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Abstract

Reducibility has been used to prove a number of properties in the -
calculus and is well known to offer on one hand very general proofs which
can be applied to a number of instantiations, and on the other hand, to be
quite mysterious and inflexible. In this paper, we look at two related but
different results in the literature. We show that one such result (which aims
at giving reducibility proofs of Church-Rosser, standardization and weak nor-
malisation) faces serious problems which break the reducibility method and
then we provide a proposal to partially repair the method. Then, we consider
a second result whose purpose is to use reducibility to show Church-Rosser
of B-developments (without needing to use strong normalisation). We extend
the second result to encompass both G- and n-reduction rather than simply
(B-reduction.

1 Introduction

Reducibility is a method based on realizability semantics [Kle45], developed by
Tait [Tai67] in order to prove normalization of some functional theories. The idea
is to interpret types by sets of A-terms closed under some properties. Since, this
method has been improved and generalized. Krivine uses it in [Kri90] to prove the
strong normalization of system D [CDCV80]. Koletsos proves in [Kol85] that the
set of simply typed A-terms holds the Church-Rosser property. Some aspects of his
method have been reused by Gallier in [Gal97, Gal03] to prove some results such
as the strong normalization of A-terms that are typable in systems like D or D.
In his work, Gallier states some conditions a property needs to satisfy in order to
be enjoyed by some typable terms under some restrictions. Similarly, Ghilezan and
Likavec [GL02] state some conditions a property on A-terms has to satisfy to be held
by some A-terms typable in a system close to system D’. In addition, the authors
state a condition that a property needs to satisfy in order to step from “a A-term
typable, under some restrictions on types holds the property” to “a A-term of the
untyped lambda-calculus holds the property”. If it works, [GL02] would provide an
attractive method to establishing properties like Church-Rosser for all the untyped
A-terms, simply by showing easier conditions on typed terms. However, we will see
in this paper that both the method fails for the typed terms, and that the step of
passing from typed to untyped terms fails. We will provide a solution to repair the
first result, however, the second result seems unrepairable.

Step of establishing properties like Church-Rosser (or confluence) for typed A-
terms and concluding the properties for all the untyped A-terms have been success-
fully exploited in the literature. Koletsos and Stravinos [KS08] use a reducibility
method to state that A-terms that are typable in system D hold the Church-Rosser
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property. Then, using this result together with a method based on g-developments
[K1080, Kri90], they show that §-developments are Church-Rosser and this in turn
will imply the confluence of the untyped A-calculus. Although Klop proves the
confluence of S-developments [BBKV76], his proof is based on strong normalisation
whereas [KS08] only uses an embedding of S-developments in the reduction of ty-
pable A-terms. In this paper, we apply the method of [KS08] to SI-reduction and
then generalise the method to Grn-reduction.

In section 2 we introduce the formal machinery and establish the basic needed
lemmas. In section 3 we present the reducibility method of [GL02] and show that
it fails at a number of important propositions which makes it inapplicable. In
particular, we give counterexamples which show that all the conditions stated in
[GLO2] are satisfied, yet the the claimed property does not hold. In section 4 we
provide subsets of types which we use to partially salvage the reducibility method
of [GL02] and we show that this can now be correctly used to establish confluence,
standardization and weak head normal forms but only for restricted sets of lambda
terms and types. In section 5 we adapt the Church-Rosser proof of [KS08] to 5I-
reduction. In section 6 we generalise the method of [KS08] to handle n-reduction.
We conclude in section 7.

2 The Formal Machinery

In this section we provide some known formal machinery and introduce new defini-
tions and lemmas that are necessary for the paper. We take as convention that if
a metavariable v ranges over a set S then the metavariables v; such that ¢ > 0 and
the metavariables v’,v”, etc. also range over S.

2.1 Familiar background on A-calculus

This section consists of one long definition of some familiar (mostly standard) con-
cepts of the A-calculus and one lemma which deals with the shape of reductions.

Definition 2.1.

1. The set of terms of the A-calculus is defined as follows:
MeA:=z| (. M) | (M M)

We let z, 4, z, etc. range over V, a denumerably infinite set of A\-term variables,
and M, N, P, Q, etc. range over A. We assume the usual definition of subterms:
we write N C M if N is a subterm of M. We also assume the usual convention
for parenthesis and omit these when no confusion arises. In particular, we
write M Nj...N,, instead of (...(M N1) No..Np—1) N,.

We take terms modulo a-conversion and use the Barendregt convention (BC)
where the names of bound variables differ from the free ones. When two terms
M and N are equal (modulo «), we write M = N. We write F'V (M) for the
set of the free variables of term M.

2. Let n > 0. We define M™(N), by induction on n, as follows: M°(N) = N
and M"1(N) = M(M"(N)).

3. The set of term contexts is defined as follows:
CeC:=0| x.C|CM|MC

We define C'[M], as the filling up of the context C' with the term M, by induc-
tion on the structure of C: O[M] = M, (\z.C)[M] = Xz.C[M], (NC)[M] =
NC[M] and (CN)[M] = C[M]N.
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The set AI C A, of terms of the Al-calculus is defined by the grammar:

(a) If x € V then x € AL

(b) If z € FV(M) and M € Al then Az.M € Al

(¢) If M, N € Al then M N € AL
We define as usual the substitution M|z := N] of N for all free occurrences of
x in M. We define the substitution C[z := M| of N for all free occurrences of
x in context C by: Oz := N] =0, (A\y.C)[z := N] = \y.Clz := N] (z # y by
(BC)), (MC)[z := N] = Mz := N|C[z := N] and (CM)[z := N] = Clx :=
N]M[z := N]. We let M|[(x; :== N;)7] be the simultaneous substitution of N;
for all free occurrences of x; in M for 1 <17 <n.

We assume the usual definition of compatibility. For r € {3, 81, Bn}, we define
the reduction relation —,. on A as the least compatible relation closed under
rule (r) : L —, R below, and we call L an r-redex and R the contractum of
L (or the L contractum). We define R" to be the set of r-redexes.

e (0): Az.M)N —3 M|z := NJ.
o (BI): (A\e.M)N —pr Mz := N] when z € FV(M).
o (n): \x.Mxz —, M when x ¢ FV(M).

We define R?" = RP UR" and —g,=—3 U —,.

Let r € {8,81,8n}. We define Ry, = {C | C € CAIR € R",C|R] = M}.
If M —, N by contracting the r-redex R in M = CI[R] then C € R}, by

definition, N = C[R'] where R’ is the contractum of R and we write M <, N.
Let MeAand FCA F|M={N|NeFANCM}.

If M = Axy....¢p.(Ax.Mo)My ... M,, such that n > 0 and m > 1 then
(Ax.My)M; is called the S-head redex of M.

If M = (Ax.Moz)M; ...M,, such that m > 1 then (Az.Mpx) is called the
n-head redex of M.

Let r € {8,n}. We write M —,,. M’ (resp. M —;,. M') if M’ is obtained by
reducing the r-head (resp. a non r-head) redex of M.

We define: —gip=—3 U —y

Let r € {—3,—n, =8y, =81, —hB: —hys —>i, —in, —gint- We use —% to de-
note the reflexive transitive closure of —,. We let ~,. denote the equivalence
relation induced by —,..

If the r-reduction from M to N is in k steps, we write M —% N.

Let r € {BI, 8n}, M not an application and n > 0. A term M'N{N; ... N/ is
a direct r-reduct of MNoNy ... N, iff Vi € {0,...,n}, N; —* N/ and

e if r =3I then M —7; M.

e if r = fn then M —7, M’
NFs = {Az1.... Azp.2oN1 ... Ny | nym > 0, Ny, ..., N, € NFg}.
WNs = {M € A | 3N € NF5, M —5 N}.
Let r € {8, 81, Bn}.
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e We say that M has the Church-Rosser property for r (has r-CR) if when-
ever M —» My and M — My then there is an M3 such that My —) M3
and M2 —>;k, Mg.

e CR" ={M | M has r-CR}.

o CRy={zM71...M,, [ n>0AzeVANMe{l,...,n},M; € CR")}.

e We use CR to denote CR” and CRy to denote CRg.

e A term is a weak head normal form if it is an abstraction or if it starts
with a variable. A term is weakly head normalizing if it reduces to a weak
head normal form. Let W' ={M € A | In > 0,3z € V,3P, P,,..., P, €
A M —FAz.Por M —*zP;...P,}. We use W to denote W

We say that M has the standardization property if whenever M —3 N then
there is an M’ such that M —j M’ and M" — N. Let S={M € A | M has
the standardization property}. O

The next lemma deals with the shape of reductions.

Lemma 2.2.

1.
2.
3.

2.2

If M =5, M’ then FV (M) C FV(M),
If M =75 M then FV(M) = FV(M') and if M € Al then M' € AL

.M —p, P iff either (P = Xx.M' and M —g, M') or (M = Pz and
x & FV(P)).

.M —gin P iff (P = Xe.M' and M —g,, M’).

Letn > 0. A direct fn-reduct of (Ax.M)NoNy...N,, is a term
(Az.M")NgN7 ... N,, such that M —7, M' and Vi € {0,...,n}, N; =5, Nj.

Let r € {BI,Bn}, M not an application, n > 0, P is not a direct r-reduct of
MNy...N,, and MNgy...N, —>7’f P. Then the following holds:

(a) M=Xe.M', k>1, and if k =1 then P = M'[x := No|N;y ... N,.
(b) There exists a direct r-reduct (Az.M")N{N;...N} of MNy...N, such
that M"' [z :== N§]Ny ... N} —* P.

Let r € {BI,Bn}, n > 0 and (A\x.M)NoNj ... N, —% P. There exist P' such
that P —* P’ and

(a) If r = BI and x € FV(M) then M[z := Ny|Ny ... N, —* P'.
(b) If r = Bn then M|x := No]Ny ... N, —* P'.

Formalising the background on developments

In this section we go through some needed background from [Kri90] on developments
and we precisely formalise and establish all the necessary properties. In order not
to clutter the paper, we have put all the proofs of this section in an appendix.
Throughout the paper, we take ¢ to be a metavariable ranging over V. As far as we
know, this is the first precise formalisation of developments.

The next definition adapts A. of [Kri90] to deal with SI- and Bn-reduction.
Basically, Al is A. where in the abstraction construction rule (R1).2, we restrict
abstraction to AI. In An, we introduce the new rule (R4) and replace the abstraction
rule of A, by (R1).3 and (R1).4.



Definition 2.3 (An., Al.).
1. We let M, range over An,, Al. defined as follows (note that Al. C AI):

(R1) If x is a variable distinct form ¢ then

1. x € M,.

2. If M € Al, and z € FV (M) then Az.M € Al.

3. If M € An, then A\x. Mz = c¢(cz)] € Ane.

4. If Nz € An, such that © ¢ FV(N) and N # ¢ then Az.Nz € An,.

(R2) If M,N € M, then cMN € M..
(R3) If M, N € M, and M is a -abstraction then MN € M..
(R4) If M € An, then cM € An,.

2. Let C € C and M € M,. If 3R € A such that C[R] = M then we call C a
M -context. O

Here is a lemma related to terms of M..
Lemma 2.4 (Generation).
1. Mz :=c(cx)] # = and for any N, M[z := c(cx)] # Nz.

2. Let x ¢ FV(M). Then, My := c(cx)] # x and for any N, M[y := c(cx)] #
Nz.

3. If M € M, then M # c.
4. If M;N € M, then M[x := N| # c.
5. Let MN € M.. Then N € M, and either

o M = cM' where M' € M, or
o M =c and M, = An. or
e M = \x.P is in M,

6. If \x.P € An, then either

e P = Nz where N,Nx € An. where x ¢ FV(N) and N # ¢ or
e P = N[z :=c(cx))] where N € An.

7. If \e.P € Al then x € FV(P) and P € AIL.
8. If M,N € M, and x # ¢ then M[x := N| € M..
9. Let M € An.

(a) If M = \z.P then P € An..
(b) If M = Az.Px then Px,P € An., x ¢ FV(P) and P # c.

(¢) Let x # c. If Mz = c(cx)] —p, M’ then M' = Nz := c(cz)] and
M —Bn N.

(d) Letn > 0. If (M) —p, M’ then 3N € Ane, M’ = ¢"(N) and M —g,
N.

O

Here is a lemma about the contexts surrounding the set of redexes in a term:



Lemma 2.5. Letr € {31, (n}.
o [fM eV then Ry, = 2.
o [f M = A\x.N then:

—if M € R" then Ry, = {0 U { z.C | C € Ry }.
— else, Ry ={ z.C | C e Ry}.

o If M = PQ then:

— if M € R" then R}y, = {0} U{CQ | C € Rp} U{PC | C € R}
— else, Ry, ={CQ | C € Rp}U{PC | C € R}

Here is a lemma about the set of redexes in a term:
Lemma 2.6. Let r € {51, 6n} and F C R},.

o IfM eV then F =0.

o If M = Ax.N then F' ={C | A\x.C € F} CRY, and:

— if M € R" then F\{O} ={\z.C | C e F'}.
— else, F ={\x.C | C € F'}.

o If M =PQ then F1 ={C | CQ € F} CRp, Fo={C | PC € F} CRf, and:

—if M € R" then F\{O} ={CQ | C € F;,} U{PC | C € Fo}.
—else, F={CQ | C e FL} U{PC | C € F}.

O
Now we show that substitutions propagate inside contexts and redexes.
Lemma 2.7. Let r € {81, 6n} and C € R},;. We have:
Mz := N] = Clz := N][R] iff R= R'[x := N] and M = C[R']. O
Obviously, substitution dismisses non free variables:
Lemma 2.8. If x ¢ FV(R) then Clx := N]|[R] = C[R][z := N]. O
The next lemma shows the role on redexes of substitutions involving c.
Lemma 2.9. Let r € {fn,BI}. and x # c.
1. Let x #y. Then:
o if Mz :=c(cx)] =y then M =y,
e if Mz :=c(cx)] = Py then M = Ny and P = N[z := ¢(cx)] and
o if Mz :=c(cx)] = Ay.P then M = A\y.N and P = Nz := c(cx)].
2. M € RP" iff Mz := c(cx)] € RP".
3. C € R \immeieny W C = A2.C" and C" € Y. _ ooy
4. Ce R’fv?[w:c(w)] iff C = C'[x == ¢(cx)] and C' € RET.
5. Let n >0 then Rf,7(M) = {c"(C) | C e REM}. O



The next lemma shows that any element (Az.P)Q of Al (resp. An.) is a GI-
(resp. On-) redex.

Lemma 2.10. Let (M., r) € {(AL,BI),(An., 6n)} and M € M.. If M = (Az.P)Q
then M € R". O

The next lemma shows that Al. (resp. A7) contains all the SI-redexes (resp.
[Bn-redexes) of all its terms.

Lemma 2.11. Let (M, r) € {(AL,BI),(An.,Bn)} and M € M. If C € R}, and
M = C[R] then R € M.. O

In order to deal with GI- and Brn-reduction, the next lemma generalises a lemma
given in [Kri90] (and used in [KSO08]). It states that An. and Al. are closed under
— gn- Tesp. — gr-reduction.

Lemma 2.12.
1. If M € An. and M —g, M’ then M' € An..
2. If M € AI. and M —p; M’ then M' € AL. O

The next definition again taken from [Kri90], erases all the ¢’s from a M -term.

Definition 2.13 (| — |°). Let M € A. We define |M|° inductively as follows:
o |z ==z o |Az.N|¢ = A\x.|N|°
o |cP|¢ = |P|° o |[NP|¢ =|N[¢|P|°if N # c.

The next definition erases all the ¢’s from a M -context.

Definition 2.14 (| — [¢). Let C € C. We define |C|& inductively as follows:
e |0 =0 o D2.N[g = Az |C5 . |C'N[g = |C"[5|N |
o lcC'le = 0’z o INCg = [NFICg i N £ ¢
Let F C C then we define |F|& = {|C|¢ | C € F}. O
Now, ¢" is indeed erased from |c™(M)]¢.
Lemma 2.15. Let n > 0 then |c¢"(M)|® = |M|°. O
Also, ¢™ is erased from |¢™(N)|¢ for any ¢"(IN) subterm of M.
Lemma 2.16. Let |[M|¢ = P.
o If P €V then In > 0 such that M = ¢"(P).
o If P =)x.QQ then 3In > 0 such that M = ¢"(Ax.N) and |N|® = Q.

o [f P = PP, then In > 0 such that M = " (M1 Ms), |M1|¢ = Py and |Ms|® =
Ps. O

If the c-ersure of two reduction contexts of M are equal, then these contexts are
also equal:

Lemma 2.17. Letr € {8I,0n}. If C,C" € R}, and |C|& = |C'|é then C = C'. O
Inside a term, substituting by ¢(cx) is undone by c-erasure.

Lemma 2.18. Let x # c. |M|z := ¢(cx)]|¢ = |M|°. O
Inside a context, substituting « by c¢(cz) is undone by c-erasure.

Lemma 2.19. Let z # c. |Clx := c(cz)]|é = |C)§. O



Erasure propagates through substitutions.

Lemma 2.20. If M,N € M. and x # c then |M[x := N]|° = |M|°[z := |N|¢]. O
The next lemma shows that ¢ is definitely erased from the free variables of |M|°.

Lemma 2.21. If M € M, then FV (M) \ {c} = FV(|M|°). O
Now, c-erasing an Al.-term returns an Al-term.

Lemma 2.22. If M € AL then |[M|¢ € AL O

The next six lemmas show that c-erasure preserves redexes, their contractum
and their contexts.

Lemma 2.23. Let (M., r) € {(AL,BI),(An., 6n)} and R € R". If R € M, then
|R|¢ € R" and if R is the contractum of |R|® then R’ = |R"|° and R" is the

contractum of R. O
Lemma 2.24. Let (M., r) € {(AL,BI),(An.,8n)} and M € M.. If C € R}, and
M = CIR] then |M|¢ = |CI&[|R|]. O
Lemma 2.25. Let (M.,r) € {(AL,BI), (An.,8n)}, M € M. and C € RY,. Then,
M = C[R] and |C[R]|° lﬂér |C[R']|¢ such that R’ is the contractum of R. O
Lemma 2.26. Let (M.,r) € {(AL,BI),(An.,Bn)} and M € M.. If C € R}, and
M S, M then | M| 'ZE, |a e, O

Lemma 2.27. Let (M,,r) € {(AL,BI),(Ane, 8n)}, (Az.M1)Ny, (Az.M2)Ny € M.
such that |Ry; |6 € [Rigle. RN, 16 € RN, G, [Mi|® = [Ma| and |Ny|® = | No|°.

We have |R7M1[x::N1]|(CZ - |R7]\"/12[$::N2]|8. O
Lemma 2.28. Let (M.,r) € {(AL,BI),(An., Bn)}, Mi,Ms € M. such that
R le

C Ry, 1S and |My|° = [Mo|e. If My 3, MY, My <3, M} such that |C1]& = |Calg
then |RY {|§ C IR, é|§ O

2.3 Background on Types and Type Systems

In this section we give the background necessary for the type systems used in this
paper.

Definition 2.29. Let i € {1,2}.

1. Let A be a denumerably infinite set of type variables and let Q & A be a
constant type. The sets of types Type! C Type? are defined as follows:

ol € Type' i=a ol - o) |oino}
02€Type2:::a|0%—>ag|o%ﬂo§|Q

1

We let o range over A; o', 71, p!, etc. range over Type'; 02,72, p?, etc. range
5 ,

over Type” and o, 7, p, etc. range over Type’.

2. Welet B = {T ={z:0|ze€V,oecType'} |Ve:0,y:7 €T, ifc #
7 then x # y}. We let I', A range over B. We define dom(I') = {z | = :
o € I'}. When z ¢ dom(T"), we write I,z : o for T U {x : 0}. We denote
I'=2m: Omy..oy@y : 0 where n > m > 0, by (x; : o). If m = 1, we
simply denote I by (z; : 0;)n.



(ref) oc<o Q) o<Q
(tr) c<TAT<p=>0<p (V-lazy) 0 —-0<Q—0
(ing) ocNt<o (idem) c<oNo
(ing) ocnNt<rT (Q-n) N<N—-0
(=-N) (c—=71)N(c—=p) <o—(tNp) (Qlazy) oc—-7<Q—-Q
(mon') o<tAc<p=oc<TNp
(mon) o<dAT<7T =>onrT<o N7
(—-n) o< AT <t=d -7 <0—>T7T
Figure 1: Ordering axioms on types
Ty = (2 :0i)n, (Yi i 7i)p and Ty = (x; : 0})n, (2i : pi)q Where z4,...,x, are

the only shared variables, then I'y MLy = (x5 : 05 N0}, (¥i : Ti)p, (2 Pi)g-
Let X CV. Wedefine I' | X =T C T where dom(I”) = dom(I') N X.
Let C be the reflexive transitive closure of the axioms cN7 C g and cN7 C 7.

3. °

:0i)n and IV = (z; : o)), then T' C TV iff Vi, 0; C 0.

Let V1 = {(ref), (tr), (inL), (ing), (— -N), (mon'), (mon), (— -n)}.
Let Vo = V1 U{(Q),(Q —lazy)}.

Let VD = {(inL), (’LTLR)}

Let Vp, = Vp U{(idem)}

vDI =

Typevl = TypevD = Type Typel.

Typev2 = Type2.

Let V be a set of axioms from Figure 1. The relation <V is defined
on types 'I'ypeV and axioms V. We use <! instead of <V! and <?
instead of <V2.

The equivalence relation is defined by: ¢ ~V 7 <— ¢ <V rar<V
0. We use ~! instead of ~V* and ~? instead of ~V2.

We define AN! to be the type system (A, Type!, 1) such that ! is
the type derivability relation on B!, A and 'I'ype1 generated using
the following typing rules of Figure 2: (az), (—g), (—1), (Nr) and
(<)

We define AN? to be the type system (A, Type®, 2) such that -2 is
type derivability relation on B2, A and Type® generated using the
following typing rules of Figure 2: (az), (—g), (—1), (N1), (<?)
and ().

We define D to be the type system (A, Type', -77) where F7 is the
type derivability relation on B!, A and Type' generated using the
following typing rules of Figure 2: (ax), (—g), (—1), (N1), (Ng1)
and (ﬂEg)

We define Dy to be the type system (A, Type!, FA1) where F97 is the
type derivability relation on B!, A and Type' generated using the
following typing rule of Figure 2: (az!), (—gr), (—1), (N1) , (Ng1)
and (Ng2). Moreover, in this type system, we assume that cNo = o.

O

v

3 Problems of the reducibility method of [GL02]

In this section we introduce the reducibility method of [GL02] and show where

exactly it fails.



P T
F,x:ol—x:o(ax) x:ol—x:o(ax)
I'M:0—7 I'EN:o 'FM:0—71 TI''yFN:o
: (=5) . (—p1)

I'EMN:7 I'imI'g MN : 7

Lz:ob M:7 IFM:0 THM:7
3 (—1) ) (N1)

't XeM:o0—T1 I'EM:onT
I'-M:onTt I'EM:onT
I'EM:o (NE1) TEM:T (NE2)
'rM:0 o<Vr v @)

'-M:r (=Y) T'EM:Q

Figure 2: Typing rules

Definition 3.1 (Type systems and reducibility of [GL02]). Let i € {1,2}.
1. Let P C A. The type interpretation [—]* : Type' — 2% is defined by:

[a]? = P, where o € A.

[o N7t = [o]* N []".

[2]? = A.

[o — 7]t =[o]' = [7]* = {M € A|VN € [o]', MN € [r]'}.

[o — 7]? = ([o]? = [7]>) NP = {M € P|¥N € [o]?>, MN € [7]*}.

2. A valuation of term variables in A is a function v : V — A. We write v(z := M)
for the function v* where v’'(z) = M and v'(y) = v(y) if y # «.

3. let v be a valuation of term variables in A. Then [—], : A — A is defined by:
[M], = M|z :=v(x1),. .., 2Ty := v(x,)], where FV(M) = {x1,...,2,}.

4. e vE'M:oiff [M], € [o]

o v ETiff V(z:0) €T, v(x) € o]’

e I'EM:cif WET,vE'M: 0o
5. Let X C A. We say that:

o (VAR?) P satisfies the variable property, denoted VAR (P, X), if

Ve,x € X
o (SAT?) P is 1-saturated, denoted SAT*(P, X), if
VM Vz,YN € P,M[z := N] € X = (Ae.M)N € X
o (SAT?) P is 2-saturated, denoted SAT?(P, X), if
VM, YN, Yz, M[z = N] € ¥ = (\e.M)N € X
e (CLO%Y) P is closed by variable application, denoted CLO(P, X), if

VMVe,Mz e X = M e P
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e (CLO?) P is closed by abstraction, denoted CLO?(P, &), if
VMV, M € X = \x.M € P
For R € {VAR! SAT!,CLO}, let R(P) <= Vo € Type', R(P, [o]")
6. Let X C A. We say that:
e (P —VAR) X satisfies the P-variable property, denoted VAR(P, X), if
Vr,¥n > 0,VNy,...,N, € P,zN;...N, € X
o (P — SAT) X is P-saturated, denoted SAT(P, X), if
VM,VN,Vz,¥n > 0,YNy, ..., N, € P,
M[z := N]Ny...N, € X = (A\z.M)NN;...N, € X
e (P—CLO) X is P-closed, denoted CLO(P, X), if
VM,Ve,M € X = \x.M € P
7. A set P C A is said to be invariant under abstraction if

VM,Vz,M € P < Az.M € P.

Lemma 3.2 (Basic lemmas proved in [GL02]).

1. (CL) [[MHV(ZE::N) = [[M]]V(a:::w) [.Z‘ = N}
(b) [MN], = [M].[N].
(c) [Az.M], = Ax.[M],(z:=a)

2. If VARY(P) and CLO(P) are satisfied then
(a) Yo € Type', [o]* C P.
(b) If SATY(P) and T+ M : o then we have T |=' M : o and M € P
Vo € Type®, if o % Q then [o]? C P
If o <2 7 then [o]?* C [7]?.
[f VAR(P), SAT?(P) and CLO*(P) hold then T > M :0 =T =2 M : o

If VAR?(P), SAT?(P) and CLO*(P) hold then Yo € Type®,o #2 QAT 2
M:oc=MeP

S moe %

7. CLO(P,P) = Vo € Type®, o #* Q = CLO?*(P, [0]?). O

Proof. We only prove 5. By induction on I' 2 M : . (ax) and (Q) are easy. (N;)
(resp. (—g) resp. (<?)) is by IH (resp. IH and 1, resp. IH and 4).

(—7) By I, T2z :0 =2 M : 7. Let v 2T and N € [o]*>. Then v(x := N) 2T
since ¢ dom(T) and v(x := N) 2 2 : o since N € [o]?. Therefore
vz := N) E* M : 7, ie. [M],=n) € [7]*. Hence, by lemma 3.2.1,
[M],(2:=a) @ := N] € [7]?. Hence by applying SAT?(P), we get (Ax.[N], (z:=z))N €}
[7]?. Again by lemma 3.2.1, ([Az.M],)N € [7]?. Hence [Az.M], € [o]* =
71
By VAR?*(P), z € [0]?, hence by the same argument as above we obtain
[M],(2:=2) € [7]?. So by CLO*(P), Ax.[M],(4:=2) € P and by lemma 3.2.1,
[Az.M], € P. Hence, we conclude that [Ax.M], € [o — 7]2. O
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After giving the above definitions and lemmas, [GL02] states that since the
properties (VAR'), (SAT?) and (CLO?) for 1 < i < 2 have been shown to be
sufficient to develop the reducibility method, and since in order to prove these
properties one needs stronger induction hypotheses which are easier to prove, the
paper sets out to show that these stronger conditions when ¢ = 2 are (P — VAR),
(P — SAT) and (P — CLO). However, as we show below, this attempt fail.

Lemma 3.3 (Lemma 3.16 of [GLO02] is false). The lemma of [GL02] stated below
is false.
VAR(P,P) = Vo € Type®,0 £* Q — 7 = VAR(P, [0]?).

O

Proof. To show that the above statement is false, we give the following counterex-
ample. Let 0 be @ — Q — a #2 Q — 7, where a € A. VAR(P,[0]?) is true
if Vo € V,Vn > 0,VNy,..., N, € P,zN;...N, € [o]? in particular if x € [o]?,
where € V. Let P be the set of strong normalizing terms. We have to notice
that VAR(P,P) is true. Since z € P, zz € [Q — «a]*. Since ®® € A = [Q]?,
where ® = A\z.zz, 22(®®) € [a]? = P. But ®® ¢ P, hence z2(®®) ¢ P, so
VAR(P,[o]?) is false. O

REMARK 3.4 (It is not clear that Lemma 3.18 of [GL02] holds).
It is not clear that the lemma of [GL02] stated below holds.

SAT(P,P) = Vo € Type?, 0 #? Q — 7 = SAT(P, [o]?).
O

Of remark 8.4. The proof given in [GLO02] does not go through and we have neither
been able to prove nor disprove this lemma. It remains that this lemma is not yet
proved and hence cannot be used in further proofs. O

Then, [GL02] gives the following proposition which is the reducibility method
for typable terms:
Proposition 3.21 of [GL02] Let VAR(P,P), SAT(P,P) and CLO(P,P), then

Vo € Type?, o0 2 QAo A2 Q -7 ATF2 M:0= MEcP.

