LOGLC IO“ AL

the S 1 |
I D>

Volume 9 Number 3 May 2001

Editor-in-Chief:
DOV M. GABBAY

Executive Editors:

RUY de QUEIROZ
and)
HANS JURGEN OHLBACH

Editorial Board:

Jon Barwise (deceased)
Wilfrid Hodges

Hans Kamp

Robert Kowalski
Grigori Mints

Ewa Orlowska

. . OXFORD
Amir Pnueli
Vaughan Pratt UNIVERSITY
Saharon Shelah PRESS

Johan van Benthem ISSN 1367-0751

354

Subscription Information

Volume 9, 2001 (bimonthly) Full: Europe pounds sterling 275; Rest of World US$
450. Personal: pounds sterling 138 (US$ 225). Please note that personal rates apply
only when copies are sent to a private address and payment is made by a personal
cheque or credit card.

Order information

Subscriptions can be accepted for complete volumes only. Prices include air-speeded
delivery to Australia, Canada, India, Japan, New Zealand, and the USA. Delivery
elsewhere is by surface post. Payment is required with all orders and may be made
in the following ways:

Cheque (made payable to Oxford University Press)

National Girobank (account 500 1056)

Credit card (Access, Visa, American Express, Diners Club)

UNESCO Coupons

Bankers: Barclays Bank plc, PO Box 333, Oxford, UK. Code 20-65-18, Account

00715654.
Requests for sample copies, subscription enquiries, orders and changes of address
should be sent to the Journals Subscriptions Department, Oxford University Press,
Great Clarendon Street, Oxford OX2 6DP, UK. Tel: 01865 267907. Fax: 01865
267485.

Advertisements

Advertising enquiries should be addressed to Peter Carpenter, PRC Associates, The
Annexe, Fitznells Manor, Chessington Road, Ewell Village, Surrey KT17 1TF, UK.
Tel: 0181 786 7376. Fax: 0181 786 7262.

Copyright

©0Oxford University Press 2001. All rights reserved: no part of this publication
may be reproduced, stored in a retrieval system, or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording, or otherwise, without
either the prior written permission of the Publishers, or a licence permitting restricted
copying issued in the UK by the Copyright Licensing Agency Ltd, 90 Tottenham
Court Road, London W1P 9HE, or in the USA by the Copyright Clearance Center,
222 Rosewood Drive, Danvers, MA 01923.

Logic Journal of the IGPL (ISSN 1367-0751) is published bimonthly in January,
March, May, July, September and November by Oxford University Press, Oxford,
UK. Annual subscription price is US$ 450.00. Logic Journal of the IGPL is dis-
tributed by M.A.L.LL. America, 2323 Randolph Avenue, Avenel, NJ 07001. Periodical
postage paid at Rahway, New Jersey, USA and at additional entry points.

US Postmasters: Send address changes to Logic Journal of the IGPL, c/o Mercury
International, 365 Blair Road, Avenel, NJ 07001, USA.

356
Back Issues

The current plus two back volumes are available from Oxford University Press. Pre-
vious volumes can be obtained from Dawsons Back Issues, Cannon House, Park Farm
Road, Folkestone, Kent CT19 5EE, UK. Tel: +44 (0) 1303 203612. Fax: +44 (0)
1303 203617.

Logic Journal of the IGPL

Volume 9, Number 3, May 2001

Contents

Editorial
F. Kamareddine

Original Articles

The rewriting calculus — Part 1
H. Cirstea and C. Kirchner

The rewriting calculus — Part II
H. Cirstea and C. Kirchner

Tableau Reasoning and Programming with Dynamic First
Order Logic)
J. van Eijck, J. Heguiabehere and B. O Nualldin

Theorem Proving in Infinitesimal Geometry
J. D. Fleuriot

A Simple Formalization and Proof for the Mutilated Chess
Board
L. C. Paulson

Please visit the journal’s World Wide Web site at
http://www.jigpal.oupjournals.org

357

359

363

401

435

471

499

Logic Journal of the Interest Group in
Pure and Applied Logics

Editor-in-Chief:

Dov Gabbay

Department of Computer Science
King’s College

Strand

London WC2R 2LS, UK
dg@dcs.kcl.ac.uk

Tel +44 20 7848 2930

Fax +44 20 7240 1071

Executive Editors:

Ruy de Queiroz
Departamento de Informatica
UFPE em Recife

Caixa Postal 7851

Recife, PE 50732-970, Brazil
ruy@di.ufpe.br

Hans Jiirgen Ohlbach

Inst. fiir Informatik
Ludwig-Maximilians-Universitat
éttingenstr. 67

D-80538 Miinchen
ohlbach@informatik.uni-
muenchen.de

Tel +49 2178 2200

Fax 449 2178 2211

Editorial Board:

Jon Barwise (deceased)
Wilfrid Hodges, QMW, UK
Hans Kamp, Stuttgart, Germany
Robert Kowalski, ICSTM, UK
Grigori Mints, Stanford, USA
Ewa Orlowska, Warsaw, Poland
Amir Pnueli, Weizmann, Israel
Vaughan Pratt, Stanford, USA
Saharon Shelah, Jerusalem
Johan van Benthem,

ILLC, Amsterdam

(ii) that you have put the file

Scope of the Journal

The Journal is the official publication of the International In-
terest Group in Pure and Applied Logics (IGPL), which is
sponsored by The European Foundation for Logic, Language
and Information (FoLLI), and currently has a membership of
over a thousand researchers in various aspects of logic (sym-
bolic, computational, mathematical, philosophical, etc.) from
all over the world.

