again by IH, ∃σ, τ1 such that Γ′1, c : σ, x : τ2 `βI N0 : τ1. By (→I)
and (→EI

), Γ′1 u Γ′2, c : σ `βI (λx.N0)P : τ1.

– If c ∈ FV (λx.N0) ∩ FV (P ), then by IH, ∃σ2, τ2 such that Γ′2, c : σ2 `βI

P : τ2 and again by IH, ∃σ1, τ1 such that Γ′1, c : σ1, x : τ2 `βI N0 : τ1. By
(→I), Γ′1, c : σ1 `βI λxN0 : τ2 → τ1. By (→EI

), Γ′1 u Γ′2, c : σ1 ∩ σ2 `βI

(λx.N0)P : τ1.

• Let M = NP where N,P ∈ Ληc and N = λx.N0 then by lemma 2.4.9.9a,
N0 ∈ Ληc. By IH, ∃σ2, τ2 such that Γ, c : σ2 `βη P : τ2 and again by IH, ∃σ1, τ1

such that Γ, c : σ1, x : τ2 `βη N0 : τ1. By (→I), Γ, c : σ1 `βη λx.N0 : τ2 → τ1.
Let σ = σ1 ∩ σ2. By Lemma 5.9.3, Γ, c : σ `βη λx.N0 : τ2 → τ1 and
Γ, c : σ `βη P : τ2. Hence, by (→E), Γ, c : σ `βη (λx.N0)P : τ1.

• Let M = cN where N ∈ Ληc. By IH, ∃σ, τ such that Γ, c : σ `βη N : τ . Let
ρ ∈ Type1 and σ′ = σ ∩ (τ → ρ). By Lemma 5.9.3, Γ, c : σ′ `βη N : τ and
Γ, c : σ′ `βη c : τ → ρ. Hence, by (→E), Γ, c : σ′ `βη cN : ρ.
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Lemma 5.14. If M
F1→βId M1 and M

F2→βId M2, then ∃F ′′
1 ,F ′′

2 such that (M,F1) →∗
βId

(M1,F ′′
1 ) and (M,F2) →∗

βId (M2,F ′′
2 ). Note that by definition 5.5 and lemma 2.2.2,

M1,M2 ∈ ΛI. By lemma 5.7, ∃F ′′′
1 ⊆ RβI

M1
and ∃F ′′′

2 ⊆ RβI
M2

such that (M,F1 ∪
F2) →∗

βId (M1,F ′′
1 ∪ F ′′′

1 ) and (M,F1 ∪ F2) →∗
βId (M2,F ′′

2 ∪ F ′′′
2 ). By lemma 5.6

there exist T, T1, T2 ∈ ΛIc such that

T = ΦβI(M,F1 ∪ F2), T1 = ΦβI(M1,F ′′
1 ∪ F ′′′

1 ), T2 = ΦβI(M2,F ′′
2 ∪ F ′′′

2 )

and T →∗
βI T1 and T →∗

βI T2. Since by lemma 5.2.1b, T ∈ ΛIc and by lemma 5.13.1,
T is typable in the type system DI, so T ∈ CRβI by corollary 5.12. So, by
lemma 2, there exists T3 ∈ ΛIc, such that T1 →∗

βI T3 and T2 →∗
βI T3. Let

F3 = |RβI
T3
|cC and M3 = |T3|βI , then by lemma 5.2.2b, T3 = ΦβI(M3,F3). Hence,

by lemma 5.6, (M1,F ′′
1 ∪ F ′′′

1 ) →∗
βId (M3,F3) and (M2,F ′′

2 ∪ F ′′′
2 ) →∗

βId (M3,F3),

i.e., M1
F ′′

1 ∪F
′′′
1→ βId M3 and M2

F ′′
2 ∪F

′′′
2→ βId M3.

Lemma 5.16. Note that ∅ ⊆ RβI
M . We prove this statement by induction on the

structure of M .

• Let M ∈ V then ΦβI(M, ∅) = M and RβI
M = ∅ by lemma 2.5.

• Let M = λx.N then ΦβI(M, ∅) = λx.ΦβI(N, ∅). By IH, RβI
ΦβI(N,∅)

= ∅ and

by lemma 2.5, RβI
ΦβI(M,∅)

= ∅.

• Let M = M1M2 then ΦβI(M, ∅) = cΦβI(M1, ∅)ΦβI(M2, ∅).
By IH, RβI

ΦβI(M1,∅)
= ∅ and RβI

ΦβI(M2,∅)
= ∅ and by lemma 2.5, RβI

ΦβI(M,∅)
=

∅.

Lemma 5.17. We prove the statement by induction on the structure of M .

• let M ∈ V, then ΦβI(M, ∅) = M .

– Either M = x, then ΦβI(M, ∅)[x := ΦβI(N, ∅)] = ΦβI(N, ∅) and by
lemma 5.16, RβI

ΦβI(N,∅)
= ∅.

– Or M 6= x, then ΦβI(M, ∅)[x := ΦβI(N, ∅)] = M and by lemma 2.5,
RβI

M = ∅.

• Let M = λy.M ′ then ΦβI(M, ∅) = λy.ΦβI(M ′, ∅). So,RβI
ΦβI(M,∅)[x:=ΦβI(N,∅)]

= RβI
λy.ΦβI(M ′,∅)[x:=ΦβI(N,∅)]

. By IH,RβI
ΦβI(M ′,∅)[x:=ΦβI(N,∅)]

= ∅. By lemma 2.5,

RβI
ΦβI(M,∅)[x:=ΦβI(N,∅)]

= ∅.

• Let M = M1M2 then ΦβI(M, ∅) = cΦβI(M1, ∅)ΦβI(M2, ∅).
So, RβI

ΦβI(M,∅)[x:=ΦβI(N,∅)]
= RβI

cΦβI(M1,∅)[x:=ΦβI(N,∅)]ΦβI(M2,∅)[x:=ΦβI(N,∅)]
.

By IH,RβI
ΦβI(M1,∅)[x:=ΦβI(N,∅)]

= RβI
ΦβI(M2,∅)[x:=ΦβI(N,∅)]

= ∅ and by lemma 2.5,

RβI
ΦβI(M,∅)[x:=ΦβI(N,∅)]

= ∅.

Lemma 5.18. We prove the statement by induction on the structure of M .

• Let M ∈ V then by lemma 2.5, RβI
M = ∅.

• Let M = λx.N then by lemma 2.5, RβI
M = {λx.C | C ∈ RβI

N }. Let C ∈ RβI
M ,

then C = λx.C ′ such that C ′ ∈ RβI
N . ΦβI(M, {C}) = λx.ΦβI(N, {C ′}) →βI

λx.N ′ = M ′ such that ΦβI(N, {C ′}) →βI N ′. By IH, RβI
N ′ = ∅, so by

lemma 2.5, RβI
M ′ = ∅.
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• Let M = M1M2.

– Let M ∈ RβI , then M1 = λx.M0 and by lemma 2.5, RβI
M = {�} ∪

{CM2 | C ∈ RβI
M1
} ∪ {M1C | C ∈ RβI

M2
}.

∗ Either C = � then ΦβI(M, {C}) = ΦβI(M1, ∅)ΦβI(M2, ∅). By
lemma 5.16, RβI

ΦβI(M1,∅)
= RβI

ΦβI(M2,∅)
= ∅. Since ΦβI(M1, ∅) =

λx.ΦβI(M0, ∅), ΦβI(M, {C}) →βI ΦβI(M0, ∅)[x := ΦβI(M2, ∅)].
By lemma 5.17, RβI

ΦβI(M0,∅)[x:=ΦβI(M2,∅)]
= ∅.