However, the proof of that proposition depends on two problematic lemmas
(lemma 3.16 which we showed to fail in our lemma 3.3, and lemma 3.18 which we
explained in remark 3.4 that it is not clear why it should hold). Below, we show
that proposition 3.21 of [GL02] fails by giving a counterexample. First, here is a
lemma:

Lemma 3.5. VAR(WNg, WNg), CLO(WNg, WNg) and SAT(WNg, WNg) hold.
O

Proof.

o VAR(WNg,WNpg) is satisfied, since Vz € V, ¥n > 0, VNy,...,N,, € WNg,
zNy...N, € WNﬁ

e CLO(WNg,WNpg) is satisfied, since if In,m > 0, Izg € V, INy,...,N,, €
NFg such that M -3 ALY ... Axp.ToN7 ... N, then
Vy €V, Ay M —5 Ay Azi. ... Azp.2oN1 ... Ny, and Ay.M € WNg.

o SAT(WNg,WNpg) is satisfied, since if Mz := N]|N;...N, € WNg where
n >0 and Ny,...,N, € WNg then 3P € NFg such that
M[z := NNy ... N, —3 P.
Hence, (Az.M)NNy ... N, —5 Mz := N]Ny...N, —p P. O
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Lemma 3.6 (Proposition 3.21 of [GL02] fails).
Let VAR(P,P), SAT(P,P) and CLO(P,P), then it is not the case that
Vo e Type®, o0 #2 QAo L2 Q-7 AT F2 M :0= M e P. O

Proof. Let P be WNg of Definition 2 and recall that ® = Az.zx. Note that A\y.®® &
WNg. Moreover, Vp € Type?, we can construct the typing judgment F2 \y. ® @ :
p — Q. Let 0 be p — Q. Obviously, o %2 Q. Let 7 € Type?.

If 7 %2 Q then obviously 0 = p — Q £2 Q — 7.

If 7 ~2 Q then let p 4% Q. Obviously 0 = p — Q 42 Q — 7.
Lemma 3.5 and the above, give a counterexample for Proposition 3.21 of [GL02]. O

Finally, also the proof method for untyped terms given in [GL02] fails.

Lemma 3.7 (Proposition 3.23 of [GL02] fails).
Proposition 3.23 of [GL02] which states that “If P C A is invariant under abstrac-
tion, VAR(P,P) and SAT(P,P) then P = A" fails. O

Proof. The proof given in [GL02] depends on Proposition 3.21 which we have shown
to fail. Furthermore, since WNg is invariant under abstraction and by lemma 3.5,
VAR(WNg,WNg) and SAT(WNg, WNg) hold, we have a counterexample for Propo-
sition 3.23. O

4 Salvaging the reducibility method of [GLO02]

In this section we provide subsets of types which we use to partially salvage the
reducibility method of [GL02] and we show that this can now be correctly used
to establish confluence, standardization and weak head normal forms but only for
restricted sets of lambda terms and types.

REMARK 4.1. Note that in the proof of proposition 3.2.5, the properties VAR?(P),
SAT?(P) and CLO?(P) are not needed for all types in Type®. f TF2 M : 0 — 7,
we only need to have VAR?(P) for o and SAT?(P) and CLO?(P) for 7. O

Lemma 4.2. IfT'F? M : p and (if p= 0 — 7 then VAR?*(P, [0]?), SAT*(P,[7]?)
and CLO?*(P,[7]?)) thenT =2 M : p O

Proof. By induction on I' =2 M : p. The proof is exactly the same as that of the
proof of proposition 3.2.5, except with the replacement of VAR?(P) SAT?(P) and
CLO*(P) by VAR2(P, [0]2), SAT2(P, [r]?), and CLO*(P, []?) resp. O

In order to salvage the reducibility method of [GL02], we introduce the following;:
Definition 4.3.

o 02t € Type®" = {0 € Type® | 0 ~2 Q}.

e 02~ c Type®’™ = {0 € Type? | o 2 Q}.

e 0 eS8 u=alolt = a3 |o* — 5 | o%i NSt

e 052 €5 :=0—Q]ol.
We let o, 7, p, 01,02, ... range over Typel7 Type2, Type2+, Typez_, S1 or Ss. O
Lemma 4.4.

1. 55 C 5.

2. Letoc €S,. Ifo=7—=pAT A Qthenp € S1. If o = 7N p, then
T,p € Sy. O
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Proof.

1. Let 0 € S3. We prove this lemma by case on Ss. Either 0 = 2 — € then
o € 8 since Q € Type?". Or o € Type'. Note that Type' C Type®’~ and
A C S;. We prove the statement by induction on o € Type'.

o If o =7 — p where 7,p € Type! C Type27 then by IH, p € S;. Hence
o€ S.

e If o = 7N p such that 7, p € Type! then by IH, 7, p € S; and so, o € 5.
2. Easy. O

Using S, we can establish a revised version of Lemmas 3.16 and 3.18 of [GL02].
Lemma 4.5.

1. VAR(P,P) = Vo € S1,VAR(P,[o]?).

2. SAT(P,P) = Vo € S1,SAT(P,[o]?). O

Proof. Let 0 € S and Ny,..., N, € P such that n > 0.
1. By induction on o. Assume VAR(P,P) and let x € V.

e 0 € A Then use VAR(P,P) and the definition of [.]2.

e 0 =T — p. By VAR(P7P)7 leNn € P. Let N € [[T]]Q (HT]P = Qs
easy).

— If 7 ~2? Q then since ¢ = 7 — p € Sy, it should hold that p ~2 Q, so
xNy...N,N € A = [p]?. Thus xN; ... N, € [o]*

— Else, 7 2 Q. Then by lemma 3.2.3, N € P. Moreover, by lemma 4.4.2,
p € S1. Hence, by TH, N7 ... N, N € [p]?. Thus xN; ... N, € [o]>.

e 0 =7Np. Bylemma4.4.2,7,p € S;. By IH, zNy,..., N, € [7]*N[p]? = [o]>.
e 0 =Q. Then zNy,...,N, € A = [Q]%

2. By induction on o. Assume SAT(P,P) and M[z := N|N; ... N, € [o]*
e 0 € A. Then use SAT(P,P) and the definition of [.]?.

o =7 — p. By lemma 3.2.3, M[z := N|N;...N,, € P and by SAT(P,P)
(Ax.M)NN; ...N,, € P. Let P € [7]? (case [7]? = @ is immediate).

— If 7 ~2 Q then since ¢ = 7 — p € S, it should hold that p ~2 ©, so
(Ax.M)NNj ...N,P € A= [p]*>. Thus (\z.M)NNj...N, € [o]>.

— Else, 7 2 Q. Then by lemma 3.2.3, P € P. Moreover, by lemma 4.4.2,
p € S1. Hence, since Mz := N|N;...N,P € [p]? by IH, we get
(Ax.M)NNj ...N,P € [p]>. Thus (A\z.M)NN;...N, € [o]>.

e 0 = 7Np. Then, Mz := N]N;...N, € [7]> N [p]* and by lemma 4.4.2,
7,p € S1. By IH, A\e.M)NNy,...,N, € [7]* N [p]? = [o]>.

e 0 =Q. Then (\z.M)NNy,...,N, € A =[Q]> O
Corollary 4.6.

1. VAR(P,P) = Vo € S1,VAR?(P,[o]?).

2. SAT(P,P) = Vo € S1, SAT?(P, [0]?). O
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REMARK 4.7. o %2 1 is not a sufficient hypothesis in Proposition 3.21. We saw in
remark 4.1 that if 0 = 7 — p, we need to have CLO?(P) only for p (not for all types
in Type®). Hence, since CLO(P,P) = Yo € Type’,0 #% Q = CLO*(P,[0]?),
at least, we need to have p %% Q. The same remark holds for the hypothesis
o 4% Q — 7. Similarly, the same remark holds if we replace o #? QAo £2 Q — T
by o 2 QAo € 5. O

Lemma 4.8 (Using S; in Proposition 3.21 of [GL02] does not help).
IfVAR(P,P), SAT(P,P) and CLO(P,P), then it is not the case that
Vo € Type®, o 2 QNo € SiATHF2 M 0= M € P. O

Proof. Take the same counterexample given in the proof of Lemma 3.6 and choose
p = Q. Since o belongs to S so to S; by lemma 4.4.1. O

However, we can rescue the reducibility method for typable terms as follows:

Proposition 4.9. Let VAR(P,P), SAT(P,P) and CLO(P,P), then
Vo e Type®, 0 QAT M :oAN(c=T—=p=>T,pES1Ap A2 Q)= MeP.
O

Proof. By proposition 3.2.6, corollaries 4.6.1 and 4.6.2, lemma 3.2.7 and lemma 4.2.
O

[GLO02] applied the method to confluence of 8 in A and standardisation in A
by showing that the method of their Proposition 3.23 is applicable to the sets CR
and S of Definition 2. It applied the method to the existence of weak head normal
forms in AN? (under some restrictions on types) by showing that the method of
their Proposition 3.21 is applicable to the set W of Definition 2. However, since we
showed in lemma 3.6 that proposition 3.21 fails, we need to review the applications
and show where exactly they work. First, here is a lemma proven in [GL02].

Lemma 4.10. Let P € {CR,S,W}. Then VAR(P,P), SAT(P,P) and CLO(P,P).
O

However, we need to reformulate Propositions 4.5, 4.12 and 4.15 of [GL02], since
the method of Proposition 3.21 does not work. We take into account the conditions
given in proposition 4.9.

Proposition 4.11. Let M € A. If 30,0 such that T F2 M : 0 and (60 =7 — p =
T,pESLAp A2 Q) then M € CR, M €S, and M € W. O

Proof. By lemma 4.10 and proposition 4.9. O

5 Adapting the CR proof of [KS08] to f/-reduction

[KS08] gave a proof of Church-Rosser for g-reduction for the intersection type sys-
tem D of Definition 2.29 (studied in detail in [Kri90]) and showed that this can be
used to establish confluence of 3-developments without using strong normalisation.
In this section, we adapt his proof to I and at the same time, set the formal
ground for generalising the method for 87 in the next section. First, we adapt and
formalise a number of definitions and lemmas given in [Kri90] in order to make
them applicable to fI-developments. Then, we define type interpretations for both
BI and fn, establish the soundness and Church-Rosser of both systems D and Dy
(for Bn- resp. BI-reduction), and finally, adapt [KKSO08] to establish the confluence
of BI-developments.
All proofs from this section are located in appendix B.
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5.1 Formalising ($/-developments

The next definition, taken from [Kri90] (and used in [KSO08]) uses the variable ¢ to
destroy the fI-redexes of M which are not in the set F of SI-redex occurrences in
M, and to neutralise applications so that they cannot be transformed into redexes
after BI-reduction. For example, in c¢(Azx.x)y, ¢ is used to destroy the (I-redex
(A\z.z)y.

Definition 5.1 (®°7(—,—)). Let M € Al such that ¢ ¢ FV(M), and F C R[ﬁ
1. If M = x then F = @ and ®°!(z, F) ==

2.If M = Az.N and F' = {C | \x.C € F} C Rﬁ,[ then ®%/(\z.N,F) =
\o. ®PT(N, F')

3.f M = NP, F, ={C | CP € F} C R} and F, = {C | NC € F} C RY/
then
c®PI(N, F)OP (P, Fy) ifO¢F

B =
PP (NP, F) = { OPL(N, F1)®P1 (P, F,)  otherwise

O

The next lemma is an adapted version of a lemma which appears in [KS08] and
which in turns adapts a lemma from [Kri90].

Lemma 5.2.
1. IfM e Al ¢cg FV(M), and F C REL then
(a) FV(M) = FV(®%'(M,F))\ {c}.
(b) ®PL(M,F) € AI.
(c) |9°1 (M, F)|c = M.
(d) |RgéI(M,J-')|E =7
2. Let M € AL.

(a) |RSf1E C R,

C Ry and M = (1M, |Rh[]6).

(b) (|M|PL, |R§/Il|é) is the one and only pair (N,F) such that N € Al ¢ &
FV(N), F C R and ®°1(N,F) = M.
L

The next lemma is needed to define $I-developments.

Lemma 5.3. Let M € Al such that c ¢ FV(M), F C RE, C € F and M S,
M’'. Then, there is a unique set F' C R%/, such that ®°1 (M, F) gg; B (M, F)
and |C')5 = C. O

We follow [Kri90] and define the set of 3I-residuals of a set of 3I-redexes F
relative to a sequence of [fI-redexes. First, we give the definition relative to one
redex.

Definition 5.4. Let M € Al, such that ¢ ¢ FV(M), F C Ri}, CeFand M gg[

M’'. By lemma 5.3, there exists a unique F’ C R']GVII, such that ®%1(M,F) gﬁ[
OBI(M', F') and |C'|PT = C. We call F’ the set of 3I-residuals of F in M’
relative to C. O
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Definition 5.5 (3I-development). Let M € Al, where ¢ & FV (M), and F C R4
A one-step (I-development of (M,F), denoted (M,F) —grq (M',F'), is a [I-

reduction M gg[ M' where C € F and F' is the set of I-residuals of F in
M’ relative to C. A (BI-development is the transitive closure of a one-step (I-

development. We write also M f’ﬁld M, for the SI-development (M,F) —h1d
(M, Fr). O

The next two lemmas are informative about developments.
Lemma 5.6. Let M € Al such that c ¢ FV(M) and F C Ry. (M,F) =%
(M',F") < ®°1(M,F) =51 SBL(M', F). O

Lemma 5.7. Let M € Al such that ¢ ¢ FV(M) and 1 C Fy C R% If
(M, Fy) —pra (M',F}) then 3F; C Rﬁ, such that Fy C Fh and (M,F2) —a14
(M', F3). O
5.2 Confluence of fI/-developments, hence of f/-reduction

Definition 5.8. 1. Let r € {8I,0n}. We define the type interpretation [—]" :
Type! — 22 by:

e [a]” = CR", where « € A.

o [onTt]" =[o] N[r]".

o [o —7]" = ([o]" = [r]")NCR" = {t € CR|Vu € [o]",tu € [7]"}.
2. A set X C A is saturated if Vn > 0,VM,N,My,..., M, € A,Vx €V,

M[z:=N]M,...M, € X = (A\e.M)NM, ... M, € X

3. A set X C Al is I-saturated if Vn > 0,VM, N, My,..., M, € A,Vz €V,

x € FV(M)= M[x:=N|M;,...M, € X = (Ae.M)NM,...M, € X

Here is a background lemma:
Lemma 5.9.
1. IfTHPL M : o then M € Al and FV (M) = dom(T).
2. Let T 9" M : 0. Then FV(M) C dom(T") and if T C T’ then T' F°" M : 0.
3. Letre{BI,fn}. [TH M:0,0Cc andTVCT thenT'F" M : 0. O

The next lemma states that the interpretations of types are saturated and only
contain terms that are Church-Rosser. In [Kri90] it was shown for » = 3 and where
CR{ and CR" were replaced by the corresponding sets of strongly normalising
terms. [KSO08] adapted Krivine’s lemma for 5 Church-Rosser instead of strong
normalisation. Here, we prove it for 81 and 7.

Lemma 5.10. Let r € {81, n}.
1. Yo € Type', CR} C [o]” € CR".
2. CRP! is I-saturated.

3. CRP" is saturated.
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4. Yo € Type', [o]Pt is I-saturated.
5. Yo € Type', [0]°" is saturated. O
Next we adapt the soundness lemma of [Kri90] to both F?1 and F77.

Lemma 5.11. Let r € {BI,pn}. Ifx1 : 01,...,2p : 0y F" M : 0 and Vi €
{1,...,n}, N; € [o;]" then M[(z; := N;)7] € [o]". O

Finally, we adapt a corollary from [KS08] to show that every term of A typable
in system D has the gn Church-Rosser property and every term of A typable in
system Dy has the 81 Church-Rosser property.

Corollary 5.12. Letr € {BI,08n}. If T+ M : o then M € CR". O

Proof. Let I' = (z; : 0;)p. By lemma 5.10, Vi € {1,...,n},z; € [oy]", so by
lemma 5.11 and again by lemma 5.10, M € [o]" C CR". O

In order to accommodate GI- and (On-reduction, the next lemma generalises a
lemma given in [Kri90] (and used in [KS08]). Basically this lemma states that every
term of Al. is typable in system D and every term of An. is typable in Djy.

Lemma 5.13. Let FV(M)\ {c} = {z1,...,z,} C dom(T") where ¢ ¢ dom(T").

1. If M € AL then for I =T | FV(M), 30,7 € Type' such that
ifc€ FV(M) then T, c: o FP1 M : 7, and if c ¢ FV(M) then T" F591 M : 7.

2. If M € An, then 30,7 € Type' such that T,c:o FP7 M : 7. O

The next lemma is an adaptation of the main theorem in [KS08] where as far as
we know appears for the first time.

Lemma 5.14 (confluence of the SI-developments). Let M € AI, such that ¢ &
FV(M). If M ﬂmd M, and M de My, then there exist sets F; C Rzﬁv;u

Fy C Rﬁz and a term Ms € AT such that M, ﬂﬂld Ms and M, de Ms. O
We follow [Bar84] and [KS08] and define one reduction as follows:
Notation 5.15. Let M, M’ € Al, such that ¢ ¢ FV(M). We define one reduction

by: M —1p M' <= 3F, F',(M,F) =514 (M',F'). O
Lemma 5.16. Let ¢ & FV(M). Ryl ) = 2. O
Lemma 5.17. Let ¢ ¢ FV(MN). Rggf(kl,z)[z::{ﬁl(N,@)] =0. O

Lemma 5.18. Let ¢ ¢ FV(M). If C € REL and ®°1(M,{C}) —p1 M’ then
REL = . O

Lemma 5.19. Let ¢ ¢ FV(M). If C € RS and M gg[ M’ then (M,{C}) =314
(M', ). O

Lemma 5.20. —3,=—7;. I
Finally, we achieve what we started to do: the confluence of FI-reduction on Al.

Lemma 5.21. If M € AI such that ¢ & FV (M) then M € CR%. O
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6 Generalisation of the method to n-reduction

In this section, we generalise the method of [KSO08] to handle Sn-reduction. This
generalisation is not trivial since we needed to develop developments involving 7-
reduction and to establish the important result of the closure under n-reduction of
a defined set of frozen terms. It is for reasons like this that we extended the various
definitions related to developments. For example, clause (R4) of the definition of
An. in Definition 2.3 aims to ensure closure under n-reduction. The definition of A,
in [Kri90] exluded such a rule and hence we lose closure under n-reduction as can
be seen in the following example: Let M = Az.cNz € A, where z ¢ FV(N) and
N e A., then M —, cN & A..

Again here, the proofs are moved to appendix C.

The next two definitions adapt definition 5.1 to deal with fn-reduction. The
variable ¢ enables to destroy the @n-redexes of M which are not in the set F of
[n-redex occurrences in M; to neutralise applications so that they cannot be trans-
formed into redexes after [n-reduction; and to neutralise bound variables so A-
abstraction cannot be transformed into redexes after gn-reduction. For example, in
Az.y(c(ex)) (x # x), ¢ is used to destroy the n-redex \x.yz.

Definition 6.1 (®°7(—, —),®;"(—,—)). Let ¢ ¢ FV(M) and F C R7I.
(P1) If M € V\ {c} then F = & and
OPNM, F) = {c"(M) | n> 0}
)" (M, F) = {M}
(P2) If M = Az.N and F' = {C | \e.C € F} C R

SO, F) = {e"(\z.Plz:=c(cx)]) | n >0AP € ®(N,F)} if0¢gF
o c"(Ax. n>0A S , otherwise
’ Az.N' N' € o (N, F' h
An [ Dz Nz :=c(cx)] | N € ®P1(N,F)} ifO¢F
o" (M, F) = { {A\z.N' | N' € ®5"(N, F')} otherwise
(P3) If M = NP, F, = {C | CP € F} C R and F, = {C | NC € F} C R
then:
OO (M, F) =
{¢"(eN'P") | n>0AN' € ®1(N,F)) AP € ®1(P,F,)} itO¢F
{¢"(N'P") | n>0AN € (N, F) AP € ®1(P, F,)}  otherwise

afr(n, ) = [ {N'PTIN' € (N, Fi) AP € B)N(P,Fp)} O ¢F
0 {N'P'| N' € ®0"(N, F\) AP € ®0"(P,F,)  otherwise
[
Lemma 6.2. If M € An. and n > 0 then (M) € An.. O
Proof. By induction on n > 0 using (R4). O

Lemma 6.3.
1. Let ¢ ¢ FV(M) and F C RL. We have:

(a) ®J"(M,F) C ®°1(M, F).
(b) VN € ®51(M, F), FV(M) = FV(N)\ {c}.
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(c) ®"(M,F) C An..
(d) Let M = Nx such that x ¢ FV(N) and P € <I>€77(M,.7:). Then, RfZ_P =
{yu{rz.Cc| CerIM.
(¢) Let M = Nz. If Px € (N, F) then Pz € ®)"(Nz, F).
(f) VN € ®°"(M, F),¥n > 0,c"(N) € ®1(M, F).
(g) YN € ®51(M, F),|N|¢ = M.
(h) YN € ®P1(M, F), F = |R|:.
2. Let M € An.. We have:

(a) |RG1G C R

C Ry and M € @71 M|°, [RG7[E).

(b) (|M|c,|R%7\§) is the one and only pair (N,F) such that ¢ ¢ FV(N),
F CRE and M € ®°1(N, F).

O

Lemma 6.4. Let M € A, such thatc & FV(M), F C R]@’, CeFand M gﬁn M.
Then, there exists a unique set F' C 'Rf}, such that YN € ®°"(M,F),IN’ €
®O(M', F'),3C" € REN N Sgy N and |C']5 = C. =
Definition 6.5. Let M € A, F C R C € F and M S4, M’. By lemma 6.4,
there exists a unique F' C R57, such that VN € ®7(M, F), 3N’ € ®%1(M', F'),3C" €}

R%",N gﬂn N’ and |C'|¢ = C. We call F’ the set of fn-residuals of F in M’
relative to C. O

Definition 6.6 (Sn-development). Let M € A, where ¢ ¢ FV(M), and F C R]BV}’
A one-step fn-development of (M,F), denoted (M,F) —gpa (M',F'), is a (-

reduction M gﬂn M’ where C € F and F' is the set of On-residuals of F in
M’ relative to C. A fn-development is the transitive closure of a one-step 37-

development. We write also M f’ﬁnd M’ for the Bn-development (M,F) —j, ,
(M, F"). 0

Lemma 6.7. Let M € A, where c ¢ FV(M), and F C R%’ Then:
(M, F) =p,q (M',F') < 3N € ®""(M,F),3IN' € &°"(M', F'),N —}, N’
and
(M, F) =54 (M',F') < VN € ®”(M, F),3N" € ®""(M’', F'),N —}, N'.
O

Lemma 6.8. Let M € A, such that ¢ ¢ FV(M) and F1 C Fo C Rf\}; If (M, F1)
—gna (M',F1) then 3F5 C Rﬁ/?, such that F1 C Fh and (M, F2) —gna (M', F5).
L

Lemma 6.9 (confluence of the 8n-developments). Let M, My, My € A.
If M ﬁﬁnd M, and M E’Bnd Ms, then there exists sets F| C Rﬁ}’l and Fh C Rﬁg

f/ f/
and a term Ms € A such that My = gnq M3 and My = g,q Ms. O

Notation 6.10. Let M, M’ € A. M —1 M’ < 3F,F (M,F) %5, (M, F).
O
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Lemma 6.11. Let ¢ ¢ FV(M). YP € (M, ), RS = @. O

Lemma 6.12. Let ¢ ¢ FV(MN). YP € (M, 2),vYQ € <I>'6’7(N7®)7R1ﬁ;€m:_ =

=Q]

.

Lemma 6.13. Letc ¢ FV(M). IfC € RIBV?, P € ®P"(M,{C}) and P —g, Q then
Ry =2. O
Lemma 6.14. Let ¢ ¢ FV(M). If C € RA" and M S5, M’ then (M,{C}) —pna
(M, @). O
Lemma 6.15. —7 =—7. O
Lemma 6.16. If M € A such that ¢ ¢ FV (M) then M € CR®". O

7 Conclusion

Reducibility is a powerful method and has been applied to prove using a single
method, a number of properties of the A-calculus (CR, SN, etc.). This paper studied
two reducibilty methods which exploit the passage from typed to untyped terms.
We showed that the first method [GLO02] fails in its aim and we have only been
able to provide a partial solution. We adapted the second method [KS08] from
0B to BI-reduction and we generalised it to gn-reduction. There are differences in
the typed systems chosen and the methods of reducibility used in [GL02, KS08].
[KS08] uses system D [CDCV80], which has elimination rules for intersection types
whereas [GL02] uses AN and AN® with subtyping. Moreover, [KS08] depends on
the inclusion of typable A-terms in the set of A-terms possessing the CR property,
whereas [GL02] proves the inclusion of typable terms in an arbitrary subset of
the untyped A-calculus closed by some properties. Moreover, [GL02] considers the
VAR(P), SAT(P) and CLO(P) whereas [KS08] uses standard reducibility methods
through saturated sets. [KSO08] proves the confluence of developments using the
confluence of typable A-terms in system D (the authors prove that even a simple
type system is sufficient). The advantage of the proof of confluence of developments
of [KS08] is that SN is not needed.

In [Gal03], Gallier considers systems D and D®. He states some properties
which a set of A-terms has to satisfy to include the terms typable in D or D
(under some restrictions). He states that the terms typable in D% by a “weakly
nontrivial type” (WNT ::= A | Type? = WNT | WNT N WNT) are weakly head
normalizable. The “weakly nontrivial types” include types in our set S; since, for
example, the type a — Q — «, where a € A, does not belong to S; but is a “weakly
nontrivial type”. However, unlike Gallier we only restrict functional types. There
are common properties with [GL02]: we can observe some trivial correspondences:
(P4w) implies CLO(P,P), (P1) and (P3s) imply VAR(P,P), SAT(P,P) implies
(P5n), and VAR(P,P) implies (P1). Gallier states some others properties held by
the terms typable in D under some restriction (always on the use of the type ),
and for different conditions on the properties, in order to be adapted to different
cases. It is an attractive feature of [Gal03] that all the conditions on properties have
the same general shape. [Gal97] considers quantifiers and other type constructors
instead of intersection types.
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A Proofs of section 2

Lemma 2.2 . 1. By induction on the length of the reduction M —73, M'. If the
length is 1, use induction on M —g, M'.

2. By induction on the length of the reduction M —7%, M’. If the length is 1,
use induction on M —g; M.

3. If) trivial, Only if) by induction on Ae.M —g, P.

4. If) If M —5 M’, then by definition Az.M —g Ax.M’ and so Az.M — g,
e M'. If M —, M’, then by definition Ax.M —,, Az.M" and so Ax.M — g,
Az.M'. Only if) Since Az.M —p, P, by 3, either (P = XAx.M' and M —pg,
M'")or (M = Pz and x ¢ FV(P)). But, since the 7-head redex is not reduced,
the second case is impossible.

5. By definition a direct fn-reduct of (Ax. M)NO . Ny isaterm PN{ ... N/ such
that Az.M —7%, P and Vi{0,...,n}, N; =5, N. Then, we conclude by 4.

6a. If M = 2 then P = xN/Nj...N/ where Vi € {0,...,n}, N; —* N/ and so P
is a direct r-reduct of M NyN; ... N, absurd. So M = \z.M’. If k = 0 then
P = (A\z.M')N1N; ... N, is a direct r-reduct of (Az.M')NyNj ... N, absurd.
Assume k = 1, we prove P = M'[z := Ny|N; ... N,, by induction on n > 0.

— Let n =0 and r = 31. By case on (Az.M')Ny —g; P.
x If (A\z.M')Nog —pr M'[x := Ny| then we are done.

s« If \e.M" —pr Ax.M" then P = (Ax.M")Ny is a direct SI-reduct of
(Ax.M'")Ny, absurd.

x If No —57 N’ then P = (Ax.M')N’ is a direct I-reduct of
(Ax.M")Ny, absurd.
— Let n =0 and r = 8n. By case on (Az.M')Ny —g, P.
« If (A\z.M')Nog —3 M'[z := Ny, then we are done.
« If \e. M —p, Q and P = QNy. By lemma 2.2.3,

- Either @ = Az.M" and M’ —p, M"”. Hence, \x.M' —g;,
Az.M" by lemma 2.2.4, so P = (Ax.M" )Ny is a direct Sn-reduct
of (Ax.M") Ny, absurd.

- Or M’ =Qx and z ¢ FV(Q). Hence, P = QNy = M'[z := Ny
and we are done.
* If Ng —p, N’ then P = (Az.M')N’ is a direct On-reduct of
(Ax.M")Ny, absurd.
— Let n =m+ 1 where m > 0. By case on (Az.M)Ny...Ny41 — P.
x If Ae.M")Ny...N,, = Q and P = QN,,11.
- If @Q is a direct r-reduct of (Ax.M')Ny ... N, then P is a direct
r-reduct of (Ax.M')Ny ... Nyt1, absurd.

- So, @ is not a direct r-reduct of (Ax.M’)Ny ... N, then we are
done by IH.

# If Nppy1r —» Nyjyyq then P = (Ax.M')Ng... Ny, N/, is a direct
r-reduct of (Ax.M')Ny ... Ny, 11, absurd.

6b. By 6a, M = Az.M’, k > 1. We prove the statement by induction on k& > 1.