The Journal is published in hardcopy and in electronic form
six times per year. Publication is fully electronic: submission,
refereeing, revising, typesetting, checking proofs, and publish-
ing, all is done via electronic mailing and electronic publishing.

Papers are invited in all areas of pure and applied logic, in-
cluding: pure logical systems, proof theory, model theory, re-
cursion theory, type theory, nonclassical logics, nonmonotonic
logic, numerical and uncertainty reasoning, logic and Al, foun-
dations of logic programming, logic and computation, logic
and language, and logic engineering.

The Journal is an attempt to solve a problem in the logic (in
particular, IGPL) community:

o Long delays and large backlogs in publication of papers in
current journals.
o Very tight time and page number limits on submission.

Papers in the final form should be in IATEX. The review pro-
cess is quick, and is made mainly by other IGPL members.

Submissions

Submissions are made by sending a submission letter to the
e-mail address: jigpl@Qdcs.kcl.ac.uk, giving the title and the
abstract of the paper, and informing:

(i) of how to obtain the file electronically, if you have the .dvi
or .ps file; or

(.dvi, .ps or .tex) in

the public area ftp.dcs.kcl.ac.uk (137.73.8.10), directory,

pub/jigpl/submissions

or, by sending 5 (five) hardcopies of the paper to the Editor-
in-Chief.

URL: http://www.jigpal.oupjournals.org

Editorial

The 20th century gave birth to a computer technology that has dominated our lives.
Such technology may be expensive to build and/or human lives may depend on it.
We have overwhelming evidence from just under a century’s work that the right logic
and the right notion of symbolic manipulation (rewriting) can guarantee the safety
and correctness of this technology saving money, and human lives and efforts. For
this reason, we have seen and will continue to see new different logics and rewriting
systems, extensions of old systems and the study of their theory and applications will
be as thrive as it was in the last century. This is not surprising because the twentieth
century was indeed a century of complexity and this complexity will be carried to this
century. This complexity of information, the increasing interdependency of systems,
the faster and more automatic travel of information, and the disastrous consequences
of failure, lead to the need for establishing Correctness. Moreover, modern tech-
nological systems are just too complicated for humans to reason about unaided, so
automation is needed. Furthermore, because modern systems have so many possible
states, testing is often impractical. It seems that proofs are needed to cover infinitely
many situations. The last century is evidence that formalisms needed to aid in design
and to ensure safety must accommodate some rewriting and automatic search for and
checking of proofs. These ideas were present long before the 20th century. In fact,
Leibniz (1646-1717) conceived of automated deduction, when he wanted to find:

e a language L in which arbitrary concepts could be formulated, and
e a machine to determine the correctness of statements in L.

Such a machine can not work for every statement according to Godel and Turing.
Nevertheless, the need for automation has been overwhelming and its exploration
in both the safe grounds and the dangerous borderlines continues to be challenging.
The relevance of rewriting and automation is witnessed by the number of international
conferences and events devoted to the subject. We cannot mention all these events
and refer to the usual references. This volume however, is a selection of various papers
that were presented at a collection of events on rewriting, automation and theorem
proving that took place in year 2000 and were funded by different sources including;:
the European Union’s ITHP High Level Scientific Conferences support, the European
Educational Forum, the UK Engineering and Physical Research Council EPSRC, the
Royal Society and the Dutch research council NWO. The support of all these sources
is greatly appreciated. These events are as follows:

e Winter Workshop in Logics, Types and Rewriting ’00 on 2 February 2000.
See http://www.cee.hw.ac.uk/ fairouz/inaugural-workshop2000/
e The EEF Foundations School in Deduction and Theorem Proving’00 on 6-16 April
2000.
See http://www.cee.hw.ac.uk/ " fairouz/ukiischool12000/ukiischool.html
e Festival Workshop in Foundations and Computing, FC’00 on 17-18 July 2000.
See http://www.cee.hw.ac.uk/ " fairouz/festival/workshopl/

Due to the succes of the above events, it was decided that a special issue should be
published on the above themes. Some of the lecturers and speakers agreed to write

359

360 Editorial

their material as articles for this volume. Of the submitted articles, five were selected
for this volume.

The article of Cirstea and Kirchner is in two parts and is concerned with a new
calculus called the p-calculus. The characteristic feature of the p-calculus is that it has
an operator — used to build abstractions as in the A-calculus as for instance ¢ — =
for the identity. Abstractions can also contain patterns as in first-order rewriting.
For instance the rewrite rule @ — b is in the p-calculus represented by the abstraction
a — b. The application of an abstraction to an argument is as in the A-calculus, but
now denoted by for instance [x — z](y) for the identity applied to a variable y. If
the pattern of the left-hand side of the abstraction is not present in its argument,
the application is rewritten to), representing failure. For instance [a — b](b) — 0.
If the pattern of the left-hand side is present in the argument, then the application
is rewritten to the set consisting of the corresponding right-hand side. For instance,
we have [z — z](y) — {y} and [a — b](a) — {b}. Also sets consisting of more
elements are used to represent non-determinism.

In the first part, the calculus is introduced and motivated and its syntax and
evaluation rules for any theory are presented. Then, the encoding of the A-calculus
is presented and a discussion of confluence is given. In the second part, conditional
rewriting is encoded and the calculus is extended with a first operator whose purpose
is to detect rule application failure. This extension enables the encoding of strategy
based rewriting processes and is used to give an operational semantics to ELAN which
is an environment for specifying and prototyping deduction systems in a language
based on labelled conditional rules and strategies to control rule application.