∗ Or C = C ′M2 such that C ′ ∈ RβI
M1

. So, ΦβI(M, {C}) =
cΦβI(M1, {C ′})ΦβI(M2, ∅). By lemma 5.16, RβI

ΦβI(M2,∅)
= ∅. So,

if ΦβI(M, {C}) →βI M ′ then M ′ = cM ′
1Φ

βI(M2, ∅) and
ΦβI(M1, {C ′}) →βI M ′

1. By IH,RβI
M ′

1
= ∅ and by lemma 2.5,RβI

M ′ =
∅.

∗ Or C = M1C
′ such that C ′ ∈ RβI

M2
. So, ΦβI(M, {C}) =

cΦβI(M1, ∅)ΦβI(M2, {C ′}). By lemma 5.16, RβI
ΦβI(M1,∅)

= ∅. So,
if ΦβI(M, {C}) →βI M ′ then M ′ = cΦβI(M1, ∅)M ′

2 and
ΦβI(M2, {C ′}) →βI M ′

2. By IH,RβI
M ′

2
= ∅ and by lemma 2.5,RβI

M ′ =
∅.

– Let M 6∈ RβI , then by lemma 2.5, RβI
M = {CM2 | C ∈ RβI

M1
} ∪

{M1C | C ∈ RβI
M2
}.

∗ Either C = C ′M2 such that C ′ ∈ RβI
M1

. So, ΦβI(M, {C}) =
cΦβI(M1, {C ′})ΦβI(M2, ∅). By lemma 5.16, RβI

ΦβI(M2,∅)
= ∅. So,

if ΦβI(M, {C}) →βI M ′ then M ′ = cM ′
1Φ

βI(M2, ∅) and
ΦβI(M1, {C ′}) →βI M ′

1. By IH,RβI
M ′

1
= ∅ and by lemma 2.5,RβI

M ′ =
∅.

∗ Or C = M1C
′ such that C ′ ∈ RβI

M2
. So, ΦβI(M, {C}) =

cΦβI(M1, ∅)ΦβI(M2, {C ′}). By lemma 5.16, RβI
ΦβI(M1,∅)

= ∅. So,
if ΦβI(M, {C}) →βI M ′ then M ′ = cΦβI(M1, ∅)M ′

2 and
ΦβI(M2, {C ′}) →βI M ′

2. By IH,RβI
M ′

2
= ∅ and by lemma 2.5,RβI

M ′ =
∅.

Lemma 5.19. By lemma 5.3, there exists a unique set F ′ ⊆ RβI
M ′ , such that ΦβI(M, {C}) →βI

ΦβI(M ′,F ′). By lemma 5.18, RβI
ΦβI(M ′,F ′)

= ∅, so |RβI
ΦβI(M ′,F ′)

|cC
= ∅ and by lemma 5.2.1d, F ′ = ∅. Finally, by lemma 5.6, (M, {C}) →βId

(M ′, ∅).

Lemma 5.20. It is obvious that →∗
1I⊆→∗

βI . We only prove that →∗
βI⊆→∗

1I . Let
M,M ′ ∈ ΛI such that M →∗

βI M ′. We prove this claim by induction on the length
of M →∗

βI M ′.

• Let M = M ′ then it is done since (M,F) →∗
βId (M,F) for some F .

• Let M →∗
βI M ′′ →βI M ′. By IH, M →∗

1I M ′′. If M ′′ = C[R] →βI C[R′] =
M ′ such that R′ is the contractum of R then by lemma 5.19 (M ′′, {C}) →βId

(M ′, ∅), so M ′′ →1I M ′. Hence M →∗
1I M ′′ →1I M ′.

Lemma 5.21. Assume M →∗
βI M1 and M →∗

βI M2. Then by lemma 5.20, M →∗
1I

M1 and M →∗
1I M2. We prove the statement by induction on the length of M →∗

1I

M1.
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• Let M = M1. Hence M1 →∗
1I M2 and M2 →∗

1I M2.

• Let M →∗
1I M ′

1 →1I M1. By IH, ∃M ′
3,M

′
1 →∗

1I M ′
3 and M2 →∗

1I M ′
3. We

prove that ∃M3,M1 →∗
1I M3 and M ′

3 →1I M3, by induction on M ′
1 →∗

1I M ′
3.

– let M ′
1 = M ′

3, hence M ′
3 →1I M1 and M1 →∗

1I M1.

– Let M ′
1 →∗

1I M ′′
3 →1I M ′

3. By IH, ∃M ′′′
3 ,M1 →∗

1I M ′′′
3 and M ′′

3 →1I M ′′′
3 .

By lemma 2.2.2, c 6∈ FV M ′′
3 . Since M ′′

3 →1I M ′
3 and M ′′

3 →1I M ′′′
3 , by

lemma 5.14, ∃M3,M
′
3 →1I M3 and M ′′′

3 →1I M3.

C Proofs of section 6

Lemma 6.3. 1. (a) By induction on the structure of M .

• Let M ∈ V \ {c}, then F = ∅ and Φβη
0 (M, ∅) = {M} = {c0(M)} ⊆

Φβη(M, ∅).
• Let M = λx.N and F ′ = {C | λx.C ∈ F} ⊆ Rβη

N .

– If � ∈ F then Φβη
0 (M,F) = {λx.N ′ | N ′ ∈ Φβη

0 (N,F ′)} =
{c0(λx.N ′) | N ′ ∈ Φβη

0 (N,F ′)} ⊆ Φβη(M,F).

– Else Φβη
0 (M,F) = {λx.N ′[x := c(cx)] | N ′ ∈ Φβη(N,F ′)} =

{c0(λx.N ′[x := c(cx)]) | N ′ ∈ Φβη(N,F ′)} ⊆ Φβη(M,F).
• Let M = NP , F1 = {C | CP ∈ F} ⊆ Rβη

N and F2 = {C | NC ∈
F} ⊆ Rβη

P .

– If � ∈ F then Φβη
0 (M,F) = {N ′P ′ | N ′ ∈ Φβη

0 (N,F1) ∧ P ′ ∈
Φβη

0 (P,F2)} = {c0(N ′P ′) | N ′ ∈ Φβη
0 (N,F1)∧P ′ ∈ Φβη

0 (P,F2)}.
By IH, Φβη

0 (P,F2) ⊆ Φβη(P,F2), so by definition, Φβη
0 (M,F) ⊆

Φβη(M,F).
– Else Φβη

0 (M,F) = {cN ′P ′ | N ′ ∈ Φβη(N,F1)∧P ′ ∈ Φβη
0 (P,F2)}

= {c0(cN ′P ′) | N ′ ∈ Φβη(N,F1) ∧ P ′ ∈ Φβη
0 (P,F2)}. By

IH, Φβη(P,F2) ∈ Φβη(P,F2), so by definition, Φβη
0 (M,F) ⊆

Φβη(M,F).

(b) By induction on the structure of M .

• Let M ∈ V \ {c}, then F = ∅, Φβη(M,F) = {cn(M) | n ≥ 0} and
∀N ∈ Φβη(M,F), FV (M) = {M} = FV (N) \ {c}

• Let M = λx.N and F ′ = {C | λx.C ∈ F} ⊆ Rβη
N .

– If � ∈ F then
Φβη(M,F) = {cn(λx.N ′) | n ≥ 0 ∧ N ′ ∈ Φβη

0 (N,F ′)}. Let
P ∈ Φβη(M,F), so ∃n ≥ 0 and N ′ ∈ Φβη

0 (N,F ′) such that
P = cn(λx.N ′). By (BC), x 6= c. Hence, FV (M) = FV (N) \
{x} =IH,1a FV (N ′) \ {c, x} = FV (P ) \ {c}.