— If k =1 then we conclude by 6a.
— Let (Az.M')Ny...N,, =% Q —, P.
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x If @ is a direct r-reduct of (Az.M')Ny ... N,, then
Q = (Az.M")N{ ... N}, such that M’ —* M" (use lemma 2.2.5 if
r = 0n) and Vi € {0,...,n}, N; —F N/. Since P is not a direct r-
reduct of (Az.M’)Ny ... N,, P is not a direct r-reduct of Q. Hence
by 6a, P = M" [z := N§|Ny...N},.
* If Q is not a direct r-reduct of (Az.M’)Ny ... N,, then by TH, there
exists a direct r-reduct (Ax.M")N{ ... N, of (A\x.M')Ny...N, such
that M"[x := N{]N{... N} =X Q —, P.

7. If P is a direct r-reduct of (Az.M)Ny ... N, then P = (Az.M')N{,... N}, such
that M —) M’ (use lemma 2.2.5 if r = fn) and Vi € {0,...,n},N; —
N!. So P —, M'[x := N{]Ny...N}, (if r = I, note that x € FV(M’) by
lemma 2.2.2) and Mz := No|Ny...N, —* M'[lx := N{]N{...N/. If P is
not a direct r-reduct of (Ax.M)Np ... N, then by lemma 6.6b, there exists a
direct r-reduct, (Az.M')N{...N], such that M —% M’ (use lemma 2.2.5 if

r=[n)and Vi € {0,...,n}, N; =% N/, of (Ax.M)Ny...N,. Let P = P. We
have M[z := No]N; ... N, —* M'[x := Nj|N} ... N, —* P. [

Lemma 2.4 .
1. By induction on the structure of M.

e Let M be a variable.

— Let M = x then Mz := ¢(cz)] = ¢(cz) #  and for any N,
Mz := ¢(cx)] = ¢(cx) # Nax (otherwise cx = x absurd).

— Let M =y # x then M|z := ¢(cx)] =y # « and for any N,
Mz := ¢(cx)] =y # Nz.

e Let M = A\y.P. Since M[x := ¢(cx)] is a A-abstraction, M|z := c(cx)] #
x and for any N, M[z := c¢(cx)] # Nz.

e Let M = PQ. Since M|z := ¢(cx)] is an application, M|z := ¢(cx)] # .
Let N € A such that, M|z := ¢(cz)] = Nz, so Q[z := c¢(cx)] = x and by
TH, absurd.

2. By induction on the structure of M.

e Let M be a variable.

— Let M =y # x then M[y := ¢(cx)] = ¢(ex) # x and for any N,
My = c(cx)] = c(cx) # Nz since cx # .

— Let M =z # x and z # y then M|y := ¢(cz)] = z # x and for any
N, M[y :=c¢(cx)] = z # Nz.

o Let M = Az.P. Since My := c(cx)] is a A-abstraction, M|y := c(cx)] #
x and for any N, My := ¢(cx)] # Nz.

e Let M = PQ. Since M|y := c(cx)] is an application, My := ¢(cx)] # =.
Let N € A such that, My := c¢(cx)] = Nz, so Qy := ¢(cx)] = x and by
IH, absurd.

3. By cases on the derivation of M € M..
4. By cases on the structure of M using 3.
5. By cases on the derivation of M N € M..
6. By cases on the derivation of Az.P € An..

7. By cases on the derivation of Az.P € Al,.
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8. By induction on the derivation of M € M..

Case (R1)1. Let M = x then M[z := N] =N € M.. Else M =y #
and so Mz := N] =M € M..

Case (R1)2. Let M = A\y.P where P € Al, and y € FV(P). By IH,
Plz := N] € AlL; and since y € FV(P[z := N]), M[z := N] = \y.Plz :=
N] € AL.

Case (R1)3. Let M = A\y.Ply := ¢(cy)] such that P € An.. Then by IH,
Plx := N] € An.. Soby (R1).3 M[z := N] = \y.Plx := N][y := c(cy)] €
Ane.

Case (R1)4. Let M = A\y.Py such that Py € An., y ¢ FV(P) and P # c.
By IH, Plx := N]y € An.. By lemma 2.4.4, Plx := N]| # c.

Since y ¢ FV(P[z := N]), M|z := N| = \y.P[z := Nly € An..

Case (R2) Let M = ¢M; M, such that My, My € M. Then by TH,
M|z := NJ], Ma[z := N] € M,. Hence, cM[z := N]Mz[z := N] € M.
Case (R3) Let M = M;M; such that My, My € M. and M; is a A
abstraction. Then by IH, M;[z := N], Ma[x := N] € M,.

Hence, Mi[zx := N]Ms[z := N] € M., since Mz := N]is a A
abstraction.

Case (R4) Let M = cP such that P € An.. Then by IH, P[z := N] € An,
and by (R4), M[z := N] € An..

By lemma 2.4, either P = Nz where Nz € An. or P = Nz := c¢(cx))]
where N € An.. In the second case, since by BC and (R4),  # ¢ and
c(ex) € Ane, we get by lemma 2.4.8 that N[z := c(cx))] € An.

It is easy to show that if P, N € A, then Px # Nz := ¢(cz)]. Hence,
by lemma 2.4, Px = Nz where N, Nz € An., © ¢ FV(N) and N # c.
Since Px = Nx then P = N.

By induction on the structure of M using lemma 2.4.

e If M is a variable distinct from ¢ then nothing to prove.

o If M = \y.Ply := c¢(cy)] where P € An,. then by 9a, Ply := c(cy)] €
Ane. Mz = c(cx)] —pg, M’ only if M’ = A\y.P’ where Ply :=
c(ey)|z == c(ex)] —py P'. Soby IH, P’ = P"[x := ¢(cz)] and Ply :=

c(ey))] —py P”. Hence M’ = Ay.P"[z := c(cz)] = (Ay.P")[z =
c(cx)] and A\y.Ply == c(cy)] —py Ay.P".

o If M = \y.Py such that Py € An., P#cand y & FV(P). Let T =
Mz = ¢(cx)] = M\y.Plz := c(cx)]y where y & FV(Plx := c(cz))).

— If T'—,, Plz := c(cz)], we are done since M —,, P.

— If T —p, A\y.P" where (Py)[z := ¢(cx)] = Plx := ¢(cx)|y —p, P’
then P’ = P"[x := ¢(cx)] and Py —g, P" by IH. Hence, M’ =
Ay Pz = c(cx)] = (A\y.P")[z := c(cz)] and M —g, Ay.P".

o If M = ¢M; M, such that My, My € An., then let T = Mz =
c(cx)] = eMylz == c(cx)|Ma[z := c(cx)].

— If T —g, cM{ M|z := c(cx)] where M, [z := c(cx)] —g, M], by
IH, M| = M{[z := c(cz)] and M; —p, M{'. Hence
M' = (eM]'Ms)[z = c(cx)] and M — g, cM{ Ms.

— Case T' —p, cMi|z = c(cx)| M5 where Ms[x := c(cx)] —pg, M)
is similar.

o If M = M;M> such that My, My € An, and M; is a A-abstraction,
then let T = Mz := ¢(cx)] = My[z := c¢(cx)|Ma|z := c(cx)] where
Mz = c(ex)] is a A-abstraction. Let M; = Az.My, so M|z =
c(cx)] = Az. M|z := c(cx)].
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— Let T —g, M{Ms[z := c(cx)] where M[x := c(cx)] —p, Mj.
Then by IH, M| = M{[z c(ex)] and My —g, M{. So
M = M{[z := c¢(cx)|Mslz := c(ex)] = (M M)z := c(cx)]
and M — g, M{ M.

— Case T' — g, M|z := c(cx)| My where M[x := c(cx)] —pg, My is
similar.

— Let T —p Moz := c(ca)][z := Ma[z = c(ex)]] = Molz =
Ms][x := c(cx)]. We are done since M —g My[z := Ma].

o If M = c¢P where P € A1, then M|z := ¢(cx)] = cPx := c¢(cx)| —p,
cP’ where Plz := ¢(cx)] —g, P'. So by IH, P! = P"[x := ¢(cx)] and
P —g, P". Hence M’ = cP"[x := c(cx)] = (cP")[z := c(cx)] and
M —g, cP".

(d) By induction on n.

Lemma 2.5. We prove this lemma by induction on the structure of M.

o Let M € V. Let C € R}, so C € C and 3R € R” such that C[R] = M. We
prove by induction on the structure of C' that this is absurd, i.e. R}, = @.
— Let C =0 then M = R. absurd since M ¢ R".
— Let C' = Az.C" then Az.C'[R] = M, absurd.
— Let C = C'N then C'[R]N = M, absurd.
— Let C' = NC’ then NC'[R] = M, absurd.

e Let M = Xz.N and C' €C.

— Let M € R". We prove by induction on the structure of C' that if
C € R}, then C € {O} U{Xz.C' | C € Ry}
* Let C'=0 then 3R € R" such that O[R] = R = M and it is done.
x Let C = Az.C’ then 3R € R" such that Az.N = A\z.C'[R]. So
N = C'[R] and by definition, C’ € R.
x Let C' = C'P then AR € R" such that A\z.N = C'[R]P.
x Let C' = PC’ then AR € R" such that Az.N = PC'[R).
Let C € {O}U{Az.C | C € R} }, we prove that C € RY,.
* Let C'=0. Since M € R" and C[M] = M, by definition, C' € R},.

% Let C' = Az.C’ such that C" € RY. By definition 3R € R" such
that C'[R] = N, so C[R] = M.

— Let M ¢ R". We prove by induction on the structure of C that if
C e Ry then C € {\x.C | C € Ry}
* Let C'=0 then AR € R" such that O[R] = R = M, since M ¢ R".
* Let C' = Az.C” then IR € R" such that Az.N = A\x.C’[R]. So
N = C'[R] and by definition, C" € RY,.
* Let C = C'P then AR € R" such that \x.N = C'[R]P.
* Let C = PC' then AR € R" such that \x.N = PC'[R].
Let C € {Xz.C' | C € R’ }, we prove that C € RY;,.
* Let C' = Az.C” such that ¢’ € RYy. By definition 3R € R" such
that C'[R] = N, so C[R] = M.

e Let M = PQ and C € C.
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— Let M € R". We prove by induction on the structure of C' that if
C € Ry then C € {0} U{CQ | C e Rp}U{PC | C € Ry}
% Let C'=0 then 3R € R" such that O[R] = R = M and it is done.
Let C = Az.C’ then AR € R" such that PQ = \x.C’[R].
Let C = C’N then 3R € R" such that PQ = C'[R]N. So N = Q,
C’[R] = P and by definition, C’ € R'.
* Let C' = NC’ then 3R € R” such that PQ = NC'[R]. So N = P,
C’'[R] = Q and by definition, C" € R,.
Let C € {MU{CQ | C € RR}U{PC | C € R}, we prove that C' € R,
* Let C'=0. Since M € R" and C[M] = M, by definition, C' € R},.
* Let C'= C'Q such that C’ € R%. By definition 3R € R" such that
C'R) = P,so C[R] = M.
* Let C' = PC’ such that C' € Rf,. By definition 3R € R" such that
C'[R] =@, so C|R] = M.
— Let M ¢ R". We prove by induction on the structure of C' that if
C € Ry then C € {CQ | C € Rp}U{PC | C € R}
* Let C' =0 then AR € R" such that O[R] = R = M, since M ¢ R".
* Let C' = Az.C’ then AR € R" such that PQ = \z.C'[R).
* Let C = C'N then 3R € R" such that PQ = C'[R]N. So N = Q,
C’[R] = P and by definition, C’ € R'.
* Let C = NC’ then IR € R" such that PQ = NC'[R]. So N = P,
C’'[R] = @ and by definition, C" € Rf,.
Let C € {CQ | C € Rp}U{PC | C € Ry}, we prove that C' € Rj,.
x Let C'= C'Q such that C’ € R%. By definition 3R € R" such that
C'|R) = P,so C[R] = M.
* Let C' = PC’ such that C' € Rf,. By definition 3R € R" such that
C'R) = Q, so C[R] = M.

*

*

O
Lemma 2.6. We prove the statement by induction on the structure of M.
o Let M €V, by lemma 2.5, R}, =, so F = @.
e Let M = Ay.N then by lemma 2.5:
— I MeR then Ry, ={0}U{ z.C | CeRY} Let F' ={C | Az.C €
F}. Let C € F' then \x.C € F, so C € RYy.

x Let C € F\ {0} then C = Az.C’ such that C’ € RY. So C' € F’
and it is done.

x Let C' € {Mx.C | C € F'} then C = Az.C’ such that C' € F'. So
Ae.C' = C e F\{O}.

— If M ¢ R" then R}, = {X\z.C | C € Ry}. Let F/' = {C | \x.C € F}.
Let C' € F' then Az.C € F,so C € Ry.

* Let C' € F then C = Az.C” such that C' € R} So €/ € F' and it

is done.
* Let C € {Az.C | C € F'} then C = Ax.C’ such that C" € F'. So
.0’ =CeF.

e Let M = PQ then by lemma 2.5:
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~ If M € R" then R}, = {J}U{CQ | C € Rp}U{PC | C € R}. Let
Fi={C|CQe F}and F, ={C | PC € F}. Let C € F; then CQ € F,
so C € Rp. Let C € F, then PC € F, so C € Ry,.

x Let C € F\ {O}. Either C' = C'Q such that C' € R}, so C' € Fy
and it is done. Or C = PC’ such that C’' € R}, so C' € F5 and it
is done.

x Let C € {CQ | C € Fi} U{PC | C € F,}. Either C = C’'Q such
that C' € Fy, s0o C'Q € F\ {O}. Or C = PC’ such that C' € Fy,
so PC’" € F\ {O}.

—If M ¢ R" then R}, = {CQ | C € Rp}U{PC | C € Rp}. Let
Fi={C|CQ € F} and F, = {C | PC € F}. Let C € Fy then
CQ € F,s0C€Rp. Let C € Fp then PC € F, so C € Ry,.

* Let C € F. Either C' = C’'Q such that C' € R, so C’ € F; and it
is done. Or C' = PC’ such that C' € R s0 C'" € F5 and it is done.

x Let C € {CQ | C € Fi} U{PC | C € F}. Either C = C’'Q such
that C' € Fy, so C'Q € F. Or C = PC’ such that C' € Fs, so
PC" e F.

O
Lemma 2.7.

=) we prove the statement by induction on M.

— M ¢V since by lemma 2.5, R}, = @.
— Let M = A\y.P so M[z := N] = A\y.P[x := N]. By lemma 2.5:
* If M € R" then:
- Either C =0 so M[z := N] = Clz := N][R] =O[z := N]|[R] =
R. Hence, R = M|z := N] and M = O[M].
- Or C = A\y.C’ such that ¢’ € R%. Then, C[z := N][R] =
Ay.C'[z := N][R] and Pz := N] = C'[z := N][R]. By IH, R =
R'[x := N] and P = C'[R]. Hence, M = \y.P = \y.C'[R/] =
C[R'].
x If M ¢ R” then C = \y.C’ such that C’ € R%.. So, C[z := N][R] =
My.C'[z := N][R] and Pz := N] = C’'[z := N]|[R]. By IH, R =
R'[z := N] and P = C’'[R’]. Hence, M = \y.P = M\y.C'[|R'] = C[R/].
— Let M = PQ so M[z := N] = Plz := N|Q[z := N]. By lemma 2.5:
* If M € R" then:
- Either C =0 so M[z := N] = Clz := N][R] =O[z := N]|R] =
R. So R= M|z := N] and M = 0O[M].
- Or C = C'Q such that C' € R. Then, Clz := N|[R] = C'[z :=
N][R]Q[z := N] = Pz := N|Q[z := N] and P[z := N] =
C'lz ;= N][R]. By IH, R = R'[z := N] and P = C'[R’]. Hence,
M = PQ =C'[R)Q = C[R].
- Or C = PC’ such that C" € Rfy. Then, Clz := N|[R] = Plx :=
N]C'[xz := N][R] = Pz := N]Q[z := N] and Q[z := N| =
C’'[z := N][R]. By IH, R = R'[x := N] and Q = C'[R’]. Hence,
M = PQ = PC'|R'] = C[R].
x If M ¢ R" then:
- Either C = C’Q such that ¢’ € R%. Then, Clz := N][R] =
C’'[xz := N][R]Q[z := N] = Plz := N|Q[z := N] and Plx :=
N] = C’'[x := N][R]. By IH, R = R'[x := N] and P = C'[R/].
Hence, M = PQ = C'[R'|Q = C[R/].
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- Or C' = PC’ such that C" € Rfy. Then, Clz := N|[R] = Plx :

N|C'lx := N][R] = P[z := N]Q[z := N] and Q[z := N]

C’'[z := N][R]. By IH, R = R'[x := N] and Q = C'[R/]. Hence,

M = PQ = PC'|R'] = C[R].
<) We prove the statement by induction on the structure of M.

— M ¢V since by lemma 2.5, R}, =
— Let M = A\y.P. By lemma 2.5:
* Let M € R".
- Either C' = Oand R = M, so C[z := N][R[z := N]| = O[M|z
N]] = M|z := NJ.
- Or C = \y.C’ such that ¢’ € R’%. Then, \y.P = \y.C'[R

| so
P =C'[R]. By IH, Plx := N] = C’[m = N][R[x = N]]. Hence,

Mz := N] = M\y.Plx := N] = \y.C’[z := N][R[z :=
(My.C'[z := NJ])[R[z := N]] = (\y.C")[z := N][R[z :=
Clz := N][R[z := N]].

* Let M ¢ R", then C = A\y.C" such that ¢’ € 7'\’,]63". Then, \y.P =
Ay.C’'[R] so P = C'[R]. By IH, Plx := N| = C'[z := N][R[z := N]].

Hence, M[z := N] = A\y.P[z := N] = \y.C'[z := N][R[z := N]

(Ay.C'[z := N])[R[z := N]] = (A\y.C")[z := N][R[z := N]] = C[z :

N][R[z := N]].
— Let M = PQ. By lemma 2.5:
x Let M € R".

- Either C =0and R = M, so Clz := N|[R[z := N]] = O[M|z :

N]| = M[z := NJ.
- Or C = C'Q such that ¢’ € R. Then, PQ = (C'Q)[R]
C’'[R]Q and P = C'[R]. By IH, P[z := N| = C'[x := N][R[z

Hence, M[z := N] = Plz := N|Q[z := N] = C'[z :

N]J.
N][R[z := N]jQlz := N] = (C"[z := N]Q[z := N])[R[z
NJ] = (C'Q)[x := N][R[z := N]] = Clx := N][R[z := N]].

- Or C = PC" such that C' € Ry,. Then PQ = (PC')[R]
c

PC'[R] and @ = C'[R]. By IH, Q[z := N] = C'[z := N][R[z
N]]. Hence, Mz := N| = P[x = N]Q[:E := N] = Plz :
N]C'[z := N][R[z := NJ]| = (P[z := N|C'[z := N])[R[z
N]] = (PC")[z := N][R[z := N]] = C[gc := N][R[z := N]].

* Let M ¢ RP.

- Either C = C'Q such that ¢’ € R%. Then, PQ = (C'Q)|R]
C’'[R]Q and P = C'[R]. By IH, Pz := N] = C'[z := N][R[
N]]. Hence, M[x := N| = Plz := N|Q[z := N] = C'[z
N|[Rlz = NJ|Q[z := N] = (C'[z := N|Q[z := N])[R[z
NJ] = (C'Q)[z := N|[R[z := N]] = C[z := N][R[z := N]|.

- Or C = PC" such that ' € Ry,. Then PQ = (PC')[R]

PC'[R] and Q = C'[R]. By IH, Q[z := N] = C'[x := N][R|z

N]]. Hence, M[z := N| = P[z := N|Q[z := N] = Plx

N]C'[z := N][R[x := N]] = (P[z := N|C'[z := N])[R[z

N]] = (PC")|z := N][R[z := N]] = C|z := N][R[z := N]].

Lemma 2.8. We prove the lemma by induction on the structure of C.
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Let C = 0O then Clx := N][R] = O[R] = R and C[R][z := N] = Rz := N| =

R.

Let C = A\y.C’'. By (BC), x # y. Then, Clz := NJ|[R] = \y.C'lx :=
N][R] =8 \y.C'[R][z := N] = C|R][x := N].

Let C = C'P. Then, Clz := N|[R] = (']

C'[R][x := N]P[z := N] = (C'[R]P)[z := N] = C[R][x := N].

P
Let C = PC’. Then, C[z := N][R] = P[z := N]C'[z := N][R] =" Pz :=
N]C'[R][z := N] = (PC'[R])[z :== N] = C[R][x := N]. O

Lemma 2.9.

1. By case on the structure of M.

o let M V.
— Either M = z then, Mz := c¢(cx)] = c(cx). Hence, c(cx) # y,
¢(cx) # Py since cx # y and c¢(cx) # \y. P.
— Or M = z # x then Mz := ¢(cx)] = 2. Hence, if z = y then M =y,
z # Py and z # \y.P.

e Let M = Az.M' then M[z := c(cx)] = Az.M'[x := c(cx)]. Hence,
Az.M'[x := c(ex)] # y and A\z.M'[x = ¢(cx)] # Py. By (BC), y &
FV(M') so M = Ay.M'[z := y| and M[x := c¢(cx)] = Ay M'[z := y][z :=
c(ex)] = \y.P. Hence, M'[z := y|[z := ¢(cx)] = P

e Let M = MM, then M[x := c¢(cx)] = Mi[z := c(cx)|Malz = c(cx)].
Hence, Mz := c(cx)|Malx = c(cx)] # y and Mz = c(cx)] Mz =
c(ex)] # Ay.P. If My[x := c(cx)|Ma[z := ¢(cx)] = Py then P = Mz :=
c(ex)] and Mz == c(cz)] =y. So My =y.

2. By case on the structure of M.

3.

B
4. =) Let C € R

e Let M €V then M € RP" and M|z := c(cz)] ¢ RP".
e Let M = Ay.N then Mz := c(cx)] = Ay.N[z := c(cx)]. By (BC),
T#yFec
— If M € RP" then N = Py such that y ¢ FV(P). Nz := c(cz)] =
Plz := c(cz)]y and y & FV (P[z := c(cz)]), so M|z := c(cz)] € RP".
— If M[z := c(cz)] € RP" then N[z := c(cx)] = Py such that y ¢
FV(P). By 1, N = Qy and P = Q[z := c(cx)]. So M = A\y.Qy.
Since y ¢ FV(P), y ¢ FV(Q). So M € R".
o Let M = My M, then Mz := c(cz)] = M|z := c(cx)|Ma[z = c(cx))].
— If M € RP" then My = \y.My. So M|z := c(cz)] = (Ay.My[z :=
c(cx)]) M|z == c(cx)] € R,
— If M[z := c(cx)] € RP" then Mi[z = c(cx)] = A\y.P. By 1, M =
\y.My and P = My[z := c(cz)]. So, M € RP"

=) Let C € RfZ_M[x::C(w)]. By lemma 2.4, A\z. M|z := c(cx)] € RP" so by

B
<) Let C € Ry}

lemma 2.5, C'= Az.C’ such that C’ € Rﬁ/?[x::c(cm)]'

By lemma 2.5, \z.C € R

[z:=c(cx)]" Ax.M[z:=c(cz)]"

([wi=c(cz)]" We prove the statement by induction on the
structure of M

B . Bn =
M g V since RM[IZ:C(CZ)] =2
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— Let M = A\y.N so M[x := c(cx)] = Ay.N[z := c¢(cz)]. By lemma 2.5:
x If M € RP" then by 2, M|z := c(cx)] € RP".

- Either C = 0 and Clz := ¢(cx)] = O € RAT.
- Or C = A\y.C’ such that C" € R?V”

eeny- By IH, O =
C"[z = c(cx)] and C" € RET. Hence C = M\y.C"[x =
c(cx)] = (Ay.C")[x := ¢(cx)] and by lemma 2.5, \y.C" € ’R%’

x* Or M ¢ RP" then by 2, M[z = c(cz)] & RP". So, C = \y.C’

such that C’ € R?\,n

By IH, C" = C"[z := c(cx)] and

[z:=c(cx)]"

C" e R]‘i,”. Hence C = \y.C"[z := c(cx)] = (A\y.C")[z := c(cz)]
and by lemma 2.5, \y.C" € R

— Let M = M1 M so Mz := ¢(cx)] = Mi[x = c(cx)| Mz := c(cz)].
By lemma 2.5:

% If M € RP" then by 2, M[z := c(cx)] € RA.

- Either C = 0 and C[z := ¢(cx)] = O € RA7.

- Or C = C1Mylz = c(cx)] such that C; € RMI[I ()]’
By IH, C; = Ci[z := c¢(cx)] and C] € RB". Hence C =
(C} Ma)[z = ¢(c )] nd by lemma 2.5, C} My € RA7.

- Or C = Mz c(cz)]Cy such that Cy € RMZ)[I —e(ex)]"
By IH, Cy = CQ[ = c(ex)] and Cf € R%’l. Hence C =

(M, C})[z := ¢(cx)] and by lemma 2.5, M,CY € R4,

x Or M & RP" then by 2, M[x := c(cx)] € R7".

- Either C' = Cy Ma[z := ¢(cz)] and Cy € RYT

- Or C = My[z := ¢(cx)]Cy and Cy € Rg}’

Mi[wi=c(ca)): BY TH,
Cy = O}z == c(cx)] and C} € Ry} Hence C = (C} M)z ==
c(cz)] and by lemma 2.5, C1 My € R’%’
alw=c(ea)) BY H;
Cy = Chz = c(cx)] and Ch € Ry} Hence C = (M;Ch)[z ==
c(cz)] and by lemma 2.5, M1C% € Rﬁ/}'

<) Let C € R%;. Then C € C and IR € R”" such that C[R] = M. So by 2,
R[z := c(cz)] € RP" and by lemma 2.7, Cz := c(cx)][R[z := c(cz)]] =

M|z := c(cx)]. Hence, by definition, Clz := c(cx)] € R},

[z:=c(cx)]"

5. We prove this statement by induction on n > 0.

o Let n = 0 then trivial.
e let n = m+1 such that m > 0. By lemma 2.5, ’Rcm(M) ={Cc"(M)|C €
RETYU{e(C) | C € REL 4y} =TT {e"(C) | C € REJY.

O

Lemma 2.10. We prove the statement by case on r.

e Either r = SI. Since M € Al., M € Al, so A\x.P,@Q € Al Hence, x € FV(P)

and M € RAL

e Or r = fBn. Trivial. O

Lemma 2.11. We prove the statement by induction on the structure of M.

e Let M € V\ {c}. Nothing to prove since by lemma 2.5, R}, =
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e Let M = Az.N € AL let C € Rl then by definition, IR € RPT such that
M = C[R]. Since M ¢ RP!, by lemma 2.5, C' = A\z.C’ such that C' € R]’i,[.
So Az.N = Az.C'[R] and N = C'[R]. By IH, R € AlL.

e Let M = Az.N[x := ¢(cx)] € An, such that N € An.. Let C € ’R’?V? then by
definition IR € RA" such that M = C[R]. By lemma 2.9.3, C = \z.C’ and
C' e Rmx:c(cm”. By lemma 2.9.4, C' = C"'[x := ¢(cx)] and C” € R4, Since
x ¢ FV(R), by lemma 2.8, Az.N[z := c(cx)] = (Az.C"[z := c(cx)])[R] =
Az.C"[z := ¢(ex)][R] = Ax.C"[R][x := ¢(cz)] and N = C”[R]. By IH, R €
Ane.

e Let M = Ax.Nz € An. such that Nz € An., v € FV(N) and ¢ # N. Let
C € R then by definition IR € RA7 such that M = C[R]. Since M € R,
by lemma 2.5:

— Either C =0so O[R] = R= M and M € An,.
— Or C = \z.C" such that ¢’ € R3!. So M = Az.Nz = \z.C'[R] and
Nz = C'[R]. By IH, R € An,.

o Let M =cNP € M, such that N, P € M.. Let C € R}, then by definition
IR € R" such that M = C[R]. Since M,cN ¢ R", by lemma 2.5:

— Either C' = ¢C'P such that C' € R%. So M = ¢NP = (¢C'P)|R]
¢C'[R|P and N = C'[R]. By IH, R € M..