The article of Jan van Eijck and Juan Heguiabehere and Breanndéan O Nualldin
presents a tableau system for dynamic first-order logic (DFOL for short), a formalism
originally introduced by Groenendijk and Stokhof to account for certain aspects of
natural language semantics and anaphora. The language presented in this paper
contains explicit substitutions and the choice operator U. The language is further
extended with the finite iteration *-operator (DFOL*). Soundness and completeness
of the tableau method for DFOL and then DFOL* is proved. The authors illustrate
through significant examples the usefulness of DFOL and DFOL* and of the related
tableau method to represent program execution and to derive pre/post conditions in
the style of Hoare logic. They also show the potential benefit of their tableau method
as a tool in computational semantics of natural language.

The article of Jacques Fleuriot, reports the formalisation in the theorem prover
Isabelle of a theory of non-standard geometry based on infinitely small and large reals.
The theory is based on so-called hyperreal vectors which are sequences of real vectors
with two such sequences being equal if they coincide on an element in an ultrafilter
(an abstract way to express that they are equal almost everywhere). The paper uses
the full power of the Isabelle-HOL formalism in order to get a smooth development. It
can be seen as a reference paper on the basis of infinitesimal geometry. As mentioned
by the author, extending usual operations to infinitely small or large objects is very
subtle and can easily be done the wrong way. The fact that the theory is completely
developed in Isabelle-HOL is consequently really useful.

The article of Paulson presents a short and natural mechanisation of the proof of the
mutilated chessboard problem in Isabelle. This exercise is used to demonstrate some
important principles in the manipulation of systems of this kind. Particular emphasis

Editorial 361

is put on the use of inductive definitions. These are of interest both because they allow
the user to give intuitive definitions of e.g. what is a domino and what is a tiling,
and because they inherently capture the essence of the concepts being formalised
(therefore, for example, no erroneous tiling can be generated in the development of a
proof). Moreover, Isabelle’s tactics technology, together with the conciseness offered
by inductive definitions, makes it possible to derive a formalisation that is much
shorter than in similar works based on other provers.

FalROUZ KAMAREDDINE

362

The rewriting calculus — Part I

HORATIU CIRSTEA, LORIA and INRIA, Campus Scientifique,
BP 239, 54506 Vandoeuvre-lées-Nancy, France.
E-mail: Horatiu. Cirstea@loria. fr.

CLAUDE KIRCHNER, LORIA and INRIA, Campus Scientifique,
BP 239, 54,506 Vandoeuvre-les-Nancy, France.
E-mail: Claude. Kirchner@loria.fr.

Abstract

The p-calculus integrates in a uniform and simple setting first-order rewriting, A-calculus and non-
deterministic computations. Its abstraction mechanism is based on the rewrite rule formation and
its main evaluation rule is based on matching modulo a theory 7'.

In this first part, the calculus is motivated and its syntax and evaluation rules for any theory 7" are
presented. In the syntactic case, i.e. when T' is the empty theory, we study its basic properties for
the untyped case. We first show how it uniformly encodes A-calculus as well as first-order rewriting
derivations. Then we provide sufficient conditions for ensuring confluence of the calculus.

Keywords: rewriting, strategy, non-determinism, matching, rewriting-calculus, lambda-calculus, rule

based language.

1 Introduction

1.1 Rewriting, computer science and logic

It is a common claim that rewriting is ubiquitous in computer science and mathe-
matical logic. And indeed the rewriting concept appears from the very theoretical
settings to the very practical implementations. Some extreme examples are the mail
system under Unix that uses rules in order to rewrite mail addresses in canonical
forms (see the /etc/sendmail.cf file in the configuration of the mail system) and
the transition rules describing the behaviors of tree automata. Rewriting is used in
semantics in order to describe the meaning of programming languages [31] as well as
in program transformations like, for example, re-engineering of Cobol programs [54].
It is used in order to compute [12], implicitly or explicitly as in Mathematica [59],
MuPAD [42] or OBJ [22], but also to perform deduction when describing by inference
rules a logic [23], a theorem prover [28] or a constraint solver [29]. It is of course cen-
tral in systems making the notion of rule an explicit and first class object, like expert
systems, programming languages based on equational logic [45], algebraic specifica-
tions (e.g. OBJ [22]), functional programming (e.g. ML [40]) and transition systems
(e.g. Murphi [11]).

It is hopeless to try to be exhaustive and the cases we have just mentioned show
part of the huge diversity of the rewriting concept. When one wants to focus on the
underlying notions, it becomes quickly clear that several technical points should be
settled. For example, what kind of objects are rewritten? Terms, graphs, strings, sets,

L. J. of the IGPL, Vol. 9 No. 3, pp. 363-399 2001 363 @©Oxford University Press

multisets, others? Once we have established this, what is a rewrite rule? What is a
left-hand side, a right-hand side, a condition, a context? And then, what is the effect
of a rule application? This leads immediately to defining more technical concepts
like variables in bound or free situations, substitutions and substitution application,
matching, replacement; all notions being specific to the kind of objects that have to be
rewritten. Once this is solved one has to understand the meaning of the application
of a set of rules on (classes of) objects. And last but not least, depending on the
intended use of rewriting, one would like to define an induced relation, or a logic, or
a calculus.