– Else Φβη(M,F) = {cn(λx.N ′[x := c(cx)]) | n ≥ 0 ∧ N ′ ∈
Φβη(N,F ′)}. Let P ∈ Φβη(M,F), so ∃n ≥ 0 and ∃N ′ ∈
Φβη(N,F ′) such that, P = cn(λx.N ′[x := c(cx)]). By (BC),
x 6= c. Hence, FV (M) = FV (N) \ {x} =IH FV (N ′) \ {c, x} =
FV (P ) \ {c}.

• Let M = M1M2, F1 = {C | CM2 ∈ F} ⊆ Rβη
M1

and
F2 = {C | M1C ∈ F} ⊆ Rβη

M2
.
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– If � ∈ F then, Φβη(M,F) =
{cn(N ′P ′) | n ≥ 0 ∧ N ′ ∈ Φβη

0 (M1,F1) ∧ P ′ ∈ Φβη(M2,F2)}.
Let P ∈ Φβη(M,F), so ∃n ≥ 0, N ′ ∈ Φβη

0 (M1,F1) and P ′ ∈
Φβη(M2,F2) such that P = cn(N ′P ′).
Hence, FV (M) = FV (M1) ∪ FV (M2) =IH,1a (FV (N ′) \ {c}) ∪
(FV (P ′) \ {c}) = (FV (N ′) ∪ FV (P ′)) \ {c} = FV (P ) \ {c}.

– Else Φβη(M,F) = {cn(cN ′P ′) | n ≥ 0 ∧ N ′ ∈ Φβη(M1,F1) ∧
P ′ ∈ Φβη(M2,F2)}. Let P ∈ Φβη(M,F), so ∃n ≥ 0, N ′ ∈
Φβη(M1,F1) and P ′ ∈ Φβη(M2,F2) such that P = cn(cN ′P ′).
Hence, FV (M) = FV (M1)∪FV (M2) =IH (FV (N ′)∪FV (P ′))\
{c} = FV (P ) \ {c}.

(c) By induction on the structure of M .

• If M ∈ V \ {c} then Φβη(M,F) = {cn(M)|n ≥ 0}. Use lemma 6.2.
• Let M = λx.N and F ′ = {C | λx.C ∈ F} ⊆ Rβη

N .
– If � ∈ F , then N = Px such that x 6∈ FV (P ) and Φβη(M,F) =
{cn(λx.N ′) | n ≥ 0 ∧ N ′ ∈ Φβη

0 (N,F ′)}. Let F ′′ = {C | Cx ∈
F ′} ⊆ Rβη

P .

∗ If � ∈ F ′ then, Φβη
0 (N,F ′) = {P ′x | P ′ ∈ Φβη

0 (P,F ′′)}. Let
M ′ ∈ Φβη(M,F), so M ′ = cn(λx.P ′x) where n ≥ 0 and
P ′ ∈ Φβη

0 (P,F ′′). By (BC), x 6= c. Since x 6∈ FV (P ), by
lemmas 6.3.1b and 6.3.1a, x 6∈ P ′. By IH and lemma 6.3.1a,
P ′, P ′x ∈ Ληc. By lemma 2.4, P ′ 6= c. Hence, by (R1).4,
λx.P ′x ∈ Ληc. We conclude using lemma 6.2.

∗ Else Φβη
0 (N,F ′) = {cP ′x | P ′ ∈ Φβη(P,F ′′)}. Let M ′ ∈

Φβη(M,F), so M ′ = cn(λx.cP ′x) where n ≥ 0 and P ′ ∈
Φβη(P,F ′′). By (BC), x 6= c. Since x 6∈ FV (P ), by lem-
mas 6.3.1b, x 6∈ FV (P ′), so x 6∈ FV (cP ′).
By IH and lemma 6.3.1a, cP ′x ∈ Ληc. Since cP ′ 6= c, by
(R1).4, λx.cP ′x ∈ Ληc. We conclude using lemma 6.2.

– Else Φβη(M,F) = {cn(λx.N ′[x := c(cx)]) | n ≥ 0 ∧ N ′ ∈
Φβη(N,F ′)}. Let N ′ ∈ Φβη(N,F ′) and n ≥ 0. Since by IH
N ′ ∈ Ληc, by lemma 6.2 and (R1).3, cn(λx.N ′[x := c(cx)]) ∈
Ληc.

• Let M = NP , F1 = {C | CP ∈ F} ⊆ Rβη
N and F2 = {C | NC ∈

F} ⊆ Rβη
P .

– If � ∈ F then Φβη(M,F) =
{cn(N ′P ′) | n ≥ 0 ∧ N ′ ∈ Φβη

0 (N,F1) ∧ P ′ ∈ Φβη(P,F2)}. Let
P = cn(N ′P ′) ∈ Φβη(M,F) such that n ≥ 0, N ′ ∈ Φβη

0 (N,F1)
and P ′ ∈ Φβη(P,F2). By IH and lemma 6.3.1a, N ′, P ′ ∈ Ληc.
Since N is an λ-abstraction then N ′ too. Hence, by (R3), N ′P ′ ∈
Ληc. By lemma 6.2, cn(N ′P ′) ∈ Ληc.

– Else Φβη(M,F) = {cn(cN ′P ′) | n ≥ 0∧N ′ ∈ Φβη(N,F1)∧P ′ ∈
Φβη(P,F2)}. Let cn(cN ′P ′) ∈ Φβη(M,F) such that n ≥ 0, N ′ ∈
Φβη(N,F1) and P ′ ∈ Φβη(P,F2). By IH, N ′, P ′ ∈ Ληc. Hence
by (R2), cN ′P ′ ∈ Ληc and by lemma 6.2, cn(cN ′P ′) ∈ Ληc.

(d) We prove this lemma by case on the belonging of � in F . Let F ′ =
{C | Cx ∈ F} ⊆ Rβη

N .

• If � ∈ F then Φβη
0 (Nx,F) = {N ′x | N ′ ∈ Φβη

0 (N,F ′)}. Hence,
P = N ′x such that N ′ ∈ Φβη

0 (N,F ′). By (BC), x 6= c. Since
x 6∈ FV (N), by lemmas 6.3.1b and 6.3.1a, x 6∈ FV (N ′). So λx.P =
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λx.N ′x ∈ Rβη. Since λx.N ′x ∈ Rβη, by lemma 2.5, Rβη
λx.P = {�} ∪

{λx.C | C ∈ Rβη
P }.

• Else Φβη
0 (Nx,F) = {cN ′x | N ′ ∈ Φβη(N,F ′)} and P = cN ′x such

that N ′ ∈ Φβη(N,F ′). By (BC), x 6= c. Since x 6∈ FV (N), by
lemmas 6.3.1b, x 6∈ FV (N ′) and so x 6∈ FV (cN ′). Since λx.cN ′x ∈
Rβη, by lemma 2.5, Rβη

λx.P = {�} ∪ {λx.C | C ∈ Rβη
P }.

(e) Let F1 = {C | Cx ∈ F} ⊆ Rβη
N and F2 = {C | NC ∈ F} ⊆ Rβη

x =2.5 ∅.
We prove this lemma by case on the belonging of � in F .

• If � ∈ F then Φβη(Nx,F) = {cn(N ′Q) | n ≥ 0∧N ′ ∈ Φβη
0 (N,F1)∧

Q ∈ Φβη(x,F2)}. So Px = cn(N ′Q) such that n ≥ 0, N ′ ∈
Φβη

0 (N,F1) and Q ∈ Φβη(x,F2). So n = 0, N ′ = P and Q = x.
Since x ∈ Φβη

0 (x, ∅), Px ∈ Φβη
0 (Nx,F).

