Reducibility proofs in the λ-calculus

Fairouz Kamareddine and Vincent Rahli*

February 6, 2008

Abstract

Reducibility has been used to prove a number of properties in the λ calculus and is well known to offer on one hand very general proofs which can be applied to a number of instantiations, and on the other hand, to be quite mysterious and inflexible. In this paper, we look at two related but different results in the literature. We show that one such result (which aims at giving reducibility proofs of Church-Rosser, standardization and weak normalisation) faces serious problems which break the reducibility method and then we provide a proposal to partially repair the method. Then, we consider a second result whose purpose is to use reducibility to show Church-Rosser of β-developments (without needing to use strong normalisation). We extend the second result to encompass both βI - and $\beta \eta$-reduction rather than simply β-reduction.

1 Introduction

Reducibility is a method based on realizability semantics [Kle45], developed by Tait [Tai67] in order to prove normalization of some functional theories. The idea is to interpret types by sets of λ-terms closed under some properties. Since, this method has been improved and generalized. Krivine uses it in [Kri90] to prove the strong normalization of system D [CDCV80]. Koletsos proves in [Kol85] that the set of simply typed λ-terms holds the Church-Rosser property. Some aspects of his method have been reused by Gallier in [Gal97, Gal03] to prove some results such as the strong normalization of λ-terms that are typable in systems like D or D^{Ω}. In his work, Gallier states some conditions a property needs to satisfy in order to be enjoyed by some typable terms under some restrictions. Similarly, Ghilezan and Likavec [GL02] state some conditions a property on λ-terms has to satisfy to be held by some λ-terms typable in a system close to system D^{Ω}. In addition, the authors state a condition that a property needs to satisfy in order to step from "a λ-term typable, under some restrictions on types holds the property" to "a λ-term of the untyped lambda-calculus holds the property". If it works, [GL02] would provide an attractive method to establishing properties like Church-Rosser for all the untyped λ-terms, simply by showing easier conditions on typed terms. However, we will see in this paper that both the method fails for the typed terms, and that the step of passing from typed to untyped terms fails. We will provide a solution to repair the first result, however, the second result seems unrepairable.

Step of establishing properties like Church-Rosser (or confluence) for typed λ terms and concluding the properties for all the untyped λ-terms have been successfully exploited in the literature. Koletsos and Stravinos [KS08] use a reducibility method to state that λ-terms that are typable in system D hold the Church-Rosser

[^0]property. Then, using this result together with a method based on β-developments [Klo80, Kri90], they show that β-developments are Church-Rosser and this in turn will imply the confluence of the untyped λ-calculus. Although Klop proves the confluence of β-developments [BBKV76], his proof is based on strong normalisation whereas [KS08] only uses an embedding of β-developments in the reduction of typable λ-terms. In this paper, we apply the method of $[\mathrm{KS} 08]$ to βI-reduction and then generalise the method to $\beta \eta$-reduction.

In section 2 we introduce the formal machinery and establish the basic needed lemmas. In section 3 we present the reducibility method of [GL02] and show that it fails at a number of important propositions which makes it inapplicable. In particular, we give counterexamples which show that all the conditions stated in [GL02] are satisfied, yet the the claimed property does not hold. In section 4 we provide subsets of types which we use to partially salvage the reducibility method of [GL02] and we show that this can now be correctly used to establish confluence, standardization and weak head normal forms but only for restricted sets of lambda terms and types. In section 5 we adapt the Church-Rosser proof of [KS08] to βI reduction. In section 6 we generalise the method of $[\mathrm{KSO} 0]$ to handle $\beta \eta$-reduction. We conclude in section 7 .

2 The Formal Machinery

In this section we provide some known formal machinery and introduce new definitions and lemmas that are necessary for the paper. We take as convention that if a metavariable v ranges over a set S then the metavariables v_{i} such that $i \geq 0$ and the metavariables $v^{\prime}, v^{\prime \prime}$, etc. also range over S .

2.1 Familiar background on λ-calculus

This section consists of one long definition of some familiar (mostly standard) concepts of the λ-calculus and one lemma which deals with the shape of reductions.

Definition 2.1.

1. The set of terms of the λ-calculus is defined as follows:

$$
M \in \Lambda::=x|(\lambda x . M)|\left(M_{1} M_{2}\right)
$$

We let x, y, z, etc. range over \mathcal{V}, a denumerably infinite set of λ-term variables, and M, N, P, Q, etc. range over Λ. We assume the usual definition of subterms: we write $N \subset M$ if N is a subterm of M. We also assume the usual convention for parenthesis and omit these when no confusion arises. In particular, we write $M N_{1} \ldots N_{n}$ instead of $\left(\ldots\left(M N_{1}\right) N_{2} \ldots N_{n-1}\right) N_{n}$.
We take terms modulo α-conversion and use the Barendregt convention (BC) where the names of bound variables differ from the free ones. When two terms M and N are equal (modulo α), we write $M=N$. We write $F V(M)$ for the set of the free variables of term M.
2. Let $n \geq 0$. We define $M^{n}(N)$, by induction on n, as follows: $M^{0}(N)=N$ and $M^{n+1}(N)=M\left(M^{n}(N)\right)$.
3. The set of term contexts is defined as follows:

$$
C \in \mathcal{C}::=\square|\lambda x . C| C M \mid M C
$$

We define $C[M]$, as the filling up of the context C with the term M, by induction on the structure of $C: \square[M]=M,(\lambda x . C)[M]=\lambda x . C[M],(N C)[M]=$ $N C[M]$ and $(C N)[M]=C[M] N$.
4. The set $\Lambda \mathrm{I} \subset \Lambda$, of terms of the $\lambda \mathrm{I}$-calculus is defined by the grammar:
(a) If $x \in \mathcal{V}$ then $x \in \Lambda \mathrm{I}$.
(b) If $x \in F V(M)$ and $M \in \Lambda \mathrm{I}$ then $\lambda x . M \in \Lambda \mathrm{I}$.
(c) If $M, N \in \Lambda \mathrm{I}$ then $M N \in \Lambda \mathrm{I}$.
5. We define as usual the substitution $M[x:=N]$ of N for all free occurrences of x in M. We define the substitution $C[x:=M]$ of N for all free occurrences of x in context C by: $\square[x:=N]=\square,(\lambda y . C)[x:=N]=\lambda y . C[x:=N](x \neq y$ by $(\mathrm{BC})),(M C)[x:=N]=M[x:=N] C[x:=N]$ and $(C M)[x:=N]=C[x:=$ $N] M[x:=N]$. We let $M\left[\left(x_{i}:=N_{i}\right)_{1}^{n}\right]$ be the simultaneous substitution of N_{i} for all free occurrences of x_{i} in M for $1 \leq i \leq n$.
6. We assume the usual definition of compatibility. For $r \in\{\beta, \beta I, \beta \eta\}$, we define the reduction relation \rightarrow_{r} on Λ as the least compatible relation closed under rule $(r): L \rightarrow_{r} R$ below, and we call L an r-redex and R the contractum of L (or the L contractum). We define \mathcal{R}^{r} to be the set of r-redexes.

- $(\beta):(\lambda x . M) N \rightarrow_{\beta} M[x:=N]$.
- $(\beta I):(\lambda x \cdot M) N \rightarrow_{\beta I} M[x:=N]$ when $x \in F V(M)$.
- $(\eta): \lambda x . M x \rightarrow_{\eta} M$ when $x \notin F V(M)$.

We define $\mathcal{R}^{\beta \eta}=\mathcal{R}^{\beta} \cup \mathcal{R}^{\eta}$ and $\rightarrow_{\beta \eta}=\rightarrow_{\beta} \cup \rightarrow_{\eta}$.
7. Let $r \in\{\beta, \beta I, \beta \eta\}$. We define $\mathcal{R}_{M}^{r}=\left\{C \mid C \in \mathcal{C} \wedge \exists R \in \mathcal{R}^{r}, C[R]=M\right\}$. If $M \rightarrow_{r} N$ by contracting the r-redex R in $M=C[R]$ then $C \in \mathcal{R}_{M}^{r}$ by definition, $N=C\left[R^{\prime}\right]$ where R^{\prime} is the contractum of R and we write $M \xrightarrow{C}{ }_{r} N$.
8. Let $M \in \Lambda$ and $\mathcal{F} \subseteq \Lambda$. $\mathcal{F} \upharpoonright M=\{N \mid N \in \mathcal{F} \wedge N \subset M\}$.
9. If $M=\lambda x_{1} \ldots x_{n}$. $\left(\lambda x . M_{0}\right) M_{1} \ldots M_{m}$ such that $n \geq 0$ and $m \geq 1$ then $\left(\lambda x . M_{0}\right) M_{1}$ is called the β-head redex of M.
10. If $M=\left(\lambda x \cdot M_{0} x\right) M_{1} \ldots M_{m}$ such that $m \geq 1$ then $\left(\lambda x \cdot M_{0} x\right)$ is called the η-head redex of M.
11. Let $r \in\{\beta, \eta\}$. We write $M \rightarrow_{h r} M^{\prime}$ (resp. $M \rightarrow_{i r} M^{\prime}$) if M^{\prime} is obtained by reducing the r-head (resp. a non r-head) redex of M.
12. We define: $\rightarrow_{\beta i \eta}=\rightarrow_{\beta} \cup \rightarrow_{i \eta}$
13. Let $r \in\left\{\rightarrow_{\beta}, \rightarrow_{\eta}, \rightarrow_{\beta \eta}, \rightarrow_{\beta I}, \rightarrow_{h \beta}, \rightarrow_{h \eta}, \rightarrow_{i \beta}, \rightarrow_{i \eta}, \rightarrow_{\beta i \eta}\right\}$. We use \rightarrow_{r}^{*} to denote the reflexive transitive closure of \rightarrow_{r}. We let \simeq_{r} denote the equivalence relation induced by \rightarrow_{r}.
If the r-reduction from M to N is in k steps, we write $M \rightarrow{ }_{r}^{k} N$.
14. Let $r \in\{\beta I, \beta \eta\}, M$ not an application and $n \geq 0$. A term $M^{\prime} N_{0}^{\prime} N_{1}^{\prime} \ldots N_{n}^{\prime}$ is a direct r-reduct of $M N_{0} N_{1} \ldots N_{n}$ iff $\forall i \in\{0, \ldots, n\}, N_{i} \rightarrow_{r}^{*} N_{i}^{\prime}$ and

- if $r=\beta I$ then $M \rightarrow_{\beta I}^{*} M^{\prime}$.
- if $r=\beta \eta$ then $M \rightarrow_{\beta i \eta}^{*} M^{\prime}$.

15. $\mathrm{NF}_{\beta}=\left\{\lambda x_{1} \ldots \lambda x_{n} \cdot x_{0} N_{1} \ldots N_{m} \mid n, m \geq 0, N_{1}, \ldots, N_{m} \in \mathrm{NF}_{\beta}\right\}$.
16. $\mathrm{WN}_{\beta}=\left\{M \in \Lambda \mid \exists N \in \mathrm{NF}_{\beta}, M \rightarrow{ }_{\beta}^{*} N\right\}$.
17. Let $r \in\{\beta, \beta I, \beta \eta\}$.

- We say that M has the Church-Rosser property for r (has r-CR) if whenever $M \rightarrow_{r}^{*} M_{1}$ and $M \rightarrow_{r}^{*} M_{2}$ then there is an M_{3} such that $M_{1} \rightarrow_{r}^{*} M_{3}$ and $M_{2} \rightarrow_{r}^{*} M_{3}$.
- $\mathrm{CR}^{r}=\{M \mid M$ has r-CR $\}$.
- $\mathrm{CR}_{0}^{r}=\left\{x M_{1} \ldots M_{n} \mid n \geq 0 \wedge x \in \mathcal{V} \wedge\left(\forall i \in\{1, \ldots, n\}, M_{i} \in \mathrm{CR}^{r}\right)\right\}$.
- We use $C R$ to denote CR^{β} and CR_{0} to denote CR_{0}^{β}.
- A term is a weak head normal form if it is an abstraction or if it starts with a variable. A term is weakly head normalizing if it reduces to a weak head normal form. Let $\mathrm{W}^{r}=\left\{M \in \Lambda \mid \exists n \geq 0, \exists x \in \mathcal{V}, \exists P, P_{1}, \ldots, P_{n} \in\right.$ $\Lambda, M \rightarrow_{r}^{*} \lambda x . P$ or $\left.M \rightarrow_{r}^{*} x P_{1} \ldots P_{n}\right\}$. We use W to denote W^{β}.

18. We say that M has the standardization property if whenever $M \rightarrow{ }_{\beta}^{*} N$ then there is an M^{\prime} such that $M \rightarrow_{h}^{*} M^{\prime}$ and $M^{\prime} \rightarrow_{i}^{*} N$. Let $\mathrm{S}=\{M \in \Lambda \mid M$ has the standardization property $\}$.

The next lemma deals with the shape of reductions.

Lemma 2.2.

1. If $M \rightarrow{ }_{\beta}^{*} M^{\prime}$ then $F V\left(M^{\prime}\right) \subseteq F V(M)$.
2. If $M \rightarrow_{\beta I}^{*} M^{\prime}$ then $F V(M)=F V\left(M^{\prime}\right)$ and if $M \in \Lambda I$ then $M^{\prime} \in \Lambda I$.
3. $\lambda x \cdot M \rightarrow_{\beta \eta} P$ iff either $\left(P=\lambda x \cdot M^{\prime}\right.$ and $\left.M \rightarrow_{\beta \eta} M^{\prime}\right)$ or $(M=P x$ and $x \notin F V(P))$.
4. $\lambda x \cdot M \rightarrow_{\beta i \eta} P$ iff $\left(P=\lambda x \cdot M^{\prime}\right.$ and $\left.M \rightarrow_{\beta \eta} M^{\prime}\right)$.
5. Let $n \geq 0$. A direct $\beta \eta$-reduct of $(\lambda x . M) N_{0} N_{1} \ldots N_{n}$, is a term $\left(\lambda x . M^{\prime}\right) N_{0}^{\prime} N_{1}^{\prime} \ldots N_{n}^{\prime}$ such that $M \rightarrow_{\beta \eta}^{*} M^{\prime}$ and $\forall i \in\{0, \ldots, n\}, N_{i} \rightarrow_{\beta \eta}^{*} N_{i}^{\prime}$.
6. Let $r \in\{\beta I, \beta \eta\}, M$ not an application, $n \geq 0, P$ is not a direct r-reduct of $M N_{0} \ldots N_{n}$ and $M N_{0} \ldots N_{n} \rightarrow{ }_{r}^{k} P$. Then the following holds:
(a) $M=\lambda x . M^{\prime}, k \geq 1$, and if $k=1$ then $P=M^{\prime}\left[x:=N_{0}\right] N_{1} \ldots N_{n}$.
(b) There exists a direct r-reduct $\left(\lambda x \cdot M^{\prime \prime}\right) N_{0}^{\prime} N_{1}^{\prime} \ldots N_{n}^{\prime}$ of $M N_{0} \ldots N_{n}$ such that $M^{\prime \prime}\left[x:=N_{0}^{\prime}\right] N_{1}^{\prime} \ldots N_{n}^{\prime} \rightarrow{ }_{r}^{*} P$.
7. Let $r \in\{\beta I, \beta \eta\}, n \geq 0$ and $(\lambda x . M) N_{0} N_{1} \ldots N_{n} \rightarrow_{r}^{*} P$. There exist P^{\prime} such that $P \rightarrow_{r}^{*} P^{\prime}$ and
(a) If $r=\beta I$ and $x \in F V(M)$ then $M\left[x:=N_{0}\right] N_{1} \ldots N_{n} \rightarrow{ }_{r}^{*} P^{\prime}$.
(b) If $r=\beta \eta$ then $M\left[x:=N_{0}\right] N_{1} \ldots N_{n} \rightarrow{ }_{r}^{*} P^{\prime}$.

2.2 Formalising the background on developments

In this section we go through some needed background from [Kri90] on developments and we precisely formalise and establish all the necessary properties. In order not to clutter the paper, we have put all the proofs of this section in an appendix. Throughout the paper, we take c to be a metavariable ranging over \mathcal{V}. As far as we know, this is the first precise formalisation of developments.

The next definition adapts Λ_{c} of [Kri90] to deal with βI - and $\beta \eta$-reduction. Basically, Λ_{c} is Λ_{c} where in the abstraction construction rule (R1).2, we restrict abstraction to ΛI. In $\Lambda \eta_{c}$ we introduce the new rule (R4) and replace the abstraction rule of Λ_{c} by (R1). 3 and (R1).4.

Definition $2.3\left(\Lambda \eta_{c}, \Lambda \mathrm{I}_{c}\right)$.

1. We let \mathcal{M}_{c} range over $\Lambda \eta_{c}, \Lambda \mathrm{I}_{c}$ defined as follows (note that $\Lambda \mathrm{I}_{c} \subset \Lambda \mathrm{I}$):
(R1) If x is a variable distinct form c then
2. $x \in \mathcal{M}_{c}$.
3. If $M \in \Lambda \mathrm{I}_{c}$ and $x \in F V(M)$ then $\lambda x . M \in \Lambda \mathrm{I}_{c}$.
4. If $M \in \Lambda \eta_{c}$ then $\lambda x . M[x:=c(c x)] \in \Lambda \eta_{c}$.
5. If $N x \in \Lambda \eta_{c}$ such that $x \notin F V(N)$ and $N \neq c$ then $\lambda x . N x \in \Lambda \eta_{c}$.
(R2) If $M, N \in \mathcal{M}_{c}$ then $c M N \in \mathcal{M}_{c}$.
(R3) If $M, N \in \mathcal{M}_{c}$ and M is a λ-abstraction then $M N \in \mathcal{M}_{c}$.
(R4) If $M \in \Lambda \eta_{c}$ then $c M \in \Lambda \eta_{c}$.
6. Let $C \in \mathcal{C}$ and $M \in \mathcal{M}_{c}$. If $\exists R \in \Lambda$ such that $C[R]=M$ then we call C a \mathcal{M}_{c}-context.

Here is a lemma related to terms of \mathcal{M}_{c}.
Lemma 2.4 (Generation).

1. $M[x:=c(c x)] \neq x$ and for any $N, M[x:=c(c x)] \neq N x$.
2. Let $x \notin F V(M)$. Then, $M[y:=c(c x)] \neq x$ and for any $N, M[y:=c(c x)] \neq$ $N x$.
3. If $M \in \mathcal{M}_{c}$ then $M \neq c$.
4. If $M, N \in \mathcal{M}_{c}$ then $M[x:=N] \neq c$.
5. Let $M N \in \mathcal{M}_{c}$. Then $N \in \mathcal{M}_{c}$ and either

- $M=c M^{\prime}$ where $M^{\prime} \in \mathcal{M}_{c}$ or
- $M=c$ and $\mathcal{M}_{c}=\Lambda \eta_{c}$ or
- $M=\lambda x . P$ is in \mathcal{M}_{c}

6. If $\lambda x . P \in \Lambda \eta_{c}$ then either

- $P=N x$ where $N, N x \in \Lambda \eta_{c}$ where $x \notin F V(N)$ and $N \neq c$ or
- $P=N[x:=c(c x))]$ where $N \in \Lambda \eta_{c}$

7. If $\lambda x . P \in \Lambda I_{c}$ then $x \in F V(P)$ and $P \in \Lambda I_{c}$.
8. If $M, N \in \mathcal{M}_{c}$ and $x \neq c$ then $M[x:=N] \in \mathcal{M}_{c}$.
9. Let $M \in \Lambda \eta_{c}$.
(a) If $M=\lambda x . P$ then $P \in \Lambda \eta_{c}$.
(b) If $M=\lambda x$.Px then $P x, P \in \Lambda \eta_{c}, x \notin F V(P)$ and $P \neq c$.
(c) Let $x \neq c$. If $M[x:=c(c x)] \rightarrow_{\beta \eta} M^{\prime}$ then $M^{\prime}=N[x:=c(c x)]$ and $M \rightarrow_{\beta \eta} N$.
(d) Let $n \geq 0$. If $c^{n}(M) \rightarrow_{\beta \eta} M^{\prime}$ then $\exists N \in \Lambda \eta_{c}, M^{\prime}=c^{n}(N)$ and $M \rightarrow_{\beta \eta}$ N.

Here is a lemma about the contexts surrounding the set of redexes in a term:

Lemma 2.5. Let $r \in\{\beta I, \beta \eta\}$.

- If $M \in \mathcal{V}$ then $\mathcal{R}_{M}^{r}=\varnothing$.
- If $M=\lambda x . N$ then:
- if $M \in \mathcal{R}^{r}$ then $\mathcal{R}_{M}^{r}=\{\square\} \cup\left\{\lambda x . C \mid C \in \mathcal{R}_{N}^{r}\right\}$.
- else, $\mathcal{R}_{M}^{r}=\left\{\lambda x . C \mid C \in \mathcal{R}_{N}^{r}\right\}$.
- If $M=P Q$ then:
- if $M \in \mathcal{R}^{r}$ then $\mathcal{R}_{M}^{r}=\{\square\} \cup\left\{C Q \mid C \in \mathcal{R}_{P}^{r}\right\} \cup\left\{P C \mid C \in \mathcal{R}_{Q}^{r}\right\}$.
- else, $\mathcal{R}_{M}^{r}=\left\{C Q \mid C \in \mathcal{R}_{P}^{r}\right\} \cup\left\{P C \mid C \in \mathcal{R}_{Q}^{r}\right\}$.

Here is a lemma about the set of redexes in a term:
Lemma 2.6. Let $r \in\{\beta I, \beta \eta\}$ and $\mathcal{F} \subseteq \mathcal{R}_{M}^{r}$.

- If $M \in \mathcal{V}$ then $\mathcal{F}=\varnothing$.
- If $M=\lambda x . N$ then $\mathcal{F}^{\prime}=\{C \mid \lambda x . C \in \mathcal{F}\} \subseteq \mathcal{R}_{N}^{r}$ and:
- if $M \in \mathcal{R}^{r}$ then $\mathcal{F} \backslash\{\square\}=\left\{\lambda x . C \mid C \in \mathcal{F}^{\prime}\right\}$.
- else, $\mathcal{F}=\left\{\lambda x . C \mid C \in \mathcal{F}^{\prime}\right\}$.
- If $M=P Q$ then $\mathcal{F}_{1}=\{C \mid C Q \in \mathcal{F}\} \subseteq \mathcal{R}_{P}^{r}, \mathcal{F}_{2}=\{C \mid P C \in \mathcal{F}\} \subseteq \mathcal{R}_{Q}^{r}$ and:
- if $M \in \mathcal{R}^{r}$ then $\mathcal{F} \backslash\{\square\}=\left\{C Q \mid C \in \mathcal{F}_{1}\right\} \cup\left\{P C \mid C \in \mathcal{F}_{2}\right\}$.
- else, $\mathcal{F}=\left\{C Q \mid C \in \mathcal{F}_{1}\right\} \cup\left\{P C \mid C \in \mathcal{F}_{2}\right\}$.

Now we show that substitutions propagate inside contexts and redexes.
Lemma 2.7. Let $r \in\{\beta I, \beta \eta\}$ and $C \in \mathcal{R}_{M}^{r}$. We have: $M[x:=N]=C[x:=N][R]$ iff $R=R^{\prime}[x:=N]$ and $M=C\left[R^{\prime}\right]$.

Obviously, substitution dismisses non free variables:
Lemma 2.8. If $x \notin F V(R)$ then $C[x:=N][R]=C[R][x:=N]$.
The next lemma shows the role on redexes of substitutions involving c.
Lemma 2.9. Let $r \in\{\beta \eta, \beta I\}$. and $x \neq c$.

1. Let $x \neq y$. Then:

- if $M[x:=c(c x)]=y$ then $M=y$,
- if $M[x:=c(c x)]=P y$ then $M=N y$ and $P=N[x:=c(c x)]$ and
- if $M[x:=c(c x)]=\lambda y . P$ then $M=\lambda y \cdot N$ and $P=N[x:=c(c x)]$.

2. $M \in \mathcal{R}^{\beta \eta}$ iff $M[x:=c(c x)] \in \mathcal{R}^{\beta \eta}$.
3. $C \in \mathcal{R}_{\lambda x . M[x:=c(c x)]}^{\beta \eta}$ iff $C=\lambda x . C^{\prime}$ and $C^{\prime} \in \mathcal{R}_{M[x:=c(c x)]}^{\beta \eta}$.
4. $C \in \mathcal{R}_{M[x:=c(c x)]}^{\beta \eta}$ iff $C=C^{\prime}[x:=c(c x)]$ and $C^{\prime} \in \mathcal{R}_{M}^{\beta \eta}$.
5. Let $n \geq 0$ then $\mathcal{R}_{c^{n}(M)}^{\beta \eta}=\left\{c^{n}(C) \mid C \in \mathcal{R}_{M}^{\beta \eta}\right\}$.

The next lemma shows that any element $(\lambda x . P) Q$ of $\Lambda \mathrm{I}_{c}\left(\right.$ resp. $\left.\Lambda \eta_{c}\right)$ is a βI (resp. $\beta \eta$-) redex.

Lemma 2.10. Let $\left(\mathcal{M}_{c}, r\right) \in\left\{\left(\Lambda I_{c}, \beta I\right),\left(\Lambda \eta_{c}, \beta \eta\right)\right\}$ and $M \in \mathcal{M}_{c}$. If $M=(\lambda x . P) Q$ then $M \in \mathcal{R}^{r}$.

The next lemma shows that $\Lambda \mathrm{I}_{c}$ (resp. $\Lambda \eta_{c}$) contains all the βI-redexes (resp. $\beta \eta$-redexes) of all its terms.

Lemma 2.11. Let $\left(\mathcal{M}_{c}, r\right) \in\left\{\left(\Lambda I_{c}, \beta I\right),\left(\Lambda \eta_{c}, \beta \eta\right)\right\}$ and $M \in \mathcal{M}_{c}$. If $C \in \mathcal{R}_{M}^{r}$ and $M=C[R]$ then $R \in \mathcal{M}_{c}$.

In order to deal with βI - and $\beta \eta$-reduction, the next lemma generalises a lemma given in [Kri90] (and used in [KS08]). It states that $\Lambda \eta_{c}$ and $\Lambda \mathrm{I}_{c}$ are closed under $\rightarrow_{\beta \eta^{-}}$resp. $\rightarrow_{\beta I^{-} \text {-reduction. }}$

Lemma 2.12.

1. If $M \in \Lambda \eta_{c}$ and $M \rightarrow_{\beta \eta} M^{\prime}$ then $M^{\prime} \in \Lambda \eta_{c}$.
2. If $M \in \Lambda I_{c}$ and $M \rightarrow_{\beta I} M^{\prime}$ then $M^{\prime} \in \Lambda I_{c}$.

The next definition again taken from [Kri90], erases all the c 's from a \mathcal{M}_{c}-term.
Definition $2.13\left(|-|^{c}\right)$. Let $M \in \Lambda$. We define $|M|^{c}$ inductively as follows:

- $|x|^{c}=x$
- $|\lambda x . N|^{c}=\lambda x .|N|^{c}$
- $|c P|^{c}=|P|^{c}$
- $|N P|^{c}=|N|^{c}|P|^{c}$ if $N \neq c$.

The next definition erases all the c 's from a \mathcal{M}_{c}-context.
Definition $2.14\left(|-|_{\mathcal{C}}^{c}\right)$. Let $C \in \mathcal{C}$. We define $|C|_{\mathcal{C}}^{c}$ inductively as follows:

- $|\square|_{\mathcal{C}}^{c}=\square$
- $|\lambda x . N|_{\mathcal{C}}^{c}=\lambda x .|C|_{C}^{c}$
- $\left|C^{\prime} N\right|_{\mathcal{C}}^{c}=\left|C^{\prime}\right|_{\mathcal{C}}^{c}|N|^{c}$
- $\left|c C^{\prime}\right|_{\mathcal{C}}^{c}=\left|C^{\prime}\right|_{\mathcal{C}}^{c}$
- $\left|N C^{\prime}\right|_{\mathcal{C}}^{c}=\left.\left.|N|^{c}\right|_{C}\right|^{c}{ }_{C}^{c}$ if $N \neq c$

Let $\mathcal{F} \subseteq \mathcal{C}$ then we define $|\mathcal{F}|_{\mathcal{C}}^{c}=\left\{|C|_{\mathcal{C}}^{c} \mid C \in \mathcal{F}\right\}$.
Now, c^{n} is indeed erased from $\left|c^{n}(M)\right|^{c}$.
Lemma 2.15. Let $n \geq 0$ then $\left|c^{n}(M)\right|^{c}=|M|^{c}$.
Also, c^{n} is erased from $\left|c^{n}(N)\right|^{c}$ for any $c^{n}(N)$ subterm of M.
Lemma 2.16. Let $|M|^{c}=P$.

- If $P \in \mathcal{V}$ then $\exists n \geq 0$ such that $M=c^{n}(P)$.
- If $P=\lambda x . Q$ then $\exists n \geq 0$ such that $M=c^{n}(\lambda x . N)$ and $|N|^{c}=Q$.
- If $P=P_{1} P_{2}$ then $\exists n \geq 0$ such that $M=c^{n}\left(M_{1} M_{2}\right),\left|M_{1}\right|^{c}=P_{1}$ and $\left|M_{2}\right|^{c}=$ P_{2}.

If the c-ersure of two reduction contexts of M are equal, then these contexts are also equal:

Lemma 2.17. Let $r \in\{\beta I, \beta \eta\}$. If $C, C^{\prime} \in \mathcal{R}_{M}^{r}$ and $|C|_{\mathcal{C}}^{c}=\left|C^{\prime}\right|_{\mathcal{C}}^{c}$ then $C=C^{\prime}$.
Inside a term, substituting x by $c(c x)$ is undone by c-erasure.
Lemma 2.18. Let $x \neq c .|M[x:=c(c x)]|^{c}=|M|^{c}$.
Inside a context, substituting x by $c(c x)$ is undone by c-erasure.
Lemma 2.19. Let $x \neq c$. $|C[x:=c(c x)]|_{\mathcal{C}}^{c}=|C|_{\mathcal{C}}^{c}$.

Erasure propagates through substitutions.
Lemma 2.20. If $M, N \in \mathcal{M}_{c}$ and $x \neq c$ then $|M[x:=N]|^{c}=|M|^{c}\left[x:=|N|^{c}\right]$.
The next lemma shows that c is definitely erased from the free variables of $|M|^{c}$.
Lemma 2.21. If $M \in \mathcal{M}_{c}$ then $F V(M) \backslash\{c\}=F V\left(|M|^{c}\right)$.
Now, c-erasing an $\Lambda_{\mathrm{I}_{c}}$-term returns an $\Lambda \mathrm{I}$-term.
Lemma 2.22. If $M \in \Lambda I_{c}$ then $|M|^{c} \in \Lambda I$.
The next six lemmas show that c-erasure preserves redexes, their contractum and their contexts.

Lemma 2.23. Let $\left(\mathcal{M}_{c}, r\right) \in\left\{\left(\Lambda I_{c}, \beta I\right),\left(\Lambda \eta_{c}, \beta \eta\right)\right\}$ and $R \in \mathcal{R}^{r}$. If $R \in \mathcal{M}_{c}$ then $|R|^{c} \in \mathcal{R}^{r}$ and if R^{\prime} is the contractum of $|R|^{c}$ then $R^{\prime}=\left|R^{\prime \prime}\right|^{c}$ and $R^{\prime \prime}$ is the contractum of R.

Lemma 2.24. Let $\left(\mathcal{M}_{c}, r\right) \in\left\{\left(\Lambda I_{c}, \beta I\right),\left(\Lambda \eta_{c}, \beta \eta\right)\right\}$ and $M \in \mathcal{M}_{c}$. If $C \in \mathcal{R}_{M}^{r}$ and $M=C[R]$ then $|M|^{c}=|C|_{\mathcal{C}}^{c}\left[|R|^{c}\right]$.

Lemma 2.25. Let $\left(\mathcal{M}_{c}, r\right) \in\left\{\left(\Lambda I_{c}, \beta I\right),\left(\Lambda \eta_{c}, \beta \eta\right)\right\}, M \in \mathcal{M}_{c}$ and $C \in \mathcal{R}_{M}^{r}$. Then, $M=C[R]$ and $|C[R]|^{c} \xrightarrow{|C|_{C}^{c}} r\left|C\left[R^{\prime}\right]\right|^{c}$ such that R^{\prime} is the contractum of R.

Lemma 2.26. Let $\left(\mathcal{M}_{c}, r\right) \in\left\{\left(\Lambda I_{c}, \beta I\right),\left(\Lambda \eta_{c}, \beta \eta\right)\right\}$ and $M \in \mathcal{M}_{c}$. If $C \in \mathcal{R}_{M}^{r}$ and $M \xrightarrow{C}{ }_{r} M^{\prime}$ then $|M|^{c} \xrightarrow{|C|_{c}^{c}}{ }_{r}\left|M^{\prime}\right|^{c}$.

Lemma 2.27. Let $\left(\mathcal{M}_{c}, r\right) \in\left\{\left(\Lambda I_{c}, \beta I\right),\left(\Lambda \eta_{c}, \beta \eta\right)\right\},\left(\lambda x . M_{1}\right) N_{1},\left(\lambda x . M_{2}\right) N_{2} \in \mathcal{M}_{c}$ such that $\left|\mathcal{R}_{M_{1}}^{r}\right|_{\mathcal{C}}^{c} \subseteq\left|\mathcal{R}_{M_{2}}^{r}\right|_{\mathcal{C}}^{c},\left|\mathcal{R}_{N_{1}}^{r}\right|_{\mathcal{C}}^{c} \subseteq\left|\mathcal{R}_{N_{2}}^{r}\right|_{\mathcal{C}}^{c},\left|M_{1}\right|^{c}=\left|M_{2}\right|^{c}$ and $\left|N_{1}\right|^{c}=\left|N_{2}\right|^{c}$. We have $\left|\mathcal{R}_{M_{1}\left[x:=N_{1}\right]}^{r}\right|^{c} \subseteq\left|\mathcal{R}_{M_{2}\left[x:=N_{2}\right]}^{r}\right|^{c}$ ${ }^{c}$.

Lemma 2.28. Let $\left(\mathcal{M}_{c}, r\right) \in\left\{\left(\Lambda I_{c}, \beta I\right),\left(\Lambda \eta_{c}, \beta \eta\right)\right\}, M_{1}, M_{2} \in \mathcal{M}_{c}$ such that $\left|\mathcal{R}_{M_{1}}^{r}\right|^{c}{ }_{C}$
$\subseteq\left|\mathcal{R}_{M_{2}}^{r}\right|_{\mathcal{C}}^{c}$ and $\left|M_{1}\right|^{c}=\left|M_{2}\right|^{c}$. If $M_{1}{\xrightarrow{C_{1}}}_{r} M_{1}^{\prime}, M_{2} \xrightarrow{C_{2}} r M_{2}^{\prime}$ such that $\left|C_{1}\right|_{\mathcal{C}}^{c}=\left|C_{2}\right|_{\mathcal{C}}^{c}$ then $\left|\mathcal{R}_{M_{1}^{\prime}}^{r}\right|_{\mathcal{C}}^{c} \subseteq\left|\mathcal{R}_{M_{2}^{\prime}}^{r}\right|_{\mathcal{C}}^{c}$.

2.3 Background on Types and Type Systems

In this section we give the background necessary for the type systems used in this paper.

Definition 2.29. Let $i \in\{1,2\}$.

1. Let \mathcal{A} be a denumerably infinite set of type variables and let $\Omega \notin \mathcal{A}$ be a constant type. The sets of types Type ${ }^{1} \subset$ Type 2 are defined as follows:

$$
\begin{gathered}
\sigma^{1} \in \text { Type }^{1}::=\alpha\left|\sigma_{1}^{1} \rightarrow \sigma_{2}^{1}\right| \sigma_{1}^{1} \cap \sigma_{2}^{1} \\
\sigma^{2} \in \text { Type }^{2}::=\alpha\left|\sigma_{1}^{2} \rightarrow \sigma_{2}^{2}\right| \sigma_{1}^{2} \cap \sigma_{2}^{2} \mid \Omega
\end{gathered}
$$

We let α range over $\mathcal{A} ; \sigma^{1}, \tau^{1}, \rho^{1}$, etc. range over Type ${ }^{1} ; \sigma^{2}, \tau^{2}, \rho^{2}$, etc. range over Type ${ }^{2}$ and σ, τ, ρ, etc. range over Type ${ }^{i}$.
2. We let $\mathcal{B}^{i}=\left\{\Gamma=\left\{x: \sigma \mid x \in \mathcal{V}, \sigma \in\right.\right.$ Type $\left.^{i}\right\} \mid \forall x: \sigma, y: \tau \in \Gamma$, if $\sigma \neq$ τ then $x \neq y\}$. We let Γ, Δ range over \mathcal{B}^{i}. We define $\operatorname{dom}(\Gamma)=\{x \mid x$: $\sigma \in \Gamma\}$. When $x \notin \operatorname{dom}(\Gamma)$, we write $\Gamma, x: \sigma$ for $\Gamma \cup\{x: \sigma\}$. We denote $\Gamma=x_{m}: \sigma_{m}, \ldots, x_{n}: \sigma_{n}$ where $n \geq m \geq 0$, by $\left(x_{i}: \sigma_{i}\right)_{n}^{m}$. If $m=1$, we simply denote Γ by $\left(x_{i}: \sigma_{i}\right)_{n}$.

(ref)	$\sigma \leq \sigma$	(Ω)	$\sigma \leq \Omega$
$($ tr $)$	$\sigma \leq \tau \wedge \tau \leq \rho \Rightarrow \sigma \leq \rho$	$\left(\Omega^{\prime}-l a z y\right)$	$\sigma \rightarrow \Omega \leq \Omega \rightarrow \Omega$
$\left.(\text { (in })_{L}\right)$	$\sigma \cap \tau \leq \sigma$	(idem)	$\sigma \leq \sigma \cap \sigma$
$($ (in $)$	$\sigma \cap \tau \leq \tau$	$(\Omega-\eta)$	$\Omega \leq \Omega \rightarrow \Omega$
$(\rightarrow-\cap)$	$(\sigma \rightarrow \tau) \cap(\sigma \rightarrow \rho) \leq \sigma \rightarrow(\tau \cap \rho)$	$(\Omega-l a z y)$	$\sigma \rightarrow \tau \leq \Omega \rightarrow \Omega$
$\left(\right.$ mon $\left.^{\prime}\right)$	$\sigma \leq \tau \wedge \sigma \leq \rho \Rightarrow \sigma \leq \tau \cap \rho$		
$($ mon $)$	$\sigma \leq \sigma^{\prime} \wedge \tau \leq \tau^{\prime} \Rightarrow \sigma \cap \tau \leq \sigma^{\prime} \cap \tau^{\prime}$		
$(\rightarrow-\eta)$	$\sigma \leq \sigma^{\prime} \wedge \tau^{\prime} \leq \tau \Rightarrow \sigma^{\prime} \rightarrow \tau^{\prime} \leq \sigma \rightarrow \tau$		

Figure 1: Ordering axioms on types

If $\Gamma_{1}=\left(x_{i}: \sigma_{i}\right)_{n},\left(y_{i}: \tau_{i}\right)_{p}$ and $\Gamma_{2}=\left(x_{i}: \sigma_{i}^{\prime}\right)_{n},\left(z_{i}: \rho_{i}\right)_{q}$ where x_{1}, \ldots, x_{n} are the only shared variables, then $\Gamma_{1} \sqcap \Gamma_{2}=\left(x_{i}: \sigma_{i} \cap \sigma_{i}^{\prime}\right)_{n},\left(y_{i}: \tau_{i}\right)_{p},\left(z_{i}: \rho_{i}\right)_{q}$.
Let $X \subseteq \mathcal{V}$. We define $\Gamma \upharpoonright X=\Gamma^{\prime} \subseteq \Gamma$ where $\operatorname{dom}\left(\Gamma^{\prime}\right)=\operatorname{dom}(\Gamma) \cap X$.
Let \sqsubseteq be the reflexive transitive closure of the axioms $\sigma \cap \tau \sqsubseteq \sigma$ and $\sigma \cap \tau \sqsubseteq \tau$.
If $\Gamma=\left(x_{i}: \sigma_{i}\right)_{n}$ and $\Gamma^{\prime}=\left(x_{i}: \sigma_{i}^{\prime}\right)_{n}$ then $\Gamma \sqsubseteq \Gamma^{\prime}$ iff $\forall i, \sigma_{i} \sqsubseteq \sigma_{i}^{\prime}$.
3. - Let $\nabla_{1}=\left\{(r e f),(\operatorname{tr}),\left(i n_{L}\right),\left(i n_{R}\right),(\rightarrow-\cap),\left(\right.\right.$ mon $\left.^{\prime}\right),($ mon $\left.),(\rightarrow-\eta)\right\}$.

- Let $\nabla_{2}=\nabla_{1} \cup\left\{(\Omega),\left(\Omega^{\prime}-l a z y\right)\right\}$.
- Let $\nabla_{D}=\left\{\left(i n_{L}\right),\left(i n_{R}\right)\right\}$.
- Let $\nabla_{D_{I}}=\nabla_{D} \cup\{($ idem $)\}$
- - Type $^{\nabla_{1}}=$ Type $^{\nabla_{D}}=$ Type $^{\nabla_{D_{I}}}=$ Type 1.
- Type $^{\nabla_{2}}=$ Type 2.
- - Let ∇ be a set of axioms from Figure 1. The relation $\leq \nabla$ is defined on types Type ${ }^{\nabla}$ and axioms ∇. We use \leq^{1} instead of $\leq^{\nabla_{1}}$ and \leq^{2} instead of $\leq{ }^{\nabla}{ }_{2}$.
- The equivalence relation is defined by: $\sigma \sim^{\nabla} \tau \Longleftrightarrow \sigma \leq{ }^{\nabla} \tau \wedge \tau \leq \nabla$ σ. We use \sim^{1} instead of $\sim^{\nabla_{1}}$ and \sim^{2} instead of $\sim^{\nabla^{2}}$.
- - We define $\lambda \cap^{1}$ to be the type system $\left\langle\Lambda\right.$, Type $\left.^{1}, \vdash^{1}\right\rangle$ such that \vdash^{1} is the type derivability relation on \mathcal{B}^{1}, Λ and Type ${ }^{1}$ generated using the following typing rules of Figure 2: $(a x),\left(\rightarrow_{E}\right),\left(\rightarrow_{I}\right),\left(\cap_{I}\right)$ and $\left(\leq^{1}\right)$).
- We define $\lambda \cap^{2}$ to be the type system $\left\langle\Lambda\right.$, Type $\left.{ }^{2}, \vdash^{2}\right\rangle$ such that \vdash^{2} is type derivability relation on \mathcal{B}^{2}, Λ and Type ${ }^{2}$ generated using the following typing rules of Figure 2: $(a x),\left(\rightarrow_{E}\right),\left(\rightarrow_{I}\right),\left(\cap_{I}\right),\left(\leq^{2}\right)$ and (Ω).
- We define D to be the type system $\left\langle\Lambda\right.$, Type $\left.{ }^{1}, \vdash^{\beta \eta}\right\rangle$ where $\vdash^{\beta \eta}$ is the type derivability relation on \mathcal{B}^{1}, Λ and Type ${ }^{1}$ generated using the following typing rules of Figure 2: $(a x),\left(\rightarrow_{E}\right),\left(\rightarrow_{I}\right),\left(\cap_{I}\right),\left(\cap_{E 1}\right)$ and $\left(\cap_{E 2}\right)$.
- We define D_{I} to be the type system $\left\langle\Lambda\right.$, Type $\left.{ }^{1}, \vdash^{\beta I}\right\rangle$ where $\vdash^{\beta I}$ is the type derivability relation on \mathcal{B}^{1}, Λ and Type ${ }^{1}$ generated using the following typing rule of Figure 2: $\left(a x^{I}\right),\left(\rightarrow_{E^{I}}\right),\left(\rightarrow_{I}\right),\left(\cap_{I}\right),\left(\cap_{E 1}\right)$ and $\left(\cap_{E 2}\right)$. Moreover, in this type system, we assume that $\sigma \cap \sigma=\sigma$.

3 Problems of the reducibility method of [GL02]

In this section we introduce the reducibility method of [GL02] and show where exactly it fails.

$$
\begin{array}{|ll}
\hline \overline{\Gamma, x: \sigma \vdash x: \sigma}(a x) & \overline{x: \sigma \vdash x: \sigma}\left(a x^{I}\right) \\
\frac{\Gamma \vdash M: \sigma \rightarrow \tau \quad \Gamma \vdash N: \sigma}{\Gamma \vdash M N: \tau}\left(\rightarrow_{E}\right) & \frac{\Gamma_{1} \vdash M: \sigma \rightarrow \tau \quad \Gamma_{2} \vdash N: \sigma}{\Gamma_{1} \sqcap \Gamma_{2} \vdash M N: \tau}\left(\rightarrow_{E^{I}}\right) \\
\frac{\Gamma, x: \sigma \vdash M: \tau}{\Gamma \vdash \lambda x \cdot M: \sigma \rightarrow \tau}\left(\rightarrow_{I}\right) & \frac{\Gamma \vdash M: \sigma \quad \Gamma \vdash M: \tau}{\Gamma \vdash M: \sigma \cap \tau}\left(\cap_{I}\right) \\
\frac{\Gamma \vdash M: \sigma \cap \tau}{\Gamma \vdash M: \sigma}\left(\cap_{E 1}\right) & \frac{\Gamma \vdash M: \sigma \cap \tau}{\Gamma \vdash M: \tau}\left(\cap_{E 2}\right) \\
\frac{\Gamma \vdash M: \sigma \quad \sigma \leq \nabla \tau}{\Gamma \vdash M: \tau}\left(\leq^{\nabla}\right) & \overline{\Gamma \vdash M: \Omega}(\Omega) \\
\hline
\end{array}
$$

Figure 2: Typing rules

Definition 3.1 (Type systems and reducibility of [GL02]). Let $i \in\{1,2\}$.

1. Let $\mathcal{P} \subseteq \Lambda$. The type interpretation $\llbracket-\rrbracket^{i}:$ Type $^{i} \rightarrow 2^{\Lambda}$ is defined by:

- $\llbracket \alpha \rrbracket^{i}=\mathcal{P}$, where $\alpha \in \mathcal{A}$.
- $\llbracket \sigma \cap \tau \rrbracket^{i}=\llbracket \sigma \rrbracket^{i} \cap \llbracket \tau \rrbracket^{i}$.
- $\llbracket \Omega \rrbracket^{2}=\Lambda$.
- $\llbracket \sigma \rightarrow \tau \rrbracket^{1}=\llbracket \sigma \rrbracket^{1} \Rightarrow \llbracket \tau \rrbracket^{1}=\left\{M \in \Lambda \mid \forall N \in \llbracket \sigma \rrbracket^{1}, M N \in \llbracket \tau \rrbracket^{1}\right\}$.
- $\llbracket \sigma \rightarrow \tau \rrbracket^{2}=\left(\llbracket \sigma \rrbracket^{2} \Rightarrow \llbracket \tau \rrbracket^{2}\right) \cap \mathcal{P}=\left\{M \in \mathcal{P} \mid \forall N \in \llbracket \sigma \rrbracket^{2}, M N \in \llbracket \tau \rrbracket^{2}\right\}$.

2. A valuation of term variables in Λ is a function $\nu: \mathcal{V} \rightarrow \Lambda$. We write $v(x:=M)$ for the function v^{\prime} where $v^{\prime}(x)=M$ and $v^{\prime}(y)=v(y)$ if $y \neq x$.
3. let ν be a valuation of term variables in Λ. Then $\llbracket-\rrbracket_{\nu}: \Lambda \rightarrow \Lambda$ is defined by: $\llbracket M \rrbracket_{\nu}=M\left[x_{1}:=\nu\left(x_{1}\right), \ldots, x_{n}:=\nu\left(x_{n}\right)\right]$, where $F V(M)=\left\{x_{1}, \ldots, x_{n}\right\}$.
4. - $\nu \not \models^{i} M: \sigma$ iff $\llbracket M \rrbracket_{\nu} \in \llbracket \sigma \rrbracket^{i}$

- $\nu \neq^{i} \Gamma$ iff $\forall(x: \sigma) \in \Gamma, \nu(x) \in \llbracket \sigma \rrbracket^{i}$
- $\Gamma \not \models^{i} M: \sigma$ iff $\forall \nu \not \models^{i} \Gamma, \nu \models^{i} M: \sigma$

5. Let $\mathcal{X} \subseteq \Lambda$. We say that:

- $\left(V A R^{i}\right) \mathcal{P}$ satisfies the variable property, denoted $V A R^{i}(\mathcal{P}, \mathcal{X})$, if

$$
\forall x, x \in \mathcal{X}
$$

- $\left(S A T^{1}\right) \mathcal{P}$ is 1 -saturated, denoted $S A T^{1}(\mathcal{P}, \mathcal{X})$, if

$$
\forall M, \forall x, \forall N \in \mathcal{P}, M[x:=N] \in \mathcal{X} \Rightarrow(\lambda x . M) N \in \mathcal{X}
$$

- $\left(S A T^{2}\right) \mathcal{P}$ is 2-saturated, denoted $S A T^{2}(\mathcal{P}, \mathcal{X})$, if

$$
\forall M, \forall N, \forall x, M[x:=N] \in \mathcal{X} \Rightarrow(\lambda x . M) N \in \mathcal{X}
$$

- $\left(C L O^{1}\right) \mathcal{P}$ is closed by variable application, denoted $C L O^{1}(\mathcal{P}, \mathcal{X})$, if

$$
\forall M, \forall x, M x \in \mathcal{X} \Rightarrow M \in \mathcal{P}
$$

- $\left(C L O^{2}\right) \mathcal{P}$ is closed by abstraction, denoted $C L O^{2}(\mathcal{P}, \mathcal{X})$, if

$$
\forall M, \forall x, M \in \mathcal{X} \Rightarrow \lambda x . M \in \mathcal{P}
$$

For $\mathcal{R} \in\left\{V A R^{i}, S A T^{i}, C L O^{i}\right\}$, let $\mathcal{R}(\mathcal{P}) \Longleftrightarrow \forall \sigma \in$ Type $^{i}, \mathcal{R}\left(\mathcal{P}, \llbracket \sigma \rrbracket^{i}\right)$
6. Let $\mathcal{X} \subseteq \Lambda$. We say that:

- $(\mathcal{P}-V A R) \mathcal{X}$ satisfies the \mathcal{P}-variable property, denoted $V A R(\mathcal{P}, \mathcal{X})$, if

$$
\forall x, \forall n \geq 0, \forall N_{1}, \ldots, N_{n} \in \mathcal{P}, x N_{1} \ldots N_{n} \in \mathcal{X}
$$

- $(\mathcal{P}-S A T) \mathcal{X}$ is \mathcal{P}-saturated, denoted $S A T(\mathcal{P}, \mathcal{X})$, if

$$
\begin{gathered}
\forall M, \forall N, \forall x, \forall n \geq 0, \forall N_{1}, \ldots, N_{n} \in \mathcal{P}, \\
M[x:=N] N_{1} \ldots N_{n} \in \mathcal{X} \Rightarrow(\lambda x . M) N N_{1} \ldots N_{n} \in \mathcal{X}
\end{gathered}
$$

- $(\mathcal{P}-C L O) \mathcal{X}$ is \mathcal{P}-closed, denoted $\operatorname{CLO}(\mathcal{P}, \mathcal{X})$, if

$$
\forall M, \forall x, M \in \mathcal{X} \Rightarrow \lambda x . M \in \mathcal{P}
$$

7. A set $\mathcal{P} \subseteq \Lambda$ is said to be invariant under abstraction if

$$
\forall M, \forall x, M \in \mathcal{P} \Longleftrightarrow \lambda x . M \in \mathcal{P} .
$$

Lemma 3.2 (Basic lemmas proved in [GL02]).

1. (a) $\llbracket M \rrbracket_{\nu(x:=N)} \equiv \llbracket M \rrbracket_{\nu(x:=x)}[x:=N]$
(b) $\llbracket M N \rrbracket_{\nu} \equiv \llbracket M \rrbracket_{\nu} \llbracket N \rrbracket_{\nu}$
(c) $\llbracket \lambda x \cdot M \rrbracket_{\nu} \equiv \lambda x \cdot \llbracket M \rrbracket_{\nu(x:=x)}$
2. If $V A R^{1}(\mathcal{P})$ and $C L O^{1}(\mathcal{P})$ are satisfied then
(a) $\forall \sigma \in$ Type $^{1}, \llbracket \sigma \rrbracket^{1} \subseteq \mathcal{P}$.
(b) If $S A T^{1}(\mathcal{P})$ and $\Gamma \vdash^{1} M: \sigma$ then we have $\Gamma \not \models^{1} M: \sigma$ and $M \in \mathcal{P}$
3. $\forall \sigma \in$ Type 2, if $\sigma \not \chi^{2} \Omega$ then $\llbracket \sigma \rrbracket^{2} \subseteq \mathcal{P}$
4. If $\sigma \leq^{2} \tau$ then $\llbracket \sigma \rrbracket^{2} \subseteq \llbracket \tau \rrbracket^{2}$.
5. If $V A R^{2}(\mathcal{P}), S A T^{2}(\mathcal{P})$ and $C L O^{2}(\mathcal{P})$ hold then $\Gamma \vdash^{2} M: \sigma \Rightarrow \Gamma \not \models^{2} M: \sigma$
6. If $V A R^{2}(\mathcal{P}), S A T^{2}(\mathcal{P})$ and $C L O^{2}(\mathcal{P})$ hold then $\forall \sigma \in$ Type $^{2}, \sigma \not \chi^{2} \Omega \wedge \Gamma \vdash^{2}$ $M: \sigma \Rightarrow M \in \mathcal{P}$
7. $C L O(\mathcal{P}, \mathcal{P}) \Rightarrow \forall \sigma \in$ Type $^{2}, \sigma \not \chi^{2} \Omega \Rightarrow C L O^{2}\left(\mathcal{P}, \llbracket \sigma \rrbracket^{2}\right)$.

Proof. We only prove 5. By induction on $\Gamma \vdash^{2} M: \sigma$. ($a x$) and (Ω) are easy. $\left(\cap_{I}\right)$ (resp. $\left(\rightarrow_{E}\right)$ resp. $\left.\left(\leq^{2}\right)\right)$ is by IH (resp. IH and 1, resp. IH and 4).
$\left(\rightarrow_{I}\right)$ By IH, $\Gamma, x: \sigma \not \models^{2} M: \tau$. Let $\nu \models^{2} \Gamma$ and $N \in \llbracket \sigma \rrbracket^{2}$. Then $\nu(x:=N) \not \models^{2} \Gamma$ since $x \notin \operatorname{dom}(\Gamma)$ and $\nu(x:=N) \models^{2} x: \sigma$ since $N \in \llbracket \sigma \rrbracket^{2}$. Therefore $\nu(x:=N) \models^{2} M: \tau$, i.e. $\llbracket M \rrbracket_{\nu(x:=N)} \in \llbracket \tau \rrbracket^{2}$. Hence, by lemma 3.2.1, $\llbracket M \rrbracket_{\nu(x:=x)}[x:=N] \in \llbracket \tau \rrbracket^{2}$. Hence by applying $S A T^{2}(\mathcal{P})$, we get $\left(\lambda x \cdot \llbracket N \rrbracket_{\nu(x:=x)}\right) N$
$\llbracket \tau \rrbracket^{2}$. Again by lemma 3.2.1, $\left(\llbracket \lambda x . M \rrbracket_{\nu}\right) N \in \llbracket \tau \rrbracket^{2}$. Hence $\llbracket \lambda x . M \rrbracket_{\nu} \in \llbracket \sigma \rrbracket^{2} \Rightarrow$ $\llbracket \tau \rrbracket^{2}$.
By $V A R^{2}(\mathcal{P}), x \in \llbracket \sigma \rrbracket^{2}$, hence by the same argument as above we obtain $\llbracket M \rrbracket_{\nu(x:=x)} \in \llbracket \tau \rrbracket^{2}$. So by $C L O^{2}(\mathcal{P}), \lambda x . \llbracket M \rrbracket_{\nu(x:=x)} \in \mathcal{P}$ and by lemma 3.2.1, $\llbracket \lambda x . M \rrbracket_{\nu} \in \mathcal{P}$. Hence, we conclude that $\llbracket \lambda x . M \rrbracket_{\nu} \in \llbracket \sigma \rightarrow \tau \rrbracket^{2}$.

After giving the above definitions and lemmas, [GL02] states that since the properties $\left(V A R^{i}\right),\left(S A T^{i}\right)$ and $\left(C L O^{i}\right)$ for $1 \leq i \leq 2$ have been shown to be sufficient to develop the reducibility method, and since in order to prove these properties one needs stronger induction hypotheses which are easier to prove, the paper sets out to show that these stronger conditions when $i=2$ are ($\mathcal{P}-V A R$), $(\mathcal{P}-S A T)$ and $(\mathcal{P}-C L O)$. However, as we show below, this attempt fail.

Lemma 3.3 (Lemma 3.16 of [GL02] is false). The lemma of [GL02] stated below is false.

$$
V A R(\mathcal{P}, \mathcal{P}) \Rightarrow \forall \sigma \in \text { Type }^{2}, \sigma \not \chi^{2} \Omega \rightarrow \tau \Rightarrow V A R\left(\mathcal{P}, \llbracket \sigma \rrbracket^{2}\right) .
$$

Proof. To show that the above statement is false, we give the following counterexample. Let σ be $\alpha \rightarrow \Omega \rightarrow \alpha \not \chi^{2} \Omega \rightarrow \tau$, where $\alpha \in \mathcal{A}$. $\operatorname{VAR}\left(\mathcal{P}, \llbracket \sigma \rrbracket^{2}\right)$ is true if $\forall x \in \mathcal{V}, \forall n \geq 0, \forall N_{1}, \ldots, N_{n} \in \mathcal{P}, x N_{1} \ldots N_{n} \in \llbracket \sigma \rrbracket^{2}$, in particular if $x \in \llbracket \sigma \rrbracket^{2}$, where $x \in \mathcal{V}$. Let \mathcal{P} be the set of strong normalizing terms. We have to notice that $\operatorname{VAR}(\mathcal{P}, \mathcal{P})$ is true. Since $x \in \mathcal{P}, x x \in \llbracket \Omega \rightarrow \alpha \rrbracket^{2}$. Since $\circledast \circledast \in \Lambda=\llbracket \Omega \rrbracket^{2}$, where $\circledast=\lambda x . x x, x x(\circledast \circledast) \in \llbracket \alpha \rrbracket^{2}=\mathcal{P}$. But $\circledast \circledast \notin \mathcal{P}$, hence $x x(\circledast \circledast) \notin \mathcal{P}$, so $V A R\left(\mathcal{P}, \llbracket \sigma \rrbracket^{2}\right)$ is false.

Remark 3.4 (It is not clear that Lemma 3.18 of [GL02] holds).
It is not clear that the lemma of [GL02] stated below holds.

$$
S A T(\mathcal{P}, \mathcal{P}) \Rightarrow \forall \sigma \in \operatorname{Type}^{2}, \sigma \not \chi^{2} \Omega \rightarrow \tau \Rightarrow S A T\left(\mathcal{P}, \llbracket \sigma \rrbracket^{2}\right)
$$

Of remark 3.4. The proof given in [GL02] does not go through and we have neither been able to prove nor disprove this lemma. It remains that this lemma is not yet proved and hence cannot be used in further proofs.

Then, [GL02] gives the following proposition which is the reducibility method for typable terms:
Proposition 3.21 of [GL02] Let $\operatorname{VAR}(\mathcal{P}, \mathcal{P}), S A T(\mathcal{P}, \mathcal{P})$ and $C L O(\mathcal{P}, \mathcal{P})$, then

$$
\forall \sigma \in \text { Type }^{2}, \sigma \not \chi^{2} \Omega \wedge \sigma \not \chi^{2} \Omega \rightarrow \tau \wedge \Gamma \vdash^{2} M: \sigma \Rightarrow M \in \mathcal{P} .
$$

However, the proof of that proposition depends on two problematic lemmas (lemma 3.16 which we showed to fail in our lemma 3.3 , and lemma 3.18 which we explained in remark 3.4 that it is not clear why it should hold). Below, we show that proposition 3.21 of [GL02] fails by giving a counterexample. First, here is a lemma:

Lemma 3.5. $V A R\left(W N_{\beta}, W N_{\beta}\right), C L O\left(W N_{\beta}, W N_{\beta}\right)$ and $S A T\left(W N_{\beta}, W N_{\beta}\right)$ hold.

Proof.

- $V A R\left(\mathrm{WN}_{\beta}, \mathrm{WN}_{\beta}\right)$ is satisfied, since $\forall x \in \mathcal{V}, \forall n \geq 0, \forall N_{1}, \ldots, N_{n} \in \mathrm{WN}_{\beta}$, $x N_{1} \ldots N_{n} \in \mathrm{WN}_{\beta}$.
- $C L O\left(\mathrm{WN}_{\beta}, \mathrm{WN}_{\beta}\right)$ is satisfied, since if $\exists n, m \geq 0, \exists x_{0} \in \mathcal{V}, \exists N_{1}, \ldots, N_{m} \in$ NF_{β} such that $M \rightarrow{ }_{\beta}^{*} \lambda x_{1} \ldots \lambda x_{n} . x_{0} N_{1} \ldots N_{m}$ then $\forall y \in \mathcal{V}, \lambda y \cdot M \rightarrow_{\beta}^{*} \lambda y \cdot \lambda x_{1} \ldots \lambda x_{n} \cdot x_{0} N_{1} \ldots N_{m}$ and $\lambda y \cdot M \in \mathrm{WN}_{\beta}$.
- $S A T\left(\mathrm{WN}_{\beta}, \mathrm{WN}_{\beta}\right)$ is satisfied, since if $M[x:=N] N_{1} \ldots N_{n} \in \mathrm{WN}_{\beta}$ where $n \geq 0$ and $N_{1}, \ldots, N_{n} \in \mathrm{WN}_{\beta}$ then $\exists P \in \mathrm{NF}_{\beta}$ such that $M[x:=N] N_{1} \ldots N_{n} \rightarrow_{\beta}^{*} P$.
Hence, $(\lambda x . M) N N_{1} \ldots N_{n} \rightarrow_{\beta} M[x:=N] N_{1} \ldots N_{n} \rightarrow_{\beta}^{*} P$.

Lemma 3.6 (Proposition 3.21 of [GL02] fails).
Let $\operatorname{VAR}(\mathcal{P}, \mathcal{P}), S A T(\mathcal{P}, \mathcal{P})$ and $C L O(\mathcal{P}, \mathcal{P})$, then it is not the case that $\forall \sigma \in$ Type $^{2}, \sigma \not \chi^{2} \Omega \wedge \sigma \not \chi^{2} \Omega \rightarrow \tau \wedge \Gamma \vdash^{2} M: \sigma \Rightarrow M \in \mathcal{P}$.

Proof. Let \mathcal{P} be WN_{β} of Definition 2 and recall that $\circledast=\lambda x . x x$. Note that $\lambda y . \circledast \circledast \notin$ WN_{β}. Moreover, $\forall \rho \in$ Type 2, we can construct the typing judgment $\vdash^{2} \lambda y . \circledast \circledast$: $\rho \rightarrow \Omega$. Let σ be $\rho \rightarrow \Omega$. Obviously, $\sigma \not \chi^{2} \Omega$. Let $\tau \in$ Type 2.

If $\tau \not \chi^{2} \Omega$ then obviously $\sigma=\rho \rightarrow \Omega \not \chi^{2} \Omega \rightarrow \tau$.
If $\tau \sim^{2} \Omega$ then let $\rho \not \chi^{2} \Omega$. Obviously $\sigma=\rho \rightarrow \Omega \not \chi^{2} \Omega \rightarrow \tau$.
Lemma 3.5 and the above, give a counterexample for Proposition 3.21 of [GL02].
Finally, also the proof method for untyped terms given in [GL02] fails.
Lemma 3.7 (Proposition 3.23 of [GL02] fails).
Proposition 3.23 of [GLO2] which states that "If $\mathcal{P} \subseteq \Lambda$ is invariant under abstraction, $\operatorname{VAR}(\mathcal{P}, \mathcal{P})$ and $S A T(\mathcal{P}, \mathcal{P})$ then $\mathcal{P}=\Lambda$ " fails.

Proof. The proof given in [GL02] depends on Proposition 3.21 which we have shown to fail. Furthermore, since $W N_{\beta}$ is invariant under abstraction and by lemma 3.5, $V A R\left(\mathrm{WN}_{\beta}, \mathrm{WN}_{\beta}\right)$ and $S A T\left(\mathrm{WN}_{\beta}, \mathrm{WN}_{\beta}\right)$ hold, we have a counterexample for Proposition 3.23.

4 Salvaging the reducibility method of [GL02]

In this section we provide subsets of types which we use to partially salvage the reducibility method of [GL02] and we show that this can now be correctly used to establish confluence, standardization and weak head normal forms but only for restricted sets of lambda terms and types.
REMARK 4.1. Note that in the proof of proposition 3.2.5, the properties $V A R^{2}(\mathcal{P})$, $S A T^{2}(\mathcal{P})$ and $C L O^{2}(\mathcal{P})$ are not needed for all types in Type ${ }^{2}$. If $\Gamma \vdash^{2} M: \sigma \rightarrow \tau$, we only need to have $V A R^{2}(\mathcal{P})$ for σ and $S A T^{2}(\mathcal{P})$ and $C L O^{2}(\mathcal{P})$ for τ.

Lemma 4.2. If $\Gamma \vdash^{2} M: \rho$ and (if $\rho=\sigma \rightarrow \tau$ then $V A R^{2}\left(\mathcal{P}, \llbracket \sigma \rrbracket^{2}\right)$, $S A T^{2}\left(\mathcal{P}, \llbracket \tau \rrbracket^{2}\right)$ and $\left.C L O^{2}\left(\mathcal{P}, \llbracket \tau \rrbracket^{2}\right)\right)$ then $\Gamma \models^{2} M: \rho$
Proof. By induction on $\Gamma \vdash^{2} M: \rho$. The proof is exactly the same as that of the proof of proposition 3.2.5, except with the replacement of $V A R^{2}(\mathcal{P}) S A T^{2}(\mathcal{P})$ and $C L O^{2}(\mathcal{P})$ by $V A R^{2}\left(\mathcal{P}, \llbracket \sigma \rrbracket^{2}\right), S A T^{2}\left(\mathcal{P}, \llbracket \tau \rrbracket^{2}\right)$, and $C L O^{2}\left(\mathcal{P}, \llbracket \tau \rrbracket^{2}\right)$ resp.

In order to salvage the reducibility method of [GL02], we introduce the following:

Definition 4.3.

- $\sigma^{2+} \in \operatorname{Type}^{2+}=\left\{\sigma \in \operatorname{Type}^{2} \mid \sigma \sim^{2} \Omega\right\}$.
- $\sigma^{2-} \in$ Type $^{2-}=\left\{\sigma \in\right.$ Type $\left.^{2} \mid \sigma \not \chi^{2} \Omega\right\}$.
- $\sigma^{S_{1}} \in S_{1}::=\alpha\left|\sigma_{1}^{2+} \rightarrow \sigma_{2}^{2+}\right| \sigma^{2-} \rightarrow \sigma^{S_{1}} \mid \sigma^{S_{1}} \cap \sigma^{S_{1}}$.
- $\sigma^{S_{2}} \in S_{2}::=\Omega \rightarrow \Omega \mid \sigma^{1}$.

We let $\sigma, \tau, \rho, \sigma_{1}, \sigma_{2}, \ldots$ range over Type ${ }^{1}$, Type ${ }^{2}$, Type ${ }^{2+}$, Type $^{2-}, S_{1}$ or S_{2}.

Lemma 4.4.

1. $S_{2} \subseteq S_{1}$.
2. Let $\sigma \in S_{1}$. If $\sigma=\tau \rightarrow \rho \wedge \tau \not \chi^{2} \Omega$ then $\rho \in S_{1}$. If $\sigma=\tau \cap \rho$, then $\tau, \rho \in S_{1}$.

Proof.

1. Let $\sigma \in S_{2}$. We prove this lemma by case on S_{2}. Either $\sigma=\Omega \rightarrow \Omega$ then $\sigma \in S_{1}$ since $\Omega \in$ Type $^{2+}$. Or $\sigma \in$ Type 1. Note that Type ${ }^{1} \subset$ Type $^{2-}$ and $\mathcal{A} \subset S_{1}$. We prove the statement by induction on $\sigma \in$ Type 1.

- If $\sigma=\tau \rightarrow \rho$ where $\tau, \rho \in$ Type $^{1} \subset$ Type $^{2-}$ then by IH, $\rho \in S_{1}$. Hence $\sigma \in S_{1}$.
- If $\sigma=\tau \cap \rho$ such that $\tau, \rho \in$ Type 1 then by IH, $\tau, \rho \in S_{1}$ and so, $\sigma \in S_{1}$.

2. Easy.

Using S_{1}, we can establish a revised version of Lemmas 3.16 and 3.18 of [GL02].

Lemma 4.5.

1. $V A R(\mathcal{P}, \mathcal{P}) \Rightarrow \forall \sigma \in S_{1}, V A R\left(\mathcal{P}, \llbracket \sigma \rrbracket^{2}\right)$.
2. $S A T(\mathcal{P}, \mathcal{P}) \Rightarrow \forall \sigma \in S_{1}, S A T\left(\mathcal{P}, \llbracket \sigma \rrbracket^{2}\right)$.

Proof. Let $\sigma \in S_{1}$ and $N_{1}, \ldots, N_{n} \in \mathcal{P}$ such that $n \geq 0$.

1. By induction on σ. Assume $\operatorname{VAR}(\mathcal{P}, \mathcal{P})$ and let $x \in \mathcal{V}$.

- $\sigma \in \mathcal{A}$. Then use $\operatorname{VAR}(\mathcal{P}, \mathcal{P})$ and the definition of $\llbracket . \rrbracket^{2}$.
- $\sigma=\tau \rightarrow \rho$. By $\operatorname{VAR}(\mathcal{P}, \mathcal{P}), x N_{1} \ldots N_{n} \in \mathcal{P}$. Let $N \in \llbracket \tau \rrbracket^{2}\left(\llbracket \tau \rrbracket^{2}=\varnothing\right.$ is easy).
- If $\tau \sim^{2} \Omega$ then since $\sigma=\tau \rightarrow \rho \in S_{1}$, it should hold that $\rho \sim^{2} \Omega$, so $x N_{1} \ldots N_{n} N \in \Lambda=\llbracket \rho \rrbracket^{2}$. Thus $x N_{1} \ldots N_{n} \in \llbracket \sigma \rrbracket^{2}$.
- Else, $\tau \not \chi^{2} \Omega$. Then by lemma 3.2.3, $N \in \mathcal{P}$. Moreover, by lemma 4.4.2, $\rho \in S_{1}$. Hence, by IH, $x N_{1} \ldots N_{n} N \in \llbracket \rho \rrbracket^{2}$. Thus $x N_{1} \ldots N_{n} \in \llbracket \sigma \rrbracket^{2}$.
- $\sigma=\tau \cap \rho$. By lemma 4.4.2, $\tau, \rho \in S_{1}$. By IH, $x N_{1}, \ldots, N_{n} \in \llbracket \tau \rrbracket^{2} \cap \llbracket \rho \rrbracket^{2}=\llbracket \sigma \rrbracket^{2}$.
- $\sigma=\Omega$. Then $x N_{1}, \ldots, N_{n} \in \Lambda=\llbracket \Omega \rrbracket^{2}$.

2. By induction on σ. Assume $S A T(\mathcal{P}, \mathcal{P})$ and $M[x:=N] N_{1} \ldots N_{n} \in \llbracket \sigma \rrbracket^{2}$.

- $\sigma \in \mathcal{A}$. Then use $S A T(\mathcal{P}, \mathcal{P})$ and the definition of $\llbracket . \rrbracket^{2}$.
- $\sigma=\tau \rightarrow \rho$. By lemma 3.2.3, $M[x:=N] N_{1} \ldots N_{n} \in \mathcal{P}$ and by $\operatorname{SAT}(\mathcal{P}, \mathcal{P})$ $(\lambda x . M) N N_{1} \ldots N_{n} \in \mathcal{P}$. Let $P \in \llbracket \tau \rrbracket^{2}$ (case $\llbracket \tau \rrbracket^{2}=\varnothing$ is immediate).
- If $\tau \sim^{2} \Omega$ then since $\sigma=\tau \rightarrow \rho \in S_{1}$, it should hold that $\rho \sim^{2} \Omega$, so $(\lambda x . M) N N_{1} \ldots N_{n} P \in \Lambda=\llbracket \rho \rrbracket^{2}$. Thus $(\lambda x . M) N N_{1} \ldots N_{n} \in \llbracket \sigma \rrbracket^{2}$.
- Else, $\tau \not \chi^{2} \Omega$. Then by lemma 3.2.3, $P \in \mathcal{P}$. Moreover, by lemma 4.4.2, $\rho \in S_{1}$. Hence, since $M[x:=N] N_{1} \ldots N_{n} P \in \llbracket \rho \rrbracket^{2}$, by IH, we get $(\lambda x . M) N N_{1} \ldots N_{n} P \in \llbracket \rho \rrbracket^{2}$. Thus $(\lambda x . M) N N_{1} \ldots N_{n} \in \llbracket \sigma \rrbracket^{2}$.
- $\sigma=\tau \cap \rho$. Then, $M[x:=N] N_{1} \ldots N_{n} \in \llbracket \tau \rrbracket^{2} \cap \llbracket \rho \rrbracket^{2}$ and by lemma 4.4.2, $\tau, \rho \in S_{1}$. By IH, $(\lambda x . M) N N_{1}, \ldots, N_{n} \in \llbracket \tau \rrbracket^{2} \cap \llbracket \rho \rrbracket^{2}=\llbracket \sigma \rrbracket^{2}$.
- $\sigma=\Omega$. Then $(\lambda x . M) N N_{1}, \ldots, N_{n} \in \Lambda=\llbracket \Omega \rrbracket^{2}$.

Corollary 4.6.

1. $V A R(\mathcal{P}, \mathcal{P}) \Rightarrow \forall \sigma \in S_{1}, V A R^{2}\left(\mathcal{P}, \llbracket \sigma \rrbracket^{2}\right)$.
2. $S A T(\mathcal{P}, \mathcal{P}) \Rightarrow \forall \sigma \in S_{1}, S A T^{2}\left(\mathcal{P}, \llbracket \sigma \rrbracket^{2}\right)$.

Remark 4.7. $\sigma \not \chi^{2} \Omega$ is not a sufficient hypothesis in Proposition 3.21. We saw in remark 4.1 that if $\sigma=\tau \rightarrow \rho$, we need to have $C L O^{2}(\mathcal{P})$ only for ρ (not for all types in Type $\left.{ }^{2}\right)$. Hence, since $C L O(\mathcal{P}, \mathcal{P}) \Rightarrow \forall \sigma \in \mathrm{Type}^{2}, \sigma \not \chi^{2} \Omega \Rightarrow C L O^{2}\left(\mathcal{P}, \llbracket \sigma \rrbracket^{2}\right)$, at least, we need to have $\rho \not \chi^{2} \Omega$. The same remark holds for the hypothesis $\sigma \not \chi^{2} \Omega \rightarrow \tau$. Similarly, the same remark holds if we replace $\sigma \not \chi^{2} \Omega \wedge \sigma \not \chi^{2} \Omega \rightarrow \tau$ by $\sigma \not \chi^{2} \Omega \wedge \sigma \in S_{1}$.

Lemma 4.8 (Using S_{1} in Proposition 3.21 of [GL02] does not help). If $\operatorname{VAR}(\mathcal{P}, \mathcal{P}), S A T(\mathcal{P}, \mathcal{P})$ and $C L O(\mathcal{P}, \mathcal{P})$, then it is not the case that $\forall \sigma \in$ Type $^{2}, \sigma \not \chi^{2} \Omega \wedge \sigma \in S_{1} \wedge \Gamma \vdash^{2} M: \sigma \Rightarrow M \in \mathcal{P}$.

Proof. Take the same counterexample given in the proof of Lemma 3.6 and choose $\rho=\Omega$. Since σ belongs to S_{2} so to S_{1} by lemma 4.4.1.

However, we can rescue the reducibility method for typable terms as follows:
Proposition 4.9. Let $V A R(\mathcal{P}, \mathcal{P}), S A T(\mathcal{P}, \mathcal{P})$ and $C L O(\mathcal{P}, \mathcal{P})$, then

$$
\forall \sigma \in \text { Type }^{2}, \sigma \not \chi^{2} \Omega \wedge \Gamma \vdash^{2} M: \sigma \wedge\left(\sigma=\tau \rightarrow \rho \Rightarrow \tau, \rho \in S_{1} \wedge \rho \not \chi^{2} \Omega\right) \Rightarrow M \in \mathcal{P} .
$$

Proof. By proposition 3.2.6, corollaries 4.6.1 and 4.6.2, lemma 3.2.7 and lemma 4.2.
[GL02] applied the method to confluence of β in Λ and standardisation in Λ by showing that the method of their Proposition 3.23 is applicable to the sets CR and S of Definition 2. It applied the method to the existence of weak head normal forms in $\lambda \cap^{2}$ (under some restrictions on types) by showing that the method of their Proposition 3.21 is applicable to the set W of Definition 2. However, since we showed in lemma 3.6 that proposition 3.21 fails, we need to review the applications and show where exactly they work. First, here is a lemma proven in [GL02].

Lemma 4.10. Let $\mathcal{P} \in\{C R, S, W\}$. Then $\operatorname{VAR}(\mathcal{P}, \mathcal{P}), S A T(\mathcal{P}, \mathcal{P})$ and $C L O(\mathcal{P}, \mathcal{P})$.