In this very general picture, we introduce a calculus whose main design concept
is to make all the basic ingredients of rewriting explicit objects, in particular the
notions of rule application and result. We concentrate on term rewriting, we introduce
a very general notion of rewrite rule and we make the rule application and result
explicit concepts. These are the basic ingredients of the rewriting- or p-calculus whose
originality comes from the fact that terms, rules, rule application and therefore rule
application strategies are all treated at the object level.

1.2 How does the rewriting calculus work?

In p-calculus we can explicitly represent the application of a rewrite rule, as for
example 2 — s(s(0)), to a term, e.g. the constant 2, as the object [2 — s(s(0))](2)
which evaluates to the singleton {s(s(0))}. This means that the rule application
binary symbol “_” is part of the calculus syntax.

As we have seen a rule application can be reduced to a singleton, but it may also
fail as in [2 — s(5(0))](3) that evaluates to the empty set @), or it can be reduced to a
set with more than one element as exemplified later in this section and explained in
Section 2.4. Of course, variables may be used in rewrite rules as in [z +0 — z](4+0).
In this last case the evaluation mechanism of the calculus will reduce the application
to {4}. In fact, when evaluating this expression, the variable z is bound to 4 via a
mechanism classically called matching, and the result of the evaluation is obtained by
instantiating accordingly the variable = from the right hand side of the rewrite rule.
We recover, thus, the classical way term rewriting is acting.

Where this game becomes even more interesting is that “_ — _”, the rewrite binary
operator, is integrally part of the calculus syntax. This is a powerful abstraction
operator whose relationship with A-abstraction [7] could provide a useful intuition:
A X-expression Azx.t can be represented in the p-calculus as the rewrite rule z — t.
Indeed, the f-redex (Az.t w) is nothing else than [z — ¢](u) (i.e. the application of
the rewrite rule x — ¢ to the term u) which reduces to {{z/u}t} (i.e. the application
of the substitution {z/u} to the term ¢).

We are aware of other ways to abstract on terms or patterns in lambda-calculus
e.g. the works of Colson, Kesner, van Oostrom [10, 57, 32] or Peyton-Jones [50]. For
example, the A-calculus with patterns presented in [50] can be given a direct represen-
tation in the p-calculus. Let us consider, for example, the A\-term A\(PAIR z y).z that
selects the first element of a pair and the application A(PAIR z y).z (PAIR a b)
that evaluates to a. The representation in the p-calculus of the first A-term is
PAIR(z,y) — z and the corresponding application [PAIR(z,y) — z|(PAIR(a,b))
p-evaluates to {{z/a,y/b}z}, that is to {a}.

364

Of course we have to make clear what a substitution {z/u} is and how it applies to
a term. But there is no surprise here and we consider a substitution mechanism that
preserves the correct variable bindings via the appropriate a-conversion. In order
to make this point clear in the paper, as in [13], we will make a strong distinction
between substitution (which takes care of variable binding) and grafting (that performs
replacement directly).

When building abstractions, i.e. rewrite rules, there is a priori no restriction. A
rewrite rule may introduce new variables as in the rule f(z) — g(z,y) that when
applied to the term f(a) evaluates to {g(a,y)}, leaving the variable y free. It may also
rewrite an object into a rewrite rule as in the application [z — (f(y) — g(z,y))](a)
that evaluates to the singleton {f(y) — g(a,y)}. In this case the variable z is free in
the rewrite rule f(y) — g(z,y) but is bound in the rule z — (f(y) — g(x,y)). More
generally, the object formation in p-calculus is unconstrained. Thus, the application
of the rule b — ¢ after the rule a — b to the term a is written [b — ¢|([a — b](a))
and as expected the evaluation mechanism will produce first [b — ¢|({b}) and then
{c}. Tt also allows us to make use in an explicit and direct way of non-terminating or
non-confluent (equational) rewrite systems. For example the application of the rule
a — a to the term a ([a — a](a)) terminates, since it is applied only once and does
not represent the repeated application of the rewrite rule a — a.

So, basic p-calculus objects are built from a signature, a set of variables, the ab-
straction operator “—”, the application operator “[]()”, and we consider sets of
such objects. This gives to the p-calculus the ability to handle non-determinism in
the sense of sets of results. This is achieved via the explicit handling of reduction
result sets, including the empty set that records the fundamental information of rule
application failure. For example, if the symbol + is assumed to be commutative
then z + y is equivalent modulo commutativity to y + = and thus applying the rule
z+y — x to the term a+bresults in {a,b}. Since there are two different ways to apply
(match) this rewrite rule modulo commutativity the result is a set that contains two
different elements corresponding to two possibilities. This ability to integrate specific
computations in the matching process allows us for example to use the p-calculus for
deduction modulo purposes as proposed in [14].

To summarize, in p-calculus abstraction is handled via the arrow binary operator,
matching is used as the parameter passing mechanism, substitution takes care of
variable bindings and results sets are handled explicitly.

1.3 Rewriting relation versus rewriting calculus

A p-calculus term contains all the (rewrite rule) information needed for its evaluation.
This is also the case for A-calculus but it is quite different from the usual way term
rewrite relations are defined.

The rewrite relation generated by a rewrite system R = {ly — r1,... ,l, = r}
is defined as the smallest transitive relation stable by context and substitution and
containing (I1,71),...,(ln,). For example if R = {a — f(a)}, then the rewrite
relation contains (a, f(a)), (a, f(f(a))), (f(a), f(f(a))),... and one says that the
derivation a — f(a) = f(f(a)) = ... is generated by R.