• Else Φβη(Nx,F) = {cn(cN ′Q) | n ≥ 0 ∧ N ′ ∈ Φβη
0 (N,F1) ∧ Q ∈

Φβη(x,F2)}. So Px = cn(cN ′Q) such that n ≥ 0, N ′ ∈ Φβη
0 (N,F1)

and Q ∈ Φβη(x,F2). So n = 0, cN ′ = P and Q = x. Since
x ∈ Φβη

0 (x, ∅), Px ∈ Φβη
0 (Nx,F).

(f) Easy by case on the structure of M and induction on n.

(g) By induction on the structure of M .

• Let M ∈ V \ {c}. Then Φβη(M,F) = {cn(M) | n ≥ 0} and F = ∅.
Now, use lemma 2.15.

• Let M = λx.N and F ′ = {C | λx.C ∈ F} ⊆ Rβη
N .

– If � ∈ F then Φβη(M,F) =
{cn(λx.N ′) | n ≥ 0 ∧ N ′ ∈ Φβη

0 (N,F ′)}. Let cn(λx.N ′) ∈
Φβη(M,F) where n ≥ 0 and N ′ ∈ Φβη

0 (N,F ′).
Then, |cn(λx.N ′)|c =2.15 |λx.N ′|c = λx.|N ′|c =IH,1a λx.N .

– Else Φβη(M,F) = {cn(λx.N ′[x := c(cx)]) | n ≥ 0 ∧ N ′ ∈
Φβη(N,F ′)}. Let cn(λx.N ′[x := c(cx)]) ∈ Φβη(M,F) where n ≥
0 and N ′ ∈ Φβη(N,F ′). Then, |cn(λx.N ′[x := c(cx)])|c =2.15

|λx.N ′[x := c(cx)]|c = λx.|N ′[x := c(cx)]|c =2.18 λx.|N ′|c =IH

λx.N .
• Let M = M1M2, F1 = {C | CM2 ∈ F} ⊆ Rβη

M1
and

F2 = {C | M1C ∈ F} ⊆ Rβη
M2

.

– If � then Φβη(M,F) = {cn(N ′P ′) | n ≥ 0∧N ′ ∈ Φβη
0 (M1,F1)∧

P ′ ∈ Φβη(M2,F2)}. Let cn(N ′P ′) ∈ Φβη(M,F) where n ≥
0, N ′ ∈ Φβη

0 (M1,F1) and P ′ ∈ Φβη(M2,F2). Since M1 is
a λ-abstraction, N ′ too. Then, |cn(N ′P ′)|c =2.15 |N ′P ′|c =
|N ′|c|P ′|c =IH,1a M1M2.

– Else Φβη(M,F) = {cn(cP1P2) | n ≥ 0∧P1 ∈ Φβη(M1,F1)∧P2 ∈
Φβη(M2,F2)}. Let cn(cP1P2) ∈ Φβη(M,F) where n ≥ 0, P1 ∈
Φβη(M1,F1) and P2 ∈ Φβη(M2,F2). Then |cn(cP1P2)|c =2.15

|cP1P2|c = |cP1|c|P2|c = |P1|c|P2|c =IH M1M2.

(h) We prove the statement by induction on M .

• Let M ∈ V \ {c}. Then Φβη(M,F) = {cn(x) | n ≥ 0} and F = ∅.
If P ∈ Φβη(M,F) then Rβη

P =2.9.5 ∅. Hence, F = |Rβη
P |cC .

• Let M = λx.N and F ′ = {C | λx.C ∈ F} ⊆ Rβη
N .

– If � ∈ F then M = λx.Px where x 6∈ FV (P ) and Φβη(M,F) =
{cn(λx.N ′) | n ≥ 0 ∧ N ′ ∈ Φβη

0 (N,F ′)}. Let cn(λx.N ′) ∈
Φβη(M,F) where n ≥ 0 and N ′ ∈ Φβη

0 (N,F ′). |Rβη
cn(λx.N ′)|

c
C =
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{|C|cC | C ∈ Rβη
cn(λx.N ′)} =2.9.5 {|C|cC | C ∈ Rβη

λx.N ′} =1d {�} ∪
{|λx.C|cC | C ∈ Rβη

N ′} = {�} ∪ {λx.C | C ∈ |Rβη
N ′ |cC} =IH

{�} ∪ {λx.C | C ∈ F ′} =2.6 F .
– Else Φβη(M,F) =
{cn(λx.P [x := c(cx)]) | n ≥ 0 ∧ P ∈ Φβη(N,F ′)}.
Let cn(λx.P [x := c(cx)]) ∈ Φβη(M,F) where n ≥ 0 and P ∈
Φβη(N,F ′).
|Rβη

cn(λx.P [x:=c(cx)])|
c
C = {|C|cC | C ∈ Rβη

cn(λx.P [x:=c(cx)])} =2.9.5

{|C|cC | C ∈ Rβη
λx.P [x:=c(cx)]} =2.9.3 {|λx.C|cC | C ∈ Rβη

P [x:=c(cx)]}
=2.9.4 {|λx.C[x := c(cx)]|cC | C ∈ Rβη

P } =2.19 {λx.C | C ∈
|Rβη

P |cC}
=IH {λx.C | C ∈ F ′} =2.6 F .

• Let M = M1M2, F1 = {C | CM2 ∈ F} ⊆ Rβη
M1

and
F2 = {C | M1C ∈ F} ⊆ Rβη

M2
.

– If � ∈ F then
Φβη(M,F) = {cn(NP ) | n ≥ 0 ∧ N ∈ Φβη

0 (M1,F1) ∧ P ∈
Φβη(M2,F2)}. Let cn(NP ) ∈ Φβη(M,F) where n ≥ 0, N ∈
Φβη

0 (M1,F1) and P ∈ Φβη(M2,F2). Since M1 is a λ-abstraction,
N too. By lemma 2.5, |Rβη

cn(NP )|
c
C = {|C|cC | C ∈ Rβη

cn(NP )} =2.9.5

{|C|cC | C ∈ Rβη
NP } = {�} ∪ {|CP |cC | C ∈ Rβη

N } ∪ {|NC|cC | C ∈
Rβη

P } = {�}∪{C|P |c | C ∈ |Rβη
N |cC}∪{|N |cC | C ∈ |Rβη

P |cC} =IH

{�} ∪ {C|P |c | C ∈ F1} ∪ {|N |cC | C ∈ F2} =1g {�} ∪
{CM2 | C ∈ F1} ∪ {M1C | C ∈ F2} =2.6 F .

– Else Φβη(M,F) = {cn(cP1P2) | n ≥ 0 ∧ P1 ∈ Φβη(M1,F1) ∧
P2 ∈ Φβη(M2,F2)}. Let cn(cP1P2) ∈ Φβη(M,F) where n ≥
0, P1 ∈ Φβη(M1,F1) and P2 ∈ Φβη(M2,F2). By lemma 2.5,
|Rβη

cn(cP1P2)
|cC = {|C|cC | C ∈ Rβη

cn(cP1P2)
} =2.9.5 {|C|cC | C ∈

Rβη
cP1P2

} = {|cCP2|cC | C ∈ Rβη
P1
} ∪ {|cP1C|cC | C ∈ Rβη

P2
} =

{C|P2|c | C ∈ |Rβη
P1
|cC}∪{|P1|cC | C ∈ |Rβη

P2
|cC} =IH {C|P |c | C ∈

F1} ∪ {|N |cC | C ∈ F2} =1g {CM2 | C ∈ F1} ∪ {M1C | C ∈
F2} =2.6 F .