However, we need to reformulate Propositions 4.5, 4.12 and 4.15 of [GL02], since the method of Proposition 3.21 does not work. We take into account the conditions given in proposition 4.9.

Proposition 4.11. Let $M \in \Lambda$. If $\exists \Gamma, \sigma$ such that $\Gamma \vdash^{2} M: \sigma$ and $(\sigma=\tau \rightarrow \rho \Rightarrow$ $\left.\tau, \rho \in S_{1} \wedge \rho \not \chi^{2} \Omega\right)$ then $M \in C R, M \in S$, and $M \in W$.

Proof. By lemma 4.10 and proposition 4.9.

5 Adapting the CR proof of [KS08] to βI-reduction

[KS08] gave a proof of Church-Rosser for β-reduction for the intersection type system D of Definition 2.29 (studied in detail in [Kri90]) and showed that this can be used to establish confluence of β-developments without using strong normalisation. In this section, we adapt his proof to βI and at the same time, set the formal ground for generalising the method for $\beta \eta$ in the next section. First, we adapt and formalise a number of definitions and lemmas given in [Kri90] in order to make them applicable to βI-developments. Then, we define type interpretations for both βI and $\beta \eta$, establish the soundness and Church-Rosser of both systems D and D_{I} (for $\beta \eta$ - resp. βI-reduction), and finally, adapt $[\mathrm{KS} 08]$ to establish the confluence of βI-developments.

All proofs from this section are located in appendix B.

5.1 Formalising βI-developments

The next definition, taken from [Kri90] (and used in [KS08]) uses the variable c to destroy the βI-redexes of M which are not in the set \mathcal{F} of βI-redex occurrences in M, and to neutralise applications so that they cannot be transformed into redexes after βI-reduction. For example, in $c(\lambda x \cdot x) y, c$ is used to destroy the βI-redex ($\lambda x . x) y$.

Definition $5.1\left(\Phi^{\beta I}(-,-)\right)$. Let $M \in \Lambda \mathrm{I}$, such that $c \notin F V(M)$, and $\mathcal{F} \subseteq \mathcal{R}_{M}^{\beta I}$.

1. If $M=x$ then $\mathcal{F}=\varnothing$ and $\Phi^{\beta I}(x, \mathcal{F})=x$
2. If $M=\lambda x . N$ and $\mathcal{F}^{\prime}=\{C \mid \lambda x . C \in \mathcal{F}\} \subseteq \mathcal{R}_{N}^{\beta I}$ then $\Phi^{\beta I}(\lambda x . N, \mathcal{F})=$ $\lambda x \cdot \Phi^{\beta I}\left(N, \mathcal{F}^{\prime}\right)$
3. If $M=N P, \mathcal{F}_{1}=\{C \mid C P \in \mathcal{F}\} \subseteq \mathcal{R}_{N}^{\beta I}$ and $\mathcal{F}_{2}=\{C \mid N C \in \mathcal{F}\} \subseteq \mathcal{R}_{P}^{\beta I}$ then

$$
\Phi^{\beta I}(N P, \mathcal{F})= \begin{cases}c \Phi^{\beta I}\left(N, \mathcal{F}_{1}\right) \Phi^{\beta I}\left(P, \mathcal{F}_{2}\right) & \text { if } \square \notin \mathcal{F} \\ \Phi^{\beta I}\left(N, \mathcal{F}_{1}\right) \Phi^{\beta I}\left(P, \mathcal{F}_{2}\right) & \text { otherwise }\end{cases}
$$

The next lemma is an adapted version of a lemma which appears in [KS08] and which in turns adapts a lemma from [Kri90].

Lemma 5.2.

1. If $M \in \Lambda I, c \notin F V(M)$, and $\mathcal{F} \subseteq \mathcal{R}_{M}^{\beta I}$ then
(a) $F V(M)=F V\left(\Phi^{\beta I}(M, \mathcal{F})\right) \backslash\{c\}$.
(b) $\Phi^{\beta I}(M, \mathcal{F}) \in \Lambda I_{c}$.
(c) $\left|\Phi^{\beta I}(M, \mathcal{F})\right|^{c}=M$.
(d) $\left|\mathcal{R}_{\Phi^{\beta I}(M, \mathcal{F})}^{\beta I}\right|^{c}=\mathcal{F}$.
2. Let $M \in \Lambda I_{c}$.
(a) $\left|\mathcal{R}_{M}^{\beta I}\right|^{c} \subseteq \mathcal{R}_{|M|^{c}}^{\beta I}$ and $M=\Phi^{\beta I}\left(|M|^{c},\left|\mathcal{R}_{M}^{\beta I}\right|_{\mathcal{C}}^{c}\right)$.
(b) $\left(|M|^{\beta I},\left|\mathcal{R}_{M}^{\beta I}\right|_{\mathcal{C}}^{c}\right)$ is the one and only pair (N, \mathcal{F}) such that $N \in \Lambda I, c \notin$ $F V(N), \mathcal{F} \subseteq \mathcal{R}_{N}^{\beta I}$ and $\Phi^{\beta I}(N, \mathcal{F})=M$.

The next lemma is needed to define βI-developments.
Lemma 5.3. Let $M \in \Lambda I$, such that $c \notin F V(M), \mathcal{F} \subseteq \mathcal{R}_{M}^{\beta I}, C \in \mathcal{F}$ and $M \xrightarrow{C}_{\beta I}$ M^{\prime}. Then, there is a unique set $\mathcal{F}^{\prime} \subseteq \mathcal{R}_{M^{\prime}}^{\beta I}$, such that $\Phi^{\beta I}(M, \mathcal{F}) \xrightarrow{C^{\prime}}{ }_{\beta I} \Phi^{\beta I}\left(M^{\prime}, \mathcal{F}^{\prime}\right)$ and $\left|C^{\prime}\right|_{\mathcal{C}}^{c}=C$.

We follow [Kri90] and define the set of βI-residuals of a set of βI-redexes \mathcal{F} relative to a sequence of βI-redexes. First, we give the definition relative to one redex.

Definition 5.4. Let $M \in \Lambda \mathrm{I}$, such that $c \notin F V(M), \mathcal{F} \subseteq \mathcal{R}_{M}^{\beta I}, C \in \mathcal{F}$ and $M \xrightarrow{C}_{\beta I}$ M^{\prime}. By lemma 5.3 , there exists a unique $\mathcal{F}^{\prime} \subseteq \mathcal{R}_{M^{\prime}}^{\beta I}$ such that $\Phi^{\beta I}(M, \mathcal{F}){\xrightarrow{C^{\prime}}}_{\beta I}$ $\Phi^{\beta I}\left(M^{\prime}, \mathcal{F}^{\prime}\right)$ and $\left|C^{\prime}\right|^{\beta I}=C$. We call \mathcal{F}^{\prime} the set of βI-residuals of \mathcal{F} in M^{\prime} relative to C.

Definition 5.5 (βI-development). Let $M \in \Lambda \mathrm{I}$, where $c \notin F V(M)$, and $\mathcal{F} \subseteq \mathcal{R}_{M}^{\beta I}$. A one-step βI-development of (M, \mathcal{F}), denoted $(M, \mathcal{F}) \rightarrow_{\beta I d}\left(M^{\prime}, \mathcal{F}^{\prime}\right)$, is a βI reduction $M \xrightarrow{C}_{\beta I} M^{\prime}$ where $C \in \mathcal{F}$ and \mathcal{F}^{\prime} is the set of βI-residuals of \mathcal{F} in M^{\prime} relative to C. A βI-development is the transitive closure of a one-step βI development. We write also $M \xrightarrow{\mathcal{F}}_{\beta I d} M_{n}$ for the βI-development $(M, \mathcal{F}) \rightarrow_{\beta I d}^{*}$ $\left(M_{n}, \mathcal{F}_{n}\right)$.

The next two lemmas are informative about developments.
Lemma 5.6. Let $M \in \Lambda I$, such that $c \notin F V(M)$ and $\mathcal{F} \subseteq \mathcal{R}_{M}^{\beta I}$. $(M, \mathcal{F}) \rightarrow_{\beta I d}^{*}$ $\left(M^{\prime}, \mathcal{F}^{\prime}\right) \Longleftrightarrow \Phi^{\beta I}(M, \mathcal{F}) \rightarrow_{\beta I}^{*} \Phi^{\beta I}\left(M^{\prime}, \mathcal{F}^{\prime}\right)$.

Lemma 5.7. Let $M \in \Lambda I$, such that $c \notin F V(M)$ and $\mathcal{F}_{1} \subseteq \mathcal{F}_{2} \subseteq \mathcal{R}_{M}^{\beta I}$. If $\left(M, \mathcal{F}_{1}\right) \rightarrow_{\beta I d}\left(M^{\prime}, \mathcal{F}_{1}^{\prime}\right)$ then $\exists \mathcal{F}_{2}^{\prime} \subseteq \mathcal{R}_{M^{\prime}}^{\beta I}$ such that $\mathcal{F}_{1} \subseteq \mathcal{F}_{2}^{\prime}$ and $\left(M, \mathcal{F}_{2}\right) \rightarrow_{\beta I d}$ $\left(M^{\prime}, \mathcal{F}_{2}^{\prime}\right)$.

5.2 Confluence of βI-developments, hence of βI-reduction

Definition 5.8. 1. Let $r \in\{\beta I, \beta \eta\}$. We define the type interpretation $\llbracket-\rrbracket^{r}$: Type $^{1} \rightarrow 2^{\Lambda}$ by:

- $\llbracket \alpha \rrbracket^{r}=C R^{r}$, where $\alpha \in \mathcal{A}$.
- $\llbracket \sigma \cap \tau \rrbracket^{r}=\llbracket \sigma \rrbracket^{r} \cap \llbracket \tau \rrbracket^{r}$.
- $\llbracket \sigma \rightarrow \tau \rrbracket^{r}=\left(\llbracket \sigma \rrbracket^{r} \Rightarrow \llbracket \tau \rrbracket^{r}\right) \cap C R^{r}=\left\{t \in C R \mid \forall u \in \llbracket \sigma \rrbracket^{r}, t u \in \llbracket \tau \rrbracket^{r}\right\}$.

2. A set $\mathcal{X} \subseteq \Lambda$ is saturated if $\forall n \geq 0, \forall M, N, M_{1}, \ldots, M_{n} \in \Lambda, \forall x \in \mathcal{V}$,

$$
M[x:=N] M_{1} \ldots M_{n} \in \mathcal{X} \Rightarrow(\lambda x . M) N M_{1} \ldots M_{n} \in \mathcal{X}
$$

3. A set $\mathcal{X} \subseteq \Lambda \mathrm{I}$ is I-saturated if $\forall n \geq 0, \forall M, N, M_{1}, \ldots, M_{n} \in \Lambda, \forall x \in \mathcal{V}$,

$$
x \in F V(M) \Rightarrow M[x:=N] M_{1} \ldots M_{n} \in \mathcal{X} \Rightarrow(\lambda x . M) N M_{1} \ldots M_{n} \in \mathcal{X}
$$

Here is a background lemma:

Lemma 5.9.

1. If $\Gamma \vdash^{\beta I} M: \sigma$ then $M \in \Lambda I$ and $F V(M)=\operatorname{dom}(\Gamma)$.
2. Let $\Gamma \vdash^{\beta \eta} M: \sigma$. Then $F V(M) \subseteq \operatorname{dom}(\Gamma)$ and if $\Gamma \subseteq \Gamma^{\prime}$ then $\Gamma^{\prime} \vdash^{\beta \eta} M: \sigma$.
3. Let $r \in\{\beta I, \beta \eta\}$. If $\Gamma \vdash^{r} M: \sigma, \sigma \sqsubseteq \sigma^{\prime}$ and $\Gamma^{\prime} \sqsubseteq \Gamma$ then $\Gamma^{\prime} \vdash^{r} M: \sigma^{\prime}$.

The next lemma states that the interpretations of types are saturated and only contain terms that are Church-Rosser. In [Kri90] it was shown for $r=\beta$ and where $C R_{0}^{r}$ and $C R^{r}$ were replaced by the corresponding sets of strongly normalising terms. [KS08] adapted Krivine's lemma for β Church-Rosser instead of strong normalisation. Here, we prove it for βI and $\beta \eta$.

Lemma 5.10. Let $r \in\{\beta I, \beta \eta\}$.

1. $\forall \sigma \in$ Type $^{1}, C R_{0}^{r} \subseteq \llbracket \sigma \rrbracket^{r} \subseteq C R^{r}$.
2. $C R^{\beta I}$ is I-saturated.
3. $C R^{\beta \eta}$ is saturated.
4. $\forall \sigma \in$ Type $^{1}, \llbracket \sigma \rrbracket^{\beta I}$ is I-saturated.
5. $\forall \sigma \in$ Type $^{1}, \llbracket \sigma \rrbracket^{\beta \eta}$ is saturated.

Next we adapt the soundness lemma of [Kri90] to both $\vdash^{\beta I}$ and $\vdash^{\beta \eta}$.
Lemma 5.11. Let $r \in\{\beta I, \beta \eta\}$. If $x_{1}: \sigma_{1}, \ldots, x_{n}: \sigma_{n} \vdash^{r} M: \sigma$ and $\forall i \in$ $\{1, \ldots, n\}, N_{i} \in \llbracket \sigma_{i} \rrbracket^{r}$ then $M\left[\left(x_{i}:=N_{i}\right)_{1}^{n}\right\rfloor \in \llbracket \sigma \rrbracket^{r}$.

Finally, we adapt a corollary from [KS08] to show that every term of Λ typable in system D has the $\beta \eta$ Church-Rosser property and every term of Λ typable in system D_{I} has the βI Church-Rosser property.

Corollary 5.12. Let $r \in\{\beta I, \beta \eta\}$. If $\Gamma \vdash^{r} M: \sigma$ then $M \in C R^{r}$.
Proof. Let $\Gamma=\left(x_{i}: \sigma_{i}\right)_{n}$. By lemma 5.10, $\forall i \in\{1, \ldots, n\}, x_{i} \in \llbracket \sigma_{i} \rrbracket^{r}$, so by lemma 5.11 and again by lemma $5.10, M \in \llbracket \sigma \rrbracket^{r} \subseteq \mathrm{CR}^{r}$.

In order to accommodate βI - and $\beta \eta$-reduction, the next lemma generalises a lemma given in [Kri90] (and used in [KS08]). Basically this lemma states that every term of $\Lambda \mathrm{I}_{c}$ is typable in system D and every term of $\Lambda \eta_{c}$ is typable in D_{I}.

Lemma 5.13. Let $F V(M) \backslash\{c\}=\left\{x_{1}, \ldots, x_{n}\right\} \subseteq \operatorname{dom}(\Gamma)$ where $c \notin \operatorname{dom}(\Gamma)$.

1. If $M \in \Lambda I_{c}$ then for $\Gamma^{\prime}=\Gamma \upharpoonright F V(M), \exists \sigma, \tau \in$ Type 1 such that if $c \in F V(M)$ then $\Gamma^{\prime}, c: \sigma \vdash^{\beta I} M: \tau$, and if $c \notin F V(M)$ then $\Gamma^{\prime} \vdash^{\beta I} M: \tau$.
2. If $M \in \Lambda \eta_{c}$ then $\exists \sigma, \tau \in$ Type 1 such that $\Gamma, c: \sigma \vdash^{\beta \eta} M: \tau$.

The next lemma is an adaptation of the main theorem in [KS08] where as far as we know appears for the first time.

Lemma 5.14 (confluence of the βI-developments). Let $M \in \Lambda I$, such that $c \notin$ $F V(M)$. If $M \xrightarrow{\mathcal{F}_{1}} \beta_{I d} M_{1}$ and $M \xrightarrow{\mathcal{F}_{2}} \beta$. M_{2}, then there exist sets $\mathcal{F}_{1}^{\prime} \subseteq \mathcal{R}_{M_{1}}^{\beta I}$, $\mathcal{F}_{2}^{\prime} \subseteq \mathcal{R}_{M_{2}}^{\beta I}$ and a term $M_{3} \in \Lambda I$ such that $M_{1}{\xrightarrow{\mathcal{F}_{1}^{\prime}}}_{\beta I d} M_{3}$ and $M_{2}{\xrightarrow{\mathcal{F}_{2}^{\prime}}}_{\beta I d} M_{3}$.

We follow [Bar84] and [KS08] and define one reduction as follows:
Notation 5.15. Let $M, M^{\prime} \in \Lambda \mathrm{I}$, such that $c \notin F V(M)$. We define one reduction by: $M \rightarrow_{1 I} M^{\prime} \Longleftrightarrow \exists \mathcal{F}, \mathcal{F}^{\prime},(M, \mathcal{F}) \rightarrow_{\beta I d}^{*}\left(M^{\prime}, \mathcal{F}^{\prime}\right)$.
Lemma 5.16. Let $c \notin F V(M) . \mathcal{R}_{\Phi^{\beta I}(M, \varnothing)}^{\beta I}=\varnothing$.
Lemma 5.17. Let $c \notin F V(M N) . \mathcal{R}_{\Phi^{\beta I}(M, \varnothing)\left[x:=\Phi^{\beta I}(N, \varnothing)\right]}^{\beta I}=\varnothing$.
Lemma 5.18. Let $c \notin F V(M)$. If $C \in \mathcal{R}_{M}^{\beta I}$ and $\Phi^{\beta I}(M,\{C\}) \rightarrow_{\beta I} M^{\prime}$ then $\mathcal{R}_{M^{\prime}}^{\beta I}=\varnothing$.
Lemma 5.19. Let $c \notin F V(M)$. If $C \in \mathcal{R}_{M}^{\beta I}$ and $M \xrightarrow{C}_{\beta I} M^{\prime}$ then $(M,\{C\}) \rightarrow_{\beta I d}$ $\left(M^{\prime}, \varnothing\right)$.

Lemma 5.20. $\rightarrow_{\beta I}^{*}=\rightarrow_{1 I}^{*}$.
Finally, we achieve what we started to do: the confluence of βI-reduction on $\Lambda \mathrm{I}$.
Lemma 5.21. If $M \in \Lambda I$ such that $c \notin F V(M)$ then $M \in C R^{\beta I}$.

6 Generalisation of the method to $\beta \eta$-reduction

In this section, we generalise the method of [KS08] to handle $\beta \eta$-reduction. This generalisation is not trivial since we needed to develop developments involving η reduction and to establish the important result of the closure under η-reduction of a defined set of frozen terms. It is for reasons like this that we extended the various definitions related to developments. For example, clause (R4) of the definition of $\Lambda \eta_{c}$ in Definition 2.3 aims to ensure closure under η-reduction. The definition of Λ_{c} in [Kri90] exluded such a rule and hence we lose closure under η-reduction as can be seen in the following example: Let $M=\lambda x . c N x \in \Lambda_{c}$ where $x \notin F V(N)$ and $N \in \Lambda_{c}$, then $M \rightarrow_{\eta} c N \notin \Lambda_{c}$.

Again here, the proofs are moved to appendix C.
The next two definitions adapt definition 5.1 to deal with $\beta \eta$-reduction. The variable c enables to destroy the $\beta \eta$-redexes of M which are not in the set \mathcal{F} of $\beta \eta$-redex occurrences in M; to neutralise applications so that they cannot be transformed into redexes after $\beta \eta$-reduction; and to neutralise bound variables so λ abstraction cannot be transformed into redexes after $\beta \eta$-reduction. For example, in $\lambda x . y(c(c x))(x \neq x), c$ is used to destroy the η-redex $\lambda x . y x$.

Definition $6.1\left(\Phi^{\beta \eta}(-,-), \Phi_{0}^{\beta \eta}(-,-)\right)$. Let $c \notin F V(M)$ and $\mathcal{F} \subseteq \mathcal{R}_{M}^{\beta \eta}$.
(P1) If $M \in \mathcal{V} \backslash\{c\}$ then $\mathcal{F}=\varnothing$ and

$$
\begin{gathered}
\Phi^{\beta \eta}(M, \mathcal{F})=\left\{c^{n}(M) \mid n>0\right\} \\
\Phi_{0}^{\beta \eta}(M, \mathcal{F})=\{M\}
\end{gathered}
$$

(P2) If $M=\lambda x . N$ and $\mathcal{F}^{\prime}=\{C \mid \lambda x . C \in \mathcal{F}\} \subseteq \mathcal{R}_{N}^{\beta \eta}$:

$$
\begin{gathered}
\Phi^{\beta \eta}(M, \mathcal{F})= \begin{cases}\left\{c^{n}(\lambda x . P[x:=c(c x)]) \mid n \geq 0 \wedge P \in \Phi^{\beta \eta}\left(N, \mathcal{F}^{\prime}\right)\right\} & \text { if } \square \notin \mathcal{F} \\
\left\{c^{n}\left(\lambda x . N^{\prime}\right) \mid n \geq 0 \wedge N^{\prime} \in \Phi_{0}^{\beta \eta}\left(N, \mathcal{F}^{\prime}\right)\right\} & \text { otherwise }\end{cases} \\
\Phi_{0}^{\beta \eta}(M, \mathcal{F})= \begin{cases}\left\{\lambda x . N^{\prime}[x:=c(c x)] \mid N^{\prime} \in \Phi^{\beta \eta}\left(N, \mathcal{F}^{\prime}\right)\right\} & \text { if } \square \notin \mathcal{F} \\
\left\{\lambda x . N^{\prime} \mid N^{\prime} \in \Phi_{0}^{\beta \eta}\left(N, \mathcal{F}^{\prime}\right)\right\} & \text { otherwise }\end{cases}
\end{gathered}
$$

(P3) If $M=N P, \mathcal{F}_{1}=\{C \mid C P \in \mathcal{F}\} \subseteq \mathcal{R}_{N}^{\beta \eta}$ and $\mathcal{F}_{2}=\{C \mid N C \in \mathcal{F}\} \subseteq \mathcal{R}_{P}^{\beta \eta}$ then: $\Phi^{\beta \eta}(M, \mathcal{F})=$
$\begin{cases}\left\{c^{n}\left(c N^{\prime} P^{\prime}\right) \mid n \geq 0 \wedge N^{\prime} \in \Phi^{\beta \eta}\left(N, \mathcal{F}_{1}\right) \wedge P^{\prime} \in \Phi^{\beta \eta}\left(P, \mathcal{F}_{2}\right)\right\} & \text { if } \square \notin \mathcal{F} \\ \left\{c^{n}\left(N^{\prime} P^{\prime}\right) \mid n \geq 0 \wedge N^{\prime} \in \Phi_{0}^{\beta \eta}\left(N, \mathcal{F}_{1}\right) \wedge P^{\prime} \in \Phi^{\beta \eta}\left(P, \mathcal{F}_{2}\right)\right\} & \text { otherwise }\end{cases}$
$\Phi_{0}^{\beta \eta}(M, \mathcal{F})= \begin{cases}\left\{c N^{\prime} P^{\prime} \mid N^{\prime} \in \Phi^{\beta \eta}\left(N, \mathcal{F}_{1}\right) \wedge P^{\prime} \in \Phi_{0}^{\beta \eta}\left(P, \mathcal{F}_{2}\right)\right\} & \text { if } \square \notin \mathcal{F} \\ \left\{N^{\prime} P^{\prime} \mid N^{\prime} \in \Phi_{0}^{\beta \eta}\left(N, \mathcal{F}_{1}\right) \wedge P^{\prime} \in \Phi_{0}^{\beta \eta}\left(P, \mathcal{F}_{2}\right)\right. & \text { otherwise }\end{cases}$

Lemma 6.2. If $M \in \Lambda \eta_{c}$ and $n \geq 0$ then $c^{n}(M) \in \Lambda \eta_{c}$.
Proof. By induction on $n \geq 0$ using ($R 4$).

Lemma 6.3.

1. Let $c \notin F V(M)$ and $\mathcal{F} \subseteq \mathcal{R}_{M}^{\beta \eta}$. We have:
(a) $\Phi_{0}^{\beta \eta}(M, \mathcal{F}) \subseteq \Phi^{\beta \eta}(M, \mathcal{F})$.
(b) $\forall N \in \Phi^{\beta \eta}(M, \mathcal{F}), F V(M)=F V(N) \backslash\{c\}$.
(c) $\Phi^{\beta \eta}(M, \mathcal{F}) \subseteq \Lambda \eta_{c}$.
(d) Let $M=N x$ such that $x \notin F V(N)$ and $P \in \Phi_{0}^{\beta \eta}(M, \mathcal{F})$. Then, $\mathcal{R}_{\lambda x . P}^{\beta \eta}=$ $\{\square\} \cup\left\{\lambda x . C \mid C \in \mathcal{R}_{P}^{\beta \eta}\right\}$.
(e) Let $M=N x$. If $P x \in \Phi^{\beta \eta}(N x, \mathcal{F})$ then $P x \in \Phi_{0}^{\beta \eta}(N x, \mathcal{F})$.
(f) $\forall N \in \Phi^{\beta \eta}(M, \mathcal{F}), \forall n \geq 0, c^{n}(N) \in \Phi^{\beta \eta}(M, \mathcal{F})$.
(g) $\forall N \in \Phi^{\beta \eta}(M, \mathcal{F}),|N|^{c}=M$.
(h) $\forall N \in \Phi^{\beta \eta}(M, \mathcal{F}), \mathcal{F}=\left|\mathcal{R}_{N}^{\beta \eta}\right|_{\mathcal{C}}^{c}$.
2. Let $M \in \Lambda \eta_{c}$. We have:
(a) $\left|\mathcal{R}_{M}^{\beta \eta}\right|_{\mathcal{C}}^{c} \subseteq \mathcal{R}_{|M|^{c}}^{\beta \eta}$ and $M \in \Phi^{\beta \eta}\left(|M|^{c},\left|\mathcal{R}_{M}^{\beta \eta}\right|_{\mathcal{C}}^{c}\right)$.
(b) $\left(|M|^{c},\left|\mathcal{R}_{M}^{\beta \eta}\right|_{\mathcal{C}}^{c}\right)$ is the one and only pair (N, \mathcal{F}) such that $c \notin F V(N)$, $\mathcal{F} \subseteq \mathcal{R}_{N}^{\beta \eta}$ and $M \in \Phi^{\beta \eta}(N, \mathcal{F})$.

Lemma 6.4. Let $M \in \Lambda$, such that $c \notin F V(M), \mathcal{F} \subseteq \mathcal{R}_{M}^{\beta \eta}, C \in \mathcal{F}$ and $M \xrightarrow{C}_{\beta \eta} M^{\prime}$. Then, there exists a unique set $\mathcal{F}^{\prime} \subseteq \mathcal{R}_{M^{\prime}}^{\beta \eta}$, such that $\forall N \in \Phi^{\beta \eta}(M, \mathcal{F}), \exists N^{\prime} \in$ $\Phi^{\beta \eta}\left(M^{\prime}, \mathcal{F}^{\prime}\right), \exists C^{\prime} \in \mathcal{R}_{N}^{\beta \eta}, N{\xrightarrow{C^{\prime}}}_{\beta \eta} N^{\prime}$ and $\left|C^{\prime}\right|_{\mathcal{C}}^{c}=C$.

Definition 6.5. Let $M \in \Lambda, \mathcal{F} \subseteq \mathcal{R}_{M}^{\beta \eta}, C \in \mathcal{F}$ and $M \xrightarrow{C}{ }_{\beta \eta} M^{\prime}$. By lemma 6.4, there exists a unique $\mathcal{F}^{\prime} \subseteq \mathcal{R}_{M^{\prime}}^{\beta \eta}$, such that $\forall N \in \Phi^{\beta \eta}(M, \mathcal{F}), \exists N^{\prime} \in \Phi^{\beta \eta}\left(M^{\prime}, \mathcal{F}^{\prime}\right), \exists C^{\prime} \in$ $\mathcal{R}_{N}^{\beta \eta}, N{\xrightarrow{C^{\prime}}}_{\beta \eta} N^{\prime}$ and $\left|C^{\prime}\right|^{c}=C$. We call \mathcal{F}^{\prime} the set of $\beta \eta$-residuals of \mathcal{F} in M^{\prime} relative to C.

Definition 6.6 ($\beta \eta$-development). Let $M \in \Lambda$, where $c \notin F V(M)$, and $\mathcal{F} \subseteq \mathcal{R}_{M}^{\beta \eta}$. A one-step $\beta \eta$-development of (M, \mathcal{F}), denoted $(M, \mathcal{F}) \rightarrow_{\beta \eta d}\left(M^{\prime}, \mathcal{F}^{\prime}\right)$, is a $\beta \eta$ reduction $M \xrightarrow{C}_{\beta \eta} M^{\prime}$ where $C \in \mathcal{F}$ and \mathcal{F}^{\prime} is the set of $\beta \eta$-residuals of \mathcal{F} in M^{\prime} relative to C. A $\beta \eta$-development is the transitive closure of a one-step $\beta \eta$ development. We write also $M \xrightarrow{\mathcal{F}}_{\beta \eta d} M^{\prime}$ for the $\beta \eta$-development $(M, \mathcal{F}) \rightarrow_{\beta \eta d}^{*}$ $\left(M^{\prime}, \mathcal{F}^{\prime}\right)$.

Lemma 6.7. Let $M \in \Lambda$, where $c \notin F V(M)$, and $\mathcal{F} \subseteq \mathcal{R}_{M}^{\beta \eta}$. Then:

$$
(M, \mathcal{F}) \rightarrow_{\beta \eta d}^{*}\left(M^{\prime}, \mathcal{F}^{\prime}\right) \Longleftrightarrow \exists N \in \Phi^{\beta \eta}(M, \mathcal{F}), \exists N^{\prime} \in \Phi^{\beta \eta}\left(M^{\prime}, \mathcal{F}^{\prime}\right), N \rightarrow_{\beta \eta}^{*} N^{\prime}
$$

and

$$
(M, \mathcal{F}) \rightarrow_{\beta \eta d}^{*}\left(M^{\prime}, \mathcal{F}^{\prime}\right) \Longleftrightarrow \forall N \in \Phi^{\beta \eta}(M, \mathcal{F}), \exists N^{\prime} \in \Phi^{\beta \eta}\left(M^{\prime}, \mathcal{F}^{\prime}\right), N \rightarrow_{\beta \eta}^{*} N^{\prime}
$$

Lemma 6.8. Let $M \in \Lambda$, such that $c \notin F V(M)$ and $\mathcal{F}_{1} \subseteq \mathcal{F}_{2} \subseteq \mathcal{R}_{M}^{\beta \eta}$. If $\left(M, \mathcal{F}_{1}\right)$ $\rightarrow_{\beta \eta d}\left(M^{\prime}, \mathcal{F}_{1}^{\prime}\right)$ then $\exists \mathcal{F}_{2}^{\prime} \subseteq \mathcal{R}_{M^{\prime}}^{\beta \eta}$ such that $\mathcal{F}_{1} \subseteq \mathcal{F}_{2}^{\prime}$ and $\left(M, \mathcal{F}_{2}\right) \rightarrow_{\beta \eta d}\left(M^{\prime}, \mathcal{F}_{2}^{\prime}\right)$.

Lemma 6.9 (confluence of the $\beta \eta$-developments). Let $M, M_{1}, M_{2} \in \Lambda$. If $M{\xrightarrow{\mathcal{F}_{1}}}_{\beta \eta d} M_{1}$ and $M{\xrightarrow{\mathcal{F}_{2}}}_{\beta \eta d} M_{2}$, then there exists sets $\mathcal{F}_{1}^{\prime} \subseteq \mathcal{R}_{M_{1}}^{\beta \eta}$ and $\mathcal{F}_{2}^{\prime} \subseteq \mathcal{R}_{M_{2}}^{\beta \eta}$ and a term $M_{3} \in \Lambda$ such that $M_{1}{\xrightarrow{\mathcal{F}_{1}^{\prime}}}_{\beta \eta d} M_{3}$ and $M_{2}{\xrightarrow{\mathcal{F}_{2}^{\prime}}}_{\beta \eta d} M_{3}$.

Notation 6.10. Let $M, M^{\prime} \in \Lambda . M \rightarrow_{1} M^{\prime} \Longleftrightarrow \exists \mathcal{F}, \mathcal{F}^{\prime},(M, \mathcal{F}) \rightarrow_{\beta \eta d}^{*}\left(M^{\prime}, \mathcal{F}^{\prime}\right)$.

Lemma 6.11. Let $c \notin F V(M) . \forall P \in \Phi^{\beta \eta}(M, \varnothing), \mathcal{R}_{P}^{\beta \eta}=\varnothing$.
Lemma 6.12. Let $c \notin F V(M N) . \forall P \in \Phi^{\beta \eta}(M, \varnothing), \forall Q \in \Phi^{\beta \eta}(N, \varnothing), \mathcal{R}_{P[x:=Q]}^{\beta \eta}=$ \varnothing.

Lemma 6.13. Let $c \notin F V(M)$. If $C \in \mathcal{R}_{M}^{\beta \eta}, P \in \Phi^{\beta \eta}(M,\{C\})$ and $P \rightarrow_{\beta \eta} Q$ then $\mathcal{R}_{Q}^{\beta \eta}=\varnothing$.

Lemma 6.14. Let $c \notin F V(M)$. If $C \in \mathcal{R}_{M}^{\beta \eta}$ and $M \xrightarrow{C}_{\beta \eta} M^{\prime}$ then $(M,\{C\}) \rightarrow_{\beta \eta d}$ $\left(M^{\prime}, \varnothing\right)$.

Lemma 6.15. $\rightarrow_{\beta \eta}^{*}=\rightarrow_{1}^{*}$.
Lemma 6.16. If $M \in \Lambda$ such that $c \notin F V(M)$ then $M \in C R^{\beta \eta}$.

7 Conclusion

Reducibility is a powerful method and has been applied to prove using a single method, a number of properties of the λ-calculus (CR, SN, etc.). This paper studied two reducibilty methods which exploit the passage from typed to untyped terms. We showed that the first method [GL02] fails in its aim and we have only been able to provide a partial solution. We adapted the second method [KS08] from β to βI-reduction and we generalised it to $\beta \eta$-reduction. There are differences in the typed systems chosen and the methods of reducibility used in [GL02, KS08]. [KS08] uses system D [CDCV80], which has elimination rules for intersection types whereas [GL02] uses $\lambda \cap$ and $\lambda \cap^{\Omega}$ with subtyping. Moreover, [KS08] depends on the inclusion of typable λ-terms in the set of λ-terms possessing the CR property, whereas [GL02] proves the inclusion of typable terms in an arbitrary subset of the untyped λ-calculus closed by some properties. Moreover, [GL02] considers the $V A R(\mathcal{P}), S A T(\mathcal{P})$ and $C L O(\mathcal{P})$ whereas [KS08] uses standard reducibility methods through saturated sets. [KS08] proves the confluence of developments using the confluence of typable λ-terms in system D (the authors prove that even a simple type system is sufficient). The advantage of the proof of confluence of developments of [KS08] is that SN is not needed.

In [Gal03], Gallier considers systems D and D^{Ω}. He states some properties which a set of λ-terms has to satisfy to include the terms typable in D or D^{Ω} (under some restrictions). He states that the terms typable in D^{Ω} by a "weakly nontrivial type" ($W N T::=\mathcal{A} \mid$ Type $\left.^{2} \rightarrow W N T \mid W N T \cap W N T\right)$ are weakly head normalizable. The "weakly nontrivial types" include types in our set S_{1} since, for example, the type $\alpha \rightarrow \Omega \rightarrow \alpha$, where $\alpha \in \mathcal{A}$, does not belong to S_{1} but is a "weakly nontrivial type". However, unlike Gallier we only restrict functional types. There are common properties with [GL02]: we can observe some trivial correspondences: (P 4 w) implies $C L O(\mathcal{P}, \mathcal{P}),(\mathrm{P} 1)$ and (P 3 s) imply $\operatorname{VAR}(\mathcal{P}, \mathcal{P}), S A T(\mathcal{P}, \mathcal{P})$ implies (P 5 n), and $V A R(\mathcal{P}, \mathcal{P})$ implies (P 1). Gallier states some others properties held by the terms typable in D^{Ω} under some restriction (always on the use of the type Ω), and for different conditions on the properties, in order to be adapted to different cases. It is an attractive feature of [Gal03] that all the conditions on properties have the same general shape. [Gal97] considers quantifiers and other type constructors instead of intersection types.

References

[Bar84] H. P. Barendregt. The Lambda Calculus: Its Syntax and Semantics. North-Holland, revised edition, 1984.
[BBKV76] H. Barendregt, J. A. Bergstra, J. W. Klop, and H. Volken. Degrees, reductions and representability in the lambda calculus. Technical Report Preprint no. 22, University of Utrecht, Department of Mathematics, 1976.
[CDCV80] M. Coppo, M. Dezani-Ciancaglini, and B. Venneri. Principal type schemes and λ-calculus semantic. 1980. In J. R. Hindley, J. P. Seldin, eds., To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus, and Formalism.
[Gal97] J. Gallier. On the correspondance between proofs and λ-terms. Cahiers du centre de logique, 1997. Available at http://www.cis.upenn.edu/ ~jean/gbooks/logic.html (last visited 2008-02-6).
[Gal03] J. Gallier. Typing untyped λ-terms, or realisability strikes again!. Annals of Pure and Applied Logic, 91:231-270, 2003.
[GL02] S. Ghilezan and S. Likavec. Reducibility: A ubiquitous method in lambda calculus with intersection types. Electr. Notes Theor. Comput. Sci., 70(1), 2002.
[Kle45] S. C. Kleene. On the interpretation of intuitionistic number theory. The Journal of Symbolic Logic, 10(4):109-124, 1945.
[Klo80] J. W. Klop. Combinatory Reductions Systems. PhD thesis, Mathematisch Centrum, Amsterdam, 1980.
[Kol85] G. Koletsos. Church-rosser theorem for typed functional systems. Journal of Symbolic Logic, 50(3):782-790, 1985.
[Kri90] J. L. Krivine. Lambda-calcul, types et modeles. Dunod, 1990.
[KS08] G. Koletsos and G. Stavrinos. Church-rosser property and intersection types. Australian Journal of Logic, 2008. To appear.
[Tai67] W. W. Tait. Intensional interpretations of functionals of finite type i. J. Symb. Log., 32(2):198-212, 1967.

Contents

1 Introduction 1
2 The Formal Machinery 2
2.1 Familiar background on λ-calculus 2
2.2 Formalising the background on developments 4
2.3 Background on Types and Type Systems 8
3 Problems of the reducibility method of [GL02] 9
4 Salvaging the reducibility method of [GL02] 13
5 Adapting the CR proof of [KS08] to βI-reduction 15
5.1 Formalising βI-developments 16
5.2 Confluence of βI-developments, hence of βI-reduction 17
6 Generalisation of the method to $\beta \eta$-reduction 19
7 Conclusion 21
A Proofs of section 2 24
B Proofs of section 5 53
C Proofs of section 6 61

A Proofs of section 2

Lemma 2.2. 1. By induction on the length of the reduction $M \rightarrow{ }_{\beta \eta}^{*} M^{\prime}$. If the length is 1 , use induction on $M \rightarrow_{\beta \eta} M^{\prime}$.
2. By induction on the length of the reduction $M \rightarrow_{\beta I}^{*} M^{\prime}$. If the length is 1 , use induction on $M \rightarrow_{\beta I} M^{\prime}$.
3. If) trivial, Only if) by induction on $\lambda x . M \rightarrow_{\beta \eta} P$.
4. If) If $M \rightarrow_{\beta} M^{\prime}$, then by definition $\lambda x . M \rightarrow_{\beta} \lambda x . M^{\prime}$ and so $\lambda x . M \rightarrow_{\beta i \eta}$ $\lambda x . M^{\prime}$. If $M \rightarrow_{\eta} M^{\prime}$, then by definition $\lambda x . M \rightarrow_{i \eta} \lambda x . M^{\prime}$ and so $\lambda x . M \rightarrow_{\beta i \eta}$ $\lambda x \cdot M^{\prime}$. Only if) Since $\lambda x \cdot M \rightarrow_{\beta \eta} P$, by 3 , either $\left(P=\lambda x \cdot M^{\prime}\right.$ and $M \rightarrow_{\beta \eta}$ M^{\prime}) or ($M=P x$ and $x \notin F V(P)$). But, since the η-head redex is not reduced, the second case is impossible.
5. By definition a direct $\beta \eta$-reduct of $(\lambda x . M) N_{0} \ldots N_{n}$ is a term $P N_{0}^{\prime} \ldots N_{n}^{\prime}$ such that $\lambda x . M \rightarrow_{\beta i \eta}^{*} P$ and $\forall i\{0, \ldots, n\}, N_{i} \rightarrow_{\beta \eta}^{*} N_{i}^{\prime}$. Then, we conclude by 4.
6a. If $M=x$ then $P=x N_{0}^{\prime} N_{1}^{\prime} \ldots N_{n}^{\prime}$, where $\forall i \in\{0, \ldots, n\}, N_{i} \rightarrow_{r}^{*} N_{i}^{\prime}$ and so P is a direct r-reduct of $M N_{0} N_{1} \ldots N_{n}$, absurd. So $M=\lambda x . M^{\prime}$. If $k=0$ then $P=\left(\lambda x . M^{\prime}\right) N_{1} N_{1} \ldots N_{n}$ is a direct r-reduct of $\left(\lambda x . M^{\prime}\right) N_{0} N_{1} \ldots N_{n}$, absurd. Assume $k=1$, we prove $P=M^{\prime}\left[x:=N_{0}\right] N_{1} \ldots N_{n}$ by induction on $n \geq 0$.

- Let $n=0$ and $r=\beta I$. By case on $\left(\lambda x . M^{\prime}\right) N_{0} \rightarrow_{\beta I} P$.
* If $\left(\lambda x . M^{\prime}\right) N_{0} \rightarrow_{\beta I} M^{\prime}\left[x:=N_{0}\right]$ then we are done.
* If $\lambda x . M^{\prime} \rightarrow_{\beta I} \lambda x . M^{\prime \prime}$ then $P=\left(\lambda x . M^{\prime \prime}\right) N_{0}$ is a direct βI-reduct of $\left(\lambda x . M^{\prime}\right) N_{0}$, absurd.
* If $N_{0} \rightarrow_{\beta I} N^{\prime}$ then $P=\left(\lambda x . M^{\prime}\right) N^{\prime}$ is a direct βI-reduct of $\left(\lambda x . M^{\prime}\right) N_{0}$, absurd.
- Let $n=0$ and $r=\beta \eta$. By case on $\left(\lambda x . M^{\prime}\right) N_{0} \rightarrow_{\beta \eta} P$.
* If $\left(\lambda x . M^{\prime}\right) N_{0} \rightarrow_{\beta} M^{\prime}\left[x:=N_{0}\right]$, then we are done.
* If $\lambda x . M^{\prime} \rightarrow_{\beta \eta} Q$ and $P=Q N_{0}$. By lemma 2.2.3,
- Either $Q=\lambda x \cdot M^{\prime \prime}$ and $M^{\prime} \rightarrow_{\beta \eta} M^{\prime \prime}$. Hence, $\lambda x \cdot M^{\prime} \rightarrow_{\beta i \eta}$ $\lambda x . M^{\prime \prime}$ by lemma 2.2.4, so $P=\left(\lambda x \cdot M^{\prime \prime}\right) N_{0}$ is a direct $\beta \eta$-reduct of $\left(\lambda x . M^{\prime}\right) N_{0}$, absurd.
- Or $M^{\prime}=Q x$ and $x \notin F V(Q)$. Hence, $P=Q N_{0}=M^{\prime}\left[x:=N_{0}\right]$ and we are done.
* If $N_{0} \rightarrow_{\beta \eta} N^{\prime}$ then $P=\left(\lambda x . M^{\prime}\right) N^{\prime}$ is a direct $\beta \eta$-reduct of $\left(\lambda x . M^{\prime}\right) N_{0}$, absurd.
- Let $n=m+1$ where $m \geq 0$. By case on $(\lambda x \cdot M) N_{0} \ldots N_{m+1} \rightarrow_{r} P$.
* If $\left(\lambda x . M^{\prime}\right) N_{0} \ldots N_{m} \rightarrow_{r} Q$ and $P=Q N_{m+1}$.
- If Q is a direct r-reduct of $\left(\lambda x . M^{\prime}\right) N_{0} \ldots N_{m}$ then P is a direct r-reduct of $\left(\lambda x \cdot M^{\prime}\right) N_{0} \ldots N_{m+1}$, absurd.
- So, Q is not a direct r-reduct of $\left(\lambda x \cdot M^{\prime}\right) N_{0} \ldots N_{m}$ then we are done by IH.
* If $N_{m+1} \rightarrow_{r} N_{m+1}^{\prime}$ then $P=\left(\lambda x . M^{\prime}\right) N_{0} \ldots N_{m} N_{m+1}^{\prime}$ is a direct r-reduct of $\left(\lambda x \cdot M^{\prime}\right) N_{0} \ldots N_{m+1}$, absurd.

6b. By $6 \mathrm{a}, M=\lambda x \cdot M^{\prime}, k \geq 1$. We prove the statement by induction on $k \geq 1$.

- If $k=1$ then we conclude by 6 a.
$-\operatorname{Let}\left(\lambda x . M^{\prime}\right) N_{0} \ldots N_{n} \rightarrow_{r}^{*} Q \rightarrow_{r} P$.
* If Q is a direct r-reduct of $\left(\lambda x . M^{\prime}\right) N_{0} \ldots N_{n}$, then
$Q=\left(\lambda x \cdot M^{\prime \prime}\right) N_{0}^{\prime} \ldots N_{n}^{\prime}$, such that $M^{\prime} \rightarrow_{r}^{*} M^{\prime \prime}$ (use lemma 2.2.5 if $r=\beta \eta)$ and $\forall i \in\{0, \ldots, n\}, N_{i} \rightarrow_{r}^{*} N_{i}^{\prime}$. Since P is not a direct r reduct of $\left(\lambda x . M^{\prime}\right) N_{0} \ldots N_{n}, P$ is not a direct r-reduct of Q. Hence by 6 a, $P=M^{\prime \prime}\left[x:=N_{0}^{\prime}\right] N_{1}^{\prime} \ldots N_{n}^{\prime}$.
* If Q is not a direct r-reduct of $\left(\lambda x \cdot M^{\prime}\right) N_{0} \ldots N_{n}$, then by IH, there exists a direct r-reduct $\left(\lambda x . M^{\prime \prime}\right) N_{0}^{\prime} \ldots N_{n}^{\prime}$ of $\left(\lambda x . M^{\prime}\right) N_{0} \ldots N_{n}$ such that $M^{\prime \prime}\left[x:=N_{0}^{\prime}\right] N_{1}^{\prime} \ldots N_{n}^{\prime} \rightarrow_{r}^{*} Q \rightarrow_{r} P$.

7. If P is a direct r-reduct of $(\lambda x . M) N_{0} \ldots N_{n}$ then $P=\left(\lambda x . M^{\prime}\right) N_{0}^{\prime} \ldots N_{n}^{\prime}$ such that $M \rightarrow_{r}^{*} M^{\prime}$ (use lemma 2.2.5 if $r=\beta \eta$) and $\forall i \in\{0, \ldots, n\}, N_{i} \rightarrow_{r}^{*}$ N_{i}^{\prime}. So $P \rightarrow_{r} M^{\prime}\left[x:=N_{0}^{\prime}\right] N_{1}^{\prime} \ldots N_{n}^{\prime}$ (if $r=\beta I$, note that $x \in F V\left(M^{\prime}\right)$ by lemma 2.2.2) and $M\left[x:=N_{0}\right] N_{1} \ldots N_{n} \rightarrow_{r}^{*} M^{\prime}\left[x:=N_{0}^{\prime}\right] N_{1}^{\prime} \ldots N_{n}^{\prime}$. If P is not a direct r-reduct of $(\lambda x . M) N_{0} \ldots N_{n}$ then by lemma 6.6 b , there exists a direct r-reduct, $\left(\lambda x . M^{\prime}\right) N_{0}^{\prime} \ldots N_{n}^{\prime}$, such that $M \rightarrow_{r}^{*} M^{\prime}$ (use lemma 2.2.5 if $r=\beta \eta)$ and $\forall i \in\{0, \ldots, n\}, N_{i} \rightarrow{ }_{r}^{*} N_{i}^{\prime}$, of $(\lambda x . M) N_{0} \ldots N_{n}$. Let $P^{\prime}=P$. We have $M\left[x:=N_{0}\right] N_{1} \ldots N_{n} \rightarrow_{r}^{*} M^{\prime}\left[x:=N_{0}^{\prime}\right] N_{1}^{\prime} \ldots N_{n}^{\prime} \rightarrow_{r}^{*} P$.
Lemma 2.4 .
8. By induction on the structure of M.

- Let M be a variable.
- Let $M=x$ then $M[x:=c(c x)]=c(c x) \neq x$ and for any N, $M[x:=c(c x)]=c(c x) \neq N x$ (otherwise $c x=x$ absurd).
- Let $M=y \neq x$ then $M[x:=c(c x)]=y \neq x$ and for any N, $M[x:=c(c x)]=y \neq N x$.
- Let $M=\lambda y$. P. Since $M[x:=c(c x)]$ is a λ-abstraction, $M[x:=c(c x)] \neq$ x and for any $N, M[x:=c(c x)] \neq N x$.
- Let $M=P Q$. Since $M[x:=c(c x)]$ is an application, $M[x:=c(c x)] \neq x$. Let $N \in \Lambda$ such that, $M[x:=c(c x)]=N x$, so $Q[x:=c(c x)]=x$ and by IH , absurd.

2. By induction on the structure of M.

- Let M be a variable.
- Let $M=y \neq x$ then $M[y:=c(c x)]=c(c x) \neq x$ and for any N, $M[y:=c(c x)]=c(c x) \neq N x$ since $c x \neq x$.
- Let $M=z \neq x$ and $z \neq y$ then $M[y:=c(c x)]=z \neq x$ and for any $N, M[y:=c(c x)]=z \neq N x$.
- Let $M=\lambda z . P$. Since $M[y:=c(c x)]$ is a λ-abstraction, $M[y:=c(c x)] \neq$ x and for any $N, M[y:=c(c x)] \neq N x$.
- Let $M=P Q$. Since $M[y:=c(c x)]$ is an application, $M[y:=c(c x)] \neq x$. Let $N \in \Lambda$ such that, $M[y:=c(c x)]=N x$, so $Q[y:=c(c x)]=x$ and by IH , absurd.

3. By cases on the derivation of $M \in \mathcal{M}_{c}$.
4. By cases on the structure of M using 3 .
5. By cases on the derivation of $M N \in \mathcal{M}_{c}$.
6. By cases on the derivation of $\lambda x . P \in \Lambda \eta_{c}$.
7. By cases on the derivation of $\lambda x \cdot P \in \Lambda \mathrm{I}_{c}$.
8. By induction on the derivation of $M \in \mathcal{M}_{c}$.

- Case (R1)1. Let $M=x$ then $M[x:=N]=N \in \mathcal{M}_{c}$. Else $M=y \neq x$ and so $M[x:=N]=M \in \mathcal{M}_{c}$.
- Case (R1)2. Let $M=\lambda y . P$ where $P \in \Lambda \mathrm{I}_{c}$ and $y \in F V(P)$. By IH, $P[x:=N] \in \Lambda \mathrm{I}_{c}$ and since $y \in F V(P[x:=N]), M[x:=N]=\lambda y . P[x:=$ $N] \in \Lambda \mathrm{I}_{c}$.
- Case (R1)3. Let $M=\lambda y \cdot P[y:=c(c y)]$ such that $P \in \Lambda \eta_{c}$. Then by IH, $P[x:=N] \in \Lambda \eta_{c}$. So by (R1). $3 M[x:=N]=\lambda y \cdot P[x:=N][y:=c(c y)] \in$ $\Lambda \eta_{c}$.
- Case (R1)4. Let $M=\lambda y$. Py such that $P y \in \Lambda \eta_{c}, y \notin F V(P)$ and $P \neq c$. By IH, $P[x:=N] y \in \Lambda \eta_{c}$. By lemma 2.4.4, $P[x:=N] \neq c$.
Since $y \notin F V(P[x:=N]), M[x:=N]=\lambda y . P[x:=N] y \in \Lambda \eta_{c}$.
- Case (R2) Let $M=c M_{1} M_{2}$ such that $M_{1}, M_{2} \in \mathcal{M}_{c}$. Then by IH, $M_{1}[x:=N], M_{2}[x:=N] \in \mathcal{M}_{c}$. Hence, $c M_{1}[x:=N] M_{2}[x:=N] \in \mathcal{M}_{c}$.
- Case (R3) Let $M=M_{1} M_{2}$ such that $M_{1}, M_{2} \in \mathcal{M}_{c}$ and M_{1} is a λ abstraction. Then by IH, $M_{1}[x:=N], M_{2}[x:=N] \in \mathcal{M}_{c}$.
Hence, $M_{1}[x:=N] M_{2}[x:=N] \in \mathcal{M}_{c}$, since $M_{1}[x:=N]$ is a λ abstraction.
- Case (R4) Let $M=c P$ such that $P \in \Lambda \eta_{c}$. Then by IH, $P[x:=N] \in \Lambda \eta_{c}$ and by (R4), $M[x:=N] \in \Lambda \eta_{c}$.

9. (a) By lemma 2.4, either $P=N x$ where $N x \in \Lambda \eta_{c}$ or $\left.P=N[x:=c(c x))\right]$ where $N \in \Lambda \eta_{c}$. In the second case, since by BC and (R4), $x \neq c$ and $c(c x) \in \Lambda \eta_{c}$, we get by lemma 2.4.8 that $\left.N[x:=c(c x))\right] \in \Lambda \eta_{c}$.
(b) It is easy to show that if $P, N \in \Lambda$, then $P x \neq N[x:=c(c x)]$. Hence, by lemma 2.4, $P x=N x$ where $N, N x \in \Lambda \eta_{c}, x \notin F V(N)$ and $N \neq c$. Since $P x=N x$ then $P=N$.
(c) By induction on the structure of M using lemma 2.4.

- If M is a variable distinct from c then nothing to prove.
- If $M=\lambda y \cdot P[y:=c(c y)]$ where $P \in \Lambda \eta_{c}$ then by $9 \mathrm{a}, P[y:=c(c y)] \in$ $\Lambda \eta_{c} . \quad M[x:=c(c x)] \rightarrow_{\beta \eta} M^{\prime}$ only if $M^{\prime}=\lambda y . P^{\prime}$ where $P[y:=$ $c(c y)][x:=c(c x)] \rightarrow_{\beta \eta} P^{\prime}$. So by IH, $P^{\prime}=P^{\prime \prime}[x:=c(c x)]$ and $P[y:=$ $c(c y))] \rightarrow_{\beta \eta} P^{\prime \prime}$. Hence $M^{\prime}=\lambda y \cdot P^{\prime \prime}[x:=c(c x)]=\left(\lambda y . P^{\prime \prime}\right)[x:=$ $c(c x)]$ and $\lambda y \cdot P[y:=c(c y)] \rightarrow_{\beta \eta} \lambda y . P^{\prime \prime}$.
- If $M=\lambda y$.Py such that $P y \in \Lambda \eta_{c}, P \neq c$ and $y \notin F V(P)$. Let $T=$ $M[x:=c(c x)]=\lambda y . P[x:=c(c x)] y$ where $y \notin F V(P[x:=c(c x)])$.
- If $T \rightarrow{ }_{\eta} P[x:=c(c x)]$, we are done since $M \rightarrow_{\eta} P$.
- If $T \rightarrow_{\beta \eta} \lambda y . P^{\prime}$ where $(P y)[x:=c(c x)]=P[x:=c(c x)] y \rightarrow_{\beta \eta} P^{\prime}$ then $P^{\prime}=P^{\prime \prime}[x:=c(c x)]$ and $P y \rightarrow_{\beta \eta} P^{\prime \prime}$ by IH. Hence, $M^{\prime}=$ $\lambda y \cdot P^{\prime \prime}[x:=c(c x)]=\left(\lambda y \cdot P^{\prime \prime}\right)[x:=c(c x)]$ and $M \rightarrow_{\beta \eta} \lambda y \cdot P^{\prime \prime}$.
- If $M=c M_{1} M_{2}$ such that $M_{1}, M_{2} \in \Lambda \eta_{c}$, then let $T=M[x:=$ $c(c x)]=c M_{1}[x:=c(c x)] M_{2}[x:=c(c x)]$.
- If $T \rightarrow_{\beta \eta} c M_{1}^{\prime} M_{2}[x:=c(c x)]$ where $M_{1}[x:=c(c x)] \rightarrow_{\beta \eta} M_{1}^{\prime}$, by $\mathrm{IH}, M_{1}^{\prime}=M_{1}^{\prime \prime}[x:=c(c x)]$ and $M_{1} \rightarrow_{\beta \eta} M_{1}^{\prime \prime}$. Hence $M^{\prime}=\left(c M_{1}^{\prime \prime} M_{2}\right)[x:=c(c x)]$ and $M \rightarrow_{\beta \eta} c M_{1}^{\prime \prime} M_{2}$.
- Case $T \rightarrow_{\beta \eta} c M_{1}[x:=c(c x)] M_{2}^{\prime}$ where $M_{2}[x:=c(c x)] \rightarrow_{\beta \eta} M_{2}^{\prime}$ is similar.
- If $M=M_{1} M_{2}$ such that $M_{1}, M_{2} \in \Lambda \eta_{c}$ and M_{1} is a λ-abstraction, then let $T=M[x:=c(c x)]=M_{1}[x:=c(c x)] M_{2}[x:=c(c x)]$ where $M_{1}[x:=c(c x)]$ is a λ-abstraction. Let $M_{1}=\lambda z . M_{0}$, so $M_{1}[x:=$ $c(c x)]=\lambda z . M_{0}[x:=c(c x)]$.
- Let $T \rightarrow_{\beta \eta} M_{1}^{\prime} M_{2}[x:=c(c x)]$ where $M_{1}[x:=c(c x)] \rightarrow_{\beta \eta} M_{1}^{\prime}$. Then by IH, $M_{1}^{\prime}=M_{1}^{\prime \prime}[x:=c(c x)]$ and $M_{1} \rightarrow_{\beta \eta} M_{1}^{\prime \prime}$. So $M^{\prime}=M_{1}^{\prime \prime}[x:=c(c x)] M_{2}[x:=c(c x)]=\left(M_{1}^{\prime \prime} M_{2}\right)[x:=c(c x)]$ and $M \rightarrow{ }_{\beta \eta} M_{1}^{\prime \prime} M_{2}$.
- Case $T \rightarrow_{\beta \eta} M_{1}[x:=c(c x)] M_{2}^{\prime}$ where $M_{2}[x:=c(c x)] \rightarrow_{\beta \eta} M_{2}^{\prime}$ is similar.
- Let $T \rightarrow_{\beta} M_{0}[x:=c(c x)]\left[z:=M_{2}[x:=c(c x)]\right]=M_{0}[z:=$ $\left.M_{2}\right][x:=c(c x)]$. We are done since $M \rightarrow_{\beta} M_{0}\left[z:=M_{2}\right]$.
- If $M=c P$ where $P \in \Lambda \eta_{c}$ then $M[x:=c(c x)]=c P[x:=c(c x)] \rightarrow_{\beta \eta}$ $c P^{\prime}$ where $P[x:=c(c x)] \rightarrow_{\beta \eta} P^{\prime}$. So by IH, $P^{\prime}=P^{\prime \prime}[x:=c(c x)]$ and $P \rightarrow_{\beta \eta} P^{\prime \prime}$. Hence $M^{\prime}=c P^{\prime \prime}[x:=c(c x)]=\left(c P^{\prime \prime}\right)[x:=c(c x)]$ and $M \rightarrow{ }_{\beta \eta} c P^{\prime \prime}$.
(d) By induction on n.

Lemma 2.5. We prove this lemma by induction on the structure of M.

- Let $M \in \mathcal{V}$. Let $C \in \mathcal{R}_{M}^{r}$ so $C \in \mathcal{C}$ and $\exists R \in \mathcal{R}^{r}$ such that $C[R]=M$. We prove by induction on the structure of C that this is absurd, i.e. $\mathcal{R}_{M}^{r}=\varnothing$.
- Let $C=\square$ then $M=R$. absurd since $M \notin \mathcal{R}^{r}$.
- Let $C=\lambda x . C^{\prime}$ then $\lambda x \cdot C^{\prime}[R]=M$, absurd.
- Let $C=C^{\prime} N$ then $C^{\prime}[R] N=M$, absurd.
- Let $C=N C^{\prime}$ then $N C^{\prime}[R]=M$, absurd.
- Let $M=\lambda x \cdot N$ and $C \in \mathcal{C}$.
- Let $M \in \mathcal{R}^{r}$. We prove by induction on the structure of C that if $C \in \mathcal{R}_{M}^{r}$ then $C \in\{\square\} \cup\left\{\lambda x . C \mid C \in \mathcal{R}_{N}^{r}\right\}$.
* Let $C=\square$ then $\exists R \in \mathcal{R}^{r}$ such that $\square[R]=R=M$ and it is done.
* Let $C=\lambda x . C^{\prime}$ then $\exists R \in \mathcal{R}^{r}$ such that $\lambda x \cdot N=\lambda x . C^{\prime}[R]$. So $N=C^{\prime}[R]$ and by definition, $C^{\prime} \in \mathcal{R}_{N}^{r}$.
* Let $C=C^{\prime} P$ then $\nexists R \in \mathcal{R}^{r}$ such that $\lambda x \cdot N=C^{\prime}[R] P$.
* Let $C=P C^{\prime}$ then $\nexists R \in \mathcal{R}^{r}$ such that $\lambda x . N=P C^{\prime}[R]$.

Let $C \in\{\square\} \cup\left\{\lambda x . C \mid C \in \mathcal{R}_{N}^{r}\right\}$, we prove that $C \in \mathcal{R}_{M}^{r}$.

* Let $C=\square$. Since $M \in \mathcal{R}^{r}$ and $C[M]=M$, by definition, $C \in \mathcal{R}_{M}^{r}$.
* Let $C=\lambda x . C^{\prime}$ such that $C^{\prime} \in \mathcal{R}_{N}^{r}$. By definition $\exists R \in \mathcal{R}^{r}$ such that $C^{\prime}[R]=N$, so $C[R]=M$.
- Let $M \notin \mathcal{R}^{r}$. We prove by induction on the structure of C that if $C \in \mathcal{R}_{M}^{r}$ then $C \in\left\{\lambda x . C \mid C \in \mathcal{R}_{N}^{r}\right\}$
* Let $C=\square$ then $\nexists R \in \mathcal{R}^{r}$ such that $\square[R]=R=M$, since $M \notin \mathcal{R}^{r}$.
* Let $C=\lambda x . C^{\prime}$ then $\exists R \in \mathcal{R}^{r}$ such that $\lambda x \cdot N=\lambda x \cdot C^{\prime}[R]$. So $N=C^{\prime}[R]$ and by definition, $C^{\prime} \in \mathcal{R}_{N}^{r}$.
* Let $C=C^{\prime} P$ then $\nexists R \in \mathcal{R}^{r}$ such that $\lambda x . N=C^{\prime}[R] P$.
* Let $C=P C^{\prime}$ then $\nexists R \in \mathcal{R}^{r}$ such that $\lambda x \cdot N=P C^{\prime}[R]$.

Let $C \in\left\{\lambda x . C \mid C \in \mathcal{R}_{N}^{r}\right\}$, we prove that $C \in \mathcal{R}_{M}^{r}$.

* Let $C=\lambda x . C^{\prime}$ such that $C^{\prime} \in \mathcal{R}_{N}^{r}$. By definition $\exists R \in \mathcal{R}^{r}$ such that $C^{\prime}[R]=N$, so $C[R]=M$.
- Let $M=P Q$ and $C \in \mathcal{C}$.
- Let $M \in \mathcal{R}^{r}$. We prove by induction on the structure of C that if $C \in \mathcal{R}_{M}^{r}$ then $C \in\{\square\} \cup\left\{C Q \mid C \in \mathcal{R}_{P}^{r}\right\} \cup\left\{P C \mid C \in \mathcal{R}_{Q}^{r}\right\}$.
* Let $C=\square$ then $\exists R \in \mathcal{R}^{r}$ such that $\square[R]=R=M$ and it is done.
* Let $C=\lambda x . C^{\prime}$ then $\nexists R \in \mathcal{R}^{r}$ such that $P Q=\lambda x \cdot C^{\prime}[R]$.
* Let $C=C^{\prime} N$ then $\exists R \in \mathcal{R}^{r}$ such that $P Q=C^{\prime}[R] N$. So $N=Q$, $C^{\prime}[R]=P$ and by definition, $C^{\prime} \in \mathcal{R}_{P}^{r}$.
* Let $C=N C^{\prime}$ then $\exists R \in \mathcal{R}^{r}$ such that $P Q=N C^{\prime}[R]$. So $N=P$, $C^{\prime}[R]=Q$ and by definition, $C^{\prime} \in \mathcal{R}_{Q}^{r}$.
Let $C \in\{\square\} \cup\left\{C Q \mid C \in \mathcal{R}_{P}^{r}\right\} \cup\left\{P C \mid C \in \mathcal{R}_{Q}^{r}\right\}$, we prove that $C \in \mathcal{R}_{M}^{r}$.
* Let $C=\square$. Since $M \in \mathcal{R}^{r}$ and $C[M]=M$, by definition, $C \in \mathcal{R}_{M}^{r}$.
* Let $C=C^{\prime} Q$ such that $C^{\prime} \in \mathcal{R}_{P}^{r}$. By definition $\exists R \in \mathcal{R}^{r}$ such that $C^{\prime}[R]=P$, so $C[R]=M$.
* Let $C=P C^{\prime}$ such that $C^{\prime} \in \mathcal{R}_{Q}^{r}$. By definition $\exists R \in \mathcal{R}^{r}$ such that $C^{\prime}[R]=Q$, so $C[R]=M$.
- Let $M \notin \mathcal{R}^{r}$. We prove by induction on the structure of C that if $C \in \mathcal{R}_{M}^{r}$ then $C \in\left\{C Q \mid C \in \mathcal{R}_{P}^{r}\right\} \cup\left\{P C \mid C \in \mathcal{R}_{Q}^{r}\right\}$.
* Let $C=\square$ then $\nexists R \in \mathcal{R}^{r}$ such that $\square[R]=R=M$, since $M \notin \mathcal{R}^{r}$.
* Let $C=\lambda x . C^{\prime}$ then $\nexists R \in \mathcal{R}^{r}$ such that $P Q=\lambda x . C^{\prime}[R]$.
* Let $C=C^{\prime} N$ then $\exists R \in \mathcal{R}^{r}$ such that $P Q=C^{\prime}[R] N$. So $N=Q$, $C^{\prime}[R]=P$ and by definition, $C^{\prime} \in \mathcal{R}_{P}^{r}$.
* Let $C=N C^{\prime}$ then $\exists R \in \mathcal{R}^{r}$ such that $P Q=N C^{\prime}[R]$. So $N=P$, $C^{\prime}[R]=Q$ and by definition, $C^{\prime} \in \mathcal{R}_{Q}^{r}$.
Let $C \in\left\{C Q \mid C \in \mathcal{R}_{P}^{r}\right\} \cup\left\{P C \mid C \in \mathcal{R}_{Q}^{r}\right\}$, we prove that $C \in \mathcal{R}_{M}^{r}$.
* Let $C=C^{\prime} Q$ such that $C^{\prime} \in \mathcal{R}_{P}^{r}$. By definition $\exists R \in \mathcal{R}^{r}$ such that $C^{\prime}[R]=P$, so $C[R]=M$.
* Let $C=P C^{\prime}$ such that $C^{\prime} \in \mathcal{R}_{Q}^{r}$. By definition $\exists R \in \mathcal{R}^{r}$ such that $C^{\prime}[R]=Q$, so $C[R]=M$.

Lemma 2.6. We prove the statement by induction on the structure of M.

- Let $M \in \mathcal{V}$, by lemma $2.5, \mathcal{R}_{M}^{r}=\varnothing$, so $\mathcal{F}=\varnothing$.
- Let $M=\lambda y . N$ then by lemma 2.5 :
- If $M \in \mathcal{R}^{r}$ then $\mathcal{R}_{M}^{r}=\{\square\} \cup\left\{\lambda x . C \mid C \in \mathcal{R}_{N}^{r}\right\}$. Let $\mathcal{F}^{\prime}=\{C \mid \lambda x . C \in$ $\mathcal{F}\}$. Let $C \in \mathcal{F}^{\prime}$ then $\lambda x . C \in \mathcal{F}$, so $C \in \mathcal{R}_{N}^{r}$.
$*$ Let $C \in \mathcal{F} \backslash\{\square\}$ then $C=\lambda x . C^{\prime}$ such that $C^{\prime} \in \mathcal{R}_{N}^{r}$. So $C^{\prime} \in \mathcal{F}^{\prime}$ and it is done.
* Let $C \in\left\{\lambda x . C \mid C \in \mathcal{F}^{\prime}\right\}$ then $C=\lambda x . C^{\prime}$ such that $C^{\prime} \in \mathcal{F}^{\prime}$. So $\lambda x . C^{\prime}=C \in \mathcal{F} \backslash\{\square\}$.
- If $M \notin \mathcal{R}^{r}$ then $\mathcal{R}_{M}^{r}=\left\{\lambda x . C \mid C \in \mathcal{R}_{N}^{r}\right\}$. Let $\mathcal{F}^{\prime}=\{C \mid \lambda x . C \in \mathcal{F}\}$. Let $C \in \mathcal{F}^{\prime}$ then $\lambda x . C \in \mathcal{F}$, so $C \in \mathcal{R}_{N}^{r}$.
* Let $C \in \mathcal{F}$ then $C=\lambda x . C^{\prime}$ such that $C^{\prime} \in \mathcal{R}_{N}^{r}$. So $C^{\prime} \in \mathcal{F}^{\prime}$ and it is done.
* Let $C \in\left\{\lambda x . C \mid C \in \mathcal{F}^{\prime}\right\}$ then $C=\lambda x . C^{\prime}$ such that $C^{\prime} \in \mathcal{F}^{\prime}$. So $\lambda x . C^{\prime}=C \in \mathcal{F}$.
- Let $M=P Q$ then by lemma 2.5:
- If $M \in \mathcal{R}^{r}$ then $\mathcal{R}_{M}^{r}=\{\square\} \cup\left\{C Q \mid C \in \mathcal{R}_{P}^{r}\right\} \cup\left\{P C \mid C \in \mathcal{R}_{Q}^{r}\right\}$. Let $\mathcal{F}_{1}=\{C \mid C Q \in \mathcal{F}\}$ and $\mathcal{F}_{2}=\{C \mid P C \in \mathcal{F}\}$. Let $C \in \mathcal{F}_{1}$ then $C Q \in \mathcal{F}$, so $C \in \mathcal{R}_{P}^{r}$. Let $C \in \mathcal{F}_{2}$ then $P C \in \mathcal{F}$, so $C \in \mathcal{R}_{Q}^{r}$.
* Let $C \in \mathcal{F} \backslash\{\square\}$. Either $C=C^{\prime} Q$ such that $C^{\prime} \in \mathcal{R}_{P}^{r}$, so $C^{\prime} \in \mathcal{F}_{1}$ and it is done. Or $C=P C^{\prime}$ such that $C^{\prime} \in \mathcal{R}_{Q}^{r}$, so $C^{\prime} \in \mathcal{F}_{2}$ and it is done.
* Let $C \in\left\{C Q \mid C \in \mathcal{F}_{1}\right\} \cup\left\{P C \mid C \in \mathcal{F}_{2}\right\}$. Either $C=C^{\prime} Q$ such that $C^{\prime} \in \mathcal{F}_{1}$, so $C^{\prime} Q \in \mathcal{F} \backslash\{\square\}$. Or $C=P C^{\prime}$ such that $C^{\prime} \in \mathcal{F}_{2}$, so $P C^{\prime} \in \mathcal{F} \backslash\{\square\}$.
- If $M \notin \mathcal{R}^{r}$ then $\mathcal{R}_{M}^{r}=\left\{C Q \mid C \in \mathcal{R}_{P}^{r}\right\} \cup\left\{P C \mid C \in \mathcal{R}_{Q}^{r}\right\}$. Let $\mathcal{F}_{1}=\{C \mid C Q \in \mathcal{F}\}$ and $\mathcal{F}_{2}=\{C \mid P C \in \mathcal{F}\}$. Let $C \in \mathcal{F}_{1}$ then $C Q \in \mathcal{F}$, so $C \in \mathcal{R}_{P}^{r}$. Let $C \in \mathcal{F}_{2}$ then $P C \in \mathcal{F}$, so $C \in \mathcal{R}_{Q}^{r}$.
* Let $C \in \mathcal{F}$. Either $C=C^{\prime} Q$ such that $C^{\prime} \in \mathcal{R}_{P}^{r}$, so $C^{\prime} \in \mathcal{F}_{1}$ and it is done. Or $C=P C^{\prime}$ such that $C^{\prime} \in \mathcal{R}_{Q}^{r}$, so $C^{\prime} \in \mathcal{F}_{2}$ and it is done.
* Let $C \in\left\{C Q \mid C \in \mathcal{F}_{1}\right\} \cup\left\{P C \mid C \in \mathcal{F}_{2}\right\}$. Either $C=C^{\prime} Q$ such that $C^{\prime} \in \mathcal{F}_{1}$, so $C^{\prime} Q \in \mathcal{F}$. Or $C=P C^{\prime}$ such that $C^{\prime} \in \mathcal{F}_{2}$, so $P C^{\prime} \in \mathcal{F}$.

Lemma 2.7.

$\Rightarrow)$ we prove the statement by induction on M.
$-M \notin \mathcal{V}$ since by lemma $2.5, \mathcal{R}_{M}^{r}=\varnothing$.