In p-calculus the situation is different since p-evaluation will reduce a given p-term in
which all the rewriting information is explicit. It is customary to say that the rewrite

365

system a — a is not terminating because it generates the derivationa - a - a —
In p-calculus the same infinite derivation should be explicitly built (for example using
an iterator) and all the evaluation information should be present in the starting term
as in [a — a]([a — a](Ja — a](a))) whose evaluation corresponds to the three steps
derivation a -+ a = a — a.

There is thus a big difference between the way one can define rewrite derivations
generated by a rewrite system and their representation in p-calculus: in the first case
the derivation construction is implicit and left at the meta-level, in the later case, all
rewrite steps should be explicitly built.

1.4 Integration of first-order rewriting and higher-order logic

We are introducing a new calculus in a heavily-charged landscape. Why one more?
There are several complementary answers that we will make explicit in this work.
One of them is the unifying principle of the calculus with respect to algebraic and
higher-order theories.

The integration of first-order and higher-order paradigms has been one of the main
problems raised since the beginning of the study of programming language semantics
and of proof environments. The A-calculus emerged in the thirties and had a deep
influence on the development of theoretical computer-science as a simple but powerful
tool for describing programming language semantics as well as proof development
systems. Term rewriting for its part emerged as an identified concept in the late
sixties and it had a deep influence in the development of algebraic specifications as
well as in theorem proving.

Because the two paradigms have a lot in common but have extremely useful com-
plementary properties, many works address the integration of term rewriting with
A-calculus. This has been handled either by enriching first-order rewriting with
higher-order capabilities or by adding to A-calculus algebraic features allowing one,
in particular, to deal with equality in an efficient way. In the first case, we find the
works on CRS [38], XRS [49] and other higher-order rewriting systems [58, 44], in the
second case the works on combination of A-calculus with term rewriting [46, 5, 21, 30]
to mention only a few.

Our previous works on the control of term rewriting [35, 56, 3] led us to introduce the
p-calculus. Indeed we realized that the tool that is needed in order to control rewriting
should be made explicit and could be itself naturally described using rewriting. By
viewing the arrow rewrite symbol as an abstraction operator, we strictly generalize
the abstraction mechanism of A-calculus, by making the rule application explicit, we
get full control of the rewrite mechanism and as a consequence we obtain with the
p-calculus a uniform integration of algebraic computation and A-calculus.

1.5 Basic properties and uses of the p-calculus

One of the main properties of the calculus we are concentrating on is confluence. We
will see that the p-calculus is not confluent in the general case. The use of sets for
representing the reduction results is the main cause of non-confluence. This comes
from the fact that in the definition of a standard rewrite step, a rule is applied only
when a successful match is found and in this case the reduced term exists and is unique

366

(even if several matches exist). In p-calculus we are in a very different situation since
a rule application always yields a unique result consisting either of a non-empty set
representing all the possible reduced terms (one per different match) or of an empty
set representing the impossibility to apply a standard rewrite step.

The confluence can be recovered if the evaluation rules of p-calculus are guided
by an appropriate strategy. This strategy should first handle properly the problems
related to the propagation of failure over the operators of the calculus. It should also
take care of the correct handling of sets with more than one element in non-linear
contexts. We are presenting this strategy whose full details are given in [8].

We will see that the p-calculus can be used for representing some simpler calculi as
A-calculus and rewriting even in the conditional case. This is achieved by restricting
the syntax and the evaluation rules of the p-calculus in order to represent the terms
of the two calculi. We then show that for any reduction in the A-calculus or term
rewriting, a corresponding natural reduction in the p-calculus can be found.

1.6 Structure of this work and paper

The presentation of this work is divided in two parts, the second one being called
hereafter Part I1.

The purpose of this first part is to introduce the p-calculus, its syntax and evaluation
rules and to show how it can be used in order to naturally encode A-calculus and
standard term rewriting. We also show in Part II, and indeed this was our first
motivation, that it can be used to encode conditional rewriting and that it provides
a semantics for the rewrite based language ELAN.

In the next section, we introduce the general pr-calculus, where 7' is a theory
used to internalize specific knowledge like associativity and commutativity of certain
operators. We present the syntax of the calculus, its evaluation rules together with
examples. We emphasize in particular the important role of the matching theory
T. We show in Section 3 how p-calculus can be used to encode in a uniform way
term rewriting and A-calculus. Then, in Section 4, we restrict to the pgp-calculus (also
shortly denoted p-calculus), the calculus where only syntactic matching is allowed
(i.e. the theory T is assumed to be the trivial one), and we present the confluence
properties of this calculus. We assume the reader familiar with the standard notions
of term rewriting [16, 36, 4, 33] and with the basic notions of A-calculus [2]. For the
basic concepts about rule based constraint solving and deduction modulo, we refer
respectively to [29, 37] and [14].

2 Definition of the pr-calculus

We assume given in this section a theory T defined equationally or by any other
means.
A calculus is defined by the following five components:

1. First its syntaz that makes precise the formation of the objects manipulated by the
calculus as well as the formation of substitutions that are used by the evaluation
mechanism. In the case of pr-calculus, the core of the object formation relies on
a first-order signature together with rewrite rules formation, rule application and

367

sets of results.

2. The description of the substitution application to terms. This description is often
given at the meta-level, except for explicit substitution frameworks. For the de-
scription of the pp-calculus that we give here, we use (higher-order) substitutions
and not grafting, i.e. the application takes care of variable bindings and therefore
uses a-conversion.