2. (a) By induction on the construction of M .

• Let M ∈ V \ {c}. So |M |c = M , |Rβη
M |cC = ∅ = Rβη

|M |c and M ∈
Φβη(|M |c, |Rβη

M |cC) = Φβη(M, ∅) = {cn(M) | n ≥ 0}.
• Let M = λx.N [x := c(cx)] where N ∈ Ληc. |M |c = λx.|N |c.
|Rβη

M |cC = {|C|cC | C ∈ Rβη
M } =2.9.3 {λx.|C|cC | C ∈ Rβη

N [x:=c(cx)]} =2.9.4

{λx.|C[x := c(cx)]|cC | C ∈ Rβη
N } =2.19 {λx.|C|cC | C ∈ Rβη

N } =
{λx.C | C ∈ |Rβη

N |cC} ⊆IH {λx.C | C ∈ Rβη
|N |c} =2.18 {λx.C | C ∈

Rβη
|N [x:=c(cx)]|c} ⊆

2.5 Rβη
λx.|N [x:=c(cx)]|c = Rβη

|λx.N [x:=c(cx)]|c .

Since |Rβη
M |cC = {λx.|C[x := c(cx)]|cC | C ∈ Rβη

N }, � 6∈ |Rβη
M |cC and

|Rβη
N |cC = {C | λx.C ∈ |Rβη

M |cC}. By definition, Φβη(|M |c, |Rβη
M |cC) =

{cn(λx.N ′[x := c(cx)]) | n ≥ 0 ∧ N ′ ∈ Φβη(|N |c, |Rβη
N |cC)}. By IH,

N ∈ Φβη(|N |c, |Rβη
N |cC), so M ∈ Φβη(|M |c, |Rβη

M |cC).
• Let M = λx.Nx where Nx ∈ Ληc, N 6= c and x 6∈ FV (N). By

lemma 2.4, N ∈ Ληc and by lemma 2.21, x 6∈ FV (|N |c). |M |c =
λx.|Nx|c = λx.|N |cx. Since M, |M |c ∈ Rβη, by lemma 2.5, Rβη

M =
{�} ∪ {λx.C | C ∈ Rβη

Nx}, so |Rβη
M |cC = {�} ∪ {λx.C | C ∈ |Rβη

Nx|cC}
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⊆IH {�}∪{λx.C | C ∈ Rβη
|Nx|c} = Rβη

|M |c . So |Rβη
Nx|cC = {C | λx.C ∈

|Rβη
M |cC}. By definition, Φβη(|M |c, |Rβη

M |cC) = {cn(λx.N ′) | n ≥ 0 ∧
N ′ ∈ Φβη

0 (|Nx|c, |Rβη
Nx|cC)}. By IH, Nx ∈ Φβη(|Nx|βη, |Rβη

Nx|cC), so
by lemma 6.3.1e, Nx ∈ Φβη

0 (|Nx|βη, |Rβη
Nx|cC).

Hence M ∈ Φβη(|M |c, |Rβη
M |cC).

• Let M = cNP where N,P ∈ Ληc, so cN ∈ Ληc. |M |c = |cN |c|P |c =
|N |c|P |c. Since M 6∈ Rβη, By lemma 2.5, Rβη

M = {cCP | C ∈ Rβη
N }∪

{cNC | C ∈ Rβη
P }. So |Rβη

M |cC = {C|P |c | C ∈ |Rβη
N |cC}∪{|N |cC | C ∈

|Rβη
P |cC} ⊆IH {C|P |c | C ∈ Rβη

|N |c} ∪ {|N |
cC | C ∈ Rβη

|P |c} ⊆2.5

Rβη
|M |c . Since Rβη

M = {C|P |c | C ∈ |Rβη
N |cC} ∪ {|N |cC | C ∈ |Rβη

P |cC},
� 6∈ |Rβη

M |cC and |Rβη
N |cC = {C | C|P |c ∈ |Rβη

M |cC} and |Rβη
P |cC =

{C | |N |cC ∈ |Rβη
M |cC}.

By definition, Φβη(|M |c, |Rβη
M |cC) = {cn(cN ′P ′) | n ≥ 0 ∧ N ′ ∈

Φβη(|N |c, |Rβη
N |cC) ∧ P ′ ∈ Φβη(|P |c, |Rβη

P |cC)}.
By IH, N ∈ Φβη(|N |βη, |Rβη

N |cC) and P ∈ Φβη(|P |βη, |Rβη
P |cC), so

M ∈ Φβη(|M |c, |Rβη
M |cC).

• Let M = NP where N,P ∈ Ληc and N is a λ-abstraction. So
|N |c is a λ-abstraction too. |M |c = |N |c|P |c. Since M ∈ Rβη, By
lemma 2.5, Rβη

M = {�} ∪ {CP | C ∈ Rβη
N } ∪ {NC | C ∈ Rβη

P }. So
|Rβη

M |cC = {�} ∪ {C|P |c | C ∈ |Rβη
N |cC} ∪ {|N |cC | C ∈ |Rβη

P |cC} ⊆IH

{�} ∪ {C|P |c | C ∈ Rβη
|N |c} ∪ {|N |

cC | C ∈ Rβη
|P |c} =2.5 Rβη

|M |c .

Since Rβη
M = {�} ∪ {C|P |c | C ∈ |Rβη

N |cC} ∪ {|N |cC | C ∈ |Rβη
P |cC},

|Rβη
N |cC = {C | C|P |c ∈ |Rβη

M |cC} and |Rβη
P |cC = {C | |N |cC ∈

|Rβη
M |cC}. By definition, Φβη(|M |c, |Rβη

M |cC) = {cn(N ′P ′) | n ≥ 0 ∧
N ′ ∈ Φβη(|N |c, |Rβη

N |cC) ∧ P ′ ∈ Φβη(|P |c, |Rβη
P |cC)}.

By IH, N ∈ Φβη(|N |c, |Rβη
N |cC) and P ∈ Φβη(|P |c, |Rβη

P |cC), so M ∈
Φβη(|M |c, |Rβη

M |cC).
• Let M = cN where N ∈ Ληc. |M |c = |N |c. By lemma 2.5, Rβη

M =
{cC | C ∈ Rβη

N } so |Rβη
M |cC = |Rβη

N |cC ⊆IH Rβη
|N |c = Rβη

|M |c . By IH,

N ∈ Φβη(|N |c, |Rβη
N |cC) = Φβη(|M |c, |Rβη

M |cC), so by lemma 6.3.1f,
M ∈ Φβη(|M |c, |Rβη

M |cC).
(b) By lemma 2.21, c 6∈ FV (|M |c). By lemma 6.3.2a, |Rβη

M |cC ⊆ Rβη
|M |c

and M ∈ Φβη(|M |c, |Rβη
M |cC). To prove unicity, assume that (N ′,F ′) is

another such pair. So F ′ ⊆ Rβη
N ′ and M ∈ Φβη(N ′,F ′). By lemma 6.3.1g,

|M |c = N ′ and by lemma 6.3.1h, F ′ = |Rβη
M |cC .

Lemma 6.4. Let N1 ∈ Φβη(M,F). By lemma 6.3.1c, N1 ∈ Ληc. By lemma 6.3.1h
and lemma 2.17, there exists a unique C1 ∈ Rβη

N1
, such that |C1|cC = C. By def-

inition ∃R1 ∈ Rβη such that N1 = C1[R1]. By lemma 6.3.1g, |C1[R1]|c = M .