— Or C = ¢NC' such that ¢’ € RE. So M = ¢cNP = (cNC')[R] =
¢NC'[R] and P = C'[R]. By IH, R € M..

e Let M = (Ax.N)P € M, such that Az.N,P € M.. Let C' € R}, then by
definition AR € R" such that M = C[R]. Since by lemma 2.10, M € R", by
lemma 2.5:

— Either C =0so M =0[R] = R and M € M..
— Or C = C'P such that " € Ry, 5. So M = (Az.N)P = (C'P)[R] =
C'[R]P and Az.N = C'[R]. By IH, R € M..
— Or C = (Ax.N)C" such that C' € Rl,. So M = (Ax.N)P =
(Ax.N)C")[R] = (Ax.N)C'[R] and P = C'[R]. By IH, R € M..
o Let M = ¢N € An. such that N € An.. Let C € R’/j} then by definition
3R € RP" such that M = C[R]. Since M ¢ RP", by lemma 2.5, C' = ¢C" such
that C' € RY1. So M = ¢N = ¢C'[R] and N = C’'[R]. By IH, R € An,. [

Lemma 2.12.
1. By induction on M —g, M.
o Let M = AMz.Nz —, N = M’ where ¢ ¢ FV(N). By lemma 2.4,
N € An..

e Let M = (Az.N)P —g N[z := P] = M'. By lemmas 2.4 and 2.4.9,
N, P € An.. By lemma 2.4.8, N[z := P] € An,.
o Let M = Ax.N —g,; Ax.N' = M’ such that N —g, N'. By lemma 2.4
— Either M = \z.P[z := ¢(cz)] where P € An. and Plx := c(cx)] —py
N’. So by lemma 2.4.9.9c, N' = N"[z := ¢(cx)| and P —g, N". By
IH, N” € An. so by BC, (R1).3, Ax.N' € An..
— Or M = \x.Px where P, Pz € An., x ¢ FV(P), P # c and Pz —g,
N’. So by IH, N’ € An.. One of two cases holds:
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* Pr —g, P'x where P —g, P'. By IH, P',P'z € An.. By
lemmas 2.4.3 and 2.2.1, P’ # c and « ¢ FV(P’). By (R1).4,

Az.P'z € Ane.
x P = A\y.Py and Pz —g Pyly := z]. So M —3 Ax.Poly := 2] =
P e An..
o Let M = MMy —p, M{M, = M’ such that M; —g, M{. By
lemma 2.4:

— Either M, = ¢My and My, My € An.. Then, My = cMy —p, cMy =
M7 where My — g, My. By IH, Mg € An., so by (R2), M’ € An..
— Or My = \z.My and My, M5 € An.. By lemma 2.4.9.9a, My € An,
and by IH, M| € An..
% Bither M = (Az.Mo)My —g, (Az.Mj)My where My — g, M.
So M| = Az.M] is a A-abstraction and by (R3), M’ € An..
* Or M = (Ax.M{z)My —, M{M, where z ¢ FV(Mj). Since
M, € An., by lemma 2.4, M{ # ¢ and M| € An.. Since My =
Mix € An., again by lemma 2.4, either M| = ¢M]’ such that
M{" € An. and so by (R2) M’ € An., or M] € An. is a A-
abstraction and so by (R3) M’ € An,.

o Let M = MMy —g, MiM; = M’ such that My —g, M;. By
lemma 2.4, My € An. so by IH, M} € An.. By lemma 2.4, there are
3 cases:

— My = cMy where My € An.. Then, M’ € An. by (R2).
— M € A, is a A-abstraction. Then M’ € A7, by (R3).
— M; =c. Then M’ € An. by (R4).

2. By induction on M —g;r M’ in a similar fashion to the above. O
Lemma ’refncstwo. We prove the statement by induction on n > 0.
e Let n = 0 then by definition |¢™(M)|® = |M]|°.

e Let n = m+1 such that m > 0 then |c"(M)|¢ = |c(c™(M))|¢ = |e™(M)|c =11
|Me. O

Lemma 2.16.
e let P € V. We prove the statement by induction on the structure of M.
— Let M €V then [M|°= M = P.

— Let M = Ax.N then |M|¢ = Az.|N|¢ # P.

— Let M = My Ms. If My = ¢ then |M|¢ = |Ms|¢. By IH, 3n > 0 such that
My = c"(P). If My # c then |M|® = |My||Ms|¢ # P.

e Let P = A\z.QQ. We prove the statement by induction on the structure of M.
— Let M €V then |M|° =M # \z.Q.
— Let M = Az.N then |M|¢ = Az.|N| so |[N|° = Q.

— Let M = M1 Ms. If My = ¢ then |M|¢ = |Ms|°. By IH, In > 0 such that
My = "(Ax.N) and |N|¢ = Q. If My # ¢ then |M|¢ = |M;|¢|M|¢ #
Az.Q).

e Let P = P P,. We prove the statement by induction on the structure of M.
— Let M €V then |M|¢ = M # P, Ps.
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— Let M = A\x.N then |M|¢ = Ax.|N|¢ # P Ps.

— Let M = M M. If My = ¢ then |M|¢ = |Ms|°. By IH, 3n > 0 such
that My = ¢"(M5MY), |ML|© = Py and |MY|© = Py. If My # c then
|]\4|c = |M1‘C|M2|C = P1P2 SO ‘M1|C = P1 and ‘M2|C = Pg.

O

Lemma 2.17. We prove the statement by induction on M.
e Let M €V then by lemma 2.5, R}, = @.
e Let M = Ax.N then by lemma 2.5:

— Either M € R" then:

* Either C' =0 = C’ so it is done.

* Or C =0 and C" = \z.C}) such that C) € R’,. Nothing to prove
since O # Az.|Cylg.

* Or C = Az.Cp and C' = A\z.Cj such that Cy,C) € RY. By hy-
pothesis, Az.|Cylé = Ax.|C)lg so |Cole = |Cplé. By IH, Cy = Cf so
Cc=cC.

— Or M ¢ R" then C = Az.Cy and C" = Az.Cj) such that Cy, Cj € RY.
By hypothesis, Az.|Co|g = Az.|Cplé so |Colé = |Chle. By IH, Cy = Cj
soC=C".

e Let M = PQ then by lemma 2.5:

— Either M € R", so P is a A-abstraction and:

* Either C =0 = C” so it is done.

* Or ¢ =0 and C' = C}Q such that C) € R%. Nothing to prove
since 0 # |Chlg1QI.

* Or C = 0O and ¢" = PCj such that Cj € Ry,. Since P is a -
abstraction, O # | P|°|Cy|g.

* Or C = CyQ and C" = CyQ such that Cy,C) € Rp. Since by
hypothesis, [C|é = |Col¢|QI¢ = |CHl6|Q|¢ = |C'|&, then |Cols =
|Cplé. By IH, Cy = C{ so C = C".

* Or C = CoQ and C" = PCj such that Cp € Rp and Cj € Ry,y. Since
P is a A-abstraction, |C|& = |Cy|&|Q|¢ # |P||Cplé = |C'|6.

x Or C = PCy and C' = PC{, such that Cy,C}, € Rg- Since P is a
A-abstraction, by hypothesis, |C|& = |P|°|Co|é = |P||Colé = |C7]G
so |Colé =|Cplé. By IH, Cy = Cjy so C = C".

— Or M ¢ R", then:

* Or C = CyQ and C" = CyQ such that Cy,C) € R’p. Since by
hypothesis, |Clz = [Col¢|@Q|® = |Cole|QI® = |C'[¢, then [Colg =
IChl5. By IH, Co = C so C = C.

 Or C = CoQ and €' = PC} such that Co € R} and Cj € RY.
P =# c, otherwise, by lemma 2.5, R}, = @. Moreover, |C|; =
|ColglQI° # |PI°|Chle = [C7[¢-

* Or C = PCy and C' = PC{, such that Cy, C{ € R- If P # c then,
by hypothesis, |C[c = |P|?|Cole = [P|°|Cple = [C7[¢ so [Cole =
|Colé. By IH, Cy = Cjy so C = C'. If P = c then, by hypothesis,
ICle = |Cole = [Cole = |C"[¢ so |Cole = |Cole. By TH, Co = Cj so
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Lemma 2.18. We prove the statement by induction on the structure of M.
e et M eV

— Let M = x then |M[x := ¢(cx)]|® = |e(cx)|® = |z|°.
— Let M =y # x then |M|[z := ¢(cx)]|® = |M]°.

e Let M = \y.N then |M[z := c(cz)]|¢ = M\y.|N[z := c(cz)]|® =7 \y.|N|¢ =
| M°.

o Let M = NP.

— Either N = ¢, so N[z := ¢(cx)] = ¢. Then, |M[z := c(cz)]|® = |Plz :=
c(ex)]|c =M |P|° = M.

— Or N # ¢, so N[z := ¢(cx)] # ¢. Then, |M[z := c¢(cz)]|° = |N[z :=
c(cx)]||Plx == e(ca)]|* =" [N|°|P|* = |M]°.

Lemma 2.19. We prove the statement by induction on the structure of C.
e Let C' =0 then |Clz := ¢(cx)]|§ =0 = |C¢.
e Let C = \y.C’ then |Clz = c(c)]|é = \y.|C'[x := c(cx)]|é =T \y.|C'| =

Cle-
e Let C = C'Pthen |Clz := c(cz)]|§ = |C'[x := c(cx)] |G| Pz = c(cx)]|c =T 28]
[ClelPle =1C6
e Let C'= PC".
— Either P = ¢, so Plx := ¢(cx)] = ¢. Then, |Clz := c(cx)]|é = |C'|z :=

C(Cx)Hc =T |C'|c \C|E

— Or P # ¢, so Plz := c(cx)] # c¢. Then, |Clz := c¢(cx)]|¢ = |Plz =
c(cx)]|°|C"[w := c(ca)l|¢ =" 21% |P|°|C"|G = |

Lemma 2.20. We prove this lemma by induction on the structure of M.
e Let M € V\ {c}.
— Either M = z then |M[z := N]|¢ = |N|® = M|z := |N|¢] = |[M|°[z :=

[V°).
— Or M =y # x then [M[x := NJ|°* = |[M|° = M = Mz := |N|?] =
[ M|z := [N]°].

e Let M = \y.P € Al. |M[z := NJ|° = \y.|P[z := NJ|¢ =1H )\y.|P|[z :=
NI = [M]*[z := |N|°].

e Let M = M\y.Ply := c¢(cy)] € An. such that P € An.. Since y ¢ FV(N)
|M[z := N]|° = A\y.|Ply := c(cy)][x := N]|* = Ay.| P[z := N][y := c(ey)]| =>"]
Ay.|Plz = NJ|© =" My |P|°[z := |N|7] =>'% |Ply = c(ey)]|[z := |N| | =
|M]lz := [N|°].

o Let M = A\y.Py € An, such that Py € An., y ¢ FV(P) and ¢ # N. |M[z :=
NJI® = My.|(Py)lz := N]|° =" Ay [ Pyl[z := [N|] = [M]*[x := | N|°].
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e Let M = cPQ € M, such that P,Q € M.. |M[z := N]|° = |Plz :=
NJ€jQlz = Nl =" [P|°[z := |N|]|QI[z := |N|] = (|
[N[] = [M|[x := [N|].

o Let M = (M\y.P)Q € M, such that \y.P,Q € M, |M[z := NJ|° =
(Ay.P)[x = N]|°|Q[z := N]|© =" \y.P|°lz := [N[]|Q[*[x = |N|] =
(IAy-PI°1Q[) [z := [N|] = |M][[z := [N|].

e Let M = cP € A7, such that N € An.. |M[z := N]|° = |P[z := N]|© =/
|P|[z := [N|] = [M[[z := [N]]. O
Lemma 2.21. We prove this lemma by induction on the structure of M.
e Let M € V\ {c} then |[M|®* =M and FV(M)\ {c} = {M} = FV(|M|°).
e Let M = \y.P € Al then |M|¢ = \y.|P|¢. FV(M)\{c} = FV(P)\{y,c} =
FV(|P*) \{y} = FV(|M]°).

e Let M = M\y.Ply := c(cy)] € An such that P € An.. |[M|° = A\y.|Ply :=
cley)]|© =21 My |P|°. FV(M)\ {c} = FV(Ply := c(ey)]) \ {e,y} = FV(P) \
{e.y} =TT FV(IP|)\ {y} = FV(IM[°).

o Let M = \y.Py € An. such that Py € An., y ¢ FV(P) and ¢ # N. |[M|® =
Ay.|Pyle. FV(M)\{c} = FV(Py)\{c,y} =" FV(|Py|)\{y} = FV(|M|°).

o Let M = cPQ € M, such that P,Q € M,. |[M|¢ = |P|¢|Ql°. FV(M)\{c} =
(FV(P)UFV(Q)\ {c} = (FV(P)\{c}) U(FV(Q) \ {c}) =" FV(|P|*)U
FV(|Q[°) = FV(IM[).

o Let M = (A\y.P)Q € M, such that \y.P,Q € M,.. |M|° = |\y.P|°|Q|°
FV(M) \ {c} = (FV(Ay.P)UFV(Q)) \ {¢} = (FV(Ay.P) \ {c}) U (FV(Q) \
{c}) =" FV(\y.P|) UFV(|QI°) = FV(|M]°).

o Let M = ¢P € An. such that N € An.. |M|° = |P|°. FV(M)\ {c¢} =
FV(P)\{c} =M FV(|P|°) = FV(|M[°). B

Lemma 2.22. We prove the lemma by induction on the structure of M.
o Let M € V\ {c} then |[M|*=M € V\ {c} C AL

o let M = Az.N then |M|® = \z.|N|°. By (BC), « # ¢. Since N € Al., by IH,
|N|¢ € AL Since xz € FV(N), by lemma 2.21, x € FV(|N|°), so |[M|¢ € AL

e Let M = cPQ then |M|° = |P|°|Q|¢. Since P,Q € Al by IH, |P|¢,|Q|° € Al
hence |[M|¢ € AL

e Let M = (Az.P)Q then |M|¢ = |Az.P|°|Q|°. Since \x.P,Q € Al., by IH,
|Az. P, |Q|¢ € Al hence |M|° € AL O

Lemma 2.23. We prove this lemma by case on 7.

e Either r = I, so R = (Az.M)N such that x € FV(M). By (BC), = # c.
Since R € Al. by lemma 2.4, (Axz.M), N € Al. and again by lemma 2.4,
M € Al,. By lemma 2.21, z € FV(|M|°), so |R|® = (Az.|M|°)|N|¢ € RAL.
|M|¢[z := |N|¢] =22° |M [z := N]|¢ is the contractum of |R|¢ and M[z := N]
is the contractum of R.

e Orr=fn,so RecRM.
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— Either R € R”, so R = (Ax.M)N. By (BC),  # ¢. Since R € A1,
by lemma 2.4, (Ax.M), N € An. and again by lemma 2.4, M € Ar..
|R|¢ = (\z.|M|°)|N|¢ € RP". |M|°[x := |[N|°] =22 |M[x := N]|¢ is the
contractum of |R|¢ and M|z := N] is the contractum of R.

— Or R € R’ so R = \z.Mx such that x ¢ FV(M). By (BC), z # c.
Since R € A, by lemma 2.4, M, Mx € An. and again by lemma 2.4,
M # c. By lemma 2.21, x ¢ FV(|M[°), so |R|¢ = \z.|M|°z € RP".
Hence, | M| is the contractum of |R|® and M is the contractum of R.

O
Lemma 2.24. We prove the statement by induction on the structure of M.

e Let M € V\ {c} then by lemma 2.5, R}, = @.

o Let M = Ay.P € AL Let C € R’fj then 3R € R4’ such that M = C[R].
Since M ¢ RP!, by lemma 2.5, C = M\y.C’ such that ¢’ € RIBDI. So, \y.P =
Ay.C'[R] and P = C'[R]. By IH, |P|° = |C’"|¢[|R|°]. Hence, |M|° = Ay.|P|® =
Ay |CTIGIIRIT = (Mg |C[&)IRI] = |CIElIRI).

e Let M = A\y.Ply := ¢(cy)] € An, such that P € Az,. Let C € R47 then by
definition, 3R € R”" such that M = C[R]. By lemma 2.9.3, C = \y.C’ and
C' e Rlﬁj?y:c(cy)]. By lemma 2.9.4, C' = C"'[y := ¢(cy)] and C” € R, Since
y & FV(R), \y.Ply = c(cy)] = My.C"[y = c(ey)][R] =** \y.C"[R]ly =
¢(ey)] and P = C”[R]. By IH, |P|¢ = |C"|¢[|R|°]. Hence, | M| = \y.|Ply :=
c(ey)l|© =18 Ay |P|° =TT Ay |C7IE[|RI] =>19 My |C"[y := c(ey)]ElIRI] =
(Ay-|C"ly = e(ey)llR)IRI] = [CIEIR]°).

e Let M = M\y.Py € An. such that Py € An., y € FV(P) and ¢ # N. let

C € R77 then by definition, IR € RA7 such that M = C[R]. Since M € R,
by lemma 2.5:

— Either C = O then M = C[R] = O[R] = R and |M|® = O[|M|] =
Ol [[M]°] = D[ Rl

— Or C = M\y.C’ such that ¢’ € ’RIBJL So, \y.Py = \y.C’'[R] and Py =
C'[R]. Hence, |M|® = \y.|Py|* =" \y.|C"IE[|R|] = |Cl¢[|R|]-

o Let M = cPQ € M, such that P,QQ € M.. let C € R, then by definition,
3R € R such that M = C[R]. Since M,cP ¢ R", by lemma 2.5:

— Either C' = ¢C’'Q such that C' € R%. So, cPQ = ¢C'[R]Q and P =
C'[R]. Hence, |M|® = |P|°|Q|* =" |C"[¢[|RI7||QI° = (IC"[¢|QI°)[IR|] =
IClelIRI7).

= Or C = cPC" such that C" € Rfy. So, cPQ = c¢PC'[R] and Q =
C'[R]. Hence, M| = |P|°|Q|* =" |P|°|C"|¢[|RI] = (|PI°|C"[¢)[|IR|]] =
IClelIRI7).

e Let M = (\y.P)Q € M, such that \y.P,Q € M,. Let C' € R}, then by

definition, 3R € R" such that M = C[R]. Since by lemma 2.11, M € R", by
lemma 2.5:

— Either C = O then M = C[R] = O[R] = R and |M|® = O[|M|] =
Dlel1M]] = [Dlell Rl

— Or C = C'Q such that C" € R, p. So, (\y.P)Q = C'[R]Q and \y.P =
C'[R]. Hence,
M = PRI = [ EIRIIQI = (1€ 6 IQIIRI = Clel R
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— Or C = (\y.P)C" such that " € Rg. So, (A\y.P)Q = (Ay.P)C’'[R] and
Q = C’'[R]. Now, |M|® = |\y.P|¢|Q|c =IH
Ay PI°ICE IR = ([Ay-PI|C"[&)[IR]?] = |CIE[I BRI

e Let M = cP € An. such that N € An.. Let C € R57 then IR € RP" such
that M = C[R]. Since M ¢ RP", by lemma 2.5, C = cC’ such that C’ € RIBJ’.
cP =cC'[R] and P = C'[R]. |[M|® = |P|]* =" [C"[G[|R] = [CI¢[|RI]. O

Lemma 2.25. Since C' € RY,, then by definition, 3R € R" such that C[R] = M.
By lemma 2.11, R € M,.. By lemma 2.23, |R|° € R". By lemma 2.24, |M|¢ =

ICI4[|IRI€). So by definition, [C]5 € R%, and |[C|S[RI] '2¥, |C|S[R"] such that R”
is the contractum of |R|. So, by lemma 2.23, R” = |R/|¢ and R’ is the contractum
of R. By lemma 2.24, |C|¢[|R'|] = |C[R']|°. O

Lemma 2.26. Let C € R}, then by definition, 3R € R" such that M = C[R].
So M’ = C[R'] such that R’ is the contractum of R. By lemma 2.25, |M|® =

IR <5, |CR|e = |M7Je. O

Lemma 2.27. By (BC), x # c. The proof is by induction on the structure of Mj.
o Let M1 € V. Then M1 = |M1‘C = |.Z\42|c = M2
— Either Ml = x, then Ml[SC = Nl] = N1 and M2[$ = NQ] = NQ. By
hypothesis [RYy, [¢ € [Ry, ¢
— Or M; =y # x then My[z := N1| =y = Ma[z := N3].

o Let My = Ay.M; € Al. then |[M;|® = \y.M] = |M|°. By lemma 2.16 and
since My € Al., My = Ay.MJ} such that |M}|° = |Mj|°. Since M, My €
Al. and are A-abstractions, My Ny, MoNy € Al.. Since |M;y|¢ = Ay |M{|¢ =
Ny |M3|° = [Mpl°, |M{|° = |Mj|°. By lemma 2.5, Rjj = {\y.C | C € R} }
and R%Z ={\.C|C e Rmé}. So, ‘R%JE ={\.C|C e |R’BI{\8} and
IRyLIE = {w.C | Ce |7zﬁfé|g}. Let C € |R§j{|g, then \y.C' € [Ryy, [¢
IRGLIG. So C € |RM2,\5, ie. |R§i}{|g C |R§4fé|g. By IH, \R‘A’jﬂmwg
\RM (=N ]|E Since Mi[z := Ni] = Ay.M{[z := Ni] and Ms[z := Ny] =
Ay.Mj[z := Na], by lemma 2.5, RM1 ey = 1MWC | C € RM, —ny ) and

BI
Ritweny = 1M-C | C € RYL .y} So (R (. i le = Pwe | C e

NN

R ey |6} and [RGL o nle = {0g.C | C € [RY .y, lé} Tet O €

I I I c

RAL (e BJC then €' = Xy.C" such that €' € [RYj, (. nilé © IR ey 6
So C € [Ryy, a6
[z:=Ns]IC

o Let My = M\y.M{ly := c(cy)] € An. such that M| € An,, then |M;|¢ =218
Ay.|M7|°. We prove the statement by induction on the structure of Ma.

— Let My € V\ {c} then |Ms|¢ = My # Ay.|Mj|c.

— Let My = \y.Mily := c(cy)] such that M} € An., so MiNy, MoNy €
Ane. Since [Mi]* = Ay [Mily = c(ey)l]* = Ay.[Maly = c(ey)l|® =
Mol [Mily = eley)ll® = [Mily = eley)l. Rij, =47 (.0 O e

Bn Bn _29.3
RM’[U—C(CU 3 R {w.C CERM’[U—C cu)]}
So |Rhfle = {)w. Cloe \RM,[y —e(eyy|€} and [RALJe = {h.C | C €
|R]6V[é[y::c(cy)]‘c}' Let C € |RM;[y::c(cy)]|C then A\y.C' € rdbeEM,; C
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Bn e o B c ; B8 c B8 c
[Rizyle: 50 C € IRy yceenles 10 Ry eyt © Ry =ty

By TH, (RO (ool & = RN ymeepyormna] |-
Since Mz := Ni| = Ay.M{[y := c(cy)][z = N1 = Ay M{[z := N[y :=
c(cy)] and Malx := No] = My.Mi[y := c(ey)]lx := No] = Ay.Mj[z =
NZ][y = c(ey)], RY ey :2-92{)@'0 | Ce R%[g::c(cw fwmny } a0
" _2.93 "
Ritafomng) = 7 AA-C 1 C € Ry, *c(cy)][z _ny))- So |RM1[m —nyle =
{(\y.C | C e |R§3V;7, e(em ey l6} And [RAD e = {My.C | C €
|RM, yimc(ey)l=no) 0} Let C € |RM1[I _nylé then C = My.C' e
c s8I c
|RM2[3::=N2]‘C and C" € [Ryp ety lc S |RMé[y:=c(cy)][x:=N2]|C'
— Let My = A\y.Mjy such that Mly € An., y & FV (M) and M} # ¢, so
M1 Ny, Mo Ny € Ane. Since |M;|¢ = y.|M{[y := c(ey)]|® = My.|My|c =
0l el = el = . R =20 (€ C < Ry}
Since M, € RP", by lemma 2.5, R[ﬁz ={0)u{xy.C|CE€ RM/ }. So
IRAL e ={My.C | C € |RM,[y —e(eyylé and [RETJ6 = {O}u{hy.C | C €
[RAL,, l6}: Tet C € |RM,[y —e(eyylé then Xy.C € rdbeEM; C RG] |¢, so
Ce |R 1yles e |RM’[y —e(elé € |Rﬁn le-
By IH, |RM’[y =c(cy)][z:=N1] |C |R(M’ ) [x: :Nz]‘é' Since Ml[x = Nl] =

Ay Mily = c(ey)lfe = Nl] = My.Mifz = Ni]ly := clcy)], Ma[z :=
No| = dy.(Mby)[z := NQ] = Ay M}z := NoJy and y & FV(NQ), we have

Molz := No] € RO Ry vy =290 DwC [ C R eppiomni))
and Rf’" ey = YU {.C | C e R(M, VaimNa )

So ‘Ré\a/jl[x;:Nlﬂc ={w.C|C¢c |RM{ yime(ey)mmnylc} and
|RM2 [z —NQ]‘E ={0ru{nm.C|Ce |R(ﬁnéy)[z::N2}|g}‘
Let C € |RM (o= ]|§ then C' = A\y.C’ such that
C" € Ry ymetenyiz=millé € R{argymmalé 50 C € [Rip e

— Let My = ¢P>Q2 such that Py, Qo € An., then |Ms|® = |P2||Q2|¢ #
Ay.|Mj|°.

— Let Ms = P>@s such that Py, Q2 € An. and P; is a A-abstraction, then
|Ma|¢ = | P|°|Q2]¢ # Ay.|M{|°.

— Let My = cM} such that M) € An.. So |Ms|® = |M}]°. By lemma 2.9.5,
Rhty = {cC | € € RYJY, so [RALIe € [RALIE = [RGLIe. Again by

lemma 2.9.5, Ro7 i) = = R iweny = {cC | C € RM/[z,

}so

|RM2 o _Nz]\c |RM, - _Nz]‘c Since (Az.M})Ny € Ane, |RM1[9; —N1]|C

CIH |R [z: _N2]|C - |RM2 [z:=N>] |C'

o Let M; = /\y.Mly € An. such that M{y € An., M{ # candy ¢ FV(M;), then
|M1|¢ = Ay.|M{y|°. We prove the statement by induction on the structure of
M.

— Let My € V\ {c} then |My|¢ = My # Ay.|Miy|c.
— Let My = \y.Mjly := c(cy)] such that M} € An.. Since M; € RP",
Rf/? ={0yu{w.C|Ce Rf}’{ [y::C(Cy)]}. Moreover,

Rit, =292 {My.C | C € RYL ey} 50 D€ RAL but O ¢ RAL.

— Let My = A\y.Mjy such that Miy € An., y € FV (M) and M} # ¢,
SO M1N17M2N2 S A?’]c Since ‘M1|C = Ay|M{y|p = )\y‘MQ/yV = |Z\42|c7
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|M{y|® = |Mjyl|c. Since My, M, € R, by lemma 2.5, Ry} = {0} U
{\y.C|Ce R%} and Ry = {0}u{\y.C | C € Rf’” - So IRAI |G =
{O}u{xy.C|Ce \R |C} and |R71 e ={0ru{\y. C |C e |R |§}.
Let C € |R§;{y|g then \y.C' € rdbeEM; C |RGLIS, so C € |R 16

|R§;{y|g < ‘R |c By IH, |R5n1y)[l =N;] e = |R(M’y)[1 :=N>] l&-
Since Mi[z = N] = )\y (M{y)[z := N1] = My.Mj[x := Nily, Ma[z :=
No| = dy.(Myy)[z := No] = Ay.Mix := Noly and y Q FV(Ny) U
FV(Ny), we have Mz := Nj], Ma[x := Ny] € RP", RMl[JL N =
{Oyuw.C | Ceryy (e} and Rt meny = {0YU{w.C | C €

R Sgpiemna) ) SO |RM1[1 gl = AU WC | C € R |6}
and [RY7 _ole = {0} U{My.C | C € |Rf”éy)[m::N2]|g}. Let C €
|RM11_N ]‘c then either C = 0O € |RM2x_N2]|§ or C' = A\y.C’ such
that C" € [R{yy e S Rt e lé: S0 C € IRAL 1, lé-

— Let My = cP>()2 such that Py, Q2 € Ane, then |Ms|® = |P|%Q2|° #
Ay.|[Miyl*.

— Let My = P>@s such that Py, Q2 € An. and P; is a A-abstraction, then
|Ma|® = |P2[|Q2| # Ay.[Miy|°.

— Let My = ¢Mj such that M) € AnC So |M2\C |M3)¢. By lemma 2.9.5,
Ryt = {cC | C € Rf}}, so [RYLIe CIRYLIE = M@g. Again by
lemma 2.9.5, RMW N = Rfj\g,[x _ny = {cC | C € R]ﬁv}’,[ a1} SO

|R’§;’2 e = |RM, ey lG- Since (Az.M3) Ny € Ane, |RM1 S 1
Rﬂn

IH 1B
< |RJ\47]’ [z:=N3] |C | Mo [z:=Na] |C'

o Let My = cP1Qq then |M;]° = |P1|°|Q1]¢ = |M2]®. My ¢ R". We prove the
statement by induction on the structure of Ms:

— Let M, € V\{C} then |]\42|C = M, 75 |P1|C‘Q1‘C.

— Let My = A\y. M} € Al then |Ms|® = Ay.|M3|© # | Py|¢|Q1]¢.

— Let My = A\y.Mj[x := c(cx)] € An. then | M| = \y.|Mj[x := c(cx)]|® #
[Py |%|@x .

— Let My = Ay.Myy € Anc then [M|® = Ay.[Msy|® # [P1[|Q1]°.