- Let $M=\lambda y . P$ so $M[x:=N]=\lambda y \cdot P[x:=N]$. By lemma 2.5:
* If $M \in \mathcal{R}^{r}$ then:
- Either $C=\square$ so $M[x:=N]=C[x:=N][R]=\square[x:=N][R]=$ R. Hence, $R=M[x:=N]$ and $M=\square[M]$.
- Or $C=\lambda y . C^{\prime}$ such that $C^{\prime} \in \mathcal{R}_{P}^{r}$. Then, $C[x:=N][R]=$ $\lambda y \cdot C^{\prime}[x:=N][R]$ and $P[x:=N]=C^{\prime}[x:=N][R]$. By IH, $R=$ $R^{\prime}[x:=N]$ and $P=C^{\prime}\left[R^{\prime}\right]$. Hence, $M=\lambda y \cdot P=\lambda y \cdot C^{\prime}\left[R^{\prime}\right]=$ $C\left[R^{\prime}\right]$.
* If $M \notin \mathcal{R}^{r}$ then $C=\lambda y . C^{\prime}$ such that $C^{\prime} \in \mathcal{R}_{P}^{r}$. So, $C[x:=N][R]=$ $\lambda y . C^{\prime}[x:=N][R]$ and $P[x:=N]=C^{\prime}[x:=N][R]$. By $\mathrm{IH}, R=$ $R^{\prime}[x:=N]$ and $P=C^{\prime}\left[R^{\prime}\right]$. Hence, $M=\lambda y \cdot P=\lambda y . C^{\prime}\left[R^{\prime}\right]=C\left[R^{\prime}\right]$.
- Let $M=P Q$ so $M[x:=N]=P[x:=N] Q[x:=N]$. By lemma 2.5:
* If $M \in \mathcal{R}^{r}$ then:
- Either $C=\square$ so $M[x:=N]=C[x:=N][R]=\square[x:=N][R]=$ R. So $R=M[x:=N]$ and $M=\square[M]$.
- Or $C=C^{\prime} Q$ such that $C^{\prime} \in \mathcal{R}_{P}^{r}$. Then, $C[x:=N][R]=C^{\prime}[x:=$ $N][R] Q[x:=N]=P[x:=N] Q[x:=N]$ and $P[x:=N]=$ $C^{\prime}[x:=N][R]$. By IH, $R=R^{\prime}[x:=N]$ and $P=C^{\prime}\left[R^{\prime}\right]$. Hence, $M=P Q=C^{\prime}\left[R^{\prime}\right] Q=C\left[R^{\prime}\right]$.
- Or $C=P C^{\prime}$ such that $C^{\prime} \in \mathcal{R}_{Q}^{r}$. Then, $C[x:=N][R]=P[x:=$ $N] C^{\prime}[x:=N][R]=P[x:=N] Q[x:=N]$ and $Q[x:=N]=$ $C^{\prime}[x:=N][R]$. By IH, $R=R^{\prime}[x:=N]$ and $Q=C^{\prime}\left[R^{\prime}\right]$. Hence, $M=P Q=P C^{\prime}\left[R^{\prime}\right]=C\left[R^{\prime}\right]$.
* If $M \notin \mathcal{R}^{r}$ then:
- Either $C=C^{\prime} Q$ such that $C^{\prime} \in \mathcal{R}_{P}^{r}$. Then, $C[x:=N][R]=$ $C^{\prime}[x:=N][R] Q[x:=N]=P[x:=N] Q[x:=N]$ and $P[x:=$ $N]=C^{\prime}[x:=N][R]$. By IH, $R=R^{\prime}[x:=N]$ and $P=C^{\prime}\left[R^{\prime}\right]$. Hence, $M=P Q=C^{\prime}\left[R^{\prime}\right] Q=C\left[R^{\prime}\right]$.
- Or $C=P C^{\prime}$ such that $C^{\prime} \in \mathcal{R}_{Q}^{r}$. Then, $C[x:=N][R]=P[x:=$ $N] C^{\prime}[x:=N][R]=P[x:=N] Q[x:=N]$ and $Q[x:=N]=$ $C^{\prime}[x:=N][R]$. By IH, $R=R^{\prime}[x:=N]$ and $Q=C^{\prime}\left[R^{\prime}\right]$. Hence, $M=P Q=P C^{\prime}\left[R^{\prime}\right]=C\left[R^{\prime}\right]$.
$\Leftarrow)$ We prove the statement by induction on the structure of M.
- $M \notin \mathcal{V}$ since by lemma $2.5, \mathcal{R}_{M}^{r}=\varnothing$.
- Let $M=\lambda y . P$. By lemma 2.5:
* Let $M \in \mathcal{R}^{r}$.
- Either $C=\square$ and $R=M$, so $C[x:=N][R[x:=N]]=\square[M[x:=$ $N]]=M[x:=N]$.
- Or $C=\lambda y . C^{\prime}$ such that $C^{\prime} \in \mathcal{R}_{P}^{r}$. Then, $\lambda y \cdot P=\lambda y \cdot C^{\prime}[R]$ so $P=C^{\prime}[R]$. By IH, $P[x:=N]=C^{\prime}[x:=N][R[x:=N]]$. Hence, $M[x:=N]=\lambda y \cdot P[x:=N]=\lambda y \cdot C^{\prime}[x:=N][R[x:=N]]=$ $\left(\lambda y \cdot C^{\prime}[x:=N]\right)[R[x:=N]]=\left(\lambda y \cdot C^{\prime}\right)[x:=N][R[x:=N]]=$ $C[x:=N][R[x:=N]]$.
* Let $M \notin \mathcal{R}^{r}$, then $C=\lambda y . C^{\prime}$ such that $C^{\prime} \in \mathcal{R}_{P}^{\beta \eta}$. Then, $\lambda y . P=$ $\lambda y . C^{\prime}[R]$ so $P=C^{\prime}[R]$. By IH, $P[x:=N]=C^{\prime}[x:=N][R[x:=N]]$. Hence, $M[x:=N]=\lambda y \cdot P[x:=N]=\lambda y \cdot C^{\prime}[x:=N][R[x:=N]]=$ $\left(\lambda y \cdot C^{\prime}[x:=N]\right)[R[x:=N]]=\left(\lambda y \cdot C^{\prime}\right)[x:=N][R[x:=N]]=C[x:=$ $N][R[x:=N]]$.
- Let $M=P Q$. By lemma 2.5:
* Let $M \in \mathcal{R}^{r}$.
- Either $C=\square$ and $R=M$, so $C[x:=N][R[x:=N]]=\square[M[x:=$ $N]]=M[x:=N]$.
- Or $C=C^{\prime} Q$ such that $C^{\prime} \in \mathcal{R}_{P}^{r}$. Then, $P Q=\left(C^{\prime} Q\right)[R]=$ $C^{\prime}[R] Q$ and $P=C^{\prime}[R]$. By IH, $P[x:=N]=C^{\prime}[x:=N][R[x:=$ $N]]$. Hence, $M[x:=N]=P[x:=N] Q[x:=N]=C^{\prime}[x:=$ $N][R[x:=N]] Q[x:=N]=\left(C^{\prime}[x:=N] Q[x:=N]\right)[R[x:=$ $N]]=\left(C^{\prime} Q\right)[x:=N][R[x:=N]]=C[x:=N][R[x:=N]]$.
- Or $C=P C^{\prime}$ such that $C^{\prime} \in \mathcal{R}_{Q}^{r}$. Then $P Q=\left(P C^{\prime}\right)[R]=$ $P C^{\prime}[R]$ and $Q=C^{\prime}[R]$. By IH, $Q[x:=N]=C^{\prime}[x:=N][R[x:=$ $N]]$. Hence, $M[x:=N]=P[x:=N] Q[x:=N]=P[x:=$ $N] C^{\prime}[x:=N][R[x:=N]]=\left(P[x:=N] C^{\prime}[x:=N]\right)[R[x:=$ $N]]=\left(P C^{\prime}\right)[x:=N][R[x:=N]]=C[x:=N][R[x:=N]]$.
* Let $M \notin \mathcal{R}^{\beta \eta}$.
- Either $C=C^{\prime} Q$ such that $C^{\prime} \in \mathcal{R}_{P}^{r}$. Then, $P Q=\left(C^{\prime} Q\right)[R]=$ $C^{\prime}[R] Q$ and $P=C^{\prime}[R]$. By IH, $P[x:=N]=C^{\prime}[x:=N][R[x:=$ $N]]$. Hence, $M[x:=N]=P[x:=N] Q[x:=N]=C^{\prime}[x:=$ $N][R[x:=N]] Q[x:=N]=\left(C^{\prime}[x:=N] Q[x:=N]\right)[R[x:=$ $N]]=\left(C^{\prime} Q\right)[x:=N][R[x:=N]]=C[x:=N][R[x:=N]]$.
- Or $C=P C^{\prime}$ such that $C^{\prime} \in \mathcal{R}_{Q}^{r}$. Then $P Q=\left(P C^{\prime}\right)[R]=$ $P C^{\prime}[R]$ and $Q=C^{\prime}[R]$. By IH, $Q[x:=N]=C^{\prime}[x:=N][R[x:=$ $N]]$. Hence, $M[x:=N]=P[x:=N] Q[x:=N]=P[x:=$ $N] C^{\prime}[x:=N][R[x:=N]]=\left(P[x:=N] C^{\prime}[x:=N]\right)[R[x:=$ $N]]=\left(P C^{\prime}\right)[x:=N][R[x:=N]]=C[x:=N][R[x:=N]]$.

Lemma 2.8. We prove the lemma by induction on the structure of C.

- Let $C=\square$ then $C[x:=N][R]=\square[R]=R$ and $C[R][x:=N]=R[x:=N]=$ R.
- Let $C=\lambda y \cdot C^{\prime}$. By (BC), $x \neq y$. Then, $C[x:=N][R]=\lambda y \cdot C^{\prime}[x:=$ $N][R]={ }^{I H} \lambda y \cdot C^{\prime}[R][x:=N]=C[R][x:=N]$.
- Let $C=C^{\prime} P$. Then, $C[x:=N][R]=C^{\prime}[x:=N][R] P[x:=N]={ }^{I H}$ $C^{\prime}[R][x:=N] P[x:=N]=\left(C^{\prime}[R] P\right)[x:=N]=C[R][x:=N]$.
- Let $C=P C^{\prime}$. Then, $C[x:=N][R]=P[x:=N] C^{\prime}[x:=N][R]={ }^{I H} P[x:=$ $N] C^{\prime}[R][x:=N]=\left(P C^{\prime}[R]\right)[x:=N]=C[R][x:=N]$.

Lemma 2.9.

1. By case on the structure of M.

- let $M \in \mathcal{V}$.
- Either $M=x$ then, $M[x:=c(c x)]=c(c x)$. Hence, $c(c x) \neq y$, $c(c x) \neq P y$ since $c x \neq y$ and $c(c x) \neq \lambda y . P$.
- Or $M=z \neq x$ then $M[x:=c(c x)]=z$. Hence, if $z=y$ then $M=y$, $z \neq P y$ and $z \neq \lambda y . P$.
- Let $M=\lambda z \cdot M^{\prime}$ then $M[x:=c(c x)]=\lambda z \cdot M^{\prime}[x:=c(c x)]$. Hence, $\lambda z \cdot M^{\prime}[x:=c(c x)] \neq y$ and $\lambda z \cdot M^{\prime}[x:=c(c x)] \neq P y$. By (BC), $y \notin$ $F V\left(M^{\prime}\right)$ so $M=\lambda y \cdot M^{\prime}[z:=y]$ and $M[x:=c(c x)]=\lambda y \cdot M^{\prime}[z:=y][x:=$ $c(c x)]=\lambda y . P$. Hence, $M^{\prime}[z:=y][x:=c(c x)]=P$
- Let $M=M_{1} M_{2}$ then $M[x:=c(c x)]=M_{1}[x:=c(c x)] M_{2}[x:=c(c x)]$. Hence, $M_{1}[x:=c(c x)] M_{2}[x:=c(c x)] \neq y$ and $M_{1}[x:=c(c x)] M_{2}[x:=$ $c(c x)] \neq \lambda y . P$. If $M_{1}[x:=c(c x)] M_{2}[x:=c(c x)]=P y$ then $P=M_{1}[x:=$ $c(c x)]$ and $M_{2}[x:=c(c x)]=y$. So $M_{2}=y$.

2. By case on the structure of M.

- Let $M \in \mathcal{V}$ then $M \notin \mathcal{R}^{\beta \eta}$ and $M[x:=c(c x)] \notin \mathcal{R}^{\beta \eta}$.
- Let $M=\lambda y \cdot N$ then $M[x:=c(c x)]=\lambda y \cdot N[x:=c(c x)]$. By (BC), $x \neq y \neq c$.
- If $M \in \mathcal{R}^{\beta \eta}$ then $N=P y$ such that $y \notin F V(P) . N[x:=c(c x)]=$ $P[x:=c(c x)] y$ and $y \notin F V(P[x:=c(c x)])$, so $M[x:=c(c x)] \in \mathcal{R}^{\beta \eta}$.
- If $M[x:=c(c x)] \in \mathcal{R}^{\beta \eta}$ then $N[x:=c(c x)]=P y$ such that $y \notin$ $F V(P)$. By $1, N=Q y$ and $P=Q[x:=c(c x)]$. So $M=\lambda y \cdot Q y$. Since $y \notin F V(P), y \notin F V(Q)$. So $M \in \mathcal{R}^{\eta}$.
- Let $M=M_{1} M_{2}$ then $M[x:=c(c x)]=M_{1}[x:=c(c x)] M_{2}[x:=c(c x)]$.
- If $M \in \mathcal{R}^{\beta \eta}$ then $M_{1}=\lambda y . M_{0}$. So $M[x:=c(c x)]=\left(\lambda y \cdot M_{0}[x:=\right.$ $c(c x)]) M_{2}[x:=c(c x)] \in \mathcal{R}^{\beta \eta}$.
- If $M[x:=c(c x)] \in \mathcal{R}^{\beta \eta}$ then $M_{1}[x:=c(c x)]=\lambda y . P$. By $1, M_{1}=$ $\lambda y \cdot M_{0}$ and $P=M_{0}[x:=c(c x)]$. So, $M \in \mathcal{R}^{\beta \eta}$

3. $\Rightarrow)$ Let $C \in \mathcal{R}_{\lambda x . M[x:=c(c x)]}^{\beta \eta}$. By lemma 2.4, $\lambda x . M[x:=c(c x)] \notin \mathcal{R}^{\beta \eta}$ so by lemma 2.5, $C=\lambda x . C^{\prime}$ such that $C^{\prime} \in \mathcal{R}_{M[x:=c(c x)]}^{\beta \eta}$.
$\Leftarrow)$ Let $C \in \mathcal{R}_{M[x:=c(c x)]}^{\beta \eta}$. By lemma 2.5, $\lambda x . C \in \mathcal{R}_{\lambda x . M[x:=c(c x)]}^{\beta \eta}$.
4. $\Rightarrow)$ Let $C \in \mathcal{R}_{M[x:=c(c x)]}^{\beta \eta}$. We prove the statement by induction on the structure of M

$$
-M \notin \mathcal{V} \text { since } \mathcal{R}_{M[x:=c(c x)]}^{\beta \eta}=\varnothing
$$

- Let $M=\lambda y \cdot N$ so $M[x:=c(c x)]=\lambda y \cdot N[x:=c(c x)]$. By lemma 2.5:
* If $M \in \mathcal{R}^{\beta \eta}$ then by $2, M[x:=c(c x)] \in \mathcal{R}^{\beta \eta}$.
- Either $C=$and $C[x:=c(c x)]=\square \in \mathcal{R}_{M}^{\beta \eta}$.
- Or $C=\lambda y . C^{\prime}$ such that $C^{\prime} \in \mathcal{R}_{N[x:=c(c x)]}^{\beta \eta}$. By IH, $C^{\prime}=$ $C^{\prime \prime}[x:=c(c x)]$ and $C^{\prime \prime} \in \mathcal{R}_{N}^{\beta \eta}$. Hence $C=\lambda y . C^{\prime \prime}[x:=$ $c(c x)]=\left(\lambda y \cdot C^{\prime \prime}\right)[x:=c(c x)]$ and by lemma 2.5, $\lambda y . C^{\prime \prime} \in \mathcal{R}_{M}^{\beta \eta}$.
* Or $M \notin \mathcal{R}^{\beta \eta}$ then by $2, M[x:=c(c x)] \notin \mathcal{R}^{\beta \eta}$. So, $C=\lambda y$. C^{\prime} such that $C^{\prime} \in \mathcal{R}_{N[x:=c(c x)]}^{\beta \eta}$. By IH, $C^{\prime}=C^{\prime \prime}[x:=c(c x)]$ and $C^{\prime \prime} \in \mathcal{R}_{N}^{\beta \eta}$. Hence $C=\lambda y . C^{\prime \prime}[x:=c(c x)]=\left(\lambda y . C^{\prime \prime}\right)[x:=c(c x)]$ and by lemma $2.5, \lambda y . C^{\prime \prime} \in \mathcal{R}_{M}^{\beta \eta}$.
- Let $M=M_{1} M_{2}$ so $M[x:=c(c x)]=M_{1}[x:=c(c x)] M_{2}[x:=c(c x)]$. By lemma 2.5:
* If $M \in \mathcal{R}^{\beta \eta}$ then by $2, M[x:=c(c x)] \in \mathcal{R}^{\beta \eta}$.
- Either $C=\square$ and $C[x:=c(c x)]=\square \in \mathcal{R}_{M}^{\beta \eta}$.
- Or $C=C_{1} M_{2}[x:=c(c x)]$ such that $C_{1} \in \mathcal{R}_{M_{1}[x:=c(c x)]}^{\beta \eta}$. By IH, $C_{1}=C_{1}^{\prime}[x:=c(c x)]$ and $C_{1}^{\prime} \in \mathcal{R}_{M_{1}}^{\beta \eta}$. Hence $C=$ $\left(C_{1}^{\prime} M_{2}\right)[x:=c(c x)]$ and by lemma 2.5, $C_{1}^{\prime} M_{2} \in \mathcal{R}_{M}^{\beta \eta}$.
- Or $C=M_{1}[x:=c(c x)] C_{2}$ such that $C_{2} \in \mathcal{R}_{M_{2}[x:=c(c x)]}^{\beta \eta}$. By IH, $C_{2}=C_{2}^{\prime}[x:=c(c x)]$ and $C_{2}^{\prime} \in \mathcal{R}_{M_{1}}^{\beta \eta}$. Hence $C=$ $\left(M_{1} C_{2}^{\prime}\right)[x:=c(c x)]$ and by lemma $2.5, M_{1} C_{2}^{\prime} \in \mathcal{R}_{M}^{\beta \eta}$.
* Or $M \notin \mathcal{R}^{\beta \eta}$ then by $2, M[x:=c(c x)] \notin \mathcal{R}^{\beta \eta}$.
- Either $C=C_{1} M_{2}[x:=c(c x)]$ and $C_{1} \in \mathcal{R}_{M_{1}[x:=c(c x)]}^{\beta \eta}$. By IH, $C_{1}=C_{1}^{\prime}[x:=c(c x)]$ and $C_{1}^{\prime} \in \mathcal{R}_{M_{1}}^{\beta \eta}$. Hence $C=\left(C_{1}^{\prime} M_{2}\right)[x:=$ $c(c x)]$ and by lemma 2.5, $C_{1}^{\prime} M_{2} \in \mathcal{R}_{M}^{\beta \eta}$.
- Or $C=M_{1}[x:=c(c x)] C_{2}$ and $C_{2} \in \mathcal{R}_{M_{2}[x:=c(c x)]}^{\beta \eta}$. By IH, $C_{2}=C_{2}^{\prime}[x:=c(c x)]$ and $C_{2}^{\prime} \in \mathcal{R}_{M_{1}}^{\beta \eta}$. Hence $C=\left(M_{1} C_{2}^{\prime}\right)[x:=$ $c(c x)]$ and by lemma $2.5, M_{1} C_{2}^{\prime} \in \mathcal{R}_{M}^{\beta \eta}$.
$\Leftarrow)$ Let $C \in \mathcal{R}_{M}^{r}$. Then $C \in \mathcal{C}$ and $\exists R \in \mathcal{R}^{\beta \eta}$ such that $C[R]=M$. So by 2 , $R[x:=c(c x)] \in \mathcal{R}^{\beta \eta}$ and by lemma 2.7, $C[x:=c(c x)][R[x:=c(c x)]]=$ $M[x:=c(c x)]$. Hence, by definition, $C[x:=c(c x)] \in \mathcal{R}_{M[x:=c(c x)]}^{r}$.

5 . We prove this statement by induction on $n \geq 0$.

- Let $n=0$ then trivial.
- let $n=m+1$ such that $m \geq 0$. By lemma 2.5, $\mathcal{R}_{c^{m}(M)}^{\beta \eta}=\left\{C c^{m}(M) \mid C \in\right.$ $\left.\mathcal{R}_{c}^{\beta \eta}\right\} \cup\left\{c(C) \mid C \in \mathcal{R}_{c^{m}(M)}^{\beta \eta}\right\}={ }^{I H}\left\{c^{n}(C) \mid C \in \mathcal{R}_{M}^{\beta \eta}\right\}$.

Lemma 2.10. We prove the statement by case on r.

- Either $r=\beta I$. Since $M \in \Lambda \mathrm{I}_{c}, M \in \Lambda \mathrm{I}$, so $\lambda x . P, Q \in \Lambda \mathrm{I}$. Hence, $x \in F V(P)$ and $M \in \mathcal{R}^{\beta I}$.
- Or $r=\beta \eta$. Trivial.

Lemma 2.11. We prove the statement by induction on the structure of M.

- Let $M \in \mathcal{V} \backslash\{c\}$. Nothing to prove since by lemma 2.5, $\mathcal{R}_{M}^{r}=\varnothing$.
- Let $M=\lambda x . N \in \Lambda \mathrm{I}$. let $C \in \mathcal{R}_{M}^{\beta I}$ then by definition, $\exists R \in \mathcal{R}^{\beta I}$ such that $M=C[R]$. Since $M \notin \mathcal{R}^{\beta I}$, by lemma $2.5, C=\lambda x . C^{\prime}$ such that $C^{\prime} \in \mathcal{R}_{N}^{\beta I}$. So $\lambda x \cdot N=\lambda x . C^{\prime}[R]$ and $N=C^{\prime}[R]$. By IH, $R \in \Lambda \mathrm{I}_{c}$.
- Let $M=\lambda x . N[x:=c(c x)] \in \Lambda \eta_{c}$ such that $N \in \Lambda \eta_{c}$. Let $C \in \mathcal{R}_{M}^{\beta \eta}$ then by definition $\exists R \in \mathcal{R}^{\beta \eta}$ such that $M=C[R]$. By lemma 2.9.3, $C=\lambda x . C^{\prime}$ and $C^{\prime} \in \mathcal{R}_{N[x:=c(c x)]}^{\beta \eta}$. By lemma 2.9.4, $C^{\prime}=C^{\prime \prime}[x:=c(c x)]$ and $C^{\prime \prime} \in \mathcal{R}_{N}^{\beta \eta}$. Since $x \notin F V(R)$, by lemma 2.8, $\lambda x \cdot N[x:=c(c x)]=\left(\lambda x \cdot C^{\prime \prime}[x:=c(c x)]\right)[R]=$ $\lambda x . C^{\prime \prime}[x:=c(c x)][R]=\lambda x \cdot C^{\prime \prime}[R][x:=c(c x)]$ and $N=C^{\prime \prime}[R]$. By IH, $R \in$ $\Lambda \eta_{c}$.
- Let $M=\lambda x . N x \in \Lambda \eta_{c}$ such that $N x \in \Lambda \eta_{c}, x \notin F V(N)$ and $c \neq N$. Let $C \in \mathcal{R}_{M}^{\beta \eta}$ then by definition $\exists R \in \mathcal{R}^{\beta \eta}$ such that $M=C[R]$. Since $M \in \mathcal{R}^{\beta \eta}$, by lemma 2.5 :
- Either $C=\square$ so $\square[R]=R=M$ and $M \in \Lambda \eta_{c}$.
- Or $C=\lambda x . C^{\prime}$ such that $C^{\prime} \in \mathcal{R}_{N x}^{\beta \eta}$. So $M=\lambda x . N x=\lambda x . C^{\prime}[R]$ and $N x=C^{\prime}[R]$. By IH, $R \in \Lambda \eta_{c}$.
- Let $M=c N P \in \mathcal{M}_{c}$ such that $N, P \in \mathcal{M}_{c}$. Let $C \in \mathcal{R}_{M}^{r}$ then by definition $\exists R \in \mathcal{R}^{r}$ such that $M=C[R]$. Since $M, c N \notin \mathcal{R}^{r}$, by lemma 2.5:
- Either $C=c C^{\prime} P$ such that $C^{\prime} \in \mathcal{R}_{N}^{r}$. So $M=c N P=\left(c C^{\prime} P\right)[R]=$ $c C^{\prime}[R] P$ and $N=C^{\prime}[R]$. By IH, $R \in \mathcal{M}_{c}$.
- Or $C=c N C^{\prime}$ such that $C^{\prime} \in \mathcal{R}_{r}^{P}$. So $M=c N P=\left(c N C^{\prime}\right)[R]=$ $c N C^{\prime}[R]$ and $P=C^{\prime}[R]$. By IH, $R \in \mathcal{M}_{c}$.
- Let $M=(\lambda x . N) P \in \mathcal{M}_{c}$ such that $\lambda x . N, P \in \mathcal{M}_{c}$. Let $C \in \mathcal{R}_{M}^{r}$ then by definition $\exists R \in \mathcal{R}^{r}$ such that $M=C[R]$. Since by lemma $2.10, M \in \mathcal{R}^{r}$, by lemma 2.5:
- Either $C=\square$ so $M=\square[R]=R$ and $M \in \mathcal{M}_{c}$.
- Or $C=C^{\prime} P$ such that $C^{\prime} \in \mathcal{R}_{\lambda x . N}^{r}$. So $M=(\lambda x . N) P=\left(C^{\prime} P\right)[R]=$ $C^{\prime}[R] P$ and $\lambda x . N=C^{\prime}[R]$. By IH, $R \in \mathcal{M}_{c}$.
- Or $C=(\lambda x . N) C^{\prime}$ such that $C^{\prime} \in \mathcal{R}_{P}^{r}$. So $M=(\lambda x . N) P=$ $\left((\lambda x . N) C^{\prime}\right)[R]=(\lambda x . N) C^{\prime}[R]$ and $P=C^{\prime}[R]$. By IH, $R \in \mathcal{M}_{c}$.
- Let $M=c N \in \Lambda \eta_{c}$ such that $N \in \Lambda \eta_{c}$. Let $C \in \mathcal{R}_{M}^{\beta \eta}$ then by definition $\exists R \in \mathcal{R}^{\beta \eta}$ such that $M=C[R]$. Since $M \notin \mathcal{R}^{\beta \eta}$, by lemma $2.5, C=c C^{\prime}$ such that $C^{\prime} \in \mathcal{R}_{N}^{\beta \eta}$. So $M=c N=c C^{\prime}[R]$ and $N=C^{\prime}[R]$. By IH, $R \in \Lambda \eta_{c}$.

Lemma 2.12.

1. By induction on $M \rightarrow_{\beta \eta} M^{\prime}$.

- Let $M=\lambda x \cdot N x \rightarrow_{\eta} N=M^{\prime}$ where $x \notin F V(N)$. By lemma 2.4, $N \in \Lambda \eta_{c}$.
- Let $M=(\lambda x . N) P \rightarrow_{\beta} N[x:=P]=M^{\prime}$. By lemmas 2.4 and 2.4.9, $N, P \in \Lambda \eta_{c}$. By lemma 2.4.8, $N[x:=P] \in \Lambda \eta_{c}$.
- Let $M=\lambda x . N \rightarrow_{\beta \eta} \lambda x . N^{\prime}=M^{\prime}$ such that $N \rightarrow_{\beta \eta} N^{\prime}$. By lemma 2.4:
- Either $M=\lambda x \cdot P[x:=c(c x)]$ where $P \in \Lambda \eta_{c}$ and $P[x:=c(c x)] \rightarrow_{\beta \eta}$ N^{\prime}. So by lemma 2.4.9.9c, $N^{\prime}=N^{\prime \prime}[x:=c(c x)]$ and $P \rightarrow{ }_{\beta \eta} N^{\prime \prime}$. By $\mathrm{IH}, N^{\prime \prime} \in \Lambda \eta_{c}$ so by BC, (R1).3, $\lambda x . N^{\prime} \in \Lambda \eta_{c}$.
- Or $M=\lambda x$. Px where $P, P x \in \Lambda \eta_{c}, x \notin F V(P), P \neq c$ and $P x \rightarrow_{\beta \eta}$ N^{\prime}. So by IH, $N^{\prime} \in \Lambda \eta_{c}$. One of two cases holds:
* $P x \rightarrow_{\beta \eta} P^{\prime} x$ where $P \rightarrow_{\beta \eta} P^{\prime}$. By IH, $P^{\prime}, P^{\prime} x \in \Lambda \eta_{c}$. By lemmas 2.4.3 and 2.2.1, $P^{\prime} \neq c$ and $x \notin F V\left(P^{\prime}\right)$. By (R1).4, $\lambda x . P^{\prime} x \in \Lambda \eta_{c}$.
* $P=\lambda y \cdot P_{0}$ and $P x \rightarrow_{\beta} P_{0}[y:=x]$. So $M \rightarrow_{\beta} \lambda x \cdot P_{0}[y:=x]=$ $P \in \Lambda \eta_{c}$.
- Let $M=M_{1} M_{2} \rightarrow_{\beta \eta} M_{1}^{\prime} M_{2}=M^{\prime}$ such that $M_{1} \rightarrow_{\beta \eta} M_{1}^{\prime}$. By lemma 2.4:
- Either $M_{1}=c M_{0}$ and $M_{0}, M_{2} \in \Lambda \eta_{c}$. Then, $M_{1}=c M_{0} \rightarrow_{\beta \eta} c M_{0}^{\prime}=$ M_{1}^{\prime} where $M_{0} \rightarrow_{\beta \eta} M_{0}^{\prime}$. By IH, $M_{0}^{\prime} \in \Lambda \eta_{c}$, so by (R2), $M^{\prime} \in \Lambda \eta_{c}$.
- $\operatorname{Or} M_{1}=\lambda x . M_{0}$ and $M_{1}, M_{2} \in \Lambda \eta_{c}$. By lemma 2.4.9.9a, $M_{0} \in \Lambda \eta_{c}$ and by $\mathrm{IH}, M_{1}^{\prime} \in \Lambda \eta_{c}$.
* Either $M=\left(\lambda x . M_{0}\right) M_{2} \rightarrow_{\beta \eta}\left(\lambda x . M_{0}^{\prime}\right) M_{2}$ where $M_{0} \rightarrow_{\beta \eta} M_{0}^{\prime}$. So $M_{1}^{\prime}=\lambda x . M_{0}^{\prime}$ is a λ-abstraction and by (R3), $M^{\prime} \in \Lambda \eta_{c}$.
* Or $M=\left(\lambda x \cdot M_{1}^{\prime} x\right) M_{2} \rightarrow_{\eta} M_{1}^{\prime} M_{2}$ where $x \notin F V\left(M_{1}^{\prime}\right)$. Since $M_{1} \in \Lambda \eta_{c}$, by lemma 2.4, $M_{1}^{\prime} \neq c$ and $M_{1}^{\prime} \in \Lambda \eta_{c}$. Since $M_{0}=$ $M_{1}^{\prime} x \in \Lambda \eta_{c}$, again by lemma 2.4, either $M_{1}^{\prime}=c M_{1}^{\prime \prime}$ such that $M_{1}^{\prime \prime} \in \Lambda \eta_{c}$ and so by $(\mathrm{R} 2) M^{\prime} \in \Lambda \eta_{c}$, or $M_{1}^{\prime} \in \Lambda \eta_{c}$ is a λ abstraction and so by (R3) $M^{\prime} \in \Lambda \eta_{c}$.
- Let $M=M_{1} M_{2} \rightarrow_{\beta \eta} M_{1} M_{2}^{\prime}=M^{\prime}$ such that $M_{2} \rightarrow_{\beta \eta} M_{2}^{\prime}$. By lemma 2.4, $M_{2} \in \Lambda \eta_{c}$ so by IH, $M_{2}^{\prime} \in \Lambda \eta_{c}$. By lemma 2.4, there are 3 cases:
$-M_{1}=c M_{0}$ where $M_{0} \in \Lambda \eta_{c}$. Then, $M^{\prime} \in \Lambda \eta_{c}$ by (R2).
$-M_{1} \in \Lambda \eta_{c}$ is a λ-abstraction. Then $M^{\prime} \in \Lambda \eta_{c}$ by (R3).
$-M_{1}=c$. Then $M^{\prime} \in \Lambda \eta_{c}$ by (R4).

2. By induction on $M \rightarrow_{\beta I} M^{\prime}$ in a similar fashion to the above.

Lemma 'refncstwo. We prove the statement by induction on $n \geq 0$.

- Let $n=0$ then by definition $\left|c^{n}(M)\right|^{c}=|M|^{c}$.
- Let $n=m+1$ such that $m \geq 0$ then $\left|c^{n}(M)\right|^{c}=\left|c\left(c^{m}(M)\right)\right|^{c}=\left|c^{m}(M)\right|^{c}={ }^{I H}$ $|M|^{c}$.

Lemma 2.16.

- let $P \in \mathcal{V}$. We prove the statement by induction on the structure of M.
- Let $M \in \mathcal{V}$ then $|M|^{c}=M=P$.
- Let $M=\lambda x . N$ then $|M|^{c}=\lambda x .|N|^{c} \neq P$.
- Let $M=M_{1} M_{2}$. If $M_{1}=c$ then $|M|^{c}=\left|M_{2}\right|^{c}$. By IH, $\exists n \geq 0$ such that $M_{2}=c^{n}(P)$. If $M_{1} \neq c$ then $|M|^{c}=\left|M_{1}\right|^{c}\left|M_{2}\right|^{c} \neq P$.
- Let $P=\lambda x . Q$. We prove the statement by induction on the structure of M.
- Let $M \in \mathcal{V}$ then $|M|^{c}=M \neq \lambda x . Q$.
- Let $M=\lambda x . N$ then $|M|^{c}=\lambda x .|N|^{c}$ so $|N|^{c}=Q$.
- Let $M=M_{1} M_{2}$. If $M_{1}=c$ then $|M|^{c}=\left|M_{2}\right|^{c}$. By IH, $\exists n \geq 0$ such that $M_{2}=c^{n}(\lambda x . N)$ and $|N|^{c}=Q$. If $M_{1} \neq c$ then $|M|^{c}=\left|M_{1}\right|^{c}\left|M_{2}\right|^{c} \neq$ $\lambda x . Q$.
- Let $P=P_{1} P_{2}$. We prove the statement by induction on the structure of M.
- Let $M \in \mathcal{V}$ then $|M|^{c}=M \neq P_{1} P_{2}$.
- Let $M=\lambda x . N$ then $|M|^{c}=\lambda x .|N|^{c} \neq P_{1} P_{2}$.
- Let $M=M_{1} M_{2}$. If $M_{1}=c$ then $|M|^{c}=\left|M_{2}\right|^{c}$. By IH, $\exists n \geq 0$ such that $M_{2}=c^{n}\left(M_{2}^{\prime} M_{2}^{\prime \prime}\right),\left|M_{2}^{\prime}\right|^{c}=P_{1}$ and $\left|M_{2}^{\prime \prime}\right|^{c}=P_{2}$. If $M_{1} \neq c$ then $|M|^{c}=\left|M_{1}\right|^{c}\left|M_{2}\right|^{c}=P_{1} P_{2}$ so $\left|M_{1}\right|^{c}=P_{1}$ and $\left|M_{2}\right|^{c}=P_{2}$.

Lemma 2.17. We prove the statement by induction on M.

- Let $M \in \mathcal{V}$ then by lemma $2.5, \mathcal{R}_{M}^{r}=\varnothing$.
- Let $M=\lambda x . N$ then by lemma 2.5:
- Either $M \in \mathcal{R}^{r}$ then:
* Either $C=\square=C^{\prime}$ so it is done.
* Or $C=\square$ and $C^{\prime}=\lambda x . C_{0}^{\prime}$ such that $C_{0}^{\prime} \in \mathcal{R}_{N}^{r}$. Nothing to prove since $\square \neq \lambda x$. $\left|C_{0}^{\prime}\right|_{\mathcal{C}}^{c}$.
* Or $C=\lambda x . C_{0}$ and $C^{\prime}=\lambda x . C_{0}^{\prime}$ such that $C_{0}, C_{0}^{\prime} \in \mathcal{R}_{N}^{r}$. By hypothesis, $\lambda x .\left|C_{0}\right|_{\mathcal{C}}^{c}=\lambda x .\left|C_{0}^{\prime}\right|_{\mathcal{C}}^{c}$ so $\left|C_{0}\right|_{\mathcal{C}}^{c}=\left|C_{0}^{\prime}\right|_{\mathcal{C}}^{c}$. By IH, $C_{0}=C_{0}^{\prime}$ so $C=C^{\prime}$.
- Or $M \notin \mathcal{R}^{r}$ then $C=\lambda x . C_{0}$ and $C^{\prime}=\lambda x . C_{0}^{\prime}$ such that $C_{0}, C_{0}^{\prime} \in \mathcal{R}_{N}^{r}$. By hypothesis, $\lambda x .\left|C_{0}\right|_{\mathcal{C}}^{c}=\lambda x .\left|C_{0}^{\prime}\right|_{\mathcal{C}}^{c}$ so $\left|C_{0}\right|_{\mathcal{C}}^{c}=\left|C_{0}^{\prime}\right|_{\mathcal{C}}^{c}$. By IH, $C_{0}=C_{0}^{\prime}$ so $C=C^{\prime}$.
- Let $M=P Q$ then by lemma 2.5:
- Either $M \in \mathcal{R}^{r}$, so P is a λ-abstraction and:
* Either $C=$$\square=C^{\prime}$ so it is done.
* Or $C=\square$ and $C^{\prime}=C_{0}^{\prime} Q$ such that $C_{0}^{\prime} \in \mathcal{R}_{P}^{r}$. Nothing to prove since $\square \neq\left|C_{0}^{\prime}\right|_{\mathcal{C}}^{c}|Q|^{c}$.
* Or $C=\square$ and $C^{\prime}=P C_{0}^{\prime}$ such that $C_{0}^{\prime} \in \mathcal{R}_{Q}^{r}$. Since P is a λ abstraction, $\square \neq|P|^{c}\left|C_{0}^{\prime}\right|_{\mathcal{C}}^{c}$.
* Or $C=C_{0} Q$ and $C^{\prime}=C_{0}^{\prime} Q$ such that $C_{0}, C_{0}^{\prime} \in \mathcal{R}_{P}^{r}$. Since by hypothesis, $|C|_{\mathcal{C}}^{c}=\left|C_{0}\right|_{\mathcal{C}}^{c}|Q|^{c}=\left|C_{0}^{\prime}\right|_{\mathcal{C}}^{c}|Q|^{c}=\left|C^{\prime}\right|_{\mathcal{C}}^{c}$, then $\left|C_{0}\right|_{\mathcal{C}}^{c}=$ $\left|C_{0}^{\prime}\right|_{c}^{c}$. By $\mathrm{IH}, C_{0}=C_{0}^{\prime}$ so $C=C^{\prime}$.
* Or $C=C_{0} Q$ and $C^{\prime}=P C_{0}^{\prime}$ such that $C_{0} \in \mathcal{R}_{P}^{r}$ and $C_{0}^{\prime} \in \mathcal{R}_{Q}^{r}$. Since P is a λ-abstraction, $|C|_{\mathcal{C}}^{c}=\left|C_{0}\right|_{\mathcal{C}}^{c}|Q|^{c} \neq|P|^{c}\left|C_{0}^{\prime}\right|_{\mathcal{C}}^{c}=\left|C^{\prime}\right|_{\mathcal{C}}^{c}$.
* Or $C=P C_{0}$ and $C^{\prime}=P C_{0}^{\prime}$ such that $C_{0}, C_{0}^{\prime} \in \mathcal{R}_{Q}^{r}$. Since P is a λ-abstraction, by hypothesis, $|C|_{\mathcal{C}}^{c}=|P|^{c}\left|C_{0}\right|_{\mathcal{C}}^{c}=|P|^{c}\left|C_{0}^{\prime}\right|_{\mathcal{C}}^{c}=\left|C^{\prime}\right|_{\mathcal{C}}^{c}$ so $\left|C_{0}\right|_{\mathcal{C}}^{c}=\left|C_{0}^{\prime}\right|_{\mathcal{C}}^{c}$. By IH, $C_{0}=C_{0}^{\prime}$ so $C=C^{\prime}$.
- Or $M \notin \mathcal{R}^{r}$, then:
* Or $C=C_{0} Q$ and $C^{\prime}=C_{0}^{\prime} Q$ such that $C_{0}, C_{0}^{\prime} \in \mathcal{R}_{P}^{r}$. Since by hypothesis, $|C|_{\mathcal{C}}^{c}=\left|C_{0}\right|_{\mathcal{C}}^{c}|Q|^{c}=\left|C_{0}^{\prime}\right|_{\mathcal{C}}^{c}|Q|^{c}=\left|C^{\prime}\right|_{\mathcal{C}}^{c}$, then $\left|C_{0}\right|_{\mathcal{C}}^{c}=$ $\left|C_{0}^{\prime}\right|_{c}^{c}$. By IH, $C_{0}=C_{0}^{\prime}$ so $C=C^{\prime}$.
* Or $C=C_{0} Q$ and $C^{\prime}=P C_{0}^{\prime}$ such that $C_{0} \in \mathcal{R}_{P}^{r}$ and $C_{0}^{\prime} \in \mathcal{R}_{Q}^{r}$. $P=\neq c$, otherwise, by lemma 2.5, $\mathcal{R}_{P}^{r}=\varnothing$. Moreover, $|C|_{\mathcal{C}}^{c}=$ $\left|C_{0}\right|_{\mathcal{C}}^{c}|Q|^{c} \neq|P|^{c}\left|C_{0}^{\prime}\right|^{c}=\left|C^{\prime}\right|_{\mathcal{C}}^{c}$.
* Or $C=P C_{0}$ and $C^{\prime}=P C_{0}^{\prime}$ such that $C_{0}, C_{0}^{\prime} \in \mathcal{R}_{Q}^{r}$. If $P \neq c$ then, by hypothesis, $|C|_{\mathcal{C}}^{c}=|P|^{c}\left|C_{0}\right|_{\mathcal{C}}^{c}=\left.\left.|P|^{c}\right|_{C} ^{\prime}\right|^{c}{ }_{\mathcal{C}}^{c}=\left|C^{\prime}\right|_{\mathcal{C}}^{c}$ so $\left|C_{0}\right|_{\mathcal{C}}^{c}=$ $\left|C_{0}^{\prime}\right|_{c}^{c}$. By IH, $C_{0}=C_{0}^{\prime}$ so $C=C^{\prime}$. If $P=c$ then, by hypothesis, $|C|_{\mathcal{C}}^{c}=\left|C_{0}\right|_{\mathcal{C}}^{c}=\left|C_{0}^{\prime}\right|_{\mathcal{C}}^{c}=\left|C^{\prime}\right|_{\mathcal{C}}^{c}$ so $\left|C_{0}\right|_{\mathcal{C}}^{c}=\left|C_{0}^{\prime}\right|_{\mathcal{C}}^{c}$. By IH, $C_{0}=C_{0}^{\prime}$ so $C=C^{\prime}$.

Lemma 2.18. We prove the statement by induction on the structure of M.

- Let $M \in \mathcal{V}$
- Let $M=x$ then $|M[x:=c(c x)]|^{c}=|c(c x)|^{c}=|x|^{c}$.
- Let $M=y \neq x$ then $|M[x:=c(c x)]|^{c}=|M|^{c}$.
- Let $M=\lambda y \cdot N$ then $|M[x:=c(c x)]|^{c}=\lambda y \cdot|N[x:=c(c x)]|^{c}={ }^{I H} \lambda y \cdot|N|^{c}=$ $|M|^{c}$.
- Let $M=N P$.
- Either $N=c$, so $N[x:=c(c x)]=c$. Then, $|M[x:=c(c x)]|^{c}=\mid P[x:=$ $c(c x)]\left.\right|^{c}={ }^{I H}|P|^{c}=|M|^{c}$.
- Or $N \neq c$, so $N[x:=c(c x)] \neq c$. Then, $|M[x:=c(c x)]|^{c}=\mid N[x:=$ $c(c x)]\left.\right|^{c}|P[x:=c(c x)]|^{c}={ }^{I H}|N|^{c}|P|^{c}=|M|^{c}$.

Lemma 2.19. We prove the statement by induction on the structure of C.

- Let $C=\square$ then $|C[x:=c(c x)]|_{\mathcal{C}}^{c}=\square=|C|_{\mathcal{C}}^{c}$.
- Let $C=\lambda y . C^{\prime}$ then $|C[x:=c(c x)]|_{\mathcal{C}}^{c}=\lambda y .\left|C^{\prime}[x:=c(c x)]\right|_{\mathcal{C}}^{c}={ }^{I H} \lambda y .\left|C^{\prime}\right|_{\mathcal{C}}^{c}=$ $|C|_{c}^{c}$.
- Let $C=C^{\prime} P$ then $|C[x:=c(c x)]|_{\mathcal{C}}^{c}=\left|C^{\prime}[x:=c(c x)]\right|_{\mathcal{C}}^{c}|P[x:=c(c x)]|^{c}={ }^{I H, 2.18}$ $\left|C^{\prime}\right|_{\mathcal{C}}|P|^{c}=|C|_{\mathcal{C}}^{c}$.
- Let $C=P C^{\prime}$.
- Either $P=c$, so $P[x:=c(c x)]=c$. Then, $|C[x:=c(c x)]|_{\mathcal{C}}^{c}=\mid C^{\prime}[x:=$ $c(c x)]\left.\right|_{\mathcal{C}} ^{c}={ }^{I H}\left|C^{\prime}\right|_{\mathcal{C}}^{c}=|C|_{\mathcal{C}}^{c}$.
- Or $P \neq c$, so $P[x:=c(c x)] \neq c$. Then, $|C[x:=c(c x)]|_{\mathcal{C}}^{c}=\mid P[x:=$ $c(c x)]\left.\right|^{c}\left|C^{\prime}[x:=c(c x)]\right|_{\mathcal{C}}^{c}={ }^{I H, 2.18}|P|^{c}\left|C^{\prime}\right|_{\mathcal{C}}^{c}=|C|_{\mathcal{C}}^{c}$.

Lemma 2.20. We prove this lemma by induction on the structure of M.

- Let $M \in \mathcal{V} \backslash\{c\}$.
- Either $M=x$ then $|M[x:=N]|^{c}=|N|^{c}=M\left[x:=|N|^{c}\right]=|M|^{c}[x:=$ $\left.|N|^{c}\right]$.
- Or $M=y \neq x$ then $|M[x:=N]|^{c}=|M|^{c}=M=M\left[x:=|N|^{c}\right]=$ $|M|^{c}\left[x:=|N|^{c}\right]$.
- Let $M=\lambda y . P \in \Lambda \mathrm{I} .|M[x:=N]|^{c}=\lambda y .|P[x:=N]|^{c}={ }^{I H} \quad \lambda y .|P|^{c}[x:=$ $\left.|N|^{c}\right]=|M|^{c}\left[x:=|N|^{c}\right]$.
- Let $M=\lambda y . P[y:=c(c y)] \in \Lambda \eta_{c}$ such that $P \in \Lambda \eta_{c}$. Since $y \notin F V(N)$, $|M[x:=N]|^{c}=\lambda y .|P[y:=c(c y)][x:=N]|^{c}=\lambda y .|P[x:=N][y:=c(c y)]|^{c}={ }^{2.18}$ $\lambda y .|P[x:=N]|^{c}={ }^{I H} \lambda y .|P|^{c}\left[x:=|N|^{c}\right]={ }^{2.18}|P[y:=c(c y)]|^{c}\left[x:=|N|^{c}\right]=$ $|M|^{c}\left[x:=|N|^{c}\right]$.
- Let $M=\lambda y . P y \in \Lambda \eta_{c}$ such that $P y \in \Lambda \eta_{c}, y \notin F V(P)$ and $c \neq N$. $\mid M[x:=$ $N]\left.\right|^{c}=\lambda y \cdot|(P y)[x:=N]|^{c}={ }^{I H} \lambda y \cdot|P y|^{c}\left[x:=|N|^{c}\right]=|M|^{c}\left[x:=|N|^{c}\right]$.
- Let $M=c P Q \in \mathcal{M}_{c}$ such that $P, Q \in \mathcal{M}_{c} . \quad|M[x:=N]|^{c}=\mid P[x:=$ $N]\left.\right|^{c}|Q[x:=N]|^{c}={ }^{I H}|P|^{c}\left[x:=|N|^{c}\right]|Q|^{c}\left[x:=|N|^{c}\right]=\left(|P|^{c}|Q|^{c}\right)[x:=$ $\left.|N|^{c}\right]=|M|^{c}\left[x:=|N|^{c}\right]$.
- Let $M=(\lambda y . P) Q \in \mathcal{M}_{c}$ such that $\lambda y . P, Q \in \mathcal{M}_{c} . \quad|M[x:=N]|^{c}=$ $|(\lambda y . P)[x:=N]|^{c}|Q[x:=N]|^{c}={ }^{I H}|\lambda y . P|^{c}\left[x:=|N|^{c}\right]|Q|^{c}\left[x:=|N|^{c}\right]=$ $\left(|\lambda y \cdot P|^{c}|Q|^{c}\right)\left[x:=|N|^{c}\right]=|M|^{c}\left[x:=|N|^{c}\right]$.
- Let $M=c P \in \Lambda \eta_{c}$ such that $N \in \Lambda \eta_{c} .|M[x:=N]|^{c}=|P[x:=N]|^{c}={ }^{I H}$ $|P|^{c}\left[x:=|N|^{c}\right]=|M|^{c}\left[x:=|N|^{c}\right]$.

Lemma 2.21. We prove this lemma by induction on the structure of M.

- Let $M \in \mathcal{V} \backslash\{c\}$ then $|M|^{c}=M$ and $F V(M) \backslash\{c\}=\{M\}=F V\left(|M|^{c}\right)$.
- Let $M=\lambda y . P \in \Lambda \mathrm{I}$ then $|M|^{c}=\lambda y .|P|^{c} . F V(M) \backslash\{c\}=F V(P) \backslash\{y, c\}={ }^{I H}$ $F V\left(|P|^{c}\right) \backslash\{y\}=F V\left(|M|^{c}\right)$.
- Let $M=\lambda y \cdot P[y:=c(c y)] \in \Lambda \eta_{c}$ such that $P \in \Lambda \eta_{c} .|M|^{c}=\lambda y . \mid P[y:=$ $c(c y)]\left.\right|^{c}={ }^{2.18} \lambda y .|P|^{c} . F V(M) \backslash\{c\}=F V(P[y:=c(c y)]) \backslash\{c, y\}=F V(P) \backslash$ $\{c, y\}={ }^{I H} F V\left(|P|^{c}\right) \backslash\{y\}=F V\left(|M|^{c}\right)$.
- Let $M=\lambda y . P y \in \Lambda \eta_{c}$ such that $P y \in \Lambda \eta_{c}, y \notin F V(P)$ and $c \neq N .|M|^{c}=$ $\lambda y .|P y|^{c} . F V(M) \backslash\{c\}=F V(P y) \backslash\{c, y\}={ }^{I H} F V\left(|P y|^{c}\right) \backslash\{y\}=F V\left(|M|^{c}\right)$.
- Let $M=c P Q \in \mathcal{M}_{c}$ such that $P, Q \in \mathcal{M}_{c} .|M|^{c}=|P|^{c}|Q|^{c} . F V(M) \backslash\{c\}=$ $(F V(P) \cup F V(Q)) \backslash\{c\}=(F V(P) \backslash\{c\}) \cup(F V(Q) \backslash\{c\})=^{I H} F V\left(|P|^{c}\right) \cup$ $F V\left(|Q|^{c}\right)=F V\left(|M|^{c}\right)$.
- Let $M=(\lambda y . P) Q \in \mathcal{M}_{c}$ such that $\lambda y . P, Q \in \mathcal{M}_{c} . \quad|M|^{c}=|\lambda y . P|^{c}|Q|^{c}$. $F V(M) \backslash\{c\}=(F V(\lambda y . P) \cup F V(Q)) \backslash\{c\}=(F V(\lambda y . P) \backslash\{c\}) \cup(F V(Q) \backslash$ $\{c\})={ }^{I H} F V\left(|\lambda y \cdot P|^{c}\right) \cup F V\left(|Q|^{c}\right)=F V\left(|M|^{c}\right)$.
- Let $M=c P \in \Lambda \eta_{c}$ such that $N \in \Lambda \eta_{c} . \quad|M|^{c}=|P|^{c} . \quad F V(M) \backslash\{c\}=$ $F V(P) \backslash\{c\}={ }^{I H} F V\left(|P|^{c}\right)=F V\left(|M|^{c}\right)$.

Lemma 2.22. We prove the lemma by induction on the structure of M.

- Let $M \in \mathcal{V} \backslash\{c\}$ then $|M|^{c}=M \in \mathcal{V} \backslash\{c\} \subseteq \Lambda \mathrm{I}$.
- let $M=\lambda x . N$ then $|M|^{c}=\lambda x .|N|^{c}$. By (BC), $x \neq c$. Since $N \in \Lambda \mathrm{I}_{c}$, by IH, $|N|^{c} \in \Lambda$ I. Since $x \in F V(N)$, by lemma 2.21, $x \notin F V\left(|N|^{c}\right)$, so $|M|^{c} \in \Lambda$ I.
- Let $M=c P Q$ then $|M|^{c}=|P|^{c}|Q|^{c}$. Since $P, Q \in \Lambda \mathrm{I}_{c}$, by IH, $|P|^{c},|Q|^{c} \in \Lambda \mathrm{I}$, hence $|M|^{c} \in \Lambda \mathrm{I}$.
- Let $M=(\lambda x . P) Q$ then $|M|^{c}=|\lambda x . P|^{c}|Q|^{c}$. Since $\lambda x . P, Q \in \Lambda \mathrm{I}_{c}$, by IH , $|\lambda x . P|^{c},|Q|^{c} \in \Lambda \mathrm{I}$, hence $|M|^{c} \in \Lambda \mathrm{I}$.

Lemma 2.23. We prove this lemma by case on r.

- Either $r=\beta I$, so $R=(\lambda x . M) N$ such that $x \in F V(M)$. By (BC), $x \neq c$. Since $R \in \Lambda \mathrm{I}_{c}$ by lemma 2.4, $(\lambda x . M), N \in \Lambda \mathrm{I}_{c}$ and again by lemma 2.4, $M \in \Lambda \mathrm{I}_{c}$. By lemma 2.21, $x \in F V\left(|M|^{c}\right)$, so $|R|^{c}=\left(\lambda x .|M|^{c}\right)|N|^{c} \in \mathcal{R}^{\beta I}$. $|M|^{c}\left[x:=|N|^{c}\right]={ }^{2.20}|M[x:=N]|^{c}$ is the contractum of $|R|^{c}$ and $M[x:=N]$ is the contractum of R.
- Or $r=\beta \eta$, so $R \in \mathcal{R}^{\beta \eta}$.
- Either $R \in \mathcal{R}^{\beta}$, so $R=(\lambda x . M) N$. By (BC), $x \neq c$. Since $R \in \Lambda \eta_{c}$ by lemma 2.4, $(\lambda x . M), N \in \Lambda \eta_{c}$ and again by lemma $2.4, M \in \Lambda \eta_{c}$. $|R|^{c}=\left(\lambda x .|M|^{c}\right)|N|^{c} \in \mathcal{R}^{\beta \eta} .|M|^{c}\left[x:=|N|^{c}\right]={ }^{2.20}|M[x:=N]|^{c}$ is the contractum of $|R|^{c}$ and $M[x:=N]$ is the contractum of R.
- Or $R \in \mathcal{R}^{\beta}$, so $R=\lambda x . M x$ such that $x \notin F V(M)$. By (BC), $x \neq c$. Since $R \in \Lambda \eta_{c}$, by lemma 2.4, $M, M x \in \Lambda \eta_{c}$ and again by lemma 2.4, $M \neq c$. By lemma 2.21, $x \notin F V\left(|M|^{c}\right)$, so $|R|^{c}=\lambda x .|M|^{c} x \in \mathcal{R}^{\beta \eta}$. Hence, $|M|^{c}$ is the contractum of $|R|^{c}$ and M is the contractum of R.

Lemma 2.24. We prove the statement by induction on the structure of M.

- Let $M \in \mathcal{V} \backslash\{c\}$ then by lemma 2.5, $\mathcal{R}_{M}^{r}=\varnothing$.
- Let $M=\lambda y . P \in \Lambda \mathrm{I}$. Let $C \in \mathcal{R}_{M}^{\beta I}$ then $\exists R \in \mathcal{R}^{\beta I}$ such that $M=C[R]$. Since $M \notin \mathcal{R}^{\beta I}$, by lemma 2.5, $C=\lambda y . C^{\prime}$ such that $C^{\prime} \in \mathcal{R}_{P}^{\beta I}$. So, $\lambda y . P=$ $\lambda y \cdot C^{\prime}[R]$ and $P=C^{\prime}[R]$. By IH, $|P|^{c}=\left|C^{\prime}\right|^{c}{ }_{c}\left[|R|^{c}\right]$. Hence, $|M|^{c}=\lambda y .|P|^{c}=$ $\lambda y .\left|C^{\prime}\right|_{\mathcal{C}}^{c}\left[|R|^{c}\right]=\left(\lambda y .\left|C^{\prime}\right|_{\mathcal{C}}^{c}\right)\left[|R|^{c}\right]=|C|_{\mathcal{C}}^{c}\left[|R|^{c}\right]$.
- Let $M=\lambda y \cdot P[y:=c(c y)] \in \Lambda \eta_{c}$ such that $P \in \Lambda \eta_{c}$. Let $C \in \mathcal{R}_{M}^{\beta \eta}$ then by definition, $\exists R \in \mathcal{R}^{\beta \eta}$ such that $M=C[R]$. By lemma 2.9.3, $C=\lambda y . C^{\prime}$ and $C^{\prime} \in \mathcal{R}_{P[y:=c(c y)]}^{\beta \eta}$. By lemma 2.9.4, $C^{\prime}=C^{\prime \prime}[y:=c(c y)]$ and $C^{\prime \prime} \in \mathcal{R}_{P}^{\beta \eta}$. Since $y \notin F V(R), \lambda y \cdot P[y:=c(c y)]=\lambda y \cdot C^{\prime \prime}[y:=c(c y)][R]={ }^{2.8} \lambda y \cdot C^{\prime \prime}[R][y:=$ $c(c y)]$ and $P=C^{\prime \prime}[R]$. By IH, $|P|^{c}=\left|C^{\prime \prime}\right|_{\mathcal{C}}^{c}\left[|R|^{c}\right]$. Hence, $|M|^{c}=\lambda y \cdot \mid P[y:=$ $c(c y)]\left.\right|^{c}={ }^{2.18} \lambda y .|P|^{c}={ }^{I H} \lambda y .\left.\left|C^{\prime \prime}\right|\right|_{\mathcal{C}} ^{c}\left[|R|^{c}\right]={ }^{2.19} \lambda y .\left|C^{\prime \prime}[y:=c(c y)]\right|_{\mathcal{C}}^{c}\left[|R|^{c}\right]=$ $\left(\lambda y .\left|C^{\prime \prime}[y:=c(c y)]\right|_{\mathcal{C}}^{c}\right)\left[|R|^{c}\right]=|C|_{\mathcal{C}}^{c}\left[|R|^{c}\right]$.
- Let $M=\lambda y . P y \in \Lambda \eta_{c}$ such that $P y \in \Lambda \eta_{c}, y \notin F V(P)$ and $c \neq N$. let $C \in \mathcal{R}_{M}^{\beta \eta}$ then by definition, $\exists R \in \mathcal{R}^{\beta \eta}$ such that $M=C[R]$. Since $M \in \mathcal{R}^{\beta \eta}$, by lemma 2.5 :
- Either $C=\square$ then $M=C[R]=\square[R]=R$ and $|M|^{c}=\square\left[|M|^{c}\right]=$ $|\square|_{\mathcal{C}}^{c}\left[|M|^{c}\right]=|\square|_{\mathcal{C}}^{c}\left[|R|^{c}\right]$.
- Or $C=\lambda y . C^{\prime}$ such that $C^{\prime} \in \mathcal{R}_{P y}^{\beta \eta}$. So, $\lambda y . P y=\lambda y . C^{\prime}[R]$ and $P y=$ $C^{\prime}[R]$. Hence, $|M|^{c}=\lambda y .|P y|^{c}={ }^{I H} \lambda y .\left|C^{\prime}\right|_{\mathcal{C}}^{c}\left[|R|^{c}\right]=|C|_{\mathcal{C}}^{c}\left[|R|^{c}\right]$.
- Let $M=c P Q \in \mathcal{M}_{c}$ such that $P, Q \in \mathcal{M}_{c}$. let $C \in \mathcal{R}_{M}^{r}$ then by definition, $\exists R \in \mathcal{R}^{R}$ such that $M=C[R]$. Since $M, c P \notin \mathcal{R}^{r}$, by lemma 2.5:
- Either $C=c C^{\prime} Q$ such that $C^{\prime} \in \mathcal{R}_{P}^{r}$. So, $c P Q=c C^{\prime}[R] Q$ and $P=$ $C^{\prime}[R]$. Hence, $|M|^{c}=|P|^{c}|Q|^{c}={ }^{I H}\left|C^{\prime}\right|{ }_{\mathcal{C}}^{c}\left[|R|^{c}\right]|Q|^{c}=\left(\left|C^{\prime}\right|_{\mathcal{C}}^{c}|Q|^{c}\right)\left[|R|^{c}\right]=$ $|C|_{\mathcal{C}}^{c}\left[|R|^{c}\right]$.
- Or $C=c P C^{\prime}$ such that $C^{\prime} \in \mathcal{R}_{Q}^{r}$. So, $c P Q=c P C^{\prime}[R]$ and $Q=$ $C^{\prime}[R]$. Hence, $|M|^{c}=|P|^{c}|Q|^{c}={ }^{I H}|P|^{c}\left|C^{\prime}\right|_{\mathcal{C}}^{c}\left[|R|^{c}\right]=\left(|P|^{c}\left|C^{\prime}\right|_{\mathcal{C}}^{c}\right)\left[|R|^{c}\right]=$ $|C|_{\mathcal{C}}^{c}\left[|R|^{c}\right]$.
- Let $M=(\lambda y . P) Q \in \mathcal{M}_{c}$ such that $\lambda y . P, Q \in \mathcal{M}_{c}$. Let $C \in \mathcal{R}_{M}^{r}$ then by definition, $\exists R \in \mathcal{R}^{r}$ such that $M=C[R]$. Since by lemma $2.11, M \in \mathcal{R}^{r}$, by lemma 2.5:
- Either $C=\square$ then $M=C[R]=\square[R]=R$ and $|M|^{c}=\square\left[|M|^{c}\right]=$ $|\square|_{\mathcal{C}}^{c}\left[|M|^{c}\right]=|\square|_{\mathcal{C}}^{c}\left[|R|^{c}\right]$.
- Or $C=C^{\prime} Q$ such that $C^{\prime} \in \mathcal{R}_{\lambda y . P}^{r}$. So, $(\lambda y . P) Q=C^{\prime}[R] Q$ and $\lambda y . P=$ $C^{\prime}[R]$. Hence, $|M|^{c}=|\lambda y \cdot P|^{c}|Q|^{c}={ }^{I H}\left|C^{\prime}\right|_{\mathcal{C}}^{c}\left[|R|^{c}\right]|Q|^{c}=\left(\left|C^{\prime}\right|_{\mathcal{C}}^{c}|Q|^{c}\right)\left[|R|^{c}\right]=|C|_{\mathcal{C}}^{c}\left[|R|^{c}\right]$.
- Or $C=(\lambda y . P) C^{\prime}$ such that $C^{\prime} \in \mathcal{R}_{Q}^{r}$. So, $(\lambda y . P) Q=(\lambda y . P) C^{\prime}[R]$ and $Q=C^{\prime}[R]$. Now, $|M|^{c}=|\lambda y \cdot P|^{c}|Q|^{c}={ }^{I H}$
$|\lambda y . P|^{c}\left|C^{\prime}\right|_{\mathcal{C}}^{c}\left[|R|^{c}\right]=\left(|\lambda y . P|^{c}\left|C^{\prime}\right|_{\mathcal{C}}^{c}\right)\left[|R|^{c}\right]=|C|_{\mathcal{C}}^{c}\left[|R|^{c}\right]$.
- Let $M=c P \in \Lambda \eta_{c}$ such that $N \in \Lambda \eta_{c}$. Let $C \in \mathcal{R}_{M}^{\beta \eta}$ then $\exists R \in \mathcal{R}^{\beta \eta}$ such that $M=C[R]$. Since $M \notin \mathcal{R}^{\beta \eta}$, by lemma 2.5, $C=c C^{\prime}$ such that $C^{\prime} \in \mathcal{R}_{P}^{\beta \eta}$. $c P=c C^{\prime}[R]$ and $P=C^{\prime}[R] .|M|^{c}=|P|^{c}={ }^{I H}\left|C^{\prime}\right|_{\mathcal{C}}^{c}\left[|R|^{c}\right]=|C|_{\mathcal{C}}^{c}\left[|R|^{c}\right]$.

Lemma 2.25. Since $C \in \mathcal{R}_{M}^{r}$, then by definition, $\exists R \in \mathcal{R}^{r}$ such that $C[R]=M$. By lemma 2.11, $R \in \mathcal{M}_{c}$. By lemma 2.23, $|R|^{c} \in \mathcal{R}^{r}$. By lemma 2.24, $|M|^{c}=$ $|C|_{\mathcal{C}}^{c}\left[|R|^{c}\right]$. So by definition, $|C|_{\mathcal{C}}^{c} \in \mathcal{R}_{M}^{r}$ and $|C|_{\mathcal{C}}^{c}\left[|R|^{c}\right] \xrightarrow{|C|_{\mathcal{C}}^{c}}{ }_{r}|C|_{\mathcal{C}}^{c}\left[R^{\prime \prime}\right]$ such that $R^{\prime \prime}$ is the contractum of $|R|^{c}$. So, by lemma 2.23, $R^{\prime \prime}=\left|R^{\prime}\right|^{c}$ and R^{\prime} is the contractum of R. By lemma 2.24, $|C|_{\mathcal{C}}^{c}\left[\left|R^{\prime}\right|^{c}\right]=\left|C\left[R^{\prime}\right]\right|^{c}$.

Lemma 2.26. Let $C \in \mathcal{R}_{M}^{r}$, then by definition, $\exists R \in \mathcal{R}^{r}$ such that $M=C[R]$. So $M^{\prime}=C\left[R^{\prime}\right]$ such that R^{\prime} is the contractum of R. By lemma $2.25,|M|^{c}=$ $|C[R]|^{c} \xrightarrow{|C|_{C}^{c}}{ }_{r}\left|C\left[R^{\prime}\right]\right|^{c}=\left|M^{\prime}\right|^{c}$.

Lemma 2.27. $\mathrm{By}(\mathrm{BC}), x \neq c$. The proof is by induction on the structure of M_{1}.