3. The matching algorithm used to bind variables to their actual values. In the case
of pp-calculus, this is matching modulo the theory T'. In practical cases it will
be higher-order-pattern matching, or equational matching, or simply syntactic
matching or combination of any of these. The matching theory is specified as a
parameter (the theory T') of the calculus and when it is clear from the context
this parameter is omitted.

4. The evaluation rules describing the way the calculus operates. It is the glue
between the previous components. The simplicity and clarity of these rules are
fundamental for its usability.

5. The strategy guiding the application of the evaluation rules. Depending on the
strategy employed we obtain different versions and therefore different properties
for the calculus.

This section makes explicit all these components for the pp-calculus and comments
our main choices.

2.1 Syntaz of the pr-calculus

Definition 2.1 We consider X’ a set of variables and F = J,, Fn a set of ranked
function symbols, where for all m, F,, is the subset of function symbols of arity m. We
assume that each symbol has a unique arity i.e. that the F,, are disjoint. We denote
by T(F,X) the set of first-order terms built on F using the variables in X'. The set
of basic p-terms, denoted o(F, X), is the smallest set of objects formed according to
the following rules:

e the variables in A" are p-terms,

eif ty,...,t, are p-terms and f € F,, then f(t1,...,t,) is a p-term,

e iffy,...,t, are p-terms then {t1,... ,¢,} is a p-term (the empty set is denoted),
e if ¢ and u are p-terms then [t](u) is a p-term (application),

e if t and u are p-terms then ¢t — u is a p-term (abstraction or rewrite rule).

The set of basic p-terms can thus be inductively defined by the following grammar:
p-terms ¢t = x| f(t,...,0) | {t,.. Lt | E |t ot

where z € X and f € F. Notice that this syntax does not make use of the theory T'.

A term may be viewed as a finite labeled ordered tree, the leaves of which are labeled
with variables or constants and the internal nodes of which are labeled with symbols
of positive arity.

Definition 2.2 A position (also called occurrence) of a term (seen as a tree) is rep-
resented as a sequence w of positive integers describing the path from the root of ¢ to

368

the root of the sub-term at that position. We denote by trs1, the term ¢ containing
the sub-term s at the position p. The symbol at the position p of a term ¢ is denoted
by (p).

We call functional position of a p-term ¢, any occurrence p of the term whose symbol
belongs to F, i.e. t(p) € F. The set of all positions of a term ¢ is denoted by Pos(t).
The set of all functional positions of a term ¢ is denoted by FPos(t).

The position of a sub-term in a set p-term is obtained by considering one of the
possible tree representations of the respective p-term.

We adopt a very general discipline for the rewrite rule formation, and we do not
enforce any of the standard restrictions often used in the term rewriting community
like non-variable left-hand sides or occurrence of the right-hand side variables in the
left-hand side. We also consider rewrite rules containing rewrite rules as well as
rewrite rule application. For convenience, we consider that the symbols {} and
both represent the empty set. We usually use the notation f instead of f() for a
function symbol of arity 0 (i.e. a constant). For the terms of the form {t1,...,t,} we
assume, as usually, that the comma is an associative, commutative and idempotent
function symbol.

The main intuition behind this syntax is that a rewrite rule is an abstraction, the
left-hand side of which determines the bound variables and some contextual infor-
mation. Having new variables in the right-hand side is just the ability to have free
variables in the calculus. We will come back to this later but to support the intuition
let us mention that the A-terms [2] and standard first-order rewrite rules [16, 4] are
clearly objects of this calculus. For example, the A\-term Az.(y x) corresponds to the
p-term x — [y](x) and a rewrite rule in first-order rewriting corresponds to the same
rewrite rule in the rewriting-calculus.

We have chosen sets as the data structure for handling the potential non-determi-
nism. A set of terms can be seen as the set of distinct results obtained by applying
a rewrite rule to a term. Other choices could be made depending on the intended
use of the calculus. For example, if we want to provide all the results of an appli-
cation, including the identical ones, a multi-set could be used. When the order of
the computation of the results is important, lists could be employed. Since in this
presentation of the calculus we focus on the possible results of a computation and
not on their number or order, sets are used. The confluence properties presented in
Section 4 are preserved in a multi-set approach. It is clear that for the list approach
only a confluence modulo permutation of lists can be obtained.

The following examples show the very expressive syntax that is allowed for p-terms.

Example 2.3 If we consider Fy = {a,b,c}, F1 = {f}, Fo={g}, F=FoUFL UF>
and z,y variables in X', some p-terms from o(F, X) are:
e [a — b](a); this denotes the application of the rewrite rule a — b to the term a.
We will see that evaluating this application results in {b}.
e [g(z,y) = f(2)](g(a,b)); a classical rewrite rule application.
o [t — z + y](a); a rewrite rule with a free variable y. We will see later why the
result of this application is {a + y} where the variable y remains free.
ey = [z = =+ y](b)]([r — z](a)); a p-term that corresponds to the A-term
My-((Az.z +y) b)) ((A\x.z) a). In the rewrite rule x — = + y the variable y is free
but in the rewrite rule y — [¢ — = + y](b) this variable is bound.

369

o [z = [z](x)](x — [z](x)); the well-known (ww) A-term. We will see that the
evaluation of this term is not terminating.

e[[(z > z+1) - (1 = x)](a = a+ 1)](1); a more complicated p-term without
corresponding standard rewrite rule or A-term.