— Let My = P,(QQ2 € M, such that Py, Qs € M. and P, is a A-abstraction,
then |P3|¢ = |P1]¢ and |Q2]¢ = |Q1|¢. By lemma 2.10, since My € M.,
M, € R". By lemma 2.4.8, Ma[z := Ny € MC and by lemma 2.10,
Mslz := Np] € R". By lemma 2.5, R}, = {cCQ: | C € RP'} U
{cPlC | C € Ry, } and R} :{D}U{OQQ | C € Rp,} U{PRRC | C €
Ry} S0 (R o = {CIQ1I | C € [Ryy s U{PIC | € € [Ry, l¢} and
R le = {0V U{CIQu | C € [Rp 6} U{IPC | C € [Rpp ). Let
Ce |RT ¢ then ClQ1]° = C|Q2|° € |R & € IRy, 6. So C c IR, e,
ie. [Rp |6 C Ry, [5. Let C € [Rp, [¢ then [P[°C = |Py|°C € [Ry |5 C
Ry, 15 So C € [RE, |5, Le. [RE, 15 C [Rp,|6. Since € FV(M,):

* Either v € FV(P;) and z € FV(Q1). By lemma 2.21, x € FV(P2)
and © € FV(Q2). Since P;,Q1, P2, Q2 € M, then
(>\$.P1)N1, (A]}.Ql)Nl, ()\.I.PQ)NQ, (AJ:QQ)NQ € M.. Hence, by IH,
‘R"]ADl[w::Nl]lé < ‘R’,]‘Dg[w::Ngﬂé and |Ra1[l:N1]|é < |R£22[1:N2]|é
By lemma 2.20, |Pi[z = Ni]|° = |Pi|°[z = |N1|°] = |P|%[z =
[N2|] = [Py[z := No|° and [Qi[z := Mi]|® = [Q1]%[x == |N1[] =
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|Q2|[x = |N2|¢] = |Q2[z := N3]|°. By lemma 2.5, RMl[g; Ny =
Repy o= N1 Qs [rreiy] = 1€CQu[T := N1] | C € R .y JU
{cPi[z:= M]C | C € Ry, .mn, ) and
RM[Q: —Na) = Rpyoeny)@afwiene) = {0 U{CQe[z := No] | C
Pyfeimny) s U2 [2 = N2]C | C € RG, 1.,y t- S0, Ry, eyl =
\chl[m.:Nl]Ql[z.:Nlﬂc = {ClQ1[x == M]|° | C € [Rp [.ony] |c} U
{IPi[z := Ni]|°C' | O € [Rgy, jgimnyle} and Ry, oy, le =
‘RPQ[I —Na]Qalr=Na)lC = {O}U{C|Q2[z == No]|°| C € |RP2[z :=Na] e}
U{|P;[z := N»|°C | Ce |RQ2[J; —nyle)- Let C € Ry .oy lé:
- Either C = C'|Q1[z := Ni]|° = C'|Q2[z := N3]|¢ such that
C" € R}, w=nle € |R§32[z::1v2]|8 So C e |RR42[I;:N2]‘8~
- Or C = |Piz == N]|°C’ = |Py[z := N;]|°C’ such that C' €
IRG, wenyle S IRG, ey le- S0 C € IRy, oyl

* Orxz € FV(P) and z € FV(Q1). By lemma 2.21, x € FV(P;) and
x & FV(Q2). Since P, P, € M, then (Ax.P)Ny, (Az.Py)Ny €
Me.. So by IH, [Rp (,._nyle € IRp,ponylec- By lemma 2.20,

P = NI = [Pl = NI = [Blfle = N[ = |Pafe o=
NoJ|®. By lemma 2.5, Ry, ._ny = Rip menyjo, = 1¢CQ1 | C €
R?ﬁ [z:=N1] }U{Cpl ['T - NI]O | Ce th} and R?\/Iz[z::Ng] R?’z [2:=N2]Q2 _I
{O}u {C’Qg | C € R, - _Nz]} U{P[z = N2JC | C € Ry, }. So,
‘RMl[w;:J\f1 lc = |ch1[$;:N1]Q1‘3 ={ClQ:|°| C € |R7151[g, =Ny leu
{|Pi[z := N1]|°C'| C € |Rg, |} and [RY, . _n, e = IR, . _N2]Q2|C
= {0} u{Cl@:* | C € \sza:—zvzﬂc} U{lR[z == NoJ|°C' | C €
RG,lc} Let C € [Riy o nyle:
- Either C = C”|Ql|C C"|Q2]¢ such that C' € |RP1[$ _N1]|§ -
I Rop,wimnajle: S50 C € [Riy, gy lE-
- Or C = |P[x := N]|°C’ = |Py[z := N3]|°C” such that C' €
IR, 16 CIRD, 18- S0 C € IRy -

* Orx € FV(Py) and x € FV(Q1). By lemma 2.21, x ¢ FV(P,) and
xr € FV(QQ) Since @1,Q2 € M, then ()\JZ Q1)N1,(/\$ QQ)NQ S
M. So by IH, |R, (=N |C C IR, SN ]|C By lemma 2.20,

Q1[z = Mi]|° = |Qu[[z == [N1[° ] |Q2[[z := | N2|] = |Qa]z :=
NoJ|°. By lemma 2.5, Ry .y, = RZPlQl[r::Nl] = {cCQ1[z
Nﬂ | C e Rp }U {cPlC | C e RTQl[m::Nl]} and R?\42[I:ZN2]

m

Rop,0afemny) = 1} U{CQ2[z := No] | C € Rp,}U{RC | C €
RQQ[I —no b S0, Ry ennle = [Rip gy enyle = {ClQ1[x ==
M1 C € [Rp,[GULIPC | C € [RG, (p.ony &} and Ry, 1oy, e
= |Rp,0, —N2]|C = {0} U {C|Q2[z := N2]|C | C € [Rple} U
{|P:|°C | C € |RT2 SNy ]|C} Let C € |RM1[w Ny |6
- Either C = C'|Q1[z := N1]|° = C’'|Q2]x := N3]|¢ such that

"€ Ry |CC|R |c SOC€|RM”_N2]\C
- Or C = |P|°C" = |P|°C’ such that O’ € |RTQl[x::Nl]\é -
|RQ2[I —N2 |C' SO C € |RTM2[CE:N2]|E

— Let My = cP2Q2 € M, such that P, Q2 € M., then |cP|¢ = |P|¢ =
|P1]¢ and |Q1]° = |Q2]°. Since Mz ¢ R", by lemma 2.5,
v, =1cCQ1 | C € Rp }U{cPC | C € Ry, } and Ry, =
{cCQ2 | C € Rp,} U{cPC | C € Ry, }. So [Ry,le ={C|@Q1|° | C €
Ry 6} U{PIC | C € Ry, 6} and [Ry,[6 = {ClQal | € € [Rip[6} U
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{I|°C | C € [Rp,I¢} Let C € |Rp [¢ then ClQ1]° = ClQ2|° €
Rinle © [Rigle. S0 C € [RE, [, ie. [Rpls C [Rpl. Let C €
IR, l¢ then [P1[°C = |R|°C € Ry, le C [Ryle. So C € [Rp, G, ie.
IRG, 16 € IR, ¢ Since x € FV/(M;):

* Either z € FV(P;) and z € FV(Q1). By lemma 2.21, x € FV (P2)
and z € FV(Q2). Since P, Q1, P2, Q2 € M, then
(Az.P) N1, (Az.Q1) Ny, (Az.Po)No, (Aa.Q2)Na € M. So by IH,
‘R’,F)l[I:Nlﬂé g |RTI;2[CE:N2]|E and ‘Rbl[z:Nl]lé g |R&2[m;:]\]2]|g' By
lemma 2.20,
|Pi[z := Ni]|° = |P1|°[z = [N1]] = |P°[z = [No|] = |Pyfz :=
NoJ|* and |Q1[z := Ni]|® = |@Q1[°[z := |N1[] = |Q2[ [z := |Na2|] =
‘QQ{IE = NQHC' By lemma 25’ ,R”;\/Il[m::Nl] = RZPl[x::Nl]Ql[m::Nﬂ =
{CCQl[{E = Nl] | Ce R}‘p [x*Nl]}U
{cPi[z:=N]C | C € Ry, |,._n, } and
RMQ[I _NQ] RCPQ[{L’ _Nz]Qz[I —NQ]

{cCQalr :==No] | C € R, _p, IV
{cPy[z = No]C | C € R, (pmnyy b 50 IRy ooy lC
|RCP1[I =N1]Q1[z:=Ni] |C {C‘Q1[$ = NlHC ‘ Ce ‘R;1[$::N1]|é} U
{|Pilz:= Ni]|°C' | C € [RG, jy:znylc) and
‘RMg[x =N>] le = |RcP2[x.=N2]Q2[a:.=N2]‘C {ClQz[z == NoJ|° | C €
R, x._N2]|C} UA{|R[z == NoJ|C | C € |RT2[x::N2}|8}' Let C' €
‘Rg/ll[m::NlHE:
- Either C = C'|Q1[z = N]|¢ = C'|Qz[x := Ns]|¢ such that
C" € R, (menyle € IR, pnyyle- S0 C € [Riy, 1wy le-
- Or C = IPl[JZ = N1]|CC" = |P2[],‘ = N2HCC/ such that ¢’ €
RO (zi=ni)le € 1RO, mimny) e S0 C € [Riy, oy lé:

* Or z € FV(Py) and = € FV(Q1). By lemma 2.21, z € FV(P,) and
x € FV(QQ) Since P, P € M. then (AxP1)N17(>\xP2)N2 S
Me. So by IH, [Rp ,._nlc € ‘R;Q[x::Ng]‘é' By lemma 2.20,
Pz = N = |P[w = INi[] = [Bofla o= [Nal] = |Pfo o=
N2”C By lemma 2.5, R}N\ﬁ[m =N — Rzpl[m —MO, — {CCQl | C e
Rop, (=] YW ceP [z :=N|C|C € RQ }and Ry, [:=Na] = RePy(wie N2l :I

{cCQ2 | C € Rp, I.:NQ]} U {ch[ = N]C | C € R’ L) So7

{IPrfz = M]|°C'| C € |Rg, e} and [Ry, 1oy l6 = |RP2[:E.:N2]Q2|8

= {C1Q2/° | C € [Rp, (pienyle} U{|P2[z := No]|°C | C € [RG, (G}

Let C € |RM1 (=N ] |6

- Either €' = C’'|Q1]° = C"|Q2|° such that C" € [R}, , _n,lé €
R o a6 S0 C € (R lo-
- Or C = |Pi[z := N1]|°C" = |Pe[z := N3]|°C’ such that C" €
|R |C - |R |C SoC € |R§\/[2[a::N2]‘é

* Orz € FV(Py) and z € FV(Q1). By lemma 2.21, z ¢ FV(P,) and

x € FV(Q2). Since Q1,Q2 € M. then (Az.Q1)Ny, (Ax.Q2)Ny €

M. So by IH, |RE)1[z::N1]|E - |RTQ2[I::N2]|8. By lemma 2.20,

Qu[z = Ni]|® = Q][ = [N1]|7] = |Q2|*[z := |N2[] = |Qa[z

Ns]|¢. By lemma 2.5, Ritweny) = Repigumeny) = {cCQ1[x =

N | C € Rh U{ePiC | C € R oy, )} and Ry o =

Rep0sfeeny = 1€CQ2[r = No] | € € Rp,}U{cPC | C €

REgz[z::Nﬂ}- So, |R7;V[1[x:=N1]‘é = |R2P1Q1[;c;=N1]|E = {C|1[z =
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N7 C € [Rp, [YU{|AA°C | C € [RG, eyl and Ry, o vy l6
= IRep,qufa: —N2]|C = {cCl@sfz == No]|” | C € IR Ll tufel 0| C
S |RQ2 [ —N2]|C} Let C € |RM1[;C =N, |C
- Either C = C/|Q1[ = N1]|C = C/IQQ[ = NQHC such that
C'" € |Rp ¢ € [Rp,le- So Ce |RM”_N2]\C
- Or C = |P|°C" = |Py|°C’ such that C' € |RY
|R€22[$::N2 |C SO C E |RM2[$.:N2 |C
— Let My = cM} such that M) € An.. So |[Ms|® = |M}|°. By lemma 2.9.5,
Rhi, = {cC | € € RYp}, so [RY] e C IRGLIG = RG] [6. Again by
B _ B
lemma 2.9.5, RMZ szQ] Rc&é[x:m] ={cC | C € RJ\%[I:M]}, S0

Q1z: _Nl]‘c =

RO _NQ]\C = (R ey |6 Since (\z.M3)No € A, [RY .y, lé

CIH |R Rﬂﬂ

M) [x: —N2]|C | Mo [z: —N2}|c

c

o Let M; = PiQ; € M, such that P;,QQ; € M. and P; is a A-abstraction.
Then | M| = |P1|¢|@Q1]¢ = |M2|°. By lemma 2.10, since M; € M., M; € R".
By lemma 2.4.8, M|z := N;] € M, and by lemma 2.10, M;[z := N;] € R".
So by lemma 2.5, 0 € Ry, , so O € |R},, |¢. We prove the statement by
induction on the structure of M.

— Let My € V\ {c} then |Ms|® = M3 # |Py|°|Q1|°.

— Let My = A\y.Mj € Al then |Ms|® = Ay.|M3|© # | Py|°|Q1]¢.

— Let My = Ay.Mj[y := c(cy)] € Ane then |Ma|® = Ay.|Mily == c(cy)]|® #
[P1[el@a "

— Let My = Ay.Msy € Ane then [My|® = Ay.[Msy|® # [P1|°|@a]".

— Let My = cP>Q2 € M, such that Ps, Q2 € M., so Ms & R". Hence, by
lemma 2.5, 0 & RY,,, so O ¢ \R}V[Qh%, ie. |R}wl|g gz |R§\4Z|E
— Let My = P,Q2 € M, such that Py, Q2 € M. and P; is a A-abstraction,
then |P3|¢ = |P1]¢ and |Q2]|¢ = |Q1|¢. By lemma 2.10, since My € M.,
M, € R". By lemma 2.4.8, Ms[z := N3] € M, and by lemma 2.10,
Ma[x := No] € R".By lemma 2.5, R}, = {0} U{CQ: | C € Rp } U
{P.C|C e Ry, }and Ry, = {THU{CQ2 | C € Ry, JULP,C | C € RE, }.
So, Ry, e = {03 U{C|Q:1|° | C € [Rp, e} U{|P1°C | C € [Rp, |6} and
Riple = {0} U{C|Q:|° | C € [Rp,[c} U{[|°C | C € [R,lc}. Let
C € [Rp |¢ then C|Q1]° = C[Q2| € [RYy, [¢ C [Ry,[6- So C € IRp, e
L. [Rp |8 C [Rp,[6. let C € [Rpy, [¢ then [P[°C = |Py|C € [Ry, |5 C
Ry 15 So, C € [Rp, |5, Le. [Riy |6 C [Rp,|¢. Since z € FV(M,):
* Either v € FV(P;) and z € FV(Q1). By lemma 2.21, x € FV(P2)
and z € FV(Q2). Since P;,Q1, P2, Q2 € M, then
()\.L“.Pl)Nl, ()\]}.Ql)Nl, ()\JZ P2)N2, (/\l‘ QQ)NQ e M.. So by IH,
‘R?Dl[x::Nlﬂé - ‘R?Dz[ N]|C and |RQ [x:=Ny] le S |RQ2[x —N2]|
By lemma 2.20, |Pi[z := Ni]|° = |Pi|[z = |N1|] = |P|%[z :
[N2|] = [Py[z := No|® and @iz := Mi]|® = [Q1]%[x == |[N1[]] =
Q2| = |N2|] = |Q2[z := NoJ|°. By lemma 2.5, Ry (. _n, =
,R?};'l[z =N1)Q1[w:i=N1] — {Hu{Cifz = M} | C € R;—’l[z::Nl]} U
{Pl[a? _N1]0|C€RQ1[17 ]} and
Rity=Na) = Rpy e Na)@alwmny] = {0} U{CQ2lz := No] | C €
Ry w27 1= No|C' | C € R, 11,y b S0, IRy ey lé =
IRy (=) @1 [y [6 = {EYH{CI@Qu [z := M| [ C € R, .oy, le}
U{|Pi[z := N]|°C | C € |RG, eyl and Ry o nylé =

'H o
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R, fai= Nl Qalai=ns] 6 = {FYIH{C| Q2 := No]|°| C € [Rip, (., &}
U{|P2[z := No]|cC | C € |RG, (weny) e} Let C € Ry oyl
- Either C =0 ¢ \RM2[w — ] 5.
- Or C = C'Q1[z := M]|© = C'|Q2[z := Ns]|¢ such that C’" €
|R71;1[IIN1]|(C: g |RTF"2[I:N2]|8 SO C € |R§V[2[IZ:N2]‘E'
- Or C = |Pi[z := N1]|°C" = |Pe[z := N3]|°C’ such that C" €
|R221[:L’::N1]|E < |R7Qz[z:N2]|E SoCe |R§\/[2[93:N2]‘E
* Orz € FV(Py) and ¢ € FV(Q1). By lemma 2.21, z € FV(P,) and
x & FV(Q2). Since P, Py € M, then (Ax.P;)Ny, (Az.P2) Ny € M..
So by IH, [R}, o=y & C |RP2[:1; _N2]|§. By lemma 2.20, |Pi[z =
N|* = [Pz = |N1|] = [Pf[z = |No|] = [Pylz = Nol|"
By lemma 2.5, RTMl[z::Nl] = R?Dl[z::Nl]Ql ={0}u{CQ, | C €
R;l[zzle]} U{Pi[z == NM]C | C € R, } and RiyfoeNa] =
Rop,(oeny)@e = {OTU{CQ2 [ C € Ry, (., JU{P2[z := No]C' | C €
0s1 S0, R ey = IRy ey, e = {BU{CIQ1° | C €
‘Rpl [ 7N1]|C}U{|P1[x = N1]|°C| C € |Rp, ¢} and |RM2 [2:=N>) e =
‘,R’Pg[m _NQ]Q2|C {Oyu{Cl@:l° | C € ‘,R’P2 [ 7N2]|C} U {|P2[ =
NoJ|C | C € |RG,Ie} Let C € [Riy .oy lé:
- Either C' =0 € [Ry,,._n, lc-
- Or C = C"|Qu° = C'|Qz° such that C" € |R} ,._n,l6
|R71;2[$::N2]|C' So C' € |RM2[.’L‘Z:N2]|C'
- Or C = |P[z := N]|°C’ = |Py[z := N3]|°C” such that C' €
IR, 16 C IR, 18- S0 C € IRy oyl
* Or x € FV(Py) and x € FV(Q1). By lemma 2.21, x ¢ FV(P,) and
T € FV(QQ) Since @1,Q2 € M, then ()\JZ.Q1)N1,(/\$.Q2)N2 S
Me. So by TH, [Rf, .~ i[6 € (R, .y lé. By lemma 2.20,
Qu[z = Ni]|® = [Qu[ [z = [N1|] = |Q2|[z := |N2|] = |Qa[z :=
NoJ|°. By lemma 2.5, Ry, v = Rhp g, (e ny) = {EHU{CQ[2 =
Nl} | C S RT }U{P]C ‘ C S RTQ [I*N]} and R7M2Z—N2] =
Rop,awieny] = {3 U{CQ2[z == No] | C € Rp,}U{PC | C €
Rigotw=no) - 50 Ry faemny)le = Rpg ey 16 =
{yu{ClQi[z == M]|*| C € [Rp |c}U{|P1|CC | C € [RG, fai=nyy &}
and (R tr—xglé = (R guionrigls = {O}U{CIQule = N]l*| C €
Rip,lc} U {|P2|CC | C € RG, wmnyle}- Let C € Ry oy é:
- Either C =0 € \RMQ[:L,::NZ 6.
- Or C = C'Q1[z := N]|° = C"|Qz[x := N3]|¢ such that C’ €
|R7l‘31|8 g |,R’7:’2|2 SoC € |R7M2[I:N2]‘8
- Or C = |P[°C" = [P|°C" such that C" € |RG, ,._nle €
Raiz=nz)le: S0 C € Ry, 1am vyl
— Let My = ¢MJ, such that M} € An.. So |Mz|® = |M}|¢. By lemma 2.9.5,
Rit, = {cC | C € RYLY, so |R5” & CIRMLIE = IRALI6. Again by
lemma 2.9.5, R/ iz = Ry = {€C | C € RYL i}y s0
|7€M2 o6 = |RM, ey le- Since (Az.M3) Ny € Ane, |RM1 - —N1]|C

IH B B
< |RJ\4T]’ [z:=Na] |C |RJ\;72[T =Ny |C'

N

e Let My = cM] € An, such that M/ € Anc So |My|¢ = |Mj|¢. By lemma 2.9.5,
Ry, = {cC | € € RYLY, so [RYJIE = [RYLIe € IRYLI6.  Again by
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lemma 2.9.5, Ry () = Rm'[x —n =1 C e Rﬁ/?’[x _wiphs 80 IR 6 :I
\Rg/’}[z —N1]|C Since (Ax.M7)N;y € Ane, \RMl[z _Ni] B = [RP" I, & =CTH

B c
‘RI\/Z[x *N2]|C' O

Lemma 2.28. Since M; gl> M, Cy e RYy, and 3Ry € R" such that M, = C1[Ry).

So M{ = C1[R}] such that R is the contractum of Ry. Since Mo G, M, Cy € Ry,
and IRy € R” such that My = Cs[Rs]. So M} = Cs[R}] such that R is the
contractum of Ry. We prove this lemma by induction on the structure of M.

1. Let My € V \ {c} then nothing to prove since My does not reduce.

2. Let My = Ax.N; € Al.. So |M;1|¢ = Ax.|N1|® = |M3|°. By lemma 2.16, since
My € Al. and by lemma 2.4, My = Ax.No and |Na|¢ = |Ny|¢. Since My, My &
RAT, by lemma 2.5, Ry = {\z. c | C e Ry yand Ry = {\e.C | C e R?sz}
so [R,l6 = fheCle | € € R} = a0 C e IRR e} and [RYy[6 =
{Aa.Clg | C e RYY = {ha.C | C e IR|EY. Let C € \RM|C then \z.C €
\R%JE, so by hypothesis, Az.C' € \Rf/[uc. Hence, C € |R§3V12|C, ie. |R§,II|C -
IRYL|G. Since C1 € Ry, C1 = Az.C} such that Cf € RY . Since Cy € R, ,
Cy = Az.C% such that 02 € Rm Since |C1]¢ = |Cal§, \Cl\c |C5]&. Hence
M1 = \z. N1 = \x. Cl[Rl] —>ﬁ1 AT, Cl[R/] = /\J? Nl M17 M2 = \z. N2 =
Az.C[Ra] Bpr Aw.CHRY] = Ae.Ny = M, Ny Dy NI and N, %, Nj. By
TH, [R3 16 < |R?Vf,\c By lemma 2.5, Rjjj, = {\z.C'| C € RY;} and Ry, =
{a.C|CeRY L}, 50 |RM/|C —{pz.Cl5 | C e R‘”} = {d2.C| C € [RY e}
and [RY |6 = {|/\x Cle | C e Ry} = {A2.C | C € |RY, |6} Let C € \R‘“,|c,
then C' = A\z.C’ such that C’ € |Rm & CIH \R |C, 0 )\x C' e |Rﬁl,|c

3. Let M7 = Aa.Ni[z := c¢(ex)] € An. such that Ny € An. then |[M;|® =
Az.|Ni[z = c(ex)]|¢ =218 \x.|N1|°. We prove the statement by induction
on the structure of Ms:

o Let My € V\ {c} then |Ms|® = My # Az.|N1|°.

o Let My = Az.Na[z := c(cx)] such that Ny € An.. Since |Ms|® =
Az |Na[z = c(ca)]|® =218 Ao | No|®, |N1]¢ = |Na|e. RyJ =293 {Aa.C | C €]
R faieeny} =274 PA2.Clz = c(ea)] | C € RY'} and RYj, =292
Me.C | C € RY ey} =224 P2l i= clex)] | C € R} So,
RO e =21 A0 | C € |RY|E} and [RYLI6 =21 {Ma.C | C €
IRJ|G}. Let C € [RY|S then Az. Ce IRGLIE € [RGLIG, so C € |RR!E,
ie. |RB"|C C |R’87’|C Since C; € R]\Z Cy = Az Cl[x := c¢(cz)] such
that C7 € Rm’ Since Cs € R , Ca = Ax.Chlz := c(cx)] such that C} €
R Since Az|Clls =1 [Cale = |Calé =19 Aa.ICHI5, ICLle = IChle.
So M1 = \v.N1[z := c(cx)] = \o.Cllx := c(cx)][R1] =28 \o.C[Ry][x :=
c(cx)) gl’ﬁn Az.Ci[Ry][c = cex)] = Ax.Nj[z = c(ex)] = M{, My =
Az.Nalx = c(cx)] = A\o.Chlx == c(cx)][Re] =28 A\x.CH[Ra][z := c(cx)] %ﬁnl

Ax.CH[RL][c = c(cx)] = Ax.Nj[z = c(cx)] = M4, Nv = Cf[Ry] ﬁﬂn

CI[R}] = NJ and Ny = C}[Ry] B, C4[RY] = Nb. By IH, |RSY e ©
[RY 6. Hence, RYp =292 {\2.C | C € RYY, _ (ay} =2 {)\x.C’[ T =
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c(ex)] | C € R} and Ry =293 (Ae.C | C € RYY . oiean}

=294 (2.0l = c(cx)] | C e R} So, [RiLle =21 {Az.C | C €

[RYEY and [RAL[6 =10 {Ae.C | C € [RJMfe). Let C € [RYJIG

then C = Az.C’ such that C’ € |R |c C |R |C7 so C € |R |C7 ie.
81 |c 81 |c

Rl € (R le:

e Let My = Ax.Nax such that Nox € An., © € FV(N3) and Ny # ¢,
then M, € RP. Since [Ma|® = Aa.|Noz|, [N1|¢ = |Noz|®. Ryp =293
Me.C | C e RY L owyt =27 PA2.Clw = c(ca)] | C € R} and
Rf}g =25 {0} U {dz.C | C € RY,}. So, [RGL|E =21 {ha.C | C €
IR e} and [RG] [e = {O} U {Ma.C | C € [RRL[e}. Let C € [RYV|
then \z.C € |R5"1|C CIRGLIG, s0 C € |RRJY 6, Le. [RY]E C IR |6
Since C; € T\’,ﬁ/}’l, C1 = Mx.Ci[z := c(cz)] such that C] € R’JH\Z Since
Cy € RG] and |C1f¢ = |Colé, O = Aa.Ch such that C) € RY,.
Since Az|Cile =21° |C1lg = [Cale = Ax[Chle, |C1]e = [Chle So
M; = Mz.Ni[z = c(cx)] = \o.Clx := c(cx)|[R1] =28 \o.C|[Ri][x =
c(cx)] gl’ﬁn Az.Ci[R]][c := ¢(cx)] = Mx.Nilx = c(ex)] = M{, My =
Ao Noz = At.C4[Ra] SBgn Ao CY[RY] = Ae.Ny = My, Ny = C}[Ry] S5,
C{[R}] = Nj and Noz = C4[Ry] 35, C4{RS] = Nj. By IH, [R3I|¢e C
|R§3V7|C Hence, ’Rg} =293 \2.0|C € RN/ emc(ex)] ) =294 \x.Cla

clex)] | C € RJ‘@’Z} and Rij A\ {0} =27 {0 | C € RYY. So,
[RyLle =21 (pa.C | C € |R He} and [RYLIEN\ D) = (Ma.C | C €
|R |C} Let C € |R |c then C = Az.C’ such that C' € |R |§ C
|R |C, so C € |R \C \ {0}, ie. \R |C - |7?, |c

o Let My = cP2@y such that P, Qo € An. then |Ms|¢ = |P|°|Q2]¢ #
)\JJ|]V1|C

o Let My = P>Q such that Py, Qo € An. and P» is a A-abstraction then
|Ma|® = [P2||Q2] # Az.| N1

e Let My = ¢Ns such that Ny € An.. So |No|¢ = |M2|C = |M;|°.
lemma 2.9.5, Ry = {cC' | C € RY'}, so [RGLG C [RYLIE = IRRY |C
Since Cy € R%’z, Cy = ¢C) such that C4 € R]ﬁ\,z So, My = cNy =

cC} C
cCy[Re] = gy cC3[Ry] = Ny = Mj and Np = C5[Ra] =5y C3[R5] = N,
Since |C3]& = |Cale = |Cule, by TH, [RY |6 € [RR! 6. By lemma 2.9.5,
Rty ={cC | C e R}, so [RY |6 € IRRLIG = IRAL 6.

4. Let My = Az.Nix € An. such that Nyz € An., x ¢ FV(Ny) and Ny # ¢, then
M; € RP" and |M;|¢ = A\x.|N1z|® = Az.|Ny|°z. We prove the statement by
induction on the structure of Ms:

(a) Let My € V\ {c} then |My|¢ = My # Az.|N1z|°.

(b) Let My = Ax.Na[z := c(cx)] such that Ny € An.. Rﬁ/?l =25 (O} U
{a.C | C e Ry} and Ry =223 Ma.C | C € R, ey} =201
{/\xC[ c(ex)] | ¢ € R}, So, |Rﬁ"\c—{D}U{/\xC\CE
|Rle|C} and |RY7 |6 =21 {\2.C | C € |Rﬁ"|c} Hence, O € [RY} [¢
but O ¢ R [6.
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(¢) Let My = Az.Nox such that Nox € An., € FV(N3) and Ny # ¢,
then My € RP". Since |My|® = A\x.|Noz|® = /\:17.|N2|Cx, |Nyz|¢ = | Nox|©
and |Ny|¢ = |Nae. R% =25 {0} U {Az.C | C € RY,} and Rﬂz =25
{yu{rz.c|C e R ! e} S0, IR e ={0}u{rz.C | C’ € |R .|&} and
IRGLIE = {0} U {\a. c | C e \RN2m|C} Let C € |RY ¢ then Az.C €
|R§Z‘c c \R |C’ so C € |R§rnz|m Le. ‘R]‘iln:r‘c < \Rzﬁvzmk Moreover,
Rﬁ,’zx\{D} _25 {Cz|CeRY }andRNQx\{D} =25 {Cz | C e R},
so [RAT 16 \ {0} = {Cx | C € [RRM|e} and [RYY |6\ {0} = {Cx | C €
RN} Let C € [R[6 then O € [RRYIE\D} € RN J6 € IRY[é,
so C € |RY1|G, ie. [RYE C IR |6, Since Cy € Ry

o Either C; = . Since Cy € R/X/Z and |C1]§ = |Calé, Co = 0. So
My 24, Ny and My 24, Ny, Tt is done since [R37[S C [RA 6.

o Oy = \a.C} such that ] € RY,. Since C; € Ry} and |C1]¢ =
|Ca]é, Co = Az.Cy such that C € Rzﬁvzz Since Az.|C1|¢ = |Ch]¢ =
(Cale = Az.|C3l¢, ICY = [Chlg. So My = Ao Niz = Aw.Ci[Ra] S
Az.CL[R,] = \v.NI = M/, My = Az.Noz = \a.C}[Ry] S
Ae.CY[Ry| = Ae.Ny = My, Nz = Ci[Ri) S5, CIIR)] = N| and
Noz = C4lRs] P, C[RY) = Np. By TH, [R1[ C [RE7[e.