- Let $M_{1} \in \mathcal{V}$. Then $M_{1}=\left|M_{1}\right|^{c}=\left|M_{2}\right|^{c}=M_{2}$.
- Either $M_{1}=x$, then $M_{1}\left[x:=N_{1}\right]=N_{1}$ and $M_{2}\left[x:=N_{2}\right]=N_{2}$. By hypothesis $\left|\mathcal{R}_{N_{1}}^{r}\right|_{\mathcal{C}}^{c} \subseteq\left|\mathcal{R}_{N_{2}}^{r}\right|_{\mathcal{C}}^{\mathcal{C}}$
- Or $M_{1}=y \neq x$ then $M_{1}\left[x:=N_{1}\right]=y=M_{2}\left[x:=N_{2}\right]$.
- Let $M_{1}=\lambda y \cdot M_{1}^{\prime} \in \Lambda \mathrm{I}_{c}$ then $\left|M_{1}\right|^{c}=\lambda y \cdot M_{1}^{\prime}=\left|M_{2}\right|^{c}$. By lemma 2.16 and since $M_{2} \in \Lambda \mathrm{I}_{c}, M_{2}=\lambda y \cdot M_{2}^{\prime}$ such that $\left|M_{2}^{\prime}\right|^{c}=\left|M_{1}^{\prime}\right|^{c}$. Since $M_{1}, M_{2} \in$ $\Lambda \mathrm{I}_{c}$ and are λ-abstractions, $M_{1} N_{1}, M_{2} N_{2} \in \Lambda \mathrm{I}_{c}$. Since $\left|M_{1}\right|^{c}=\lambda y .\left|M_{1}^{\prime}\right|^{c}=$ $\lambda y .\left|M_{2}^{\prime}\right|^{c}=\left|M_{2}\right|^{c},\left|M_{1}^{\prime}\right|^{c}=\left|M_{2}^{\prime}\right|^{c}$. By lemma 2.5, $\mathcal{R}_{M_{1}}^{\beta I}=\left\{\lambda y . C \mid C \in \mathcal{R}_{M_{1}^{\prime}}^{\beta I}\right\}$ and $\mathcal{R}_{M_{2}}^{\beta I}=\left\{\lambda y . C \mid C \in \mathcal{R}_{M_{2}^{\prime}}^{\beta I}\right\}$. So, $\left|\mathcal{R}_{M_{1}}^{\beta I}\right|_{\mathcal{C}}^{c}=\left\{\lambda y .\left.C|C \in| \mathcal{R}_{M_{1}^{\prime}}^{\beta I}\right|_{\mathcal{C}} ^{c}\right\}$ and $\left|\mathcal{R}_{M_{2}}^{\beta I}\right|_{\mathcal{C}}^{c}=\left\{\lambda y .\left.C|C \in| \mathcal{R}_{M_{2}^{\prime}}^{\beta I}\right|_{\mathcal{C}} ^{c}\right\}$. Let $C \in\left|\mathcal{R}_{M_{1}^{\prime}}^{\beta I}\right|^{c}{ }_{\mathcal{C}}^{c}$, then $\lambda y . C \in\left|\mathcal{R}_{M_{1}}^{\beta I}\right|_{\mathcal{C}}^{c} \subseteq$ $\left|\mathcal{R}_{M_{2}}^{\beta I}\right|^{c}$. . So $C \in\left|\mathcal{R}_{M_{2}^{\prime}}^{\beta I}\right|_{\mathcal{C}}^{c}$, i.e. $\left|\mathcal{R}_{M_{1}^{\prime}}^{\beta I}\right|_{\mathcal{C}}^{c} \subseteq\left|\mathcal{R}_{M_{2}^{\prime}}^{\beta I}\right|_{\mathcal{C}}^{c}$. By IH, $\left|\mathcal{R}_{M_{1}^{\prime}\left[x:=N_{1}\right]}\right|^{c} \subseteq$ $\left|\mathcal{R}_{M_{2}^{\prime}\left[x:=N_{2}\right]}^{\beta I}\right|^{c}$. . Since $M_{1}\left[x:=N_{1}\right]=\lambda y \cdot M_{1}^{\prime}\left[x:=N_{1}\right]$ and $M_{2}\left[x:=N_{2}\right]=$ $\lambda y \cdot M_{2}^{\prime}\left[x:=N_{2}\right]$, by lemma 2.5, $\mathcal{R}_{M_{1}\left[x:=N_{1}\right]}^{\beta I}=\left\{\lambda y \cdot C \mid C \in \mathcal{R}_{M_{1}^{\prime}\left[x:=N_{1}\right]}^{\beta I}\right\}$ and $\mathcal{R}_{M_{2}\left[x:=N_{2}\right]}^{\beta I}=\left\{\lambda y . C \mid C \in \mathcal{R}_{M_{2}^{\prime}\left[x:=N_{2}\right]}^{\beta I}\right\}$. So $\left|\mathcal{R}_{M_{1}\left[x:=N_{1}\right]}^{\beta I}\right|_{\mathcal{C}}^{c}=\{\lambda y . C \mid C \in$ $\left.\left|\mathcal{R}_{M_{1}^{\prime}\left[x:=N_{1}\right]}^{\beta I}\right|_{\mathcal{C}}^{c}\right\}$ and $\left|\mathcal{R}_{M_{2}\left[x:=N_{2}\right]}^{\beta I}\right|_{\mathcal{C}}^{c}=\left\{\lambda y .\left.C|C \in| \mathcal{R}_{M_{2}^{\prime}\left[x:=N_{2}\right]}\right|^{c}{ }_{\mathcal{C}}\right\}$. Let $C \in$ $\left|\mathcal{R}_{M_{1}\left[x:=N_{1}\right]}^{\beta I}\right|_{\mathcal{C}}^{c}$ then $C=\lambda y . C^{\prime}$ such that $\left.C^{\prime} \in\left|\mathcal{R}_{M_{1}^{\prime}\left[x:=N_{1}\right]}^{\beta I}\right|^{c} \subseteq \mid \mathcal{R}_{M_{2}^{\prime}\left[x:=N_{2}\right]}^{\beta I}\right]^{c}$. So $C \in\left|\mathcal{R}_{M_{2}\left[x:=N_{2}\right]}^{\beta I}\right|^{c}$.
- Let $M_{1}=\lambda y \cdot M_{1}^{\prime}[y:=c(c y)] \in \Lambda \eta_{c}$ such that $M_{1}^{\prime} \in \Lambda \eta_{c}$, then $\left|M_{1}\right|^{c}={ }^{2.18}$ $\lambda y \cdot\left|M_{1}^{\prime}\right|^{c}$. We prove the statement by induction on the structure of M_{2}.
- Let $M_{2} \in \mathcal{V} \backslash\{c\}$ then $\left|M_{2}\right|^{c}=M_{2} \neq \lambda y .\left|M_{1}^{\prime}\right|^{c}$.
- Let $M_{2}=\lambda y \cdot M_{2}^{\prime}[y:=c(c y)]$ such that $M_{2}^{\prime} \in \Lambda \eta_{c}$, so $M_{1} N_{1}, M_{2} N_{2} \in$ $\Lambda \eta_{c}$. Since $\left|M_{1}\right|^{c}=\lambda y .\left|M_{1}^{\prime}[y:=c(c y)]\right|^{c}=\lambda y .\left|M_{2}^{\prime}[y:=c(c y)]\right|^{c}=$ $\left|M_{2}\right|^{c},\left|M_{1}^{\prime}[y:=c(c y)]\right|^{c}=\left|M_{2}^{\prime}[y:=c(c y)]\right|^{c} . \quad \mathcal{R}_{M_{1}}^{\beta \eta}=^{2.9 .3}\{\lambda y . C \mid C \in$ $\left.\mathcal{R}_{M_{1}^{\prime}[y:=c(c y)]}^{\beta \eta}\right\} . \mathcal{R}_{M_{2}}^{\beta \eta}={ }^{2.9 .3}\left\{\lambda y . C \mid C \in \mathcal{R}_{M_{2}^{\prime}[y:=c(c y)]}^{\beta \eta}\right\}$.
So $\left|\mathcal{R}_{M_{1}}^{\beta \eta}\right|_{\mathcal{C}}^{c}=\left\{\lambda y . C|C \in| \mathcal{R}_{M_{1}^{\prime}[y:=c(c y)]}^{\beta \eta}{ }^{c}{ }^{c}\right\}$ and $\left|\mathcal{R}_{M_{2}}^{\beta \eta}\right|_{\mathcal{C}}^{c}=\{\lambda y . C \mid C \in$ $\left.\left|\mathcal{R}_{M_{2}^{\prime}[y:=c(c y)]}^{\beta \eta}\right|^{c}\right\}$. Let $C \in\left|\mathcal{R}_{M_{1}^{\prime}[y:=c(c y)]}^{\beta \eta}\right|^{c}$ © then $\lambda y . C \in r d b e E M_{1} \subseteq$
$\left|\mathcal{R}_{M_{2}}^{\beta \eta}\right|_{\mathcal{C}}^{c}$, so $C \in\left|\mathcal{R}_{M_{2}^{\prime}[y:=c(c y)]}^{\beta \eta}\right|^{c}$, i.e. $\left|\mathcal{R}_{M_{1}^{\prime}[y:=c(c y)]}^{\beta \eta}\right|^{c} \subseteq\left|\mathcal{R}_{M_{2}^{\prime}[y:=c(c y)]}^{\beta \eta}\right|^{c}$. By IH, $\left|\mathcal{R}_{M_{1}^{\prime}[y:=c(c y)]\left[x:=N_{1}\right]}\right|^{\mathcal{C}} \mathcal{C}=\left|\mathcal{R}_{M_{2}^{\prime}[y:=c(c y)]\left[x:=N_{2}\right]}^{\beta \eta}\right|^{\mathcal{C}}$.
Since $M_{1}\left[x:=N_{1}\right]=\lambda y \cdot M_{1}^{\prime}[y:=c(c y)]\left[x:=N_{1}\right]=\lambda y \cdot M_{1}^{\prime}\left[x:=N_{1}\right][y:=$ $c(c y)]$ and $M_{2}\left[x:=N_{2}\right]=\lambda y \cdot M_{2}^{\prime}[y:=c(c y)]\left[x:=N_{2}\right]=\lambda y \cdot M_{2}^{\prime}[x:=$ $\left.N_{2}\right][y:=c(c y)], \mathcal{R}_{M_{1}\left[x:=N_{1}\right]}^{\beta \eta}=^{2.9 .3}\left\{\lambda y . C \mid C \in \mathcal{R}_{M_{1}^{\prime}[y:=c(c y)]\left[x:=N_{1}\right]}^{\beta \eta}\right\}$ and $\mathcal{R}_{M_{2}\left[x:=N_{2}\right]}^{\beta \eta}={ }^{2.9 .3}\left\{\lambda y . C \mid C \in \mathcal{R}_{M_{2}^{\prime}[y:=c(c y)]\left[x:=N_{2}\right]}^{\beta \eta}\right\}$. So $\left|\mathcal{R}_{M_{1}\left[x:=N_{1}\right]}^{\beta \eta}\right|^{c}=$ $\left\{\lambda y .\left.C|C \in| \mathcal{R}_{M_{1}^{\prime}[y:=c(c y)]\left[x:=N_{1}\right]}^{\beta \eta}\right|^{c}\right\}$ and $\left|\mathcal{R}_{M_{2}\left[x:=N_{2}\right]}^{\beta \eta}\right|^{c}{ }_{\mathcal{C}}=\{\lambda y . C \mid C \in$ $\left.\mid \mathcal{R}_{M_{2}^{\prime}[y:=c(c y)]\left[x:=N_{2}\right]}^{\beta \eta}{ }_{c}^{c}\right\}$. Let $C \in\left|\mathcal{R}_{M_{1}\left[x:=N_{1}\right]}^{\beta I}\right|_{\mathcal{C}}^{c}$ then $C=\lambda y . C^{\prime} \in$ $\left|\mathcal{R}_{M_{2}\left[x:=N_{2}\right]}^{\beta I}\right|^{c}$ C and $C^{\prime} \in\left|\mathcal{R}_{M_{1}^{\prime}[y:=c(c y)]\left[x:=N_{1}\right]}^{\beta I}{ }^{c} \subseteq\right| \mathcal{R}_{M_{2}^{\prime}[y:=c(c y)]\left[x:=N_{2}\right]}^{\beta I}{ }^{c}$.
- Let $M_{2}=\lambda y . M_{2}^{\prime} y$ such that $M_{2}^{\prime} y \in \Lambda \eta_{c}, y \notin F V\left(M_{2}^{\prime}\right)$ and $M_{2}^{\prime} \neq c$, so $M_{1} N_{1}, M_{2} N_{2} \in \Lambda \eta_{c}$. Since $\left|M_{1}\right|^{c}=\lambda y .\left|M_{1}^{\prime}[y:=c(c y)]\right|^{c}=\lambda y .\left|M_{2}^{\prime} y\right|^{c}=$ $\left|M_{2}\right|^{c},\left|M_{1}^{\prime}[y:=c(c y)]\right|^{c}=\left|M_{2}^{\prime} y\right|^{c} . \mathcal{R}_{M_{1}}^{\beta \eta}={ }^{2.9 .3}\left\{\lambda y . C \mid C \in \mathcal{R}_{M_{1}^{\prime}[y:=c(c y)]}^{\beta \eta}\right\}$ Since $M_{2} \in \mathcal{R}^{\beta \eta}$, by lemma 2.5, $\mathcal{R}_{M_{2}}^{\beta \eta}=\{\square\} \cup\left\{\lambda y . C \mid C \in \mathcal{R}_{M_{2}^{\prime} y}^{\beta \eta}\right\}$. So $\left|\mathcal{R}_{M_{1}}^{\beta \eta}\right|_{\mathcal{C}}^{c}=\left\{\lambda y .\left.C|C \in| \mathcal{R}_{M_{1}^{\prime}[y:=c(c y)]}^{\beta \eta}\right|^{c}\right\}$ and $\left|\mathcal{R}_{M_{2}}^{\beta \eta}\right|_{\mathcal{C}}^{c}=\{\square\} \cup\{\lambda y . C \mid C \in$ $\left.\left|\mathcal{R}_{M_{2}^{\prime} y}^{\beta \eta}\right|^{c}\right\}$. Let $C \in\left|\mathcal{R}_{M_{1}^{\prime}[y:=c(c y)]}^{\beta \eta}\right|^{c}{ }^{c}$. then $\lambda y . C \in \operatorname{rdbe} E M_{1} \subseteq\left|\mathcal{R}_{M_{2}}^{\beta \eta}\right|_{\mathcal{C}}^{c}$, so $C \in\left|\mathcal{R}_{M_{2}^{\prime} y}^{\beta \eta}\right|^{c}$, i.e. $\left|\mathcal{R}_{M_{1}^{\prime}[y:=c(c y)]}^{\beta \eta}\right|^{c}{ }_{\mathcal{C}} \subseteq\left|\mathcal{R}_{M_{2}^{\prime} y}^{\beta \eta}\right|_{\mathcal{C}}^{c}$.
By IH, $\left|\mathcal{R}_{M_{1}^{\prime}[y:=c(c y)]\left[x:=N_{1}\right]}\right|^{c}{ }^{c}{ }^{\beta}=\left|\mathcal{R}_{\left(M_{2}^{\prime} y\right)\left[x:=N_{2}\right]}^{\beta \eta}\right|^{c}$. Since $M_{1}\left[x:=N_{1}\right]=$ $\lambda y \cdot M_{1}^{\prime}[y:=c(c y)]\left[x:=N_{1}\right]=\lambda y \cdot M_{1}^{\prime}\left[x:=N_{1}\right][y:=c(c y)], M_{2}[x:=$ $\left.N_{2}\right]=\lambda y \cdot\left(M_{2}^{\prime} y\right)\left[x:=N_{2}\right]=\lambda y \cdot M_{2}^{\prime}\left[x:=N_{2}\right] y$ and $y \notin F V\left(N_{2}\right)$, we have $M_{2}\left[x:=N_{2}\right] \in \mathcal{R}^{\beta \eta}, \mathcal{R}_{M_{1}\left[x:=N_{1}\right]}^{\beta \eta}=^{2.9 .3}\left\{\lambda y . C \mid C \in \mathcal{R}_{M_{1}^{\prime}[y:=c(c y)]\left[x:=N_{1}\right]}^{\beta \eta}\right\}$ and $\mathcal{R}_{M_{2}\left[x:=N_{2}\right]}^{\beta \eta}=\{\square\} \cup\left\{\lambda y . C \mid C \in \mathcal{R}_{\left(M_{2}^{\prime} y\right)\left[x:=N_{2}\right]}^{\beta \eta}\right\}$.
So $\left|\mathcal{R}_{M_{1}\left[x:=N_{1}\right]}^{\beta \eta}\right|_{\mathcal{C}}^{c}=\left\{\lambda y .\left.C|C \in| \mathcal{R}_{M_{1}^{\prime}[y:=c(c y)]\left[x:=N_{1}\right]}\right|_{\mathcal{C}} ^{c}\right\}$ and
$\left.\mid \mathcal{R}_{M_{2}\left[x:=N_{2}\right]}^{\beta \eta}\right]_{\mathcal{C}}^{c}=\{\square\} \cup\left\{\lambda y .\left.C|C \in| \mathcal{R}_{\left(M_{2}^{\prime} y\right)\left[x:=N_{2}\right]}^{\beta \eta}\right|^{c}\right\}$.
Let $C \in\left|\mathcal{R}_{M_{1}\left[x:=N_{1}\right]}\right|^{c}$ C then $C=\lambda y . C^{\prime}$ such that $\left.C^{\prime} \in\left|\mathcal{R}_{M_{1}^{\prime}[y:=c(c y)]\left[x:=N_{1}\right]}^{\beta I}\right|^{c} \subseteq \mid \mathcal{R}_{\left(M_{2}^{\prime} y\right)\left[x:=N_{2}\right]}^{\beta I}\right]^{c}$. So $C \in\left|\mathcal{R}_{M_{2}\left[x:=N_{2}\right]}^{\beta I}\right|^{c}$.
- Let $M_{2}=c P_{2} Q_{2}$ such that $P_{2}, Q_{2} \in \Lambda \eta_{c}$, then $\left|M_{2}\right|^{c}=\left|P_{2}\right|^{c}\left|Q_{2}\right|^{c} \neq$ $\lambda y .\left|M_{1}^{\prime}\right|^{c}$.
- Let $M_{2}=P_{2} Q_{2}$ such that $P_{2}, Q_{2} \in \Lambda \eta_{c}$ and P_{2} is a λ-abstraction, then $\left|M_{2}\right|^{c}=\left|P_{2}\right|^{c}\left|Q_{2}\right|^{c} \neq \lambda y .\left|M_{1}^{\prime}\right|^{c}$.
- Let $M_{2}=c M_{2}^{\prime}$ such that $M_{2}^{\prime} \in \Lambda \eta_{c}$. So $\left|M_{2}\right|^{c}=\left|M_{2}^{\prime}\right|^{c}$. By lemma 2.9.5, $\mathcal{R}_{M_{2}}^{\beta \eta}=\left\{c C \mid C \in \mathcal{R}_{M_{2}^{\prime}}^{\beta \eta}\right\}$, so $\left|\mathcal{R}_{M_{1}}^{\beta \eta}\right|_{\mathcal{C}}^{c} \subseteq\left|\mathcal{R}_{M_{2}}^{\beta \eta}\right|_{\mathcal{C}}^{c}=\left|\mathcal{R}_{M_{2}^{\prime}}^{\beta \eta}\right|_{\mathcal{C}}^{c}$. Again by lemma 2.9.5, $\mathcal{R}_{M_{2}\left[x:=N_{2}\right]}^{\beta \eta}=\mathcal{R}_{c M_{2}^{\prime}\left[x:=N_{2}\right]}^{\beta \eta}=\left\{c C \mid C \in \mathcal{R}_{M_{2}^{\prime}\left[x:=N_{2}\right]}^{\beta \eta}\right\}$, so $\left|\mathcal{R}_{M_{2}\left[x:=N_{2}\right]}^{\beta \eta}\right|^{c}{ }_{\mathcal{C}}=\left|\mathcal{R}_{M_{2}^{\prime}\left[x:=N_{2}\right]}^{\beta \eta}\right|^{c}$. Since $\left(\lambda x . M_{2}^{\prime}\right) N_{2} \in \Lambda \eta_{c},\left|\mathcal{R}_{M_{1}\left[x:=N_{1}\right]}^{\beta \eta}\right|^{c}$ $\subseteq^{I H}\left|\mathcal{R}_{M_{2}^{\prime}\left[x:=N_{2}\right]}^{\beta \eta}\right|^{c}=\left|\mathcal{R}_{M_{2}\left[x:=N_{2}\right]}^{\beta \eta}\right|^{c}$.
- Let $M_{1}=\lambda y \cdot M_{1}^{\prime} y \in \Lambda \eta_{c}$ such that $M_{1}^{\prime} y \in \Lambda \eta_{c}, M_{1}^{\prime} \neq c$ and $y \notin F V\left(M_{1}^{\prime}\right)$, then $\left|M_{1}\right|^{c}=\lambda y \cdot\left|M_{1}^{\prime} y\right|^{c}$. We prove the statement by induction on the structure of M_{2}.
- Let $M_{2} \in \mathcal{V} \backslash\{c\}$ then $\left|M_{2}\right|^{c}=M_{2} \neq \lambda y .\left|M_{1}^{\prime} y\right|^{c}$.
- Let $M_{2}=\lambda y \cdot M_{2}^{\prime}[y:=c(c y)]$ such that $M_{2}^{\prime} \in \Lambda \eta_{c}$. Since $M_{1} \in \mathcal{R}^{\beta \eta}$, $\mathcal{R}_{M_{1}}^{\beta \eta}=\{\square\} \cup\left\{\lambda y . C \mid C \in \mathcal{R}_{M_{1}^{\prime}[y:=c(c y)]}^{\beta \eta}\right\}$. Moreover,
$\mathcal{R}_{M_{2}}^{\beta \eta}={ }^{2.9 .3}\left\{\lambda y . C \mid C \in \mathcal{R}_{M_{2}^{\prime}[y:=c(c y)]}^{\beta \eta}\right\}$, so $\square \in \mathcal{R}_{M_{1}}^{\beta \eta}$ but $\square \notin \mathcal{R}_{M_{2}}^{\beta \eta}$.
- Let $M_{2}=\lambda y \cdot M_{2}^{\prime} y$ such that $M_{2}^{\prime} y \in \Lambda \eta_{c}, y \notin F V\left(M_{2}^{\prime}\right)$ and $M_{2}^{\prime} \neq c$, so $M_{1} N_{1}, M_{2} N_{2} \in \Lambda \eta_{c}$. Since $\left|M_{1}\right|^{c}=\lambda y .\left|M_{1}^{\prime} y\right|^{c}=\lambda y .\left|M_{2}^{\prime} y\right|^{c}=\left|M_{2}\right|^{c}$,
$\left|M_{1}^{\prime} y\right|^{c}=\left|M_{2}^{\prime} y\right|^{c}$. Since $M_{1}, M_{2} \in \mathcal{R}^{\beta \eta}$, by lemma 2.5, $\mathcal{R}_{M_{1}}^{\beta \eta}=\{\square\} \cup$ $\left\{\lambda y . C \mid C \in \mathcal{R}_{M_{1}^{\prime} y}^{\beta \eta}\right\}$ and $\mathcal{R}_{M_{2}}^{\beta \eta}=\{\square\} \cup\left\{\lambda y . C \mid C \in \mathcal{R}_{M_{2}^{\prime} y}^{\beta \eta}\right\}$. So $\left|\mathcal{R}_{M_{1}}^{\beta \eta}\right|_{\mathcal{C}}^{c}=$ $\{\square\} \cup\left\{\lambda y .\left.C|C \in| \mathcal{R}_{M_{1}^{\prime} y}^{\beta \eta}\right|_{\mathcal{C}} ^{c}\right\}$ and $\left|\mathcal{R}_{M_{2}}^{\beta \eta}\right|_{\mathcal{C}}^{c}=\{\square\} \cup\left\{\lambda y .\left.C|C \in| \mathcal{R}_{M_{2}^{\prime} y}^{\beta \eta}\right|^{c}\right\}$. Let $C \in\left|\mathcal{R}_{M_{1}^{\prime} y}^{\beta \eta}\right|_{\mathcal{C}}^{c}$ then $\lambda y . C \in \operatorname{dbe} E M_{1} \subseteq\left|\mathcal{R}_{M_{2}}^{\beta \eta}\right|^{c}{ }_{\mathcal{C}}$, so $C \in\left|\mathcal{R}_{M_{2}^{\prime} y}^{\beta \eta}\right|^{c}$, i.e. $\left|\mathcal{R}_{M_{1}^{\prime} y}^{\beta \eta}\right|_{\mathcal{C}}^{c} \subseteq \mid \mathcal{R}_{M_{2}^{\prime} y}^{\beta \eta}{ }^{c}{ }_{\mathcal{C}}$. By IH, $\left|\mathcal{R}_{\left(M_{1}^{\prime} y\right)\left[x:=N_{1}\right]}^{\beta \eta}\right|_{\mathcal{C}}^{c}=\left|\mathcal{R}_{\left(M_{2}^{\prime} y\right)\left[x:=N_{2}\right]}^{\beta \eta}\right|_{\mathcal{C}}^{c}$. Since $M_{1}\left[x:=N_{1}\right]=\lambda y .\left(M_{1}^{\prime} y\right)\left[x:=N_{1}\right]=\lambda y \cdot M_{1}^{\prime}\left[x:=N_{1}\right] y, M_{2}[x:=$ $\left.N_{2}\right]=\lambda y \cdot\left(M_{2}^{\prime} y\right)\left[x:=N_{2}\right]=\lambda y \cdot M_{2}^{\prime}\left[x:=N_{2}\right] y$ and $y \notin F V\left(N_{1}\right) \cup$ $F V\left(N_{2}\right)$, we have $M_{1}\left[x:=N_{1}\right], M_{2}\left[x:=N_{2}\right] \in \mathcal{R}^{\beta \eta}, \mathcal{R}_{M_{1}\left[x:=N_{1}\right]}^{\beta \eta}=$ $\{\square\} \cup\left\{\lambda y . C \mid C \in \mathcal{R}_{\left(M_{1}^{\prime} y\right)\left[x:=N_{1}\right]}^{\beta \eta}\right\}$ and $\mathcal{R}_{M_{2}\left[x:=N_{2}\right]}^{\beta \eta}=\{\square\} \cup\{\lambda y . C \mid C \in$ $\left.\mathcal{R}_{\left(M_{2}^{\prime} y\right)\left[x:=N_{2}\right]}^{\beta \eta}\right\}$. So $\left|\mathcal{R}_{M_{1}\left[x:=N_{1}\right]}^{\beta \eta}\right|_{\mathcal{C}}^{c}=\{\square\} \cup\left\{\lambda y .\left.C|C \in| \mathcal{R}_{\left(M_{1}^{\prime} y\right)\left[x:=N_{1}\right]}^{\beta \eta}\right|^{c}\right\}$ and $\left|\mathcal{R}_{M_{2}\left[x:=N_{2}\right]}^{\beta \eta}\right|_{\mathcal{C}}^{c}=\{\square\} \cup\left\{\lambda y .\left.C|C \in| \mathcal{R}_{\left(M_{2}^{\prime} y\right)\left[x:=N_{2}\right]}^{\beta \eta}\right|_{\mathcal{C}} ^{c}\right\}$. Let $C \in$ $\left|\mathcal{R}_{M_{1}\left[x:=N_{1}\right]}^{\beta I}\right|_{\mathcal{C}}^{c}$ then either $C=\square \in\left|\mathcal{R}_{M_{2}\left[x:=N_{2}\right]}^{\beta \eta}\right|_{\mathcal{C}}^{c}$ or $C=\lambda y . C^{\prime}$ such that $C^{\prime} \in\left|\mathcal{R}_{\left(M_{1}^{\prime} y\right)\left[x:=N_{1}\right]}\right|^{c} \subseteq\left|\mathcal{R}_{\left(M_{2}^{\prime} y\right)\left[x:=N_{2}\right]}^{\beta I}\right|^{c}$. So $C \in\left|\mathcal{R}_{M_{2}\left[x:=N_{2}\right]}^{\beta I}\right|^{c}$.
- Let $M_{2}=c P_{2} Q_{2}$ such that $P_{2}, Q_{2} \in \Lambda \eta_{c}$, then $\left|M_{2}\right|^{c}=\left|P_{2}\right|^{c}\left|Q_{2}\right|^{c} \neq$ $\lambda y .\left|M_{1}^{\prime} y\right|^{c}$.
- Let $M_{2}=P_{2} Q_{2}$ such that $P_{2}, Q_{2} \in \Lambda \eta_{c}$ and P_{2} is a λ-abstraction, then $\left|M_{2}\right|^{c}=\left|P_{2}\right|^{c}\left|Q_{2}\right|^{c} \neq \lambda y .\left|M_{1}^{\prime} y\right|^{c}$.
- Let $M_{2}=c M_{2}^{\prime}$ such that $M_{2}^{\prime} \in \Lambda \eta_{c}$. So $\left|M_{2}\right|^{c}=\left|M_{2}^{\prime}\right|^{c}$. By lemma 2.9.5, $\mathcal{R}_{M_{2}}^{\beta \eta}=\left\{c C \mid C \in \mathcal{R}_{M_{2}^{\prime}}^{\beta \eta}\right\}$, so $\left|\mathcal{R}_{M_{1}}^{\beta \eta}\right|_{\mathcal{C}}^{c} \subseteq\left|\mathcal{R}_{M_{2}}^{\beta \eta}\right|_{\mathcal{C}}^{c}=\left|\mathcal{R}_{M_{2}^{\prime}}^{\beta \eta}\right|_{\mathcal{C}}^{c}$. Again by lemma 2.9.5, $\mathcal{R}_{M_{2}\left[x:=N_{2}\right]}^{\beta \eta}=\mathcal{R}_{c M_{2}^{\prime}\left[x:=N_{2}\right]}^{\beta \eta}=\left\{c C \mid C \in \mathcal{R}_{M_{2}^{\prime}\left[x:=N_{2}\right]}^{\beta \eta}\right\}$, so $\left|\mathcal{R}_{M_{2}\left[x:=N_{2}\right]}^{\beta \eta}\right|^{c} \mathcal{C}=\left|\mathcal{R}_{M_{2}^{\prime}\left[x:=N_{2}\right]}^{\beta \eta}\right|^{c}$. Since $\left(\lambda x . M_{2}^{\prime}\right) N_{2} \in \Lambda \eta_{c},\left|\mathcal{R}_{M_{1}\left[x:=N_{1}\right]}^{\beta \eta}\right|^{c}$ $\subseteq^{I H}\left|\mathcal{R}_{M_{2}^{\prime}\left[x:=N_{2}\right]}^{\beta \eta}\right|^{c}=\left|\mathcal{R}_{M_{2}\left[x:=N_{2}\right]}^{\beta \eta}\right|^{c}$.
- Let $M_{1}=c P_{1} Q_{1}$ then $\left|M_{1}\right|^{c}=\left|P_{1}\right|^{c}\left|Q_{1}\right|^{c}=\left|M_{2}\right|^{c}$. $M_{1} \notin \mathcal{R}^{r}$. We prove the statement by induction on the structure of M_{2} :
- Let $M_{2} \in \mathcal{V} \backslash\{c\}$ then $\left|M_{2}\right|^{c}=M_{2} \neq\left|P_{1}\right|^{c}\left|Q_{1}\right|^{c}$.
- Let $M_{2}=\lambda y \cdot M_{2}^{\prime} \in \Lambda \mathrm{I}_{c}$ then $\left|M_{2}\right|^{c}=\lambda y .\left|M_{2}^{\prime}\right|^{c} \neq\left|P_{1}\right|^{c}\left|Q_{1}\right|^{c}$.
- Let $M_{2}=\lambda y \cdot M_{2}^{\prime}[x:=c(c x)] \in \Lambda \eta_{c}$ then $\left|M_{2}\right|^{c}=\lambda y \cdot\left|M_{2}^{\prime}[x:=c(c x)]\right|^{c} \neq$ $\left|P_{1}\right|^{c}\left|Q_{1}\right|^{c}$.
- Let $M_{2}=\lambda y \cdot M_{2}^{\prime} y \in \Lambda \eta_{c}$ then $\left|M_{2}\right|^{c}=\lambda y .\left|M_{2}^{\prime} y\right|^{c} \neq\left|P_{1}\right|^{c}\left|Q_{1}\right|^{c}$.
- Let $M_{2}=P_{2} Q_{2} \in \mathcal{M}_{c}$ such that $P_{2}, Q_{2} \in \mathcal{M}_{c}$ and P_{2} is a λ-abstraction, then $\left|P_{2}\right|^{c}=\left|P_{1}\right|^{c}$ and $\left|Q_{2}\right|^{c}=\left|Q_{1}\right|^{c}$. By lemma 2.10, since $M_{2} \in \mathcal{M}_{c}$, $M_{2} \in \mathcal{R}^{r}$. By lemma 2.4.8, $M_{2}\left[x:=N_{2}\right] \in \mathcal{M}_{c}$ and by lemma 2.10, $M_{2}\left[x:=N_{2}\right] \in \mathcal{R}^{r}$. By lemma 2.5, $\mathcal{R}_{M_{1}}^{r}=\left\{c C Q_{1} \mid C \in \mathcal{R}_{r}^{P_{1}}\right\} \cup$ $\left\{c P_{1} C \mid C \in \mathcal{R}_{Q_{1}}^{r}\right\}$ and $\mathcal{R}_{r}^{M_{2}}=\{\square\} \cup\left\{C Q_{2} \mid C \in \mathcal{R}_{P_{2}}^{r}\right\} \cup\left\{P_{2} C \mid C \in\right.$ $\left.\mathcal{R}_{Q_{2}}^{r}\right\}$. So $\left|\mathcal{R}_{M_{1}}^{r}\right|_{\mathcal{C}}^{c}=\left\{\left.C\left|Q_{1}\right|^{c}|C \in| \mathcal{R}_{P_{1}}^{r}\right|_{\mathcal{C}} ^{c}\right\} \cup\left\{\left.\left|P_{1}\right|^{c} C|C \in| \mathcal{R}_{Q_{1}}^{r}\right|_{\mathcal{C}} ^{c}\right\}$ and $\left|\mathcal{R}_{M_{2}}^{r}\right|_{\mathcal{C}}^{c}=\{\square\} \cup\left\{\left.C\left|Q_{2}\right|^{c}|C \in| \mathcal{R}_{P_{2}}^{r}\right|_{\mathcal{C}} ^{c}\right\} \cup\left\{\left.\left|P_{2}\right|^{c} C|C \in| \mathcal{R}_{Q_{2}}^{r}\right|^{c}{ }_{\mathcal{C}}^{c}\right\}$. Let $C \in\left|\mathcal{R}_{P_{1}}^{r}\right|_{\mathcal{C}}^{c}$ then $C\left|Q_{1}\right|^{c}=C\left|Q_{2}\right|^{c} \in\left|\mathcal{R}_{M_{1}}^{r}\right|_{\mathcal{C}}^{c} \subseteq\left|\mathcal{R}_{M_{2}}^{r}\right|_{\mathcal{C}}^{c}$. So $C \in\left|\mathcal{R}_{P_{2}}^{r}\right|^{c}{ }_{\mathcal{C}}$, i.e. $\left|\mathcal{R}_{P_{1}}^{r}\right|_{\mathcal{C}}^{c} \subseteq\left|\mathcal{R}_{P_{2}}^{r}\right|^{c}$. Let $C \in\left|\mathcal{R}_{Q_{1}}^{r}\right|^{c}{ }_{\mathcal{C}}$ then $\left|P_{1}\right|^{c} C=\left|P_{2}\right|^{c} C \in\left|\mathcal{R}_{M_{1}}^{r}\right|^{c}{ }_{\mathcal{C}}^{c} \subseteq$ $\left|\mathcal{R}_{M_{2}}^{r}\right|^{c}$. So $C \in\left|\mathcal{R}_{Q_{2}}^{r}\right|_{\mathcal{C}}^{c}$, i.e. $\left|\mathcal{R}_{Q_{1}}^{r}\right|_{\mathcal{C}}^{c} \subseteq\left|\mathcal{R}_{Q_{2}}^{r}\right|_{\mathcal{C}}^{c}$. Since $x \in F V\left(M_{1}\right)$:
* Either $x \in F V\left(P_{1}\right)$ and $x \in F V\left(Q_{1}\right)$. By lemma 2.21, $x \in F V\left(P_{2}\right)$ and $x \in F V\left(Q_{2}\right)$. Since $P_{1}, Q_{1}, P_{2}, Q_{2} \in \mathcal{M}_{c}$ then
$\left(\lambda x . P_{1}\right) N_{1},\left(\lambda x . Q_{1}\right) N_{1},\left(\lambda x . P_{2}\right) N_{2},\left(\lambda x . Q_{2}\right) N_{2} \in \mathcal{M}_{c}$. Hence, by IH,
 By lemma 2.20, $\left|P_{1}\left[x:=N_{1}\right]\right|^{c}=\left|P_{1}\right|^{c}\left[x:=\left|N_{1}\right|^{c}\right]=\left|P_{2}\right|^{c}[x:=$ $\left.\left|N_{2}\right|^{c}\right]=\left|P_{2}\left[x:=N_{2}\right]\right|^{c}$ and $\left|Q_{1}\left[x:=N_{1}\right]\right|^{c}=\left|Q_{1}\right|^{c}\left[x:=\left|N_{1}\right|^{c}\right]=$
$\left|Q_{2}\right|^{c}\left[x:=\left|N_{2}\right|^{c}\right]=\left|Q_{2}\left[x:=N_{2}\right]\right|^{c}$. By lemma 2.5, $\mathcal{R}_{M_{1}\left[x:=N_{1}\right]}^{r}=$ $\mathcal{R}_{c P_{1}\left[x:=N_{1}\right] Q_{1}\left[x:=N_{1}\right]}^{r}=\left\{c C Q_{1}\left[x:=N_{1}\right] \mid C \in \mathcal{R}_{P_{1}\left[x:=N_{1}\right]}^{r}\right\} \cup$
$\left\{c P_{1}\left[x:=N_{1}\right] C \mid C \in \mathcal{R}_{Q_{1}\left[x:=N_{1}\right]}^{r}\right\}$ and
$\mathcal{R}_{M_{2}\left[x:=N_{2}\right]}^{r}=\mathcal{R}_{P_{2}\left[x:=N_{2}\right] Q_{2}\left[x:=N_{2}\right]}^{r}=\{\square\} \cup\left\{C Q_{2}\left[x:=N_{2}\right] \mid C \in\right.$ $\left.\mathcal{R}_{P_{2}\left[x:=N_{2}\right]}^{r}\right\} \cup\left\{P_{2}\left[x:=N_{2}\right] C \mid C \in \mathcal{R}_{Q_{2}\left[x:=N_{2}\right]}^{r}\right\}$. So, $\left|\mathcal{R}_{M_{1}\left[x:=N_{1}\right]}^{r}\right|_{\mathcal{C}}^{c}=$
$\left.\left|\mathcal{R}_{c P_{1}\left[x:=N_{1}\right] Q_{1}\left[x:=N_{1}\right]}\right|_{\mathcal{C}}^{c}=\left\{C\left|Q_{1}\left[x:=N_{1}\right]\right|^{c}|C \in| \mathcal{R}_{P_{1}\left[x:=N_{1}\right]}^{r}\right]_{\mathcal{C}}^{c}\right\} \cup$ $\left\{\left.\left|P_{1}\left[x:=N_{1}\right]\right|^{c} C|C \in| \mathcal{R}_{Q_{1}\left[x:=N_{1}\right]}^{r}\right|^{c}{ }_{C}\right\}$ and $\left|\mathcal{R}_{M_{2}\left[x:=N_{2}\right]}^{r}\right|_{\mathcal{C}}^{c}=$
$\left|\mathcal{R}_{P_{2}\left[x:=N_{2}\right] Q_{2}\left[x:=N_{2}\right]}\right|^{c}{ }_{\mathcal{C}}=\{\square\} \cup\left\{\left.C\left|Q_{2}\left[x:=N_{2}\right]\right|^{c}|C \in| \mathcal{R}_{P_{2}\left[x:=N_{2}\right]}^{r}\right|^{c} \mathcal{C}\right\}$
$\cup\left\{\left.\left|P_{2}\left[x:=N_{2}\right]\right|^{c} C|C \in| \mathcal{R}_{Q_{2}\left[x:=N_{2}\right]}^{r}\right|^{c}\right\}$. Let $C \in\left|\mathcal{R}_{M_{1}\left[x:=N_{1}\right]}\right|^{c}$ 릉
Either $C=C^{\prime}\left|Q_{1}\left[x:=N_{1}\right]\right|^{c}=C^{\prime}\left|Q_{2}\left[x:=N_{2}\right]\right|^{c}$ such that $C^{\prime} \in\left|\mathcal{R}_{P_{1}\left[x:=N_{1}\right]}^{r}\right|_{\mathcal{C}}^{c} \subseteq\left|\mathcal{R}_{P_{2}\left[x:=N_{2}\right]}^{r}\right|^{c}$. So $C \in\left|\mathcal{R}_{M_{2}\left[x:=N_{2}\right]}^{r}\right|^{c}$.
- Or $C=\left|P_{1}\left[x:=N_{1}\right]\right|^{c} C^{\prime}=\left|P_{2}\left[x:=N_{2}\right]\right|^{c} C^{\prime}$ such that $C^{\prime} \in$ $\left|\mathcal{R}_{Q_{1}\left[x:=N_{1}\right]}\right|^{c} \subseteq\left|\mathcal{R}_{Q_{2}\left[x:=N_{2}\right]}^{r}\right|^{c}$. So $C \in\left|\mathcal{R}_{M_{2}\left[x:=N_{2}\right]}\right|^{c}$.
* Or $x \in F V\left(P_{1}\right)$ and $x \notin F V\left(Q_{1}\right)$. By lemma 2.21, $x \in F V\left(P_{2}\right)$ and $x \notin F V\left(Q_{2}\right)$. Since $P_{1}, P_{2} \in \mathcal{M}_{c}$ then $\left(\lambda x . P_{1}\right) N_{1},\left(\lambda x . P_{2}\right) N_{2} \in$ \mathcal{M}_{c}. So by IH, $\left|\mathcal{R}_{P_{1}\left[x:=N_{1}\right]}^{r}\right|^{c} \subseteq\left|\mathcal{R}_{P_{2}\left[x:=N_{2}\right]}^{r}\right|^{c}$. By lemma 2.20, $\left|P_{1}\left[x:=N_{1}\right]\right|^{c}=\left|P_{1}\right|^{c}\left[x:=\left|N_{1}\right|^{c}\right]=\left|P_{2}\right|^{c}\left[x:=\left|N_{2}\right|^{c}\right]=\mid P_{2}[x:=$ $\left.N_{2}\right]\left.\right|^{c}$. By lemma 2.5, $\mathcal{R}_{M_{1}\left[x:=N_{1}\right]}^{r}=\mathcal{R}_{c P_{1}\left[x:=N_{1}\right] Q_{1}}^{r}=\left\{c C Q_{1} \mid C \in\right.$ $\left.\mathcal{R}_{P_{1}\left[x:=N_{1}\right]}^{r}\right\} \cup\left\{c P_{1}\left[x:=N_{1}\right] C \mid C \in \mathcal{R}_{Q_{1}}^{r}\right\}$ and $\mathcal{R}_{M_{2}\left[x:=N_{2}\right]}^{r}=\mathcal{R}_{P_{2}\left[x:=N_{2}\right] Q_{2}}^{r}$ $\{\square\} \cup\left\{C Q_{2} \mid C \in \mathcal{R}_{P_{2}\left[x:=N_{2}\right]}^{r}\right\} \cup\left\{P_{2}\left[x:=N_{2}\right] C \mid C \in \mathcal{R}_{Q_{2}}^{r}\right\}$. So, $\left|\mathcal{R}_{M_{1}\left[x:=N_{1}\right]}^{r}\right|_{\mathcal{C}}^{c}=\left|\mathcal{R}_{c P_{1}\left[x:=N_{1}\right] Q_{1}}^{r}\right|_{\mathcal{C}}^{c}=\left\{\left.C\left|Q_{1}\right|^{c}|C \in| \mathcal{R}_{P_{1}\left[x:=N_{1}\right]}^{r}\right|_{\mathcal{C}} ^{c}\right\} \cup$ $\left\{\left.\left|P_{1}\left[x:=N_{1}\right]\right|^{c} C|C \in| \mathcal{R}_{Q_{1}}^{r}\right|_{\mathcal{C}} ^{c}\right\}$ and $\left|\mathcal{R}_{M_{2}\left[x:=N_{2}\right]}^{r}\right|^{c}=\left|\mathcal{R}_{P_{2}\left[x:=N_{2}\right] Q_{2}}^{r}\right|_{\mathcal{C}}^{c}$ $\left.=\{\square\} \cup\left\{C\left|Q_{2}\right|^{c}|C \in| \mathcal{R}_{P_{2}\left[x:=N_{2}\right]}^{r}\right]^{c}\right\} \cup\left\{\left|P_{2}\left[x:=N_{2}\right]\right|^{c} C \mid C \in\right.$ $\left.\left|\mathcal{R}_{Q_{2}}^{r}\right|_{\mathcal{C}}^{c}\right\}$. Let $C \in\left|\mathcal{R}_{M_{1}\left[x:=N_{1}\right]}^{r}\right|^{c}$:
- Either $C=C^{\prime}\left|Q_{1}\right|^{c}=C^{\prime}\left|Q_{2}\right|^{c}$ such that $C^{\prime} \in\left|\mathcal{R}_{P_{1}\left[x:=N_{1}\right]}^{r}\right|^{c} \subset$ $\left|\mathcal{R}_{P_{2}\left[x:=N_{2}\right]}^{r}\right|^{c}$. So $C \in\left|\mathcal{R}_{M_{2}\left[x:=N_{2}\right]}^{r}\right|^{c}$.
- Or $C=\left|P_{1}\left[x:=N_{1}\right]\right|^{c} C^{\prime}=\left|P_{2}\left[x:=N_{2}\right]\right|^{c} C^{\prime}$ such that $C^{\prime} \in$ $\left|\mathcal{R}_{Q_{1}}^{r}\right|_{\mathcal{C}}^{c} \subseteq\left|\mathcal{R}_{Q_{2}}^{r}\right|_{\mathcal{C}}^{c}$. So $C \in\left|\mathcal{R}_{M_{2}\left[x:=N_{2}\right]}^{r}\right|_{\mathcal{C}}^{c}$.
* Or $x \notin F V\left(P_{1}\right)$ and $x \in F V\left(Q_{1}\right)$. By lemma 2.21, $x \notin F V\left(P_{2}\right)$ and $x \in F V\left(Q_{2}\right)$. Since $Q_{1}, Q_{2} \in \mathcal{M}_{c}$ then $\left(\lambda x . Q_{1}\right) N_{1},\left(\lambda x . Q_{2}\right) N_{2} \in$

$\left|Q_{1}\left[x:=N_{1}\right]\right|^{c}=\left|Q_{1}\right|^{c}\left[x:=\left|N_{1}\right|^{c}\right]=\left|Q_{2}\right|^{c}\left[x:=\left|N_{2}\right|^{c}\right]=\mid Q_{2}[x:=$ $\left.N_{2}\right]\left.\right|^{c}$. By lemma 2.5, $\mathcal{R}_{M_{1}\left[x:=N_{1}\right]}^{r}=\mathcal{R}_{c P_{1} Q_{1}\left[x:=N_{1}\right]}^{r}=\left\{c C Q_{1}[x:=\right.$ $\left.\left.N_{1}\right] \mid C \in \mathcal{R}_{P_{1}}^{r}\right\} \cup\left\{c P_{1} C \mid C \in \mathcal{R}_{Q_{1}\left[x:=N_{1}\right]}^{r}\right\}$ and $\mathcal{R}_{M_{2}\left[x:=N_{2}\right]}^{r}=$ $\mathcal{R}_{P_{2} Q_{2}\left[x:=N_{2}\right]}^{r}=\{\square\} \cup\left\{C Q_{2}\left[x:=N_{2}\right] \mid C \in \mathcal{R}_{P_{2}}^{r}\right\} \cup\left\{P_{2} C \mid C \in\right.$ $\left.\mathcal{R}_{Q_{2}\left[x:=N_{2}\right]}^{r}\right\}$. So, $\left|\mathcal{R}_{M_{1}\left[x:=N_{1}\right]}^{r}\right|_{\mathcal{C}}^{c}=\left|\mathcal{R}_{c P_{1} Q_{1}\left[x:=N_{1}\right]}^{r}\right|_{\mathcal{C}}^{c}=\left\{C \mid Q_{1}[x:=\right.$ $\left.\left.N_{1}\right]\left.\left.\right|^{c}|C \in| \mathcal{R}_{P_{1}}^{r}\right|_{\mathcal{C}} ^{c}\right\} \cup\left\{\left.\left|P_{1}\right|^{c} C|C \in| \mathcal{R}_{Q_{1}\left[x:=N_{1}\right]}^{r}\right|^{c}{ }_{\mathcal{C}}\right\}$ and $\left|\mathcal{R}_{M_{2}\left[x:=N_{2}\right]}^{r}\right|^{\mathcal{C}}$ $=\left|\mathcal{R}_{P_{2} Q_{2}\left[x:=N_{2}\right]}\right|_{\mathcal{C}}^{c}=\{\square\} \cup\left\{\left.C\left|Q_{2}\left[x:=N_{2}\right]\right|^{c}|C \in| \mathcal{R}_{P_{2}}^{r}\right|_{\mathcal{C}} ^{c}\right\} \cup$ $\left\{\left.\left|P_{2}\right|^{c} C|C \in| \mathcal{R}_{Q_{2}\left[x:=N_{2}\right]}\right|^{c}{ }^{c}\right\}$. Let $C \in\left|\mathcal{R}_{M_{1}\left[x:=N_{1}\right]}\right|^{c}$:
- Either $C=C^{\prime}\left|Q_{1}\left[x:=N_{1}\right]\right|^{c}=C^{\prime}\left|Q_{2}\left[x:=N_{2}\right]\right|^{c}$ such that $C^{\prime} \in\left|\mathcal{R}_{P_{1}}^{r}\right|_{\mathcal{C}}^{c} \subseteq\left|\mathcal{R}_{P_{2}}^{r}\right|_{\mathcal{C}}^{c}$. So $C \in\left|\mathcal{R}_{M_{2}\left[x:=N_{2}\right]}^{r}\right|^{c}$.
- Or $C=\left|P_{1}\right|^{c} C^{\prime}=\left|P_{2}\right|^{c} C^{\prime}$ such that $C^{\prime} \in\left|\mathcal{R}_{Q_{1}\left[x:=N_{1}\right]}^{r}\right|^{c} \subseteq$ $\left|\mathcal{R}_{Q_{2}\left[x:=N_{2}\right]}^{r}\right|_{\mathcal{C}}^{c}$. So $C \in\left|\mathcal{R}_{M_{2}\left[x:=N_{2}\right]}^{r}\right|^{c}$.
- Let $M_{2}=c P_{2} Q_{2} \in \mathcal{M}_{c}$ such that $P_{2}, Q_{2} \in \mathcal{M}_{c}$, then $\left|c P_{2}\right|^{c}=\left|P_{2}\right|^{c}=$ $\left|P_{1}\right|^{c}$ and $\left|Q_{1}\right|^{c}=\left|Q_{2}\right|^{c}$. Since $M_{2} \notin \mathcal{R}^{r}$, by lemma 2.5,
$\mathcal{R}_{M_{1}}^{r}=\left\{c C Q_{1} \mid C \in \mathcal{R}_{P_{1}}^{r}\right\} \cup\left\{c P_{1} C \mid C \in \mathcal{R}_{Q_{1}}^{r}\right\}$ and $\mathcal{R}_{M_{2}}^{r}=$
$\left\{c C Q_{2} \mid C \in \mathcal{R}_{P_{2}}^{r}\right\} \cup\left\{c P_{2} C \mid C \in \mathcal{R}_{Q_{2}}^{r}\right\}$. So $\left|\mathcal{R}_{M_{1}}^{r}\right|_{\mathcal{C}}^{c}=\left\{C\left|Q_{1}\right|^{c} \mid C \in\right.$
$\left.\left|\mathcal{R}_{P_{1}}^{r}\right|_{\mathcal{C}}^{c}\right\} \cup\left\{\left.\left|P_{1}\right|^{c} C|C \in| \mathcal{R}_{Q_{1}}^{r}\right|_{\mathcal{C}} ^{c}\right\}$ and $\left|\mathcal{R}_{M_{2}}^{r}\right|_{\mathcal{C}}^{c}=\left\{\left.C\left|Q_{2}\right|^{c}|C \in| \mathcal{R}_{P_{2}}^{r}\right|_{\mathcal{C}} ^{c}\right\} \cup$
$\left\{\left.\left|P_{2}\right|^{c} C|C \in| \mathcal{R}_{Q_{2}}^{r}\right|_{\mathcal{C}} ^{c}\right\}$. Let $C \in\left|\mathcal{R}_{P_{1}}^{r}\right|_{\mathcal{C}}^{c}$ then $C\left|Q_{1}\right|^{c}=C\left|Q_{2}\right|^{c} \in$ $\left|\mathcal{R}_{M_{1}}^{r}\right|_{\mathcal{C}}^{c} \subseteq\left|\mathcal{R}_{M_{2}}^{r}\right|_{\mathcal{C}}^{c}$. So $C \in\left|\mathcal{R}_{P_{2}}^{r}\right|_{\mathcal{C}}^{c}$, i.e. $\left|\mathcal{R}_{P_{1}}^{r}\right|_{\mathcal{C}}^{c} \subseteq\left|\mathcal{R}_{P_{2}}^{r}\right|_{\mathcal{C}}^{c}$. Let $C \in$ $\left|\mathcal{R}_{Q_{1}}^{r}\right|_{\mathcal{C}}^{c}$ then $\left|P_{1}\right|^{c} C=\left|P_{2}\right|^{c} C \in\left|\mathcal{R}_{M_{1}}^{r}\right|_{\mathcal{C}}^{c} \subseteq\left|\mathcal{R}_{M_{2}}^{r}\right|^{c}{ }^{c}$. So $C \in\left|\mathcal{R}_{Q_{2}}^{r}\right|^{c}$, i.e. $\left|\mathcal{R}_{Q_{1}}^{r}\right|_{\mathcal{C}}^{c} \subseteq\left|\mathcal{R}_{Q_{2}}^{r}\right|_{\mathcal{C}}^{c}$. Since $x \in F V\left(M_{1}\right)$:
* Either $x \in F V\left(P_{1}\right)$ and $x \in F V\left(Q_{1}\right)$. By lemma 2.21, $x \in F V\left(P_{2}\right)$ and $x \in F V\left(Q_{2}\right)$. Since $P_{1}, Q_{1}, P_{2}, Q_{2} \in \mathcal{M}_{c}$ then $\left(\lambda x . P_{1}\right) N_{1},\left(\lambda x . Q_{1}\right) N_{1},\left(\lambda x . P_{2}\right) N_{2},\left(\lambda x . Q_{2}\right) N_{2} \in \mathcal{M}_{c}$. So by IH, $\left|\mathcal{R}_{P_{1}\left[x:=N_{1}\right]}\right|^{c} \subseteq\left|\mathcal{R}_{P_{2}\left[x:=N_{2}\right]}^{r}\right|^{c}$ and $\left|\mathcal{R}_{Q_{1}\left[x:=N_{1}\right]}^{r}\right|_{\mathcal{C}}^{c} \subseteq\left|\mathcal{R}_{Q_{2}\left[x:=N_{2}\right]}^{r}\right|^{c}$. By lemma 2.20,
$\left|P_{1}\left[x:=N_{1}\right]\right|^{c}=\left|P_{1}\right|^{c}\left[x:=\left|N_{1}\right|^{c}\right]=\left|P_{2}\right|^{c}\left[x:=\left|N_{2}\right|^{c}\right]=\mid P_{2}[x:=$
$\left.N_{2}\right]\left.\right|^{c}$ and $\left|Q_{1}\left[x:=N_{1}\right]\right|^{c}=\left|Q_{1}\right|^{c}\left[x:=\left|N_{1}\right|^{c}\right]=\left|Q_{2}\right|^{c}\left[x:=\left|N_{2}\right|^{c}\right]=$
$\left|Q_{2}\left[x:=N_{2}\right]\right|^{c}$. By lemma 2.5, $\mathcal{R}_{M_{1}\left[x:=N_{1}\right]}^{r}=\mathcal{R}_{c P_{1}\left[x:=N_{1}\right] Q_{1}\left[x:=N_{1}\right]}^{r}=$ $\left\{c C Q_{1}\left[x:=N_{1}\right] \mid C \in \mathcal{R}_{P_{1}\left[x:=N_{1}\right]}^{r}\right\} \cup$
$\left\{c P_{1}\left[x:=N_{1}\right] C \mid C \in \mathcal{R}_{Q_{1}\left[x:=N_{1}\right]}^{r}\right\}$ and
$\mathcal{R}_{M_{2}\left[x:=N_{2}\right]}^{r}=\mathcal{R}_{c P_{2}\left[x:=N_{2}\right] Q_{2}\left[x:=N_{2}\right]}^{r}=$
$\left\{c C Q_{2}\left[x:=N_{2}\right] \mid C \in \mathcal{R}_{P_{2}\left[x:=N_{2}\right]}^{r}\right\} \cup$
$\left\{c P_{2}\left[x:=N_{2}\right] C \mid C \in \mathcal{R}_{Q_{2}\left[x:=N_{2}\right]}^{r}\right\}$. So, $\left|\mathcal{R}_{M_{1}\left[x:=N_{1}\right]}^{r}\right|^{\mathcal{C}}$
$=\mid \mathcal{R}_{c P_{1}\left[x:=N_{1}\right] Q_{1}\left[x:=N_{1}\right]}^{\left.\right|_{\mathcal{C}} ^{c}}=\left\{\left.C\left|Q_{1}\left[x:=N_{1}\right]\right|^{c}|C \in| \mathcal{R}_{P_{1}\left[x:=N_{1}\right]}^{r}\right|_{\mathcal{C}} ^{c}\right\} \cup$
$\left\{\left.\left|P_{1}\left[x:=N_{1}\right]\right|^{c} C|C \in| \mathcal{R}_{Q_{1}\left[x:=N_{1}\right]}^{r}\right|^{c}\right\}$ c $\}$ and
$\left|\mathcal{R}_{M_{2}\left[x:=N_{2}\right]}^{r}\right|^{c} \mathcal{C}=\left|\mathcal{R}_{c P_{2}\left[x:=N_{2}\right] Q_{2}\left[x:=N_{2}\right]}^{r}\right|^{c} \mathcal{C}=\left\{C\left|Q_{2}\left[x:=N_{2}\right]\right|^{c} \mid C \in\right.$
$\left.\left|\mathcal{R}_{P_{2}\left[x:=N_{2}\right]}\right|^{c} \mathcal{C}\right\} \cup\left\{\left.\left|P_{2}\left[x:=N_{2}\right]\right|^{c} C|C \in| \mathcal{R}_{Q_{2}\left[x:=N_{2}\right]}^{r}\right|^{\mathcal{C}}\right\}$. Let $C \in$
$\left|\mathcal{R}_{M_{1}\left[x:=N_{1}\right]}\right|^{c}{ }^{c}$:
- Either $C=C^{\prime}\left|Q_{1}\left[x:=N_{1}\right]\right|^{c}=C^{\prime}\left|Q_{2}\left[x:=N_{2}\right]\right|^{c}$ such that $C^{\prime} \in\left|\mathcal{R}_{P_{1}\left[x:=N_{1}\right]}^{r}\right|_{\mathcal{C}}^{c} \subseteq\left|\mathcal{R}_{P_{2}\left[x:=N_{2}\right]}^{r}\right|^{c}$. So $C \in\left|\mathcal{R}_{M_{2}\left[x:=N_{2}\right]}^{r}\right|^{c}$.
Or $C=\left|P_{1}\left[x:=N_{1}\right]\right|^{c} C^{\prime}=\left|P_{2}\left[x:=N_{2}\right]\right|^{c} C^{\prime}$ such that $C^{\prime} \in$ $\left|\mathcal{R}_{Q_{1}\left[x:=N_{1}\right]}^{r}\right|_{\mathcal{C}}^{c} \subseteq\left|\mathcal{R}_{Q_{2}\left[x:=N_{2}\right]}^{r}\right|^{c}$. So $C \in\left|\mathcal{R}_{M_{2}\left[x:=N_{2}\right]}\right|^{c}$.
* Or $x \in F V\left(P_{1}\right)$ and $x \notin F V\left(Q_{1}\right)$. By lemma 2.21, $x \in F V\left(P_{2}\right)$ and $x \notin F V\left(Q_{2}\right)$. Since $P_{1}, P_{2} \in \mathcal{M}_{c}$ then $\left(\lambda x . P_{1}\right) N_{1},\left(\lambda x . P_{2}\right) N_{2} \in$ \mathcal{M}_{c}. So by IH, $\left|\mathcal{R}_{P_{1}\left[x:=N_{1}\right]}\right|^{c} \subseteq\left|\mathcal{R}_{P_{2}\left[x:=N_{2}\right]}^{r}\right|_{\mathcal{C}}^{c}$. By lemma 2.20, $\left|P_{1}\left[x:=N_{1}\right]\right|^{c}=\left|P_{1}\right|^{c}\left[x:=\left|N_{1}\right|^{c}\right]=\left|P_{2}\right|^{c}\left[x:=\left|N_{2}\right|^{c}\right]=\mid P_{2}[x:=$ $\left.N_{2}\right]\left.\right|^{c}$. By lemma 2.5, $\mathcal{R}_{M_{1}\left[x:=N_{1}\right]}^{r}=\mathcal{R}_{c P_{1}\left[x:=N_{1}\right] Q_{1}}^{r}=\left\{c C Q_{1} \mid C \in\right.$ $\left.\mathcal{R}_{P_{1}\left[x:=N_{1}\right]}^{r}\right\} \cup\left\{c P_{1}\left[x:=N_{1}\right] C \mid C \in \mathcal{R}_{Q_{1}}^{r}\right\}$ and $\mathcal{R}_{M_{2}\left[x:=N_{2}\right]}^{r}=\mathcal{R}_{c P_{2}\left[x:=N_{2}\right] Q_{2}}^{r}$ $\left\{c C Q_{2} \mid C \in \mathcal{R}_{P_{2}\left[x:=N_{2}\right]}^{r}\right\} \cup\left\{c P_{2}\left[x:=N_{2}\right] C \mid C \in \mathcal{R}_{Q_{2}}^{r}\right\}$. So, $\left|\mathcal{R}_{M_{1}\left[x:=N_{1}\right]}^{r}\right|_{\mathcal{C}}^{c}=\mid \mathcal{R}_{c P_{1}\left[x:=N_{1}\right] Q_{1}}^{r}{ }_{\mathcal{C}}^{c}=\left\{\left.C\left|Q_{1}\right|^{c}|C \in| \mathcal{R}_{P_{1}\left[x:=N_{1}\right]}^{r}\right|_{\mathcal{C}} ^{c}\right\} \cup$ $\left\{\left.\left|P_{1}\left[x:=N_{1}\right]\right|^{c} C|C \in| \mathcal{R}_{Q_{1}}^{r}\right|_{\mathcal{C}} ^{c}\right\}$ and $\left|\mathcal{R}_{M_{2}\left[x:=N_{2}\right]}^{r}\right|_{\mathcal{C}}^{c}=\left|\mathcal{R}_{P_{2}\left[x:=N_{2}\right] Q_{2}}^{r}\right|_{\mathcal{C}}^{c}$ $=\left\{\left.C\left|Q_{2}\right|^{c}|C \in| \mathcal{R}_{P_{2}\left[x:=N_{2}\right]}^{r}\right|^{c}\right\} \cup\left\{\left.\left|P_{2}\left[x:=N_{2}\right]\right|^{c} C|C \in| \mathcal{R}_{Q_{2}}^{r}\right|_{\mathcal{C}} ^{c}\right\}$. Let $C \in\left|\mathcal{R}_{M_{1}\left[x:=N_{1}\right]}\right|^{c}$:
- Either $C=C^{\prime}\left|Q_{1}\right|^{c}=C^{\prime}\left|Q_{2}\right|^{c}$ such that $C^{\prime} \in\left|\mathcal{R}_{P_{1}\left[x:=N_{1}\right]}\right|^{c} \subset$ $\left|\mathcal{R}_{P_{2}\left[x:=N_{2}\right]}^{r}\right|^{c}$. So $C \in\left|\mathcal{R}_{M_{2}\left[x:=N_{2}\right]}^{r}\right|^{c}$.
- Or $C=\left|P_{1}\left[x:=N_{1}\right]\right|^{c} C^{\prime}=\left|P_{2}\left[x:=N_{2}\right]\right|^{c} C^{\prime}$ such that $C^{\prime} \in$ $\left|\mathcal{R}_{Q_{1}}^{r}\right|_{\mathcal{C}}^{c} \subseteq\left|\mathcal{R}_{Q_{2}}^{r}\right|_{\mathcal{C}}^{c}$. So $C \in\left|\mathcal{R}_{M_{2}\left[x:=N_{2}\right]}^{r}\right|^{c}$.
* Or $x \notin F V\left(P_{1}\right)$ and $x \in F V\left(Q_{1}\right)$. By lemma 2.21, $x \notin F V\left(P_{2}\right)$ and $x \in F V\left(Q_{2}\right)$. Since $Q_{1}, Q_{2} \in \mathcal{M}_{c}$ then $\left(\lambda x . Q_{1}\right) N_{1},\left(\lambda x . Q_{2}\right) N_{2} \in$

$\left|Q_{1}\left[x:=N_{1}\right]\right|^{c}=\left|Q_{1}\right|^{c}\left[x:=\left|N_{1}\right|^{c}\right]=\left|Q_{2}\right|^{c}\left[x:=\left|N_{2}\right|^{c}\right]=\mid Q_{2}[x:=$ $\left.N_{2}\right]\left.\right|^{c}$. By lemma 2.5, $\mathcal{R}_{M_{1}\left[x:=N_{1}\right]}^{r}=\mathcal{R}_{c P_{1} Q_{1}\left[x:=N_{1}\right]}^{r}=\left\{c C Q_{1}[x:=\right.$ $\left.N_{1}\right] \mid C \in \mathcal{R}_{P_{1}}^{\}} \cup\left\{c P_{1} C \mid C \in \mathcal{R}_{Q_{1}\left[x:=N_{1}\right]}^{r}\right\}$ and $\mathcal{R}_{M_{2}\left[x:=N_{2}\right]}^{r}=$ $\mathcal{R}_{c P_{2} Q_{2}\left[x:=N_{2}\right]}^{r}=\left\{c C Q_{2}\left[x:=N_{2}\right] \mid C \in \mathcal{R}_{P_{2}}^{r}\right\} \cup\left\{c P_{2} C \mid C \in\right.$ $\left.\mathcal{R}_{Q_{2}\left[x:=N_{2}\right]}^{r}\right\}$. So, $\left|\mathcal{R}_{M_{1}\left[x:=N_{1}\right]}^{r}\right|^{c} \mathcal{C}=\left|\mathcal{R}_{c P_{1} Q_{1}\left[x:=N_{1}\right]}^{r}\right|_{\mathcal{C}}^{c}=\left\{C \mid Q_{1}[x:=\right.$
$\left.\left.N_{1}\right]\left.\left.\right|^{c}|C \in| \mathcal{R}_{P_{1}}^{r}\right|^{c}\right\} \cup\left\{\left.\left|P_{1}\right|^{c} C|C \in| \mathcal{R}_{Q_{1}\left[x:=N_{1}\right]}\right|^{c}{ }^{c}\right\}$ and $\left|\mathcal{R}_{M_{2}\left[x:=N_{2}\right]}\right|^{c}{ }^{c}$ $=\left|\mathcal{R}_{c P_{2} Q_{2}\left[x:=N_{2}\right]}\right|^{c} \mathcal{C}=\left\{\left.c C\left|Q_{2}\left[x:=N_{2}\right]\right|^{c}|C \in| \mathcal{R}_{P_{2}}^{r}\right|_{\mathcal{C}} ^{c}\right\} \cup\left\{c\left|P_{2}\right|^{c} C \mid C\right.$ $\left.\in \mid \mathcal{R}_{Q_{2}\left[x:=N_{2}\right]}^{r}{ }^{c}{ }_{\mathcal{C}}\right\}$. Let $C \in\left|\mathcal{R}_{M_{1}\left[x:=N_{1}\right]}^{r}\right|_{\mathcal{C}}^{c}$:
- Either $C=C^{\prime}\left|Q_{1}\left[x:=N_{1}\right]\right|^{c}=C^{\prime}\left|Q_{2}\left[x:=N_{2}\right]\right|^{c}$ such that $C^{\prime} \in\left|\mathcal{R}_{P_{1}}^{r}\right|_{\mathcal{C}}^{c} \subseteq\left|\mathcal{R}_{P_{2}}^{r}\right|_{\mathcal{C}}^{c}$. So $C \in\left|\mathcal{R}_{M_{2}\left[x:=N_{2}\right]}^{r}\right|^{c}$.
- Or $C=\left|P_{1}\right|^{c} C^{\prime}=\left|P_{2}\right|^{c} C^{\prime}$ such that $C^{\prime} \in\left|\mathcal{R}_{Q_{1}\left[x:=N_{1}\right]}^{r}\right|^{c} \subset$ $\left|\mathcal{R}_{Q_{2}\left[x:=N_{2}\right]}^{r}\right|^{c}$. So $C \in\left|\mathcal{R}_{M_{2}\left[x:=N_{2}\right]}^{r}\right|^{c}$.
- Let $M_{2}=c M_{2}^{\prime}$ such that $M_{2}^{\prime} \in \Lambda \eta_{c}$. So $\left|M_{2}\right|^{c}=\left|M_{2}^{\prime}\right|^{c}$. By lemma 2.9.5, $\mathcal{R}_{M_{2}}^{\beta \eta}=\left\{c C \mid C \in \mathcal{R}_{M_{2}^{\prime}}^{\beta \eta}\right\}$, so $\left|\mathcal{R}_{M_{1}}^{\beta \eta}\right|_{\mathcal{C}}^{c} \subseteq\left|\mathcal{R}_{M_{2}}^{\beta \eta}\right|_{\mathcal{C}}^{c}=\left|\mathcal{R}_{M_{2}^{\prime}}^{\beta \eta}\right|_{\mathcal{C}}^{c}$. Again by lemma 2.9.5, $\mathcal{R}_{M_{2}\left[x:=N_{2}\right]}^{\beta \eta}=\mathcal{R}_{c M_{2}^{\prime}\left[x:=N_{2}\right]}^{\beta \eta}=\left\{c C \mid C \in \mathcal{R}_{M_{2}^{\prime}\left[x:=N_{2}\right]}^{\beta \eta}\right\}$, so $\left|\mathcal{R}_{M_{2}\left[x:=N_{2}\right]}^{\beta \eta}\right|_{\mathcal{C}}^{c}=\left|\mathcal{R}_{M_{2}^{\prime}\left[x:=N_{2}\right]}^{\beta \eta}\right|_{\mathcal{C}}^{c}$. Since $\left(\lambda x . M_{2}^{\prime}\right) N_{2} \in \Lambda \eta_{c},\left|\mathcal{R}_{M_{1}\left[x:=N_{1}\right]}^{\beta \eta}\right|^{\mathcal{C}}$ $\subseteq^{I H}\left|\mathcal{R}_{M_{2}^{\prime}\left[x:=N_{2}\right]}^{\beta \eta}\right|^{c}=\left|\mathcal{R}_{M_{2}\left[x:=N_{2}\right]}^{\beta \eta}\right|^{c}$.
- Let $M_{1}=P_{1} Q_{1} \in \mathcal{M}_{c}$ such that $P_{1}, Q_{1} \in \mathcal{M}_{c}$ and P_{1} is a λ-abstraction. Then $\left|M_{1}\right|^{c}=\left|P_{1}\right|^{c}\left|Q_{1}\right|^{c}=\left|M_{2}\right|^{c}$. By lemma 2.10, since $M_{1} \in \mathcal{M}_{c}, M_{1} \in \mathcal{R}^{r}$. By lemma 2.4.8, $M_{1}\left[x:=N_{1}\right] \in \mathcal{M}_{c}$ and by lemma 2.10, $M_{1}\left[x:=N_{1}\right] \in \mathcal{R}^{r}$. So by lemma 2.5, $\square \in \mathcal{R}_{M_{1}}^{r}$, so $\square \in\left|\mathcal{R}_{M_{1}}^{r}\right|_{\mathcal{C}}^{c}$. We prove the statement by induction on the structure of M_{2}.
- Let $M_{2} \in \mathcal{V} \backslash\{c\}$ then $\left|M_{2}\right|^{c}=M_{2} \neq\left|P_{1}\right|^{c}\left|Q_{1}\right|^{c}$.
- Let $M_{2}=\lambda y \cdot M_{2}^{\prime} \in \Lambda \mathrm{I}_{c}$ then $\left|M_{2}\right|^{c}=\lambda y \cdot\left|M_{2}^{\prime}\right|^{c} \neq\left|P_{1}\right|^{c}\left|Q_{1}\right|^{c}$.
- Let $M_{2}=\lambda y \cdot M_{2}^{\prime}[y:=c(c y)] \in \Lambda \eta_{c}$ then $\left|M_{2}\right|^{c}=\lambda y .\left|M_{2}^{\prime}[y:=c(c y)]\right|^{c} \neq$ $\left|P_{1}\right|^{c}\left|Q_{1}\right|^{c}$.
- Let $M_{2}=\lambda y \cdot M_{2}^{\prime} y \in \Lambda \eta_{c}$ then $\left|M_{2}\right|^{c}=\lambda y .\left|M_{2}^{\prime} y\right|^{c} \neq\left|P_{1}\right|^{c}\left|Q_{1}\right|^{c}$.
- Let $M_{2}=c P_{2} Q_{2} \in \mathcal{M}_{c}$ such that $P_{2}, Q_{2} \in \mathcal{M}_{c}$, so $M_{2} \notin \mathcal{R}^{r}$. Hence, by lemma 2.5, $\square \notin \mathcal{R}_{M_{2}}^{r}$, so $\square \notin\left|\mathcal{R}_{M_{2}}^{r}\right|_{\mathcal{C}}^{c}$, i.e. $\left|\mathcal{R}_{M_{1}}^{r}\right|^{c} \not{ }_{\mathcal{C}} \nsubseteq\left|\mathcal{R}_{M_{2}}^{r}\right|_{\mathcal{C}}^{c}$.
- Let $M_{2}=P_{2} Q_{2} \in \mathcal{M}_{c}$ such that $P_{2}, Q_{2} \in \mathcal{M}_{c}$ and P_{2} is a λ-abstraction, then $\left|P_{2}\right|^{c}=\left|P_{1}\right|^{c}$ and $\left|Q_{2}\right|^{c}=\left|Q_{1}\right|^{c}$. By lemma 2.10, since $M_{2} \in \mathcal{M}_{c}$, $M_{2} \in \mathcal{R}^{r}$. By lemma 2.4.8, $M_{2}\left[x:=N_{2}\right] \in \mathcal{M}_{c}$ and by lemma 2.10, $M_{2}\left[x:=N_{2}\right] \in \mathcal{R}^{r}$.By lemma 2.5, $\mathcal{R}_{M_{1}}^{r}=\{\square\} \cup\left\{C Q_{1} \mid C \in \mathcal{R}_{P_{1}}^{r}\right\} \cup$ $\left\{P_{1} C \mid C \in \mathcal{R}_{Q_{1}}^{r}\right\}$ and $\mathcal{R}_{M_{2}}^{r}=\{\square\} \cup\left\{C Q_{2} \mid C \in \mathcal{R}_{P_{2}}^{r}\right\} \cup\left\{P_{2} C \mid C \in \mathcal{R}_{Q_{2}}^{r}\right\}$. So, $\left|\mathcal{R}_{M_{1}}^{r}\right|_{\mathcal{C}}^{c}=\{\square\} \cup\left\{\left.C\left|Q_{1}\right|^{c}|C \in| \mathcal{R}_{P_{1}}^{r}\right|_{\mathcal{C}} ^{c}\right\} \cup\left\{\left.\left|P_{1}\right|^{c} C|C \in| \mathcal{R}_{Q_{1}}^{r}\right|_{\mathcal{C}} ^{c}\right\}$ and $\left|\mathcal{R}_{M_{2}}^{r}\right|_{\mathcal{C}}^{c}=\{\square\} \cup\left\{\left.\left.C\left|Q_{2}\right|^{c}|C \in| \mathcal{R}_{P_{2}}^{r}\right|^{c}\right|_{\mathcal{C}} ^{c}\right\} \cup\left\{\left.\left.\left|P_{2}\right|^{c} C|C \in| \mathcal{R}_{Q_{2}}^{r}\right|^{c}\right|_{\mathcal{C}} ^{c}\right\}$. Let $C \in\left|\mathcal{R}_{P_{1}}^{r}\right|_{\mathcal{C}}^{c}$ then $C\left|Q_{1}\right|^{c}=\left.C\left|Q_{2}\right|^{c} \in\left|\mathcal{R}_{M_{1}}^{r}\right|^{c} \subseteq\left|\mathcal{R}_{M_{1}}^{r}\right|_{M_{2}}^{c}\right|_{\mathcal{C}}$. So $C \in\left|\mathcal{R}_{P_{2}}^{r}\right|^{c}{ }_{\mathcal{C}}$, i.e. $\left|\mathcal{R}_{P_{1}}^{r}\right|_{\mathcal{C}}^{c} \subseteq\left|\mathcal{R}_{P_{2}}^{r}\right|_{\mathcal{C}}^{c}$. let $C \in\left|\mathcal{R}_{Q_{1}}^{r}\right|_{\mathcal{C}}^{c}$ then $\left|P_{1}\right|^{c} C=\left|P_{2}\right|^{c} C \in\left|\mathcal{R}_{M_{1}}^{r}\right|^{c}{ }_{\mathcal{C}}^{c} \subseteq$ $\left|\mathcal{R}_{M_{2}}^{r}\right|_{\mathcal{C}}^{c}$. So, $C \in\left|\mathcal{R}_{Q_{2}}^{r}\right|_{\mathcal{C}}^{c}$, i.e. $\left|\mathcal{R}_{Q_{1}}^{r}\right|^{c}{ }_{\mathcal{C}} \subseteq\left|\mathcal{R}_{Q_{2}}^{r}\right|^{c}$. Since $x \in F V\left(M_{1}\right)$:
* Either $x \in F V\left(P_{1}\right)$ and $x \in F V\left(Q_{1}\right)$. By lemma 2.21, $x \in F V\left(P_{2}\right)$ and $x \in F V\left(Q_{2}\right)$. Since $P_{1}, Q_{1}, P_{2}, Q_{2} \in \mathcal{M}_{c}$ then
$\left(\lambda x . P_{1}\right) N_{1},\left(\lambda x . Q_{1}\right) N_{1},\left(\lambda x . P_{2}\right) N_{2},\left(\lambda x . Q_{2}\right) N_{2} \in \mathcal{M}_{c}$. So by IH,
$\left.\left|\mathcal{R}_{P_{1}\left[x:=N_{1}\right]}^{r}\right|_{\mathcal{C}}^{c} \subseteq \mid \mathcal{R}_{P_{2}\left[x:=N_{2}\right]}^{r}\right]^{c}$ and $\left|\mathcal{R}_{Q_{1}\left[x:=N_{1}\right]}^{r}\right|^{c} \subseteq\left|\mathcal{R}_{Q_{2}\left[x:=N_{2}\right]}^{r}\right|^{c}$.
By lemma 2.20, $\left|P_{1}\left[x:=N_{1}\right]\right|^{c}=\left|P_{1}\right|^{c}\left[x:=\left|N_{1}\right|^{c}\right]=\left|P_{2}\right|^{c}[x:=$
$\left.\left|N_{2}\right|^{c}\right]=\left|P_{2}\left[x:=N_{2}\right]\right|^{c}$ and $\left|Q_{1}\left[x:=N_{1}\right]\right|^{c}=\left|Q_{1}\right|^{c}\left[x:=\left|N_{1}\right|^{c}\right]=$
$\left|Q_{2}\right|^{c}\left[x:=\left|N_{2}\right|^{c}\right]=\left|Q_{2}\left[x:=N_{2}\right]\right|^{c}$. By lemma 2.5, $\mathcal{R}_{M_{1}\left[x:=N_{1}\right]}^{r}=$ $\mathcal{R}_{P_{1}\left[x:=N_{1}\right] Q_{1}\left[x:=N_{1}\right]}^{r}=\{\square\} \cup\left\{C Q_{1}\left[x:=N_{1}\right] \mid C \in \mathcal{R}_{P_{1}\left[x:=N_{1}\right]}^{r}\right\} \cup$ $\left\{P_{1}\left[x:=N_{1}\right] C \mid C \in \mathcal{R}_{Q_{1}\left[x:=N_{1}\right]}^{r}\right\}$ and $\mathcal{R}_{M_{2}\left[x:=N_{2}\right]}^{r}=\mathcal{R}_{P_{2}\left[x:=N_{2}\right] Q_{2}\left[x:=N_{2}\right]}^{r}=\{\square\} \cup\left\{C Q_{2}\left[x:=N_{2}\right] \mid C \in\right.$ $\left.\mathcal{R}_{P_{2}\left[x:=N_{2}\right]}^{r}\right\} \cup\left\{P_{2}\left[x:=N_{2}\right] C \mid C \in \mathcal{R}_{Q_{2}\left[x:=N_{2}\right]}^{r}\right\}$. So, $\left|\mathcal{R}_{M_{1}\left[x:=N_{1}\right]}^{r}\right|^{c}=$ $\left|\mathcal{R}_{P_{1}\left[x:=N_{1}\right] Q_{1}\left[x:=N_{1}\right]}\right|_{\mathcal{C}}^{c}=\{\square\} \cup\left\{\left.C\left|Q_{1}\left[x:=N_{1}\right]\right|^{c}|C \in| \mathcal{R}_{P_{1}\left[x:=N_{1}\right]}^{r}\right|_{\mathcal{C}} ^{c}\right\}$ $\cup\left\{\left.\left|P_{1}\left[x:=N_{1}\right]\right|^{c} C|C \in| \mathcal{R}_{Q_{1}\left[x:=N_{1}\right]}^{r}\right|^{c}\right\}$ and $\left|\mathcal{R}_{M_{2}\left[x:=N_{2}\right]}^{r}\right|_{\mathcal{C}}^{c}=$

$$
\begin{aligned}
& \left|\mathcal{R}_{P_{2}\left[x:=N_{2}\right] Q_{2}\left[x:=N_{2}\right]}^{r}\right|_{\mathcal{C}}^{c}=\{\square\} \cup\left\{\left.C\left|Q_{2}\left[x:=N_{2}\right]\right|^{c}|C \in| \mathcal{R}_{P_{2}\left[x:=N_{2}\right]}^{r}\right|^{c}\right\} \\
& \cup\left\{\left|P_{2}\left[x:=N_{2}\right]{ }^{c} C\right| C \in\left|\mathcal{R}_{Q_{2}\left[x:=N_{2}\right]}^{r}\right|^{c}\right\} \text {. Let } C \in\left|\mathcal{R}_{M_{1}\left[x:=N_{1}\right]}^{r}\right|^{c}: ~
\end{aligned}
$$

- Either $C=\square \in\left|\mathcal{R}_{M_{2}\left[x:=N_{2}\right]}^{r}\right|^{c}$.
- Or $C=C^{\prime}\left|Q_{1}\left[x:=N_{1}\right]\right|^{c}=C^{\prime}\left|Q_{2}\left[x:=N_{2}\right]\right|^{c}$ such that $C^{\prime} \in$ $\left|\mathcal{R}_{P_{1}\left[x:=N_{1}\right]}^{r}\right|_{\mathcal{C}}^{\mathcal{C}} \subseteq\left|\mathcal{R}_{P_{2}\left[x:=N_{2}\right.}^{r}\right|^{c}$. So $C \in \mid \mathcal{R}_{M_{2}\left[x:=N_{2} \mid\right.}^{r} \mathcal{C}_{\mathcal{C}}$.
- Or $C=\left|P_{1}\left[x:=N_{1}\right]\right|^{c} C^{\prime}=\left|P_{2}\left[x:=N_{2}\right]\right|^{c} C^{\prime}$ such that $C^{\prime} \in$ $\left|\mathcal{R}_{Q_{1}\left[x:=N_{1}\right]}^{r}\right|_{\mathcal{C}}^{c} \subseteq\left|\mathcal{R}_{Q_{2}\left[x:=N_{2}\right]}^{r}\right|^{c}$. So $C \in\left|\mathcal{R}_{M_{2}\left[x:=N_{2}\right]}^{r}\right|^{c}$.
* Or $x \in F V\left(P_{1}\right)$ and $x \notin F V\left(Q_{1}\right)$. By lemma 2.21, $x \in F V\left(P_{2}\right)$ and $x \notin F V\left(Q_{2}\right)$. Since $P_{1}, P_{2} \in \mathcal{M}_{c}$ then $\left(\lambda x . P_{1}\right) N_{1},\left(\lambda x . P_{2}\right) N_{2} \in \mathcal{M}_{c}$. So by IH, $\left|\mathcal{R}_{P_{1}\left[x:=N_{1}\right]}^{r}\right|^{c} \subset\left|\mathcal{R}_{P_{2}\left[x:=N_{2}\right]}^{c}\right|^{c}$. By lemma 2.20, $\mid P_{1}[x:=$ $\left.N_{1}\right]\left.\right|^{c}=\left|P_{1}\right|^{c}\left[x:=\left|N_{1}\right|^{c}\right]=\left|P_{2}\right| c\left|c x:=\left|N_{2}\right|^{c}\right]=\left|P_{2}\left[x:=N_{2}\right]\right|^{c}$. By lemma 2.5, $\mathcal{R}_{M_{1}\left[x:=N_{1}\right]}^{r}=\mathcal{R}_{P_{1}\left[x:=N_{1}\right] Q_{1}}^{r}=\{\square\} \cup\left\{C Q_{1} \mid C \in\right.$ $\left.\mathcal{R}_{P_{1}\left[x:=N_{1}\right]}^{r}\right\} \cup\left\{P_{1}\left[x:=N_{1}\right] C \mid C \in \mathcal{R}_{Q_{1}}^{r}\right\}$ and $\mathcal{R}_{M_{2}\left[x:=N_{2}\right]}^{r}=$
$\mathcal{R}_{P_{2}\left[x:=N_{2}\right] Q_{2}}^{r}=\{\square\} \cup\left\{C Q_{2} \mid C \in \mathcal{R}_{P_{2}\left[x:=N_{2}\right]}^{r}\right\} \cup\left\{P_{2}\left[x:=N_{2}\right] C \mid C \in\right.$ $\left.\mathcal{R}_{Q_{2}}^{r}\right\}$. So, $\left|\mathcal{R}_{M_{1}\left[x:=N_{1}\right]}^{r}\right|_{\mathcal{C}}^{c}=\left|\mathcal{R}_{R_{1}\left[x:=N_{1}\right] Q_{1}}^{r}\right|_{\mathcal{C}}^{c}=\{\square\} \cup\left\{C\left|Q_{1}\right|^{c} \mid C \in\right.$ $\left.\left|\mathcal{R}_{P_{1}\left[x:=N_{1}\right]}\right|^{c}\right\} \cup\left\{\left|P_{1}\left[x:=N_{1}\right]\right|^{c} C|C \in| \mathcal{R}_{Q_{1}}^{r}{ }^{c}\right\}$ and $\left|\mathcal{R}_{M_{2}\left[x:=N_{2}\right]}\right|^{c}=$ $\left|\mathcal{R}_{P_{2}\left[x:=N_{2}\right] Q_{2}}\right|_{\mathcal{C}}^{c}=\{\square\} \cup\left\{\left.C\left|Q_{2}\right|^{c}|C \in| \mathcal{R}_{P_{2}\left[x:=N_{2}\right]}^{c}\right|^{c}\right\} \cup\left\{\mid P_{2}[x:=\right.$ $\left.\left.N_{2}\right]\left.\left.\right|^{c} C|C \in| \mathcal{R}_{Q_{2}}^{r}\right|^{c}\right\}$. Let $C \in\left|\mathcal{R}_{M_{1}\left[x:=N_{1}\right]}^{r}\right|^{c}$:
- Either $C=\square \in\left|\mathcal{R}_{M_{2}\left[x:=N_{2}\right]}\right|^{c}$.
- Or $C=C^{\prime}\left|Q_{1}\right|^{c}=C^{\prime}\left|Q_{2}\right|^{c}$ such that $C^{\prime} \in\left|\mathcal{R}_{P_{1}\left|x:=N_{1}\right|}^{r}\right|^{c} \subseteq$ $\mid \mathcal{R}_{P_{2}\left[x:=N_{2}\right]}^{r}{ }^{c}$ c. So $C \in\left|\mathcal{R}_{M_{2}\left[x:=N_{2}\right.}^{r}\right|^{c} \mathcal{C}^{c}$.
- Or $C=\left|P_{1}\left[x:=N_{1}\right]\right|^{c} C^{\prime}=\left|P_{2}\left[x:=N_{2}\right]\right|^{c} C^{\prime}$ such that $C^{\prime} \in$ $\left|\mathcal{R}_{Q_{1}}^{r}\right|_{\mathcal{C}}^{c} \subseteq\left|\mathcal{R}_{Q_{2}}^{r}\right|_{\mathcal{C}}^{c}$. So $C \in\left|\mathcal{R}_{M_{2}\left[x:=N_{2}\right]}^{r}\right|^{c}$.
* Or $x \notin F V\left(P_{1}\right)$ and $x \in F V\left(Q_{1}\right)$. By lemma 2.21, $x \notin F V\left(P_{2}\right)$ and $x \in F V\left(Q_{2}\right)$. Since $Q_{1}, Q_{2} \in \mathcal{M}_{c}$ then $\left(\lambda x . Q_{1}\right) N_{1},\left(\lambda x \cdot Q_{2}\right) N_{2} \in$ \mathcal{M}_{c}. So by IH, $\left|\mathcal{R}_{Q_{1}\left[x:=N_{1}\right]}^{r}\right|^{c} \subseteq\left|\mathcal{R}_{Q_{2}\left[x:=N_{2}\right]}^{r}\right|_{c}^{c}$. By lemma 2.20,
$\left|Q_{1}\left[x:=N_{1}\right]\right|^{c}=\left|Q_{1}\right|^{c}\left[x:=\left|N_{1}\right|^{c}\right]=\left|Q_{2}\right|^{c}\left[x:=\left|N_{2}\right|^{c}\right]=\mid Q_{2}[x:=$ $\left.N_{2}\right]\left.\right|^{c}$. By lemma 2.5, $\mathcal{R}_{M_{1}\left[x:=N_{1}\right]}^{r}=\mathcal{R}_{P_{1} Q_{1}\left[x:=N_{1}\right]}^{r}=\{\square\} \cup\left\{C Q_{1}[x:=\right.$ $\left.\left.N_{1}\right] \mid C \in \mathcal{R}_{P_{1}}^{r}\right\} \cup\left\{P_{1} C \mid C \in \mathcal{R}_{Q_{1}\left[x:=N_{1}\right]}^{r}\right\}$ and $\mathcal{R}_{M_{2}\left[x:=N_{2}\right]}^{r}=$ $\mathcal{R}_{P_{2} Q_{2}\left[x:=N_{2}\right]}^{r}=\{\square\} \cup\left\{C Q_{2}\left[x:=N_{2}\right] \mid C \in \mathcal{R}_{P_{2}}^{r}\right\} \cup\left\{P_{2} C \mid C \in\right.$ $\left.\mathcal{R}_{Q_{2}\left[x:=N_{2}\right]}^{r}\right\}^{2} . \mathrm{So},\left|\mathcal{R}_{M_{1}\left[x:=N_{1}\right]}^{r}\right|_{\mathcal{C}}^{c}=\left|\mathcal{R}_{P_{1} Q_{1}\left[x:=N_{1}\right]}^{r}\right|_{\mathcal{C}}^{c}=$
$\{\square\} \cup\left\{\left.C\left|Q_{1}\left[x:=N_{1}\right]\right|^{c}|C \in| \mathcal{R}_{P_{1}}^{r}\right|^{c}\right\} \cup \cup\left\{\left.\left|P_{1}\right|^{c} C|C \in| \mathcal{R}_{Q_{1}\left[x:=N_{1}\right]}\right|^{c}\right\}$ and $\left|\mathcal{R}_{M_{2}\left[x:=N_{2}\right]}^{r}\right|_{\mathcal{C}}^{c}=\left|\mathcal{R}_{P_{2} Q_{2}\left[x:=N_{2}\right]}^{r}\right|_{\mathcal{C}}^{\mathcal{C}}=\{\square\} \cup\left\{C\left|Q_{2}\left[x:=N_{2}\right]\right|^{c} \mid C \in\right.$ $\left.\left|\mathcal{R}_{P_{2}}^{r}\right|^{c}\right\} \cup\left\{\left|P_{2}\right|^{c} C|C \in| \mathcal{R}_{Q_{2}\left[x:=N_{2}\right]}^{r}{ }^{c}\right\}$. Let $C \in\left|\mathcal{R}_{M_{1}\left[x:=N_{1}\right]}^{r}\right|^{c}$:
- Either $C=\square \in\left|\mathcal{R}_{M_{2}\left[x:=N_{2}\right]}^{r}\right|^{c}$.
- Or $C=C^{\prime}\left|Q_{1}\left[x:=N_{1}\right]\right|^{c}=C^{\prime}\left|Q_{2}\left[x:=N_{2}\right]\right|^{c}$ such that $C^{\prime} \in$ $\left|\mathcal{R}_{P_{1}}^{r}\right|_{\mathcal{C}}^{c} \subseteq\left|\mathcal{R}_{P_{2}}^{r}\right|^{c}$. So $C \in\left|\mathcal{R}_{M_{2}\left[x:=N_{2}\right.}^{r}\right|^{c}{ }_{c}^{c}$.
- Or $C=\left|P_{1}\right|^{c} C^{\prime}=\left|P_{2}\right|^{c} C^{\prime}$ such that $C^{\prime} \in\left|\mathcal{R}_{Q_{1}\left[x:=N_{1}\right]}^{r}\right|^{c} \subseteq$ $\mid \mathcal{R}_{Q_{2}\left[x:=N_{2}\right]}^{r}{ }_{\mathcal{C}}^{c}$. So $C \in \mid \mathcal{R}_{M_{2}\left[x:=N_{2} \mid\right.}^{r}{ }^{c}{ }_{C}^{c}$.
- Let $M_{2}=c M_{2}^{\prime}$ such that $M_{2}^{\prime} \in \Lambda \eta_{c}$. So $\left|M_{2}\right|^{c}=\left|M_{2}^{\prime}\right|^{c}$. By lemma 2.9.5, $\mathcal{R}_{M_{2}}^{\beta \eta}=\left\{c C \mid C \in \mathcal{R}_{M_{2}^{\prime}}^{\beta \eta}\right\}$, so $\left|\mathcal{R}_{M_{1}}^{\beta \eta}\right|_{\mathcal{C}}^{c} \subseteq\left|\mathcal{R}_{M_{2}}^{\beta \eta}\right|_{\mathcal{C}}^{c_{c}}=\left|\mathcal{R}_{M_{2}^{\prime}}^{\beta \eta}\right|_{\mathcal{C}}^{c}$. Again by lemma 2.9.5, $\mathcal{R}_{M_{2}\left[x:=N_{2}\right]}^{\beta \eta}=\mathcal{R}_{c M_{2}\left[x:=N_{2}\right]}^{\beta \eta}=\left\{c C \mid C \in \mathcal{R}_{M_{2}^{2}\left[x:=N_{2}\right]}^{\beta \eta}\right\}$, so $\left.\left|\mathcal{R}_{M_{2}\left[x:=N_{2} \mid\right.}^{\beta \eta}\right|_{\mathcal{C}}^{c}=\mid \mathcal{R}_{M_{2}^{\prime}\left[x:=N_{2}\right]}^{\beta \eta}\right]^{c}$. Since $\left(\lambda x . M_{2}^{\prime}\right) N_{2} \in \Lambda \eta_{c}, \mid \mathcal{R}_{M_{1}\left[x:=N_{1}\right]}^{\tilde{\beta} \eta}{ }^{\mathcal{C}}$ $\subseteq^{I H}\left|\mathcal{R}_{M_{2}^{\prime}\left[x:=N_{2}\right]}^{\beta \eta}\right|_{\mathcal{C}}^{\mathcal{C}}=\left|\mathcal{R}_{M_{2}\left[x:=N_{2}\right]}^{\beta \eta}\right|_{\mathcal{C}}^{\mathcal{C}}$.
- Let $M_{1}=c M_{1}^{\prime} \in \Lambda \eta_{c}$ such that $M_{1}^{\prime} \in \Lambda \eta_{c}$. So $\left|M_{1}\right|^{c}=\left|M_{1}^{\prime}\right|^{c}$. By lemma 2.9.5, $\mathcal{R}_{M_{1}}^{\beta \eta}=\left\{c C \mid C \in \mathcal{R}_{M_{1}^{\prime}}^{\beta \eta}\right\}$, so $\left|\mathcal{R}_{M_{1}}^{\beta \eta}\right|_{c}^{c}=\left|\mathcal{R}_{M_{1}}^{\beta \eta}\right|_{\mathcal{C}}^{c} \subseteq\left|\mathcal{R}_{M_{2}}^{\beta \eta}\right|_{c}^{c}$. Again by
lemma 2.9.5, $\mathcal{R}_{M_{1}\left[x:=N_{1}\right]}^{\beta \eta}=\mathcal{R}_{c M_{1}^{\prime}\left[x:=N_{1}\right]}^{\beta \eta}=\left\{c C \mid C \in \mathcal{R}_{M_{1}^{\prime}\left[x:=N_{1}\right]}^{\beta \eta}\right\}$, so $\left|\mathcal{R}_{M_{1}\left[x:=N_{1}\right]}^{\beta \eta}\right|_{\mathcal{C}}^{c}=$ $\left|\mathcal{R}_{M_{1}^{\prime}\left[x:=N_{1}\right]}^{\beta \eta}\right|_{\mathcal{C}}^{c}$. Since $\left(\lambda x . M_{1}^{\prime}\right) N_{1} \in \Lambda \eta_{c},\left|\mathcal{R}_{M_{1}\left[x:=N_{1}\right]}^{\beta \eta}\right|^{c} \mathcal{C}=\left|\mathcal{R}_{M_{1}^{\prime}\left[x:=N_{1}\right]}^{\beta \eta}\right|_{\mathcal{C}}^{c}=\subseteq^{I H}$ $\left.\mid \mathcal{R}_{M_{2}\left[x:=N_{2}\right]}^{\beta \eta}\right]^{c}$.