By lemma 2.25, |C1[R1]|c
|C1|cC→ βη |C1[R′

1]|c such that R′
1 is the contractum of

R1. So M
C→βη |C1[R′

1]|c, then M ′ = |C1[R′
1]|c. Let F ′ = |Rβη

C1[R′
1]
|cC . Since,

N1 = C1[R1]
C1→βη C1[R′

1], by lemma 2.12 and lemma 6.3.1c, C1[R′
1] ∈ Ληc. By

lemma 6.3.2a, C1[R′
1] ∈ Φβη(M ′,F ′) and F ′ ⊆ Rβη

M ′ . By lemma 6.3.2b, if there
exists a such F ′, it is unique.

Let N2 ∈ Φβη(M,F). By lemma 6.3.1c, N1 ∈ Ληc. By lemma 6.3.1h and
lemma 2.17, there exists a unique C2 ∈ Rβη

N2
, such that |C2|cC = C. By defi-

nition ∃R2 ∈ Rβη such that N2 = C2[R2]. By lemma 6.3.1g, |C2[R2]|c = M .
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By lemma 2.25, |C2[R2]|c
|C2|cC→ βη |C2[R′

2]|c such that R′
2 is the contractum of

R2. So M
C→βη |C2[R′

2]|c, then M ′ = |C2[R′
2]|c. Let F ′′ = |Rβη

C2[R′
2]
|cC . Since,

N2 = C2[R2]
C2→βη C2[R′

2], by lemma 2.12 and lemma 6.3.1c, C2[R′
2] ∈ Ληc. By

lemma 6.3.2a, C2[R′
2] ∈ Φβη(M ′,F ′′) and F ′′ ⊆ Rβη

M ′ .
As N1, N2 ∈ Φβη(M,F), by lemma 6.3.1h, |Rβη

N1
|cC = |Rβη

N2
|cC and by lemma 6.3.1g,

|N1|c = |N2|c. Finally, by lemma 2.28, F ′ = |Rβη
C1[R′

1]
|cC = |Rβη

C2[R′
2]
|cC = F ′′.

Lemma 6.7. Note that Φβη(M,F) 6= ∅. Then, it is sufficient to prove:

• (M,F) →∗
βηd (M ′,F ′) ⇒ ∀N ∈ Φβη(M,F),∃N ′ ∈ Φβη(M ′,F ′), N →∗

βη N ′

by induction on the reduction (M,F) →∗
βηd (M ′,F ′).

– If (M,F) = (M ′,F ′) then it is done.

– Let (M,F) →βηd (M ′′,F ′′) →∗
βηd (M ′,F ′).

By IH, ∀N ′′ ∈ Φβη(M ′′,F ′′), ∃N ′ ∈ Φβη(M ′,F ′) such that N →∗
βη N ′′.

By definition 6.6, ∃C ∈ F such that M
C→βη M ′′ and F ′′ is the set of

βη-residuals in M ′′ relative to C. By definition 6.5 we obtain ∀N ∈
Φβη(M,F),∃N ′′ ∈ Φβη(M ′′,F ′′), N →βη N ′′.

• ∃N ∈ Φβη(M,F),∃N ′ ∈ Φβη(M ′,F ′), N →∗
βη N ′ ⇒ (M,F) →∗

βηd (M ′,F ′)
by induction on the reduction N →∗

βη N ′ such that N ∈ Φβη(M,F) and
N ′ ∈ Φβη(M ′,F ′).

– If N = N ′ then by lemma 6.3.2b, M = M ′ and F = F ′.

– Let N →βη N ′′ →∗
βη N ′. By lemma 6.3.1c, N ∈ Ληc, so by lemma 2.12,

N ′′ ∈ Ληc. By lemma 6.3.2b, (|N ′′|c, |Rβη
N ′′ |cC) is the one and only pair

such that c 6∈ FV (|N ′′|c), |Rβη
N ′′ |cC ⊆ Rβη

|N ′′|c and N ′′ ∈ Φβη(|N ′′|c, |Rβη
N ′′ |cC).

So by IH, (|N ′′|c, |Rβη
N ′′ |cC) →∗

βηd (M ′,F ′). Let N
C→βη N ′′, such that

C ∈ Rβη
N . By lemmas 2.26 and lemma 6.3.1g, |N |c = M

|C|cC→ βη |N ′′|c. So
|C|cC ∈ R

βη
M . By definition 6.5, there exists a unique F ′ ⊆ Rβη

|N ′′|c , such

that ∀P ∈ Φβη(M,F), ∃P ′ ∈ Φβη(|N ′′|c,F ′) and ∃C ′ ∈ Rβη
P such that

P
C′

→βη P ′ and |C ′|cC = |C|cC . F ′ is called the set of βη-residuals of F
in |N ′′|c relative to |C|cC . Since N ∈ Φβη(M,F), ∃P ′ ∈ Φβη(|N ′′|c,F ′)

and ∃C ′ ∈ Rβη
N such that N

C′

→βη P ′ and |C ′|cC = |C|cC . By lemma 2.17,
C = C ′, so P ′ = N ′′. Since N ′′ ∈ Φβη(|N ′′|c,F ′), by lemma 6.3.2b,
F ′ = |Rβη

N ′′ |cC . Finally, by definition 6.6, (M,F) →βηd (|N ′′|c, |Rβη
N ′′ |cC).

Lemma 6.8. By lemma 6.3.1c, Φβη(M,F1),Φβη(M,F2) ∈ Ληc. ∀N1 ∈ Φβη(M,F1)
and ∀N2 ∈ Φβη(M,F2), by lemma 6.3.1g, |N1|c = |N2|c and by
lemma 6.3.1h, |Rβη

N1
|cC = F1 ⊆ F2 = |Rβη

N2
|cC .

If (M,F1) →βηd (M ′,F ′
1) then by lemma 6.7, ∃N1 ∈ Φβη(M,F1) and ∃N ′

1 ∈
Φβη(M ′,F ′

1) such that N1 →βη N ′
1. Let N1

C1→βη N ′
1 such that C1 ∈ Rβη

N1
. Let

C0 = |C1|cC , so by lemma 6.3.1h, C0 ∈ F1. By lemma 2.26 and lemma 6.3.1g,

M
C0→βη M ′.
By lemma 6.4 there exists a unique set F ′ ⊆ Rβη

M ′ , such that ∀P1 ∈ Φβη(M,F1),

∃P ′
1 ∈ Φβη(M ′,F ′) and ∃C ′ ∈ Rβη

P1
such that P1

C′

→βη P ′
1 and |C ′|cC = C0.
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Since, N1 ∈ Φβη(M,F1), ∃P ′
1 ∈ Φβη(M ′,F ′) and ∃C ′ ∈ Rβη

N such that N1
C′

→βη

P ′
1 and |C ′|cC = C0. Since C ′, C1 ∈ Rβη

N1
, by lemma 2.17, C ′ = C1. So, P ′

1 = N1. By
lemma 6.3.1h, F ′ = |Rβη

N1
|cC = F ′

1.
By lemma 6.4 there exists a unique set F ′

2 ⊆ Rβη
M ′ , such that ∀P2 ∈ Φβη(M,F2),

∃P ′
2 ∈ Φβη(M ′,F ′

2) and ∃C2 ∈ Rβη
P2

such that P2
C2→βη P ′

2 and |C2|cC = C0.
Since Φβη(M,F2) 6= ∅, let N1 ∈ Φβη(M,F2). So, ∃N ′

2 ∈ Φβη(M ′,F ′
2) and

∃C2 ∈ Rβη
N2

such that N2
C2→βη N ′

2 and |C2|cC = C0. By lemma 6.3.1h, F ′
2 = |Rβη

N ′
2
|cC .