2.2 Grafting versus substitution

Since we are dealing with — as a binder, like for any calculus involving binders
(as the A-calculus), a-conversion should be used to obtain a correct substitution
calculus and the first-order substitution (called here grafting) is not directly suitable
for the p-calculus. We consider the usual notions of a-conversion and higher-order
substitution as defined for example in [13].

This is the reason for introducing an appropriate notion of bound variables renaming
in Definition 2.5. It computes a variant of a p-term which is equivalent modulo
a-conversion to the initial term.

Definition 2.4 The set of free variables of a p-term ¢ is denoted by FV () and is
defined by:

1.if t = x then FV (t) = {«},

Jft = flur, ... up) then FV(t) = U,_, , FV(w),
Jf = {ur,... un} then FV(8) = Uy, FV (uy),
.if t = [u](v) then FV(t) = FV(u) UFV(v),

Jif t =u — v then FV(t) = FV(v) \ FV (u).

U s W N

Definition 2.5 Given a set) of variables, the application «y (called a-conversion)
is defined by:

)
(ur,...,upn)) = flay(u),...,ay(un)),

e ay(u—v) = ({2 = Yitecrviw ay(w) = ({zi = yita,crviv av(v)),
if z; € FV(u) NY and y; are “fresh” variables and where {z — y} denotes the
replacement of the variable z by the variable y in the term on which it is applied.

This allows us to define the usual substitution and grafting operations:

Definition 2.6 A wvaluation 0 is a finite binding of the variables xi,... ,z, to the
terms t1,... ,t,, i.e. a finite set of couples {(z1,t1),..., (Zn,tn)}.

From a given valuation # we can define the following two notions of substitution
and grafting:

o the substitution extending 6 is denoted © = {z1/t1,... ,z,/tn},

e the grafting extending 6 is denoted © = {zy — t1,... , o, = t,}.

370

© and O are structurally defined by:

- 0O(z) =wu, if (z,u) € 0 ~ O(z) = u, if (z,u) €6
—O(f(t1-..tn) = f(O(t1) ... O(tn)) —O(f(t1...tn) = f(O(t1) ... O(tn))

- 9({t17) n}) = {@(tl)a 7@(n)} - @({tla] nﬁ}) = { (tl)a' 7®(tn)}
= O([t](w)) = [0()](O(u)) - O([t](u)) = [O()](O(u))

- 0O(u—v)=0() — 0 -0O(u = v) =0(u) > O(v)

where we consider that z; are fresh variables (i.e. 6z; = z;), the z; do not occur in u
and v and for any y € FV (u), z; € FV(0y), and u', v' are defined by:

u' = {yi = Zi}yieFV(u) aFV(u)UVar(H)(u)a

o' ={yi = Zi}yieFV(u) aFv(u)uVar(e)(U)-
using the following notations: The set of variables {z1,...,z,} is called the domain
of the substitution © or of the grafting © and is denoted by Dom(©) or Dom(O)
respectively. The set of all the variables from © is Var(0) = Uyepom(e)O(z) U
Dom(0).

Recall that {x;/t1,...,2,/tn} is the simultaneous substitution of the variables
Z1,...,T, by the terms ¢y,... ,t, and not the composition {z1/t:1}...{xn/tn}.

There is nothing new in the definition of substitution and grafting except that the
abstraction works here on terms and not only on variables. The burden of variable
handling could be avoided by using an explicit substitution mechanism in the spirit
of [6]. We sketched such an approach in [9] and this is detailed in [8].

2.8 Matching

Computing the matching substitutions from a p-term ¢ to a p-term ¢’ is an important
parameter of the pr-calculus. We first define matching problems in a general setting:

Definition 2.7 For a given theory 7" over p-terms, a T-match-equation is a formula
of the form ¢t <% t', where t and t' are p-terms. A substitution ¢ is a solution of the
T-match-equation t <% t' if T = o(t) = t'. A T-matching system is a conjunction
of T-match-equations. A substitution is a solution of a T-matching system P if it is
a solution of all the T-match-equations in P. We denote by F a T-matching system
without solution. A T-matching system is called trivial when all substitutions are
solution of it.

We define the function Solution on a T-matching system S as returning the set of all
T-matches of S when § is not trivial and {ID}, where ID is the identity substitution,
when § is trivial.

Notice that when the matching system has no solution the function Solution returns
the empty set.

Since in general we could consider arbitrary theories over p-terms, T-matching is
in general undecidable, even when restricted to first-order equational theories [29]. In
order to overcome this undecidability problem, one can think of using constraints as
in constrained higher-order resolution [26] or constrained deduction [34]. But we are
interested here in the decidable cases. Among them we can mention higher-order-
pattern matching that is decidable and unitary as a consequence of the decidability
of pattern unification [41, 15], higher-order matching which is known to be decidable

371

up to the fourth order [47, 48, 17, 24] (the decidability of the general case being still
open), many first-order equational theories including associativity, commutativity,
distributivity and most of their combinations [43, 52].

For example when T' is empty, the syntactic matching substitution from ¢ to ¢,
when it exists, is unique and can be computed by a simple recursive algorithm given
for example by G. Huet [27]. It can also be computed by the following set of rules
SyntacticM atching where f,g € F and the symbol A is assumed to be associative
and commutative.