Lemma 2.28. Since $M_{1}{\xrightarrow{C_{1}}}_{r} M_{1}^{\prime}, C_{1} \in \mathcal{R}_{M_{1}}^{r}$ and $\exists R_{1} \in \mathcal{R}^{r}$ such that $M_{1}=C_{1}\left[R_{1}\right]$. So $M_{1}^{\prime}=C_{1}\left[R_{1}^{\prime}\right]$ such that R_{1}^{\prime} is the contractum of R_{1}. Since $M_{2} \xrightarrow{C_{2}}{ }_{r} M_{2}^{\prime}, C_{2} \in \mathcal{R}_{M_{2}}^{r}$ and $\exists R_{2} \in \mathcal{R}^{r}$ such that $M_{2}=C_{2}\left[R_{2}\right]$. So $M_{2}^{\prime}=C_{2}\left[R_{2}^{\prime}\right]$ such that R_{2}^{\prime} is the contractum of R_{2}. We prove this lemma by induction on the structure of M_{1}.

1. Let $M_{1} \in \mathcal{V} \backslash\{c\}$ then nothing to prove since M_{1} does not reduce.
2. Let $M_{1}=\lambda x . N_{1} \in \Lambda \mathrm{I}_{c}$. So $\left|M_{1}\right|^{c}=\lambda x .\left|N_{1}\right|^{c}=\left|M_{2}\right|^{c}$. By lemma 2.16, since $M_{2} \in \Lambda_{c}$ and by lemma $2.4, M_{2}=\lambda x . N_{2}$ and $\left|N_{2}\right|^{c}=\left|N_{1}\right|^{c}$. Since $M_{1}, M_{2} \notin$ $\mathcal{R}^{\beta I}$, by lemma 2.5, $\mathcal{R}_{M_{1}}^{\beta I}=\left\{\lambda x . C \mid C \in \mathcal{R}_{N_{1}}^{\beta I}\right\}$ and $\mathcal{R}_{M_{2}}^{\beta I}=\left\{\lambda x . C \mid C \in \mathcal{R}_{N_{2}}^{\beta I}\right\}$ so $\left|\mathcal{R}_{M_{1}}^{\beta I}\right|_{\mathcal{C}}^{c}=\left\{|\lambda x . C|_{\mathcal{C}}^{c} \mid C \in \mathcal{R}_{N_{1}}^{\beta I}\right\}=\left\{\lambda x .\left.C|C \in| \mathcal{R}_{N_{1}}^{\beta I}\right|_{\mathcal{C}} ^{c}\right\}$ and $\left|\mathcal{R}_{M_{2}}^{\beta I}\right|_{\mathcal{C}}^{c}=$ $\left\{|\lambda x . C|_{\mathcal{C}}^{c} \mid C \in \mathcal{R}_{N_{2}}^{\beta I}\right\}=\left\{\lambda x .\left.C|C \in| \mathcal{R}_{N_{2}}^{\beta I}\right|_{\mathcal{C}} ^{c}\right\}$. Let $C \in\left|\mathcal{R}_{N_{1}}^{\beta I}\right|_{\mathcal{C}}^{c}$ then $\lambda x . C \in$ $\left|\mathcal{R}_{M_{1}}^{\beta I}\right|_{\mathcal{C}}^{c}$, so by hypothesis, $\lambda x . C \in\left|\mathcal{R}_{M_{2}}^{\beta I}\right|_{\mathcal{C}}^{c}$. Hence, $C \in\left|\mathcal{R}_{N_{2}}^{\beta I}\right|_{\mathcal{C}}^{c}$, i.e. $\left|\mathcal{R}_{N_{1}}^{\beta I}\right|_{\mathcal{C}}^{c} \subseteq$ $\left|\mathcal{R}_{N_{2}}^{\beta I}\right|_{\mathcal{C}}^{c}$. Since $C_{1} \in \mathcal{R}_{M_{1}}^{\beta I}, C_{1}=\lambda x . C_{1}^{\prime}$ such that $C_{1}^{\prime} \in \mathcal{R}_{N_{1}}^{\beta I}$. Since $C_{2} \in \mathcal{R}_{M_{2}}^{\beta I}$, $C_{2}=\lambda x . C_{2}^{\prime}$ such that $C_{2}^{\prime} \in \mathcal{R}_{N_{2}}^{\beta I}$. Since $\left|C_{1}\right|_{\mathcal{C}}^{c}=\left|C_{2}\right|_{\mathcal{C}}^{c},\left|C_{1}^{\prime}\right|_{\mathcal{C}}^{c}=\left|C_{2}^{\prime}\right|_{\mathcal{C}}^{c}$. Hence, $M_{1}=\lambda x \cdot N_{1}=\lambda x \cdot C_{1}^{\prime}\left[R_{1}\right]{\xrightarrow{C_{1}}}_{\beta I} \lambda x \cdot C_{1}^{\prime}\left[R_{1}^{\prime}\right]=\lambda x . N_{1}^{\prime}=M_{1}^{\prime}, M_{2}=\lambda x \cdot N_{2}=$ $\lambda x \cdot C_{2}^{\prime}\left[R_{2}\right]{\xrightarrow{C_{2}}}_{\beta I} \lambda x \cdot C_{2}^{\prime}\left[R_{2}^{\prime}\right]=\lambda x \cdot N_{2}^{\prime}=M_{2}^{\prime}, N_{1}{\xrightarrow{C_{1}^{\prime}}}_{\beta I} N_{1}^{\prime}$ and $N_{2}{\xrightarrow{C_{2}^{\prime}}}_{\beta I} N_{2}^{\prime}$. By IH, $\left|\mathcal{R}_{N_{1}^{\prime}}^{\beta I}\right|_{\mathcal{C}}^{c} \subseteq\left|\mathcal{R}_{N_{2}^{\prime}}^{\beta I}\right|_{\mathcal{C}}^{c}$. By lemma 2.5, $\mathcal{R}_{M_{1}^{\prime}}^{\beta I}=\left\{\lambda x . C \mid C \in \mathcal{R}_{N_{1}^{\prime}}^{\beta I}\right\}$ and $\mathcal{R}_{M_{2}^{\prime}}^{\beta I}=$ $\left\{\lambda x . C \mid C \in \mathcal{R}_{N_{2}^{\prime}}^{\beta I}\right\}$, so $\left|\mathcal{R}_{M_{1}^{\prime}}^{\beta I}\right|_{\mathcal{C}}^{c}=\left\{|\lambda x . C|_{\mathcal{C}}^{c} \mid C \in \mathcal{R}_{N_{1}^{\prime}}^{\beta I}\right\}=\left\{\lambda x .\left.C|C \in| \mathcal{R}_{N_{1}^{\prime}}^{\beta I}\right|_{\mathcal{C}} ^{c}\right\}$ and $\left|\mathcal{R}_{M_{2}^{\prime}}^{\beta I}\right|_{\mathcal{C}}^{c}=\left\{|\lambda x . C|_{\mathcal{C}}^{c} \mid C \in \mathcal{R}_{N_{2}^{\prime}}^{\beta I}\right\}=\left\{\lambda x .\left.C|C \in| \mathcal{R}_{N_{2}^{\prime}}^{\beta I}\right|_{\mathcal{C}} ^{c}\right\}$. Let $C \in\left|\mathcal{R}_{M_{1}}^{\beta I}\right|_{\mathcal{C}}^{c}$, then $C=\lambda x . C^{\prime}$ such that $C^{\prime} \in\left|\mathcal{R}_{N_{1}^{\prime}}^{\beta I}\right|_{\mathcal{C}}^{c} \subseteq{ }^{I H}\left|\mathcal{R}_{N_{2}^{\prime}}^{\beta I}\right|_{\mathcal{C}}^{c}$, so $\lambda x . C^{\prime} \in\left|\mathcal{R}_{M_{2}^{\prime}}^{\beta I}\right|_{\mathcal{C}}^{c}$.
3. Let $M_{1}=\lambda x . N_{1}[x:=c(c x)] \in \Lambda \eta_{c}$ such that $N_{1} \in \Lambda \eta_{c}$ then $\left|M_{1}\right|^{c}=$ $\lambda x .\left|N_{1}[x:=c(c x)]\right|^{c}={ }^{2.18} \lambda x .\left|N_{1}\right|^{c}$. We prove the statement by induction on the structure of M_{2} :

- Let $M_{2} \in \mathcal{V} \backslash\{c\}$ then $\left|M_{2}\right|^{c}=M_{2} \neq \lambda x .\left|N_{1}\right|^{c}$.
- Let $M_{2}=\lambda x . N_{2}[x:=c(c x)]$ such that $N_{2} \in \Lambda \eta_{c}$. Since $\left|M_{2}\right|^{c}=$ $\lambda x .\left|N_{2}[x:=c(c x)]\right|^{c}={ }^{2.18} \lambda x .\left|N_{2}\right|^{c},\left|N_{1}\right|^{c}=\left|N_{2}\right|^{c} . \mathcal{R}_{M_{1}}^{\beta \eta}={ }^{2.9 .3}\{\lambda x . C \mid C \in$ $\left.\mathcal{R}_{N_{1}[x:=c(c x)]}^{\beta \eta}\right\}={ }^{2.9 .4}\left\{\lambda x . C[x:=c(c x)] \mid C \in \mathcal{R}_{N_{1}}^{\beta \eta}\right\}$ and $\mathcal{R}_{M_{2}}^{\beta \eta}={ }^{2.9 .3}$ $\left\{\lambda x . C \mid C \in \mathcal{R}_{N_{2}[x:=c(c x)]}^{\beta \eta}\right\}={ }^{2.9 .4}\left\{\lambda x . C[x:=c(c x)] \mid C \in \mathcal{R}_{N_{2}}^{\beta \eta}\right\}$. So, $\left|\mathcal{R}_{M_{1}}^{\beta \eta}\right|_{\mathcal{C}}^{c}=^{2.19}\left\{\lambda x .\left.C|C \in| \mathcal{R}_{N_{1}}^{\beta \eta}\right|_{\mathcal{C}} ^{c}\right\}$ and $\left|\mathcal{R}_{M_{2}}^{\beta \eta}\right|_{\mathcal{C}}^{c}={ }^{2.19}\{\lambda x . C \mid C \in$ $\left.\left|\mathcal{R}_{N_{2}}^{\beta \eta}\right|_{\mathcal{C}}^{c}\right\}$. Let $C \in\left|\mathcal{R}_{N_{1}}^{\beta \eta}\right|_{\mathcal{C}}^{c}$ then $\lambda x . C \in\left|\mathcal{R}_{M_{1}}^{\beta \eta}\right|_{\mathcal{C}}^{c} \subseteq\left|\mathcal{R}_{M_{2}}^{\beta \eta}\right|_{\mathcal{C}}^{c}$, so $C \in\left|\mathcal{R}_{N_{2}}^{\beta \eta}\right|_{\mathcal{C}}^{c}$, i.e. $\left|\mathcal{R}_{N_{1}}^{\beta \eta}\right|_{\mathcal{C}}^{c} \subseteq\left|\mathcal{R}_{N_{2}}^{\beta \eta}\right|_{\mathcal{C}}^{c}$. Since $C_{1} \in \mathcal{R}_{M_{1}}^{\beta \eta}, C_{1}=\lambda x . C_{1}^{\prime}[x:=c(c x)]$ such that $C_{1}^{\prime} \in \mathcal{R}_{N_{1}}^{\beta \eta}$. Since $C_{2} \in \mathcal{R}_{M_{2}}^{\beta \eta}, C_{2}=\lambda x . C_{2}^{\prime}[x:=c(c x)]$ such that $C_{2}^{\prime} \in$ $\mathcal{R}_{N_{2}}^{\beta \eta}$. Since $\lambda x .\left|C_{1}^{\prime}\right|_{\mathcal{C}}^{c}={ }^{2.19}\left|C_{1}\right|_{\mathcal{C}}^{c}=\left|C_{2}\right|^{c}{ }_{\mathcal{C}}^{c}=2.19 \lambda x .\left|C_{2}^{\prime}\right|^{c},{ }_{\mathcal{C}},\left|C_{1}^{\prime}\right|_{\mathcal{C}}^{c}=\left|C_{2}^{\prime}\right|_{\mathcal{C}}^{c}$. So $M_{1}=\lambda x . N_{1}[x:=c(c x)]=\lambda x . C_{1}^{\prime}[x:=c(c x)]\left[R_{1}\right]={ }^{2.8} \lambda x . C_{1}^{\prime}\left[R_{1}\right][x:=$ $c(c x)]{\xrightarrow{C_{1}}}_{\beta \eta} \lambda x . C_{1}^{\prime}\left[R_{1}^{\prime}\right][c:=c(c x)]=\lambda x . N_{1}^{\prime}[x:=c(c x)]=M_{1}^{\prime}, M_{2}=$ $\lambda x \cdot N_{2}[x:=c(c x)]=\lambda x . C_{2}^{\prime}[x:=c(c x)]\left[R_{2}\right]={ }^{2.8} \lambda x . C_{2}^{\prime}\left[R_{2}\right][x:=c(c x)]{\xrightarrow{C_{2}}}_{\beta \eta}$ $\lambda x \cdot C_{2}^{\prime}\left[R_{2}^{\prime}\right][c:=c(c x)]=\lambda x \cdot N_{2}^{\prime}[x:=c(c x)]=M_{2}^{\prime}, N_{1}=C_{1}^{\prime}\left[R_{1}\right]{\xrightarrow{C_{1}^{\prime}}}_{\beta \eta}$ $C_{1}^{\prime}\left[R_{1}^{\prime}\right]=N_{1}^{\prime}$ and $N_{2}=C_{2}^{\prime}\left[R_{2}\right]{\xrightarrow{C_{2}^{\prime}}}_{\beta \eta} C_{2}^{\prime}\left[R_{2}^{\prime}\right]=N_{2}^{\prime}$. By IH, $\left|\mathcal{R}_{N_{1}^{\prime}}^{\beta \eta}\right|_{C}^{c} \subseteq$ $\left|\mathcal{R}_{N_{2}^{\prime}}^{\beta \eta}\right|_{\mathcal{C}}^{c}$. Hence, $\mathcal{R}_{M_{1}^{\prime}}^{\beta \eta}={ }^{2.9 .3}\left\{\lambda x . C \mid C \in \mathcal{R}_{N_{1}^{\prime}[x:=c(c x)]}^{\beta \eta}\right\}={ }^{2.9 .4}\{\lambda x . C[x:=$
$\left.c(c x)] \mid C \in \mathcal{R}_{N_{1}^{\prime}}^{\beta \eta}\right\}$ and $\mathcal{R}_{M_{2}^{\prime}}^{\beta \eta}={ }^{2.9 .3}\left\{\lambda x . C \mid C \in \mathcal{R}_{N_{2}^{\prime}[x:=c(c x)]}^{\beta \eta}\right\}$
$={ }^{2.9 .4}\left\{\lambda x . C[x:=c(c x)] \mid C \in \mathcal{R}_{N_{2}^{\prime}}^{\beta \eta}\right\}$. So, $\left|\mathcal{R}_{M_{1}^{\prime}}^{\beta \eta}\right|_{\mathcal{C}}^{c}={ }^{2.19}\{\lambda x . C \mid C \in$ $\left.\left|\mathcal{R}_{N_{1}^{\prime}}^{\beta \eta}\right|_{\mathcal{C}}^{\mathcal{C}}\right\}$ and $\left|\mathcal{R}_{M_{2}^{\prime}}^{\beta \eta}\right|_{\mathcal{C}}^{c}={ }^{2.19}\left\{\lambda x .\left.C|C \in| \mathcal{R}_{N_{2}^{\prime}}^{\beta \eta}\right|_{\mathcal{C}} ^{c}\right\}$. Let $C \in\left|\mathcal{R}_{M_{1}^{\prime}}^{\beta \eta}\right|_{\mathcal{C}}^{c}$ then $C=\lambda x . C^{\prime}$ such that $C^{\prime} \in\left|\mathcal{R}_{N_{1}^{\prime}}^{\beta \eta}\right|_{\mathcal{C}}^{c} \subseteq\left|\mathcal{R}_{N_{2}^{\prime}}^{\beta \eta}\right|_{\mathcal{C}}^{c}$, so $C \in\left|\mathcal{R}_{M_{2}^{\prime}}^{\beta \eta}\right|_{\mathcal{C}}^{c}$, i.e.
$\left|\mathcal{R}_{M_{1}^{\prime}}^{\beta \eta}\right|_{\mathcal{C}}^{c} \subseteq\left|\mathcal{R}_{M_{2}^{\prime}}^{\beta \eta}\right|_{\mathcal{C}}^{c}$.
- Let $M_{2}=\lambda x \cdot N_{2} x$ such that $N_{2} x \in \Lambda \eta_{c}, x \notin F V\left(N_{2}\right)$ and $N_{2} \neq c$, then $M_{2} \in \mathcal{R}^{\beta \eta}$. Since $\left|M_{2}\right|^{c}=\lambda x .\left|N_{2} x\right|^{c},\left|N_{1}\right|^{c}=\left|N_{2} x\right|^{c} . \mathcal{R}_{M_{1}}^{\beta \eta}={ }^{2.9 .3}$ $\left\{\lambda x . C \mid C \in \mathcal{R}_{N_{1}[x:=c(c x)]}^{\beta \eta}\right\}={ }^{2.9 .4}\left\{\lambda x . C[x:=c(c x)] \mid C \in \mathcal{R}_{N_{1}}^{\beta \eta}\right\}$ and $\mathcal{R}_{M_{2}}^{\beta \eta}={ }^{2.5}\{\square\} \cup\left\{\lambda x . C \mid C \in \mathcal{R}_{N_{2} x}^{\beta \eta}\right\}$. So, $\left|\mathcal{R}_{M_{1}}^{\beta \eta}\right|_{\mathcal{C}}^{c}={ }^{2.19}\{\lambda x . C \mid C \in$ $\left.\left|\mathcal{R}_{N_{1}}^{\beta \eta}\right|_{\mathcal{C}}^{c}\right\}$ and $\left|\mathcal{R}_{M_{2}}^{\beta \eta}\right|_{\mathcal{C}}^{c}=\{\square\} \cup\left\{\lambda x .\left.C|C \in| \mathcal{R}_{N_{2} x}^{\beta \eta}\right|_{\mathcal{C}} ^{c}\right\}$. Let $C \in\left|\mathcal{R}_{N_{1}}^{\beta \eta}\right|_{\mathcal{C}}^{c}$ then $\lambda x . C \in\left|\mathcal{R}_{M_{1}}^{\beta \eta}\right|_{\mathcal{C}}^{c} \subseteq\left|\mathcal{R}_{M_{2}}^{\beta \eta}\right|_{\mathcal{C}}^{c}$, so $C \in\left|\mathcal{R}_{N_{2} x}^{\beta \eta}\right|_{\mathcal{C}}^{c}$, i.e. $\left|\mathcal{R}_{N_{1}}^{\beta \eta}\right|_{\mathcal{C}}^{c} \subseteq\left|\mathcal{R}_{N_{2} x}^{\beta \eta}\right|_{\mathcal{C}}^{c}$. Since $C_{1} \in \mathcal{R}_{M_{1}}^{\beta \eta}, C_{1}=\lambda x . C_{1}^{\prime}[x:=c(c x)]$ such that $C_{1}^{\prime} \in \mathcal{R}_{N_{1}}^{\beta \eta}$. Since $C_{2} \in \mathcal{R}_{M_{2}}^{\beta \eta}$ and $\left|C_{1}\right|_{\mathcal{C}}^{c}=\left|C_{2}\right|_{\mathcal{C}}^{c}, C_{2}=\lambda x . C_{2}^{\prime}$ such that $C_{2}^{\prime} \in \mathcal{R}_{N_{2} x}^{\beta \eta}$. Since $\lambda x .\left|C_{1}^{\prime}\right|_{\mathcal{C}}^{c}=2.19\left|C_{1}\right|_{\mathcal{C}}^{c}=\left|C_{2}\right|_{\mathcal{C}}^{c}=\lambda x .\left|C_{2}^{\prime}\right|_{\mathcal{C}}^{c},\left|C_{1}^{\prime}\right|_{\mathcal{C}}^{c}=\left|C_{2}^{\prime}\right|_{\mathcal{C}}^{c}$. So $M_{1}=\lambda x . N_{1}[x:=c(c x)]=\lambda x . C_{1}^{\prime}[x:=c(c x)]\left[R_{1}\right]={ }^{2.8} \lambda x . C_{1}^{\prime}\left[R_{1}\right][x:=$ $c(c x)]{\xrightarrow{C_{1}}}_{\beta \eta} \lambda x . C_{1}^{\prime}\left[R_{1}^{\prime}\right][c:=c(c x)]=\lambda x \cdot N_{1}^{\prime}[x:=c(c x)]=M_{1}^{\prime}, M_{2}=$ $\lambda x \cdot N_{2} x=\lambda x \cdot C_{2}^{\prime}\left[R_{2}\right] \xrightarrow{C_{2}} \beta \eta \lambda x \cdot C_{2}^{\prime}\left[R_{2}^{\prime}\right]=\lambda x \cdot N_{2}^{\prime}=M_{2}^{\prime}, N_{1}=C_{1}^{\prime}\left[R_{1}\right]{ }^{C_{1}^{\prime}} \beta \eta$ $C_{1}^{\prime}\left[R_{1}^{\prime}\right]=N_{1}^{\prime}$ and $N_{2} x=C_{2}^{\prime}\left[R_{2}\right]{\xrightarrow{C_{2}^{\prime}}}_{\beta \eta} C_{2}^{\prime}\left[R_{2}^{\prime}\right]=N_{2}^{\prime}$. By IH, $\left|\mathcal{R}_{N_{1}^{\prime}}^{\beta \eta}\right|_{\mathcal{C}}^{c} \subseteq$ $\left|\mathcal{R}_{N_{2}^{\prime}}^{\beta \eta}\right|_{\mathcal{C}}^{c}$. Hence, $\mathcal{R}_{M_{1}^{\prime}}^{\beta \eta}={ }^{2.9 .3}\left\{\lambda x . C \mid C \in \mathcal{R}_{N_{1}^{\prime}[x:=c(c x)]}^{\beta \eta}\right\}={ }^{2.9 .4}\{\lambda x . C[x:=$ $\left.c(c x)] \mid C \in \mathcal{R}_{N_{1}^{\prime}}^{\beta \eta}\right\}$ and $\mathcal{R}_{M_{2}^{\prime}}^{\beta \eta} \backslash\{\square\}={ }^{2.5}\left\{\lambda x . C \mid C \in \mathcal{R}_{N_{2}^{\prime}}^{\beta \eta}\right\}$. So, $\left|\mathcal{R}_{M_{1}^{\prime}}^{\beta \eta}\right|_{\mathcal{C}}^{c}={ }^{2.19}\left\{\lambda x .\left.C|C \in| \mathcal{R}_{N_{1}^{\prime}}^{\beta \eta}\right|_{\mathcal{C}} ^{c}\right\}$ and $\left|\mathcal{R}_{M_{2}^{\prime}}^{\beta \eta}\right|_{\mathcal{C}}^{c} \backslash\{\square\}=\{\lambda x . C \mid C \in$ $\left.\left|\mathcal{R}_{N_{2}^{\prime}}^{\beta \eta}\right|_{\mathcal{C}}^{c}\right\}$. Let $C \in\left|\mathcal{R}_{M_{1}^{\prime}}^{\beta \eta}\right|_{\mathcal{C}}^{c}$ then $C=\lambda x . C^{\prime}$ such that $C^{\prime} \in\left|\mathcal{R}_{N_{1}}^{\beta \eta}\right|_{\mathcal{C}}^{c} \subseteq$ $\left|\mathcal{R}_{N_{2}^{\prime}}^{\beta \eta}\right|_{\mathcal{C}}^{c}$, so $C \in\left|\mathcal{R}_{M_{2}^{\prime}}^{\beta \eta}\right|_{\mathcal{C}}^{c} \backslash\{\square\}$, i.e. $\left|\mathcal{R}_{M_{1}^{\prime}}^{\beta \eta}\right|_{\mathcal{C}}^{c} \subseteq\left|\mathcal{R}_{M_{2}^{\prime}}^{\beta \eta}\right|_{\mathcal{C}}^{c}$.
- Let $M_{2}=c P_{2} Q_{2}$ such that $P_{2}, Q_{2} \in \Lambda \eta_{c}$ then $\left|M_{2}\right|^{c}=\left|P_{2}\right|^{c}\left|Q_{2}\right|^{c} \neq$ $\lambda x .\left|N_{1}\right|^{c}$.
- Let $M_{2}=P_{2} Q_{2}$ such that $P_{2}, Q_{2} \in \Lambda \eta_{c}$ and P_{2} is a λ-abstraction then $\left|M_{2}\right|^{c}=\left|P_{2}\right|^{c}\left|Q_{2}\right|^{c} \neq \lambda x .\left|N_{1}\right|^{c}$.
- Let $M_{2}=c N_{2}$ such that $N_{2} \in \Lambda \eta_{c}$. So $\left|N_{2}\right|^{c}=\left|M_{2}\right|^{c}=\left|M_{1}\right|^{c}$. By lemma 2.9.5, $\mathcal{R}_{M_{2}}^{\beta \eta}=\left\{c C \mid C \in \mathcal{R}_{N_{2}}^{\beta \eta}\right\}$, so $\left|\mathcal{R}_{M_{1}}^{\beta \eta}\right|_{\mathcal{C}}^{c} \subseteq\left|\mathcal{R}_{M_{2}}^{\beta \eta}\right|_{\mathcal{C}}^{c}=\left|\mathcal{R}_{N_{2}}^{\beta \eta}\right|_{\mathcal{C}}^{c}$. Since $C_{2} \in \mathcal{R}_{M_{2}}^{\beta \eta}, C_{2}=c C_{2}^{\prime}$ such that $C_{2}^{\prime} \in \mathcal{R}_{N_{2}}^{\beta \eta}$. So, $M_{2}=c N_{2}=$ $c C_{2}^{\prime}\left[R_{2}\right] \xrightarrow{c C_{2}^{\prime}}{ }_{\beta \eta} c C_{2}^{\prime}\left[R_{2}^{\prime}\right]=c N_{2}^{\prime}=M_{2}^{\prime}$ and $N_{2}=C_{2}^{\prime}\left[R_{2}\right]{ }^{C_{2}^{\prime}}{ }_{\beta \eta} C_{2}^{\prime}\left[R_{2}^{\prime}\right]=N_{2}^{\prime}$. Since $\left|C_{2}^{\prime}\right|_{\mathcal{C}}^{c}=\left|C_{2}\right|_{\mathcal{C}}^{c}=\left|C_{1}\right|_{\mathcal{C}}^{c}$, by $\mathrm{IH},\left|\mathcal{R}_{M_{1}^{\prime}}^{\beta \eta}\right|_{\mathcal{C}}^{c} \subseteq\left|\mathcal{R}_{N_{2}^{\prime}}^{\beta \eta}\right|_{\mathcal{C}}^{c}$. By lemma 2.9.5, $\mathcal{R}_{M_{2}^{\prime}}^{\beta \eta}=\left\{c C \mid C \in \mathcal{R}_{N_{2}^{\prime}}^{\beta \eta}\right\}$, so $\left|\mathcal{R}_{M_{1}^{\prime}}^{\beta \eta}\right|_{\mathcal{C}}^{c} \subseteq\left|\mathcal{R}_{N_{2}^{\prime}}^{\beta \eta}\right|_{\mathcal{C}}^{c}=\left|\mathcal{R}_{M_{2}^{\prime}}^{\beta \eta}\right|_{\mathcal{C}}^{c}$.

4. Let $M_{1}=\lambda x . N_{1} x \in \Lambda \eta_{c}$ such that $N_{1} x \in \Lambda \eta_{c}, x \notin F V\left(N_{1}\right)$ and $N_{1} \neq c$, then $M_{1} \in \mathcal{R}^{\beta \eta}$ and $\left|M_{1}\right|^{c}=\lambda x .\left|N_{1} x\right|^{c}=\lambda x \cdot\left|N_{1}\right|^{c} x$. We prove the statement by induction on the structure of M_{2} :
(a) Let $M_{2} \in \mathcal{V} \backslash\{c\}$ then $\left|M_{2}\right|^{c}=M_{2} \neq \lambda x .\left|N_{1} x\right|^{c}$.
(b) Let $M_{2}=\lambda x \cdot N_{2}[x:=c(c x)]$ such that $N_{2} \in \Lambda \eta_{c} . \mathcal{R}_{M_{1}}^{\beta \eta}={ }^{2.5}\{\square\} \cup$ $\left\{\lambda x . C \mid C \in \mathcal{R}_{N_{1} x}^{\beta \eta}\right\}$ and $\mathcal{R}_{M_{2}}^{\beta \eta}={ }^{2.9 .3}\left\{\lambda x . C \mid C \in \mathcal{R}_{N_{2}[x:=c(c x)]}^{\beta \eta}\right\}={ }^{2.9 .4}$ $\left\{\lambda x . C[x:=c(c x)] \mid C \in \mathcal{R}_{N_{2}}^{\beta \eta}\right\}$. So, $\left|\mathcal{R}_{M_{1}}^{\beta \eta}\right|_{\mathcal{C}}^{c}=\{\square\} \cup\{\lambda x . C \mid C \in$ $\left.\left|\mathcal{R}_{N_{1} x}^{\beta \eta}\right|_{\mathcal{C}}^{c}\right\}$ and $\left|\mathcal{R}_{M_{2}}^{\beta \eta}\right|_{\mathcal{C}}^{c}={ }^{2.19}\left\{\lambda x .\left.C|C \in| \mathcal{R}_{N_{2}}^{\beta \eta}\right|_{\mathcal{C}} ^{c}\right\}$. Hence, $\square \in\left|\mathcal{R}_{M_{1}}^{\beta \eta}\right|_{\mathcal{C}}^{c}$ but $\square \notin\left|\mathcal{R}_{M_{2}}^{\beta \eta}\right|^{c}$.
(c) Let $M_{2}=\lambda x \cdot N_{2} x$ such that $N_{2} x \in \Lambda \eta_{c}, x \notin F V\left(N_{2}\right)$ and $N_{2} \neq c$, then $M_{2} \in \mathcal{R}^{\beta \eta}$. Since $\left|M_{2}\right|^{c}=\lambda x .\left|N_{2} x\right|^{c}=\lambda x .\left|N_{2}\right|^{c} x,\left|N_{1} x\right|^{c}=\left|N_{2} x\right|^{c}$ and $\left|N_{1}\right|^{c}=\left|N_{2}\right|^{c} . \mathcal{R}_{M_{1}}^{\beta \eta}={ }^{2.5}\{\square\} \cup\left\{\lambda x . C \mid C \in \mathcal{R}_{N_{1} x}^{\beta \eta}\right\}$ and $\mathcal{R}_{M_{2}}^{\beta \eta}={ }^{2.5}$ $\{\square\} \cup\left\{\lambda x . C \mid C \in \mathcal{R}_{N_{2} x}^{\beta \eta}\right\}$. So, $\left|\mathcal{R}_{M_{1}}^{\beta \eta}\right|_{\mathcal{C}}^{c}=\{\square\} \cup\left\{\lambda x .\left.C|C \in| \mathcal{R}_{N_{1} x}^{\beta \eta}\right|_{\mathcal{C}} ^{c}\right\}$ and $\left|\mathcal{R}_{M_{2}}^{\beta \eta}\right|_{\mathcal{C}}^{c}=\{\square\} \cup\left\{\lambda x .\left.C|C \in| \mathcal{R}_{N_{2} x}^{\beta \eta}\right|_{\mathcal{C}} ^{c}\right\}$. Let $C \in\left|\mathcal{R}_{N_{1} x}^{\beta \eta}\right|_{\mathcal{C}}^{c}$ then $\lambda x . C \in$ $\left|\mathcal{R}_{M_{1}}^{\beta \eta}\right|_{\mathcal{C}}^{c} \subseteq\left|\mathcal{R}_{M_{2}}^{\beta \eta}\right|_{\mathcal{C}}^{c}$, so $C \in\left|\mathcal{R}_{N_{2} x}^{\beta \eta}\right|_{\mathcal{C}}^{c}$, i.e. $\left|\mathcal{R}_{N_{1} x}^{\beta \eta}\right|_{\mathcal{C}}^{c} \subseteq\left|\mathcal{R}_{N_{2} x}^{\beta \eta}\right|_{\mathcal{C}}^{c}$. Moreover, $\mathcal{R}_{N_{1} x}^{\beta \eta} \backslash\{\square\}={ }^{2.5}\left\{C x \mid C \in \mathcal{R}_{N_{1}}^{\beta \eta}\right\}$ and $\mathcal{R}_{N_{2} x}^{\beta \eta} \backslash\{\square\}={ }^{2.5}\left\{C x \mid C \in \mathcal{R}_{N_{2}}^{\beta \eta}\right\}$, so $\left|\mathcal{R}_{N_{1} x}^{\beta \eta}\right|_{\mathcal{C}}^{c} \backslash\{\square\}=\left\{\left.C x|C \in| \mathcal{R}_{N_{1}}^{\beta \eta}\right|_{\mathcal{C}} ^{c}\right\}$ and $\left|\mathcal{R}_{N_{2} x}^{\beta \eta}\right|_{\mathcal{C}}^{c} \backslash\{\square\}=\{C x \mid C \in$ $\left.\left|\mathcal{R}_{N_{2}}^{\beta \eta}\right|_{\mathcal{C}}^{c}\right\}$. Let $C \in\left|\mathcal{R}_{N_{1}}^{\beta \eta}\right|_{\mathcal{C}}^{c}$ then $C x \in\left|\mathcal{R}_{N_{1} x}^{\beta \eta}\right|_{\mathcal{C}}^{c} \backslash\{\square\} \subseteq\left|\mathcal{R}_{N_{1} x}^{\beta \eta}\right|_{\mathcal{C}}^{c} \subseteq\left|\mathcal{R}_{N_{2} x}^{\beta \eta}\right|_{\mathcal{C}}^{c}$, so $C \in\left|\mathcal{R}_{N_{2}}^{\beta \eta}\right|_{C}^{c}$, i.e. $\left|\mathcal{R}_{N_{1}}^{\beta \eta}\right|_{\mathcal{C}}^{c} \subseteq\left|\mathcal{R}_{N_{2}}^{\beta \eta}\right|_{C}^{c}$. Since $C_{1} \in \mathcal{R}_{M_{1}}^{\beta \eta}$:

- Either $C_{1}=\square$. Since $C_{2} \in \mathcal{R}_{M_{2}}^{\beta \eta}$ and $\left|C_{1}\right|_{\mathcal{C}}^{c}=\left|C_{2}\right|_{\mathcal{C}}^{c}, C_{2}=\square$. So $M_{1} \xrightarrow{\square}_{\beta \eta} N_{1}$ and $M_{2} \xrightarrow{\square}_{\beta \eta} N_{2}$. It is done since $\left|\mathcal{R}_{N_{1}}^{\beta \eta}\right|_{\mathcal{C}}^{c} \subseteq\left|\mathcal{R}_{N_{2}}^{\beta \eta}\right|_{\mathcal{C}}^{c}$.
- $C_{1}=\lambda x . C_{1}^{\prime}$ such that $C_{1}^{\prime} \in \mathcal{R}_{N_{1} x}^{\beta \eta}$. Since $C_{2} \in \mathcal{R}_{M_{2}}^{\beta \eta}$ and $\left|C_{1}\right|_{\mathcal{C}}^{c}=$ $\left|C_{2}\right|_{\mathcal{C}}^{c}, C_{2}=\lambda x . C_{2}^{\prime}$ such that $C_{2}^{\prime} \in \mathcal{R}_{N_{2} x}^{\beta \eta}$. Since $\lambda x .\left|C_{1}^{\prime}\right|_{\mathcal{C}}^{c}=\left|C_{1}\right|_{\mathcal{C}}^{c}=$ $\left|C_{2}\right|_{\mathcal{C}}^{c}=\lambda x .\left|C_{2}^{\prime}\right|_{\mathcal{C}}^{c},\left|C_{1}^{\prime}\right|_{\mathcal{C}}^{c}=\left|C_{2}^{\prime}\right|_{\mathcal{C}}^{c}$. So $M_{1}=\lambda x . N_{1} x=\lambda x . C_{1}^{\prime}\left[R_{1}\right]{ }^{C_{1}} \beta \eta$ $\lambda x \cdot C_{1}^{\prime}\left[R_{1}^{\prime}\right]=\lambda x \cdot N_{1}^{\prime}=M_{1}^{\prime}, M_{2}=\lambda x \cdot N_{2} x=\lambda x \cdot C_{2}^{\prime}\left[R_{2}\right]{ }^{C_{2}}{ }_{\beta \eta}$
$\lambda x . C_{2}^{\prime}\left[R_{2}^{\prime}\right]=\lambda x \cdot N_{2}^{\prime}=M_{2}^{\prime}, N_{1} x=C_{1}^{\prime}\left[R_{1}\right]{\xrightarrow{C_{1}^{\prime}}}_{\beta \eta} C_{1}^{\prime}\left[R_{1}^{\prime}\right]=N_{1}^{\prime}$ and $N_{2} x=C_{2}^{\prime}\left[R_{2}\right]{\xrightarrow{C_{2}^{\prime}}}_{\beta \eta} C_{2}^{\prime}\left[R_{2}^{\prime}\right]=N_{2}^{\prime}$. By IH, $\left|\mathcal{R}_{N_{1}^{\prime}}^{\beta \eta}\right|_{\mathcal{C}}^{c} \subseteq\left|\mathcal{R}_{N_{2}^{\prime}}^{\beta \eta}\right|_{\mathcal{C}}^{c}$.
- Either $M_{1}^{\prime} \in \mathcal{R}^{\beta \eta}$, then $M_{1}^{\prime}=\lambda x . P x$ such that $x \notin F V(P)$. We prove the statement by case on the belonging of $N_{1} x$ in $\mathcal{R}^{\beta \eta}$.
* Either $N_{1} x \in \mathcal{R}^{\beta \eta}$, so by lemma 2.5, $\mathcal{R}_{N_{1} x}^{\beta \eta}=\{\square\} \cup\{C x \mid C \in$ $\left.\mathcal{R}_{N_{1}}^{\beta \eta}\right\}$ and so $N_{1}=\lambda y . P_{1}$. Since $\left|\mathcal{R}_{N_{1} x}^{\beta \eta}\right|_{\mathcal{C}}^{c} \subseteq\left|\mathcal{R}_{N_{2} x}^{\beta \eta}\right|^{c}, \square \in$ $\mathcal{R}_{N_{2} x}^{\beta \eta}$ and by lemma 2.5, $\mathcal{R}_{N_{2} x}^{\beta \eta}=\{\square\} \cup\left\{C x \mid C \in \mathcal{R}_{N_{2}}^{\beta \eta}\right\}$ and so $N_{2}=\lambda y . P_{2}$.
- Let $C_{1}^{\prime}=\square$. Since $\left|C_{1}^{\prime}\right|_{\mathcal{C}}^{c}=\left|C_{2}^{\prime}\right|_{\mathcal{C}}^{c}, C_{2}^{\prime}=\square$. So $M_{1}=$ $\lambda x .\left(\lambda y . P_{1}\right) x=\lambda x . \square\left[R_{1}\right]{\xrightarrow{C_{1}}}_{\beta \eta} \lambda x . \square\left[R_{1}^{\prime}\right]=\lambda x . P_{1}[y:=x]=$ $M_{1}^{\prime}, M_{2}=\lambda x .\left(\lambda y . P_{2}\right) x=\lambda x . \square\left[R_{2}\right]{\xrightarrow{C_{2}}}_{\beta \eta} \lambda x . \square\left[R_{2}^{\prime}\right]=$ $\lambda x . P_{2}[y:=x]=M_{2}^{\prime}$. Since $x \notin F V\left(N_{1}\right) \cup F V\left(N_{2}\right), M_{1}^{\prime}=$ N_{1} and $M_{2}^{\prime}=N_{2}$. It is done since $\left|\mathcal{R}_{N_{1}}^{\beta \eta}\right|_{\mathcal{C}}^{c} \subseteq\left|\mathcal{R}_{N_{2}}^{\beta \eta}\right|^{c}{ }_{C}^{c}$.
- Let $C_{1}^{\prime}=C_{1}^{\prime \prime} x$ such that $C_{1}^{\prime \prime} \in \mathcal{R}_{N_{1}}^{\beta \eta}$. Since $\left|C_{1}^{\prime}\right|^{c}{ }_{C}^{c}=\left|C_{2}^{\prime}\right|^{c}{ }_{C}^{c}$, $C_{2}^{\prime}=C_{2}^{\prime \prime} x$ such that $C_{2}^{\prime \prime} \in \mathcal{R}_{N_{2}}^{\beta \eta}$. So $M_{1}=\lambda x \cdot N_{1} x=$ $\lambda x . C_{1}^{\prime \prime}\left[R_{1}\right] x{\xrightarrow{C_{1}}}_{\beta \eta} \lambda x . C_{1}^{\prime \prime}\left[R_{1}^{\prime}\right] x=\lambda x . N_{1}^{\prime \prime} x=\lambda x . N_{1}^{\prime}=M_{1}^{\prime}$, $M_{2}=\lambda x \cdot N_{2} x=\lambda x \cdot C_{2}^{\prime \prime}\left[R_{2}\right] x \xrightarrow{C_{2}}{ }_{\beta \eta} \lambda x . C_{2}^{\prime \prime}\left[R_{2}^{\prime}\right] x=\lambda x . N_{2}^{\prime \prime} x=$ $\lambda x . N_{2}^{\prime}=M_{2}^{\prime}, N_{1}=C_{1}^{\prime \prime}\left[R_{1}\right]{\xrightarrow{C_{1}^{\prime \prime}}}_{\beta \eta} C_{1}^{\prime \prime}\left[R_{1}^{\prime}\right]=N_{1}^{\prime \prime}$ and $N_{2}=$ $C_{2}^{\prime \prime}\left[R_{2}\right] \xrightarrow{C_{2}^{\prime \prime}} \beta \eta C_{2}^{\prime \prime}\left[R_{2}^{\prime}\right]=N_{2}^{\prime \prime}$. Since $x \notin F V\left(N_{1}\right) \cup F V\left(N_{2}\right)$, by lemma 2.2.1, $x \notin F V\left(N_{1}^{\prime \prime}\right) \cup F V\left(N_{2}^{\prime \prime}\right)$. So, $M_{1}^{\prime}, M_{2}^{\prime} \in \mathcal{R}^{\beta \eta}$ and by lemma 2.5, $\mathcal{R}_{M_{1}^{\prime}}^{\beta \eta}=\{\square\} \cup\left\{\lambda x . C \mid C \in \mathcal{R}_{N_{1}^{\prime}}^{\beta \eta}\right\}, \mathcal{R}_{M_{2}^{\prime}}^{\beta \eta}=$ $\{\square\} \cup\left\{\lambda x . C \mid C \in \mathcal{R}_{N_{2}^{\prime}}^{\beta \eta}\right\},\left|\mathcal{R}_{M_{1}^{\prime}}^{\beta \eta}\right|_{\mathcal{C}}^{c}=\{\square\} \cup\{\lambda x . C \mid C \in$ $\left.\left|\mathcal{R}_{N_{1}^{\prime}}^{\beta \eta}\right|_{\mathcal{C}}^{c}\right\},\left|\mathcal{R}_{M_{2}^{\prime}}^{\beta \eta}\right|_{\mathcal{C}}^{c}=\{\square\} \cup\left\{\lambda x . C|C \in| \mathcal{R}_{N_{2}^{\prime}}^{\beta \eta} \mid{ }_{\mathcal{C}}^{c}\right\}$. Since $\left|\mathcal{R}_{N_{1}^{\prime}}^{\beta \eta}\right|_{\mathcal{C}}^{c} \subseteq\left|\mathcal{R}_{N_{2}^{\prime}}^{\beta \eta}\right|_{\mathcal{C}}^{c},\left|\mathcal{R}_{M_{1}^{\prime}}^{\beta \eta}\right|_{\mathcal{C}}^{c}=\{\square\} \cup\left\{\lambda x .\left.C|C \in| \mathcal{R}_{N_{1}^{\prime}}^{\beta \eta}\right|_{\mathcal{C}} ^{c}\right\} \subseteq$ $\{\square\} \cup\left\{\lambda x .\left.C|C \in| \mathcal{R}_{N_{2}^{\prime}}^{\beta \eta}\right|_{\mathcal{C}} ^{c}\right\}=\left|\mathcal{R}_{M_{2}^{\prime}}^{\beta \eta}\right|_{\mathcal{C}}^{c}$.
* Else by lemma 2.5, $\mathcal{R}_{N_{1} x}^{\beta \eta}=\left\{C x \mid C \in \mathcal{R}_{N_{1}}^{\beta \eta}\right\}$. Since $\left|\mathcal{R}_{N_{1} x}^{\beta \eta}\right|_{\mathcal{C}}^{c} \subseteq$ $\left|\mathcal{R}_{N_{2} x}^{\beta \eta}\right|_{\mathcal{C}}^{c}, \square \notin \mathcal{R}_{N_{2} x}^{\beta \eta}$ and by lemma 2.5, $\mathcal{R}_{N_{2} x}^{\beta \eta}=\{C x \mid C \in$

$$
\begin{aligned}
& \left.\mathcal{R}_{N_{2}}^{\beta \eta}\right\} \text { and so } N_{2}=\lambda y . P_{2} \text {. Let } C_{1}^{\prime}=C_{1}^{\prime \prime} x \text { such that } C_{1}^{\prime \prime} \in \\
& \mathcal{R}_{N_{1}}^{\beta \eta} . C_{2}^{\prime}=C_{2}^{\prime \prime} x \text { such that } C_{2}^{\prime \prime} \in \mathcal{R}_{N_{2}}^{\beta \eta} \text {. So } M_{1}=\lambda x . N_{1} x= \\
& \lambda x . C_{1}^{\prime \prime}\left[R_{1}\right] x{\xrightarrow{C_{1}}}_{\beta \eta} \lambda x . C_{1}^{\prime \prime}\left[R_{1}^{\prime}\right] x=\lambda x . N_{1}^{\prime \prime} x=\lambda x . N_{1}^{\prime}=M_{1}^{\prime} \text {, } \\
& M_{2}=\lambda x \cdot N_{2} x=\lambda x . C_{2}^{\prime \prime}\left[R_{2}\right] x{ }_{\beta \eta}^{C_{2}} \lambda x . C_{2}^{\prime \prime}\left[R_{2}^{\prime}\right] x=\lambda x . N_{2}^{\prime \prime} x= \\
& \lambda x \cdot N_{2}^{\prime}=M_{2}^{\prime}, N_{1}=C_{1}^{\prime \prime}\left[R_{1}\right]{\xrightarrow{C_{1}^{\prime \prime}}}_{\beta \eta} C_{1}^{\prime \prime}\left[R_{1}^{\prime}\right]=N_{1}^{\prime \prime} \text { and } N_{2}= \\
& C_{2}^{\prime \prime}\left[R_{2}\right] \xrightarrow{C_{2}^{\prime \prime}} \beta \eta C_{2}^{\prime \prime}\left[R_{2}^{\prime}\right]=N_{2}^{\prime \prime} \text {. Since } x \notin F V\left(N_{1}\right) \cup F V\left(N_{2}\right) \text {, by } \\
& \text { lemma 2.2.1, } x \notin F V\left(N_{1}^{\prime \prime}\right) \cup F V\left(N_{2}^{\prime \prime}\right) \text {. So, } M_{1}^{\prime}, M_{2}^{\prime} \in \mathcal{R}^{\beta \eta} \text { and } \\
& \text { by lemma 2.5, } \mathcal{R}_{M_{1}^{\prime}}^{\beta \eta}=\{\square\} \cup\left\{\lambda x . C \mid C \in \mathcal{R}_{N_{1}^{\prime}}^{\beta \eta}\right\}, \mathcal{R}_{M_{2}^{\prime}}^{\beta \eta}=\{\square\} \cup \\
& \left\{\lambda x . C \mid C \in \mathcal{R}_{N_{2}^{\prime}}^{\beta \eta}\right\},\left|\mathcal{R}_{M_{1}^{\prime}}^{\beta \eta}\right|_{\mathcal{C}}^{c}=\{\square\} \cup\left\{\lambda x .\left.C|C \in| \mathcal{R}_{N_{1}^{\prime}}^{\beta \eta}\right|_{\mathcal{C}} ^{c}\right\} \text {, } \\
& \left|\mathcal{R}_{M_{2}^{\prime}}^{\beta \eta}\right|_{\mathcal{C}}^{c}=\{\square\} \cup\left\{\lambda x .\left.C|C \in| \mathcal{R}_{N_{2}^{\prime}}^{\beta \eta}\right|_{\mathcal{C}} ^{c}\right\} \text {. Since }\left|\mathcal{R}_{N_{1}^{\prime}}^{\beta \eta}\right|_{\mathcal{C}}^{c} \subseteq\left|\mathcal{R}_{N_{2}^{\prime}}^{\beta \eta}\right|_{\mathcal{C}}^{c}, \\
& \left|\mathcal{R}_{M_{1}^{\prime}}^{\beta \eta}\right|_{\mathcal{C}}^{c}=\{\square\} \cup\left\{\lambda x .\left.C|C \in| \mathcal{R}_{N_{1}^{\prime}}^{\beta \eta}\right|_{\mathcal{C}} ^{c}\right\} \subseteq\{\square\} \cup\{\lambda x . C \mid C \in \\
& \left.\left|\mathcal{R}_{N_{2}^{\prime}}^{\beta \eta}\right|{ }_{\mathcal{C}}^{c}\right\}=\left|\mathcal{R}_{M_{2}^{\prime}}^{\beta \eta}\right|_{\mathcal{C}}^{c} . \\
& \text { - Else, } \mathcal{R}_{M_{1}^{\prime}}^{\beta \eta}={ }^{2.5}\left\{\lambda x . C \mid C \in \mathcal{R}_{N_{1}^{\prime}}^{\beta \eta}\right\} \text { and } \mathcal{R}_{M_{2}^{\prime}}^{\beta \eta} \backslash\{\square\}={ }^{2.5}\{\lambda x . C \mid C \in \\
& \left.\mathcal{R}_{N_{2}^{\prime}}^{\beta \eta}\right\} \text {. So, }\left|\mathcal{R}_{M_{1}^{\prime}}^{\beta \eta}\right|_{\mathcal{C}}^{c}=\left\{\lambda x .\left.C|C \in| \mathcal{R}_{N_{1}^{\prime}}^{\beta \eta}\right|_{\mathcal{C}} ^{c}\right\} \text { and }\left|\mathcal{R}_{M_{2}^{\prime}}^{\beta \eta}\right|_{\mathcal{C}}^{c} \backslash\{\square\}= \\
& \left\{\lambda x .\left.C|C \in| \mathcal{R}_{N_{2}^{\prime}}^{\beta \eta}\right|_{\mathcal{C}} ^{c}\right\} \text {. Let } C \in\left|\mathcal{R}_{M_{1}^{\prime}}^{\beta \eta}\right|_{\mathcal{C}}^{c} \text { then } C=\lambda x . C^{\prime} \text { such } \\
& \text { that } C^{\prime} \in\left|\mathcal{R}_{N_{1}^{\prime}}^{\beta \eta}\right|_{\mathcal{C}}^{c} \subseteq\left|\mathcal{R}_{N_{2}^{\prime}}^{\beta \eta}\right|_{\mathcal{C}}^{c} \text {, so } C \in\left|\mathcal{R}_{M_{2}^{\prime}}^{\beta \eta}\right|_{\mathcal{C}}^{c} \backslash\{\square\} \text {, i.e. }\left|\mathcal{R}_{M_{1}^{\prime}}^{\beta \eta}\right|_{\mathcal{C}}^{c} \subseteq \\
& \left|\mathcal{R}_{M_{2}^{\prime}}^{\beta \eta}\right|^{c} \text {. }
\end{aligned}
$$

(d) Let $M_{2}=c P_{2} Q_{2}$ such that $P_{2}, Q_{2} \in \Lambda \eta_{c}$ then $\left|M_{2}\right|^{c}=\left|P_{2}\right|^{c}\left|Q_{2}\right|^{c} \neq$ $\lambda x .\left|N_{1} x\right|^{c}$.
(e) Let $M_{2}=P_{2} Q_{2}$ such that $P_{2}, Q_{2} \in \Lambda \eta_{c}$ and P_{2} is a λ-abstraction then $\left|M_{2}\right|^{c}=\left|P_{2}\right|^{c}\left|Q_{2}\right|^{c} \neq \lambda x .\left|N_{1} x\right|^{c}$.
(f) Let $M_{2}=c N_{2}$ such that $N_{2} \in \Lambda \eta_{c}$. So $\left|N_{2}\right|^{c}=\left|M_{2}\right|^{c}=\left|M_{1}\right|^{c}$. By lemma 2.9.5, $\mathcal{R}_{M_{2}}^{\beta \eta}=\left\{c C \mid C \in \mathcal{R}_{N_{2}}^{\beta \eta}\right\}$, so $\left|\mathcal{R}_{M_{1}}^{\beta \eta}\right|_{\mathcal{C}}^{c} \subseteq\left|\mathcal{R}_{M_{2}}^{\beta \eta}\right|_{\mathcal{C}}^{c}=\left|\mathcal{R}_{N_{2}}^{\beta \eta}\right|_{\mathcal{C}}^{c}$. Since $C_{2} \in \mathcal{R}_{M_{2}}^{\beta \eta}, C_{2}=c C_{2}^{\prime}$ such that $C_{2}^{\prime} \in \mathcal{R}_{N_{2}}^{\beta \eta}$. So, $M_{2}=c N_{2}=$ $c C_{2}^{\prime}\left[R_{2}\right] \xrightarrow{c C_{2}^{\prime}}{ }_{\beta \eta} c C_{2}^{\prime}\left[R_{2}^{\prime}\right]=c N_{2}^{\prime}=M_{2}^{\prime}$ and $N_{2}=C_{2}^{\prime}\left[R_{2}\right]{ }^{C_{2}^{\prime}}{ }_{\beta \eta} C_{2}^{\prime}\left[R_{2}^{\prime}\right]=N_{2}^{\prime}$. Since $\left|C_{2}^{\prime}\right|_{\mathcal{C}}^{c}=\left|C_{2}\right|_{\mathcal{C}}^{c}=\left|C_{1}\right|_{\mathcal{C}}^{c}$, by IH, $\left|\mathcal{R}_{M_{1}^{\prime}}^{\beta \eta}\right|_{\mathcal{C}}^{c} \subseteq\left|\mathcal{R}_{N_{2}^{\prime}}^{\beta \eta}\right|_{\mathcal{C}}^{c}$. By lemma 2.9.5, $\mathcal{R}_{M_{2}^{\prime}}^{\beta \eta}=\left\{c C \mid C \in \mathcal{R}_{N_{2}^{\prime}}^{\beta \eta}\right\}$, so $\left|\mathcal{R}_{M_{1}^{\prime}}^{\beta \eta}\right|_{\mathcal{C}}^{c} \subseteq\left|\mathcal{R}_{N_{2}^{\prime}}^{\beta \eta}\right|_{\mathcal{C}}^{c}=\left|\mathcal{R}_{M_{2}^{\prime}}^{\beta \eta}\right|_{\mathcal{C}}^{c}$.
5. Let $M_{1}=c P_{1} Q_{1} \in \mathcal{M}_{c}$ such that $P_{1}, P_{2} \in \mathcal{M}_{c}$. So $\left|M_{1}\right|^{c}=\left|P_{1}\right|^{c}\left|Q_{1}\right|^{c}=$ $\left|M_{2}\right|^{c}$. We prove the statement by induction on the structure of M_{2} :