Hence, by lemma 2.28, F ′
1 ⊆ F ′

2 and by lemma 6.7, (M,F2) →βηd (M ′,F ′
2).

Lemma 6.9. If M
F1→βηd M1 and M

F2→βηd M2, then ∃F ′′
1 ,F ′′

2 such that (M,F1) →∗
βηd

(M1,F ′′
1 ) and (M,F2) →∗

βηd (M2,F ′′
2 ). By lemma 6.8, ∃F ′′′

1 ⊆ Rβη
M1

and ∃F ′′′
2 ⊆

Rβη
M2

such that (M,F1∪F2) →∗
βηd (M1,F ′′

1 ∪F ′′′
1 ) and (M,F1∪F2) →∗

βηd (M2,F ′′
2 ∪

F ′′′
2 ). By lemma 6.7 there exist T, T1, T2 ∈ Ληc such that

T ∈ Φβη(M,F1), T1 ∈ Φβη(M1,F ′′
1 ∪ F ′′′

1 ), T2 ∈ Φβη(M2,F ′′
2 ∪ F ′′′

2 )

and T →∗
βη T1 and T →∗

βη T2. Since by lemma 6.3.1c, T ∈ Ληc and by lemma 5.13.2,
T is typable in the type system D, so T ∈ CRβη by corollary 5.12. So, by
lemma 2.12.1, there exists T3 ∈ Ληc, such that T1 →∗

βη T3 and T2 →∗
βη T3. Let F3 =

|Rβη
T3
|cC and M3 = |T3|βη, then by lemma 6.3.2a, F3 ⊆ Rβη

M3
and T3 ∈ Φβη(M3,F3).

Hence, by lemma 6.7, (M1,F ′′
1 ∪ F ′′′

1 ) →∗
βηd (M3,F3) and (M2,F ′′

2 ∪ F ′′′
2 ) →∗

βηd

(M3,F3), i.e., M1
F ′′

1 ∪F
′′′
1→ βηd M3 and M2

F ′′
2 ∪F

′′′
2→ βηd M3.

Lemma 6.11. Note that ∅ ⊆ Rβη
M . We prove this statement by induction on the

structure of M .

• Let M ∈ V then Φβη(M, ∅) = {cn(M) | n ≥ 0} and Rβη
cn(M) = ∅, where

n ≥ 0, by lemma 2.5 and lemma 2.9.5.

• Let M = λx.N then Φβη(M, ∅) = {cn(λx.Q[x := c(cx)]) | n ≥ 0 ∧ Q ∈
Φβη(N, ∅)}. Let P ∈ Φβη(M, ∅), then P = cn(λx.Q[x := c(cx)]) such that
n ≥ 0 and Q ∈ Φβη(N, ∅) By IH, Rβη

Q = ∅ and by lemma 2.9.4, lemma 2.9.3
and lemma 2.9.5, Rβη

P = ∅.

• Let M = M1M2 then Φβη(M, ∅) = {cn(cQ1Q2) | n ≥ 0 ∧Q1 ∈ Φβη(M1, ∅) ∧
Q2 ∈ Φβη(M2, ∅)}. Let P ∈ Φβη(M, ∅), then P = cn(cQ1Q2) such that
n ≥ 0, Q1 ∈ Φβη(M1, ∅) and Q2 ∈ Φβη(M2, ∅). By IH, Rβη

Q1
= Rβη

Q2
= ∅ and

by lemma 2.5 and lemma 2.9.5, Rβη
P = ∅.

Lemma 6.12. We prove the statement by induction on the structure of M .

• let M ∈ V, then Φβη(M, ∅) = {cn(M) | n ≥ 0}. Let P ∈ Φβη(M, ∅) and
Q ∈ Φβη(N, ∅), then P = cn(M) where n ≥ 0.

– Either M = x, then P [x := Q] = cn(Q) and by lemma 6.3.1f and
lemma 6.11, Rβη

cn(Q) = ∅.

– Or M 6= x, then P [x := Q] = P and by lemma 6.11, Rβη
P = ∅.

• Let M = λy.M ′ then Φβη(M, ∅) = {cn(λy.P ′[y := c(cy)]) | n ≥ 0 ∧ P ′ ∈
Φβη(M ′, ∅)}. Let P ∈ Φβη(M, ∅) and Q ∈ Φβη(N, ∅), then P = cn(λy.P ′[y :=
c(cy)]) where n ≥ 0 and P ′ ∈ Φβη(M ′, ∅).
So, Rβη

P [x:=Q] = Rβη
cn(λy.P ′[x:=Q][y:=c(cy)]). By IH, Rβη

P ′[x:=Q] = ∅ and by

lemma 2.9.4, lemma 2.9.3 and lemma 2.9.5, Rβη
P [x:=Q] = ∅.
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• Let M = M1M2 then Φβη(M, ∅) = {cn(cP1P2) | n ≥ 0 ∧ P1 ∈ Φβη(M1, ∅) ∧
P2 ∈ Φβη(M2, ∅)}. Let P ∈ Φβη(M, ∅) and Q ∈ Φβη(N, ∅) then P =
cn(cP1P2) where n ≥ 0, P1 ∈ Φβη(M1, ∅) and P2 ∈ Φβη(M2, ∅).
So, Rβη

P [x:=Q] = Rβη
cn(cP1[x:=Q]P2[x:=Q]). By IH, Rβη

P1[x:=Q] = Rβη
P2[x:=Q] = ∅ and

by lemma 2.5 and lemma 2.9.5, Rβη
P [x:=Q] = ∅.

Lemma 6.13. We prove the statement by induction on the structure of M .

• Let M ∈ V then nothing to prove since by lemma 2.5, Rβη
M = ∅.

• Let M = λx.N .

– If M ∈ Rβη then N = N0x such that x 6∈ FV (N0) and by lemma 2.5,
Rβη

M = {�} ∪ {λx.C | C ∈ Rβη
N }. Let C ∈ Rβη

M then:
∗ Either C = �, then Φβη(M, {C}) = {cn(λx.P ′) | n ≥ 0 ∧ P ′ ∈

Φβη
0 (N, ∅)}. Let P ∈ Φβη(M, {C}) then P = cn(λx.P ′) such that

n ≥ 0 and P ′ ∈ Φβη
0 (N, ∅). So P ′ = cP ′

0x such that P ′
0 ∈ Φβη(N0, ∅).

By lemma 6.11, Rβη
P ′ = ∅, so if P →βη Q then Q = cn+1P ′

0. By
lemma 6.11, Rβη

P ′
0

= ∅ and by lemma 2.9.5, Rβη
Q = ∅.

∗ Or C = λx.C ′ such that C ′ ∈ Rβη
N , so Φβη(M, {C}) =

{cn(λx.P ′[x := c(cx)]) | n ≥ 0 ∧ P ′ ∈ Φβη(N, {C ′})}. Let P ∈
Φβη(M, {C}) then P = cn(λx.P ′[x := c(cx)]) such that n ≥ 0 and
P ′ ∈ Φβη(N, {C ′}). By lemma 2.9.4, lemma 2.9.3 and lemma 2.9.5,
if P →βη Q then Q = cn(λx.Q′[x := c(cx)]) such that P ′ →βη Q′.
By IH, Rβη

Q′ = ∅, so by lemma 2.9.4, lemma 2.9.3 and lemma 2.9.5,
Rβη

Q = ∅.