— Either M| € RA", then M| = \z.Pz such that z ¢ FV(P). We
prove the statement by case on the belonging of Nz in R”".

* Either Nyz € RP", so by lemma 2.5, Rﬁ;’x ={0}u{Cz | C €
Ry} and so Ny = A\y.Pp. Since [Ry, |6 € |RY, 16, O €
Rﬁ,zz and by lemma 2.5, Rﬁfzz ={0}u{Cz | Ce R%} and
so Ny = \y.Ps.

- Let ¢ = 0. Since |C1|¢ = |C5]¢, C5 = 0. So My =
Az.(Ay.Pr)z = Az.O[Ry] Q%ﬁn Az D[R’] = Az.Ply :=z] =
M, My = Az. (/\y PQ)x = \x.0[Ry) —>5,7 Az.O[R,] =
Ae.Pyly := x] = MJ. Since x ¢ FV(Ny) U FV(Ny), M| =
N; and M} = Ng. It is done since |R1ﬁ\2|§ C |R§,Z|é

- Let C{ = C{x such that C{ € R]BVZ Since |C1|& = [C5]¢,
C) = CYz such that C§ € RJBVZ So M; = Ax.Nixz =
Ae.CY[Ri]z S,y Aa.CYf [R']x = \e.N/z = Az.N| = M],
My = Mz.Nox = Mz.CY [Ro)x _)ﬂn Ae.CY[Ry)x = Ae.Njx =
Ax. Ny = M}, Ny = CY[R;] —>3n CY{[R}] = Ny and Ny =
CY[Ro) L5y CHIRY) = NY. Since @ & FV(Ny) UFV(Ny),
by lemma 2.2.1, z ¢ FV(N{)UFV(NY). So, Ml,Mz € RA
and by lemma 2.5, Rﬁ}l = {Oyu{e.C|CeRY 7, RM/ =
({Dyu{C | C e R@z}, [Ranle = {T}u {/\x.C | C €
IRAEY [RELlE = {DY U fAa.C | C e [RYJIE}. Since
[RYIE € IRRHE, [RAR e = {0} U Aa.C | C € [RJIE) <
{0} U DO | C € [RY[e} = [R5

% Else by lemma 2.5, RY" = {Cz|C e Rﬁ"} Since |Ryy!, 16 €
\RN2I|C, O ¢ R and by lemma 2.5, RNQI ={Cz | C €

2T
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R]BVZ} and so Ny = \y.Ps. Let C] = Cfz such that O} €
RJﬁVZ C} = CYx such that CY§ € R?VZ So My = dAz.Niz =
Ae.CY[Ryle Dy Ae.CY[R)z = \e.NJz = \o.N] = M],
My = Ax.Nox = Ax.CY[Rs]x %3,, Az.CY[Ry)x = de.NYx =
Az.N} = M}, Ny = CV[Ry) D, CYIR)) = NI and N, =
CYRy) 2 5y CHIRY) = NI Since z ¢ FV(Ny) U FV(Ny), by
lemma 2.2.1, x ¢ FV(N{)UFV(NY). So, Ml,M2 € RA" and
by lemma 2.5, Ri?, ={0}u{xz.C|C € R]B\ﬂ} RM, = {O}uU
{M.C | C e R } \RM/|C ={0}u{\z.C | C e |R |§§},
RILIE = {T}U{Ae.C | C € [REJe}. Since (R € [RAE,
Rl = {Oyu e | C € [RYIe} C {Ohu{paC | C €
[REAIE} = R I6-
_ Bn _25 Bn Bn _25

El;e, Rah = ’ {he.C|C e R andﬁRMQ,\{D} - {ac|o €]

RNZ} So, |RA}7,|E ={\z.C|Ce|R 77|E} and \RA}HE \{O} =

{Adz.C | C € |R |c} Let C € |R |c then C' = Az.C’ such

’ B |c

that C’ € |RN{|C Q |RN£|C, so C € |RM§|C \ {0}, i.e. |RM{|c -

IR 6

(d) Let My = ¢P>@Qo such that Py, Qs € Anc then |]\/[2|c = |P2|C|Q2|C 7&
Az.|Niz|°.

(e) Let My = P,Qs such that Py, Q2 € An. and P» is a A-abstraction then
[Ma|® = | P|°|Q2]® # Aw.|Nyz|.

(f) Let My = ¢Ns such that No € An.. So |No|¢ = |M2|C = |M;|¢. By
lemma 2.9.5, Ry = {cC' | C € Ry}, s0 [RhJIe C IRGLIE = |RRLS.
Since Cy € RyJ, Co = cCh such that C5 € RY. So, My = Ny =
cCh[Ro] “% 5, cC3[Ry) = eNj = M and Ny = Ch[Ra] 5, C[R5] = N},
Since [Chlg = [Calg = |Culé, by TH, [RY7[& € [RY 6. By lemma 2.9.5,
Rty ={cC | C € RYLY, so [RAL e C IR |6 = R4 Je.

5. Let My = ¢P1Q1 € M, such that P, Py, € M.. So |Mi|¢ = |P1|°|Q1]¢ =
|Ms|°. We prove the statement by induction on the structure of Ms:
e Let M5 € V\{C} then |M2|C =M, # |P1|C‘Q1‘c.
o Let My = Axz. Ny € Al then |]\4'2|C = )\{E‘N2|C # |P1|C|Q1|c.
o Let My = Ax.Na[z := c(cx)] € An. then |Ma|® = Az.|Na[z = c(cx)]|¢ #
| P[] Q]
e Let My = Az.Nax € An, then |Ms|® = Az |Nax|® # |P1]°Q1]°.

o Let My = cPyQo € M, such that Po, Q2 € M., then |cPy|¢ = |Py|¢ =
|P1]¢ and |Q2|¢ = |Q1]°. Since M7 ¢ R", by lemma 2.5,
Riy, = {cCQi | C € Rp}U{cPC | C € R} So, [Ryls =
{[cCQulg | € € R, }U{IePICIS | C € Ry, } = (CIOA | C € [Rip 6} U
{IP°C | C € |Rp,lé}. Again by lemma 2.5, since My ¢ R", RYy, =
{cCQ2 | C € Rp,}U{cC | C € Ry, }. So, [Ryy,le = {lcCQal | C €
Ry} ULePCIE | C € Ry} = {CIGal° | C € [RpJe} UUPIC | C
RE I} Let C € [Ry, & then CIQuI° = ClQal* € IRy 6 C [Riple
Hence C €|Rp,le, ie. |RP1\C C [Rp,l6- Let C € |Ry, 16 then |P1|CC =
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|P2|<C € |RM1|C C Ry, 16 Hence, C € |Rp, 16, ie. |RG 16 C |RE, 6.
Since C; € Ry,

— Either Cl = cC1C1 S.U.Ch that C7 € Rp,. [Cil¢ = |C1E|Q:1]¢ =
C1161Q2]* = |Calg. Since Ca € Ry, [Cale € Ry, ¢, so |C1|c
Rp,|¢ and Cy = cC5Q2 such that |C’2|C = |C1]¢ and C; € Rp,
Hence, My = cPiQ1 = cCi{[R1]Q1 G, cCl[R}|Q1 = cP{Q1 =

Cs

My, My = CP2Q2 = cC3[Ro]Q2 =, cCh[R]Q2 = cPyQ2 = Mj,
P o= iRy & - GilRy) = P and PoCylRa] = A, CyRy = P
By lemma 2.26, [My[* =", [M{[ = [P{|[Q.[° and [Mp|* ‘2
| M5]¢ = [P3]%|Qa|°. Since |M]® = |My| and |Ci|g = |Calg, [P1|” =
|Pj|¢. By IH, |R’"1,\g - |R’“2{|E. By lemma 2.5, R, = {cCQ1 | C €

B} U{eP(C | C € Ry} and Ry, = {cCQs | C € Ripy} U
(cBC | C € Ry} 50 [Ripe o = (CIQ1 | € [Rp SIU(AIC|C of
Rpp 6} and [Rygle = (CIQs1° | C € [Rpyls) U {IPYIFC | © €
R, le}- Let C € |R) {|E Either C' = C’|Q1|¢ = C’|Q2|° such that
C' € Ry [ crH [Rp,le- So C € [Ryl6. Or C = |P{|°C" = |Pg|C"
such that C' € [Rp, |6 C [Ri,[¢. So C € [Ry,[¢.

— Or 0y = cP1Cy such that O € Ry, . |C1lg = |P1|°|C1]¢ = | P2|°|C1 G
= |Calg. Since Gy € Ry, [Colt € [Riples 50 1z € [Rp, o
and Cy = cP,CYy such that |C5|¢ = |C1]¢. Hence, My = cP1Q1 =
cPCi[Ry] &, cPC)[R)] = cP,Q, = Ml, My = cP,Q> = cPyC3[Ry)
C!
=, cPCy[Ry| = cPQy = My, Qy *)r Q1 and Q2 4’7" Q5. By
lemma 2.26, |Mi]¢ =4 |Mlle = |PfIQ)c and |Male e,
[M;]° = | Po|°[Q5]%. Since [My|® = [My|® and [C1[e = |Cal¢, |@1]° =
|@41°. By TH, [Rpy ¢ C [Rp, |6 By lemma 2.5, Ry, = {cCQ} | C €
Rp, } U A{cPC | C e Rr/} and Ry, = {cCQy | C € Rp,} U
{chC |C € Ry, },s0|R; "c = {C’|Q’| |C € |RY |C}U{\P1|CC 1C €]
IRG, I} and |R]M’|C = {C|QI|c | C € [Rp,lctU{lR2°C | C €
IRG,le}- Let C € \RT (|é. Either C' = C"|Q4 |C = C'|Q}|° such that
o' e IR, 16 € [Rp,1E- So C € Ry, [&. Or C = [P[C" = |Pof°C”

such that C’ € |RE), |& T |RY, |&. So C € |RY 1S
1 2 2

o Let My = P2 € M. such that Py, Q> € M, and P, is a A-abstraction.
Then |P2|¢ = |Py|¢ and |Q2|¢ = |Q1]°. Since M; ¢ R", by lemma 2.5,
Ry, = {cCQi | C € Rp}U{cPC | C € RL}. So, Ry |6 =
{cCQuls | C € Ry, }U{IePiClg | C € Ry, ) = {CIuI | C e [Riy [g} U
{IP°C | C € |Rp,I¢}. Again by lemma 2.5, since My € R" by
lemma 2.10, Ry, = {0} U{CQ2 | C € Ry} U{RC | C € Ry, }. So,
R le = {CQls | C € Ry, }U{IRClg | C € Rpy,} = {Cl@s° | C e
Ry UBIC | C € [RpJeh. Let C € [Rile then ClQuf° =
Ol € IRy Is © Ry, Jo. Hence, C € [Ripl6 Lo [RpI5 C [Rpys.
Let C € [Rp, ¢ then [P|°C = [P|°C € Ry, le € [Ryy,le. Hence,
C € [RG, e, ie. [RG, & CIRE, ¢ Since C1 € Ry,

— Either 1 = c¢C1Q1 such that C7 € Ry . [Cilg = |C1[6|Q1|¢ =
C1l¢|Q2] = [Calg. Since Oy € Riy,, |Cale € [Ryy,lg, so |Cile €
|RE,1¢ and Cy = C5Q2 such that |C’2|C |C1l¢ and Cy € Rp,.

Hence, My = ¢P1Q1 = cCi{[R1]@Q1 —>T cCi[Ry]Q1 = cP{Q1 = M17
My = P,Qy = C}[Ro)Qs &, CY[RYQs = PJQo = My, P S, P
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cl C
and P, &2, P}. By lemma 2.26, |M; |¢ = 4 |M|e = | P{|<|Q, | and

Cl .
M| MY = |PYFIQofe. Since [M]° = [Mof" and |C1fe =
|Ca|é, |P{|¢ = |Ps|¢. By IH, |R} ’|C C |RT,|C By lemma 2.5, R, =
{cCQ1| C € Rip JU{eP{C | C € Ry, } and Ry, \{0} = {CQ: | C €
R} ULPC | C € Ry}, s0 [Riggls = (CIOMI" | © € [Rpls) U
{IPIIC | C € [Rpy, e} and [Ryy, 6\ 10} = {CIQs[° | C € [Riyle}U
{IP3]°C | C € [Rg,I¢} Let C € Ry |G- Either C = C"|Q1]* =
C’'|Q2|° such that C" € |RT1,|E CclH |RT2<|E. So C € R}, §|E OrC =
[P{|°C" = |P4|°C" such that €' € [Rjy [¢ C [Rp, e So C € Ry, e
- 0rC = cPllC{ such that C7 € Ry, . [C1l¢ = [P1[°|C1¢ = [P2|°|C1 G
= |Calg. Since C € Ry, |Calt € Ry fo, 50 |Clls € R[5
and Co = P,C% such that |C5]¢ = |C1|¢. Hence, My = cPiQ =
cPIC}[Ry] S, ePLOYIRY) = cPIQ) = M{, My = P,Q> = PC}|[Ry)]
%, POYRY = PaQy = Mp, Qi Q) and Q2 %, Q5. By
lemma 2.26, |M;|° ‘Cl‘c IM{|¢ = |P1|°|Q)|¢ and |Mal® ‘C—zlcr
[MjJ° = | Po[°|Qyle. Since |My[° = |Maf° and C1[e = 1Cale, |1 =
|Q%]¢. By IH, \Rr,|g - |'RT, |5. By lemma 2.5, R", = {cCQ} | C €
Rp, U {cPC | CGRT/} and R” A\ A{B} ={CQ5 | C € Ry, }U
(PO C € Riy )50 Ry o = {CIQHIF | C € [Rp 2}V RIC € o
[Riy |2} and Ry 5\ (0} = {CIQLI | € € [Rjy o} U{IPIC | C €
IRV '2|c} Let C € |Rjy,[¢. Either C' = C"|Q}]° = C'|Q3]° such that
C" € [Rp, |e C [Rp,[6. So C € [Rylé. Or C = |PI°C" = |Py|eC”

such that C, € |R7’ ’ |C QIH |R7’ ’ |C SO C € |RT /|8
1 2 2

e Let My = ¢Ny € An. such that Ny € An.. So |No|¢ = |Ma|¢ = |M;|¢. By
lemma 2.9.5, Ry, = {cC' | C € Ry}, s0 [Rh7Ie CIRGLIG = |RR!6.
Since Cp € R4, Co = cC} such that C) € RY!. So, My = cNp =

cC! C!
cC3[Ra] —F gy cC3[Ry] = eNj = M and Np = C3[Ry] =, C3[Ro] = N3.
Since |Cy]5 = |Cals = |C1]S, by IH, |R§;'{|g C |R@z\g. By lemma 2.9.5,
Rof, ={cC | C € R} so [RYT Je € IRIE = IRALIE:

6. Let My = (A\x.P1)Q1 € M, such that A\z.P;,Q1 € M..
So | M| = |Ax.P1||Q1]¢ = |M2|°. By lemma 2.10, M7 € R", so by lemma 2.5,
Ry, = {0yu{CQ: | C € Ry, p}U {(/\x.Pl)C | C € Ry, } = {0y u
{Az.C)Q1 | C € Rp }U{(Az.P1)C | C € Ry, } and so [Ry, |6 = {O} U
[CIQ1I° | C € [Ry, o [l PEC | C € [Rpy [o} = {T}U{(Aa. )@ ¢ | ©
€ |Rp e} U{[Az.PA|°C | C € [Rg,[¢} We prove this statement by induction
on the structure of Ms:

Let My € V\ {c} then |Ms|® = My # | P1||@1]°

e Let My = Az.Ny € Al then |Ms|® = Az.|Na|¢ # | P1|¢|Q1]°.

Let My = Ax.Na[z := c(cx)] € An. then |Ms|¢ = Az.|Najx := c(cx)]|® #
[ P1|%|@x .

Let My = Az.Nax € An, then |Ma|® = Ax.|Naz|© # | Pr|¢|Q1]¢.

Let My = cP2Q2 € M, such that P», Q2 € M.. By lemma 2.5, R}, =
{cCQ2 | C € Rp,} U{cPC | C € Ry, }, so [Ry,le = {C|Q2|C | C €
|R%, |C}U{|P2|CC | C € Ry, I} Slnce Oe IR, ‘c and O € rdGEMoyr,
|RMl\c Z [Ri,lc-
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o Let My = (/\Z‘PQ)QQ S MC such that )\.I.PQ,QQ S Mc, then |131|C = ‘P2|c
and |Q1|® = [Q2]¢. By lemma 2.5, R}, = {0}U{CQ2 | C € Ry, p,} U
{()\x P)C | CeRp,} = {0 U{(Az.0)Q2 | C € R, }U{(Az.P)C | C €

k. 50 1R = (0} U{CIQI | € € [R5, plo U {Ne.BIC | C €
|R Jet = (O} {C)IQul | C e IRp, le}UilAz. Py |C | C € [R, [¢}-
let C € [R3.. P1|C then CQ:|° C|Q2\ € IRy le € Ry, |c So
C € [Ri, ple e [RY ple € RN pyle- Let C € ‘R%‘é then
Q)RS ()@l € Rygle € [Rile. So C € [Rple,
ie. [Rple C |RpIe. let C € |RTQ1\2 then [Az.P1|°C = |Az.P|°C €
Rils C [Ryle. So C € R[S, ie. [Rp,J6 C [Rp,[6. Since
;e R}"\/fll

— Either C; = 0O, so C; = 0. Hence, M7 = (A\x.P1)Q1 E>T Pz =
Q1] = M| and My = (Az.P2)Q2 Enn Pz = Q2] = M. By
lemma 2.27, [Rj,[& € Ry é-

— Or C1 = (A2.C1)Qq such that C7 € Ry . [C1lg = (A\z.|C1[E)[Q1]¢ =
O |CHQel® = ICal. Since Cy € iy, |Cole € [Riy, 5, s0
IC1lé € |R}32|§ and Cy = (Az.C%)Q2 such that |C5|¢ = |C1[¢ and
Ch € Ry, Hence, My = (Az.P1)Q1 = (\z.C{[R1])Q1 &,

(e CL[RL)Q = (. )@y = M,

My = (\x.P2)Q> = (Ar.C3{Rs]) Q2 (Ao C4{RS))Q2 = (A F2)Qs
— M, P, 8 Pl oand P, &%, Pj. By lemma 226, [M]c =€
[M{[° = [Xa.P{|°|Q1|° and [Mo]e ‘2, M3|° = |\ PylelQal°. Since
M = [Ma]° and [Cafg = [Calg, [P{I° = |P3Je. By H, [Rylg C
\R’"2,|8. Since My, My € M., by lemma 2.12, M{,Mj € M,.. By
lemma 2.5 and lemma 2.10, Ry, = {Oyu{(Az.C)Q:1 | C € RT{} U
{(Az.P[)C'| C € Ry, } and Ry, = {0} U{(Az.C)Q2 | C € R, }U
{(Qe.P)C | C € RT ) 5o R} de = {0y u{(eO)ei | C €
[Rip l6} U {IAa.PLIC | C € [Rpy, &} and

Riyle = {0} U{0w.0)IQuI" | O € [Rile) U PYC | ©
Ri,le}. Let C € [Ryyle. Either C = O then C € [Rjyle.
Or C = (Az.C")|@Q1]° = (Az.C")|Q2|® such that C' € |R’"1,|(Cj clie
\RT2/|2. So C € |R} §|8 Or C = |\z.P{|°C" = |\x.Py|°C" such that
C' € [Ry,le € [Rp,[&. So C € [Ryy,le.

— Or €1 = (A\z.P1)Cq such that C7 € Rpy, . |Chl¢ = [Av.P1[°|Cyg
Az Po|°|C1]¢ = |Cal¢. Since Cy € Ry, [Calé € Ry, 16, so [C1lE
RG, e and Cy = (Az.P2)C5 such that |C5]¢ = |C1|¢. Hence, M,
(Az.P1)Q1 = (Mz.P)C] [Rl] ()\x P)C{R)] = (\z.P)Q) = M{,

M2 ()\(E PQ)QQ ()\LE PQ)CQ[RQ} ()\x PQ)C2[RI] ()\{EPQ)QIQ

— Mgu Ql _)’l" Q/ and Q2 —),r Q2 By lemma 2267 |M1|c :‘C_llcr

IM|° = 2Py ||Q)|° and [Mo]e 2 |M3Je = Az P2 || Qbe. Since
|Mi[¢ = [Ma]® and |C4[¢ = |Calg, |Q1|C = |@5l°. By IH, [Rg, [ ©
\RT',2|§. Since My, My € M., by lemma 2.12, M{, M} € M..
By lemma 2.5 and lemma 2.10, R" ;= {OYu{(Az.C)Q] | C €
Ry }U{(Az.P)C | C € Rb,l} and R;/[Z, ={0}u{(\2.0)Q4 | C €
Rip, Jo{ . Pa)C | C € Ry} 50 Ry |6 = {D}U{(Aa-C)QLI | C €
Rp 6} U{|Az.P|C | C e |R7", |5} and

\RM,|C = {0} U{(x.C)|Q4|¢ \ C € |RpIe} U{[Az.P|C | C €

m Il
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R, le} Let C € |Ry, ¢ Either C' = (Ax.C")|Q1[° = (Az.C")|Q5[°
such that C' € [Rp ¢ C |Rp,I¢. So C € |Rré|2. Or C =

|Az.P°C" = |Ax.P|°C" such that C' € |R’“/1|8 ciHd |RT,2|5. So
CelR 5‘@'

e Let My = ¢Ny € An. such that Ny € An.. So |Na|® = |Ms|¢ = |M;|¢. By

lemma 2.9.5, Ry, = {cC' | C € Ry}, s0 [RhJIe CIRGLIE = RS

Since Oy € Rﬁ}g, Cy = ¢C) such that C4 € R?Vz So, My = ¢Ny =

¢Ch[R] "% 4, cC3[Ry) = eNj = M and Ny = Ch[Ra] 5, C[R5] = N},

Since |Cy]6 = |Cals = |C1|S, by TH, |72§;7{|5 c |R§Vz\g. By lemma 2.9.5,
Rfjé ={cC | C e R@g}, 50 |R§;{|g C |R7@z\g = |7z§;'2,\g.

7. Let My = ¢cN; € AT]C such that N; € A?]c So ‘N1|c = |M1‘C = ‘M2|C. By
lemma 2.9.5, R]ﬁv;’l ={cC | C e R%L o |R§Z|§ = \R?}Hg C |R1ﬁ\/};|g Since

C/
C; € R?}’l, C1 = c¢Cj such that C] € R]ﬁ\g So, My = ¢Ny = ¢C}[R1] = s,

o .
cC1[R}] = ¢N{ = M7 and N1 —g, Ni. Since |C]|¢ = |C1]¢ = |C2|é, by TH,
[RYe € [RYL 16 By lemma 2,95, Ry, = {cC | C € R{1}, so [RYL|E =

[RA6 S IRog 6. O

B Proofs of section 5

Lemma 5.2. 1. (a) By induction on the structure of M € Al

elet M =2 # c. Then ®* (2, F) = 2, F = @ and FV(z) =
FV(x)\{c}.

e Let M = Az.N and ' = {C | \e.C € F} C R . FV(M) =
FV(N)\ {z} =7 FV(®L(N,F))\ {¢c,x} = FV(\z. @I (N, F")) \
{c} = @P1(M, ).

o Let M = MM, F1 = {C | CMz € F} C R and
Fp={C | M\C € F} CRY, .

— If O € F then, ®1(M, F) = ®PL(My, Fy) P ( My, F>).
- Else, <I361<M7.7:) = C(I)BI(Ml,]:l)(I)ﬁI(MQ,]:Q).
In both cases, FV (M) = FV(M;) U FV (M) ='#
(FV(@P(My, F1)) \ {c}) U (FV (@7 (Ma, F2)) \ {c}) =
FV (@7 (M, F)) \ {c}.
(b) By induction on the structure of M € AL

e Let M €V, then M # ¢. So F = @ and &/ (M, F) = M € AL.

e Let M = \z.N and F' = {C | \e.C € F} C Ry . By IH,
®PI(N,F') € Al,.. Since by (BC),  # ¢, by lemma 5.2.1a, z €
FV(®PI(N,F")). Hence, 1 (M, F) = A\z.®P1 (N, F') € Al.

o Let M = MMy, Fy = {C | CMz € F} C R and
Fo={C| M CeF} TR

— If O € F then &1 (M, F) = ®°1(M,, F,)®P (M, F>). By IH,
OB ( My, Fy), P (M, F») € Al. and as M, is a A-abstraction,
®BI(M;y, Fy) is a A-abstraction. Hence ®%1(M, F) € Al.

- Else, ¢5I<M7.7:) = CCI)BI(Ml,]:l)(I)ﬁl(MQ,}—Q).

By IH, ®°1(My, Fy), @1 (M, Fy) € Al., hence, ®1(M,F) €
AlL.
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2.

(¢) By induction on M € AL
e Let M =z # c. Then, F = @ and ®%! (2, F) =z = |z|°.
e Let M = Az.N and F' = {C | \e.C € F} C R |®FT(M, F)|c =
A2 B8 (N, F')|© = Az.|®CL(N, F')|e =TH \z.N.
o Let M = MMy, Fy = {C | CM, € F} CR}}| and
Fo={C| M\C€F}CRY,.
— If O € F then M, is a A-abstraction, hence, ®37 (M1, Fy) is a A-
abstraction. So, |®°(M, F)|¢ = |®PT(My, F)®PI (M, Fo)|¢ =
|71 (M, F2) || @7 (Mo, Fo)|* ="M My My = M.
— Else, |@71(M, F)|° = [c@PT (My, F1) @ (Mo, Fo)|° =
|DOT (M, Fy)|¢|®PT ( My, Fo)|¢ =TH My My = M.
(d) By induction on M € Al
o If M =z # ¢ then ®1(M,F) = M and F = & = |R1 6.
e Let M = \e.N and F/ = {C | \e.C € F} C Ry, F =26
{Dz.C|CeF}=H {\x.C|Ce |R¢m P]_.,)|C} ={ z.|C|g | C €
R f”(PF’)}
= {|Az. O|C | C € chﬁI(Pj:/)} =25 |R221(M7]:)‘8~
o Let M = MMy, Fy = {C | CMz € F} C R and
Fo={C| MiC € F} C Ry,

— If O € F then ®1(M,F) = ®FL(My, Fi)®PL(My, Fy). Since
M, is a A-abstraction then ®%!(M;, F}) too. By lemma 5.2.1b,
@ﬁf(M, F) € Al then ®8(M, F) € RAIL.

=26 {D}U{CMQ | C e fl}U{MlC | Ce .7:2} =IH {D}U
{CM2 | Ce |R<1>ﬁI(M1 Fi1) ‘c} U {MIC ‘ C e |R<1>HI(M2 F2) |C} =
{OhU{[CleMs | C € Rgfm(Ml A JU{MIIC5 | C € Réé,% .
=S Oy U{|CP (M, F2)l6 | C € Rifﬂ o, fl)}U
{|(I>M(M1a-7:1)0‘c | Ce Rﬁm(M2 ]:2)} |R DBI(M, 7:)|c
— Else, &% (M, F) = c®% (My, F1)85! (My, F»).
F =26 {CMQ ‘ C e fl} U {MlC | C e .7:2} =IH {CMQ | C e
R, 7y JEHUMLC | € € R, 0y 5 6} = {ICIEM: | C €

I C 1 z.lc
Rgm(lel)} U{M|Cle | C € RiﬁI(Mg,]:g)} =21
I
{lcCPP (M, )¢ | C € Rg[,I(M )Y
(1@ (M1, F)CLE | € € R 5} =27 1R 1y 5l

(a) By induction on the construction of M € Al.. By lemma 2.22, |M|° € Al

o Let M € V\ {c¢}. Hence |M|® = M, by lemma 2.5, |R’JB\/}|E =0 =
R and M = ®P1(|M[*, R3] [6).
e Let M = Ax.P where P € Al, and = € FV(P). |M|® = \z.|P|°.