- Let $M_{2} \in \mathcal{V} \backslash\{c\}$ then $\left|M_{2}\right|^{c}=M_{2} \neq\left|P_{1}\right|^{c}\left|Q_{1}\right|^{c}$.
- Let $M_{2}=\lambda x \cdot N_{2} \in \Lambda I$ then $\left|M_{2}\right|^{c}=\lambda x .\left|N_{2}\right|^{c} \neq\left|P_{1}\right|^{c}\left|Q_{1}\right|^{c}$.
- Let $M_{2}=\lambda x . N_{2}[x:=c(c x)] \in \Lambda \eta_{c}$ then $\left|M_{2}\right|^{c}=\lambda x .\left|N_{2}[x:=c(c x)]\right|^{c} \neq$ $\left|P_{1}\right|^{c}\left|Q_{1}\right|^{c}$.
- Let $M_{2}=\lambda x . N_{2} x \in \Lambda \eta_{c}$ then $\left|M_{2}\right|^{c}=\lambda x .\left|N_{2} x\right|^{c} \neq\left|P_{1}\right|^{c}\left|Q_{1}\right|^{c}$.
- Let $M_{2}=c P_{2} Q_{2} \in \mathcal{M}_{c}$ such that $P_{2}, Q_{2} \in \mathcal{M}_{c}$, then $\left|c P_{2}\right|^{c}=\left|P_{2}\right|^{c}=$ $\left|P_{1}\right|^{c}$ and $\left|Q_{2}\right|^{c}=\left|Q_{1}\right|^{c}$. Since $M_{1} \notin \mathcal{R}^{r}$, by lemma 2.5,
$\mathcal{R}_{M_{1}}^{r}=\left\{c C Q_{1} \mid C \in \mathcal{R}_{P_{1}}^{r}\right\} \cup\left\{c P_{1} C \mid C \in \mathcal{R}_{Q_{1}}^{r}\right\}$. So, $\left|\mathcal{R}_{M_{1}}^{r}\right|_{\mathcal{C}}^{c}=$ $\left\{\left|c C Q_{1}\right|_{\mathcal{C}}^{c} \mid C \in \mathcal{R}_{P_{1}}^{r}\right\} \cup\left\{\left|c P_{1} C\right|_{\mathcal{C}}^{c} \mid C \in \mathcal{R}_{Q_{1}}^{r}\right\}=\left\{\left.C\left|Q_{1}\right|^{c}|C \in| \mathcal{R}_{P_{1}}^{r}\right|_{\mathcal{C}} ^{c}\right\} \cup$ $\left\{\left|P_{1}\right|^{c} C|C \in| \mathcal{R}_{Q_{1}}^{r}{ }^{c}{ }_{\mathcal{C}}\right\}$. Again by lemma 2.5, since $M_{2} \notin \mathcal{R}^{r}, \mathcal{R}_{M_{2}}^{r}=$ $\left\{c C Q_{2} \mid C \in \mathcal{R}_{P_{2}}^{r}\right\} \cup\left\{c P_{2} C \mid C \in \mathcal{R}_{Q_{2}}^{r}\right\}$. So, $\left|\mathcal{R}_{M_{2}}^{r}\right|_{\mathcal{C}}^{c}=\left\{\left|c C Q_{2}\right|_{\mathcal{C}}^{c} \mid C \in\right.$ $\left.\mathcal{R}_{P_{2}}^{r}\right\} \cup\left\{\left|c P_{2} C\right|_{\mathcal{C}}^{c} \mid C \in \mathcal{R}_{Q_{2}}^{r}\right\}=\left\{\left.C\left|Q_{2}\right|^{c}|C \in| \mathcal{R}_{P_{2}}^{r}\right|_{\mathcal{C}} ^{c}\right\} \cup\left\{\left|P_{2}\right|^{c} C \mid C \in\right.$ $\left.\mid \mathcal{R}_{Q_{2}}^{r}{ }^{c}{ }_{\mathcal{C}}^{c}\right\}$. Let $C \in\left|\mathcal{R}_{P_{1}}^{r}\right|_{\mathcal{C}}^{c}$ then $C\left|Q_{1}\right|^{c}=\left.C\left|Q_{2}\right|^{c} \in\left|\mathcal{R}_{M_{1}}^{r}\right|^{c} \subseteq\left|\mathcal{R}_{M_{2}}^{r}\right|^{c}\right|_{\mathcal{C}} ^{c}$. Hence, $C \in\left|\mathcal{R}_{P_{2}}^{r}\right|_{\mathcal{C}}^{c}$, i.e. $\left|\mathcal{R}_{P_{1}}^{r}\right|_{\mathcal{C}}^{c} \subseteq\left|\mathcal{R}_{P_{2}}^{r}\right|_{\mathcal{C}}^{c}$. Let $C \in\left|\mathcal{R}_{Q_{1}}^{r}\right|_{\mathcal{C}}^{c}$ then $\left|P_{1}\right|^{c} C=$
$\left|P_{2}\right|^{c} C \in\left|\mathcal{R}_{M_{1}}^{r}\right|_{\mathcal{C}}^{c} \subseteq\left|\mathcal{R}_{M_{2}}^{r}\right|_{\mathcal{C}}^{c}$. Hence, $C \in\left|\mathcal{R}_{Q_{2}}^{r}\right|_{\mathcal{C}}^{c}$, i.e. $\left|\mathcal{R}_{Q_{1}}^{r}\right|^{c} \subseteq\left|\mathcal{R}_{Q_{2}}^{r}\right|_{\mathcal{C}}^{c}$. Since $C_{1} \in \mathcal{R}_{M_{1}}^{r}$:
- Either $C_{1}=c C_{1}^{\prime} Q_{1}$ such that $C_{1}^{\prime} \in \mathcal{R}_{P_{1}}^{r} .\left|C_{1}\right|_{\mathcal{C}}^{c}=\left|C_{1}^{\prime}\right|_{\mathcal{c}}^{c}\left|Q_{1}\right|^{c}=$ $\left|C_{1}^{\prime}\right|_{\mathcal{C}}^{c}\left|Q_{2}\right|^{c}=\left|C_{2}\right|_{\mathcal{C}}^{c}$. Since $C_{2} \in \mathcal{R}_{M_{2}}^{r},\left|C_{2}\right|_{\mathcal{C}}^{c} \in\left|\mathcal{R}_{M_{2}}^{r}\right|_{\mathcal{C}}^{c}$, so $\left|C_{1}^{\prime}\right|_{\mathcal{L}}^{c} \in$ $\left|\mathcal{R}_{P_{2}}^{r}\right|_{\mathcal{C}}^{c}$ and $C_{2}=c C_{2}^{\prime} Q_{2}$ such that $\left|C_{2}^{\prime}\right|_{\mathcal{C}}^{c}=\left|C_{1}^{\prime}\right|_{\mathcal{C}}^{c}$ and $C_{2}^{\prime} \in \mathcal{R}_{P_{2}}^{r}$. Hence, $M_{1}=c P_{1} Q_{1}=c C_{1}^{\prime}\left[R_{1}\right] Q_{1}{ }_{C_{1}}^{{ }_{r}} \quad c C_{1}^{\prime}\left[R_{1}^{\prime}\right] Q_{1}=c P_{1}^{\prime} Q_{1}=$ $M_{1}^{\prime}, M_{2}=c P_{2} Q_{2}=c C_{2}^{\prime}\left[R_{2}\right] Q_{2} \stackrel{C_{2}}{r} r C_{2}^{\prime}\left[R_{2}^{\prime}\right] Q_{2}=c P_{2}^{\prime} Q_{2}=M_{2}^{\prime}$, $P_{1}=C_{1}^{\prime}\left[R_{1}\right] \xrightarrow{C_{1}^{\prime}} r C_{1}^{\prime}\left[R_{1}^{\prime}\right]=P_{1}^{\prime}$ and $P_{2} C_{2}^{\prime}\left[R_{2}\right] \xrightarrow{C_{2}^{\prime}} C_{2}^{\prime}\left[R_{2}^{\prime}\right]=P_{2}^{\prime}$. By lemma 2.26, $\left|M_{1}\right|^{c} \xlongequal{\left|C_{C}\right|^{c}}{ }_{r}{ }_{r}\left|M_{1}^{\prime}\right|^{c}=\left|P_{1}^{\prime}\right|^{c}\left|Q_{1}\right|^{c}$ and $\left|M_{2}\right|^{c} \xrightarrow{\left|C_{c}\right|^{c}{ }_{c}^{c}}{ }_{r}$ $\left|M_{2}^{\prime}\right|^{c}=\left|P_{2}^{\prime}\right|^{c}\left|Q_{2}\right|^{c}$. Since $\left|M_{1}\right|^{c}=\left|M_{2}\right|^{c}$ and $\left|C_{1}\right|_{\mathcal{C}}^{c}=\left|C_{2}\right|^{c},\left|P_{1}^{\prime}\right|^{c}=$ $\left|P_{2}^{\prime}\right|^{c}$. By IH, $\left|\mathcal{R}_{P_{1}}^{r}\right|^{c} \subseteq\left|\mathcal{R}_{P_{2}}^{r}\right|^{c}$. By lemma 2.5, $\mathcal{R}_{M_{1}^{\prime}}^{r}=\left\{c C Q_{1} \mid C \in\right.$ $\left.\mathcal{R}_{P_{1}^{\prime}}^{r}\right\} \cup\left\{c P_{1}^{\prime} C \mid C \in \mathcal{R}_{Q_{1}}^{r}\right\}$ and $\mathcal{R}_{M_{2}^{\prime}}^{r}=\left\{c C Q_{2} \mid C \in \mathcal{R}_{P_{2}}^{r}\right\} \cup$ $\left\{c P_{2}^{\prime} C \mid C \in \mathcal{R}_{Q_{2}}^{r}\right\}$, so $\mid \mathcal{R}_{M_{1}^{\prime} \mid}^{r} \mathcal{C}_{\mathcal{C}}^{c}=\left\{C\left|Q_{1}\right|^{c}|C \in| \mathcal{R}_{P_{1}}^{r} \mid{ }^{c} \mathcal{C}\right\} \cup\left\{\left|P_{1}^{\prime}\right|{ }^{c} C \mid C \in\right.$ $\left.\left|\mathcal{R}_{Q_{1}}^{r}\right|_{\mathcal{C}}^{\mathcal{C}}\right\}$ and $\left|\mathcal{R}_{M_{2}}^{r}\right|_{\mathcal{C}}^{c}=\left\{\left.C\left|Q_{2}\right|^{c}|C \in| \mathcal{R}_{P_{2}}^{r}\right|^{c}{ }^{c}\right\} \cup\left\{\left|P_{2}^{\prime}\right|^{c} C \mid C \in\right.$ $\left.\left|\mathcal{R}_{Q_{2}}^{r}\right|_{\mathcal{C}}^{c}\right\}$. Let $C \in \mid \mathcal{R}_{M_{1}}^{r}{ }^{c}$. . Either $C=C^{\prime}\left|Q_{1}\right|^{c^{c}}=C^{\prime}\left|Q_{2}\right|^{c}$ such that $C^{\prime} \in\left|\mathcal{R}_{P_{1}}^{r}\right|^{c}{ }_{C} \subseteq^{I H}\left|\mathcal{R}_{P_{2}}^{r}\right|^{c}{ }_{C}^{c}$. So $C \in\left|\mathcal{R}_{M_{2}^{\prime}}^{r}\right|^{c}{ }^{c}$. Or $C=\left|P_{1}^{\prime}\right|^{c} C^{\prime}=\left|P_{2}^{\prime}\right|^{c} C^{\prime}$ such that $C^{\prime} \in\left|\mathcal{R}_{Q_{1}}^{r}\right|_{\mathcal{C}}^{c} \subseteq\left|\mathcal{R}_{Q_{2}}^{r}\right|_{\mathcal{C}}^{c}$. So $C \in\left|\mathcal{R}_{M_{2}^{\prime}}^{r}\right|_{\mathcal{C}}$.
- Or $C_{1}=c P_{1} C_{1}^{\prime}$ such that $C_{1}^{\prime} \in \mathcal{R}_{Q_{1}}^{r} .\left|C_{1}\right|_{\mathcal{C}}^{\mathcal{c}}=\left|P_{1}\right|^{c}\left|C_{1}^{\prime}\right|_{\mathcal{C}}=\left.\left.\left|P_{2}\right|^{c}\right|^{\prime} C_{1}^{\prime}\right|_{\mathcal{c}} ^{c}$ $=\left|C_{2}\right|_{\mathcal{C}}^{c}$. Since $C_{2} \in \mathcal{R}_{M_{2}}^{r},\left|C_{2}\right|_{\mathcal{C}}^{\mathcal{C}} \in\left|\mathcal{R}_{M_{2}}^{r}\right|_{\mathcal{C}}^{c}$, so $\left|C_{1}^{\prime}\right|_{\mathcal{C}}^{c} \in\left|\mathcal{R}_{Q_{2}}^{r}\right|_{\mathcal{C}}^{c}$ and $C_{2}=c P_{2} C_{2}^{\prime}$ such that $\left|C_{2}^{\prime}\right|_{\mathcal{C}}^{c_{c}}=\left|C_{1}^{\prime}\right|_{\mathcal{c}}^{c}$. Hence, $M_{1}=c P_{1} Q_{1}=$ $c P_{1} C_{1}^{\prime}\left[R_{1}\right] \stackrel{C_{1}}{{ }_{r}} c P_{1} C_{1}^{\prime}\left[R_{1}^{\prime}\right]=c P_{1} Q_{1}^{\prime}=M_{1}^{\prime}, M_{2}=c P_{2} Q_{2}=c P_{2} C_{2}^{\prime}\left[R_{2}\right]$ $\xrightarrow[\rightarrow]{C_{2}} c P_{2} C_{2}^{\prime}\left[R_{2}^{\prime}\right]=c P_{2} Q_{2}^{\prime}=M_{2}^{\prime}, Q_{1} \xrightarrow{C_{1}^{\prime}} Q_{1}^{\prime}$ and $Q_{2} \xrightarrow{C_{2}^{\prime}} Q_{2}^{\prime}$. By lemma 2.26, $\left|M_{1}\right|^{c} \xrightarrow{\left|C_{1}\right|^{c}{ }_{c}}{ }_{r}\left|M_{1}^{\prime}\right|^{c}=\left|P_{1}\right|^{c}\left|Q_{1}^{\prime}\right|^{c}$ and $\left|M_{2}\right|^{\mid c} \xrightarrow{\mid C_{2} c^{c}{ }_{c}^{c}}{ }_{r}$ $\left|M_{2}^{\prime}\right|^{c}=\left|P_{2}\right|^{c}\left|Q_{2}^{\prime}\right|^{c}$. Since $\left|M_{1}\right|^{c}=\left|M_{2}\right|^{c}$ and $\left|C_{1}\right|_{\mathcal{C}}^{c}=\left|C_{2}\right|^{c},\left|Q_{1}^{\prime}\right|^{c}=$ $\left|Q_{2}^{\prime}\right|^{c}$. By IH, $\left|\mathcal{R}_{Q_{1}}^{r}\right|_{\mathcal{C}}^{c} \subseteq\left|\mathcal{R}_{Q_{2}^{\prime}}^{r}\right|_{\mathcal{c}}^{c}$. By lemma 2.5, $\mathcal{R}_{M_{1}^{\prime}}^{r}=\left\{c C Q_{1}^{\prime} \mid C \in\right.$ $\left.\mathcal{R}_{P_{1}}^{r}\right\} \cup\left\{c P_{1} C \mid C \in \mathcal{R}_{Q_{1}^{\prime}}^{r}\right\}$ and $\mathcal{R}_{M_{2}^{\prime}}^{r}=\left\{c C Q_{2}^{\prime} \mid C \in \mathcal{R}_{P_{2}}^{r}\right\} \cup$ $\left\{c P_{2} C \mid C \in \mathcal{R}_{Q_{2}^{\prime}}^{r}\right\}$, so $\left|\mathcal{R}_{M_{1}^{\prime}}^{r}\right|_{\mathcal{C}}^{c}=\left\{\left.C\left|Q_{1}^{\prime}\right|^{c}|C \in| \mathcal{R}_{P_{1}}^{r}\right|_{\mathcal{C}} ^{c}\right\} \cup\left\{\left|P_{1}\right|^{c} C \mid C \in\right.$ $\left.\left|\mathcal{R}_{Q_{1}^{\prime}}^{r}\right|_{\mathcal{C}}^{c}\right\}$ and $\left|\mathcal{R}_{M_{2}}^{r}\right|^{c}{ }_{\mathcal{C}}=\left\{\left.C\left|Q_{2}^{\prime}\right|^{c}|C \in| \mathcal{R}_{P_{2}}^{r}\right|^{c}\right\} \cup\left\{\left|P_{2}\right|^{c} C \mid C \in\right.$ $\left.\left|\mathcal{R}_{Q_{2}^{\prime}}^{r}\right|_{\mathcal{C}}^{c}\right\}$. Let $C \in \mid \mathcal{R}_{M_{1}^{\prime}}^{r}{ }^{c}{ }_{\mathcal{C}}$. Either $C=C^{\prime}\left|Q_{1}^{\prime}\right|^{c}=C^{\prime}\left|Q_{2}^{\prime}\right|^{c}$ such that $C^{\prime} \in\left|\mathcal{R}_{P_{1}}^{r}\right|^{c} \subseteq\left|\mathcal{R}_{P_{2}}^{r}\right|_{\mathcal{C}}^{c}$. So $C \in \mid \mathcal{R}_{M_{2}}^{r}{ }^{c}{ }_{\mathcal{C}}$. Or $C=\left|P_{1}\right|^{c} C^{\prime}=\left|P_{2}\right|^{c} C^{\prime}$ such that $C^{\prime} \in\left|\mathcal{R}_{Q_{1}}^{r}\right|^{c} \subseteq^{I H} \subseteq^{I H} \mid \mathcal{R}_{Q_{2}^{\prime}}^{r}{ }^{c}{ }^{c}$. So $C \in\left|\mathcal{R}_{M_{2}^{\prime}}^{r}\right|_{\mathcal{C}}^{c}$.
- Let $M_{2}=P_{2} Q_{2} \in \mathcal{M}_{c}$ such that $P_{2}, Q_{2} \in \mathcal{M}_{c}$ and P_{2} is a λ-abstraction. Then $\left|P_{2}\right|^{c}=\left|P_{1}\right|^{c}$ and $\left|Q_{2}\right|^{c}=\left|Q_{1}\right|^{c}$. Since $M_{1} \notin \mathcal{R}^{r}$, by lemma 2.5, $\mathcal{R}_{M_{1}}^{r}=\left\{c C Q_{1} \mid C \in \mathcal{R}_{P_{1}}^{r}\right\} \cup\left\{c P_{1} C \mid C \in \mathcal{R}_{Q_{1}}^{r}\right\}$. So, $\left|\mathcal{R}_{M_{1}}^{r}\right|_{\mathcal{C}}^{c}=$ $\left\{\left|c C Q_{1}\right|_{\mathcal{C}}^{c} \mid C \in \mathcal{R}_{P_{R}}^{r}\right\} \cup\left\{\left|c P_{1} C\right|_{\mathcal{C}}^{c} \mid C \in \mathcal{R}_{Q_{1}}^{r}\right\}=\left\{\left.C\left|Q_{1}\right|^{c}|C \in| \mathcal{R}_{P_{1}}^{r}\right|_{c} ^{c}\right\} \cup$ $\left\{\left.\left|P_{1}\right|^{c} C|C \in| \mathcal{R}_{Q_{1}}^{r}\right|_{\mathcal{C}} ^{c}\right\}$. Again by lemma 2.5, since $M_{2} \in \mathcal{R}^{r}$ by lemma 2.10, $\mathcal{R}_{M_{2}}^{r}=\{\square\} \cup\left\{C Q_{2} \mid C \in \mathcal{R}_{P_{2}}^{r}\right\} \cup\left\{P_{2} C \mid C \in \mathcal{R}_{Q_{2}}^{r}\right\}$. So, $\left|\mathcal{R}_{M_{2}}^{r}\right|_{\mathcal{C}}^{c}=\left\{\left|C Q_{2}\right|_{\mathcal{C}}^{c} \mid C \in \mathcal{R}_{P_{2}}^{r}\right\} \cup\left\{\left|P_{2} C\right|_{\mathcal{C}}^{c} \mid C \in \mathcal{R}_{Q_{2}}^{r}\right\}=\left\{C\left|Q_{2}\right|^{c} \mid C \in\right.$ $\left.\left|\mathcal{R}_{P_{2}}^{r}\right|_{\mathcal{C}}^{c}\right\} \cup\left\{\left.\left|P_{2}\right|^{c} C|C \in| \mathcal{R}_{Q_{2}}^{r}\right|_{\mathcal{C}} ^{c}\right\}$. Let $C \in\left|\mathcal{R}_{P_{1}}^{r}\right|_{\mathcal{C}}^{c}$ then $C\left|Q_{1}\right|^{c}=$ $C\left|Q_{2}\right|^{c} \in\left|\mathcal{R}_{M_{1}}^{r}\right|_{\mathcal{C}}^{c} \subseteq\left|\mathcal{R}_{M_{2}}^{r}\right|_{\mathcal{C}}^{c}$. Hence, $C \in\left|\mathcal{R}_{P_{2}}^{r}\right|^{c}$, i.e. $\left|\mathcal{R}_{P_{1}}^{r}\right|_{\mathcal{C}}^{c} \subseteq\left|\mathcal{R}_{P_{2}}^{r}\right|_{\mathcal{C}}^{c}$. Let $C \in\left|\mathcal{R}_{Q_{1}}^{r}\right|^{c}{ }_{\mathcal{C}}^{c}$ then $\left|P_{1}\right|^{c} C=\left|P_{2}\right|^{c} C \in\left|\mathcal{R}_{M_{1}}^{r}\right|_{\mathcal{C}}^{c} \subseteq\left|\mathcal{R}_{M_{2}}^{r}\right|^{c}{ }^{c}$. Hence, $C \in\left|\mathcal{R}_{Q_{2}}^{r}\right|_{\mathcal{C}}^{\mathcal{c}}$, i.e. $\left|\mathcal{R}_{Q_{1}}^{r}\right|_{\mathcal{C}}^{c} \subseteq\left|\mathcal{R}_{Q_{2}}^{r}\right|_{\mathcal{C}}^{c}$. Since $C_{1} \in \mathcal{R}_{M_{1}}^{r}$:
- Either $C_{1}=c C_{1}^{\prime} Q_{1}$ such that $C_{1}^{\prime} \in \mathcal{R}_{P_{1}}^{r} .\left|C_{1}\right|_{\mathcal{C}}^{c}=\left|C_{1}^{\prime}\right|_{\mathcal{C}}^{c}\left|Q_{1}\right|^{c}=$ $\left|C_{1}^{\prime}\right|_{\mathcal{C}}^{c}\left|Q_{2}\right|^{c}=\left|C_{2}\right|_{\mathcal{C}}^{c}$. Since $C_{2} \in \mathcal{R}_{M_{2}}^{r},\left|C_{2}\right|_{\mathcal{C}}^{c} \in\left|\mathcal{R}_{M_{2}}^{r}\right|_{\mathcal{C}}^{c}$, so $\left|C_{1}^{\prime}\right|_{\mathcal{C}}^{c} \in$ $\left|\mathcal{R}_{P_{2}}^{r}\right|_{\mathcal{C}}^{\mathcal{C}}$ and $C_{2}=C_{2}^{\prime} Q_{2}$ such that $\left|C_{2}^{\prime}\right|_{\mathcal{C}}^{c}=\left|C_{1}^{\prime}\right|_{\mathcal{C}}^{c}$ and $C_{2}^{\prime} \in \mathcal{R}_{P_{2}}^{r}$. Hence, $M_{1}=c P_{1} Q_{1}=c C_{1}^{\prime}\left[R_{1}\right] Q_{1}{\stackrel{C_{1}}{\rightarrow}}_{r} c C_{1}^{\prime}\left[R_{1}^{\prime}\right] Q_{1}=c P_{1}^{\prime} Q_{1}=M_{1}^{\prime}$, $M_{2}=P_{2} Q_{2}=C_{2}^{\prime}\left[R_{2}\right] Q_{2} \xrightarrow{C_{2}} r C_{2}^{\prime}\left[R_{2}^{\prime}\right] Q_{2}=P_{2}^{\prime} Q_{2}=M_{2}^{\prime}, P_{1} \xrightarrow{C_{1}^{\prime}} P_{1}^{\prime}$
and $P_{2} \xrightarrow{C_{2}^{\prime}}{ }_{r} P_{2}^{\prime}$. By lemma 2.26, $\left|M_{1}\right|^{c}=\xrightarrow{\left|C_{1}\right|^{c}}{ }_{r}\left|M_{1}^{\prime}\right|^{c}=\left|P_{1}^{\prime}\right|^{c}\left|Q_{1}\right|^{c}$ and $\left|M_{2}\right|^{c} \xrightarrow{\mid C_{2}{ }^{c}{ }_{C}^{c}}{ }_{r}\left|M_{2}^{\prime}\right|^{c}=\left|P_{2}^{\prime}\right|^{c}\left|Q_{2}\right|^{c}$. Since $\left|M_{1}\right|^{c}=\left|M_{2}\right|^{c}$ and $\left|C_{1}\right|^{c}{ }_{\mathcal{C}}=$ $\left|C_{2}\right|^{c},\left|P_{1}^{\prime}\right|^{c}=\left|P_{2}^{\prime}\right|^{c}$. By IH, $\left|\mathcal{R}_{P_{1}^{\prime}}^{r}\right|_{\mathcal{C}}^{c} \subseteq\left|\mathcal{R}_{P_{2}^{\prime}}^{r}\right|_{\mathcal{C}}^{c}$. By lemma 2.5, $\mathcal{R}_{M_{1}^{\prime}}^{r}=$ $\left\{c C Q_{1} \mid C \in \mathcal{R}_{P_{1}^{\prime}}^{r}\right\} \cup\left\{c P_{1}^{\prime} C \mid C \in \mathcal{R}_{Q_{1}}^{r}\right\}$ and $\mathcal{R}_{M_{2}^{\prime}}^{r} \backslash\{\square\}=\left\{C Q_{2} \mid C \in\right.$ $\left.\mathcal{R}_{P_{2}^{\prime}}^{r}\right\} \cup\left\{P_{2}^{\prime} C \mid C \in \mathcal{R}_{Q_{2}}^{r}\right\}$, so $\left|\mathcal{R}_{M_{1}^{\prime}}^{r}\right|_{\mathcal{C}}^{c}=\left\{\left.C\left|Q_{1}\right|^{c}|C \in| \mathcal{R}_{P_{1}^{\prime}}^{r}\right|_{\mathcal{C}} ^{c}\right\} \cup$ $\left\{\left.\left|P_{1}^{\prime}\right|^{c} C|C \in| \mathcal{R}_{Q_{1}}^{r}\right|_{\mathcal{C}} ^{c}\right\}$ and $\left|\mathcal{R}_{M_{2}^{\prime}}^{r}\right|_{\mathcal{C}}^{c} \backslash\{\square\}=\left\{C\left|Q_{2}\right|^{c}|C \in| \mathcal{R}_{P_{2}^{\prime}}^{r}{ }^{c}{ }_{\mathcal{C}}^{c}\right\} \cup$ $\left\{\left.\left|P_{2}^{\prime}\right|^{c} C|C \in| \mathcal{R}_{Q_{2}}^{r}\right|_{\mathcal{C}} ^{c}\right\}$. Let $C \in\left|\mathcal{R}_{M_{1}^{\prime}}^{r}\right|_{\mathcal{C}}^{c}$. Either $C=C^{\prime}\left|Q_{1}\right|^{c}=$ $C^{\prime}\left|Q_{2}\right|^{c}$ such that $C^{\prime} \in\left|\mathcal{R}_{P_{1}}^{r}\right|_{\mathcal{C}}^{c} \subseteq{ }^{I H}\left|\mathcal{R}_{P_{2}}^{r}\right|^{c}{ }_{\mathcal{C}}$. So $C \in\left|\mathcal{R}_{M_{2}^{\prime}}^{r}\right|_{\mathcal{C}}^{c}$. Or $C=$ $\left|P_{1}^{\prime}\right|^{c} C^{\prime}=\left|P_{2}^{\prime}\right|^{c} C^{\prime}$ such that $C^{\prime} \in\left|\mathcal{R}_{Q_{1}}^{r}\right|_{\mathcal{C}}^{c} \subseteq\left|\mathcal{R}_{Q_{2}}^{r}\right|_{\mathcal{C}}^{c}$. So $C \in\left|\mathcal{R}_{M_{2}^{\prime}}^{r}\right|^{c}$.
- Or $C_{1}=c P_{1} C_{1}^{\prime}$ such that $C_{1}^{\prime} \in \mathcal{R}_{Q_{1}}^{r} \cdot\left|C_{1}\right|_{\mathcal{C}}^{c}=\left|P_{1}\right|^{c}\left|C_{1}^{\prime}\right|_{\mathcal{C}}^{c}=\left|P_{2}\right|^{c}\left|C_{1}^{\prime}\right|_{\mathcal{C}}^{c}$ $=\left|C_{2}\right|_{\mathcal{C}}^{c}$. Since $C_{2} \in \mathcal{R}_{M_{2}}^{r},\left|C_{2}\right|_{\mathcal{C}}^{c} \in\left|\mathcal{R}_{M_{2}}^{r}\right|_{\mathcal{C}}^{c}$, so $\left|C_{1}^{\prime}\right|_{\mathcal{C}}^{c} \in\left|\mathcal{R}_{Q_{2}}^{r}\right|^{c}{ }_{\mathcal{C}}^{c}$ and $C_{2}=P_{2} C_{2}^{\prime}$ such that $\left|C_{2}^{\prime}\right|_{\mathcal{C}}^{c}=\left|C_{1}^{\prime}\right|_{\mathcal{C}}^{c}$. Hence, $M_{1}=c P_{1} Q_{1}=$ $c P_{1} C_{1}^{\prime}\left[R_{1}\right]{\xrightarrow{C_{1}}}_{r} c P_{1} C_{1}^{\prime}\left[R_{1}^{\prime}\right]=c P_{1} Q_{1}^{\prime}=M_{1}^{\prime}, M_{2}=P_{2} Q_{2}=P_{2} C_{2}^{\prime}\left[R_{2}\right]$ $\xrightarrow{C_{2}} r P_{2} C_{2}^{\prime}\left[R_{2}^{\prime}\right]=P_{2} Q_{2}^{\prime}=M_{2}^{\prime}, Q_{1} \xrightarrow{C_{1}^{\prime}} r Q_{1}^{\prime}$ and $Q_{2} \xrightarrow{C_{2}^{\prime}} r Q_{2}^{\prime}$. By lemma 2.26, $\left|M_{1}\right|^{c}=\xrightarrow{\left|C_{1}\right|^{c}}{ }_{r}{ }_{r}\left|M_{1}^{\prime}\right|^{c}=\left|P_{1}\right|^{c}\left|Q_{1}^{\prime}\right|^{c}$ and $\left|M_{2}\right|^{c} \xrightarrow{\left|C_{2}\right|_{c}^{c}{ }_{c}}{ }_{r}$ $\left|M_{2}^{\prime}\right|^{c}=\left|P_{2}\right|^{c}\left|Q_{2}^{\prime}\right|^{c}$. Since $\left|M_{1}\right|^{c}=\left|M_{2}\right|^{c}$ and $\left|C_{1}\right|_{\mathcal{C}}^{c}=\left|C_{2}\right|_{\mathcal{C}}^{c},\left|Q_{1}^{\prime}\right|^{c}=$ $\left|Q_{2}^{\prime}\right|^{c}$. By IH, $\left|\mathcal{R}_{Q_{1}^{\prime}}^{r}\right|_{\mathcal{C}}^{c} \subseteq\left|\mathcal{R}_{Q_{2}^{\prime}}^{r}\right|^{c}$. By lemma 2.5, $\mathcal{R}_{M_{1}^{\prime}}^{r}=\left\{c C Q_{1}^{\prime} \mid C \in\right.$ $\left.\mathcal{R}_{P_{1}}^{r}\right\} \cup\left\{c P_{1} C \mid C \in \mathcal{R}_{Q_{1}^{\prime}}^{r}\right\}$ and $\mathcal{R}_{M_{2}^{\prime}}^{r} \backslash\{\square\}=\left\{C Q_{2}^{\prime} \mid C \in \mathcal{R}_{P_{2}}^{r}\right\} \cup$ $\left\{P_{2} C \mid C \in \mathcal{R}_{Q_{2}^{\prime}}^{r}\right\}$, so $\left|\mathcal{R}_{M_{1}^{\prime}}^{r}\right|_{\mathcal{C}}^{c}=\left\{\left.C\left|Q_{1}^{\prime}\right|^{c}|C \in| \mathcal{R}_{P_{1}}^{r}\right|_{\mathcal{C}} ^{c}\right\} \cup\left\{\left|P_{1}\right|^{c} C \mid C \in\right.$ $\left.\left|\mathcal{R}_{Q_{1}^{\prime}}^{r}\right|_{\mathcal{C}}^{c}\right\}$ and $\mid \mathcal{R}_{M_{2}^{\prime}}^{r}{ }_{\mathcal{C}}^{c} \backslash\{\square\}=\left\{\left.C\left|Q_{2}^{\prime}\right|^{c}|C \in| \mathcal{R}_{P_{2}}^{r}\right|_{\mathcal{C}} ^{c}\right\} \cup\left\{\left|P_{2}\right|^{c} C \mid C \in\right.$ $\left.\mid \mathcal{R}_{Q_{2}^{\prime}}^{r}{ }^{c}{ }_{\mathcal{C}}^{c}\right\}$. Let $C \in\left|\mathcal{R}_{M_{1}^{\prime}}^{r}\right|_{\mathcal{C}}^{c}$. Either $C=C^{\prime}\left|Q_{1}^{\prime}\right|^{c}=C^{\prime}\left|Q_{2}^{\prime}\right|^{c}$ such that $C^{\prime} \in\left|\mathcal{R}_{P_{1}}^{r}\right|_{\mathcal{C}}^{c} \subseteq\left|\mathcal{R}_{P_{2}}^{r}\right|_{\mathcal{C}}^{c}$. So $C \in\left|\mathcal{R}_{M_{2}^{\prime}}^{r}\right|_{\mathcal{C}}^{c}$. Or $C=\left|P_{1}\right|^{c} C^{\prime}=\left|P_{2}\right|^{c} C^{\prime}$ such that $C^{\prime} \in\left|\mathcal{R}_{Q_{1}^{\prime}}^{r}\right|^{c}{ }_{\mathcal{C}} \subseteq^{I H} \mid \mathcal{R}_{Q_{2}^{\prime}}^{r}{ }^{c}{ }^{c}$. So $C \in\left|\mathcal{R}_{M_{2}^{\prime}}^{r}\right|^{c}{ }_{C}^{c}$.
- Let $M_{2}=c N_{2} \in \Lambda \eta_{c}$ such that $N_{2} \in \Lambda \eta_{c}$. So $\left|N_{2}\right|^{c}=\left|M_{2}\right|^{c}=\left|M_{1}\right|^{c}$. By lemma 2.9.5, $\mathcal{R}_{M_{2}}^{\beta \eta}=\left\{c C \mid C \in \mathcal{R}_{N_{2}}^{\beta \eta}\right\}$, so $\left|\mathcal{R}_{M_{1}}^{\beta \eta}\right|_{\mathcal{C}}^{c} \subseteq\left|\mathcal{R}_{M_{2}}^{\beta \eta}\right|_{\mathcal{C}}^{c}=\left|\mathcal{R}_{N_{2}}^{\beta \eta}\right|_{\mathcal{C}}^{c}$. Since $C_{2} \in \mathcal{R}_{M_{2}}^{\beta \eta}, C_{2}=c C_{2}^{\prime}$ such that $C_{2}^{\prime} \in \mathcal{R}_{N_{2}}^{\beta \eta}$. So, $M_{2}=c N_{2}=$ $c C_{2}^{\prime}\left[R_{2}\right] \xrightarrow{c C_{2}^{\prime}}{ }_{\beta \eta} c C_{2}^{\prime}\left[R_{2}^{\prime}\right]=c N_{2}^{\prime}=M_{2}^{\prime}$ and $N_{2}=C_{2}^{\prime}\left[R_{2}\right]{ }_{\rightarrow}^{C_{2}^{\prime}}{ }_{\beta \eta} C_{2}^{\prime}\left[R_{2}^{\prime}\right]=N_{2}^{\prime}$. Since $\left|C_{2}^{\prime}\right|_{\mathcal{C}}^{c}=\left|C_{2}\right|_{\mathcal{C}}^{c}=\left|C_{1}\right|_{\mathcal{C}}^{c}$, by IH, $\left|\mathcal{R}_{M_{1}^{\prime}}^{\beta \eta}\right|_{\mathcal{C}}^{c} \subseteq\left|\mathcal{R}_{N_{2}^{\prime}}^{\beta \eta}\right|_{\mathcal{C}}^{c}$. By lemma 2.9.5, $\mathcal{R}_{M_{2}^{\prime}}^{\beta \eta}=\left\{c C \mid C \in \mathcal{R}_{N_{2}^{\prime}}^{\beta \eta}\right\}$, so $\left|\mathcal{R}_{M_{1}^{\prime}}^{\beta \eta}\right|_{\mathcal{C}}^{c} \subseteq\left|\mathcal{R}_{N_{2}^{\prime}}^{\beta \eta}\right|_{\mathcal{C}}^{c}=\left|\mathcal{R}_{M_{2}^{\prime}}^{\beta \eta}\right|_{\mathcal{C}}^{c}$.

6. Let $M_{1}=\left(\lambda x . P_{1}\right) Q_{1} \in \mathcal{M}_{c}$ such that $\lambda x . P_{1}, Q_{1} \in \mathcal{M}_{c}$.

So $\left|M_{1}\right|^{c}=\left|\lambda x . P_{1}\right|^{c}\left|Q_{1}\right|^{c}=\left|M_{2}\right|^{c}$. By lemma 2.10, $M_{1} \in \mathcal{R}^{r}$, so by lemma 2.5, $\mathcal{R}_{M_{1}}^{r}=\{\square\} \cup\left\{C Q_{1} \mid C \in \mathcal{R}_{\lambda_{x . P_{1}}^{r}}^{r}\right\} \cup\left\{\left(\lambda x . P_{1}\right) C \mid C \in \mathcal{R}_{Q_{1}}^{r}\right\}=\{\square\} \cup$ $\left\{(\lambda x . C) Q_{1} \mid C \in \mathcal{R}_{P_{1}}^{r}\right\} \cup\left\{\left(\lambda x . P_{1}\right) C \mid C \in \mathcal{R}_{Q_{1}}^{r}\right\}$ and so $\left|\mathcal{R}_{M_{1}}^{r}\right|_{\mathcal{C}}^{c}=\{\square\} \cup$ $\left\{\left.C\left|Q_{1}\right|^{c}|C \in| \mathcal{R}_{\lambda x . P_{1}}^{r}\right|_{\mathcal{C}} ^{c}\right\} \cup\left\{\left.\left|\lambda x . P_{1}\right|^{c} C|C \in| \mathcal{R}_{Q_{1}}^{r}\right|_{\mathcal{C}} ^{c}\right\}=\{\square\} \cup\left\{(\lambda x . C)\left|Q_{1}\right|^{c} \mid C\right.$ $\left.\in\left|\mathcal{R}_{P_{1}}^{r}\right|_{\mathcal{C}}^{c}\right\} \cup\left\{\left.\left|\lambda x . P_{1}\right|^{c} C|C \in| \mathcal{R}_{Q_{1}}^{r}\right|^{c} \mathcal{C}\right\}$. We prove this statement by induction on the structure of M_{2} :

- Let $M_{2} \in \mathcal{V} \backslash\{c\}$ then $\left|M_{2}\right|^{c}=M_{2} \neq\left|P_{1}\right|^{c}\left|Q_{1}\right|^{c}$.
- Let $M_{2}=\lambda x \cdot N_{2} \in \Lambda I$ then $\left|M_{2}\right|^{c}=\lambda x .\left|N_{2}\right|^{c} \neq\left|P_{1}\right|^{c}\left|Q_{1}\right|^{c}$.
- Let $M_{2}=\lambda x . N_{2}[x:=c(c x)] \in \Lambda \eta_{c}$ then $\left|M_{2}\right|^{c}=\lambda x .\left|N_{2}[x:=c(c x)]\right|^{c} \neq$ $\left|P_{1}\right|^{c}\left|Q_{1}\right|^{c}$.
- Let $M_{2}=\lambda x . N_{2} x \in \Lambda \eta_{c}$ then $\left|M_{2}\right|^{c}=\lambda x .\left|N_{2} x\right|^{c} \neq\left|P_{1}\right|^{c}\left|Q_{1}\right|^{c}$.
- Let $M_{2}=c P_{2} Q_{2} \in \mathcal{M}_{c}$ such that $P_{2}, Q_{2} \in \mathcal{M}_{c}$. By lemma 2.5, $\mathcal{R}_{M_{2}}^{r}=$ $\left\{c C Q_{2} \mid C \in \mathcal{R}_{P_{2}}^{r}\right\} \cup\left\{c P_{2} C \mid C \in \mathcal{R}_{Q_{2}}^{r}\right\}$, so $\left|\mathcal{R}_{M_{2}}^{r}\right|_{\mathcal{C}}^{c}=\left\{C\left|Q_{2}\right|^{c} \mid C \in\right.$ $\left.\left|\mathcal{R}_{P_{2}}^{r}\right|_{\mathcal{C}}^{c}\right\} \cup\left\{\left.\left|P_{2}\right|^{c} C|C \in| \mathcal{R}_{Q_{2}}^{r}\right|_{\mathcal{C}} ^{c}\right\}$. Since $\square \in\left|\mathcal{R}_{M_{1}}^{r}\right|_{\mathcal{C}}^{c}$ and $\square \notin r d G E M_{2} r$, $\left|\mathcal{R}_{M_{1}}^{r}\right|_{\mathcal{C}}^{c} \nsubseteq\left|\mathcal{R}_{M_{2}}^{r}\right|^{c}$.
- Let $M_{2}=\left(\lambda x . P_{2}\right) Q_{2} \in \mathcal{M}_{c}$ such that $\lambda x . P_{2}, Q_{2} \in \mathcal{M}_{c}$, then $\left|P_{1}\right|^{c}=\left|P_{2}\right|^{c}$ and $\left|Q_{1}\right|^{c}=\left|Q_{2}\right|^{c}$. By lemma 2.5, $\mathcal{R}_{M_{2}}^{r}=\{\square\} \cup\left\{C Q_{2} \mid C \in \mathcal{R}_{\lambda x . P_{2}}^{r}\right\} \cup$ $\left\{\left(\lambda x . P_{2}\right) C \mid C \in \mathcal{R}_{Q_{2}}^{r}\right\}=\{\square\} \cup\left\{(\lambda x . C) Q_{2} \mid C \in \mathcal{R}_{P_{2}}^{r}\right\} \cup\left\{\left(\lambda x . P_{2}\right) C \mid C \in\right.$ $\left.\mathcal{R}_{Q_{2}}^{r}\right\}$, so $\left|\mathcal{R}_{M_{2}}^{r}\right|_{\mathcal{C}}^{c}=\{\square\} \cup\left\{C\left|Q_{2}\right|^{c}|C \in| \mathcal{R}_{\lambda x . P_{2}}^{r}{ }^{c}\right\} \cup \cup\left\{\left|\lambda x . P_{2}\right|^{c} C \mid C \in\right.$ $\left.\left.\mid \mathcal{R}_{Q_{2}}^{r}{ }^{c}{ }_{c}\right\}=\{\square\} \cup\left\{\left.(\lambda x . C)\left|Q_{2}\right|^{c}|C \in| \mathcal{R}_{P_{2}}^{r}\right|_{c} ^{c}\right\} \cup\left\{\left.\left|\lambda x . P_{2}\right|^{c} C|C \in| \mathcal{R}_{Q_{2}}^{r}\right|^{c}\right\}\right\}$. let $C \in\left|\mathcal{R}_{\lambda x . P_{1}}^{r}\right|_{\mathcal{C}}^{c}$ then $C\left|Q_{1}\right|^{c}=C\left|Q_{2}\right|^{c} \in\left|\mathcal{R}_{M_{1}}^{r}\right|_{\mathcal{C}}^{c} \subseteq\left|\mathcal{R}_{M_{2}}^{r}\right|_{\mathcal{C}}^{c}$. So $C \in\left|\mathcal{R}_{\lambda x . P_{2}}^{r}\right|_{\mathcal{C}}^{c}$, i.e. $\left|\mathcal{R}_{\lambda x . P_{1}}^{r}\right|_{\mathcal{C}}^{c} \subseteq\left|\mathcal{R}_{\lambda x . P_{2}}^{r}\right|^{c}$. . Let $\left.C \in\left|\mathcal{R}_{P_{1}}^{r}\right|_{\mathcal{C}}\right|_{\mathcal{C}}$ then $(\lambda x . C)\left|Q_{1}\right|^{c}=(\lambda x . C)\left|Q_{2}\right|^{c} \in\left|\mathcal{R}_{M_{1}}^{r}\right|_{\mathcal{C}}^{c} \subseteq\left|\mathcal{R}_{M_{2}}^{r}\right|_{\mathcal{C}}^{c}$. So $C \in\left|\mathcal{R}_{P_{2}}^{r}\right|_{\mathcal{C}}^{c}$, i.e. $\left|\mathcal{R}_{P_{1}}^{r}\right|^{c}{ }_{\mathcal{C}} \subseteq\left|\mathcal{R}_{P_{2}}^{r}\right|_{\mathcal{C}}^{c}$. let $C \in\left|\mathcal{R}_{Q_{1}}^{r}\right|_{\mathcal{C}}^{c}$ then $\left|\lambda x . P_{1}\right|^{c} C=\left|\lambda x . P_{2}\right|^{c}{ }^{c} C \in$ $\left|\mathcal{R}_{M_{1}}^{r}\right|_{\mathcal{C}}^{c} \subseteq\left|\mathcal{R}_{M_{2}}^{r}\right|_{\mathcal{c}}^{c_{c}}$. So $C \in\left|\mathcal{R}_{Q_{2}}^{r}\right|^{c}$, i.e. $\left|\mathcal{R}_{Q_{1}}^{r}\right|^{c} \subseteq\left|\mathcal{R}_{Q_{2}}^{r}\right|_{\mathcal{C}}^{c}$. Since $C_{1} \in \mathcal{R}_{M_{1}}^{r}$:
- Either $C_{1}=\square$, so $C_{2}=\square$. Hence, $M_{1}=\left(\lambda x . P_{1}\right) Q_{1} \square_{r} P_{1}[x:=$ $\left.Q_{1}\right]=M_{1}^{\prime}$ and $M_{2}=\left(\lambda x . P_{2}\right) Q_{2} \square_{r} P_{2}\left[x:=Q_{2}\right]=M_{2}^{\prime}$. By lemma 2.27, $\left|\mathcal{R}_{M_{1}^{\prime}}^{r}\right|_{\mathcal{C}} \subseteq\left|\mathcal{R}_{M_{2}^{\prime}}^{r}\right|_{\mathcal{C}}^{c}$.
- Or $C_{1}=\left(\lambda x . C_{1}^{\prime}\right) Q_{1}$ such that $C_{1}^{\prime} \in \mathcal{R}_{P_{1}}^{r} \cdot\left|C_{1}\right|_{\mathcal{C}}^{c}=\left(\lambda x .\left|C_{1}^{\prime}\right|_{\mathcal{C}}^{c}\right)\left|Q_{1}\right|^{c}=$ $\left(\lambda x .\left|C_{1}^{\prime}\right|_{\mathcal{C}}^{c}\right)\left|Q_{2}\right|^{c}=\left|C_{2}\right|_{\mathcal{C}}^{c}$. Since $C_{2} \in \mathcal{R}_{M_{2}}^{r},\left|C_{2}\right|_{\mathcal{C}}^{c} \in\left|\mathcal{R}_{M_{2}}^{r}\right|_{\mathcal{C}}^{\mathcal{C}}$, so $\left|C_{1}^{\prime}\right|_{\mathcal{C}}^{\mathcal{C}} \in\left|\mathcal{R}_{P_{2}}^{r}\right|_{\mathcal{C}}^{\mathcal{c}}$ and $C_{2}=\left(\lambda x . C_{2}^{\prime}\right) Q_{2}$ such that $\left|C_{2}^{\prime}\right|_{\mathcal{C}}^{\mathcal{C}}=\left|C_{1}^{\prime}\right|_{\mathcal{C}}$ and $C_{2}^{\prime} \in \mathcal{R}_{P_{2}}^{r}$. Hence, $M_{1}=\left(\lambda x . P_{1}\right) Q_{1}=\left(\lambda x . C_{1}^{\prime}\left[R_{1}\right]\right) Q_{1}{\xrightarrow{C_{1}}}_{r}$ $\left(\lambda x \cdot C_{1}^{\prime}\left[R_{1}^{\prime}\right]\right) Q_{1}=\left(\lambda x \cdot P_{1}^{\prime}\right) Q_{1}=M_{1}^{\prime}$,
$M_{2}=\left(\lambda x \cdot P_{2}\right) Q_{2}=\left(\lambda x \cdot C_{2}^{\prime}\left[R_{2}\right]\right) Q_{2}{\xrightarrow{C_{2}}}_{r}\left(\lambda x \cdot C_{2}^{\prime}\left[R_{2}^{\prime}\right]\right) Q_{2}=\left(\lambda x \cdot P_{2}^{\prime}\right) Q_{2}$
$=M_{2}^{\prime}, P_{1} \xrightarrow{C_{1}^{\prime}} r P_{1}^{\prime}$ and $P_{2} \xrightarrow{C_{2}^{\prime}}{ }_{r} P_{2}^{\prime}$. By lemma 2.26, $\left|M_{1}\right|^{c}=\stackrel{\left|C_{1}\right|^{c}{ }_{c}}{r} r$ $\left|M_{1}^{\prime}\right|^{c}=\left|\lambda x . P_{1}^{\prime}\right|^{c}\left|Q_{1}\right|^{c}$ and $\left|M_{2}\right|^{\left.|c| C_{2}\right|^{c}}{ }_{r}\left|M_{2}^{\prime}\right|^{c}=\left|\lambda x \cdot P_{2}^{\prime}\right|^{c}\left|Q_{2}\right|^{c}$. Since $\left|M_{1}\right|^{c}=\left|M_{2}\right|^{c}$ and $\left|C_{1}\right|_{\mathcal{C}}^{\mathcal{C}}=\left|C_{2}\right|_{\mathcal{C}}^{c},\left|P_{1}^{\prime}\right|^{c}=\left|P_{2}^{\prime}\right|^{c}$. By IH, $\left|\mathcal{R}_{P_{1}}^{r}\right|^{c} \subseteq$ $\left|\mathcal{R}_{P_{2}^{\prime}}^{r}\right|_{c}^{c}$. Since $M_{1}, M_{2} \in \mathcal{M}_{c}$, by lemma 2.12, $M_{1}^{\prime}, M_{2}^{\prime} \in \mathcal{M}_{c}$. By lemma 2.5 and lemma 2.10, $\mathcal{R}_{M_{1}^{\prime}}^{r}=\{\square\} \cup\left\{(\lambda x . C) Q_{1} \mid C \in \mathcal{R}_{P_{1}}^{r}\right\} \cup$ $\left\{\left(\lambda x . P_{1}^{\prime}\right) C \mid C \in \mathcal{R}_{Q_{1}}^{r}\right\}$ and $\mathcal{R}_{M_{2}^{\prime}}^{r}=\{\square\} \cup\left\{(\lambda x . C) Q_{2} \mid C \in \mathcal{R}_{P_{2}^{\prime}}^{r}\right\} \cup$ $\left\{\left(\lambda x . P_{2}^{\prime}\right) C \mid C \in \mathcal{R}_{Q_{2}}^{r}\right\}$, so $\left|\mathcal{R}_{M_{1}}^{r}\right|_{\mathcal{C}}^{c}=\{\square\} \cup\left\{\left.(\lambda x . C)\left|Q_{1}\right|^{c}\right|^{2} \in \in\right.$ $\left.\left.\mid \mathcal{R}_{P_{1}}^{r}{ }^{c}\right\}\right\} \cup\left\{\left.\left|\lambda x . P_{1}^{\prime}\right|^{c} C|C \in| \mathcal{R}_{Q_{1}}^{r}\right|_{c} ^{c}\right\}$ and
$\left|\mathcal{R}_{M_{2}^{\prime}}^{r}\right|_{\mathcal{C}}^{\mathcal{C}}=\{\square\} \cup\left\{\left.(\lambda x . C)\left|Q_{2}\right|^{c}|C \in| \mathcal{R}_{P_{2}}^{r}\right|^{c}\right\} \cup\left\{\left|\lambda x . P_{2}^{\prime}\right|^{c} C \mid C \in\right.$ $\left.\left|\mathcal{R}_{Q_{2}}^{r}\right|_{\mathcal{C}}^{c}\right\}$. Let $C \in\left|\mathcal{R}_{M_{1}}^{r}\right|^{c}{ }^{c}$. Either $C=\square$ then $C \in\left|\mathcal{R}_{M_{2}}^{r}\right|^{c} c_{\mathcal{C}}$. Or $C=\left(\lambda x . C^{\prime}\right)\left|Q_{1}\right|^{c}=\left(\lambda x . C^{\prime}\right)\left|Q_{2}\right|^{c}$ such that $C^{\prime} \in\left|\mathcal{R}_{P_{1}}^{r}\right|_{\mathcal{C}}^{c} \subseteq^{I H}$ $\left|\mathcal{R}_{P_{2}^{\prime}}^{r}\right|^{c}$. So $C \in\left|\mathcal{R}_{M_{2}^{\prime}}^{r}\right|^{c}$. Or $C=\left|\lambda x \cdot P_{1}^{\prime}\right|^{c} C^{\prime}=\left|\lambda x . P_{2}^{\prime}\right|^{c} C^{\prime}$ such that $C^{\prime} \in\left|\mathcal{R}_{Q_{1}}^{r}\right|_{\mathcal{C}}^{c} \subseteq\left|\mathcal{R}_{Q_{2}}^{r}\right|^{c}$. So $C \in\left|\mathcal{R}_{M_{2}}^{r}\right|^{c}{ }^{c}$.
- Or $C_{1}=\left(\lambda x . P_{1}\right) C_{1}^{\prime}$ such that $C_{1}^{\prime} \in \mathcal{R}_{Q_{1}}^{r} .\left|C_{1}\right|_{\mathcal{C}}^{c}=\left|\lambda x \cdot P_{1}\right|^{c}\left|C_{1}^{\prime}\right|_{\mathcal{C}}^{c}=$ $\left|\lambda x . P_{2}\right|^{c}\left|C_{1}^{\prime}\right|_{\mathcal{C}}^{c}=\left|C_{2}\right|_{\mathcal{C}}^{c}$. Since $C_{2} \in \mathcal{R}_{M_{2}}^{r},\left|C_{2}\right|_{\mathcal{C}}^{c} \in\left|\mathcal{R}_{M_{2}}^{r}\right|^{c}$, so $\left|C_{1}^{\prime}\right|_{\mathcal{C}}^{c} \in$ $\left|\mathcal{R}_{Q_{2}}^{r}\right|_{\mathcal{C}}^{c}$ and $C_{2}=\left(\lambda x . P_{2}\right) C_{2}^{\prime}$ such that $\left|C_{2}^{\prime}\right|_{\mathcal{C}}=\left|C_{1}^{\prime}\right|_{\mathcal{C}}^{\mathcal{c}}$. Hence, $M_{1}=$ $\left(\lambda x . P_{1}\right) Q_{1}=\left(\lambda x . P_{1}\right) C_{1}^{\prime}\left[R_{1}\right]{\stackrel{C_{1}}{\rightarrow}}_{r}\left(\lambda x . P_{1}\right) C_{1}^{\prime}\left[R_{1}^{\prime}\right]=\left(\lambda x . P_{1}\right) Q_{1}^{\prime}=M_{1}^{\prime}$, $M_{2}=\left(\lambda x . P_{2}\right) Q_{2}=\left(\lambda x \cdot P_{2}\right) C_{2}^{\prime}\left[R_{2}\right] \xrightarrow{C_{2}}\left(\lambda x \cdot P_{2}\right) C_{2}^{\prime}\left[R_{2}^{\prime}\right]=\left(\lambda x . P_{2}\right) Q_{2}^{\prime}$ $=M_{2}^{\prime}, Q_{1} \xrightarrow{C_{1}^{\prime}} r Q_{1}^{\prime}$ and $Q_{2} \xrightarrow{C_{2}^{\prime}} Q_{2}^{\prime}$. By lemma 2.26, $\left|M_{1}\right|^{c}=\stackrel{\left|C_{1}\right|^{c}{ }_{c}}{r} r$ $\left|M_{1}^{\prime}\right|^{c}=\left|\lambda x . P_{1}\right|^{c}\left|Q_{1}^{\prime}\right|^{c}$ and $\left|M_{2}\right|^{\left.|c| C_{2}\right|^{c}{ }_{r}}{ }_{r}\left|M_{2}^{\prime}\right|^{c}=\left|\lambda x \cdot P_{2}\right|^{c}\left|Q_{2}^{\prime}\right|^{c}$. Since $\left|M_{1}\right|^{c}=\left|M_{2}\right|^{c}$ and $\left|C_{1}\right|_{\mathcal{C}}^{c}=\left|C_{2}\right|_{\mathcal{C}}^{c},\left|Q_{1}^{\prime}\right|^{c}=\left|Q_{2}^{\prime}\right|^{c}$. By IH, $\left|\mathcal{R}_{Q_{1}^{\prime}}^{r}\right|^{c} \mathcal{C} \subseteq$ $\left|\mathcal{R}_{Q_{2}^{\prime}}^{r}\right|_{c}^{c}$. Since $M_{1}, M_{2} \in \mathcal{M}_{c}$, by lemma 2.12, $M_{1}^{\prime}, M_{2}^{\prime} \in \mathcal{M}_{c}$. By lemma 2.5 and lemma 2.10, $\mathcal{R}_{M_{1}^{\prime}}^{r}=\{\square\} \cup\left\{(\lambda x . C) Q_{1}^{\prime} \mid C \in\right.$ $\left.\mathcal{R}_{P_{1}}^{r}\right\} \cup\left\{\left(\lambda x . P_{1}\right) C \mid C \in \mathcal{R}_{Q_{1}^{\prime}}^{r}\right\}$ and $\mathcal{R}_{M_{2}^{\prime}}^{r}=\{\square\} \cup\left\{(\lambda x . C) Q_{2}^{\prime} \mid C \in\right.$ $\left.\mathcal{R}_{P_{2}}^{r}\right\} \cup\left\{\left(\lambda x . P_{2}\right) C \mid C \in \mathcal{R}_{Q_{2}^{\prime}}^{r}\right\}$, so $\left|\mathcal{R}_{M_{1}^{\prime}}^{r}\right|_{\mathcal{C}}^{2}=\{\square\} \cup\left\{(\lambda x . C)\left|Q_{1}^{\prime}\right|^{c} \mid C \in\right.$ $\left.\left.\mid \mathcal{R}_{P_{1}}^{r}{ }^{c}\right\}\right\} \cup\left\{\left.\left|\lambda x . P_{1}\right|^{c} C|C \in| \mathcal{R}_{Q_{1}^{\prime}}^{r}\right|^{c}\right\}$ c $\left.{ }^{c}\right\}$ and $\left|\mathcal{R}_{M_{2}}^{r}\right|_{\mathcal{C}}^{\mathcal{c}}=\{\square\} \cup\left\{\left.(\lambda x . C)\left|Q_{2}^{\prime}\right|^{c}|C \in| \mathcal{R}_{P_{2}}^{r}\right|_{\mathcal{C}} ^{c}\right\} \cup\left\{\left|\lambda x . P_{2}\right|^{c} C \mid C \in\right.$
$\left.\left|\mathcal{R}_{Q_{2}^{\prime}}^{r}\right|_{\mathcal{C}}^{c}\right\}$. Let $C \in\left|\mathcal{R}_{M_{1}^{\prime}}^{r}\right|_{\mathcal{C}}^{c}$. Either $C=\left(\lambda x . C^{\prime}\right)\left|Q_{1}^{\prime}\right|^{c}=\left(\lambda x . C^{\prime}\right)\left|Q_{2}^{\prime}\right|^{c}$ such that $C^{\prime} \in\left|\mathcal{R}_{P_{1}}^{r}\right|_{\mathcal{C}}^{c} \subseteq\left|\mathcal{R}_{P_{2}}^{r}\right|_{\mathcal{C}}^{c}$. So $C \in\left|\mathcal{R}_{M_{2}^{\prime}}^{r}\right|_{\mathcal{C}}^{c}$. Or $C=$ $\left|\lambda x . P_{1}\right|^{c} C^{\prime}=\left|\lambda x . P_{2}\right|^{c} C^{\prime}$ such that $C^{\prime} \in\left|\mathcal{R}_{Q_{1}^{\prime}}^{r}\right|_{\mathcal{C}}^{c} \subseteq{ }^{I H}\left|\mathcal{R}_{Q_{2}^{\prime}}^{r}\right|_{\mathcal{C}}^{c}$. So $C \in\left|\mathcal{R}_{M_{2}^{\prime}}^{r}\right|^{c}$.
- Let $M_{2}=c N_{2} \in \Lambda \eta_{c}$ such that $N_{2} \in \Lambda \eta_{c}$. So $\left|N_{2}\right|^{c}=\left|M_{2}\right|^{c}=\left|M_{1}\right|^{c}$. By lemma 2.9.5, $\mathcal{R}_{M_{2}}^{\beta \eta}=\left\{c C \mid C \in \mathcal{R}_{N_{2}}^{\beta \eta}\right\}$, so $\left|\mathcal{R}_{M_{1}}^{\beta \eta}\right|_{\mathcal{C}}^{c} \subseteq\left|\mathcal{R}_{M_{2}}^{\beta \eta}\right|_{\mathcal{C}}^{c}=\left|\mathcal{R}_{N_{2}}^{\beta \eta}\right|_{\mathcal{C}}^{c}$. Since $C_{2} \in \mathcal{R}_{M_{2}}^{\beta \eta}, C_{2}=c C_{2}^{\prime}$ such that $C_{2}^{\prime} \in \mathcal{R}_{N_{2}}^{\beta \eta}$. So, $M_{2}=c N_{2}=$ $c C_{2}^{\prime}\left[R_{2}\right] \xrightarrow{c C_{2}^{\prime}}{ }_{\beta \eta} c C_{2}^{\prime}\left[R_{2}^{\prime}\right]=c N_{2}^{\prime}=M_{2}^{\prime}$ and $N_{2}=C_{2}^{\prime}\left[R_{2}\right] \xrightarrow{C_{2}^{\prime}}{ }_{\beta \eta} C_{2}^{\prime}\left[R_{2}^{\prime}\right]=N_{2}^{\prime}$. Since $\left|C_{2}^{\prime}\right|_{\mathcal{C}}^{c}=\left|C_{2}\right|_{\mathcal{C}}^{c}=\left|C_{1}\right|_{\mathcal{C}}^{c}$, by IH, $\left|\mathcal{R}_{M_{1}^{\prime}}^{\beta \eta}\right|_{\mathcal{C}}^{c} \subseteq\left|\mathcal{R}_{N_{2}^{\prime}}^{\beta \eta}\right|_{\mathcal{C}}^{c}$. By lemma 2.9.5, $\mathcal{R}_{M_{2}^{\prime}}^{\beta \eta}=\left\{c C \mid C \in \mathcal{R}_{N_{2}^{\prime}}^{\beta \eta}\right\}$, so $\left|\mathcal{R}_{M_{1}^{\prime}}^{\beta \eta}\right|_{\mathcal{C}}^{c} \subseteq\left|\mathcal{R}_{N_{2}^{\prime}}^{\beta \eta}\right|^{c}=\left|\mathcal{R}_{M_{2}^{\prime}}^{\beta \eta}\right|_{\mathcal{C}}^{c}$.

7. Let $M_{1}=c N_{1} \in \Lambda \eta_{c}$ such that $N_{1} \in \Lambda \eta_{c}$. So $\left|N_{1}\right|^{c}=\left|M_{1}\right|^{c}=\left|M_{2}\right|^{c}$. By lemma 2.9.5, $\mathcal{R}_{M_{1}}^{\beta \eta}=\left\{c C \mid C \in \mathcal{R}_{N_{1}}^{\beta \eta}\right\}$, so $\left|\mathcal{R}_{N_{1}}^{\beta \eta}\right|_{\mathcal{C}}^{c}=\left|\mathcal{R}_{M_{1}}^{\beta \eta}\right|_{\mathcal{C}}^{c} \subseteq\left|\mathcal{R}_{M_{2}}^{\beta \eta}\right|_{\mathcal{C}}^{c}$. Since $C_{1} \in \mathcal{R}_{M_{1}}^{\beta \eta}, C_{1}=c C_{1}^{\prime}$ such that $C_{1}^{\prime} \in \mathcal{R}_{N_{1}}^{\beta \eta}$. So, $M_{1}=c N_{1}=c C_{1}^{\prime}\left[R_{1}\right] \xrightarrow{c C_{1}^{\prime}}{ }_{\beta \eta}$ $c C_{1}^{\prime}\left[R_{1}^{\prime}\right]=c N_{1}^{\prime}=M_{1}^{\prime}$ and $N_{1} \xrightarrow{C_{1}^{\prime}}{ }_{\beta \eta} N_{1}^{\prime}$. Since $\left|C_{1}^{\prime}\right|_{\mathcal{C}}^{c}=\left|C_{1}\right|_{\mathcal{C}}^{c}=\left|C_{2}\right|_{\mathcal{C}}^{c}$, by IH, $\left|\mathcal{R}_{N_{1}^{\prime}}^{\beta \eta}\right|_{\mathcal{C}}^{c} \subseteq\left|\mathcal{R}_{M_{2}^{\prime}}^{\beta \eta}\right|_{\mathcal{C}}^{c}$. By lemma 2.9.5, $\mathcal{R}_{M_{1}^{\prime}}^{\beta \eta}=\left\{c C \mid C \in \mathcal{R}_{N_{1}^{\prime}}^{\beta \eta}\right\}$, so $\left|\mathcal{R}_{M_{1}^{\prime}}^{\beta \eta}\right|_{\mathcal{C}}^{c}=$ $\left|\mathcal{R}_{N_{1}^{\prime}}^{\beta \eta}\right|_{\mathcal{C}}^{c} \subseteq\left|\mathcal{R}_{M_{2}^{\prime}}^{\beta \eta}\right|_{\mathcal{C}}^{c}$.

B Proofs of section 5

Lemma 5.2. 1. (a) By induction on the structure of $M \in \Lambda \mathrm{I}$.

- Let $M=x \neq c$. Then $\Phi^{\beta I}(x, \mathcal{F})=x, \mathcal{F}=\varnothing$ and $F V(x)=$ $F V(x) \backslash\{c\}$.
- Let $M=\lambda x . N$ and $\mathcal{F}^{\prime}=\{C \mid \lambda x . C \in \mathcal{F}\} \subseteq \mathcal{R}_{N}^{\beta I} . F V(M)=$ $F V(N) \backslash\{x\}={ }^{I H} F V\left(\Phi^{\beta I}\left(N, \mathcal{F}^{\prime}\right)\right) \backslash\{c, x\}=F V\left(\lambda x \cdot \Phi^{\beta I}\left(N, \mathcal{F}^{\prime}\right)\right) \backslash$ $\{c\}=\Phi^{\beta I}(M, \mathcal{F})$.
- Let $M=M_{1} M_{2}, \mathcal{F}_{1}=\left\{C \mid C M_{2} \in \mathcal{F}\right\} \subseteq \mathcal{R}_{M_{1}}^{\beta I}$ and $\mathcal{F}_{2}=\left\{C \mid M_{1} C \in \mathcal{F}\right\} \subseteq \mathcal{R}_{M_{2}}^{\beta I}$.
- If $\square \in \mathcal{F}$ then, $\Phi^{\beta I}(M, \mathcal{F})=\Phi^{\beta I}\left(M_{1}, \mathcal{F}_{1}\right) \Phi^{\beta I}\left(M_{2}, \mathcal{F}_{2}\right)$.
- Else, $\Phi^{\beta I}(M, \mathcal{F})=c \Phi^{\beta I}\left(M_{1}, \mathcal{F}_{1}\right) \Phi^{\beta I}\left(M_{2}, \mathcal{F}_{2}\right)$.

In both cases, $F V(M)=F V\left(M_{1}\right) \cup F V\left(M_{2}\right)={ }^{I H}$
$\left(F V\left(\Phi^{\beta I}\left(M_{1}, \mathcal{F}_{1}\right)\right) \backslash\{c\}\right) \cup\left(F V\left(\Phi^{\beta I}\left(M_{2}, \mathcal{F}_{2}\right)\right) \backslash\{c\}\right)=$ $F V\left(\Phi^{\beta I}(M, \mathcal{F})\right) \backslash\{c\}$.
(b) By induction on the structure of $M \in \Lambda \mathrm{I}$.

- Let $M \in \mathcal{V}$, then $M \neq c$. So $\mathcal{F}=\varnothing$ and $\Phi^{\beta I}(M, \mathcal{F})=M \in \Lambda \mathrm{I}_{c}$.
- Let $M=\lambda x . N$ and $\mathcal{F}^{\prime}=\{C \mid \lambda x . C \in \mathcal{F}\} \subseteq \mathcal{R}_{N}^{\beta I}$. By IH, $\Phi^{\beta I}\left(N, \mathcal{F}^{\prime}\right) \in \Lambda \mathrm{I}_{c}$. Since by (BC), $x \neq c$, by lemma 5.2.1a, $x \in$ $F V\left(\Phi^{\beta I}\left(N, \mathcal{F}^{\prime}\right)\right)$. Hence, $\Phi^{\beta I}(M, \mathcal{F})=\lambda x . \Phi^{\beta I}\left(N, \mathcal{F}^{\prime}\right) \in \Lambda \mathrm{I}_{c}$.
- Let $M=M_{1} M_{2}, \mathcal{F}_{1}=\left\{C \mid C M_{2} \in \mathcal{F}\right\} \subseteq \mathcal{R}_{M_{1}}^{\beta I}$ and $\mathcal{F}_{2}=\left\{C \mid M_{1} C \in \mathcal{F}\right\} \subseteq \mathcal{R}_{M_{2}}^{\beta I}$.
- If $\square \in \mathcal{F}$ then $\Phi^{\beta I}(M, \mathcal{F})=\Phi^{\beta I}\left(M_{1}, \mathcal{F}_{1}\right) \Phi^{\beta I}\left(M_{2}, \mathcal{F}_{2}\right)$. By IH, $\Phi^{\beta I}\left(M_{1}, \mathcal{F}_{1}\right), \Phi^{\beta I}\left(M_{2}, \mathcal{F}_{2}\right) \in \Lambda \mathrm{I}_{c}$ and as M_{1} is a λ-abstraction, $\Phi^{\beta I}\left(M_{1}, \mathcal{F}_{1}\right)$ is a λ-abstraction. Hence $\Phi^{\beta I}(M, \mathcal{F}) \in \Lambda \mathrm{I}_{c}$.
- Else, $\Phi^{\beta I}(M, \mathcal{F})=c \Phi^{\beta I}\left(M_{1}, \mathcal{F}_{1}\right) \Phi^{\beta I}\left(M_{2}, \mathcal{F}_{2}\right)$.

By IH, $\Phi^{\beta I}\left(M_{1}, \mathcal{F}_{1}\right), \Phi^{\beta I}\left(M_{2}, \mathcal{F}_{2}\right) \in \Lambda \mathrm{I}_{c}$, hence, $\Phi^{\beta I}(M, \mathcal{F}) \in$ $\Lambda \mathrm{I}_{\mathrm{c}}$.
(c) By induction on $M \in \Lambda \mathrm{I}$.

- Let $M=x \neq c$. Then, $\mathcal{F}=\varnothing$ and $\Phi^{\beta I}(x, \mathcal{F})=x=|x|^{c}$.
- Let $M=\lambda x . N$ and $\mathcal{F}^{\prime}=\{C \mid \lambda x . C \in \mathcal{F}\} \subseteq \mathcal{R}_{N}^{\beta I}$. $\left|\Phi^{\beta I}(M, \mathcal{F})\right|^{c}=$ $\left|\lambda x . \Phi^{\beta I}\left(N, \mathcal{F}^{\prime}\right)\right|^{c}=\lambda x .\left|\Phi^{\beta I}\left(N, \mathcal{F}^{\prime}\right)\right|^{c}={ }^{I H} \lambda x . N$.
- Let $M=M_{1} M_{2}, \mathcal{F}_{1}=\left\{C \mid C M_{2} \in \mathcal{F}\right\} \subseteq \mathcal{R}_{M_{1}}^{\beta I}$ and $\mathcal{F}_{2}=\left\{C \mid M_{1} C \in \mathcal{F}\right\} \subseteq \mathcal{R}_{M_{2}}^{\beta I}$.
- If $\square \in \mathcal{F}$ then M_{1} is a λ-abstraction, hence, $\Phi^{\beta I}\left(M_{1}, \mathcal{F}_{1}\right)$ is a λ abstraction. So, $\left|\Phi^{\beta I}(M, \mathcal{F})\right|^{c}=\left|\Phi^{\beta I}\left(M_{1}, \mathcal{F}_{1}\right) \Phi^{\beta I}\left(M_{2}, \mathcal{F}_{2}\right)\right|^{c}=$ $\left|\Phi^{\beta I}\left(M_{1}, \mathcal{F}_{1}\right)\right|^{c}\left|\Phi^{\beta I}\left(M_{2}, \mathcal{F}_{2}\right)\right|^{c}={ }^{I H} \quad M_{1} M_{2}=M$.
- Else, $\left|\Phi^{\beta I}(M, \mathcal{F})\right|^{c}=\left|c \Phi^{\beta I}\left(M_{1}, \mathcal{F}_{1}\right) \Phi^{\beta I}\left(M_{2}, \mathcal{F}_{2}\right)\right|^{c}=$ $\left|\Phi^{\beta I}\left(M_{1}, \mathcal{F}_{1}\right)\right|^{c}\left|\Phi^{\beta I}\left(M_{2}, \mathcal{F}_{2}\right)\right|^{c}={ }^{I H} M_{1} M_{2}=M$.
(d) By induction on $M \in \Lambda \mathrm{I}$.
- If $M=x \neq c$ then $\Phi^{\beta I}(M, \mathcal{F})=M$ and $\mathcal{F}=\varnothing=\left|\mathcal{R}_{M}^{\beta I}\right|_{c}^{c}$.
- Let $M=\lambda x . N$ and $\mathcal{F}^{\prime}=\{C \mid \lambda x . C \in \mathcal{F}\} \subseteq \mathcal{R}_{N}^{\beta I}$. $\mathcal{F}={ }^{2.6}$ $\left\{\lambda x . C \mid C \in \mathcal{F}^{\prime}\right\}={ }^{I H}\left\{\lambda x .\left.C|C \in| \mathcal{R}_{\Phi^{\beta I}\left(P, \mathcal{F}^{\prime}\right)}^{\beta I}\right|_{\mathcal{C}} ^{c}\right\}=\left\{\lambda x .\left.|C|\right|_{\mathcal{C}} ^{c} \mid C \in\right.$ $\left.\mathcal{R}_{\Phi^{\beta I}\left(P, \mathcal{F}^{\prime}\right)}^{\beta I}\right\}$
$=\left\{|\lambda x . C|_{\mathcal{C}}^{c} \mid C \in \mathcal{R}_{\Phi^{\beta I}\left(P, \mathcal{F}^{\prime}\right)}^{\beta I}\right\}={ }^{2.5}\left|\mathcal{R}_{\Phi^{\beta I}(M, \mathcal{F})}^{\beta I}\right|_{\mathcal{C}}^{c}$.
- Let $M=M_{1} M_{2}, \mathcal{F}_{1}=\left\{C \mid C M_{2} \in \mathcal{F}\right\} \subseteq \mathcal{R}_{M_{1}}^{\beta I}$ and $\mathcal{F}_{2}=\left\{C \mid M_{1} C \in \mathcal{F}\right\} \subseteq \mathcal{R}_{M_{2}}^{\beta I}$.
- If $\square \in \mathcal{F}$ then $\Phi^{\beta I}(M, \mathcal{F})=\Phi^{\beta I}\left(M_{1}, \mathcal{F}_{1}\right) \Phi^{\beta I}\left(M_{2}, \mathcal{F}_{2}\right)$. Since M_{1} is a λ-abstraction then $\Phi^{\beta I}\left(M_{1}, \mathcal{F}_{1}\right)$ too. By lemma 5.2.1b, $\Phi^{\beta I}(M, \mathcal{F}) \in \Lambda \mathrm{I}_{c}$ then $\Phi^{\beta I}(M, \mathcal{F}) \in \mathcal{R}^{\beta I}$. $\mathcal{F}={ }^{2.6}\{\square\} \cup\left\{C M_{2} \mid C \in \mathcal{F}_{1}\right\} \cup\left\{M_{1} C \mid C \in \mathcal{F}_{2}\right\}={ }^{I H}\{\square\} \cup$ $\left\{\left.C M_{2}|C \in| \mathcal{R}_{\Phi^{\beta I}\left(M_{1}, \mathcal{F}_{1}\right)}^{\beta I}\right|_{\mathcal{C}} ^{c}\right\} \cup\left\{\left.M_{1} C|C \in| \mathcal{R}_{\Phi^{\beta I}\left(M_{2}, \mathcal{F}_{2}\right)}^{\beta I}\right|_{\mathcal{C}} ^{c}\right\}=$ $\{\square\} \cup\left\{|C|_{\mathcal{C}}^{c} M_{2} \mid C \in \mathcal{R}_{\Phi^{\beta I}\left(M_{1}, \mathcal{F}_{1}\right)}^{\beta I}\right\} \cup\left\{M_{1}|C|_{\mathcal{C}}^{c} \mid C \in \mathcal{R}_{\Phi^{\beta I}\left(M_{2}, \mathcal{F}_{2}\right)}^{\beta I}\right\}$ $={ }^{5.2 .1 c}\{\square\} \cup\left\{\left|C \Phi^{\beta I}\left(M_{2}, \mathcal{F}_{2}\right)\right|_{\mathcal{C}}^{c} \mid C \in \mathcal{R}_{\Phi^{\beta I}\left(M_{1}, \mathcal{F}_{1}\right)}^{\beta I}\right\} \cup$ $\left\{\left|\Phi^{\beta I}\left(M_{1}, \mathcal{F}_{1}\right) C\right|_{\mathcal{C}}^{c} \mid C \in \mathcal{R}_{\Phi^{\beta I}\left(M_{2}, \mathcal{F}_{2}\right)}^{\beta I}\right\}={ }^{2.5}\left|\mathcal{R}_{\Phi^{\beta I}(M, \mathcal{F})}^{\beta I}\right|_{\mathcal{C}}^{c}$.
- Else, $\Phi^{\beta I}(M, \mathcal{F})=c \Phi^{\beta I}\left(M_{1}, \mathcal{F}_{1}\right) \Phi^{\beta I}\left(M_{2}, \mathcal{F}_{2}\right)$. $\mathcal{F}={ }^{2.6}\left\{C M_{2} \mid C \in \mathcal{F}_{1}\right\} \cup\left\{M_{1} C \mid C \in \mathcal{F}_{2}\right\}={ }^{I H}\left\{C M_{2} \mid C \in\right.$ $\left.\left|\mathcal{R}_{\Phi^{\beta I}\left(M_{1}, \mathcal{F}_{1}\right)}^{\beta I}\right|_{\mathcal{C}}^{c}\right\} \cup\left\{\left.M_{1} C|C \in| \mathcal{R}_{\Phi^{\beta I}\left(M_{2}, \mathcal{F}_{2}\right)}^{\beta I}\right|_{\mathcal{C}} ^{c}\right\}=\left\{\left.|C|\right|_{\mathcal{C}} ^{c} M_{2} \mid C \in\right.$ $\left.\mathcal{R}_{\Phi^{\beta I}\left(M_{1}, \mathcal{F}_{1}\right)}^{\beta I}\right\} \cup\left\{M_{1}|C|_{\mathcal{C}}^{c} \mid C \in \mathcal{R}_{\Phi^{\beta I}\left(M_{2}, \mathcal{F}_{2}\right)}^{\beta I}\right\}=5.2 .1 c$ $\left\{\left|c C \Phi^{\beta I}\left(M_{2}, \mathcal{F}_{2}\right)\right|_{\mathcal{C}}^{c} \mid C \in \mathcal{R}_{\Phi^{\beta I}\left(M_{1}, \mathcal{F}_{1}\right)}^{\beta I}\right\} \cup$ $\left\{\left|c \Phi^{\beta I}\left(M_{1}, \mathcal{F}_{1}\right) C\right|_{\mathcal{C}}^{c} \mid C \in \mathcal{R}_{\Phi^{\beta I}\left(M_{2}, \mathcal{F}_{2}\right)}^{\beta I}\right\}={ }^{2.5}\left|\mathcal{R}_{\Phi^{\beta I}(M, \mathcal{F})}^{\beta I}\right|^{c}$.

2. (a) By induction on the construction of $M \in \Lambda \mathrm{I}_{c}$. By lemma $2.22,|M|^{c} \in \Lambda \mathrm{I}$

- Let $M \in \mathcal{V} \backslash\{c\}$. Hence $|M|^{c}=M$, by lemma $2.5,\left|\mathcal{R}_{M}^{\beta I}\right|_{C}^{c}=\varnothing=$ $\mathcal{R}_{|M|^{c}}^{\beta I}$ and $M=\Phi^{\beta I}\left(|M|^{c},\left|\mathcal{R}_{M}^{\beta I}\right|_{c}^{c}\right)$.
- Let $M=\lambda x . P$ where $P \in \Lambda \mathrm{I}_{c}$ and $x \in F V(P) .|M|^{c}=\lambda x .|P|^{c}$. By IH, $\left|\mathcal{R}_{P}^{\beta I}\right|_{\mathcal{C}}^{c} \subseteq \mathcal{R}_{|P|^{c}}^{\beta I}$ and $P=\Phi^{\beta I}\left(|P|^{c},\left|\mathcal{R}_{P}^{\beta I}\right|^{c}\right) .\left|\mathcal{R}_{M}^{\beta I}\right|_{c}^{c}={ }^{2.5}$ $\left\{|\lambda x . C|_{\mathcal{C}}^{c} \mid C \in \mathcal{R}_{P}^{\beta I}\right\}=\left\{\lambda x .\left.C|C \in| \mathcal{R}_{P}^{\beta I}\right|_{\mathcal{C}} ^{c}\right\} \subseteq\{\lambda x . C \mid C \in$ $\left.\mathcal{R}_{|P|^{c}}^{\beta I}\right\}={ }^{2.5} \mathcal{R}_{|M|^{c}}^{\beta I}$. Moreover, $M=\Phi^{\beta I}\left(|M|^{c},\left|\mathcal{R}_{M}^{\beta I}\right|^{c}\right)$.
- Let $M=c P Q$ where $P, Q \in \Lambda \mathrm{I}_{c}$. Let $|M|^{c}=|P|^{c}|Q|^{c}$. By IH, $\left|\mathcal{R}_{P}^{\beta I}\right|_{\mathcal{C}}^{c} \subseteq \mathcal{R}_{|P|^{c}}^{\beta I},\left|\mathcal{R}_{Q}^{\beta I}\right|_{\mathcal{C}}^{c} \subseteq \mathcal{R}_{|Q| c}^{\beta I}, P=\Phi^{\beta I}\left(|P|^{c},\left|\mathcal{R}_{P}^{\beta I}\right|_{\mathcal{C}}^{c}\right)$ and $Q=$ $\Phi^{\beta I}\left(|Q|^{c},\left|\mathcal{R}_{Q}^{\beta I}\right|_{\mathcal{C}}^{c}\right) .\left|\mathcal{R}_{M}^{\beta I}\right|_{\mathcal{C}}^{c}=2.5\left\{|c C Q|_{\mathcal{C}}^{c} \mid C \in \mathcal{R}_{P}^{\beta I}\right\} \cup\left\{|c P C|_{\mathcal{C}}^{c} \mid C \in\right.$ $\left.\mathcal{R}_{Q}^{\beta I}\right\}=\left\{\left.C|Q|^{c}|C \in| \mathcal{R}_{P}^{\beta I}\right|_{\mathcal{C}} ^{c}\right\} \cup\left\{\left.|P|^{c} C|C \in| \mathcal{R}_{Q}^{\beta I}\right|_{\mathcal{C}} ^{c}\right\} \subseteq\left\{C|Q|^{c} \mid C \in\right.$

$$
\left.\mathcal{R}_{\left.|P|^{c}\right\}}^{\beta I}\right\} \cup\left\{|P|^{c} C \mid C \in \mathcal{R}_{|Q|^{c}}^{\beta I}\right\} \subseteq^{2.5} \mathcal{R}_{|M|^{c}}^{\beta I}
$$

Moreover $M=\Phi^{\beta I}\left(|M|^{\beta I},\left|\mathcal{R}_{M}^{\beta I}\right|_{\mathcal{C}}^{c}\right)$.

- Let $M=P Q$ where $P, Q \in \Lambda \mathrm{I}_{c}$ and P is a λ-abstraction. Let $|M|^{c}=$ $|P|^{c}|Q|^{c}$, where $|P|^{c}$ is a λ-abstraction. By IH, $\left|\mathcal{R}_{P}^{\beta I}\right|_{\mathcal{C}}^{c} \subseteq \mathcal{R}_{|P| c}^{\beta I}$, $\left|\mathcal{R}_{Q}^{\beta I}\right|^{c}{ }_{\mathcal{C}} \subseteq \mathcal{R}_{|Q| c}^{\beta I}, P=\Phi^{\beta I}\left(|P|^{c},\left|\mathcal{R}_{P}^{\beta I}\right|_{\mathcal{C}}^{c}\right)$ and $Q=\Phi^{\beta I}\left(|Q|^{c},\left|\mathcal{R}_{Q}^{\beta I}\right|_{\mathcal{C}}^{c}\right)$. $\left|\mathcal{R}_{M}^{\beta I}\right|_{\mathcal{C}}^{c}=2.5\{\square\} \cup\left\{|C Q|_{\mathcal{C}}^{c} \mid C \in \mathcal{R}_{P}^{\beta I}\right\} \cup\left\{|P C|_{\mathcal{C}}^{c} \mid C \in \mathcal{R}_{Q}^{\beta I}\right\}=\{\square\} \cup$ $\left\{\left.C|Q|^{c}|C \in| \mathcal{R}_{P}^{\beta I}\right|_{\mathcal{C}} ^{c}\right\} \cup\left\{\left.|P|{ }^{c} C|C \in| \mathcal{R}_{Q}^{\beta I}\right|_{\mathcal{C}} ^{c}\right\} \subseteq\{\square\} \cup\left\{C|Q|^{c} \mid C \in\right.$ $\left.\mathcal{R}_{|P|^{c}}^{\beta I}\right\} \cup\left\{|P|^{c} C \mid C \in \mathcal{R}_{|Q| c}^{\beta I}\right\}=2.5 \mathcal{R}_{|M|^{c}}^{\beta I}$.
Moreover $M=\Phi^{\beta I}\left(|M|^{\beta I},\left|\mathcal{R}_{M}^{\beta I}\right|_{\mathcal{C}}^{c}\right)$.
(b) By lemma 2.22, $|M|^{c} \in \Lambda$ I. By lemma $2.21 c \notin F V\left(|M|^{c}\right)$. By lemma 5.2.2a, $\left|\mathcal{R}_{M}^{\beta I}\right|_{\mathcal{C}}^{c} \subseteq \mathcal{R}_{|M|^{c}}^{\beta I}$ and $M=\Phi^{\beta I}\left(|M|^{c},\left|\mathcal{R}_{M}^{\beta I}\right|_{\mathcal{C}}^{c}\right)$. To prove unicity, assume that $\left(N^{\prime}, \mathcal{F}^{\prime}\right)$ is another such pair. So $\mathcal{F}^{\prime} \subseteq \mathcal{R}_{N^{\prime}}^{\beta I}$ and $M=\Phi^{\beta I}\left(N^{\prime}, \mathcal{F}^{\prime}\right)$. Then, $|M|^{c}=\left|\Phi^{\beta I}\left(N^{\prime}, \mathcal{F}^{\prime}\right)\right|^{c}={ }^{5.2 .1 c} N^{\prime}$ and $\mathcal{F}^{\prime}={ }^{5.2 .1 d}\left|\mathcal{R}_{\Phi^{\beta I}\left(N^{\prime}, \mathcal{F}^{\prime}\right)}^{\beta I}\right|_{\mathcal{C}}^{c}=$ $\left|\mathcal{R}_{M}^{\beta I}\right|^{c}{ }^{c}$.

Lemma 5.3. By lemma 5.2.1c and lemma 2.17, there exists a unique $C^{\prime} \in \mathcal{R}_{\Phi^{\beta I}(M, \mathcal{F})}^{\beta I}$, such that $\left|C^{\prime}\right|_{\mathcal{C}}^{c}=C$. By definition $\exists R \in \mathcal{R}^{\beta I}$ such that $\Phi^{\beta I}(M, \mathcal{F})=C^{\prime}[R]$. By lemma $5.2 .1 \mathrm{c},\left|C^{\prime}[R]\right|^{c}=M$. By lemma 2.25, $\left|C^{\prime}[R]\right|^{c} \xrightarrow{\left|C^{\prime}\right|{ }_{c}^{c}}{ }_{\beta I}\left|C^{\prime}\left[R^{\prime}\right]\right|^{c}$ such that R^{\prime} is the contractum of R. So $M \xrightarrow[\rightarrow]{C} \beta I\left|C^{\prime}\left[R^{\prime}\right]\right|^{c}$, then $M^{\prime}=\left|C^{\prime}\left[R^{\prime}\right]\right|^{c}$. Let $\mathcal{F}^{\prime}=\left|\mathcal{R}_{C^{\prime}\left[R^{\prime}\right]}^{\beta I}\right|_{\mathcal{C}}^{c}$. Since, $\Phi^{\beta I}(M, \mathcal{F})=C^{\prime}[R]{\stackrel{C^{\prime}}{\rightarrow}}_{\beta I} C^{\prime}\left[R^{\prime}\right]$, by lemma 2.12 and lemma 5.2.1b, $C^{\prime}\left[R^{\prime}\right] \in \Lambda \mathrm{I}_{c}$. By lemma 5.2.2a, $C^{\prime}\left[R^{\prime}\right]=\Phi^{\beta I}\left(M^{\prime}, \mathcal{F}^{\prime}\right)$ and $\mathcal{F}^{\prime} \subseteq \mathcal{R}_{M^{\prime}}^{\beta I}$. By lemma $5.2 .2 \mathrm{~b}, \mathcal{F}^{\prime}$ is unique.

Lemma 5.6. It sufficient to prove:

$$
(M, \mathcal{F}) \rightarrow_{\beta I d}\left(M^{\prime}, \mathcal{F}^{\prime}\right) \Longleftrightarrow \Phi^{\beta I}(M, \mathcal{F}) \rightarrow_{\beta I} \Phi^{\beta I}\left(M^{\prime}, \mathcal{F}^{\prime}\right)
$$

- $\Rightarrow)$ let $(M, \mathcal{F}) \rightarrow_{\beta I d}\left(M^{\prime}, \mathcal{F}^{\prime}\right)$. Then by definition $5.5, \exists C \in \mathcal{F}$ such that $M \xrightarrow{C}_{\beta I} M^{\prime}$ and \mathcal{F}^{\prime} is the set of βI-residuals in M^{\prime} relative to C. By definition 5.4 we obtain $\Phi^{\beta I}(M, \mathcal{F}) \rightarrow_{\beta I} \Phi^{\beta I}\left(M^{\prime}, \mathcal{F}^{\prime}\right)$.
- \Leftarrow Let $\Phi^{\beta I}(M, \mathcal{F}) \xrightarrow{C}_{\beta I} \Phi^{\beta I}\left(M^{\prime}, \mathcal{F}^{\prime}\right)$ such that $C \in \mathcal{R}_{\Phi^{\beta I}(M, \mathcal{F})}^{\beta I}$. Since, by lemma 5.2.1b, $\Phi^{\beta I}(M, \mathcal{F}) \in \Lambda \mathrm{I}_{c}$, by lemma 2.26 and lemma 5.2.1c, $M=$ $\left|\Phi^{\beta I}(M, \mathcal{F})\right|^{c} \xrightarrow{|C|_{\mathcal{C}}^{c}} \beta{ }_{\beta I}\left|\Phi^{\beta I}\left(M^{\prime}, \mathcal{F}^{\prime}\right)\right|^{c}=M^{\prime}$. By definition 5.4, \mathcal{F}^{\prime} is the set of βI-residuals of \mathcal{F} in M^{\prime} relative to $|C|_{\mathcal{C}}^{c}$. By definition 5.5 we obtain $(M, \mathcal{F}) \rightarrow_{\beta d}\left(M^{\prime}, \mathcal{F}^{\prime}\right)$.