– Else, by lemma 2.5, Rβη
M = {λx.C | C ∈ Rβη

N }. Let C ∈ Rβη
M then

C = λx.C ′ such that C ′ ∈ Rβη
N . Φβη(M, {C}) = {cn(λx.P ′[x :=

c(cx)]) | n ≥ 0 ∧ P ′ ∈ Φβη(N, {C ′})}. Let P ∈ Φβη(M, {C}) then
P = cn(λx.P ′[x := c(cx)]) such that n ≥ 0 and P ′ ∈ Φβη(N, {C ′}).
By lemma 2.9.4, lemma 2.9.3 and lemma 2.9.5, if P →βη Q then Q =
cn(λx.Q′[x := c(cx)]) such that P ′ →βη Q′. By IH, Rβη

Q′ = ∅, so by
lemma 2.9.4, lemma 2.9.3 and lemma 2.9.5, Rβη

Q = ∅.

• Let M = M1M2.

– Let M ∈ Rβη, then M1 = λx.M0 and by lemma 2.5, Rβη
M = {�} ∪

{CM2 | C ∈ Rβη
M1
} ∪ {M1C | C ∈ Rβη

M2
}. Let C ∈ Rβη

M then:

∗ Either C = � then Φβη(M, {C}) = {cn(P1P2) | n ≥ 0 ∧ P1 ∈
Φβη

0 (M1, ∅) ∧ P2 ∈ Φβη(M2, ∅)}. Let P ∈ Φβη(M, {C}) then P =
cn(P1P2) such that n ≥ 0, P1 ∈ Φβη

0 (M1, ∅) and P2 ∈ Φβη(M2, ∅).
By lemma 6.11 and lemma 6.3.1a, Rβη

P1
= Rβη

P2
= ∅. Since P1 ∈

Φβη
0 (M1, ∅), P1 = λx.P0[x := c(cx)] such that P0 ∈ Φβη(M0, ∅).

So, if P →βη Q, then Q = cn(P0[x := c(cP2)]). By lemma 6.12 and
lemma 2.9.5, Rβη

Q = ∅.

∗ Or C = C ′M2 such that C ′ ∈ Rβη
M1

. So, Φβη(M, {C}) = {cn(cP1P2) |
n ≥ 0 ∧ P1 ∈ Φβη(M1, {C ′}) ∧ P2 ∈ Φβη(M2, ∅)}.
Let P ∈ Φβη(M, {C}) then P = cn(cP1P2) such that n ≥ 0, P1 ∈
Φβη(M1, {C ′}) and P2 ∈ Φβη(M2, ∅). By lemma 6.11, Rβη

P2
= ∅. So,

if P →βη Q then Q = cn(cP ′
1P2) and P1 →βη P ′

1. By IH, Rβη
P ′

1
= ∅

and by lemma 2.5 and lemma 2.9.5, Rβη
Q = ∅.
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∗ Or C = M1C
′ such that C ′ ∈ Rβη

M2
. So, Φβη(M, {C}) = {cn(cP1P2) |

n ≥ 0 ∧ P1 ∈ Φβη(M1, ∅) ∧ P2 ∈ Φβη(M2, {C ′})}.
Let P ∈ Φβη(M, {C}) then P = cn(cP1P2) such that n ≥ 0, P1 ∈
Φβη(M1, ∅) and P2 ∈ Φβη(M2, {C ′}). By lemma 6.11, Rβη

P1
= ∅. So,

if P →βη Q then Q = cn(cP1P
′
2) and P2 →βη P ′

2. By IH, Rβη
P ′

2
= ∅

and by lemma 2.5 and lemma 2.9.5, Rβη
Q = ∅.

– Let M 6∈ Rβη, then by lemma 2.5, Rβη
M = {CM2 | C ∈ Rβη

M1
} ∪

{M1C | C ∈ Rβη
M2
}.

∗ Or C = C ′M2 such that C ′ ∈ Rβη
M1

. So, Φβη(M, {C}) = {cn(cP1P2) |
n ≥ 0 ∧ P1 ∈ Φβη(M1, {C ′}) ∧ P2 ∈ Φβη(M2, ∅)}.
Let P ∈ Φβη(M, {C}) then P = cn(cP1P2) such that n ≥ 0, P1 ∈
Φβη(M1, {C ′}) and P2 ∈ Φβη(M2, ∅). By lemma 6.11, Rβη

P2
= ∅. So,

if P →βη Q then Q = cn(cP ′
1P2) and P1 →βη P ′

1. By IH, Rβη
P ′

1
= ∅

and by lemma 2.5 and lemma 2.9.5, Rβη
Q = ∅.

∗ Or C = M1C
′ such that C ′ ∈ Rβη

M2
. So, Φβη(M, {C}) = {cn(cP1P2) |

n ≥ 0 ∧ P1 ∈ Φβη(M1, ∅) ∧ P2 ∈ Φβη(M2, {C ′})}.
Let P ∈ Φβη(M, {C}) then P = cn(cP1P2) such that n ≥ 0, P1 ∈
Φβη(M1, ∅) and P2 ∈ Φβη(M2, {C ′}). By lemma 6.11, Rβη

P1
= ∅. So,

if P →βη Q then Q = cn(cP1P
′
2) and P2 →βη P ′

2. By IH, Rβη
P ′

2
= ∅

and by lemma 2.5 and lemma 2.9.5, Rβη
Q = ∅.

LemmA 6.14. By lemma 6.4, there exists a unique set F ′ ⊆ Rβη
M ′ , such that ∀N ∈

Φβη(M, {C}),∃N ′ ∈ Φβη(M ′,F ′), N →βη N ′. Let N ∈ Φβη(M, {C}) and N ′ ∈
Φβη(M ′,F ′) such that N →βη N ′. By lemma 6.13, Rβη

N ′ = ∅, So |Rβη
N ′ |cC = ∅ and

by lemma 6.3.1h, F ′ = ∅. Finally, by lemma 6.7, (M, {C}) →βηd (M ′, ∅).

Lemma 6.15. It is obvious that →∗
1⊆→∗

βη. We only prove that →∗
βη⊆→∗

1. Let
M,M ′ ∈ Λ such that M →∗

βη M ′. We prove this claim by induction on M →∗
βη M ′.

• Let M = M ′ then it is done since (M,F) →∗
βηd (M,F).

• Let M →∗
βη M ′′ →βη M ′. By IH, M →∗

1 M ′′. If M ′′ = C[R] →βη C[R′] = M ′

such that R′ is the contractum of R then by lemma 6.14, (M ′′, {r}) →βηd

(M ′, ∅), so M ′′ →1 M ′. Hence M →∗
1 M ′′ →1 M ′.

Lemma 6.16. Let M1,M2 ∈ Λ such that M →∗
βη M1 and M →∗

βη M2. Then by
lemma 6.15, M →∗

1 M1 and M →∗
1 M2. We prove the statement by induction on

M →∗
1 M1.

• Let M = M1. Hence M1 →∗
1 M2 and M2 →∗

1 M2.

• Let M →∗
1 M ′

1 →1 M1. By IH, ∃M ′
3,M

′
1 →∗

1 M ′
3 and M2 →∗

1 M ′
3. We prove

that ∃M3,M1 →∗
1 M3 and M ′

3 →1 M3, by induction on M ′
1 →∗

1 M ′
3.

– let M ′
1 = M ′

3, hence M ′
3 →1 M1 and M1 →∗

1 M1.

– Let M ′
1 →∗

1 M ′′
3 →1 M ′

3. By IH, ∃M ′′′
3 ,M1 →∗

1 M ′′′
3 and M ′′

3 →1 M ′′′
3 .

By lemma 2.2.1, c 6∈ FV M ′′
3 . Since M ′′

3 →1 M ′
3 and M ′′

3 →1 M ′′′
3 , By

lemma 6.9, ∃M3,M
′
3 →1 M3 and M ′′′

3 →1 M3.
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