By T, [RY|e € R and P = &1(PF R [E). [RYfle =>°

{Mz.Cls | € e REY = paCc | € e |R¥S) € {\eC | C €

Rﬁi‘(} =25 Rlﬁle Moreover, M = ®1(|M|e, |Rfj|g)

o Let M = cPQ Where P,Q € Al.. Let |M|¢ = |P|°|Q|°. By IH,
R C Rfi£|~ RY1e € Riges P = 71(PI<,[RE]E) and Q =
o (|QI°, IR 1) [RAfle =27 {cCQé | OeRﬂ’}U{IcPClc |Ce

R ={CIQI°| C € [RPGU{IPIC | C € [RY ¢} S {ClQI°| C €
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Rip} U{|PIC | C € R} € Ry -
Moreover M = ®PT(|M|P |R'§4j|§)

o Let M = PQ where P,@ € Al, and P is a A-abstraction. Let |M|¢ =
|P|€|Q¢, where |P|° is a A-abstraction. By IH, \Rm\c R‘ﬁ;,lc,
RO/ e € RES.. P =80 (|P|7, [RE|2) and Q = 971 (|QI°, IR ¢).
Riile =* {D}UICQLe | € € R U{IPC: | C € R’} = {ThU
{C1QI° | © € [RE ey u{IPI*C | C € [RY e} c {OU{CIQI* | C €
Rip YU{IPIC | C € R} =25 R
Moreover M = ®PT(|M|PT |R§4I|§)

(b) Bylemma 2.22, |[M|¢ € AL. By lemma 2.21 ¢ ¢ FV(|M|°). By lemma 5.2.2a,]j
|R§/}|C - Rﬁ\%“ and M = ®PI(|M|e, |RM|E) To prove unicity, assume
that (N', F’) is another such pair. So F' C Rﬁ, and M = @ﬁI(N’ F.
Then, |M|® = [®7(N', F')[¢ =5-21¢ N" and F/ =214 [REL, o - J6 =
IRAsle- 0

Lemma 5.3. By lemma 5.2.1c and lemma 2.17, there exists a unique C’ € Rg{”(Mf) ,I

such that |C’|¢ = C. By definition IR € RP! such that ®/(M,F) = C'[R).

By lemma 5.2.1c, |C[R]|® = M. By lemma 2.25, |C'[R]|® ¢4, |C'[R]|° such

that R’ is the contractum of R. So M g,BI |C'[R]|¢, then M' = |C'[R']|°. Let

‘RC’[R’]IC' Since, ®°I(M,F) = C'[R] gg[ C'[R'], by lemma 2.12 and

lemma 5.2.1b, C'[R] € Al.. By lemma 5.2.2a, C'[R'] = ®1(M’, ') and ' C REL,.
By lemma 5.2.2b, F' is unique. O

Lemma 5.6. Tt sufficient to prove:

(M, F) —pra (M, F') <= & (M, F) -z &1 (M, F')

=) let (M,F) —pra (M',F"). Then by definition 5.5, 3C' € F such that

M gg[ M’ and F’ is the set of BI-residuals in M’ relative to C. By defini-
tion 5.4 we obtain ®1 (M, F) —z; @PL(M’', F').

e <) Let ®%1(M,F) —>51 ®BI(M', F') such that C € R(I)M(M]_.) Since, by
lemma 5.2.1b, ®*1(M, F) € Al., by lemma 2.26 and lemma 5.2.1c, M =
@57 (M, F)le '€, 1881 (M7, F))|© = M. By definition 5.4, F' is the set
of fI-residuals of F in M’ relative to |C|$. By definition 5.5 we obtain
(M,F) —pa (M',F"). O

Lemma 5.7. By lemma 5.2.1b, ®°1(M, F), ®°1 (M, F5) € AL.

By lemma 5.2.1c, |®% (M, F,)|¢ = |®°1 (M, F»)|°. By lemma 5.2.1d, |R2,
FICF=|R

Let ®31(M, Fy) —>51 ®PL(M’, F}) such that C; € R?

c __
‘I’BI(M7-7:1)|C _I

o1 (a1, 7)€
It (M, F) —>g1d (M',F]) then by lemma 5.6, ¢5I(M,]-'1) —gr (M FY).

@5,(M]_. . Let Cp = |C1]g, so

by lemma 5.2.1d, Cy € F;. By lemma 2.26 and lemma 5.2.1¢, M —>51 M'.

®PL(M’, F') and |C'|& = Cp where C’ € Rg{”

By lemma 5.3 there exists a unique set F' C RM,, such that CIDBI(M F1) gg[

Since C’,C; € RP by

(M,F1)* <I>f”(M]: )’

lemma 2.17, ¢’ = C;. So, ®*1(M', F') = ®P1(M’, F]). By lemma 5.2.1d, ' = F.

By lemma 5.2.1¢, F| = |R?!

C
<I>/31(M/,]-'{)|C'
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By lemma 5.3 there exists a unique set F4 C 72']6\/11,7 such that ®°1(M, F,) %BI
OPL(M’', F5) and |Ca|é = Cy where Cy € ®°1(M,F,). By lemma 5.2.1c, F} =
BI c
|R<1>ﬁ1(1\/1/,]:é)|c-
Hence, by lemma 2.28, F{ C F4 and by lemma 5.6, (M, F2) —grq (M',F5). O

Lemma 5.9. 1. By induction on I' F M : ¢. 2. By induction on T' 57 M : o.
3. First prove (*): f ' " M : 0, and 0 C ¢ then I' " M : ¢’ by induction on
o C ¢’. Then, do the proof of 3. by induction on I' F" M : ¢. For the latter we do:

e Case (azx): Tz :0F Mz .0, TV,x:0' CT,x:0and 0 C ¢” then o' C o
and so o' Co”. By (ax) [V,z: o' F9 2 : ¢'. By (*), ",z : 0’ F¥ 2 : o".

PlM:o—T BIN:o
o Case (—pr): If B 2emrn A Neo D= [Ty, A = A, Ay, TMA =
Fg,FQ,AQ, F/ = Fé,F&,Aé E I Where, Fl = (l‘l : O'i)'m FQ = (yj,Tj)m,
L3 = (20,0 0})n, A1 = (i : 0))n, D2 = (21, p1)k, dom(I'2) Ndom(Az) = &,
Fg = (.’ﬂl . Ei)n7 F/Q = (yja?j)my A/Q = (Zl,ﬁl)k, 0'71 E g; n O'Z/-, ﬁ E Tj and
P C pr then T4, T C T and Iy, Ay C A, By IH, T%,T5 F91 M : 0 — 7 and
4, AL FPL N o) so by (—pr), [T, Ty, AL FBT MN @ 7. By (*), and since
[, NI =TY%, we have: T4, T, AL FAT MN @ 7. O

Lemma 5.10. When M —F N and M —* P, we write M —* {N, P}.
1. By induction on o € Typel.

o If o € Athen CRj C CR".

o If o = 7N p then by IH, CRy C [7]", [p]” € CR", s0o CR; C [rnp]” C
CR".

e If o = 7 — p then by IH, CRj; C [7]",[p]” € CR" and [o]" € CR"
by definition. Let M € CRj, so M = xN;...N,, where n > 0 and
Ni,...,N, € CR". Let P € [r]" so P € CR", hence, MP € CR{, C [p]"
and M € [o]".

2. Let Mz := N|N; ... N, € CR? where n. >0, z € FV (M), and
(Az.M)NNy...N,, =% {Mi, Ma}. By lemma 2.2.7, 3M] and M; such that
M, —% Mj, Mlz := NIN,...N, —% M|, My —% M} and Mz :=
NIN; ... Ny, —J%; Mj. Then we conclude using M[z := N|N; ... N, € CRA,

3. Let M[z := N]N;...N, € CR?" where n > 0 and (M. M)NN;...N, Hfm
{My, M}, By lemma 2.2.7, 3M{ and Mj such that My —j, M, Mz =
NINi ... N, =%, M{, My —% Mj and Mz := NIN; ... N, =% Mj. Then
we conclude using M|z := N]N; ... N, € CR".

4. By induction on o.

e If 0 € A, then the statement is true by 2.

e If 0 = 7N p, then by IH, [7]?! and [p]?! are I-saturated. Let M, N,
Ni,.... Ny €A,z € FV(M), n >0, and Mz := N]N;...N, € [0]%! =
[71%7 N [p]?!. Then by I-saturation, (Az.M)NN;...N, € [r]?! and
(Ax.M)NN; ... N, € [p]?. Done.

e If o = 7 — p, then by IH, [7]%! and [p]?! are I-saturated. Let n >
0, M,N,Ny,...,N, € A, @ € FV(M), and Mz := N]N;...N, €
[o]?f. Let P € [r]?! # @, then M[z := N|N;...N,P € [p]*L.
By I-saturation, (Az.M)NN; ... N, P € [p]?! so (Ax.M)NN;...N,, €
[71°" = [p]?'. Since, M|z := N|N;...N, € [¢]*" € CRP! and CR!
is saturated by 2, then (A\z.M)NN; ... N, € CR%.
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5. By induction on o.

e If 0 € A, then the statement is true by 3.

e If 0 = 7N p, then by IH, [7]°" and [p]?" are saturated.
Let Mz := N|N;...N, € [0]?" = [7]”" N [p]®". Then by saturation,
(Az.M)NNj ... N, € [7]?" and (\z.M)NN; ... N, € [p]?". Done.

e If 0 = 7 — p, then by IH, [7]%" and [p]°" are saturated. Let n > 0,
M,N,Ny,....,N, € A, z € V, and M[z := N|N;...N, € [o]°". Let
P € [r]°" # @, then M[z := N]N;...N,P € [p]?". By saturation,
(Ax.M)NN;...N,P € [p]°" so (A\e.M)NN;...N, € [7]°" = [o]".
Since, M[z := N]N;...N, € [¢]?" C CRP" and CRP" is saturated by
3, then (A\x.M)NN; ... N, € CRP".

O
Lemma 5.11. By induction on 1 : 01,...,2p : 0, F" M : 0.
e If the last rule is (az) or (az!), use the hypothesis.

o If the last rule is (—pr). Let Iy M Ty = (z; : 03 N0l )n, (Ui @ Ti)ps (25 pi)g
such that I'y = (z; : 04)n, (yi © Ti)p and Ty = (25 : 0f)n, (25 ¢ pi)g. Let
Vi € {1,...,n},N; € [o; noi]?! so N; € [0;]°F and N; € [o]]?! , Vi €
{1,...,p}, P; € [1:]?F and Vi € {1,...,q}, P! € [p:]?*. So by IH, M[(z; :=
Ni)n, (yi = P,),] € [o — 7] and N[(z; = Ni)n, (zi == P]),] € [o]"L.
Hence, (M N)[(zi := Ni)n, (yi := P))p, (2 := Pl),] € [7]°L.

e If the last rule is (—g). Let I' = (z; : 0;), and Vi € {1,...,n}, N; € [o:]°".
So by IH, M[(x; := N;),] € [o — 7]°" and N[(z; := N;)n] € [0]?". Hence,
(MN)|(z; == Ni)n] € [7]".

e If the last rule is (—7). Let I' = (2; : 0;), and Vi € {1,...,n},N; € [o;]".
Let P € [o]" # @. So by IH, M[(x; := N;)p,z := P] € [r]". Moreover
(Az.M)[(z; := N;)n|)P = (Az.M[(z; := N;)n])P.

— For FP1 since € FV(M) by lemma 2.2.2, (Ax.M[(z; := N;)n]) —p1
M|(z; := Ni)n,r := P] and since by lemma 5.10, [7]%! is I-saturated,
((Az.M)[(z; := N;)o]) P € [7]P.

— For FP" (Az.M[(z; := N;)n]) =5 M[(x; := N;)n, 2z := P] and since by
lemma 5.10, [7]77 is saturated, ((Az.M)[(x; := N;),])P € [7]°".

So (Az.M)[(x; := N;)n] € [o]” = [7]". Since z € [o]", M[(x; := N;),] €
[7]” € CR", so Ax.M|(z; :== N;)n] = (Az.M)[(z; :== N;),] € CR".

o If the last rule is (N7). Let ' = (z; : 04)n, and Vi € {1,...,n}, N; € [o;]".
So by IH, M[(z; := N;)n] € [7]" and M[(z; := N;)n] € [p]". So M[(z; :=
Nz)n] S [[(T]]T.

e If the last rule is (Ng1). Let ' = (z; : 0;)n, and Vi € {1,...,n}, N; € [o;]".
So by IH, M[(z; := N;),] € [oN7]", so M[(z; := N;),] € [o]".

)

)

e If the last rule is (Ng2). Let ' = (z; : 0;)n, and Vi € {1,...,n}, N; € [o;]".
So by IH, M[(x; := N;)p] € [o N7]", so M[(z; := N;)n] € [7]".

Lemma 5.13. By induction on M. Note that by Lemma 2.4, M # c.

elet M =2 #c Then D =T,z :7, I =z :7, TV 2 : 7 and Vo,
I,z:7,c:0F 2T
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o Let M = Ax.N € Al then by lemma 2.4, N € Al, and z € FV(N). Vp:

— If c€ FV(M) then ¢ € FV(N) and by IH, 30,7 where I,z : p,c: o P!
N:7, hence IV, c: o FT \a.N : p — 7.

— If ¢ ¢ FV(M) then by IH, 37 where IV, 2 : p 97 N : 7, hence I -1
Ar.N 7.

e Let M = Ax.N € An. then by lemma 2.4.9.9a, N € An.. By IH, Vp, Jo, 7
such that T,z : p,c: o0 F N : 7. Hence, T',c: o 97 \z.N : 7.

e Let M = cNP where N,P € Al.. Let Iy =T | FV(N) and I', =T | FV(P).
Note that I” = T' | FV(cNP) =T, NTY%.

— If ¢ ¢ FV(N) U FV(P) then by IH, 37, 73 such that T} %7 N : 7, and
I, HPT P imy. Let p € Type' and 0 = 71 — 7 — p. By (—g,) twice,
Iy, c:o P eNP - p.

— If ¢c € FV(N) and ¢ ¢ FV(P) then by IH, 301,71, 72 such that I'}, ¢ :
o1 FPL N . 74 and T FAL P . 7. Let pE Type1 and let 0 = 01 N (11 —
T2 — p). By (az?) and (Ng),c: o - ¢ 1 — 75 — p. By lemma 5.9.3,
I,c:o0 P N 7. By (—p,) twice, 4 M T%,c: 0 FPL eNP : p.

— Ifc € FV(N)NFV(P) then by IH, 301, 09, 71, 7o such that I'}, ¢ : o1 F7
N:rand Th,c: 00 FA N i1y Let p € Type1 and let 0 = o1 N (o2 N
(r1 — 72 — p)). By (az?) and (Ng), c: o0 F¥ ¢c: 7 — 7 — p. By
lemma 5.9.3, T',c: 0 1 N : 7, and T'h,c : 0 F9T P : 1y, By (—g,)
twice, T) MTh,c: o L cNP : p.

o Let M = ¢NP where N,P € An.. by IH, Jo1,09,71,72 such that T',c :
o1 FP1T N ¢ 7 and T'c: o FB7 N : 7y, Let p € Type1 and let ¢ = 01 N
(02N (11 — 72 — p)). By (az!) and (Ng), c: 0 - ¢c: 7 — 7 — p. By
lemma 5.9.3, T,c: 0 F°" N : 7y, and T',c: 0 F°7 P : 7. By (—g,) twice,
I,c:0 P eNP:p.

e Let M = NP where N,P € Al. and N = Ax.Ny. So Ny € Al. and = €
FV(Ny). Let Ty =T | FV(N) and Ty =T | FV(P). Note that IV =T |
FV(NP)=T7NT%. By BC,z #cand z & FV(P).x

— If ¢ ¢ FV(Az.Ny) U FV(P) then by IH, 3, such that 'y F°1 P : 7, and
again by IH, 37, such that I,z : 72 %7 Ny : 7. By (—7) and (—g,),
Fll |_|F/2 F'BI ()\zNo)P LT

— If c € FV(\z.Ny) and ¢ ¢ FV(P) then by IH, 3 such that Ty F7 P :
7. Again by IH, 30,7, such that I}, c: o,z : 75 F%7 Ny : 7. By (—7)
and (—g,), Tf M TS, c: 0 FPL (Ax.No)P : 4.

— If ¢ € FV(\z.Ny) N FV(P), then by IH, Joq, 79 such that I'y, ¢ : o9 FP1
P : 75 and again by TH, Jo1, 7, such that T'},c: 01,2 : 7 A1 Ny : 1. By
(—1), T,c:o0 F ANy : 79 — 71. By (—g,), Tf M TS, c: o1 Naoy FL
()\.TN())P cT1.

e Let M = NP where N, P € An. and N = Az.Ny then by lemma 2.4.9.9a,
Ny € An.. By IH, Joo, 79 such that ', ¢ : o9 A1 P 19 and again by IH, doq, 7y
such that I,c: oy, 2: 7 F9 No : 7. By (—7), [ye: o1 FF" Az Ny : 79 — 71.
Let ¢ = 01 Noy. By Lemma 5.9.3, I',c : o FA" Xx.Ny : 7 — 7 and
I,c:o P P 7y Hence, by (—g), T,c: o F97 (Ax.No)P : 7.

e Let M = ¢N where N € An.. By IH, 30,7 such that I',c: o F97 N : 7. Let
p € Type! and ¢/ = o N (1 — p). By Lemma 5.9.3, T',c: ¢/ 97 N : 7 and
I,c:0' F9 ¢: 1 — p. Hence, by (—g), I',c: o' " cN : p. O
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Lemma 5.14. 16 M 23 My and M 22514 My, then 37, FYf such that (M, 7) —%,J]
(My, F') and (M, F2) — ;4 (Mz, 7). Note that by definition 5.5 and lemma 2.2.2,
My, My € AL By lemma 5.7, 3F]" C Ry, and 375" C R, such that (M,F; U
F2) —hrq (My, F{UF") and (M, Fi U F2) =54 (M2, 75 U F"). By lemma 5.6
there exist T',Ty,T5 € Al. such that

T =01 (M,F, UF), Ty = O (M, F UF"), Ty = &7 (M, F§ UF}')

and T' —%; T and T' —; T5. Since by lemma 5.2.1b, T' € Al and by lemma 5.13.1,

T is typable in the type system DI, so T € CRP! by corollary 5.12. So, by

lemma 2, there exists T3 € Al., such that T —5r T3 and To —j; T3, Let

F3 = |Rg§|§ and Mz = |T3|%, then by lemma 5.2.2b, Ty = ®#1(Ms;, F3). Hence,

by lemma 5.6, (M, F{' U FY") =%y (M3, F3) and (Ma, F5' U F") =5, (M3, F3),
F{/Uf/// fé/uf///

i.e., M1 =t BId M3 and M2 =7 BId Mg, O

Lemma 5.16. Note that @ C Ri} We prove this statement by induction on the
structure of M.

o Let M €V then ®°1(M, @) = M and R} = & by lemma 2.5.

o Let M = Az.N then &7 (M, @) = Ae.®7 (N, 2). By TH, Ry, y 5 = @ and
by lemma 2.5, Rg{a,(M,g) =d.

e Let M = MM, then ®51(M, @) = c®P1 (M, 2)P1 (M, ).
By IH, ’Rgé,(Ml)@) = @ and RMI(M o) =9 and by lemma 2.5, Rgfﬂ(M)g) =

.
Lemma 5.17. We prove the statement by induction on the structure of M.
e let M €V, then ®°/ (M, @) = M.
— Either M = z, then ®*1(M, o)z := ®%(N, )] = ®*(N, @) and by

lemma 5.16, R@[,I(N o) = =g.
— Or M # =, then ®*1(M, @)[x := ®P(N,2)] = M and by lemma 2.5,
Ry =2
M

e Let M = \y.M’ then ®°1 (M, @) = \y. <I>f”(M', 2). So, R

B8I
;fxy BBI(M', @) [x:=®B (N, 2)]" By IH, R
R

51 (M,2)[z:=081 (N,2)] — O

<1>51 M,2)[x:=PBI (N, ]I

@BI(M/ @)[z:=0P1 (N,2)] = . By lemma 2.5 I

o Let M = My M, then ®%1(M, @) = c®°! (M, @)D (M,, @).
SO Rﬁl — R,BI
v s (M, @) [x:=081 (N,2)] c<1>BI(M1,z)[x::w(N,z)]wl(Mz,z)[m::wI(N,g)]'
BI
By IH, Rgbr (1, oaimoit (.00)] = =R, (Ma.0)me 3 (N2 = @ and by lemma 2.5,'

BI _
Rt (M,0)[w:=081 (N,2)] = 2 0
Lemma 5.18. We prove the statement by induction on the structure of M.

e Let M €V then by lemma 2.5, R = &

o Let M = Az.N then by lemma 2.5, R ={\.C|CEe€ RM} Let C € RM,
then C' = Az.C’ such that C" € R4, qﬁf(M, {C}) = Az P (N, {C"}) — 51
Az.N' = M’ such that ®°1(N,{C'}) —sr N'. By IH, R} = @&, so by
lemma 2.5, R]ﬁvf/ =g.
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o Let M = MlMg.

— Let M € RP!, then M; = Az.My and by lemma 2.5, R5I = {0} U
{CMy | C € R JU{MC | C e Ry}
% Either C = O then ®°(M, {C’}) = (M, @)®P(M,, ). By
lemma 5.16, Rglﬁf(M o) = chfﬂ Mooy = D Since ®°1(M,,2) =
Az. 9P (M, @), @ﬁI(M {CY) —p1 ®PI(My, @)z := (M, @)].
By lemma 5.17, RM,(M 2) =BT (My,2)) = D
« Or C' = C"M, such that C’ € R, . So, ®°7(M, {C}) =
c®PI(My, {C'})®PT(M,, @). By lemma 5.16, Rqﬂ“ Maz) =
if ®%1(M,{C}) —3; M’ then M’ = cM|®5 (M, ) and
O (My,{C"}) —p1 M{. By TH, R}, = & and by lemma 2.5, R}, =
.
+ Or C'= M;C" such that ¢" € R}, . So, % (M, {C}) =
@1 (My, 2)®%! (M, {C'}). By lemma 5.16, Rgb: 4 5
if ®71(M,{C}) —pr M’ then M' = c®P!(M;, @) M} and
O (My, {C'}) —p1 Mp. By TH, Ryj, = @ and by lemma 2.5, Ry, =
.
— Let M ¢ RP!, then by lemma 2.5, R'JBV} = {CM, | C € Rﬁ/}l} U
{MiC| C e Ry}

* Either C' = C'M> such that C’ € Rm So, @ﬂI(M {C}) =
c®P1 (M, {C'})®P!(My, ). By lemma 5.16, Rqﬂ”(M o) = - So,
if ®31(M,{C}) —51 M’ then M' = cM|®"! (M, &) and
®1(My,{C"}) —pr M{. By TH, R}], = @ and by lemma 2.5, R, =
J.

* Or C'= M;C" such that C’ € RBI So, ®4I(M, {C}) =
c®P1 (M, @)®P1 (My, {C'}). By lemma 5.16, R@ﬁI(M )
if ®51(M,{C}) —5r M’ then M’ = c®°!(M;, @) M} and
®7 (My, {C"}) —p1 Mp. By TH, R}j, = @ and by lemma 2.5, Ry, =
J.

= @. So,

= @. So,

= @. So,

O

Lemma 5.19. By lemma 5.3, there exists a unique set F/ C Rg/[,, such that ®%1 (M, {C}) —>g1I

(M, F'). By lemma 5.18, Rii vy r1) = D5 80 [Righs s |6
= @ and by lemma 5.2.1d, 7/ = @. Finally, by lemma 5.6, (M,{C}) —g14
(M, 2). O

Lemma 5.20. 1t is obvious that —7;,C—7%;. We only prove that —%,C—7;. Let
M, M" € Al such that M —7%; M’. We prove this claim by induction on the length
of M —%, M'.

e Let M = M’ then it is done since (M, F) —5;, (M, F) for some F.

o Let M —%, M" —g; M'. By TH, M —}; M". If M" = C[R] —p; C[R'] =
M’ such that R’ is the contractum of R then by lemma 5.19 (M",{C}) —s14
(M', &), so M" —1; M'. Hence M —5; M" —11 M. O

Lemma 5.21. Assume M —J5; My and M —J; My, Then by lemma 5.20, M —7;
M, and M —7; My. We prove the statement by induction on the length of M —7;
M.
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o Let M = Ml. Hence M1 —>>{I M2 and Mg —>TI Mg.

o Let M —3; M{ —1; My. By IH, 3M3, M| —7; Mj; and M, —5; M;. We
prove that IMs3, My —3; M3 and M4 —1; M3, by induction on M| —I, Mj.

— let M| = M}, hence M} —1; My and My —%; M;.

— Let M} —%, MY —1; M. By IH, 3MY', My —3%; MY and MY —1; M.
By lemma 2.2.2, ¢ ¢ FVMY. Since M§ —i; M4 and M} —1; MY’ by
lemma, 514, E|M3,Mé —17 M3 and Mé" —17 Mg.

O

C Proofs of section 6

Lemma 6.3. 1. (a) By induction on the structure of M.
e Let M € V\ {c}, then F = @ and ®)"(M, @) = {M} = {°(M)} C

5 (M, ).

e Let M = A\z.N and F' = {C | \z.C € F} C R4
—If 0 € F then ®)"(M,F) = {\a.N' | N' € ®)"(N,F} =
{P\z.N") | N € ®J"(N, F')} C ®57(M, F).

— Else ®)"(M,F) = {X\z.N'[z := c(cx)] | N' € ®1(N,F')} =
{2 N'[z := c(cz)]) | N' € ®P(N, F')} C ®P1(M, F).

e Let M = NP, F, ={C|CPeF}CRY and F, = {C | NC €
F} C R

— If O € F then ®)"(M,F) = {N'P' | N' € ®)"(N,F,) AP’ €
O (P, F2)} = {(N'P') | N' € ®¢"(N, F1) AP’ € ®" (P, F2)}.
By IH, ®J"(P, F,) C ®P7(P, F,), so by definition, ®5"(M, F) C
O (M, F).

— Else ®)"(M,F) = {cN'P' | N’ € ®°1(N, F1)AP' € ®"(P, F»)}
= {P(cN'P") | N' € ®°1(N,F,) A P' € ®J"(P,F,)}. By
IH, ®%1(P,F,) € ®°1(P,F,), so by definition, ®5"(M,F) C
(M, F).

(b) By induction on the structure of M.
o Let M € V\ {c}, then F = @, ®"(M,F) = {c"(M) | n > 0} and
VYN € ®°1(M, F), FV (M) = {M} = FV(N) \ {c}
o Let M = \e.N and F/ = {C | \z.C € F} C R

— If O € F then
(M, F) = {¢"(Az.N') | n > 0AN' € ®(N,F)}. Let
P € ®(M,F), so 3n > 0 and N’ € ®J"(N,F’) such that
P = c¢"(Az.N'). By (BC), x # ¢. Hence, FV(M) = FV(N)\
{z} =11 FV(N')\ {c,a} = FV(P)\ {c}.

— Else ®°"(M,F) = {c"(Ax.N'[z = c(cz)]) | n > OAN' €
®O1(N, F)}. Let P € ®"(M,F), so In > 0 and IN’' €
®(N,F') such that, P = ¢"(A\z.N'[z := c(cz)]). By (BC),
x # c. Hence, FV(M) = FV(N)\ {2} =2 FV(N")\ {c,x} =

V(P)\{c}.
o Let M = MMy, F = {C | CM, € F} C R} and
Fo={C| M\C € F} CRY

61



— If O € F then, ®°"1(M, F) =
{c"(N'P") | n. > 0AN' € &My, Fi) AP € ®1(My, F»)}.
Let P € ®(M,F), so In > 0, N’ € ®J"(M,,F;) and P’ €
®1(My, F) such that P = c*(N'P').

Hence, FV (M) = FV(M,) U FV (M) =1a (FV(N')\ {¢}) U

(EV(P)\A{e}) = (FV(N) U FV(P)\ {c} = FV(P)\ {c}.

— Else ®°"(M,F) = {c"(cN'P') | n > 0A N’ € ®°"(My, Fy) A
P € My, F)}. Let P € ®P(M,F), so In > 0, N’ €
O (M, Fy) and P’ € ®°7(May, F) such that P = c*(cN'P’).
Hence, FV (M) = FV(M)UFV (M) =8 (FV(N)UFV (P"))\
{c} = FV(P)\ {c}.

(¢) By induction on the structure of M.
o If M € V\ {c} then ®°"(M,F) = {¢"(M)|n > 0}. Use lemma 6.2.
e Let M = \z.N and F' = {C | \x.C € F} C R

— If 0 € F, then N = Px such that z ¢ FV(P) and (M, F) =
{"M\e.N") | n>0AN € ®"(N,F')}. Let F” = {C | Cz €
F'y SR
« If 0 e F' then, ®)"(N,F') = {P'z | P' € ®J"(P,F")}. Let

M' € ®(M,F), so M' = c*(Ax.P'z) where n > 0 and
P’ € ®"(P,F"). By (BC), z # ¢. Since z ¢ FV(P), by
lemmas 6.3.1b and 6.3.1a, z ¢ P’. By IH and lemma 6.3.1a,
P',P'z € An.. By lemma 2.4, P’ # c¢. Hence, by (R1).4,
Ax.P'x € An.. We conclude using lemma 6.2.

« Else ®J"(N,F') = {cP'z | P' € ®1(P,F")}. Let M’ €
®O(M,F), so M' = c"(Az.cP'x) where n > 0 and P’ €
®(P,F"). By (BC),  # c. Since z ¢ FV(P), by lem-
mas 6.3.1b, x € FV(P'), so x & FV(cP’).

By IH and lemma 6.3.1a, cP’x € An.. Since cP’ # ¢, by
(R1).4, Az.cP'z € An.. We conclude using lemma 6.2.

— Else ®°71(M,F) = {c"(MAz.N'[z = c(cz)]) | n > 0OAN' €
®(N,F)}. Let N' € ®1(N,F’') and n > 0. Since by IH
N' € Ane, by lemma 6.2 and (R1).3, ¢"(Az.N'[z := ¢(cz)]) €
Ane.

e Let M = NP, F, ={C | CPeF}CRY and F, = {C | NC €
F} CRY.