Lemma 5.7. By lemma 5.2.1b, $\Phi^{\beta I}\left(M, \mathcal{F}_{1}\right), \Phi^{\beta I}\left(M, \mathcal{F}_{2}\right) \in \Lambda \mathrm{I}_{c}$.
By lemma 5.2.1c, $\left|\Phi^{\beta I}\left(M, \mathcal{F}_{1}\right)\right|^{c}=\left|\Phi^{\beta I}\left(M, \mathcal{F}_{2}\right)\right|^{c}$. By lemma 5.2.1d, $\left|\mathcal{R}_{\Phi^{\beta I}\left(M, \mathcal{F}_{1}\right)}^{\beta I}\right|_{\mathcal{C}}^{c}=$ $\mathcal{F}_{1} \subseteq \mathcal{F}_{2}=\left|\mathcal{R}_{\Phi^{\beta I}\left(M, \mathcal{F}_{2}\right)}\right|^{c}{ }^{c}$.

If $\left(M, \mathcal{F}_{1}\right) \rightarrow_{\beta I d}\left(M^{\prime}, \mathcal{F}_{1}^{\prime}\right)$ then by lemma 5.6, $\Phi^{\beta I}\left(M, \mathcal{F}_{1}\right) \rightarrow_{\beta I} \Phi^{\beta I}\left(M^{\prime}, \mathcal{F}_{1}^{\prime}\right)$. Let $\Phi^{\beta I}\left(M, \mathcal{F}_{1}\right){\xrightarrow{C_{1}}}_{\beta I} \Phi^{\beta I}\left(M^{\prime}, \mathcal{F}_{1}^{\prime}\right)$ such that $C_{1} \in \mathcal{R}_{\Phi^{\beta I}\left(M, \mathcal{F}_{1}\right)}^{\beta I}$. Let $C_{0}=\left|C_{1}\right|_{\mathcal{C}}^{c}$, so by lemma $5.2 .1 \mathrm{~d}, C_{0} \in \mathcal{F}_{1}$. By lemma 2.26 and lemma $5.2 .1 \mathrm{c}, M{\xrightarrow{C_{0}}}_{\beta I} M^{\prime}$.

By lemma 5.3 there exists a unique set $\mathcal{F}^{\prime} \subseteq \mathcal{R}_{M^{\prime}}^{\beta I}$, such that $\Phi^{\beta I}\left(M, \mathcal{F}_{1}\right) \xrightarrow{C^{\prime}}{ }_{\beta I}$ $\Phi^{\beta I}\left(M^{\prime}, \mathcal{F}^{\prime}\right)$ and $\left|C^{\prime}\right|_{\mathcal{C}}^{c}=C_{0}$ where $C^{\prime} \in \mathcal{R}_{\Phi^{\beta I}\left(M, \mathcal{F}_{1}\right)}^{\beta I}$. Since $C^{\prime}, C_{1} \in \mathcal{R}_{\Phi^{\beta I}\left(M, \mathcal{F}_{1}\right)}^{\beta I}$, by lemma 2.17, $C^{\prime}=C_{1}$. So, $\Phi^{\beta I}\left(M^{\prime}, \mathcal{F}^{\prime}\right)=\Phi^{\beta I}\left(M^{\prime}, \mathcal{F}_{1}^{\prime}\right)$. By lemma 5.2.1d, $\mathcal{F}^{\prime}=\mathcal{F}_{1}^{\prime}$. By lemma $5.2 .1 \mathrm{c}, \mathcal{F}_{1}^{\prime}=\left|\mathcal{R}_{\Phi^{\beta I}\left(M^{\prime}, \mathcal{F}_{1}^{\prime}\right)}^{\beta I}\right|_{\mathcal{C}}^{\mathcal{C}}$.

By lemma 5.3 there exists a unique set $\mathcal{F}_{2}^{\prime} \subseteq \mathcal{R}_{M^{\prime}}^{\beta I}$, such that $\Phi^{\beta I}\left(M, \mathcal{F}_{2}\right) \xrightarrow{C_{2}}{ }_{\beta I}$ $\Phi^{\beta I}\left(M^{\prime}, \mathcal{F}_{2}^{\prime}\right)$ and $\left|C_{2}\right|_{\mathcal{C}}^{c}=C_{0}$ where $C_{2} \in \Phi^{\beta I}\left(M, \mathcal{F}_{2}\right)$. By lemma $5.2 .1 \mathrm{c}, \mathcal{F}_{2}^{\prime}=$ $\left|\mathcal{R}_{\Phi^{\beta I}\left(M^{\prime}, \mathcal{F}_{2}^{\prime}\right)}^{\beta I}\right|_{\mathcal{C}}^{\mathcal{C}}$.

Hence, by lemma $2.28, \mathcal{F}_{1}^{\prime} \subseteq \mathcal{F}_{2}^{\prime}$ and by lemma $5.6,\left(M, \mathcal{F}_{2}\right) \rightarrow_{\beta I d}\left(M^{\prime}, \mathcal{F}_{2}^{\prime}\right)$.
Lemma 5.9. 1. By induction on $\Gamma \vdash^{\beta I} M: \sigma$. 2. By induction on $\Gamma \vdash^{\beta \eta} M: \sigma$.
3. First prove $\left(^{*}\right)$: if $\Gamma \vdash^{r} M: \sigma$, and $\sigma \sqsubseteq \sigma^{\prime}$ then $\Gamma \vdash^{r} M: \sigma^{\prime}$ by induction on $\sigma \sqsubseteq \sigma^{\prime}$. Then, do the proof of 3 . by induction on $\Gamma \vdash^{r} M: \sigma$. For the latter we do:

- Case ($a x$): If $\Gamma, x: \sigma \vdash^{\beta \eta} x: \sigma, \Gamma^{\prime}, x: \sigma^{\prime} \sqsubseteq \Gamma, x: \sigma$ and $\sigma \sqsubseteq \sigma^{\prime \prime}$ then $\sigma^{\prime} \sqsubseteq \sigma$ and so $\sigma^{\prime} \sqsubseteq \sigma^{\prime \prime}$. By (ax) $\Gamma^{\prime}, x: \sigma^{\prime} \vdash^{\beta \eta} x: \overline{\sigma^{\prime}}$. By $\left({ }^{*}\right), \Gamma^{\prime}, x: \overline{\sigma^{\prime}} \vdash^{\beta \eta} x: \sigma^{\prime \prime}$.
- Case $\left(\rightarrow_{E^{I}}\right)$: If $\frac{\Gamma \vdash^{\beta I} M: \sigma \rightarrow \tau \Delta \vdash^{\beta I} N: \sigma}{\Gamma \Pi \Delta \vdash^{\beta I} M N: \tau}, \Gamma=\Gamma_{1}, \Gamma_{2}, \Delta=\Delta_{1}, \Delta_{2}, \Gamma \sqcap \Delta=$ $\Gamma_{3}, \Gamma_{2}, \Delta_{2}, \Gamma^{\prime}=\Gamma_{3}^{\prime}, \Gamma_{2}^{\prime}, \Delta_{2}^{\prime} \sqsubseteq \Gamma$ where, $\Gamma_{1}=\left(x_{i}: \sigma_{i}\right)_{n}, \Gamma_{2}=\left(y_{j}, \tau_{j}\right)_{m}$, $\Gamma_{3}=\left(x_{i}: \sigma_{i} \cap \sigma_{i}^{\prime}\right)_{n}, \Delta_{1}=\left(x_{i}: \sigma_{i}^{\prime}\right)_{n}, \Delta_{2}=\left(z_{l}, \rho_{l}\right)_{k}, \operatorname{dom}\left(\Gamma_{2}\right) \cap \operatorname{dom}\left(\Delta_{2}\right)=\varnothing$, $\Gamma_{3}^{\prime}=\left(x_{i}: \bar{\sigma}_{i}\right)_{n}, \Gamma_{2}^{\prime}=\left(y_{j}, \bar{\tau}_{j}\right)_{m}, \Delta_{2}^{\prime}=\left(z_{l}, \bar{\rho}_{l}\right)_{k}, \overline{\sigma_{i}} \sqsubseteq \sigma_{i} \cap \sigma_{i}^{\prime}, \overline{\tau_{j}} \sqsubseteq \tau_{j}$ and $\overline{\rho_{l}} \sqsubseteq \rho_{l}$ then $\Gamma_{3}^{\prime}, \Gamma_{2}^{\prime} \sqsubseteq \Gamma$ and $\Gamma_{3}^{\prime}, \Delta_{2}^{\prime} \sqsubseteq \Delta$. By IH, $\Gamma_{3}^{\prime}, \Gamma_{2}^{\prime} \vdash^{\beta I} M: \sigma \rightarrow \tau$ and $\Gamma_{3}^{\prime}, \Delta_{2}^{\prime} \vdash^{\beta I} N: \sigma$, so by $\left(\rightarrow_{E^{I}}\right), \Gamma_{3}^{\prime} \sqcap \Gamma_{3}^{\prime}, \Gamma_{2}^{\prime}, \Delta_{2}^{\prime} \vdash^{\beta I} M N: \tau$. By (*), and since $\Gamma_{3}^{\prime} \sqcap \Gamma_{3}^{\prime}=\Gamma_{3}^{\prime}$, we have: $\Gamma_{3}^{\prime}, \Gamma_{2}^{\prime}, \Delta_{2}^{\prime} \vdash^{\beta I} M N: \tau$.
Lemma 5.10. When $M \rightarrow{ }_{r}^{*} N$ and $M \rightarrow{ }_{r}^{*} P$, we write $M \rightarrow_{r}^{*}\{N, P\}$.

1. By induction on $\sigma \in$ Type 1.

- If $\sigma \in \mathcal{A}$ then $C R_{0}^{r} \subseteq C R^{r}$.
- If $\sigma=\tau \cap \rho$ then by IH, $C R_{0}^{r} \subseteq \llbracket \tau \rrbracket^{r}, \llbracket \rho \rrbracket^{r} \subseteq C R^{r}$, so $C R_{0}^{r} \subseteq \llbracket \tau \cap \rho \rrbracket^{r} \subseteq$ $C R^{r}$.
- If $\sigma=\tau \rightarrow \rho$ then by $\mathrm{IH}, C R_{0}^{r} \subseteq \llbracket \tau \rrbracket^{r}, \llbracket \rho \rrbracket^{r} \subseteq C R^{r}$ and $\llbracket \sigma \rrbracket^{r} \subseteq C R^{r}$ by definition. Let $M \in C R_{0}^{r}$, so $M=x N_{1} \ldots N_{n}$, where $n \geq 0$ and $N_{1}, \ldots, N_{n} \in C R^{r}$. Let $P \in \llbracket \tau \rrbracket^{r}$ so $P \in C R^{r}$, hence, $M P \in C R_{0}^{r} \subseteq \llbracket \rho \rrbracket^{r}$ and $M \in \llbracket \sigma \rrbracket^{r}$.

2. Let $M[x:=N] N_{1} \ldots N_{n} \in \mathrm{CR}^{\beta I}$ where $n \geq 0, x \in F V(M)$, and $(\lambda x . M) N N_{1} \ldots N_{n} \rightarrow_{\beta I}^{*}\left\{M_{1}, M_{2}\right\}$. By lemma 2.2.7, $\exists M_{1}^{\prime}$ and M_{2}^{\prime} such that $M_{1} \rightarrow_{\beta I}^{*} M_{1}^{\prime}, M[x:=N] N_{1} \ldots N_{n} \rightarrow_{\beta I}^{*} M_{1}^{\prime}, M_{2} \rightarrow_{\beta I}^{*} M_{2}^{\prime}$ and $M[x:=$ $N] N_{1} \ldots N_{n} \rightarrow_{\beta I}^{*} M_{2}^{\prime}$. Then we conclude using $M[x:=N] N_{1} \ldots N_{n} \in \mathrm{CR}^{\beta I}$.
3. Let $M[x:=N] N_{1} \ldots N_{n} \in \mathrm{CR}^{\beta \eta}$ where $n \geq 0$ and $(\lambda x . M) N N_{1} \ldots N_{n} \rightarrow_{\beta \eta}^{*}$ $\left\{M_{1}, M_{2}\right\}$. By lemma 2.2.7, $\exists M_{1}^{\prime}$ and M_{2}^{\prime} such that $M_{1} \rightarrow_{\beta \eta}^{*} M_{1}^{\prime}, M[x:=$ $N] N_{1} \ldots N_{n} \rightarrow_{\beta \eta}^{*} M_{1}^{\prime}, M_{2} \rightarrow_{\beta \eta}^{*} M_{2}^{\prime}$ and $M[x:=N] N_{1} \ldots N_{n}{ }_{\beta}^{\beta}{ }_{\beta}^{*} M_{2}^{\prime}$. Then we conclude using $M[x:=N] N_{1} \ldots N_{n} \in \mathrm{CR}^{\beta \eta}$.
4. By induction on σ.

- If $\sigma \in \mathcal{A}$, then the statement is true by 2 .
- If $\sigma=\tau \cap \rho$, then by IH, $\llbracket \tau \rrbracket^{\beta I}$ and $\llbracket \rho \rrbracket^{\beta I}$ are I-saturated. Let M, N, $N_{1}, \ldots, N_{n} \in \Lambda, x \in F V(M), n \geq 0$, and $M[x:=N] N_{1} \ldots N_{n} \in \llbracket \sigma \rrbracket^{\beta I}=$ $\llbracket \tau \rrbracket^{\beta I} \cap \llbracket \rho \rrbracket^{\beta I}$. Then by I-saturation, $(\lambda x . M) N N_{1} \ldots N_{n} \in \llbracket \tau \rrbracket^{\beta I}$ and $(\lambda x . M) N N_{1} \ldots N_{n} \in \llbracket \rho \rrbracket^{\beta I}$. Done.
- If $\sigma=\tau \rightarrow \rho$, then by IH, $\llbracket \tau \rrbracket^{\beta I}$ and $\llbracket \rho \rrbracket^{\beta I}$ are I-saturated. Let $n \geq$ $0, M, N, N_{1}, \ldots, N_{n} \in \Lambda, x \in F V(M)$, and $M[x:=N] N_{1} \ldots N_{n} \bar{\in}$ $\llbracket \sigma \rrbracket^{\beta I}$. Let $P \in \llbracket \tau \rrbracket^{\beta I} \neq \varnothing$, then $M[x:=N] N_{1} \ldots N_{n} P \in \llbracket \rho \rrbracket^{\beta I}$. By I-saturation, $(\lambda x . M) N N_{1} \ldots N_{n} P \in \llbracket \rho \rrbracket^{\beta I}$ so $(\lambda x . M) N N_{1} \ldots N_{n} \in$ $\llbracket \tau \rrbracket^{\beta I} \Rightarrow \llbracket \rho \rrbracket^{\beta I}$. Since, $M[x:=N] N_{1} \ldots N_{n} \in \llbracket \sigma \rrbracket^{\beta I} \subseteq C R^{\beta I}$ and $C R^{\beta I}$ is saturated by 2 , then $(\lambda x . M) N N_{1} \ldots N_{n} \in C R^{\beta I}$.

5. By induction on σ.

- If $\sigma \in \mathcal{A}$, then the statement is true by 3 .
- If $\sigma=\tau \cap \rho$, then by IH, $\llbracket \tau \rrbracket^{\beta \eta}$ and $\llbracket \rho \rrbracket^{\beta \eta}$ are saturated. Let $M[x:=N] N_{1} \ldots N_{n} \in \llbracket \sigma \rrbracket^{\beta \eta}=\llbracket \tau \rrbracket^{\beta \eta} \cap \llbracket \rho \rrbracket^{\beta \eta}$. Then by saturation, $(\lambda x . M) N N_{1} \ldots N_{n} \in \llbracket \tau \rrbracket^{\beta \eta}$ and $(\lambda x . M) N N_{1} \ldots N_{n} \in \llbracket \rho \rrbracket^{\beta \eta}$. Done.
- If $\sigma=\tau \rightarrow \rho$, then by IH, $\llbracket \tau \rrbracket^{\beta \eta}$ and $\llbracket \rho \rrbracket^{\beta \eta}$ are saturated. Let $n \geq 0$, $M, N, N_{1}, \ldots, N_{n} \in \Lambda, x \in \mathcal{V}$, and $M[x:=N] N_{1} \ldots N_{n} \in \llbracket \sigma \rrbracket^{\beta \eta}$. Let $P \in \llbracket \tau \rrbracket^{\beta \eta} \neq \varnothing$, then $M[x:=N] N_{1} \ldots N_{n} P \in \llbracket \rho \rrbracket^{\beta \eta}$. By saturation, $(\lambda x . M) N N_{1} \ldots N_{n} P \in \llbracket \rho \rrbracket^{\beta \eta}$ so $(\lambda x . M) N N_{1} \ldots N_{n} \in \llbracket \tau \rrbracket^{\beta \eta} \Rightarrow \llbracket \rho \rrbracket^{r}$. Since, $M[x:=N] N_{1} \ldots N_{n} \in \llbracket \sigma \rrbracket^{\beta \eta} \subseteq C R^{\beta \eta}$ and $C R^{\beta \eta}$ is saturated by 3, then $(\lambda x . M) N N_{1} \ldots N_{n} \in C R^{\beta \eta}$.

Lemma 5.11. By induction on $x_{1}: \sigma_{1}, \ldots, x_{n}: \sigma_{n} \vdash^{r} M: \sigma$.

- If the last rule is $(a x)$ or ($a x^{I}$), use the hypothesis.
- If the last rule is $\left(\rightarrow_{E^{I}}\right)$. Let $\Gamma_{1} \sqcap \Gamma_{2}=\left(x_{i}: \sigma_{i} \cap \sigma_{i}^{\prime}\right)_{n},\left(y_{i}: \tau_{i}\right)_{p},\left(z_{i}: \rho_{i}\right)_{q}$ such that $\Gamma_{1}=\left(x_{i}: \sigma_{i}\right)_{n},\left(y_{i}: \tau_{i}\right)_{p}$ and $\Gamma_{2}=\left(x_{i}: \sigma_{i}^{\prime}\right)_{n},\left(z_{i}: \rho_{i}\right)_{q}$. Let $\forall i \in\{1, \ldots, n\}, N_{i} \in \llbracket \sigma_{i} \cap \sigma_{i}^{\prime} \rrbracket^{\beta I}$ so $N_{i} \in \llbracket \sigma_{i} \rrbracket^{\beta I}$ and $N_{i} \in \llbracket \sigma_{i}^{\prime} \rrbracket^{\beta I}, \forall i \in$ $\{1, \ldots, p\}, P_{i} \in \llbracket \tau_{i} \rrbracket^{\beta I}$ and $\forall i \in\{1, \ldots, q\}, P_{i}^{\prime} \in \llbracket \rho_{i} \rrbracket^{\beta I}$. So by IH, $M\left[\left(x_{i}:=\right.\right.$ $\left.\left.N_{i}\right)_{n},\left(y_{i}:=P_{i}\right)_{p}\right] \in \llbracket \sigma \rightarrow \tau \rrbracket^{\beta I}$ and $N\left[\left(x_{i}:=N_{i}\right)_{n},\left(z_{i}:=P_{i}^{\prime}\right)_{q} \rrbracket \in \llbracket \sigma \rrbracket^{\beta I}\right.$. Hence, $(M N)\left[\left(x_{i}:=N_{i}\right)_{n},\left(y_{i}:=P_{i}\right)_{p},\left(z_{i}:=P_{i}^{\prime}\right)_{q}\right] \in \llbracket \tau \rrbracket^{\beta I}$.
- If the last rule is $\left(\rightarrow_{E}\right)$. Let $\Gamma=\left(x_{i}: \sigma_{i}\right)_{n}$ and $\forall i \in\{1, \ldots, n\}, N_{i} \in \llbracket \sigma_{i} \rrbracket^{\beta \eta}$. So by IH, $M\left[\left(x_{i}:=N_{i}\right)_{n}\right] \in \llbracket \sigma \rightarrow \tau \rrbracket^{\beta \eta}$ and $N\left[\left(x_{i}:=N_{i}\right)_{n}\right] \in \llbracket \sigma \rrbracket^{\beta \eta}$. Hence, $(M N)\left[\left(x_{i}:=N_{i}\right)_{n}\right] \in \llbracket \tau \rrbracket^{\beta \eta}$.
- If the last rule is $\left(\rightarrow_{I}\right)$. Let $\Gamma=\left(x_{i}: \sigma_{i}\right)_{n}$ and $\forall i \in\{1, \ldots, n\}, N_{i} \in \llbracket \sigma_{i} \rrbracket^{r}$. Let $P \in \llbracket \sigma \rrbracket^{r} \neq \varnothing$. So by IH, $M\left[\left(x_{i}:=N_{i}\right)_{n}, x:=P\right] \in \llbracket \tau \rrbracket^{r}$. Moreover $\left((\lambda x . M)\left[\left(x_{i}:=N_{i}\right)_{n}\right]\right) P=\left(\lambda x . M\left[\left(x_{i}:=N_{i}\right)_{n}\right]\right) P$.
- For $\vdash^{\beta I}$, since $x \in F V(M)$ by lemma 2.2.2, $\left(\lambda x . M\left[\left(x_{i}:=N_{i}\right)_{n}\right]\right) \rightarrow_{\beta I}$ $M\left[\left(x_{i}:=N_{i}\right)_{n}, x:=P\right]$ and since by lemma 5.10, $\llbracket \tau \rrbracket^{\beta I}$ is I-saturated, $\left((\lambda x . M)\left[\left(x_{i}:=N_{i}\right)_{n}\right]\right) P \in \llbracket \tau \rrbracket^{\beta I}$.
- For $\vdash^{\beta \eta},\left(\lambda x . M\left[\left(x_{i}:=N_{i}\right)_{n}\right]\right) \rightarrow_{\beta} M\left[\left(x_{i}:=N_{i}\right)_{n}, x:=P\right]$ and since by lemma 5.10, $\llbracket \tau \rrbracket^{\beta \eta}$ is saturated, $\left((\lambda x . M)\left[\left(x_{i}:=N_{i}\right)_{n} \rrbracket\right) P \in \llbracket \tau \rrbracket^{\beta \eta}\right.$.

So $(\lambda x . M)\left[\left(x_{i}:=N_{i}\right)_{n}\right] \in \llbracket \sigma \rrbracket^{r} \Rightarrow \llbracket \tau \rrbracket^{r}$. Since $x \in \llbracket \sigma \rrbracket^{r}, M\left[\left(x_{i}:=N_{i}\right)_{n}\right] \in$ $\llbracket \tau \rrbracket^{r} \subseteq C R^{r}$, so $\lambda x . M\left[\left(x_{i}:=N_{i}\right)_{n}\right]=(\lambda x \cdot M)\left[\left(x_{i}:=N_{i}\right)_{n}\right] \in C R^{r}$.

- If the last rule is $\left(\cap_{I}\right)$. Let $\Gamma=\left(x_{i}: \sigma_{i}\right)_{n}$ and $\forall i \in\{1, \ldots, n\}, N_{i} \in \llbracket \sigma_{i} \rrbracket^{r}$. So by IH, $M\left[\left(x_{i}:=N_{i}\right)_{n}\right] \in \llbracket \tau \rrbracket^{r}$ and $M\left[\left(x_{i}:=N_{i}\right)_{n}\right] \in \llbracket \rho \rrbracket^{r}$. So $M\left[\left(x_{i}:=\right.\right.$ $\left.N_{i}\right)_{n} \rrbracket \in \llbracket \sigma \rrbracket^{r}$.
- If the last rule is $\left(\cap_{E 1}\right)$. Let $\Gamma=\left(x_{i}: \sigma_{i}\right)_{n}$ and $\forall i \in\{1, \ldots, n\}, N_{i} \in \llbracket \sigma_{i} \rrbracket^{r}$. So by IH, $M\left[\left(x_{i}:=N_{i}\right)_{n}\right] \in \llbracket \sigma \cap \tau \rrbracket^{r}$, so $M\left[\left(x_{i}:=N_{i}\right)_{n}\right] \in \llbracket \sigma \rrbracket^{r}$.
- If the last rule is $\left(\cap_{E 2}\right)$. Let $\Gamma=\left(x_{i}: \sigma_{i}\right)_{n}$ and $\forall i \in\{1, \ldots, n\}, N_{i} \in \llbracket \sigma_{i} \rrbracket^{r}$. So by IH, $M\left[\left(x_{i}:=N_{i}\right)_{n}\right] \in \llbracket \sigma \cap \tau \rrbracket^{r}$, so $M\left[\left(x_{i}:=N_{i}\right)_{n}\right] \in \llbracket \tau \rrbracket^{r}$.

Lemma 5.13. By induction on M. Note that by Lemma 2.4, $M \neq c$.

- Let $M=x \neq c$. Then $\Gamma=\Gamma_{1}, x: \tau, \Gamma^{\prime}=x: \tau, \Gamma^{\prime} \vdash^{\beta I} x: \tau$ and $\forall \sigma$, $\Gamma_{1}, x: \tau, c: \sigma \vdash^{\beta \eta} x: \tau$.
- Let $M=\lambda x . N \in \Lambda \mathrm{I}_{c}$ then by lemma $2.4, N \in \Lambda \mathrm{I}_{c}$ and $x \in F V(N) . \forall \rho$:
- If $c \in F V(M)$ then $c \in F V(N)$ and by IH, $\exists \sigma, \tau$ where $\Gamma^{\prime}, x: \rho, c: \sigma \vdash^{\beta I}$ $N: \tau$, hence $\Gamma^{\prime}, c: \sigma \vdash^{\beta I} \lambda x . N: \rho \rightarrow \tau$.
- If $c \notin F V(M)$ then by IH, $\exists \tau$ where $\Gamma^{\prime}, x: \rho \vdash^{\beta I} N: \tau$, hence $\Gamma^{\prime} \vdash^{\beta I}$ $\lambda x . N: \tau$.
- Let $M=\lambda x . N \in \Lambda \eta_{c}$ then by lemma 2.4.9.9a, $N \in \Lambda \eta_{c}$. By IH, $\forall \rho, \exists \sigma, \tau$ such that $\Gamma, x: \rho, c: \sigma \vdash^{\beta \eta} N: \tau$. Hence, $\Gamma, c: \sigma \vdash^{\beta \eta} \lambda x . N: \tau$.
- Let $M=c N P$ where $N, P \in \Lambda \mathrm{I}_{c}$. Let $\Gamma_{1}^{\prime}=\Gamma \upharpoonright F V(N)$ and $\Gamma_{2}^{\prime}=\Gamma \upharpoonright F V(P)$. Note that $\Gamma^{\prime}=\Gamma \upharpoonright F V(c N P)=\Gamma_{1}^{\prime} \sqcap \Gamma_{2}^{\prime}$.
- If $c \notin F V(N) \cup F V(P)$ then by IH, $\exists \tau_{1}, \tau_{2}$ such that $\Gamma_{1}^{\prime} \vdash^{\beta I} N: \tau_{1}$ and $\Gamma_{2}^{\prime} \vdash^{\beta I} P: \tau_{2}$. Let $\rho \in$ Type 1 and $\sigma=\tau_{1} \rightarrow \tau_{2} \rightarrow \rho$. By $\left(\rightarrow_{E_{I}}\right)$ twice, $\Gamma_{1}^{\prime} \sqcap \Gamma_{2}^{\prime}, c: \sigma \vdash^{\beta I} c N P: \rho$.
- If $c \in F V(N)$ and $c \notin F V(P)$ then by IH, $\exists \sigma_{1}, \tau_{1}, \tau_{2}$ such that Γ_{1}^{\prime}, c : $\sigma_{1} \vdash^{\beta I} N: \tau_{1}$ and $\Gamma_{2}^{\prime} \vdash^{\beta I} P: \tau_{2}$. Let $\rho \in$ Type 1 and let $\sigma=\sigma_{1} \cap\left(\tau_{1} \rightarrow\right.$ $\tau_{2} \rightarrow \rho$). By ($a x^{I}$) and (\cap_{E}) $c: \sigma \vdash^{\beta I} c: \tau_{1} \rightarrow \tau_{2} \rightarrow \rho$. By lemma 5.9.3, $\Gamma_{1}^{\prime}, c: \sigma \vdash^{\beta I} N: \tau_{1}$. By $\left(\rightarrow_{E_{I}}\right)$ twice, $\Gamma_{1}^{\prime} \sqcap \Gamma_{2}^{\prime}, c: \sigma \vdash^{\beta I} c N P: \rho$.
- If $c \in F V(N) \cap F V(P)$ then by IH, $\exists \sigma_{1}, \sigma_{2}, \tau_{1}, \tau_{2}$ such that $\Gamma_{1}^{\prime}, c: \sigma_{1} \vdash^{\beta I}$ $N: \tau_{1}$ and $\Gamma_{2}^{\prime}, c: \sigma_{2} \vdash^{\beta I} N: \tau_{2}$. Let $\rho \in \operatorname{Type}^{1}$ and let $\sigma=\sigma_{1} \cap\left(\sigma_{2} \cap\right.$ $\left.\left(\tau_{1} \rightarrow \tau_{2} \rightarrow \rho\right)\right)$. By $\left(a x^{I}\right)$ and $\left(\cap_{E}\right), c: \sigma \vdash^{\beta I} c: \tau_{1} \rightarrow \tau_{2} \rightarrow \rho$. By lemma 5.9.3, $\Gamma_{1}^{\prime}, c: \sigma \vdash^{\beta I} N: \tau_{1}$, and $\Gamma_{2}^{\prime}, c: \sigma \vdash^{\beta I} P: \tau_{2}$. By $\left(\rightarrow_{E_{I}}\right)$ twice, $\Gamma_{1}^{\prime} \sqcap \Gamma_{2}^{\prime}, c: \sigma \vdash^{\beta I} c N P: \rho$.
- Let $M=c N P$ where $N, P \in \Lambda \eta_{c}$. by IH, $\exists \sigma_{1}, \sigma_{2}, \tau_{1}, \tau_{2}$ such that Γ, c : $\sigma_{1} \vdash^{\beta \eta} N: \tau_{1}$ and $\Gamma, c: \sigma_{2} \vdash^{\beta \eta} N: \tau_{2}$. Let $\rho \in$ Type 1 and let $\sigma=\sigma_{1} \cap$ $\left(\sigma_{2} \cap\left(\tau_{1} \rightarrow \tau_{2} \rightarrow \rho\right)\right)$. By $\left(a x^{I}\right)$ and $\left(\cap_{E}\right), c: \sigma \vdash^{\beta \eta} c: \tau_{1} \rightarrow \tau_{2} \rightarrow \rho$. By lemma 5.9.3, $\Gamma, c: \sigma \vdash^{\beta \eta} N: \tau_{1}$, and $\Gamma, c: \sigma \vdash^{\beta \eta} P: \tau_{2}$. By $\left(\rightarrow_{E_{I}}\right)$ twice, $\Gamma, c: \sigma \vdash^{\beta \eta} c N P: \rho$.
- Let $M=N P$ where $N, P \in \Lambda \mathrm{I}_{c}$ and $N=\lambda x . N_{0}$. So $N_{0} \in \Lambda \mathrm{I}_{c}$ and $x \in$ $F V\left(N_{0}\right)$. Let $\Gamma_{1}^{\prime}=\Gamma \upharpoonright F V(N)$ and $\Gamma_{2}^{\prime}=\Gamma \upharpoonright F V(P)$. Note that $\Gamma^{\prime}=\Gamma \upharpoonright$ $F V(N P)=\Gamma_{1}^{\prime} \sqcap \Gamma_{2}^{\prime}$. By BC, $x \neq c$ and $x \notin F V(P)$.x
- If $c \notin F V\left(\lambda x . N_{0}\right) \cup F V(P)$ then by IH, $\exists \tau_{2}$ such that $\Gamma_{2}^{\prime} \vdash^{\beta I} P: \tau_{2}$ and again by $\mathrm{IH}, \exists \tau_{1}$ such that $\Gamma_{1}^{\prime}, x: \tau_{2} \vdash^{\beta I} N_{0}: \tau_{1}$. By $\left(\rightarrow_{I}\right)$ and $\left(\rightarrow_{E_{I}}\right)$, $\Gamma_{1}^{\prime} \sqcap \Gamma_{2}^{\prime} \vdash^{\beta I}\left(\lambda x . N_{0}\right) P: \tau_{1}$.
- If $c \in F V\left(\lambda x . N_{0}\right)$ and $c \notin F V(P)$ then by IH, $\exists \tau_{2}$ such that $\Gamma_{2}^{\prime} \vdash^{\beta I} P$: τ_{2}. Again by IH, $\exists \sigma, \tau_{1}$ such that $\Gamma_{1}^{\prime}, c: \sigma, x: \tau_{2} \vdash^{\beta I} N_{0}: \tau_{1}$. By $\left(\rightarrow_{I}\right)$ and $\left(\rightarrow_{E_{I}}\right), \Gamma_{1}^{\prime} \sqcap \Gamma_{2}^{\prime}, c: \sigma \vdash^{\beta I}\left(\lambda x . N_{0}\right) P: \tau_{1}$.
- If $c \in F V\left(\lambda x . N_{0}\right) \cap F V(P)$, then by IH, $\exists \sigma_{2}, \tau_{2}$ such that $\Gamma_{2}^{\prime}, c: \sigma_{2} \vdash^{\beta I}$ $P: \tau_{2}$ and again by IH, $\exists \sigma_{1}, \tau_{1}$ such that $\Gamma_{1}^{\prime}, c: \sigma_{1}, x: \tau_{2} \vdash^{\beta I} N_{0}: \tau_{1}$. By $\left(\rightarrow_{I}\right), \Gamma_{1}^{\prime}, c: \sigma_{1} \vdash^{\beta I} \lambda x N_{0}: \tau_{2} \rightarrow \tau_{1}$. By $\left(\rightarrow_{E_{I}}\right), \Gamma_{1}^{\prime} \sqcap \Gamma_{2}^{\prime}, c: \sigma_{1} \cap \sigma_{2} \vdash^{\beta I}$ $\left(\lambda x . N_{0}\right) P: \tau_{1}$.
- Let $M=N P$ where $N, P \in \Lambda \eta_{c}$ and $N=\lambda x . N_{0}$ then by lemma 2.4.9.9a, $N_{0} \in \Lambda \eta_{c}$. By IH, $\exists \sigma_{2}, \tau_{2}$ such that $\Gamma, c: \sigma_{2} \vdash^{\beta \eta} P: \tau_{2}$ and again by $\mathrm{IH}, \exists \sigma_{1}, \tau_{1}$ such that $\Gamma, c: \sigma_{1}, x: \tau_{2} \vdash^{\beta \eta} N_{0}: \tau_{1}$. By $\left(\rightarrow_{I}\right), \Gamma, c: \sigma_{1} \vdash^{\beta \eta} \lambda x . N_{0}: \tau_{2} \rightarrow \tau_{1}$. Let $\sigma=\sigma_{1} \cap \sigma_{2}$. By Lemma 5.9.3, $\Gamma, c: \sigma \vdash^{\beta \eta} \lambda x . N_{0}: \tau_{2} \rightarrow \tau_{1}$ and $\Gamma, c: \sigma \vdash^{\beta \eta} P: \tau_{2}$. Hence, by $\left(\rightarrow_{E}\right), \Gamma, c: \sigma \vdash^{\beta \eta}\left(\lambda x . N_{0}\right) P: \tau_{1}$.
- Let $M=c N$ where $N \in \Lambda \eta_{c}$. By IH, $\exists \sigma, \tau$ such that $\Gamma, c: \sigma \vdash^{\beta \eta} N: \tau$. Let $\rho \in$ Type 1 and $\sigma^{\prime}=\sigma \cap(\tau \rightarrow \rho)$. By Lemma 5.9.3, $\Gamma, c: \sigma^{\prime} \vdash^{\beta \eta} N: \tau$ and $\Gamma, c: \sigma^{\prime} \vdash^{\beta \eta} c: \tau \rightarrow \rho$. Hence, by $\left(\rightarrow_{E}\right), \Gamma, c: \sigma^{\prime} \vdash^{\beta \eta} c N: \rho$.

Lemma 5.14. If $M{\xrightarrow{\mathcal{F}_{1}}}_{\beta I d} M_{1}$ and $M{\xrightarrow{\mathcal{F}_{2}}}_{\beta I d} M_{2}$, then $\exists \mathcal{F}_{1}^{\prime \prime}, \mathcal{F}_{2}^{\prime \prime}$ such that $\left(M, \mathcal{F}_{1}\right) \rightarrow_{\beta I d}^{*}$ $\left(M_{1}, \mathcal{F}_{1}^{\prime \prime}\right)$ and $\left(M, \mathcal{F}_{2}\right) \rightarrow_{\beta I d}^{*}\left(M_{2}, \mathcal{F}_{2}^{\prime \prime}\right)$. Note that by definition 5.5 and lemma 2.2.2, $M_{1}, M_{2} \in \Lambda$ I. By lemma $5.7, \exists \mathcal{F}_{1}^{\prime \prime \prime} \subseteq \mathcal{R}_{M_{1}}^{\beta I}$ and $\exists \mathcal{F}_{2}^{\prime \prime \prime} \subseteq \mathcal{R}_{M_{2}}^{\beta I}$ such that $\left(M, \mathcal{F}_{1} \cup\right.$ $\left.\mathcal{F}_{2}\right) \rightarrow_{\beta I d}^{*}\left(M_{1}, \mathcal{F}_{1}^{\prime \prime} \cup \mathcal{F}_{1}^{\prime \prime \prime}\right)$ and $\left(M, \mathcal{F}_{1} \cup \mathcal{F}_{2}\right) \rightarrow_{\beta I d}^{*}\left(M_{2}, \mathcal{F}_{2}^{\prime \prime} \cup \mathcal{F}_{2}^{\prime \prime \prime}\right)$. By lemma 5.6 there exist $T, T_{1}, T_{2} \in \Lambda \mathrm{I}_{c}$ such that

$$
T=\Phi^{\beta I}\left(M, \mathcal{F}_{1} \cup \mathcal{F}_{2}\right), T_{1}=\Phi^{\beta I}\left(M_{1}, \mathcal{F}_{1}^{\prime \prime} \cup \mathcal{F}_{1}^{\prime \prime \prime}\right), T_{2}=\Phi^{\beta I}\left(M_{2}, \mathcal{F}_{2}^{\prime \prime} \cup \mathcal{F}_{2}^{\prime \prime \prime}\right)
$$

and $T \rightarrow{ }_{\beta I}^{*} T_{1}$ and $T \rightarrow_{\beta I}^{*} T_{2}$. Since by lemma 5.2.1b, $T \in \Lambda \mathrm{I}_{c}$ and by lemma 5.13.1, T is typable in the type system $D I$, so $T \in \mathrm{CR}^{\beta I}$ by corollary 5.12 . So, by lemma 2, there exists $T_{3} \in \Lambda \mathrm{I}_{c}$, such that $T_{1} \rightarrow_{\beta I}^{*} T_{3}$ and $T_{2} \rightarrow_{\beta I}^{*} T_{3}$. Let $\mathcal{F}_{3}=\left|\mathcal{R}_{T_{3}}^{\beta I}\right|_{\mathcal{C}}^{c}$ and $M_{3}=\left|T_{3}\right|^{\beta I}$, then by lemma 5.2.2b, $T_{3}=\Phi^{\beta I}\left(M_{3}, \mathcal{F}_{3}\right)$. Hence, by lemma 5.6, $\left(M_{1}, \mathcal{F}_{1}^{\prime \prime} \cup \mathcal{F}_{1}^{\prime \prime \prime}\right) \rightarrow_{\beta I d}^{*}\left(M_{3}, \mathcal{F}_{3}\right)$ and $\left(M_{2}, \mathcal{F}_{2}^{\prime \prime} \cup \mathcal{F}_{2}^{\prime \prime \prime}\right) \rightarrow_{\beta I d}^{*}\left(M_{3}, \mathcal{F}_{3}\right)$, i.e., $M_{1} \xrightarrow{\mathcal{F}_{1}^{\prime \prime} \cup \mathcal{F}_{1}^{\prime \prime \prime}} \beta$. M_{3} and $M_{2} \xrightarrow{\mathcal{F}_{2}^{\prime \prime} \cup \mathcal{F}_{2}^{\prime \prime \prime}} \beta I d M_{3}$.

Lemma 5.16. Note that $\varnothing \subseteq \mathcal{R}_{M}^{\beta I}$. We prove this statement by induction on the structure of M.

- Let $M \in \mathcal{V}$ then $\Phi^{\beta I}(M, \varnothing)=M$ and $\mathcal{R}_{M}^{\beta I}=\varnothing$ by lemma 2.5.
- Let $M=\lambda x . N$ then $\Phi^{\beta I}(M, \varnothing)=\lambda x \cdot \Phi^{\beta I}(N, \varnothing)$. By IH, $\mathcal{R}_{\Phi^{\beta I}(N, \varnothing)}^{\beta I}=\varnothing$ and by lemma $2.5, \mathcal{R}_{\Phi^{\beta I}(M, \varnothing)}^{\beta I}=\varnothing$.
- Let $M=M_{1} M_{2}$ then $\Phi^{\beta I}(M, \varnothing)=c \Phi^{\beta I}\left(M_{1}, \varnothing\right) \Phi^{\beta I}\left(M_{2}, \varnothing\right)$.

By IH, $\mathcal{R}_{\Phi^{\beta I}\left(M_{1}, \varnothing\right)}^{\beta I}=\varnothing$ and $\mathcal{R}_{\Phi^{\beta I}\left(M_{2}, \varnothing\right)}^{\beta I}=\varnothing$ and by lemma 2.5, $\mathcal{R}_{\Phi^{\beta I}(M, \varnothing)}^{\beta I}=$ \varnothing.

Lemma 5.17. We prove the statement by induction on the structure of M.

- let $M \in \mathcal{V}$, then $\Phi^{\beta I}(M, \varnothing)=M$.
- Either $M=x$, then $\Phi^{\beta I}(M, \varnothing)\left[x:=\Phi^{\beta I}(N, \varnothing)\right]=\Phi^{\beta I}(N, \varnothing)$ and by lemma 5.16, $\mathcal{R}_{\Phi^{\beta I}(N, \varnothing)}^{\beta I}=\varnothing$.
- Or $M \neq x$, then $\Phi^{\beta I}(M, \varnothing)\left[x:=\Phi^{\beta I}(N, \varnothing)\right]=M$ and by lemma 2.5, $\mathcal{R}_{M}^{\beta I}=\varnothing$.
- Let $M=\lambda y \cdot M^{\prime}$ then $\Phi^{\beta I}(M, \varnothing)=\lambda y \cdot \Phi^{\beta I}\left(M^{\prime}, \varnothing\right)$. So, $\mathcal{R}_{\Phi^{\beta I}(M, \varnothing)\left[x:=\Phi^{\beta I}(N, \varnothing)\right]}^{\beta I}$ $=\mathcal{R}_{\lambda y \cdot \Phi^{\beta I}\left(M^{\prime}, \varnothing\right)\left[x:=\Phi^{\beta I}(N, \varnothing)\right]}^{\beta I}$. By IH, $\mathcal{R}_{\Phi^{\beta I}\left(M^{\prime}, \varnothing\right)\left[x:=\Phi^{\beta I}(N, \varnothing)\right]}^{\beta I}=\varnothing$. By lemma 2.5, $\mathcal{R}_{\Phi^{\beta I}(M, \varnothing)\left[x:=\Phi^{\beta I}(N, \varnothing)\right]}^{\beta I}=\varnothing$.
- Let $M=M_{1} M_{2}$ then $\Phi^{\beta I}(M, \varnothing)=c \Phi^{\beta I}\left(M_{1}, \varnothing\right) \Phi^{\beta I}\left(M_{2}, \varnothing\right)$.

So, $\mathcal{R}_{\Phi^{\beta I}(M, \varnothing)\left[x:=\Phi^{\beta I}(N, \varnothing)\right]}^{\beta I}=\mathcal{R}_{c \Phi^{\beta I}\left(M_{1}, \varnothing\right)\left[x:=\Phi^{\beta I}(N, \varnothing)\right] \Phi^{\beta I}\left(M_{2}, \varnothing\right)\left[x:=\Phi^{\beta I}(N, \varnothing)\right]}$.
By IH, $\mathcal{R}_{\Phi^{\beta I}\left(M_{1}, \varnothing\right)\left[x:=\Phi^{\beta I}(N, \varnothing)\right]}^{\beta I}=\mathcal{R}_{\Phi^{\beta I}\left(M_{2}, \varnothing\right)\left[x:=\Phi^{\beta I}(N, \varnothing)\right]}^{\beta I}=\varnothing$ and by lemma 2.5, $\mathcal{R}_{\Phi^{\beta I}(M, \varnothing)\left[x:=\Phi^{\beta I}(N, \varnothing)\right]}^{\beta I}=\varnothing$.

Lemma 5.18. We prove the statement by induction on the structure of M.

- Let $M \in \mathcal{V}$ then by lemma $2.5, \mathcal{R}_{M}^{\beta I}=\varnothing$.
- Let $M=\lambda x . N$ then by lemma $2.5, \mathcal{R}_{M}^{\beta I}=\left\{\lambda x . C \mid C \in \mathcal{R}_{N}^{\beta I}\right\}$. Let $C \in \mathcal{R}_{M}^{\beta I}$, then $C=\lambda x . C^{\prime}$ such that $C^{\prime} \in \mathcal{R}_{N}^{\beta I} . \Phi^{\beta I}(M,\{C\})=\lambda x \cdot \Phi^{\beta I}\left(N,\left\{C^{\prime}\right\}\right) \rightarrow_{\beta I}$ $\lambda x . N^{\prime}=M^{\prime}$ such that $\Phi^{\beta I}\left(N,\left\{C^{\prime}\right\}\right) \rightarrow_{\beta I} N^{\prime}$. By IH, $\mathcal{R}_{N^{\prime}}^{\beta I}=\varnothing$, so by lemma 2.5, $\mathcal{R}_{M^{\prime}}^{\beta I}=\varnothing$.
- Let $M=M_{1} M_{2}$.
- Let $M \in \mathcal{R}^{\beta I}$, then $M_{1}=\lambda x . M_{0}$ and by lemma $2.5, \mathcal{R}_{M}^{\beta I}=\{\square\} \cup$ $\left\{C M_{2} \mid C \in \mathcal{R}_{M_{1}}^{\beta I}\right\} \cup\left\{M_{1} C \mid C \in \mathcal{R}_{M_{2}}^{\beta I}\right\}$.
* Either $C=\square$ then $\Phi^{\beta I}(M,\{C\})=\Phi^{\beta I}\left(M_{1}, \varnothing\right) \Phi^{\beta I}\left(M_{2}, \varnothing\right)$. By lemma 5.16, $\mathcal{R}_{\Phi^{\beta I}\left(M_{1}, \varnothing\right)}^{\beta I}=\mathcal{R}_{\Phi^{\beta I}\left(M_{2}, \varnothing\right)}^{\beta I}=\varnothing$. Since $\Phi^{\beta I}\left(M_{1}, \varnothing\right)=$ $\lambda x . \Phi^{\beta I}\left(M_{0}, \varnothing\right), \Phi^{\beta I}(M,\{C\}) \rightarrow_{\beta I} \Phi^{\beta I}\left(M_{0}, \varnothing\right)\left[x:=\Phi^{\beta I}\left(M_{2}, \varnothing\right)\right]$. By lemma 5.17, $\mathcal{R}_{\Phi^{\beta I}\left(M_{0}, \varnothing\right)\left[x:=\Phi^{\beta I}\left(M_{2}, \varnothing\right)\right]}^{\beta I}=\varnothing$.
* Or $C=C^{\prime} M_{2}$ such that $C^{\prime} \in \mathcal{R}_{M_{1}}^{\beta I}$. So, $\Phi^{\beta I}(M,\{C\})=$ $c \Phi^{\beta I}\left(M_{1},\left\{C^{\prime}\right\}\right) \Phi^{\beta I}\left(M_{2}, \varnothing\right)$. By lemma 5.16, $\mathcal{R}_{\Phi^{\beta I}\left(M_{2}, \varnothing\right)}^{\beta I}=\varnothing$. So, if $\Phi^{\beta I}(M,\{C\}) \rightarrow_{\beta I} M^{\prime}$ then $M^{\prime}=c M_{1}^{\prime} \Phi^{\beta I}\left(M_{2}, \varnothing\right)$ and $\Phi^{\beta I}\left(M_{1},\left\{C^{\prime}\right\}\right) \rightarrow_{\beta I} M_{1}^{\prime}$. By IH, $\mathcal{R}_{M_{1}^{\prime}}^{\beta I}=\varnothing$ and by lemma $2.5, \mathcal{R}_{M^{\prime}}^{\beta I}=$ \varnothing.
* Or $C=M_{1} C^{\prime}$ such that $C^{\prime} \in \mathcal{R}_{M_{2}}^{\beta I}$. So, $\Phi^{\beta I}(M,\{C\})=$ $c \Phi^{\beta I}\left(M_{1}, \varnothing\right) \Phi^{\beta I}\left(M_{2},\left\{C^{\prime}\right\}\right)$. By lemma 5.16, $\mathcal{R}_{\Phi^{\beta I}\left(M_{1}, \varnothing\right)}^{\beta I}=\varnothing$. So, if $\Phi^{\beta I}(M,\{C\}) \rightarrow_{\beta I} M^{\prime}$ then $M^{\prime}=c \Phi^{\beta I}\left(M_{1}, \varnothing\right) M_{2}^{\prime}$ and $\Phi^{\beta I}\left(M_{2},\left\{C^{\prime}\right\}\right) \rightarrow_{\beta I} M_{2}^{\prime}$. By IH, $\mathcal{R}_{M_{2}^{\prime}}^{\beta I}=\varnothing$ and by lemma $2.5, \mathcal{R}_{M^{\prime}}^{\beta I}=$ \varnothing.
- Let $M \notin \mathcal{R}^{\beta I}$, then by lemma 2.5, $\mathcal{R}_{M}^{\beta I}=\left\{C M_{2} \mid C \in \mathcal{R}_{M_{1}}^{\beta I}\right\} \cup$ $\left\{M_{1} C \mid C \in \mathcal{R}_{M_{2}}^{\beta I}\right\}$.
* Either $C=C^{\prime} M_{2}$ such that $C^{\prime} \in \mathcal{R}_{M_{1}}^{\beta I}$. So, $\Phi^{\beta I}(M,\{C\})=$ $c \Phi^{\beta I}\left(M_{1},\left\{C^{\prime}\right\}\right) \Phi^{\beta I}\left(M_{2}, \varnothing\right)$. By lemma 5.16, $\mathcal{R}_{\Phi^{\beta I}\left(M_{2}, \varnothing\right)}^{\beta I}=\varnothing$. So, if $\Phi^{\beta I}(M,\{C\}) \rightarrow_{\beta I} M^{\prime}$ then $M^{\prime}=c M_{1}^{\prime} \Phi^{\beta I}\left(M_{2}, \varnothing\right)$ and $\Phi^{\beta I}\left(M_{1},\left\{C^{\prime}\right\}\right) \rightarrow_{\beta I} M_{1}^{\prime}$. By IH, $\mathcal{R}_{M_{1}^{\prime}}^{\beta I}=\varnothing$ and by lemma 2.5, $\mathcal{R}_{M^{\prime}}^{\beta I}=$ \varnothing.
* Or $C=M_{1} C^{\prime}$ such that $C^{\prime} \in \mathcal{R}_{M_{2}}^{\beta I}$. So, $\Phi^{\beta I}(M,\{C\})=$ $c \Phi^{\beta I}\left(M_{1}, \varnothing\right) \Phi^{\beta I}\left(M_{2},\left\{C^{\prime}\right\}\right)$. By lemma 5.16, $\mathcal{R}_{\Phi^{\beta I}\left(M_{1}, \varnothing\right)}^{\beta I}=\varnothing$. So, if $\Phi^{\beta I}(M,\{C\}) \rightarrow_{\beta I} M^{\prime}$ then $M^{\prime}=c \Phi^{\beta I}\left(M_{1}, \varnothing\right) M_{2}^{\prime}$ and $\Phi^{\beta I}\left(M_{2},\left\{C^{\prime}\right\}\right) \rightarrow_{\beta I} M_{2}^{\prime}$. By IH, $\mathcal{R}_{M_{2}^{\prime}}^{\beta I}=\varnothing$ and by lemma $2.5, \mathcal{R}_{M^{\prime}}^{\beta I}=$ \varnothing.

Lemma 5.19. By lemma 5.3, there exists a unique set $\mathcal{F}^{\prime} \subseteq \mathcal{R}_{M^{\prime}}^{\beta I}$, such that $\Phi^{\beta I}(M,\{C\}) \rightarrow_{\beta I}$ $\Phi^{\beta I}\left(M^{\prime}, \mathcal{F}^{\prime}\right)$. By lemma 5.18, $\mathcal{R}_{\Phi^{\beta I}\left(M^{\prime}, \mathcal{F}^{\prime}\right)}^{\beta I}=\varnothing$, so $\left|\mathcal{R}_{\Phi^{\beta I}\left(M^{\prime}, \mathcal{F}^{\prime}\right)}^{\beta I}\right|_{\mathcal{C}}^{c}$ $=\varnothing$ and by lemma $5.2 .1 \mathrm{~d}, \mathcal{F}^{\prime}=\varnothing$. Finally, by lemma 5.6, $(M,\{C\}) \rightarrow_{\beta I d}$ $\left(M^{\prime}, \varnothing\right)$.

Lemma 5.20. It is obvious that $\rightarrow_{1 I}^{*} \subseteq \rightarrow_{\beta I}^{*}$. We only prove that $\rightarrow_{\beta I}^{*} \subseteq \rightarrow_{1 I}^{*}$. Let $M, M^{\prime} \in \Lambda \mathrm{I}$ such that $M \rightarrow{ }_{\beta I}^{*} M^{\prime}$. We prove this claim by induction on the length of $M \rightarrow{ }_{\beta I}^{*} M^{\prime}$.

- Let $M=M^{\prime}$ then it is done since $(M, \mathcal{F}) \rightarrow_{\beta I d}^{*}(M, \mathcal{F})$ for some \mathcal{F}.
- Let $M \rightarrow_{\beta I}^{*} M^{\prime \prime} \rightarrow_{\beta I} M^{\prime}$. By IH, $M \rightarrow_{1 I}^{*} M^{\prime \prime}$. If $M^{\prime \prime}=C[R] \rightarrow_{\beta I} C\left[R^{\prime}\right]=$ M^{\prime} such that R^{\prime} is the contractum of R then by lemma $5.19\left(M^{\prime \prime},\{C\}\right) \rightarrow_{\beta I d}$ $\left(M^{\prime}, \varnothing\right)$, so $M^{\prime \prime} \rightarrow_{1 I} M^{\prime}$. Hence $M \rightarrow_{1 I}^{*} M^{\prime \prime} \rightarrow_{1 I} M^{\prime}$.

Lemma 5.21. Assume $M \rightarrow{ }_{\beta I}^{*} M_{1}$ and $M \rightarrow_{\beta I}^{*} M_{2}$. Then by lemma 5.20, $M \rightarrow_{1 I}^{*}$ M_{1} and $M \rightarrow{ }_{1 I}^{*} M_{2}$. We prove the statement by induction on the length of $M \rightarrow_{1 I}^{*}$ M_{1}.

- Let $M=M_{1}$. Hence $M_{1} \rightarrow{ }_{1 I}^{*} M_{2}$ and $M_{2} \rightarrow{ }_{1 I}^{*} M_{2}$.
- Let $M \rightarrow_{1 I}^{*} M_{1}^{\prime} \rightarrow_{1 I} M_{1}$. By IH, $\exists M_{3}^{\prime}, M_{1}^{\prime} \rightarrow_{1 I}^{*} M_{3}^{\prime}$ and $M_{2} \rightarrow_{1 I}^{*} M_{3}^{\prime}$. We prove that $\exists M_{3}, M_{1} \rightarrow{ }_{1 I}^{*} M_{3}$ and $M_{3}^{\prime} \rightarrow_{1 I} M_{3}$, by induction on $M_{1}^{\prime} \rightarrow{ }_{1 I}^{*} M_{3}^{\prime}$.
- let $M_{1}^{\prime}=M_{3}^{\prime}$, hence $M_{3}^{\prime} \rightarrow{ }_{1 I} M_{1}$ and $M_{1} \rightarrow{ }_{1 I}^{*} M_{1}$.
- Let $M_{1}^{\prime} \rightarrow_{1 I}^{*} M_{3}^{\prime \prime} \rightarrow_{1 I} M_{3}^{\prime}$. By IH, $\exists M_{3}^{\prime \prime \prime}, M_{1} \rightarrow_{1 I}^{*} M_{3}^{\prime \prime \prime}$ and $M_{3}^{\prime \prime} \rightarrow_{1 I} M_{3}^{\prime \prime \prime}$. By lemma 2.2.2, $c \notin F V M_{3}^{\prime \prime}$. Since $M_{3}^{\prime \prime} \rightarrow_{1 I} M_{3}^{\prime}$ and $M_{3}^{\prime \prime} \rightarrow_{1 I} M_{3}^{\prime \prime \prime}$, by lemma 5.14, $\exists M_{3}, M_{3}^{\prime} \rightarrow_{1 I} M_{3}$ and $M_{3}^{\prime \prime \prime} \rightarrow_{1 I} M_{3}$.

C Proofs of section 6

Lemma 6.3. 1. (a) By induction on the structure of M.

- Let $M \in \mathcal{V} \backslash\{c\}$, then $\mathcal{F}=\varnothing$ and $\Phi_{0}^{\beta \eta}(M, \varnothing)=\{M\}=\left\{c^{0}(M)\right\} \subseteq$ $\Phi^{\beta \eta}(M, \varnothing)$.
- Let $M=\lambda x . N$ and $\mathcal{F}^{\prime}=\{C \mid \lambda x . C \in \mathcal{F}\} \subseteq \mathcal{R}_{N}^{\beta \eta}$.
- If $\square \in \mathcal{F}$ then $\Phi_{0}^{\beta \eta}(M, \mathcal{F})=\left\{\lambda x . N^{\prime} \mid N^{\prime} \in \Phi_{0}^{\beta \eta}\left(N, \mathcal{F}^{\prime}\right)\right\}=$ $\left\{c^{0}\left(\lambda x . N^{\prime}\right) \mid N^{\prime} \in \Phi_{0}^{\beta \eta}\left(N, \mathcal{F}^{\prime}\right)\right\} \subseteq \Phi^{\beta \eta}(M, \mathcal{F})$.
- Else $\Phi_{0}^{\beta \eta}(M, \mathcal{F})=\left\{\lambda x . N^{\prime}[x:=c(c x)] \mid N^{\prime} \in \Phi^{\beta \eta}\left(N, \mathcal{F}^{\prime}\right)\right\}=$ $\left\{c^{0}\left(\lambda x . N^{\prime}[x:=c(c x)]\right) \mid N^{\prime} \in \Phi^{\beta \eta}\left(N, \mathcal{F}^{\prime}\right)\right\} \subseteq \Phi^{\beta \eta}(M, \mathcal{F})$.
- Let $M=N P, \mathcal{F}_{1}=\{C \mid C P \in \mathcal{F}\} \subseteq \mathcal{R}_{N}^{\beta \eta}$ and $\mathcal{F}_{2}=\{C \mid N C \in$ $\mathcal{F}\} \subseteq \mathcal{R}_{P}^{\beta \eta}$.
- If $\square \in \mathcal{F}$ then $\Phi_{0}^{\beta \eta}(M, \mathcal{F})=\left\{N^{\prime} P^{\prime} \mid N^{\prime} \in \Phi_{0}^{\beta \eta}\left(N, \mathcal{F}_{1}\right) \wedge P^{\prime} \in\right.$ $\left.\Phi_{0}^{\beta \eta}\left(P, \mathcal{F}_{2}\right)\right\}=\left\{c^{0}\left(N^{\prime} P^{\prime}\right) \mid N^{\prime} \in \Phi_{0}^{\beta \eta}\left(N, \mathcal{F}_{1}\right) \wedge P^{\prime} \in \Phi_{0}^{\beta \eta}\left(P, \mathcal{F}_{2}\right)\right\}$. By IH, $\Phi_{0}^{\beta \eta}\left(P, \mathcal{F}_{2}\right) \subseteq \Phi^{\beta \eta}\left(P, \mathcal{F}_{2}\right)$, so by definition, $\Phi_{0}^{\beta \eta}(M, \mathcal{F}) \subseteq$ $\Phi^{\beta \eta}(M, \mathcal{F})$.
- Else $\Phi_{0}^{\beta \eta}(M, \mathcal{F})=\left\{c N^{\prime} P^{\prime} \mid N^{\prime} \in \Phi^{\beta \eta}\left(N, \mathcal{F}_{1}\right) \wedge P^{\prime} \in \Phi_{0}^{\beta \eta}\left(P, \mathcal{F}_{2}\right)\right\}$ $=\left\{c^{0}\left(c N^{\prime} P^{\prime}\right) \mid N^{\prime} \in \Phi^{\beta \eta}\left(N, \mathcal{F}_{1}\right) \wedge P^{\prime} \in \Phi_{0}^{\beta \eta}\left(P, \mathcal{F}_{2}\right)\right\}$. By $\mathrm{IH}, \Phi^{\beta \eta}\left(P, \mathcal{F}_{2}\right) \in \Phi^{\beta \eta}\left(P, \mathcal{F}_{2}\right)$, so by definition, $\Phi_{0}^{\beta \eta}(M, \mathcal{F}) \subseteq$ $\Phi^{\beta \eta}(M, \mathcal{F})$.
(b) By induction on the structure of M.
- Let $M \in \mathcal{V} \backslash\{c\}$, then $\mathcal{F}=\varnothing, \Phi^{\beta \eta}(M, \mathcal{F})=\left\{c^{n}(M) \mid n \geq 0\right\}$ and $\forall N \in \Phi^{\beta \eta}(M, \mathcal{F}), F V(M)=\{M\}=F V(N) \backslash\{c\}$
- Let $M=\lambda x . N$ and $\mathcal{F}^{\prime}=\{C \mid \lambda x . C \in \mathcal{F}\} \subseteq \mathcal{R}_{N}^{\beta \eta}$.
- If $\square \in \mathcal{F}$ then
$\Phi^{\beta \eta}(M, \mathcal{F})=\left\{c^{n}\left(\lambda x . N^{\prime}\right) \mid n \geq 0 \wedge N^{\prime} \in \Phi_{0}^{\beta \eta}\left(N, \mathcal{F}^{\prime}\right)\right\}$. Let $P \in \Phi^{\beta \eta}(M, \mathcal{F})$, so $\exists n \geq 0$ and $N^{\prime} \in \Phi_{0}^{\beta \eta}\left(N, \mathcal{F}^{\prime}\right)$ such that $P=c^{n}\left(\lambda x \cdot N^{\prime}\right)$. By (BC), $x \neq c$. Hence, $F V(M)=F V(N) \backslash$ $\{x\}={ }^{I H, 1 a} F V\left(N^{\prime}\right) \backslash\{c, x\}=F V(P) \backslash\{c\}$.
- Else $\Phi^{\beta \eta}(M, \mathcal{F})=\left\{c^{n}\left(\lambda x . N^{\prime}[x:=c(c x)]\right) \mid n \geq 0 \wedge N^{\prime} \in\right.$ $\left.\Phi^{\beta \eta}\left(N, \mathcal{F}^{\prime}\right)\right\}$. Let $P \in \Phi^{\beta \eta}(M, \mathcal{F})$, so $\exists n \geq 0$ and $\exists N^{\prime} \in$ $\Phi^{\beta \eta}\left(N, \mathcal{F}^{\prime}\right)$ such that, $P=c^{n}\left(\lambda x \cdot N^{\prime}[x:=c(c x)]\right)$. By (BC), $x \neq c$. Hence, $F V(M)=F V(N) \backslash\{x\}={ }^{I H} F V\left(N^{\prime}\right) \backslash\{c, x\}=$ $F V(P) \backslash\{c\}$.
- Let $M=M_{1} M_{2}, \mathcal{F}_{1}=\left\{C \mid C M_{2} \in \mathcal{F}\right\} \subseteq \mathcal{R}_{M_{1}}^{\beta \eta}$ and
$\mathcal{F}_{2}=\left\{C \mid M_{1} C \in \mathcal{F}\right\} \subseteq \mathcal{R}_{M_{2}}^{\beta \eta}$.
- If $\square \in \mathcal{F}$ then, $\Phi^{\beta \eta}(M, \mathcal{F})=$
$\left\{c^{n}\left(N^{\prime} P^{\prime}\right) \mid n \geq 0 \wedge N^{\prime} \in \Phi_{0}^{\beta \eta}\left(M_{1}, \mathcal{F}_{1}\right) \wedge P^{\prime} \in \Phi^{\beta \eta}\left(M_{2}, \mathcal{F}_{2}\right)\right\}$. Let $P \in \Phi^{\beta \eta}(M, \mathcal{F})$, so $\exists n \geq 0, N^{\prime} \in \Phi_{0}^{\beta \eta}\left(M_{1}, \mathcal{F}_{1}\right)$ and $P^{\prime} \in$ $\Phi^{\beta \eta}\left(M_{2}, \mathcal{F}_{2}\right)$ such that $P=c^{n}\left(N^{\prime} P^{\prime}\right)$.
Hence, $F V(M)=F V\left(M_{1}\right) \cup F V\left(M_{2}\right)={ }^{I H, 1 a}\left(F V\left(N^{\prime}\right) \backslash\{c\}\right) \cup$ $\left(F V\left(P^{\prime}\right) \backslash\{c\}\right)=\left(F V\left(N^{\prime}\right) \cup F V\left(P^{\prime}\right)\right) \backslash\{c\}=F V(P) \backslash\{c\}$.
- Else $\Phi^{\beta \eta}(M, \mathcal{F})=\left\{c^{n}\left(c N^{\prime} P^{\prime}\right) \mid n \geq 0 \wedge N^{\prime} \in \Phi^{\beta \eta}\left(M_{1}, \mathcal{F}_{1}\right) \wedge\right.$ $\left.P^{\prime} \in \Phi^{\beta \eta}\left(M_{2}, \mathcal{F}_{2}\right)\right\}$. Let $P \in \Phi^{\beta \eta}(M, \mathcal{F})$, so $\exists n \geq 0, N^{\prime} \in$ $\Phi^{\beta \eta}\left(M_{1}, \mathcal{F}_{1}\right)$ and $P^{\prime} \in \Phi^{\beta \eta}\left(M_{2}, \mathcal{F}_{2}\right)$ such that $P=c^{n}\left(c N^{\prime} P^{\prime}\right)$. Hence, $F V(M)=F V\left(M_{1}\right) \cup F V\left(M_{2}\right)={ }^{I H}\left(F V\left(N^{\prime}\right) \cup F V\left(P^{\prime}\right)\right) \backslash$ $\{c\}=F V(P) \backslash\{c\}$.
(c) By induction on the structure of M.
- If $M \in \mathcal{V} \backslash\{c\}$ then $\Phi^{\beta \eta}(M, \mathcal{F})=\left\{c^{n}(M) \mid n \geq 0\right\}$. Use lemma 6.2.
- Let $M=\lambda x . N$ and $\mathcal{F}^{\prime}=\{C \mid \lambda x . C \in \mathcal{F}\} \subseteq \mathcal{R}_{N}^{\beta \eta}$.
- If $\square \in \mathcal{F}$, then $N=P x$ such that $x \notin F V(P)$ and $\Phi^{\beta \eta}(M, \mathcal{F})=$ $\left\{c^{n}\left(\lambda x . N^{\prime}\right) \mid n \geq 0 \wedge N^{\prime} \in \Phi_{0}^{\beta \eta}\left(N, \mathcal{F}^{\prime}\right)\right\}$. Let $\mathcal{F}^{\prime \prime}=\{C \mid C x \in$ $\left.\mathcal{F}^{\prime}\right\} \subseteq \mathcal{R}_{P}^{\beta \eta}$.
* If $\square \in \mathcal{F}^{\prime}$ then, $\Phi_{0}^{\beta \eta}\left(N, \mathcal{F}^{\prime}\right)=\left\{P^{\prime} x \mid P^{\prime} \in \Phi_{0}^{\beta \eta}\left(P, \mathcal{F}^{\prime \prime}\right)\right\}$. Let $M^{\prime} \in \Phi^{\beta \eta}(M, \mathcal{F})$, so $M^{\prime}=c^{n}\left(\lambda x . P^{\prime} x\right)$ where $n \geq 0$ and $P^{\prime} \in \Phi_{0}^{\beta \eta}\left(P, \mathcal{F}^{\prime \prime}\right)$. By $(\mathrm{BC}), x \neq c$. Since $x \notin F V(P)$, by lemmas 6.3.1b and 6.3.1a, $x \notin P^{\prime}$. By IH and lemma 6.3.1a, $P^{\prime}, P^{\prime} x \in \Lambda \eta_{c}$. By lemma 2.4, $P^{\prime} \neq c$. Hence, by $(R 1) .4$, $\lambda x . P^{\prime} x \in \Lambda \eta_{c}$. We conclude using lemma 6.2.
* Else $\Phi_{0}^{\beta \eta}\left(N, \mathcal{F}^{\prime}\right)=\left\{c P^{\prime} x \mid P^{\prime} \in \Phi^{\beta \eta}\left(P, \mathcal{F}^{\prime \prime}\right)\right\}$. Let $M^{\prime} \in$ $\Phi^{\beta \eta}(M, \mathcal{F})$, so $M^{\prime}=c^{n}\left(\lambda x . c P^{\prime} x\right)$ where $n \geq 0$ and $P^{\prime} \in$ $\Phi^{\beta \eta}\left(P, \mathcal{F}^{\prime \prime}\right)$. By (BC), $x \neq c$. Since $x \notin F V(P)$, by lemmas 6.3.1b, $x \notin F V\left(P^{\prime}\right)$, so $x \notin F V\left(c P^{\prime}\right)$.
By IH and lemma 6.3.1a, $c P^{\prime} x \in \Lambda \eta_{c}$. Since $c P^{\prime} \neq c$, by $(R 1) .4, \lambda x . c P^{\prime} x \in \Lambda \eta_{c}$. We conclude using lemma 6.2.
- Else $\Phi^{\beta \eta}(M, \mathcal{F})=\left\{c^{n}\left(\lambda x \cdot N^{\prime}[x:=c(c x)]\right) \mid n \geq 0 \wedge N^{\prime} \in\right.$ $\left.\Phi^{\beta \eta}\left(N, \mathcal{F}^{\prime}\right)\right\}$. Let $N^{\prime} \in \Phi^{\beta \eta}\left(N, \mathcal{F}^{\prime}\right)$ and $n \geq 0$. Since by IH $N^{\prime} \in \Lambda \eta_{c}$, by lemma 6.2 and $(R 1) .3, c^{n}\left(\lambda x . N^{\prime}[x:=c(c x)]\right) \in$ $\Lambda \eta_{c}$.
- Let $M=N P, \mathcal{F}_{1}=\{C \mid C P \in \mathcal{F}\} \subseteq \mathcal{R}_{N}^{\beta \eta}$ and $\mathcal{F}_{2}=\{C \mid N C \in$ $\mathcal{F}\} \subseteq \mathcal{R}_{P}^{\beta \eta}$.
- If $\square \in \mathcal{F}$ then $\Phi^{\beta \eta}(M, \mathcal{F})=$
$\left\{c^{n}\left(N^{\prime} P^{\prime}\right) \mid n \geq 0 \wedge N^{\prime} \in \Phi_{0}^{\beta \eta}\left(N, \mathcal{F}_{1}\right) \wedge P^{\prime} \in \Phi^{\beta \eta}\left(P, \mathcal{F}_{2}\right)\right\}$. Let $P=c^{n}\left(N^{\prime} P^{\prime}\right) \in \Phi^{\beta \eta}(M, \mathcal{F})$ such that $n \geq 0, N^{\prime} \in \Phi_{0}^{\beta \eta}\left(N, \mathcal{F}_{1}\right)$ and $P^{\prime} \in \Phi^{\beta \eta}\left(P, \mathcal{F}_{2}\right)$. By IH and lemma 6.3.1a, $N^{\prime}, P^{\prime} \in \Lambda \eta_{c}$. Since N is an λ-abstraction then N^{\prime} too. Hence, by $(R 3), N^{\prime} P^{\prime} \in$ $\Lambda \eta_{c}$. By lemma 6.2, $c^{n}\left(N^{\prime} P^{\prime}\right) \in \Lambda \eta_{c}$.
- Else $\Phi^{\beta \eta}(M, \mathcal{F})=\left\{c^{n}\left(c N^{\prime} P^{\prime}\right) \mid n \geq 0 \wedge N^{\prime} \in \Phi^{\beta \eta}\left(N, \mathcal{F}_{1}\right) \wedge P^{\prime} \in\right.$ $\left.\Phi^{\beta \eta}\left(P, \mathcal{F}_{2}\right)\right\}$. Let $c^{n}\left(c N^{\prime} P^{\prime}\right) \in \Phi^{\beta \eta}(M, \mathcal{F})$ such that $n \geq 0, N^{\prime} \in$ $\Phi^{\beta \eta}\left(N, \mathcal{F}_{1}\right)$ and $P^{\prime} \in \Phi^{\beta \eta}\left(P, \mathcal{F}_{2}\right)$. By IH, $N^{\prime}, P^{\prime} \in \Lambda \eta_{c}$. Hence by $(R 2), c N^{\prime} P^{\prime} \in \Lambda \eta_{c}$ and by lemma 6.2, $c^{n}\left(c N^{\prime} P^{\prime}\right) \in \Lambda \eta_{c}$.
(d) We prove this lemma by case on the belonging of \square in \mathcal{F}. Let $\mathcal{F}^{\prime}=$ $\{C \mid C x \in \mathcal{F}\} \subseteq \mathcal{R}_{N}^{\beta \eta}$.
- If $\square \in \mathcal{F}$ then $\Phi_{0}^{\beta \eta}(N x, \mathcal{F})=\left\{N^{\prime} x \mid N^{\prime} \in \Phi_{0}^{\beta \eta}\left(N, \mathcal{F}^{\prime}\right)\right\}$. Hence, $P=N^{\prime} x$ such that $N^{\prime} \in \Phi_{0}^{\beta \eta}\left(N, \mathcal{F}^{\prime}\right)$. By $(\mathrm{BC}), x \neq c$. Since $x \notin F V(N)$, by lemmas 6.3.1b and 6.3.1a, $x \notin F V\left(N^{\prime}\right)$. So $\lambda x . P=$
$\lambda x . N^{\prime} x \in \mathcal{R}^{\beta \eta}$. Since $\lambda x . N^{\prime} x \in \mathcal{R}^{\beta \eta}$, by lemma 2.5, $\mathcal{R}_{\lambda x . P}^{\beta \eta}=\{\square\} \cup$ $\left\{\lambda x . C \mid C \in \mathcal{R}_{P}^{\beta \eta}\right\}$.
- Else $\Phi_{0}^{\beta \eta}(N x, \mathcal{F})=\left\{c N^{\prime} x \mid N^{\prime} \in \Phi^{\beta \eta}\left(N, \mathcal{F}^{\prime}\right)\right\}$ and $P=c N^{\prime} x$ such that $N^{\prime} \in \Phi^{\beta \eta}\left(N, \mathcal{F}^{\prime}\right)$. By $(\mathrm{BC}), x \neq c$. Since $x \notin F V(N)$, by lemmas 6.3.1b, $x \notin F V\left(N^{\prime}\right)$ and so $x \notin F V\left(c N^{\prime}\right)$. Since $\lambda x . c N^{\prime} x \in$ $\mathcal{R}^{\beta \eta}$, by lemma 2.5, $\mathcal{R}_{\lambda x . P}^{\beta \eta}=\{\square\} \cup\left\{\lambda x . C \mid C \in \mathcal{R}_{P}^{\beta \eta}\right\}$.
(e) Let $\mathcal{F}_{1}=\{C \mid C x \in \mathcal{F}\} \subseteq \mathcal{R}_{N}^{\beta \eta}$ and $\mathcal{F}_{2}=\{C \mid N C \in \mathcal{F}\} \subseteq \mathcal{R}_{x}^{\beta \eta}={ }^{2.5} \varnothing$. We prove this lemma by case on the belonging of \square in \mathcal{F}.
- If $\square \in \mathcal{F}$ then $\Phi^{\beta \eta}(N x, \mathcal{F})=\left\{c^{n}\left(N^{\prime} Q\right) \mid n \geq 0 \wedge N^{\prime} \in \Phi_{0}^{\beta \eta}\left(N, \mathcal{F}_{1}\right) \wedge\right.$ $\left.Q \in \Phi^{\beta \eta}\left(x, \mathcal{F}_{2}\right)\right\}$. So $P x=c^{n}\left(N^{\prime} Q\right)$ such that $n \geq 0, N^{\prime} \in$ $\Phi_{0}^{\beta \eta}\left(N, \mathcal{F}_{1}\right)$ and $Q \in \Phi^{\beta \eta}\left(x, \mathcal{F}_{2}\right)$. So $n=0, N^{\prime}=P$ and $Q=x$. Since $x \in \Phi_{0}^{\beta \eta}(x, \varnothing), P x \in \Phi_{0}^{\beta \eta}(N x, \mathcal{F})$.
- Else $\Phi^{\beta \eta}(N x, \mathcal{F})=\left\{c^{n}\left(c N^{\prime} Q\right) \mid n \geq 0 \wedge N^{\prime} \in \Phi_{0}^{\beta \eta}\left(N, \mathcal{F}_{1}\right) \wedge Q \in\right.$ $\left.\Phi^{\beta \eta}\left(x, \mathcal{F}_{2}\right)\right\}$. So $P x=c^{n}\left(c N^{\prime} Q\right)$ such that $n \geq 0, N^{\prime} \in \Phi_{0}^{\beta \eta}\left(N, \mathcal{F}_{1}\right)$ and $Q \in \Phi^{\beta \eta}\left(x, \mathcal{F}_{2}\right)$. So $n=0, c N^{\prime}=P$ and $Q=x$. Since $x \in \Phi_{0}^{\beta \eta}(x, \varnothing), P x \in \Phi_{0}^{\beta \eta}(N x, \mathcal{F})$.
(f) Easy by case on the structure of M and induction on n.
(g) By induction on the structure of M.
- Let $M \in \mathcal{V} \backslash\{c\}$. Then $\Phi^{\beta \eta}(M, \mathcal{F})=\left\{c^{n}(M) \mid n \geq 0\right\}$ and $\mathcal{F}=\varnothing$. Now, use lemma 2.15.
- Let $M=\lambda x . N$ and $\mathcal{F}^{\prime}=\{C \mid \lambda x . C \in \mathcal{F}\} \subseteq \mathcal{R}_{N}^{\beta \eta}$.
- If $\square \in \mathcal{F}$ then $\Phi^{\beta \eta}(M, \mathcal{F})=$
$\left\{c^{n}\left(\lambda x . N^{\prime}\right) \mid n \geq 0 \wedge N^{\prime} \in \Phi_{0}^{\beta \eta}\left(N, \mathcal{F}^{\prime}\right)\right\}$. Let $c^{n}\left(\lambda x . N^{\prime}\right) \in$ $\Phi^{\beta \eta}(M, \mathcal{F})$ where $n \geq 0$ and $N^{\prime} \in \Phi_{0}^{\beta \eta}\left(N, \mathcal{F}^{\prime}\right)$.
Then, $\left|c^{n}\left(\lambda x . N^{\prime}\right)\right|^{c}={ }^{2} .15\left|\lambda x . N^{\prime}\right|^{c}=\lambda x .\left|N^{\prime}\right|^{c}={ }^{I H, 1 a} \lambda x$. N.
- Else $\Phi^{\beta \eta}(M, \mathcal{F})=\left\{c^{n}\left(\lambda x \cdot N^{\prime}[x:=c(c x)]\right) \mid n \geq 0 \wedge N^{\prime} \in\right.$ $\left.\Phi^{\beta \eta}\left(N, \mathcal{F}^{\prime}\right)\right\}$. Let $c^{n}\left(\lambda x . N^{\prime}[x:=c(c x)]\right) \in \Phi^{\beta \eta}(M, \mathcal{F})$ where $n \geq$ 0 and $N^{\prime} \in \Phi^{\beta \eta}\left(N, \mathcal{F}^{\prime}\right)$. Then, $\left|c^{n}\left(\lambda x . N^{\prime}[x:=c(c x)]\right)\right|^{c}==^{2 . \overline{15}}$ $\left|\lambda x . N^{\prime}[x:=c(c x)]\right|^{c}=\lambda x .\left|N^{\prime}[x:=c(c x)]\right|^{c}={ }^{2.18} \lambda x .\left|N^{\prime}\right|^{c}={ }^{I H}$ $\lambda x . N$.
- Let $M=M_{1} M_{2}, \mathcal{F}_{1}=\left\{C \mid C M_{2} \in \mathcal{F}\right\} \subseteq \mathcal{R}_{M_{1}}^{\beta \eta}$ and $\mathcal{F}_{2}=\left\{C \mid M_{1} C \in \mathcal{F}\right\} \subseteq \mathcal{R}_{M_{2}}^{\beta \eta}$.
- If \square then $\Phi^{\beta \eta}(M, \mathcal{F})=\left\{c^{n}\left(N^{\prime} P^{\prime}\right) \mid n \geq 0 \wedge N^{\prime} \in \Phi_{0}^{\beta \eta}\left(M_{1}, \mathcal{F}_{1}\right) \wedge\right.$ $\left.P^{\prime} \in \Phi^{\beta \eta}\left(M_{2}, \mathcal{F}_{2}\right)\right\}$. Let $c^{n}\left(N^{\prime} P^{\prime}\right) \in \Phi^{\beta \eta}(M, \mathcal{F})$ where $n \geq$ $0, N^{\prime} \in \Phi_{0}^{\beta \eta}\left(M_{1}, \mathcal{F}_{1}\right)$ and $P^{\prime} \in \Phi^{\beta \eta}\left(M_{2}, \mathcal{F}_{2}\right)$. Since M_{1} is a λ-abstraction, N^{\prime} too. Then, $\left|c^{n}\left(N^{\prime} P^{\prime}\right)\right|^{c}={ }^{2.15}\left|N^{\prime} P^{\prime}\right|^{c}=$ $\left|N^{\prime}\right|^{c}\left|P^{\prime}\right|^{c}={ }^{I H, 1 a} M_{1} M_{2}$.
- Else $\Phi^{\beta \eta}(M, \mathcal{F})=\left\{c^{n}\left(c P_{1} P_{2}\right) \mid n \geq 0 \wedge P_{1} \in \Phi^{\beta \eta}\left(M_{1}, \mathcal{F}_{1}\right) \wedge P_{2} \in\right.$ $\left.\Phi^{\beta \eta}\left(M_{2}, \mathcal{F}_{2}\right)\right\}$. Let $c^{n}\left(c P_{1} P_{2}\right) \in \Phi^{\beta \eta}(M, \mathcal{F})$ where $n \geq 0, P_{1} \in$ $\Phi^{\beta \eta}\left(M_{1}, \mathcal{F}_{1}\right)$ and $P_{2} \in \Phi^{\beta \eta}\left(M_{2}, \mathcal{F}_{2}\right)$. Then $\left|c^{n}\left(c P_{1} P_{2}\right)\right|^{c}={ }^{2.15}$ $\left|c P_{1} P_{2}\right|^{c}=\left|c P_{1}\right|^{c}\left|P_{2}\right|^{c}=\left|P_{1}\right|^{c}\left|P_{2}\right|^{c}={ }^{I H} M_{1} M_{2}$.
(h) We prove the statement by induction on M.
- Let $M \in \mathcal{V} \backslash\{c\}$. Then $\Phi^{\beta \eta}(M, \mathcal{F})=\left\{c^{n}(x) \mid n \geq 0\right\}$ and $\mathcal{F}=\varnothing$. If $P \in \Phi^{\beta \eta}(M, \mathcal{F})$ then $\mathcal{R}_{P}^{\beta \eta}={ }^{2.9 .5} \varnothing$. Hence, $\mathcal{F}=\left|\mathcal{R}_{P}^{\beta \eta}\right|_{\mathcal{C}}^{c}$.
- Let $M=\lambda x . N$ and $\mathcal{F}^{\prime}=\{C \mid \lambda x . C \in \mathcal{F}\} \subseteq \mathcal{R}_{N}^{\beta \eta}$.
- If $\square \in \mathcal{F}$ then $M=\lambda x . P x$ where $x \notin F V(P)$ and $\Phi^{\beta \eta}(M, \mathcal{F})=$ $\left\{c^{n}\left(\lambda x . N^{\prime}\right) \mid n \geq 0 \wedge N^{\prime} \in \Phi_{0}^{\beta \eta}\left(N, \mathcal{F}^{\prime}\right)\right\}$. Let $c^{n}\left(\lambda x . N^{\prime}\right) \in$ $\Phi^{\beta \eta}(M, \mathcal{F})$ where $n \geq 0$ and $N^{\prime} \in \Phi_{0}^{\beta \eta}\left(N, \mathcal{F}^{\prime}\right) .\left|\mathcal{R}_{c^{n}\left(\lambda x . N^{\prime}\right)}^{\beta \eta}\right|_{\mathcal{C}}^{c}=$

$$
\left\{|C|_{\mathcal{c}}^{c} \mid C \in \mathcal{R}_{c^{n}\left(\lambda x . N^{\prime}\right)}^{\beta \eta}\right\}={ }^{2.9 .5}\left\{|C|_{\mathcal{c}}^{c} \mid C \in \mathcal{R}_{\lambda x . N^{\prime}}^{\beta \eta}\right\}={ }^{1 d}\{\square\} \cup
$$ $\left.\left\{|\lambda x . C|_{\mathcal{C}}^{c} \mid C \in \mathcal{R}_{N^{\prime}}^{\beta \eta}\right\}=\{\square\} \cup\left\{\lambda x .\left.C|C \in| \mathcal{R}_{N^{\prime}}^{\beta \eta}\right|_{\mathcal{C}} ^{c}\right\}={ }^{c}\right\}$ $\{\square\} \cup\left\{\lambda x . C \mid C \in \mathcal{F}^{\prime}\right\}={ }^{2.6} \mathcal{F}$.

- Else $\Phi^{\beta \eta}(M, \mathcal{F})=$
$\left\{c^{n}(\lambda x . P[x:=c(c x)]) \mid n \geq 0 \wedge P \in \Phi^{\beta \eta}\left(N, \mathcal{F}^{\prime}\right)\right\}$.
Let $c^{n}(\lambda x . P[x:=c(c x)]) \in \Phi^{\beta \eta}(M, \mathcal{F})$ where $n \geq 0$ and $P \in$ $\Phi^{\beta \eta}\left(N, \mathcal{F}^{\prime}\right)$.
$\left|\mathcal{R}_{c^{n}(\lambda x . P[x:=c(c x)])}^{\beta \eta}\right|_{\mathcal{C}}^{c}=\left\{|C|_{\mathcal{C}}^{c} \mid C \in \mathcal{R}_{c^{n}(\lambda x . P[x:=c(c x)])}^{\beta \eta}\right\}={ }^{2.9 .5}$
$\left\{|C|_{\mathcal{C}}^{c} \mid C \in \mathcal{R}_{\lambda x . P[x:=c(c x)]}^{\beta \eta}\right\}={ }^{2.9 .3}\left\{|\lambda x . C|_{\mathcal{C}}^{c} \mid C \in \mathcal{R}_{P[x:=c(c x)]}^{\beta \eta}\right\}$
$={ }^{2.9 .4}\left\{|\lambda x . C[x:=c(c x)]|_{\mathcal{C}}^{c} \mid C \in \mathcal{R}_{P}^{\beta \eta}\right\}={ }^{2.19}\{\lambda x . C \mid C \in$ $\left.\left|\mathcal{R}_{P}^{\beta \eta}\right|_{\mathcal{C}}^{c}\right\}$
$={ }^{I H}\left\{\lambda x . C \mid C \in \mathcal{F}^{\prime}\right\}==^{2.6} \mathcal{F}$.
- Let $M=M_{1} M_{2}, \mathcal{F}_{1}=\left\{C \mid C M_{2} \in \mathcal{F}\right\} \subseteq \mathcal{R}_{M_{1}}^{\beta \eta}$ and $\mathcal{F}_{2}=\left\{C \mid M_{1} C \in \mathcal{F}\right\} \subseteq \mathcal{R}_{M_{2}}^{\beta \eta}$.
- If $\square \in \mathcal{F}$ then $\Phi^{\beta \eta}(M, \mathcal{F})=\left\{c^{n}(N P) \mid n \geq 0 \wedge N \in \Phi_{0}^{\beta \eta}\left(M_{1}, \mathcal{F}_{1}\right) \wedge P \in\right.$ $\left.\Phi^{\beta \eta}\left(M_{2}, \mathcal{F}_{2}\right)\right\}$. Let $c^{n}(N P) \in \Phi^{\beta \eta}(M, \mathcal{F})$ where $n \geq 0, N \in$ $\Phi_{0}^{\beta \eta}\left(M_{1}, \mathcal{F}_{1}\right)$ and $P \in \Phi^{\beta \eta}\left(M_{2}, \mathcal{F}_{2}\right)$. Since M_{1} is a λ-abstraction, N too. By lemma 2.5, $\left|\mathcal{R}_{c^{n}(N P)}^{\beta \eta}\right|_{\mathcal{C}}^{c}=\left\{|C|_{\mathcal{C}}^{c} \mid C \in \mathcal{R}_{c^{n}(N P)}^{\beta \eta}\right\}={ }^{2.9 .5}$ $\left\{|C|_{\mathcal{C}}^{c} \mid C \in \mathcal{R}_{N P}^{\beta \eta}\right\}=\{\square\} \cup\left\{|C P|_{c}^{c} \mid C \in \mathcal{R}_{N}^{\beta \eta}\right\} \cup\left\{|N C|_{\mathcal{C}}^{c} \mid C \in\right.$ $\left.\mathcal{R}_{P}^{\beta \eta}\right\}=\{\square\} \cup\left\{\left.C|P|^{c}|C \in| \mathcal{R}_{N}^{\beta \eta}\right|_{c} ^{c}\right\} \cup\left\{\left.|N|^{c} C|C \in| \mathcal{R}_{P}^{\beta \eta}\right|_{c} ^{c}\right\}={ }^{I H}$ $\{\square\} \cup\left\{C|P|^{c} \mid C \in \mathcal{F}_{1}\right\} \cup\left\{|N|^{c} C \mid C \in \mathcal{F}_{2}\right\}={ }^{1 g}\{\square\} \cup$ $\left\{C M_{2} \mid C \in \mathcal{F}_{1}\right\} \cup\left\{M_{1} C \mid C \in \mathcal{F}_{2}\right\}={ }^{2.6} \mathcal{F}$.
- Else $\Phi^{\beta \eta}(M, \mathcal{F})=\left\{c^{n}\left(c P_{1} P_{2}\right) \mid n \geq 0 \wedge P_{1} \in \Phi^{\beta \eta}\left(M_{1}, \mathcal{F}_{1}\right) \wedge\right.$ $\left.P_{2} \in \Phi^{\beta \eta}\left(M_{2}, \mathcal{F}_{2}\right)\right\}$. Let $c^{n}\left(c P_{1} P_{2}\right) \in \Phi^{\beta \eta}(M, \mathcal{F})$ where $n \geq$ $0, P_{1} \in \Phi^{\beta \eta}\left(M_{1}, \mathcal{F}_{1}\right)$ and $P_{2} \in \Phi^{\beta \eta}\left(M_{2}, \mathcal{F}_{2}\right)$. By lemma 2.5, $\left|\mathcal{R}_{c^{n}\left(c P_{1} P_{2}\right)}^{\beta \eta}\right|_{\mathcal{C}}^{c}=\left\{|C|_{\mathcal{C}}^{c} \mid C \in \mathcal{R}_{c^{n}\left(c P_{1} P_{2}\right)}^{\beta \eta}\right\}=^{2.9 .5}\left\{|C|_{\mathcal{C}}^{c} \mid C \in\right.$ $\left.\mathcal{R}_{c P_{1} P_{2}}^{\beta \eta}\right\}=\left\{\left|c C P_{2}\right|_{\mathcal{C}}^{c} \mid C \in \mathcal{R}_{P_{1}}^{\beta \eta}\right\} \cup\left\{\left|c P_{1} C\right|_{\mathcal{C}}^{c} \mid C \in \mathcal{R}_{P_{2}}^{\beta \eta}\right\}=$ $\left\{C\left|P_{2}\right|^{c}|C \in| \mathcal{R}_{P_{1}}^{\beta \eta} \mid{ }_{c}^{c}\right\} \cup\left\{\left.\left|P_{1}\right|^{c} C|C \in| \mathcal{R}_{P_{2}}^{\beta \eta}\right|_{c}\right\}={ }^{I H}\left\{C|P|^{c} \mid C \in\right.$ $\left.\mathcal{F}_{1}\right\} \cup\left\{|N|^{c} C \mid C \in \mathcal{F}_{2}\right\}={ }^{1 g}\left\{C M_{2} \mid C \in \mathcal{F}_{1}\right\} \cup\left\{M_{1} C \mid C \in\right.$ $\left.\mathcal{F}_{2}\right\}={ }^{2.6} \mathcal{F}$.

2. (a) By induction on the construction of M.

- Let $M \in \mathcal{V} \backslash\{c\}$. So $|M|^{c}=M,\left|\mathcal{R}_{M}^{\beta \eta}\right|_{\mathcal{C}}^{c}=\varnothing=\mathcal{R}_{|M|^{c}}^{\beta \eta}$ and $M \in$ $\Phi^{\beta \eta}\left(|M|^{c},\left|\mathcal{R}_{M}^{\beta \eta}\right|_{\mathcal{C}}^{c}\right)=\Phi^{\beta \eta}(M, \varnothing)=\left\{c^{n}(M) \mid n \geq 0\right\}$.
- Let $M=\lambda x \cdot N[x:=c(c x)]$ where $N \in \Lambda \eta_{c} .|M|^{c}=\lambda x .|N|^{c}$. $\left|\mathcal{R}_{M}^{\beta \eta}\right|_{\mathcal{C}}^{c}=\left\{|C|_{\mathcal{C}}^{c} \mid C \in \mathcal{R}_{M}^{\beta \eta}\right\}={ }^{2.9 .3}\left\{\lambda x .|C|_{\mathcal{C}}^{c} \mid C \in \mathcal{R}_{N[x:=c(c x)]}^{\beta \eta}\right\}={ }^{2.9 .4}$ $\left\{\lambda x .\left|C[x:=c(c x)]_{\mathcal{C}}^{c}\right| C \in \mathcal{R}_{N}^{\beta \eta}\right\}={ }^{2.19}\left\{\lambda x .|C|_{\mathcal{C}}^{c} \mid C \in \mathcal{R}_{N}^{\beta \eta}\right\}=$ $\left\{\lambda x . C|C \in| \mathcal{R}_{N}^{\beta \eta \mid{ }_{c}}\right\} \subseteq^{I H}\left\{\lambda x . C \mid C \in \mathcal{R}_{|N| c}^{\beta \eta}\right\}==^{2.18}\{\lambda x . C \mid C \in$ $\left.\mathcal{R}_{|N[x:=c(c x)]| c}^{\beta \eta}\right\} \subseteq^{2.5} \mathcal{R}_{\lambda x| | N\left[x:=c(c x)| |^{c}\right.}^{\beta \eta}=\mathcal{R}_{|\lambda x . N[x:=c(c x)]| c}^{\beta \eta}$.
Since $\left|\mathcal{R}_{M}^{\beta \eta}\right|_{\mathcal{C}}^{c}=\left\{\lambda x .|C[x:=c(c x)]|_{\mathcal{C}}^{c_{c}} \mid C \in \mathcal{R}_{N}^{\beta \eta}\right\}, \square \notin\left|\mathcal{R}_{M}^{\beta \eta}\right|_{\mathcal{C}}^{c}$ and $\left|\mathcal{R}_{N}^{\beta \eta}\right|_{\mathcal{C}}^{c}=\left\{\left.C|\lambda x . C \in| \mathcal{R}_{M}^{\beta \eta}\right|_{\mathcal{C}} ^{c}\right\}$. By definition, $\Phi^{\beta \eta}\left(|M|^{c},\left|\mathcal{R}_{M}^{\beta \eta}\right|_{\mathcal{C}}\right)=$ $\left\{c^{n}\left(\lambda x \cdot N^{\prime}[x:=c(c x)]\right) \mid n \geq 0 \wedge N^{\prime} \in \Phi^{\beta \eta}\left(|N|^{c},\left|\mathcal{R}_{N}^{\beta \eta}\right|_{\mathcal{C}}^{c}\right)\right\}$. By IH, $N \in \Phi^{\beta \eta}\left(|N|^{c},\left|\mathcal{R}_{N}^{\beta \eta}\right|_{\mathcal{C}}^{c}\right)$, so $M \in \Phi^{\beta \eta}\left(|M|^{c},\left|\mathcal{R}_{M}^{\beta \eta}\right|{ }_{\mathcal{C}}^{c}\right)$.
- Let $M=\lambda x$. $N x$ where $N x \in \Lambda \eta_{c}, N \neq c$ and $x \notin F V(N)$. By lemma 2.4, $N \in \Lambda \eta_{c}$ and by lemma 2.21, $x \notin F V\left(|N|^{c}\right) .|M|^{c}=$ $\lambda x .|N x|^{c}=\lambda x \cdot|N|^{c} x$. Since $M,|M|^{c} \in \mathcal{R}^{\beta \eta}$, by lemma 2.5, $\mathcal{R}_{M}^{\beta \eta}=$ $\{\square\} \cup\left\{\lambda x . C \mid C \in \mathcal{R}_{N x}^{\beta \eta}\right\}$, so $\left|\mathcal{R}_{M}^{\beta \eta}\right| \mathcal{C}=\{\square\} \cup\left\{\lambda x .\left.C|C \in| \mathcal{R}_{N x}^{\beta \eta}\right|_{\mathcal{C}} ^{c}\right\}$
$\subseteq^{I H}\{\square\} \cup\left\{\lambda x . C \mid C \in \mathcal{R}_{|N x|^{c}}^{\beta \eta}\right\}=\mathcal{R}_{|M|^{c}}^{\beta \eta}$. So $\left|\mathcal{R}_{N x}^{\beta \eta}\right|^{c}=\{C \mid \lambda x . C \in$ $\left.\left|\mathcal{R}_{M}^{\beta \eta}\right|_{\mathcal{C}}^{c}\right\}$. By definition, $\Phi^{\beta \eta}\left(|M|^{c},\left|\mathcal{R}_{M}^{\beta \eta}\right|_{\mathcal{C}}^{c}\right)=\left\{c^{n}\left(\lambda x . N^{\prime}\right) \mid n \geq 0 \wedge\right.$ $\left.N^{\prime} \in \Phi_{0}^{\beta \eta}\left(|N x|^{c},\left|\mathcal{R}_{N x}^{\beta \eta}\right|_{\mathcal{C}}^{c}\right)\right\}$. By $\mathrm{IH}, N x \in \Phi^{\beta \eta}\left(|N x|^{\beta \eta},\left|\mathcal{R}_{N x}^{\beta \eta}\right|^{c}{ }_{\mathcal{C}}\right)$, so by lemma 6.3.1e, $N x \in \Phi_{0}^{\beta \eta}\left(|N x|^{\beta \eta},\left|\mathcal{R}_{N x}^{\beta \eta}\right|_{\mathcal{C}}^{c}\right)$.
Hence $M \in \Phi^{\beta \eta}\left(|M|^{c},\left|\mathcal{R}_{M}^{\beta \eta}\right|_{\mathcal{C}}^{c}\right)$.
- Let $M=c N P$ where $N, P \in \Lambda \eta_{c}$, so $c N \in \Lambda \eta_{c}$. $|M|^{c}=|c N|^{c}|P|^{c}=$ $|N|^{c}|P|^{c}$. Since $M \notin \mathcal{R}^{\beta \eta}$, By lemma 2.5, $\mathcal{R}_{M}^{\beta \eta}=\left\{c C P \mid C \in \mathcal{R}_{N}^{\beta \eta}\right\} \cup$ $\left\{c N C \mid C \in \mathcal{R}_{P}^{\beta \eta}\right\}$. So $\left|\mathcal{R}_{M}^{\beta \eta}\right|_{\mathcal{C}}^{c}=\left\{\left.C|P|^{c}|C \in| \mathcal{R}_{N}^{\beta \eta}\right|_{\mathcal{C}} ^{c}\right\} \cup\left\{|N|^{c} C \mid C \in\right.$ $\left.\left|\mathcal{R}_{P}^{\beta \eta}\right|^{c}\right\} \subseteq^{I H}\left\{C|P|^{c} \mid C \in \mathcal{R}_{|N|^{c}}^{\beta \eta}\right\} \cup\left\{|N|^{c} C \mid C \in \mathcal{R}_{|P|^{c}}^{\beta \eta}\right\} \subseteq^{2.5}$ $\mathcal{R}_{\left.|M|\right|^{c}}^{\beta \eta}$. Since $\mathcal{R}_{M}^{\beta \eta}=\left\{\left.C|P|^{c}|C \in| \mathcal{R}_{N}^{\beta \eta}\right|_{\mathcal{C}} ^{c}\right\} \cup\left\{\left.|N|^{c} C|C \in| \mathcal{R}_{P}^{\beta \eta}\right|^{c}{ }_{\mathcal{C}}^{c}\right\}$, $\square \notin\left|\mathcal{R}_{M}^{\beta \eta}\right|_{\mathcal{C}}^{c}$ and $\left|\mathcal{R}_{N}^{\beta \eta}\right|_{\mathcal{C}}^{c}=\left\{\left.C|C| P\right|^{c} \in\left|\mathcal{R}_{M}^{\beta \eta}\right|^{c}{ }_{\mathcal{C}}^{c}\right\}$ and $\left|\mathcal{R}_{P}^{\beta \eta}\right|_{\mathcal{C}}^{c}=$ $\left\{\left.C\left||N|^{c} C \in\right| \mathcal{R}_{M}^{\beta \eta}\right|^{c}{ }_{c}\right\}$.
By definition, $\Phi^{\beta \eta}\left(|M|^{c},\left|\mathcal{R}_{M}^{\beta \eta}\right|_{\mathcal{C}}^{c}\right)=\left\{c^{n}\left(c N^{\prime} P^{\prime}\right) \mid n \geq 0 \wedge N^{\prime} \in\right.$ $\left.\Phi^{\beta \eta}\left(|N|^{c},\left|\mathcal{R}_{N}^{\beta \eta}\right|_{\mathcal{C}}^{c}\right) \wedge P^{\prime} \in \Phi^{\beta \eta}\left(|P|^{c},\left|\mathcal{R}_{P}^{\beta \eta}\right|_{\mathcal{C}}^{c}\right)\right\}$.
By IH, $N \in \Phi^{\beta \eta}\left(|N|^{\beta \eta},\left|\mathcal{R}_{N}^{\beta \eta}\right|_{\mathcal{C}}^{c}\right)$ and $P \in \Phi^{\beta \eta}\left(|P|^{\beta \eta},\left|\mathcal{R}_{P}^{\beta \eta}\right|_{\mathcal{C}}^{c}\right)$, so $M \in \Phi^{\beta \eta}\left(|M|^{c},\left|\mathcal{R}_{M}^{\beta \eta}\right|_{\mathcal{C}}^{c}\right)$.
- Let $M=N P$ where $N, P \in \Lambda \eta_{c}$ and N is a λ-abstraction. So $|N|^{c}$ is a λ-abstraction too. $|M|^{c}=|N|^{c}|P|^{c}$. Since $M \in \mathcal{R}^{\beta \eta}$, By lemma 2.5, $\mathcal{R}_{M}^{\beta \eta}=\{\square\} \cup\left\{C P \mid C \in \mathcal{R}_{N}^{\beta \eta}\right\} \cup\left\{N C \mid C \in \mathcal{R}_{P}^{\beta \eta}\right\}$. So $\left|\mathcal{R}_{M}^{\beta \eta}\right|_{\mathcal{C}}^{c}=\{\square\} \cup\left\{\left.C|P|^{c}|C \in| \mathcal{R}_{N}^{\beta \eta}\right|_{\mathcal{C}} ^{c}\right\} \cup\left\{\left.|N|^{c} C|C \in| \mathcal{R}_{P}^{\beta \eta}\right|^{c}{ }_{\mathcal{C}}\right\} \subseteq \subseteq^{I H}$ $\{\square\} \cup\left\{C|P|^{c} \mid C \in \mathcal{R}_{|N|^{c}}^{\beta \eta}\right\} \cup\left\{|N|^{c} C \mid C \in \mathcal{R}_{|P|^{c}}^{\beta \eta}\right\}={ }^{2.5} \mathcal{R}_{|M|^{c}}^{\beta \eta}$. Since $\mathcal{R}_{M}^{\beta \eta}=\{\square\} \cup\left\{\left.C|P|^{c}|C \in| \mathcal{R}_{N}^{\beta \eta}\right|^{c}\right\} \cup\left\{\left.|N|^{c} C|C \in| \mathcal{R}_{P}^{\beta \eta}\right|^{c}{ }_{\mathcal{C}}^{c}\right\}$, $\left|\mathcal{R}_{N}^{\beta \eta}\right|_{C}^{c}=\left\{\left.C|C| P\right|^{c} \in\left|\mathcal{R}_{M}^{\beta \eta}\right|_{\mathcal{C}}^{c}\right\}$ and $\left|\mathcal{R}_{P}^{\beta \eta}\right|_{\mathcal{C}}^{c}=\left\{\left.C| | N\right|^{c} C \in\right.$ $\left.\left|\mathcal{R}_{M}^{\beta \eta}\right|_{\mathcal{C}}^{c}\right\}$. By definition, $\Phi^{\beta \eta}\left(|M|^{c},\left|\mathcal{R}_{M}^{\beta \eta}\right|_{\mathcal{C}}^{c}\right)=\left\{c^{n}\left(N^{\prime} P^{\prime}\right) \mid n \geq 0 \wedge\right.$ $\left.N^{\prime} \in \Phi^{\beta \eta}\left(|N|^{c},\left|\mathcal{R}_{N}^{\beta \eta}\right|_{\mathcal{c}}^{c}\right) \wedge P^{\prime} \in \Phi^{\beta \eta}\left(|P|^{c},\left|\mathcal{R}_{P}^{\beta \eta}\right|_{\mathcal{C}}^{c}\right)\right\}$.
By IH, $N \in \Phi^{\beta \eta}\left(|N|^{c},\left|\mathcal{R}_{N}^{\beta \eta}\right|_{\mathcal{C}}^{c}\right)$ and $P \in \Phi^{\beta \eta}\left(|P|^{c},\left|\mathcal{R}_{P}^{\beta \eta}\right|_{\mathcal{C}}^{c}\right)$, so $M \in$ $\Phi^{\beta \eta}\left(|M|^{c},\left|\mathcal{R}_{M}^{\beta \eta}\right|_{\mathcal{C}}^{c}\right)$.
- Let $M=c N$ where $N \in \Lambda \eta_{c}$. $|M|^{c}=|N|^{c}$. By lemma 2.5, $\mathcal{R}_{M}^{\beta \eta}=$ $\left\{c C \mid C \in \mathcal{R}_{N}^{\beta \eta}\right\}$ so $\left|\mathcal{R}_{M}^{\beta \eta}\right|_{\mathcal{C}}^{c}=\left|\mathcal{R}_{N}^{\beta \eta}\right|_{\mathcal{C}}^{c} \subseteq^{I H} \mathcal{R}_{|N|^{c}}^{\beta \eta}=\mathcal{R}_{|M| c}^{\beta \eta}$. By IH, $N \in \Phi^{\beta \eta}\left(|N|^{c},\left|\mathcal{R}_{N}^{\beta \eta}\right|_{\mathcal{C}}^{c}\right)=\Phi^{\beta \eta}\left(|M|^{c},\left|\mathcal{R}_{M}^{\beta \eta}\right|_{\mathcal{C}}^{c}\right)$, so by lemma 6.3.1f, $M \in \Phi^{\beta \eta}\left(|M|^{c},\left|\mathcal{R}_{M}^{\beta \eta}\right|_{\mathcal{C}}^{c}\right)$.
(b) By lemma 2.21, c $\notin F V\left(|M|^{c}\right)$. By lemma 6.3.2a, $\left|\mathcal{R}_{M}^{\beta \eta}\right|_{\mathcal{C}}^{c} \subseteq \mathcal{R}_{|M|^{c}}^{\beta \eta}$ and $M \in \Phi^{\beta \eta}\left(|M|^{c},\left|\mathcal{R}_{M}^{\beta \eta}\right|_{\mathcal{C}}^{c}\right)$. To prove unicity, assume that $\left(N^{\prime}, \mathcal{F}^{\prime}\right)$ is another such pair. So $\mathcal{F}^{\prime} \subseteq \mathcal{R}_{N^{\prime}}^{\beta \eta}$ and $M \in \Phi^{\beta \eta}\left(N^{\prime}, \mathcal{F}^{\prime}\right)$. By lemma 6.3 .1 g , $|M|^{c}=N^{\prime}$ and by lemma 6.3.1h, $\mathcal{F}^{\prime}=\left|\mathcal{R}_{M}^{\beta \eta}\right|^{c}{ }^{c}$.

Lemma 6.4. Let $N_{1} \in \Phi^{\beta \eta}(M, \mathcal{F})$. By lemma 6.3.1c, $N_{1} \in \Lambda \eta_{c}$. By lemma 6.3.1h and lemma 2.17, there exists a unique $C_{1} \in \mathcal{R}_{N_{1}}^{\beta \eta}$, such that $\left|C_{1}\right|_{\mathcal{C}}^{c}=C$. By definition $\exists R_{1} \in \mathcal{R}^{\beta \eta}$ such that $N_{1}=C_{1}\left[R_{1}\right]$. By lemma 6.3.1g, $\left|C_{1}\left[R_{1}\right]\right|^{c}=M$. By lemma 2.25, $\left|C_{1}\left[R_{1}\right]\right|^{c} \xrightarrow{\mid C_{1}{ }_{c}^{c}}{ }_{\beta \eta}\left|C_{1}\left[R_{1}^{\prime}\right]\right|^{c}$ such that R_{1}^{\prime} is the contractum of R_{1}. So $M \xrightarrow{C}{ }_{\beta \eta}\left|C_{1}\left[R_{1}^{\prime}\right]\right|^{c}$, then $M^{\prime}=\left|C_{1}\left[R_{1}^{\prime}\right]\right|^{c}$. Let $\mathcal{F}^{\prime}=\left|\mathcal{R}_{C_{1}\left[R_{1}^{\prime}\right]}^{\beta \eta}\right|_{C}^{c}$. Since, $N_{1}=C_{1}\left[R_{1}\right]{\xrightarrow{C_{1}}}_{\beta \eta} C_{1}\left[R_{1}^{\prime}\right]$, by lemma 2.12 and lemma 6.3.1c, $C_{1}\left[R_{1}^{\prime}\right] \in \Lambda \eta_{c}$. By lemma 6.3.2a, $C_{1}\left[R_{1}^{\prime}\right] \in \Phi^{\beta \eta}\left(M^{\prime}, \mathcal{F}^{\prime}\right)$ and $\mathcal{F}^{\prime} \subseteq \mathcal{R}_{M^{\prime}}^{\beta \eta}$. By lemma 6.3.2b, if there exists a such \mathcal{F}^{\prime}, it is unique.

Let $N_{2} \in \Phi^{\beta \eta}(M, \mathcal{F})$. By lemma 6.3.1c, $N_{1} \in \Lambda \eta_{c}$. By lemma 6.3.1h and lemma 2.17, there exists a unique $C_{2} \in \mathcal{R}_{N_{2}}^{\beta \eta}$, such that $\left|C_{2}\right|_{\mathcal{C}}^{c}=C$. By definition $\exists R_{2} \in \mathcal{R}^{\beta \eta}$ such that $N_{2}=C_{2}\left[R_{2}\right]$. By lemma 6.3.1g, $\left|C_{2}\left[R_{2}\right]\right|^{c}=M$.

By lemma 2.25, $\left|C_{2}\left[R_{2}\right]\right|^{c} \xrightarrow{\left|C_{2}\right|_{\mathcal{C}}^{c}}{ }_{\beta \eta}\left|C_{2}\left[R_{2}^{\prime}\right]\right|^{c}$ such that R_{2}^{\prime} is the contractum of R_{2}. So $M \xrightarrow[\rightarrow]{C}{ }_{\beta \eta}\left|C_{2}\left[R_{2}^{\prime}\right]\right|^{c}$, then $M^{\prime}=\left|C_{2}\left[R_{2}^{\prime}\right]\right|^{c}$. Let $\mathcal{F}^{\prime \prime}=\left|\mathcal{R}_{C_{2}\left[R_{2}^{\prime}\right]}^{\beta \eta}\right|{ }_{C}^{c}$. Since, $N_{2}=C_{2}\left[R_{2}\right]{\xrightarrow{C_{2}}}_{\beta \eta} C_{2}\left[R_{2}^{\prime}\right]$, by lemma 2.12 and lemma 6.3.1c, $C_{2}\left[R_{2}^{\prime}\right] \in \Lambda \eta_{c}$. By lemma 6.3.2a, $C_{2}\left[R_{2}^{\prime}\right] \in \Phi^{\beta \eta}\left(M^{\prime}, \mathcal{F}^{\prime \prime}\right)$ and $\mathcal{F}^{\prime \prime} \subseteq \mathcal{R}_{M^{\prime}}^{\beta \eta}$.

As $N_{1}, N_{2} \in \Phi^{\beta \eta}(M, \mathcal{F})$, by lemma $6.3 .1 \mathrm{~h},\left|\mathcal{R}_{N_{1}}^{\beta \eta}\right|_{\mathcal{C}}^{c}=\left|\mathcal{R}_{N_{2}}^{\beta \eta}\right|_{\mathcal{C}}^{c}$ and by lemma 6.3 .1 g , $\left|N_{1}\right|^{c}=\left|N_{2}\right|^{c}$. Finally, by lemma 2.28, $\mathcal{F}^{\prime}=\left|\mathcal{R}_{C_{1}\left[R_{1}^{\prime}\right]}^{\beta \eta}\right|^{c}=\left|\mathcal{R}_{C_{2}\left[R_{2}^{\prime}\right]}^{\beta \eta}\right|_{\mathcal{C}}^{c}=\mathcal{F}^{\prime \prime}$.
Lemma 6.7. Note that $\Phi^{\beta \eta}(M, \mathcal{F}) \neq \varnothing$. Then, it is sufficient to prove:

- $(M, \mathcal{F}) \rightarrow_{\beta \eta d}^{*}\left(M^{\prime}, \mathcal{F}^{\prime}\right) \Rightarrow \forall N \in \Phi^{\beta \eta}(M, \mathcal{F}), \exists N^{\prime} \in \Phi^{\beta \eta}\left(M^{\prime}, \mathcal{F}^{\prime}\right), N \rightarrow_{\beta \eta}^{*} N^{\prime}$ by induction on the reduction $(M, \mathcal{F}) \rightarrow_{\beta \eta d}^{*}\left(M^{\prime}, \mathcal{F}^{\prime}\right)$.
- If $(M, \mathcal{F})=\left(M^{\prime}, \mathcal{F}^{\prime}\right)$ then it is done.
$-\operatorname{Let}(M, \mathcal{F}) \rightarrow_{\beta \eta d}\left(M^{\prime \prime}, \mathcal{F}^{\prime \prime}\right) \rightarrow_{\beta \eta d}^{*}\left(M^{\prime}, \mathcal{F}^{\prime}\right)$.
By IH, $\forall N^{\prime \prime} \in \Phi^{\beta \eta}\left(M^{\prime \prime}, \mathcal{F}^{\prime \prime}\right), \exists N^{\prime} \in \Phi^{\beta \eta}\left(M^{\prime}, \mathcal{F}^{\prime}\right)$ such that $N \rightarrow_{\beta \eta}^{*} N^{\prime \prime}$. By definition 6.6, $\exists C \in \mathcal{F}$ such that $M \xrightarrow{C}_{\beta \eta} M^{\prime \prime}$ and $\mathcal{F}^{\prime \prime}$ is the set of $\beta \eta$-residuals in $M^{\prime \prime}$ relative to C. By definition 6.5 we obtain $\forall N \in$ $\Phi^{\beta \eta}(M, \mathcal{F}), \exists N^{\prime \prime} \in \Phi^{\beta \eta}\left(M^{\prime \prime}, \mathcal{F}^{\prime \prime}\right), N \rightarrow_{\beta \eta} N^{\prime \prime}$.
- $\exists N \in \Phi^{\beta \eta}(M, \mathcal{F}), \exists N^{\prime} \in \Phi^{\beta \eta}\left(M^{\prime}, \mathcal{F}^{\prime}\right), N \rightarrow_{\beta \eta}^{*} N^{\prime} \Rightarrow(M, \mathcal{F}) \rightarrow_{\beta \eta d}^{*}\left(M^{\prime}, \mathcal{F}^{\prime}\right)$ by induction on the reduction $N \rightarrow{ }_{\beta \eta}^{*} N^{\prime}$ such that $N \in \Phi^{\beta \eta}(M, \mathcal{F})$ and $N^{\prime} \in \Phi^{\beta \eta}\left(M^{\prime}, \mathcal{F}^{\prime}\right)$.
- If $N=N^{\prime}$ then by lemma 6.3.2b, $M=M^{\prime}$ and $\mathcal{F}=\mathcal{F}^{\prime}$.
- Let $N \rightarrow_{\beta \eta} N^{\prime \prime} \rightarrow_{\beta \eta}^{*} N^{\prime}$. By lemma 6.3.1c, $N \in \Lambda \eta_{c}$, so by lemma 2.12, $N^{\prime \prime} \in \Lambda \eta_{c}$. By lemma 6.3.2b, $\left(\left|N^{\prime \prime}\right|^{c},\left|\mathcal{R}_{N^{\prime \prime}}^{\beta \eta}\right|_{\mathcal{C}}^{c}\right)$ is the one and only pair such that $c \notin F V\left(\left|N^{\prime \prime}\right|^{c}\right),\left|\mathcal{R}_{N^{\prime \prime}}^{\beta \eta}\right|_{\mathcal{C}}^{c} \subseteq \mathcal{R}_{\left|N^{\prime \prime}\right|^{c}}^{\beta \eta}$ and $N^{\prime \prime} \in \Phi^{\beta \eta}\left(\left|N^{\prime \prime}\right|^{c},\left|\mathcal{R}_{N^{\prime \prime}}^{\beta \eta}\right|_{\mathcal{C}}^{c}\right)$ So by IH, $\left(\left|N^{\prime \prime}\right|^{c},\left|\mathcal{R}_{N^{\prime \prime}}^{\beta \eta}\right|_{\mathcal{C}}^{c}\right) \rightarrow_{\beta \eta d}^{*}\left(M^{\prime}, \mathcal{F}^{\prime}\right)$. Let $N \xrightarrow{C}_{\beta \eta} N^{\prime \prime}$, such that $C \in \mathcal{R}_{N}^{\beta \eta}$. By lemmas 2.26 and lemma $6.3 .1 \mathrm{~g},|N|^{c}=M \xrightarrow{|C|_{c}^{c}}{ }_{\beta \eta}\left|N^{\prime \prime}\right|^{c}$. So $|C|_{\mathcal{C}}^{c} \in \mathcal{R}_{M}^{\beta \eta}$. By definition 6.5, there exists a unique $\mathcal{F}^{\prime} \subseteq \mathcal{R}_{\left|N^{\prime \prime}\right|^{c}}^{\beta \eta}$, such that $\forall P \in \Phi^{\beta \eta}(M, \mathcal{F}), \exists P^{\prime} \in \Phi^{\beta \eta}\left(\left|N^{\prime \prime}\right|^{c}, \mathcal{F}^{\prime}\right)$ and $\exists C^{\prime} \in \mathcal{R}_{P}^{\beta \eta}$ such that $P \xrightarrow[\beta]{C}_{C^{\prime}}^{\beta \eta} P^{\prime}$ and $\left|C^{\prime}\right|_{\mathcal{C}}^{c}=|C|_{\mathcal{C}}^{c} . \mathcal{F}^{\prime}$ is called the set of $\beta \eta$-residuals of \mathcal{F} in $\left|N^{\prime \prime}\right|^{c}$ relative to $|C|_{\mathcal{C}}^{c}$. Since $N \in \Phi^{\beta \eta}(M, \mathcal{F}), \exists P^{\prime} \in \Phi^{\beta \eta}\left(\left|N^{\prime \prime}\right|^{c}, \mathcal{F}^{\prime}\right)$ and $\exists C^{\prime} \in \mathcal{R}_{N}^{\beta \eta}$ such that $N \xrightarrow{C^{\prime}}{ }_{\beta \eta} P^{\prime}$ and $\left|C^{\prime}\right|_{\mathcal{C}}^{c}=|C|_{\mathcal{C}}^{c}$. By lemma 2.17, $C=C^{\prime}$, so $P^{\prime}=N^{\prime \prime}$. Since $N^{\prime \prime} \in \Phi^{\beta \eta}\left(\left|N^{\prime \prime}\right|^{c}, \mathcal{F}^{\prime}\right)$, by lemma 6.3.2b, $\mathcal{F}^{\prime}=\left|\mathcal{R}_{N^{\prime \prime}}^{\beta \eta}\right|_{\mathcal{C}}^{c}$. Finally, by definition $6.6,(M, \mathcal{F}) \rightarrow_{\beta \eta d}\left(\left|N^{\prime \prime}\right|^{c},\left|\mathcal{R}_{N^{\prime \prime}}^{\beta \eta}\right|_{\mathcal{C}}^{c}\right)$.

Lemma 6.8. By lemma 6.3.1c, $\Phi^{\beta \eta}\left(M, \mathcal{F}_{1}\right), \Phi^{\beta \eta}\left(M, \mathcal{F}_{2}\right) \in \Lambda \eta_{c} . \forall N_{1} \in \Phi^{\beta \eta}\left(M, \mathcal{F}_{1}\right)$ and $\forall N_{2} \in \Phi^{\beta \eta}\left(M, \mathcal{F}_{2}\right)$, by lemma $6.3 .1 \mathrm{~g},\left|N_{1}\right|^{c}=\left|N_{2}\right|^{c}$ and by lemma 6.3.1h, $\left|\mathcal{R}_{N_{1}}^{\beta \eta}\right|_{\mathcal{C}}^{c}=\mathcal{F}_{1} \subseteq \mathcal{F}_{2}=\left|\mathcal{R}_{N_{2}}^{\beta \eta}\right|_{\mathcal{C}}^{c}$.

If $\left(M, \mathcal{F}_{1}\right) \rightarrow_{\beta \eta d}\left(M^{\prime}, \mathcal{F}_{1}^{\prime}\right)$ then by lemma 6.7, $\exists N_{1} \in \Phi^{\beta \eta}\left(M, \mathcal{F}_{1}\right)$ and $\exists N_{1}^{\prime} \in$ $\Phi^{\beta \eta}\left(M^{\prime}, \mathcal{F}_{1}^{\prime}\right)$ such that $N_{1} \rightarrow_{\beta \eta} N_{1}^{\prime}$. Let $N_{1}{\xrightarrow{C_{1}}}_{\beta \eta} N_{1}^{\prime}$ such that $C_{1} \in \mathcal{R}_{N_{1}}^{\beta \eta}$. Let $C_{0}=\left|C_{1}\right|_{\mathcal{C}}^{c}$, so by lemma 6.3.1h, $C_{0} \in \mathcal{F}_{1}$. By lemma 2.26 and lemma 6.3.1g, $M{\xrightarrow{C_{0}}}_{\beta \eta} M^{\prime}$.

By lemma 6.4 there exists a unique set $\mathcal{F}^{\prime} \subseteq \mathcal{R}_{M^{\prime}}^{\beta \eta}$, such that $\forall P_{1} \in \Phi^{\beta \eta}\left(M, \mathcal{F}_{1}\right)$, $\exists P_{1}^{\prime} \in \Phi^{\beta \eta}\left(M^{\prime}, \mathcal{F}^{\prime}\right)$ and $\exists C^{\prime} \in \mathcal{R}_{P_{1}}^{\beta \eta}$ such that $P_{1}{\xrightarrow{C^{\prime}}}_{\beta \eta} P_{1}^{\prime}$ and $\left|C^{\prime}\right|_{\mathcal{C}}^{c}=C_{0}$.

Since, $N_{1} \in \Phi^{\beta \eta}\left(M, \mathcal{F}_{1}\right), \exists P_{1}^{\prime} \in \Phi^{\beta \eta}\left(M^{\prime}, \mathcal{F}^{\prime}\right)$ and $\exists C^{\prime} \in \mathcal{R}_{N}^{\beta \eta}$ such that $N_{1}{\xrightarrow{C^{\prime}}}_{\beta \eta}$ P_{1}^{\prime} and $\left|C^{\prime}\right|_{\mathcal{C}}^{c}=C_{0}$. Since $C^{\prime}, C_{1} \in \mathcal{R}_{N_{1}}^{\beta \eta}$, by lemma 2.17, $C^{\prime}=C_{1}$. So, $P_{1}^{\prime}=N_{1}$. By lemma 6.3.1h, $\mathcal{F}^{\prime}=\left|\mathcal{R}_{N_{1}}^{\beta \eta}\right|_{\mathcal{C}}^{c}=\mathcal{F}_{1}^{\prime}$.

By lemma 6.4 there exists a unique set $\mathcal{F}_{2}^{\prime} \subseteq \mathcal{R}_{M^{\prime}}^{\beta \eta}$, such that $\forall P_{2} \in \Phi^{\beta \eta}\left(M, \mathcal{F}_{2}\right)$, $\exists P_{2}^{\prime} \in \Phi^{\beta \eta}\left(M^{\prime}, \mathcal{F}_{2}^{\prime}\right)$ and $\exists C_{2} \in \mathcal{R}_{P_{2}}^{\beta \eta}$ such that $P_{2} \xrightarrow{C_{2}}{ }_{\beta \eta} P_{2}^{\prime}$ and $\left|C_{2}\right|_{\mathcal{C}}^{c}=C_{0}$.

Since $\Phi^{\beta \eta}\left(M, \mathcal{F}_{2}\right) \neq \varnothing$, let $N_{1} \in \Phi^{\beta \eta}\left(M, \mathcal{F}_{2}\right)$. So, $\exists N_{2}^{\prime} \in \Phi^{\beta \eta}\left(M^{\prime}, \mathcal{F}_{2}^{\prime}\right)$ and $\exists C_{2} \in \mathcal{R}_{N_{2}}^{\beta \eta}$ such that $N_{2}{\xrightarrow{C_{2}}}_{\beta \eta} N_{2}^{\prime}$ and $\left|C_{2}\right|_{\mathcal{C}}^{c}=C_{0}$. By lemma 6.3.1h, $\mathcal{F}_{2}^{\prime}=\left|\mathcal{R}_{N_{2}^{\prime}}^{\beta \eta}\right|_{\mathcal{C}}^{c}$.

Hence, by lemma 2.28, $\mathcal{F}_{1}^{\prime} \subseteq \mathcal{F}_{2}^{\prime}$ and by lemma $6.7,\left(M, \mathcal{F}_{2}\right) \rightarrow_{\beta \eta d}\left(M^{\prime}, \mathcal{F}_{2}^{\prime}\right)$.
Lemma 6.9. If $M{\xrightarrow{\mathcal{F}_{1}}}_{\beta \eta d} M_{1}$ and $M{\xrightarrow{\mathcal{F}_{2}}}_{\beta \eta d} M_{2}$, then $\exists \mathcal{F}_{1}^{\prime \prime}, \mathcal{F}_{2}^{\prime \prime}$ such that $\left(M, \mathcal{F}_{1}\right) \rightarrow_{\beta \eta d}^{*}$ $\left(M_{1}, \mathcal{F}_{1}^{\prime \prime}\right)$ and $\left(M, \mathcal{F}_{2}\right) \rightarrow_{\beta \eta d}^{*}\left(M_{2}, \mathcal{F}_{2}^{\prime \prime}\right)$. By lemma 6.8, $\exists \mathcal{F}_{1}^{\prime \prime \prime} \subseteq \mathcal{R}_{M_{1}}^{\beta \eta}$ and $\exists \mathcal{F}_{2}^{\prime \prime \prime} \subseteq$ $\mathcal{R}_{M_{2}}^{\beta \eta}$ such that $\left(M, \mathcal{F}_{1} \cup \mathcal{F}_{2}\right) \rightarrow_{\beta \eta d}^{*}\left(M_{1}, \mathcal{F}_{1}^{\prime \prime} \cup \mathcal{F}_{1}^{\prime \prime \prime}\right)$ and $\left(M, \mathcal{F}_{1} \cup \mathcal{F}_{2}\right) \rightarrow_{\beta \eta d}^{*}\left(M_{2}, \mathcal{F}_{2}^{\prime \prime} \cup\right.$ $\left.\mathcal{F}_{2}^{\prime \prime \prime}\right)$. By lemma 6.7 there exist $T, T_{1}, T_{2} \in \Lambda \eta_{c}$ such that

$$
T \in \Phi^{\beta \eta}\left(M, \mathcal{F}_{1}\right), T_{1} \in \Phi^{\beta \eta}\left(M_{1}, \mathcal{F}_{1}^{\prime \prime} \cup \mathcal{F}_{1}^{\prime \prime \prime}\right), T_{2} \in \Phi^{\beta \eta}\left(M_{2}, \mathcal{F}_{2}^{\prime \prime} \cup \mathcal{F}_{2}^{\prime \prime \prime}\right)
$$

and $T \rightarrow_{\beta \eta}^{*} T_{1}$ and $T \rightarrow_{\beta \eta}^{*} T_{2}$. Since by lemma 6.3.1c, $T \in \Lambda \eta_{c}$ and by lemma 5.13.2, T is typable in the type system D, so $T \in \mathrm{CR}^{\beta \eta}$ by corollary 5.12 . So, by lemma 2.12.1, there exists $T_{3} \in \Lambda \eta_{c}$, such that $T_{1} \rightarrow_{\beta \eta}^{*} T_{3}$ and $T_{2} \rightarrow{ }_{\beta \eta}^{*} T_{3}$. Let $\mathcal{F}_{3}=$ $\left|\mathcal{R}_{T_{3}}^{\beta \eta}\right|_{\mathcal{C}}^{c}$ and $M_{3}=\left|T_{3}\right|^{\beta \eta}$, then by lemma 6.3.2a, $\mathcal{F}_{3} \subseteq \mathcal{R}_{M_{3}}^{\beta \eta}$ and $T_{3} \in \Phi^{\beta \eta}\left(M_{3}, \mathcal{F}_{3}\right)$. Hence, by lemma 6.7, $\left(M_{1}, \mathcal{F}_{1}^{\prime \prime} \cup \mathcal{F}_{1}^{\prime \prime \prime}\right) \rightarrow_{\beta \eta d}^{*}\left(M_{3}, \mathcal{F}_{3}\right)$ and $\left(M_{2}, \mathcal{F}_{2}^{\prime \prime} \cup \mathcal{F}_{2}^{\prime \prime \prime}\right) \rightarrow_{\beta \eta d}^{*}$ $\left(M_{3}, \mathcal{F}_{3}\right)$, i.e., $M_{1} \xrightarrow{\mathcal{F}_{1}^{\prime \prime} \cup \mathcal{F}_{1}^{\prime \prime \prime}}{ }_{\beta \eta d} M_{3}$ and $M_{2} \xrightarrow{\mathcal{F}_{2}^{\prime \prime} \cup \mathcal{F}_{2}^{\prime \prime \prime}}{ }_{\beta \eta d} M_{3}$.

Lemma 6.11. Note that $\varnothing \subseteq \mathcal{R}_{M}^{\beta \eta}$. We prove this statement by induction on the structure of M.

- Let $M \in \mathcal{V}$ then $\Phi^{\beta \eta}(M, \varnothing)=\left\{c^{n}(M) \mid n \geq 0\right\}$ and $\mathcal{R}_{c^{n}(M)}^{\beta \eta}=\varnothing$, where $n \geq 0$, by lemma 2.5 and lemma 2.9.5.
- Let $M=\lambda x . N$ then $\Phi^{\beta \eta}(M, \varnothing)=\left\{c^{n}(\lambda x \cdot Q[x:=c(c x)]) \mid n \geq 0 \wedge Q \in\right.$ $\left.\Phi^{\beta \eta}(N, \varnothing)\right\}$. Let $P \in \Phi^{\beta \eta}(M, \varnothing)$, then $P=c^{n}(\lambda x \cdot Q[x:=c(c x)])$ such that $n \geq 0$ and $Q \in \Phi^{\beta \eta}(N, \varnothing)$ By IH, $\mathcal{R}_{Q}^{\beta \eta}=\varnothing$ and by lemma 2.9.4, lemma 2.9.3 and lemma 2.9.5, $\mathcal{R}_{P}^{\beta \eta}=\varnothing$.
- Let $M=M_{1} M_{2}$ then $\Phi^{\beta \eta}(M, \varnothing)=\left\{c^{n}\left(c Q_{1} Q_{2}\right) \mid n \geq 0 \wedge Q_{1} \in \Phi^{\beta \eta}\left(M_{1}, \varnothing\right) \wedge\right.$ $\left.Q_{2} \in \Phi^{\beta \eta}\left(M_{2}, \varnothing\right)\right\}$. Let $P \in \Phi^{\beta \eta}(M, \varnothing)$, then $P=c^{n}\left(c Q_{1} Q_{2}\right)$ such that $n \geq 0, Q_{1} \in \Phi^{\beta \eta}\left(M_{1}, \varnothing\right)$ and $Q_{2} \in \Phi^{\beta \eta}\left(M_{2}, \varnothing\right)$. By IH, $\mathcal{R}_{Q_{1}}^{\beta \eta}=\mathcal{R}_{Q_{2}}^{\beta \eta}=\varnothing$ and by lemma 2.5 and lemma 2.9.5, $\mathcal{R}_{P}^{\beta \eta}=\varnothing$.

Lemma 6.12. We prove the statement by induction on the structure of M.

- let $M \in \mathcal{V}$, then $\Phi^{\beta \eta}(M, \varnothing)=\left\{c^{n}(M) \mid n \geq 0\right\}$. Let $P \in \Phi^{\beta \eta}(M, \varnothing)$ and $Q \in \Phi^{\beta \eta}(N, \varnothing)$, then $P=c^{n}(M)$ where $n \geq 0$.
- Either $M=x$, then $P[x:=Q]=c^{n}(Q)$ and by lemma 6.3.1f and lemma 6.11, $\mathcal{R}_{c^{n}(Q)}^{\beta \eta}=\varnothing$.
- Or $M \neq x$, then $P[x:=Q]=P$ and by lemma $6.11, \mathcal{R}_{P}^{\beta \eta}=\varnothing$.
- Let $M=\lambda y \cdot M^{\prime}$ then $\Phi^{\beta \eta}(M, \varnothing)=\left\{c^{n}\left(\lambda y \cdot P^{\prime}[y:=c(c y)]\right) \mid n \geq 0 \wedge P^{\prime} \in\right.$ $\left.\Phi^{\beta \eta}\left(M^{\prime}, \varnothing\right)\right\}$. Let $P \in \Phi^{\beta \eta}(M, \varnothing)$ and $Q \in \Phi^{\beta \eta}(N, \varnothing)$, then $P=c^{n}\left(\lambda y \cdot P^{\prime}[y:=\right.$ $c(c y)])$ where $n \geq 0$ and $P^{\prime} \in \Phi^{\beta \eta}\left(M^{\prime}, \varnothing\right)$.
So, $\mathcal{R}_{P[x:=Q]}^{\beta \eta}=\mathcal{R}_{c^{n}\left(\lambda y . P^{\prime}[x:=Q][y:=c(c y)]\right)}^{\beta \eta}$. By IH, $\mathcal{R}_{P^{\prime}[x:=Q]}^{\beta \eta}=\varnothing$ and by lemma 2.9.4, lemma 2.9.3 and lemma 2.9.5, $\mathcal{R}_{P[x:=Q]}^{\beta \eta}=\varnothing$.
- Let $M=M_{1} M_{2}$ then $\Phi^{\beta \eta}(M, \varnothing)=\left\{c^{n}\left(c P_{1} P_{2}\right) \mid n \geq 0 \wedge P_{1} \in \Phi^{\beta \eta}\left(M_{1}, \varnothing\right) \wedge\right.$ $\left.P_{2} \in \Phi^{\beta \eta}\left(M_{2}, \varnothing\right)\right\}$. Let $P \in \Phi^{\beta \eta}(M, \varnothing)$ and $Q \in \Phi^{\beta \eta}(N, \varnothing)$ then $P=$ $c^{n}\left(c P_{1} P_{2}\right)$ where $n \geq 0, P_{1} \in \Phi^{\beta \eta}\left(M_{1}, \varnothing\right)$ and $P_{2} \in \Phi^{\beta \eta}\left(M_{2}, \varnothing\right)$.
So, $\mathcal{R}_{P[x:=Q]}^{\beta \eta}=\mathcal{R}_{c^{n}\left(c P_{1}[x:=Q] P_{2}[x:=Q]\right)}^{\beta \eta}$. By IH, $\mathcal{R}_{P_{1}[x:=Q]}^{\beta \eta}=\mathcal{R}_{P_{2}[x:=Q]}^{\beta \eta}=\varnothing$ and by lemma 2.5 and lemma 2.9.5, $\mathcal{R}_{P[x:=Q]}^{\beta \eta}=\varnothing$.

Lemma 6.13. We prove the statement by induction on the structure of M.

- Let $M \in \mathcal{V}$ then nothing to prove since by lemma $2.5, \mathcal{R}_{M}^{\beta \eta}=\varnothing$.
- Let $M=\lambda x . N$.
- If $M \in \mathcal{R}^{\beta \eta}$ then $N=N_{0} x$ such that $x \notin F V\left(N_{0}\right)$ and by lemma 2.5, $\mathcal{R}_{M}^{\beta \eta}=\{\square\} \cup\left\{\lambda x . C \mid C \in \mathcal{R}_{N}^{\beta \eta}\right\}$. Let $C \in \mathcal{R}_{M}^{\beta \eta}$ then:
* Either $C=\square$, then $\Phi^{\beta \eta}(M,\{C\})=\left\{c^{n}\left(\lambda x . P^{\prime}\right) \mid n \geq 0 \wedge P^{\prime} \in\right.$ $\left.\Phi_{0}^{\beta \eta}(N, \varnothing)\right\}$. Let $P \in \Phi^{\beta \eta}(M,\{C\})$ then $P=c^{n}\left(\lambda x . P^{\prime}\right)$ such that $n \geq 0$ and $P^{\prime} \in \Phi_{0}^{\beta \eta}(N, \varnothing)$. So $P^{\prime}=c P_{0}^{\prime} x$ such that $P_{0}^{\prime} \in \Phi^{\beta \eta}\left(N_{0}, \varnothing\right)$. By lemma 6.11, $\mathcal{R}_{P^{\prime}}^{\beta \eta}=\varnothing$, so if $P \rightarrow_{\beta \eta} Q$ then $Q=c^{n+1} P_{0}^{\prime}$. By lemma 6.11, $\mathcal{R}_{P_{0}^{\prime}}^{\beta \eta}=\varnothing$ and by lemma 2.9.5, $\mathcal{R}_{Q}^{\beta \eta}=\varnothing$.
* Or $C=\lambda x . C^{\prime}$ such that $C^{\prime} \in \mathcal{R}_{N}^{\beta \eta}$, so $\Phi^{\beta \eta}(M,\{C\})=$ $\left\{c^{n}\left(\lambda x . P^{\prime}[x:=c(c x)]\right) \mid n \geq 0 \wedge P^{\prime} \in \Phi^{\beta \eta}\left(N,\left\{C^{\prime}\right\}\right)\right\}$. Let $P \in$ $\Phi^{\beta \eta}(M,\{C\})$ then $P=c^{n}\left(\lambda x . P^{\prime}[x:=c(c x)]\right)$ such that $n \geq 0$ and $P^{\prime} \in \Phi^{\beta \eta}\left(N,\left\{C^{\prime}\right\}\right)$. By lemma 2.9.4, lemma 2.9.3 and lemma 2.9.5, if $P \rightarrow_{\beta \eta} Q$ then $Q=c^{n}\left(\lambda x \cdot Q^{\prime}[x:=c(c x)]\right)$ such that $P^{\prime} \rightarrow_{\beta \eta} Q^{\prime}$. By IH, $\mathcal{R}_{Q^{\prime}}^{\beta \eta}=\varnothing$, so by lemma 2.9.4, lemma 2.9.3 and lemma 2.9.5, $\mathcal{R}_{Q}^{\beta \eta}=\varnothing$.
- Else, by lemma 2.5, $\mathcal{R}_{M}^{\beta \eta}=\left\{\lambda x . C \mid C \in \mathcal{R}_{N}^{\beta \eta}\right\}$. Let $C \in \mathcal{R}_{M}^{\beta \eta}$ then $C=\lambda x . C^{\prime}$ such that $C^{\prime} \in \mathcal{R}_{N}^{\beta \eta} . \Phi^{\beta \eta}(M,\{C\})=\left\{c^{n}\left(\lambda x . P^{\prime}[x:=\right.\right.$ $\left.c(c x)]) \mid n \geq 0 \wedge P^{\prime} \in \Phi^{\beta \eta}\left(N,\left\{C^{\prime}\right\}\right)\right\}$. Let $P \in \Phi^{\beta \eta}(M,\{C\})$ then $P=c^{n}\left(\lambda x \cdot P^{\prime}[x:=c(c x)]\right)$ such that $n \geq 0$ and $P^{\prime} \in \Phi^{\beta \eta}\left(N,\left\{C^{\prime}\right\}\right)$. By lemma 2.9.4, lemma 2.9.3 and lemma 2.9.5, if $P \rightarrow_{\beta \eta} Q$ then $Q=$ $c^{n}\left(\lambda x \cdot Q^{\prime}[x:=c(c x)]\right)$ such that $P^{\prime} \rightarrow_{\beta \eta} Q^{\prime}$. By $\mathrm{IH}, \mathcal{R}_{Q^{\prime}}^{\beta \eta}=\varnothing$, so by lemma 2.9.4, lemma 2.9.3 and lemma 2.9.5, $\mathcal{R}_{Q}^{\beta \eta}=\varnothing$.
- Let $M=M_{1} M_{2}$.
- Let $M \in \mathcal{R}^{\beta \eta}$, then $M_{1}=\lambda x . M_{0}$ and by lemma $2.5, \mathcal{R}_{M}^{\beta \eta}=\{\square\} \cup$ $\left\{C M_{2} \mid C \in \mathcal{R}_{M_{1}}^{\beta \eta}\right\} \cup\left\{M_{1} C \mid C \in \mathcal{R}_{M_{2}}^{\beta \eta}\right\}$. Let $C \in \mathcal{R}_{M}^{\beta \eta}$ then:
* Either $C=\square$ then $\Phi^{\beta \eta}(M,\{C\})=\left\{c^{n}\left(P_{1} P_{2}\right) \mid n \geq 0 \wedge P_{1} \in\right.$ $\left.\Phi_{0}^{\beta \eta}\left(M_{1}, \varnothing\right) \wedge P_{2} \in \Phi^{\beta \eta}\left(M_{2}, \varnothing\right)\right\}$. Let $P \in \Phi^{\beta \eta}(M,\{C\})$ then $P=$ $c^{n}\left(P_{1} P_{2}\right)$ such that $n \geq 0, P_{1} \in \Phi_{0}^{\beta \eta}\left(M_{1}, \varnothing\right)$ and $P_{2} \in \Phi^{\beta \eta}\left(M_{2}, \varnothing\right)$. By lemma 6.11 and lemma 6.3.1a, $\mathcal{R}_{P_{1}}^{\beta \eta}=\mathcal{R}_{P_{2}}^{\beta \eta}=\varnothing$. Since $P_{1} \in$ $\Phi_{0}^{\beta \eta}\left(M_{1}, \varnothing\right), P_{1}=\lambda x . P_{0}[x:=c(c x)]$ such that $P_{0} \in \Phi^{\beta \eta}\left(M_{0}, \varnothing\right)$. So, if $P \rightarrow_{\beta \eta} Q$, then $Q=c^{n}\left(P_{0}\left[x:=c\left(c P_{2}\right)\right]\right)$. By lemma 6.12 and lemma 2.9.5, $\mathcal{R}_{Q}^{\beta \eta}=\varnothing$.
* Or $C=C^{\prime} M_{2}$ such that $C^{\prime} \in \mathcal{R}_{M_{1}}^{\beta \eta}$. So, $\Phi^{\beta \eta}(M,\{C\})=\left\{c^{n}\left(c P_{1} P_{2}\right) \mid\right.$ $\left.n \geq 0 \wedge P_{1} \in \Phi^{\beta \eta}\left(M_{1},\left\{C^{\prime}\right\}\right) \wedge P_{2} \in \Phi^{\beta \eta}\left(M_{2}, \varnothing\right)\right\}$.
Let $P \in \Phi^{\beta \eta}(M,\{C\})$ then $P=c^{n}\left(c P_{1} P_{2}\right)$ such that $n \geq 0, P_{1} \in$ $\Phi^{\beta \eta}\left(M_{1},\left\{C^{\prime}\right\}\right)$ and $P_{2} \in \Phi^{\beta \eta}\left(M_{2}, \varnothing\right)$. By lemma 6.11, $\mathcal{R}_{P_{2}}^{\beta \eta}=\varnothing$. So, if $P \rightarrow_{\beta \eta} Q$ then $Q=c^{n}\left(c P_{1}^{\prime} P_{2}\right)$ and $P_{1} \rightarrow_{\beta \eta} P_{1}^{\prime}$. By IH, $\mathcal{R}_{P_{1}^{\prime}}^{\beta \eta}=\varnothing$ and by lemma 2.5 and lemma 2.9.5, $\mathcal{R}_{Q}^{\beta \eta}=\varnothing$.
* Or $C=M_{1} C^{\prime}$ such that $C^{\prime} \in \mathcal{R}_{M_{2}}^{\beta \eta}$. So, $\Phi^{\beta \eta}(M,\{C\})=\left\{c^{n}\left(c P_{1} P_{2}\right) \mid\right.$ $\left.n \geq 0 \wedge P_{1} \in \Phi^{\beta \eta}\left(M_{1}, \varnothing\right) \wedge P_{2} \in \Phi^{\beta \eta}\left(M_{2},\left\{C^{\prime}\right\}\right)\right\}$.
Let $P \in \Phi^{\beta \eta}(M,\{C\})$ then $P=c^{n}\left(c P_{1} P_{2}\right)$ such that $n \geq 0, P_{1} \in$ $\Phi^{\beta \eta}\left(M_{1}, \varnothing\right)$ and $P_{2} \in \Phi^{\beta \eta}\left(M_{2},\left\{C^{\prime}\right\}\right)$. By lemma 6.11, $\mathcal{R}_{P_{1}}^{\beta \eta}=\varnothing$. So, if $P \rightarrow_{\beta \eta} Q$ then $Q=c^{n}\left(c P_{1} P_{2}^{\prime}\right)$ and $P_{2} \rightarrow_{\beta \eta} P_{2}^{\prime}$. By IH, $\mathcal{R}_{P_{2}^{\prime}}^{\beta \eta}=\varnothing$ and by lemma 2.5 and lemma 2.9.5, $\mathcal{R}_{Q}^{\beta \eta}=\varnothing$.
- Let $M \notin \mathcal{R}^{\beta \eta}$, then by lemma 2.5, $\mathcal{R}_{M}^{\beta \eta}=\left\{C M_{2} \mid C \in \mathcal{R}_{M_{1}}^{\beta \eta}\right\} \cup$ $\left\{M_{1} C \mid C \in \mathcal{R}_{M_{2}}^{\beta \eta}\right\}$.
* Or $C=C^{\prime} M_{2}$ such that $C^{\prime} \in \mathcal{R}_{M_{1}}^{\beta \eta}$. So, $\Phi^{\beta \eta}(M,\{C\})=\left\{c^{n}\left(c P_{1} P_{2}\right) \mid\right.$ $\left.n \geq 0 \wedge P_{1} \in \Phi^{\beta \eta}\left(M_{1},\left\{C^{\prime}\right\}\right) \wedge P_{2} \in \Phi^{\beta \eta}\left(M_{2}, \varnothing\right)\right\}$.
Let $P \in \Phi^{\beta \eta}(M,\{C\})$ then $P=c^{n}\left(c P_{1} P_{2}\right)$ such that $n \geq 0, P_{1} \in$ $\Phi^{\beta \eta}\left(M_{1},\left\{C^{\prime}\right\}\right)$ and $P_{2} \in \Phi^{\beta \eta}\left(M_{2}, \varnothing\right)$. By lemma 6.11, $\mathcal{R}_{P_{2}}^{\beta \eta}=\varnothing$. So, if $P \rightarrow_{\beta \eta} Q$ then $Q=c^{n}\left(c P_{1}^{\prime} P_{2}\right)$ and $P_{1} \rightarrow_{\beta \eta} P_{1}^{\prime}$. By IH, $\mathcal{R}_{P_{1}^{\prime}}^{\beta \eta}=\varnothing$ and by lemma 2.5 and lemma 2.9.5, $\mathcal{R}_{Q}^{\beta \eta}=\varnothing$.
* Or $C=M_{1} C^{\prime}$ such that $C^{\prime} \in \mathcal{R}_{M_{2}}^{\beta \eta}$. So, $\Phi^{\beta \eta}(M,\{C\})=\left\{c^{n}\left(c P_{1} P_{2}\right) \mid\right.$ $\left.n \geq 0 \wedge P_{1} \in \Phi^{\beta \eta}\left(M_{1}, \varnothing\right) \wedge P_{2} \in \Phi^{\beta \eta}\left(M_{2},\left\{C^{\prime}\right\}\right)\right\}$.
Let $P \in \Phi^{\beta \eta}(M,\{C\})$ then $P=c^{n}\left(c P_{1} P_{2}\right)$ such that $n \geq 0, P_{1} \in$ $\Phi^{\beta \eta}\left(M_{1}, \varnothing\right)$ and $P_{2} \in \Phi^{\beta \eta}\left(M_{2},\left\{C^{\prime}\right\}\right)$. By lemma 6.11, $\mathcal{R}_{P_{1}}^{\beta \eta}=\varnothing$. So, if $P \rightarrow_{\beta \eta} Q$ then $Q=c^{n}\left(c P_{1} P_{2}^{\prime}\right)$ and $P_{2} \rightarrow_{\beta \eta} P_{2}^{\prime}$. By IH, $\mathcal{R}_{P_{2}^{\prime}}^{\beta \eta}=\varnothing$ and by lemma 2.5 and lemma 2.9.5, $\mathcal{R}_{Q}^{\beta \eta}=\varnothing$.
LemmA 6.14. By lemma 6.4, there exists a unique set $\mathcal{F}^{\prime} \subseteq \mathcal{R}_{M^{\prime}}^{\beta \eta}$, such that $\forall N \in$ $\Phi^{\beta \eta}(M,\{C\}), \exists N^{\prime} \in \Phi^{\beta \eta}\left(M^{\prime}, \mathcal{F}^{\prime}\right), N \rightarrow_{\beta \eta} N^{\prime}$. Let $N \in \bar{\Phi}^{\beta \eta}(M,\{C\})$ and $N^{\prime} \in$ $\Phi^{\beta \eta}\left(M^{\prime}, \mathcal{F}^{\prime}\right)$ such that $N \rightarrow_{\beta \eta} N^{\prime}$. By lemma 6.13, $\mathcal{R}_{N^{\prime}}^{\beta \eta}=\varnothing$, So $\left|\mathcal{R}_{N^{\prime}}^{\beta \eta}\right|_{\mathcal{C}}^{c}=\varnothing$ and by lemma $6.3 .1 \mathrm{~h}, \mathcal{F}^{\prime}=\varnothing$. Finally, by lemma $6.7,(M,\{C\}) \rightarrow_{\beta \eta d}\left(M^{\prime}, \varnothing\right)$.

Lemma 6.15. It is obvious that $\rightarrow_{1}^{*} \subseteq \rightarrow_{\beta \eta}^{*}$. We only prove that $\rightarrow_{\beta \eta}^{*} \subseteq \rightarrow_{1}^{*}$. Let $M, M^{\prime} \in \Lambda$ such that $M \rightarrow{ }_{\beta \eta}^{*} M^{\prime}$. We prove this claim by induction on $M \rightarrow{ }_{\beta \eta}^{*} M^{\prime}$.

- Let $M=M^{\prime}$ then it is done since $(M, \mathcal{F}) \rightarrow_{\beta \eta d}^{*}(M, \mathcal{F})$.
- Let $M \rightarrow_{\beta \eta}^{*} M^{\prime \prime} \rightarrow_{\beta \eta} M^{\prime}$. By IH, $M \rightarrow_{1}^{*} M^{\prime \prime}$. If $M^{\prime \prime}=C[R] \rightarrow_{\beta \eta} C\left[R^{\prime}\right]=M^{\prime}$ such that R^{\prime} is the contractum of R then by lemma $6.14,\left(M^{\prime \prime},\{r\}\right) \rightarrow_{\beta \eta d}$ $\left(M^{\prime}, \varnothing\right)$, so $M^{\prime \prime} \rightarrow_{1} M^{\prime}$. Hence $M \rightarrow{ }_{1}^{*} M^{\prime \prime} \rightarrow_{1} M^{\prime}$.

Lemma 6.16. Let $M_{1}, M_{2} \in \Lambda$ such that $M \rightarrow_{\beta \eta}^{*} M_{1}$ and $M \rightarrow_{\beta \eta}^{*} M_{2}$. Then by lemma $6.15, M \rightarrow_{1}^{*} M_{1}$ and $M \rightarrow_{1}^{*} M_{2}$. We prove the statement by induction on $M \rightarrow{ }_{1}^{*} M_{1}$.

- Let $M=M_{1}$. Hence $M_{1} \rightarrow{ }_{1}^{*} M_{2}$ and $M_{2} \rightarrow{ }_{1}^{*} M_{2}$.
- Let $M \rightarrow_{1}^{*} M_{1}^{\prime} \rightarrow_{1} M_{1}$. By IH, $\exists M_{3}^{\prime}, M_{1}^{\prime} \rightarrow_{1}^{*} M_{3}^{\prime}$ and $M_{2} \rightarrow_{1}^{*} M_{3}^{\prime}$. We prove that $\exists M_{3}, M_{1} \rightarrow_{1}^{*} M_{3}$ and $M_{3}^{\prime} \rightarrow_{1} M_{3}$, by induction on $M_{1}^{\prime} \rightarrow_{1}^{*} M_{3}^{\prime}$.
- let $M_{1}^{\prime}=M_{3}^{\prime}$, hence $M_{3}^{\prime} \rightarrow_{1} M_{1}$ and $M_{1} \rightarrow_{1}^{*} M_{1}$.
- Let $M_{1}^{\prime} \rightarrow_{1}^{*} M_{3}^{\prime \prime} \rightarrow_{1} M_{3}^{\prime}$. By IH, $\exists M_{3}^{\prime \prime \prime}, M_{1} \rightarrow_{1}^{*} M_{3}^{\prime \prime \prime}$ and $M_{3}^{\prime \prime} \rightarrow_{1} M_{3}^{\prime \prime \prime}$. By lemma 2.2.1, $c \notin F V M_{3}^{\prime \prime}$. Since $M_{3}^{\prime \prime} \rightarrow_{1} M_{3}^{\prime}$ and $M_{3}^{\prime \prime} \rightarrow_{1} M_{3}^{\prime \prime \prime}$, By lemma 6.9, $\exists M_{3}, M_{3}^{\prime} \rightarrow_{1} M_{3}$ and $M_{3}^{\prime \prime \prime} \rightarrow_{1} M_{3}$.

[^0]: *School of Mathematical and Computer Sciences, Heriot-Watt Univ., Riccarton, Edinburgh EH14 4AS, Scotland