— IO € F then ®7(M, F) =
{¢"(N'P") | n > 0AN' € @ (N, F) AP € ®1(P,Fy)}. Let
P = ¢"(N'P') € ®7(M, F) such that n > 0, N’ € ®"(N, Fy)
and P’ € (P, F,). By IH and lemma 6.3.1a, N', P' € An..
Since N is an A-abstraction then N’ too. Hence, by (R3), N'P’ €
Ane. By lemma 6.2, ¢"(N'P’) € An..

— Else ®°"1(M, F) = {c"(cN'P') | n > 0AN' € ®°"1(N, F;) AP €
®O1(P, Fp)}. Let c*(cN'P') € ®"(M, F) such that n > 0, N’ €
®(N,Fy) and P' € (P, F,). By IH, N’, P’ € An.. Hence
by (R2), cN'P’ € An. and by lemma 6.2, ¢"(cN'P’) € An_.

(d) We prove this lemma by case on the belonging of O in F. Let F' =
{C|CxeF}yCR.

o If 0 € F then ®)"(Nz,F) = {N'z | N’ € ®)"(N,F')}. Hence,
P = N’z such that N’ € ®."(N,F'). By (BC), # # ¢. Since
x & FV(N), by lemmas 6.3.1b and 6.3.1a, x ¢ FV(N'). So \x.P =
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Az.N'z € RP1. Since Az.N'z € RP7, by lemma 2.5, R} , = {00} U
{X\2.C | C e RYY.

e Else ®)"(Nz, F) = {¢N'z | N’ € ®"(N,F')} and P = ¢N'z such
that N’ € ®7(N,F"). By (BC), x # c. Since z ¢ FV(N), by
lemmas 6.3.1b, x € FV(N') and so x ¢ FV(cN'). Since Az.cN'z €
RP1, by lemma 2.5, RY! , = {0} U{\a.C | C € R}

(e) Let Fy = {C | Cx € F} C R and Fo = {C | NC € F} C REn =25 g,
We prove this lemma by case on the belonging of [1 in F.

o If 0 € F then ®%"(Nz, F) = {¢*(N'Q) | n > 0AN' € & (N, F) A
Q € ®(x,7)}. So Pz = ¢"(N'Q) such that n > 0, N’ €
O (N,Fy) and Q € ®%(x,F3). Son =0, N' = P and Q = x.
Since z € ®y"(z, @), Px € ®y"(Nz, F).

e Else ®%(Nz, F) = {¢"(¢N'Q) | n > 0AN' € ®U(N, F)) AQ €
O (x, Fy)}. So Pz = ¢"(¢N'Q) such that n > 0, N’ € (N, Fy)
and Q € ®(z,F,). Son =0, cN' = P and Q = x. Since
x € ®)"(z,9), Px € ®y" (N, F).

(f) Easy by case on the structure of M and induction on n.
(g) By induction on the structure of M.

e Let M € V\ {c}. Then ®°"(M,F) = {c"(M) | n >0} and F = @.
Now, use lemma 2.15.

e Let M = Az.N and F/ = {C | \x.C € F} C R

— If O € F then ®°"(M,F) =
{"M\e.N) | n > 0AN € &N, F)}. Let ¢*(A\x.N') €
@O (M, F) where n > 0 and N’ € ®"(N, F).
Then, |¢"(Az.N")|¢ =215 |A\z.N'|¢ = \z.|N'|¢ =TH:1a \p N.

— Else ®%"(M,F) = {c"(Ax.N'[z = c(cx)]) | »n > OAN' €
®(N,F)}. Let ¢"(A\w.N'[x := c(cx)]) € ®P"(M, F) where n >
0 and N’ € ®°(N,F'). Then, |c"(A\z.N'[z = c(cx)])|¢ =*15
JAx.N'[z := c(cx)]|® = A\o.|N'[z = c(cz)]|¢ =218 Ao |N'|¢ =IH
Az.N.

o Let M = M M,, Fy = {C | CM, € F} C R} and
Fo={C| M\C € F}CRy.

— If O then ®P7(M, F) = {¢"(N'P') | n > OAN’ € ®5"(My, F1) A
P' € ®91(My, Fy)}. Let c*(N'P') € ®P"(M,F) where n >
0, N € ®"(M;,F,) and P' € ®°1(My, Fy). Since M, is
a A-abstraction, N’ too. Then, |c"(N'P")|¢ =215 |[N'P'|c =
|N/|C‘P/|C —IH,la M1M2.

— Else ®°"(M, F) = {c"(cP\Py) | n > OAP, € &1 (M, F1) APy €
OO ( My, Fo)}. Let c*(cPP,y) € ®F"(M,F) where n > 0, P €
(I)BTI(Mh]:l) and P, € (I)Bn(Mg,fz). Then ‘Cn(CP1P2)|C =215
|CP1P2|C = |CP1|C|P)2|C = |P1‘C|P2|C ZIH MlMQ.

(h) We prove the statement by induction on M.

e Let M € V\ {c}. Then ®°"(M,F) = {¢"(z) | n > 0} and F = @.
If P € ®77(M, F) then R} =2 @. Hence, F = [R}|¢.

e Let M = Az.N and F/ = {C | A\z.C € F} C R4

— If 0 € F then M = A\v.Px where x ¢ FV(P) and ®°"(M, F) =
{¢"A\e.N') | n > 0AN' € &N, F)}. Let ¢*(\z.N') €
OO (M, F) where n > 0 and N € ®F(N, F'). [RT . v lé =
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{lclg | C € ch(m iyt =0 HICE | O e RET G} =1 {0} U
{Az.Cle | € € R = {Oyu{ra.C | C € |[RIeY =1H
{yu{\zC|Ce F'}=26F.

— Else ®°"(M, F) =
{c"(\x.Plz := c(cx)]) | n > 0A P € ®(N, F)}.
Let c"(\z.Plz = c(cz)]) € ®°"(M,F) where n > 0 and P €
(N, F').

B c _ c B —
|Rc:]()\x Plz: —c(ca,))|c - {|C|C | ¢ e ,R’cg()\w Plz: —c(cac))} =295
{|O|C | Ce R)\a: Plz:=c(cz) ]} =293 {|>\SE C|C | Ce RP[z i=c( cm)]}

=294 {\o.Clz = c(ea)]le | C € RY} =21 {\aC | C €
R}
= {\2.C| C e F'} =26 F.
o Let M = MMy, Fy = {C | CMz € F} C R} and
Fp={C | M,C € F} CRy.
— If 0 € F then
(M, F) = {¢"(NP) | n > OAN € ®"(My,F}) AP €
O (M, Fp)}. Let ¢*(NP) € ®°"(M,F) where n > 0, N €
<I>ﬁ (My,F1) and P € @5"(M27]:2) Since M, is a A-abstraction,
N too. By lemma 2.5, |Rc"(NP)|C ={|Cg|C e an(NP)} =295
{1C1s | € € RYfp) = (D} U(ICPI; | C € RY) U(INC: | € <
Ry} = {D}U{CIP\ | C € IRYIU{INIC | C € [R|e) =
{Oyu{C|P|c | C € FAyU{IN|C | C € F} =19 {D} U
{CMQ | Ce .71} U {MlC | Ce fz} =26 F
— Else ®"(M,F) = {c"(cP\P) | n > 0A P, € (M, Fy) A
Py € 3P1(My, Fy)}. Let c*(cPyPy) € ®F1(M,F) where n >
0, P € ®(M;,Fy) and P, € <I>5’7(M2 F3). By lemma 2.5,
|R§7(CP1P2 ‘C {|C|C ‘ C e ch CPIPZ)} =295 {|C|c | C e
cP1P2} = {|CCP2|C | C € Rﬁn} U {|CP10|C | C € Rzﬁjz} =
{CP:|°| C € IREIEIU{IPLI°C | C € [RE|e} =" {C|P|* | C €
FiyU{IN|°C | C € Fo} =19 {CMy | C € FL} U{M,C | C €
Fo} =26 F.
2. (a) By induction on the construction of M.
o Let M € V\ {c}. So [M[* = M, [R{]|¢ = @ = R}). and M €
OO (M|, |RYI1E) = ®P1(M, @) = {c*(M) | n > 0}.
e Let M = \x.N[z := c(caj)] where N € Ane. |M|C = )\x |N|C
Rple = {ICle | C € RAPY =293 Dl Cle [ € € R eyt =2
Oz |Clx = e(cx)]|s | C € RB"} —2.19 {Ax ICls | C e RYY =
{Az.C|C e |7zﬁ’7|c} M A\2.C | C e RN} =*" {aC | Ce
_ pbBn
R|N[:c::c(cm)]|c} g RAxJN[x::c(cr)]\c - R\)\a:.N[:E::c(c:r)HC'
Since |[R471G = {M\a.|Clz == c(ea)]s | C € REMY, O & |RAT)S and
R = {C | \.C € [RY]|e}. By definition, ®71(|M|°, |RI7|G) =
{¢"Az.N'[z == c(cx)]) | n > 0 A N' € ®P1(|N|°|RS)}. By IH,
N € @71(|N|¢, [RR[E), so M € @1(|M|°, |R1S).

e Let M = Az.Nz where Nz € An., N # c and =z ¢ FV(N). By
lemma 2.4, N € An. and by lemma 2.21, = ¢ FV(|N|). |M|C =
Ar.|Nz|¢ = A\x.|N|°x. Since M,|M|¢ € RP", by lemma 2.5, R
(DU {\e.C | CeRYY, so \Rﬂﬂc_{m}u{mc | C e |RY \C}
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CHADYU{A.C | C € R} = R So [RRL[E = {C | \e.C €
IR¥11e}. By definition, ®%7(|M|e,|R7S) = {¢*(Ae.N") | n > 0 A
N € ®"(|Nz|*, [RJLIE)}. By TH, Nz € ®01(|Nz|*, [RR[6), so
by lemma 6.3.1e, Nz € ®57(|Nz|?7, R |S).

Hence M € ®%7(|M|,|R5T|S).

e Let M = ¢cNP where N, P € An,, so cN € An.. |M|° = |cN|¢|P|¢ =
IN[°|P|°. Since M ¢ RP7, By lemma 2.5, RYT = {¢CP | C € RY'}U
{cNC | C € RE"}. So [Ryle = {CIP|°| C € [RYe}AIN|C | C €
[REe} ST ACIPl® | C € R}LYULINISC | C € RIf} <P
Riphje. Since RG] = {C|P|* | C € [RYM|e} U{IN|C | C € [RYE},
O ¢ [Rfle and [RRY'[e = {C | C|P|° € [Ry7le} and [RPe =
{C|IN]<C € [R{]Ie}-

By definition, ®%7(|M|¢,|R77S) = {¢"(ecN'P') | n > OAN' €
SN, |RRTIE) A P € ®O1(|P|°, [RE|E)}.

By IH, N € ®%1(IN|?",[R{|¢) and P e &71(|P|*",|R7[S), so
M € (M, R 6).

e Let M = NP where N,P € An. and N is a A-abstraction. So
|N|¢ is a A-abstraction too. |M|¢ = |[N|¢|P|¢. Since M € R", By
lemma 2.5, R77 = {0} U{CP | C e RIYU{NC | C € RF". So
Ry le = {0y U{CIPI* | C € [RYIe} U{INIC | C € |Rp"je} '
{O}U{CIPI* | C € R U{INIC | C € R} =2 R
Since R = {0} U{C|P|° | C € [RR|e} U{IN|°C | C € [REe},
[Ryle = {C | CIPI° € [RyfIe} and [RP'e = {C | IN|°C €
RS}, By definition, ®77(|M|°,|RI1|S) = {¢*(N'P') | n > 0 A
N’ € ®P(IN|, [RAE) A P’ € @Pn(|PIe, [RE|E)}.

By IH, N € ®%1(|N|¢,|R51|S) and P e ®1(|P|<, |[RES), so M €
(| M, [RAF1E)-

e Let M = ¢N where N € An.. |M|° = |N|°. By lemma 2.5, R’?V? =
{cC | C € R} so [Rofle = [RAIe €™ RV = R} By IH,
N € (N, |[R3Ie) = ®PF1(|MIc,|RIIS), so by lemma 6.3.1f,
M € ®9(|M|°, |R716).

(b) By lemma 2.21, ¢ ¢ FV(IM[°). By lemma 6.3.2a, [R57| C Rlﬁj\%c
and M € ®°n(|M|°, |R§\}}7|é) To prove unicity, assume that (N/, F') is
another such pair. So F/ C R and M € ®°1(N’, F'). By lemma 6.3.1g,
|M|¢ = N’ and by lemma 6.3.1h, F/ = [R77|s. O

Lemma 6.4. Let Ny € ®°7(M, F). By lemma 6.3.1c, N; € An.. By lemma 6.3.1h
and lemma 2.17, there exists a unique Cj € RJB\Z, such that |C1]& = C. By def-

inition 3R; € RP" such that N; = Ci[Ry]. By lemma 6.3.1g, |C1[R1]|° = M.

By lemma 2.25, |Ci[Ry]|° |C—1>|cgn |C1[Ri]|¢ such that R} is the contractum of

C c C C 3
Ri. So M 54, |Ci[R}]|¢, then M’ = |Ci[R}]|¢. Let F' = \Rg’l’[R,lﬂc. Since,

Ny = C1[Ry] B4, C1[R}], by lemma 2.12 and lemma 6.3.1c, C1[R}] € An,. By
lemma 6.3.2a, C1[R}] € ®"(M', F') and F' C R, By lemma 6.3.2b, if there
exists a such F’, it is unique.

Let Ny € ®%(M,F). By lemma 6.3.1c, N; € An.. By lemma 6.3.1h and
lemma 2.17, there exists a unique Cy € R]BVZ, such that |Csl¢ = C. By defi-
nition 3Ry € RP" such that Ny, = C3[Rz2]. By lemma 6.3.1g, |Ca[R2]|¢ = M.
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By lemma 2.25, |C2[Rs]|¢ IC_z)Iéﬁn |C2[RS]|¢ such that Rj is the contractum of

Ry. So M S, |CalR)I°, then M’ = [Co[Ry)[C. Let F' = [REq[6. Since,
Ny = C3[Rs] %Bn Cs2[R5], by lemma 2.12 and lemma 6.3.1c, Co[R)] € An.. By
lemma 6.3.2a, Co[Ry] € ®°7(M', F"') and F" C R71.

As Ny, Ny € ®"(M, F), by lemma 6.3.1h, \Rﬁmg = |RJ€Z‘E and by lemma 6.3.1g,l
|N1|¢ = | Ny|°. Finally, by lemma 2.28, F = |Rg’jm,1]|g = |R§Z[R,2}|g = F. O

Lemma 6.7. Note that ®°7(M, F) # @. Then, it is sufficient to prove:

o (M.F) =54 (M. F)) = YN € 99(M, F),3N' € &M’ F/).N —, N’
by induction on the reduction (M, F) —73, 4 (M', F').
— If (M, F) = (M',F') then it is done.
— Let (M, F) —ppa (M", F") =%, (M, F).
By IH, YN" € ®81(M", F"), N € <I>f3"(M’ F') such that N —5, N”.
By definition 6.6, 3C' € F such that M _)ﬂn M" and F” is the set of
Bn-residuals in M" relative to C. By definition 6.5 we obtain VN €
OP1(M, F),AN" € P(M", F"), N — 4, N".
e IN € ®(M,F),IN' € BINM,F),N —% N = (M,F) %, (M, F)
by induction on the reduction N —j, =N’ such that N € ®°"(M,F) and
N’ € (M’ F").
— If N = N’ then by lemma 6.3.2b, M = M’ and F = F.
— Let N —g, N” —%n N’. By lemma 6.3.1c, N € An,, so by lemma 2.12,
N" € An.. By lemma 6.3.2b, (|N"|¢, |RN,,|C) is the one and only pair
such that ¢ & FV(|N"[°), |R§3V’Z,\c C R and N € &1(N"|°, |RAL|6) ]
So by TH, (IN"|°,|RAMIS) —%5,q (M',F). Let N S5, N”, such that
Ce R]B\,”. By lemmas 2.26 and lemma 6.3.1g, |N|¢ = IC\c \N”|C So
|Cg € Rﬁ}] By definition 6.5, there exists a unique .7-"’ C R \nr|er such
that VP € ®71(M, F), 3P’ € ®1(|N”|°, F/) and 3C’" € RS such that
P gﬁn P’ and |C'|G = |C|. F' is called the set of fn-residuals of F
in |[N”|¢ relative to |C|§. Since N € ®°1(M,F), IP' € ®P1(|N"|°, F')
and 3C’ € RY" such that N gﬁn P’ and |C'| = |C|;. By lemma 2.17,
C C', so P' = N". Since N” € ®°"(|N"|¢, F"), by lemma 6.3.2b,
|’RN,,|C. Finally, by definition 6.6, (M,F) —gna (JN"|°, ‘RN”|C)
O
Lemma 6.8. By lemma 6.3.1c, ®°"(M, Fy), @1 (M, Fy) € An.. VN, € &1 (M, F)
and YN, € ®%7(M, F5), by lemma 6.3. 1g, |N1|¢ = | N2|¢ and by
lemma 6.3.1h, |73’677 6 =F1 CFy= |7'\’,NZ|C
If (M,F1) —gna (M',F}) then by lemma 6.7, IN; € ®77(M,F;) and IN| €

®P(M', F{) such that Ny —g, Ni. Let N Q%ﬁn Nj such that C; € R]ﬁ\g Let
C'o = |C1]§, so by lemma 6.3.1h, Cy € F;. By lemma 2.26 and lemma 6.3.1g,
M Hﬁn M’.

By lemma 6.4 there exists a unique set F' C R47, such that VP, € ®77(M, F),
3P} € ®O(M', F') and IC" € RE such that Py S, Pl and [C7]5 = Cy
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Since, Ny € ®9(M, F), 3P| € ®P1(M’, F') and 3¢’ € R such that Ny S,
P{ and |C'|§ = Cy. Since C',C} € Rjﬁvz, by lemma 2.17, C' = C;. So, P{ = N;. By
lemma 6.3.1h, F' = |R§Z & = Fi.

By lemma 6.4 there exists a unique set 75 C Rﬁ], such that VP, € ®°"(M, F,),
3Py € ®P(M’, F4) and 3Cs € R}B,Z such that P, _5@77 P} and |Cs|é = Cp.

Since ®°"(M, F,) # @, let Ny € ®1(M,F,). So, AN, € ®P1(M', F}) and
05 € RY! such that Ny 3, Ng and [Colg = Co. By lemma 6.3.1h, 73 = [RR1[¢.

Hence, by lemma 2.28, F{ C F3 and by lemma 6.7, (M, F2) —gya (M’,fQ). O

Lemma 6.9. 16 M 25,4 My and M 22,4 Mo, then 37/, FY/ such that (M, F1) —7, J]
(M, F{') and (M, F) —%, 4 (Mz, F4). By lemma 6.8, 37{" C R} and 37} C
RA47, such that (M, FyUF,) —%, , (M1, FYUFY") and (M, F1UF2) —%, 4 (Mo, F5'U
F4"). By lemma 6.7 there exist T, Ty, T> € An. such that

T € &M, Fy), T € & (M, F' UF!"), Ty € O (M, Fy U Fy')

and T —j5, Th and T' —5, To. Since by lemma 6.3.1c, T' € An. and by lemma 5.13.2,

T is typable in the type system D, so T € CRﬁ’7 by corollary 5.12.  So, by
lemma 2.12.1, there exists T3 € An,, such that T} — T3 and T5 H T3 Let F5 =

|R’6"|c and M3 = |T3|°", then by lemma 6.3.2a, _7-'3, R%’S and T € @Bn(M&]:g)'
Hence, by lemma 6.7, (My,F/ UF") — %nd (Ms, F3) and (Ma, FY U FY) —%

Bnd
f//U]_—N/ fHU]_—/N
(Mg,}—g) i.e. M1 —  Bnd M3 and Mz 25 Bnd M3 O

Lemma 6.11. Note that @ C R?}] We prove this statement by induction on the
structure of M.

e Let M € V then ®°"(M,2) = {c"(M) | n > 0} and ch(M) = &, where
n > 0, by lemma 2.5 and lemma 2.9.5.

e Let M = A\z.N then ®7"(M,2) = {c"(A\x.Q[z := c(cz)]) | n > 0AQ €
®O(N,2)}. Let P € ®"(M, @), then P = ¢"(\z.Q[z := c(cx)]) such that
n >0 and Q € ®°"(N, @) By IH, R’g’ = ¢ and by lemma 2.9.4, lemma 2.9.3
and lemma 2.9.5, R’IBD" =g

e Let M = MM then (I)ﬂ”](M7@) = {Cn(CQlQQ) ‘ n>0ANQ € (I)ﬁﬂ(Ml’@) AN
Q2 € ®°1(My,2)}. Let P € ®°"(M, ), then P = ¢"(cQ1Q2) such that
n >0, Q1€ ®(M;, @) and Qy € ©9(My, @). By IH, R = R = & and
by lemma 2.5 and lemma 2.9.5, Rf—," =a. O

Lemma 6.12. We prove the statement by induction on the structure of M.

e let M €V, then ®°"(M, @) = {c"(M) | n > 0}. Let P € ®%"(M,2) and
Q € ®P"(N, D), then P = c¢"(M) where n > 0.

— Either M = z, then Plz := Q] = ¢"(Q) and by lemma 6.3.1f and
lemma 6.11, R ) = 2.

— Or M # z, then Plz := Q] = P and by lemma 6.11, RY = @.

e Let M = \y.M’ then ®°"(M,2) = {c"(\y.P'ly := c(cy)]) | n > 0AP' €
OP(M', @)}. Let P € ®°"(M, o) and Q € ®°"(N, @), then P = " (\y.P'[y =l
c(cy)]) where n > 0 and P’ € ®°"(M’, @).

ﬁn _ B —
S0, Rileq) = Rilnyrris=al=eteny: BY 1 Ryl g = @ and by
lemma 2 9 4, lemma 2.9.3 and lemma 2.9.5, Rp[w —q = 9
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e Let M = M; M, then ®°"(M, ) = {c"(cPiP,) | n > 0 A P, € ®1(My, @) A
Py € ®(My,2)}. Let P € ®"(M,2) and Q € ®°"(N,2) then P =
c"(cP,Py) where n >0, P, € ®°"(M,, @) and P € ®°7(My, @).

Bn _ pbn Bn _ pbn _
SO’ 7e’P[w::Q] - 7e’c"‘(cPl [z:=Q] P2 [z:=Q)])" By IH’ RPl [z:=Q] — RPz[x::Q] = & and
by lemma 2.5 and lemma 2.9.5, R[;T[]x::cg] =0. 0

Lemma 6.13. We prove the statement by induction on the structure of M.
e Let M €V then nothing to prove since by lemma 2.5, R%’ =0.
e Let M = Az.N.

— If M € RP" then N = Ny such that = ¢ FV(Ny) and by lemma 2.5,
RIT={0O}U{\z.C | C € RY'}. Let C € Ry then:

% Either C = O, then ®°7"(M,{C}) = {¢"(Mz.P") | n > 0OAP' €
DN, @)}. Let P € ®1(M,{C}) then P = ¢"(Az.P') such that
n>0and P’ € ®)"(N, o). So P! = cPjx such that P} € ®°1(Ny, @) ]|
By lemma 6.11, Rfﬂ = @, so if P —g, Q then Q = ¢"T'P}. By
lemma 6.11, R/;g = @ and by lemma 2.9.5, R} = &.

% Or C = Az.C” such that €' € R so ®°1(M,{C}) =
{e"(A\z.P'[x = c(cx)]) | n > OA P € ®(N,{C'})}. Let P €
®°(M,{C}) then P = c"(A\z.P'[x := c(cz)]) such that n > 0 and
P’ € ®°(N,{C"}). By lemma 2.9.4, lemma 2.9.3 and lemma 2.9.5,
if P —p, Q then Q = ¢"(Az.Q’'[x := c(cx)]) such that P’ —g, Q'
By IH, R{) = @, so by lemma 2.9.4, lemma 2.9.3 and lemma 2.9.5,

Bn _
Rg =@.

— Else, by lemma 2.5, R = {M\z.C | C € R} Let C € R then
C = M\&.C’ such that C' € R ®1(M,{C}) = {"(\e.P'lx =
c(cx)]) | n > 0A P € ®(N,{C'})}. Let P € ®°(M,{C}) then
P = ¢"(A\x.P'[z := c(cx)]) such that n > 0 and P’ € ®P7(N,{C'}).
By lemma 2.9.4, lemma 2.9.3 and lemma 2.9.5, if P —g3, @ then @ =
"(Az.Q'[z := c(cz)]) such that P’ —g, Q'. By IH, R’g7 = o, so by
lemma 2.9.4, lemma 2.9.3 and lemma 2.9.5, Rgﬂ = 0.

o Let M = MlMQ.

— Let M € RP7, then M; = Az.My and by lemma 2.5, R4 = {00} U
{CMy | C € Ry JU{MIC | C € RYLY. Let C € RS} then:

* Either C = O then ®°"(M,{C}) = {¢(P1P2) | n > 0A P, €
ST (My, @) A Py € ®°1(Msy, @)}. Let P € ®°1(M,{C}) then P =
¢"(PyPy) such that n > 0, P, € ®."(M;,2) and P, € ®71(Ms,, @).
By lemma 6.11 and lemma 6.3.1a, R?fl’ = R?DZ = @. Since P; €
SN (My, @), Py = Ax.Py[z := c(cz)] such that Py € ®°1(My, ).
So, if P —3, @, then Q = ¢"(Py[z := c¢(cP)]). By lemma 6.12 and
lemma 2.9.5, Ry = 2.

* Or C' = C'Mj such that C’ € R%’l. So, (M, {C}) = {c"(cP P,) |

n>0AP € ®91( My, {C'}) A Py € O (Mo, 3)}.
Let P € ®(M,{C}) then P = ¢"(cP,P;) such that n > 0, P, €
O1(My,{C"}) and P, € ®7(M,, @). By lemma 6.11, R} = . So,
it P —p, Q then Q = ¢"(cP{P;) and Py —p, P{. By IH, R} = &
and by lemma 2.5 and lemma 2.9.5, R?" = &.
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+ Or C'= M;C" such that " € Ry].. So, ®1(M,{C}) = {¢"(cP,P3) |
n>0AP, € (M, @) APy € &1 (M, {C'})}.
Let P € ®%(M,{C}) then P = ¢"(cP, ) such that n > 0, P, €
©(My, @) and Py € ®77(M,, {C'}). By lemma 6.11, R} = . So,
if P =gy Q then Q = ¢"(cP1P3) and P> —p, Py, By TH, R} = &
and by lemma 2.5 and lemma 2.9.5, Rg” =g.

— Let M ¢ RP", then by lemma 2.5, R’gj = {CM, | C € R?Z} U
{MC| CeRYLY.
* Or C' = C' My such that C' € RIJé\Z' So, ®91(M, {C}) = {c"(cPP,) |
n>0AP € ‘I)ﬁn(Mh{C/}) NPy e (I)BW(MQ,Q)}.
Let P € ®%(M,{C}) then P = ¢"(cP1P) such that n > 0, P, €
@1 (M;,{C"}) and P, € ®77(M,, @). By lemma 6.11, R} = . So,
if P =g, Q then Q = ¢"(cP{P;) and Py —p, P{. By TH, R} = &
and by lemma 2.5 and lemma 2.9.5, R’g" = Q.
* Or C = M,C" such that C’ € Ré\a/z. So, (M, {C}) = {c"(cP P,) |
n>0AP € ®P1( My, @) A\ Py € ®91(My, {C'})}.
Let P € ®(M,{C}) then P = ¢"(cP,P;) such that n > 0, P, €
O (My, @) and Py € ®77(My, {C'}). By lemma 6.11, R} = . So,
it P —p, Q then Q = ¢"(cPyP3) and P —p, P5. By IH, R} = @
and by lemma 2.5 and lemma 2.9.5, Rg" =g.

O

LemmA 6.14. By lemma 6.4, there exists a unique set F’' C Rg}},, such that VN €
®(M,{C}),3IN" € ®P"(M',F'),N —p5, N'. Let N € ®"(M,{C}) and N’ €
®P1(M’, F') such that N —4, N’. By lemma 6.13, R3! = @, So [R31|¢ = @ and
by lemma 6.3.1h, 7/ = @. Finally, by lemma 6.7, (M,{C}) —gna (M', D). O

Lemma 6.15. It is obvious that —>’{§—>Zn. We only prove that —>En§—>f. Let
M, M’ € A such that M —h M’'. We prove this claim by induction on M =B M.

e Let M = M’ then it is done since (M, F) —p,; (M, F).

o Let M —% M" —3, M'. By IH, M —; M". It M = C[R] —, C[R'] = M’
such that R’ is the contractum of R then by lemma 6.14, (M",{r}) —ana
(M', @), so M" —; M'. Hence M —5 M" —; M’. O

Lemma 6.16. Let My, M, € A such that M —>;n My, and M —>2§n Ms. Then by
lemma 6.15, M —7 M; and M —7] M. We prove the statement by induction on
M —7% M.

o Let M = M;. Hence M; —7] My and My —7 M.

o Let M —7 M{ —1 My. By IH, 3M;, M{ —7 M3 and My —7 Mj;. We prove
that IMs3, My —7 M3 and M4 —; Ms, by induction on M| —; Mj.

— let M{ = Mé, hence Mé —1 M1 and M1 —>T Ml.

— Let M{ —7 MY —1 M. By IH, 3MY' My —F M}’ and MY —y MY'.
By lemma 2.2.1, ¢ ¢ FVMY. Since M} —; M} and M§ —1 Mj’, By
lemma, 69, E|M3,Mé —1 M3 and Mé” —1 Ms.

O
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