Decomposition (f(t1,... ,tn) <5 f(t1,... th) AP w» N\ t; <5ty AP

i=1l...n
SymbolClash — (f(ty,... ,tn) <5 g(th,... 1)) NP w» F

iff#yg
MergingClash (z <jt) A (z <) t') A P W F

if t #1t'
VariableClash (f(t1,... ,t,) <, @) A P w» F

if reX

Fia. 1. SyntacticM atching - Rules for syntactic matching

Proposition 2.8 The normal form by the rules in SyntacticM atching of any match-
ing problem ¢ <<ré t' exists and is unique. After removing from the normal form any
duplicated match-equation and the trivial match-equations of the form =z <<ré x for
any variable z, if the resulting system is:

1. F, then there is no match from ¢ to ' and Solution(t < t') = Solution(F) = 0,
2. of the form A;c; @; <<5 t; with T # (), then the substitution o = {x;/t;};cr is the

unique match from ¢ to ¢ and Solution(t < t') = Solution(\;c; z: <j t:) = {0},
3. empty, then t and ¢’ are identical and Solution(t <} t) = {ID}.

PROOF. See [33].
O

Example 2.9 If we consider the matching problem (h(z,g(x,y)) <<ré h(a,g(a,b)),
first we apply the matching rule Decomposition and we obtain the system with the
two match-equations (¢ < a) and (g(x,y) < g(a,b)). When we apply the same
rule once again for the second equation we obtain (z < a) and (y <) b) and thus,
the initial match-equation is reduced to the system (z <} a) A (z <} a) A (y <] b)
and Solution(h(z, g(z,y)) <j h(a, g(a,b)) = {{z/a,y/b}}.

For the matching problem (g(z, z) <<6 g(a, b)) we apply, as before, Decomposition
and we obtain the system (z <) a) A (# < b). This latter system is reduced by the
matching rule MergingClash to F and thus, Solution(g(z,) < g(a,b)) = 0.

This syntactic matching algorithm has an easy and natural extension when a symbol
+ is assumed to be commutative. In this case, the previous set of rules should be

372

completed with

CommDec (ty +1t2) K¢, (t] +15) A P>
(1 <G, 1At <G)V (0 <G, th At <G 1) AP

where disjunction should be handled in the usual way. In this case of course the
number of matches could be exponential in the size of the initial left-hand sides.

Example 2.10 When matching modulo commutativity the term z+y, with + defined
as commutative, against the term a + b, the rule CommDec leads to

(2 <Gy a Ay <G, DV (@ <G, b A Y <G, a))

and thus, we obtain two substitutions as solution for the initial matching problem,
i.e. Solution(z +y <<?O(+) a+0b)={{z/a,y/b},{x/b,y/a}}.

Matching modulo associativity-commutativity (AC) is often used. It could be de-
fined either in a rule based way as in [1, 37] or in a semantic way as in [18]. A
restricted form of associative matching called list matching is used in the ASF+SDF
system [53]. In the Maude system any combination of the associative, commutative
and idempotency properties is available [19].

2.4 Evaluation rules of the pr-calculus

Assume we are given a theory T over p-terms having a decidable matching problem.
The use of constraints would allow us to drop this last restriction, but we have chosen
here to stick to this simpler situation.

As mentioned above, in the general case, the matching is not unitary and thus
we should deal with (empty, finite or infinite) sets of substitutions. We consider a
substitution application at the meta-level of the calculus represented by the operator
“_{-)” whose behavior is described by the meta-rule Propagate:

Propagate r{{o1,...,0n,...}) ~ {owr,...,onr,...}

Notice that since this rule operates at the meta-level of the calculus, it is different
from the evaluation rules like F'ire and its arrow is denoted differently. A version of
the calculus can also be given using explicit substitution [8].

The result of the application of a set of substitutions {o1,... ,04,...} to a term r
is the set of terms o;r, where o;r represents the result of the (meta-)application of
the substitution o; to the term r as detailed in Definition 2.6. Notice that when n is
0, i.e. the set of substitutions is empty, the resulting set of instantiated terms is also
empty.

The evaluation rules of the pp-calculus describe the application of a p-term on
another one and specify the behavior of the different operators of the calculus when
some arguments are sets. Following their specifications they are described in Figure 2
to 5.

373

2.4.1 Applying rewrite rules

The application of a rewrite rule at the root position of a term is accomplished by
matching the left-hand side of the rewrite rule on the term and returning the appro-
priately instantiated right-hand side. It is described by the evaluation rule Flire in
Figure 2. The rule Flire, like all the evaluation rules of the calculus, can be applied
at any position of a p-term.

Fire [—7r](t) = r{Solution(l <% t))

FiG. 2. The evaluation rule Fire of the pr-calculus

The central idea is that applying a rewrite rule [— r at the root (also called
top) occurrence of a term ¢, written as [[— r](t), consists in replacing the term
r by r{X)) where X is the set of substitutions obtained by T-matching [on ¢ (i.e.
Solution(l <% t)). Therefore, when the matching yields a failure represented by an
empty set of substitutions, the result of the application of the rule Propagate and
thus of the rule Flire is the empty set.

One can notice that the rule Fiire can be expressed without using the meta-rule
Propagate:

Fire [l —r]t) ~ {owr,...,onr ...}
where {01,...,0n,...} = Solution(l <} t)

but we preferred the previous version for a smoother transition to the explicit version
of the calculus.

We should point out that, as in A-calculus, an application can always be evaluated.
But, unlike in A-calculus, the set of results can be empty. More generally, when
matching modulo a theory 7', the set of resulting matches may be empty, a singleton
(as in the empty theory), a finite set (as for associativity-commutativity) or infinite
(see [20]). We have thus chosen to represent the result of a rewrite rule application
to a term as a set. An empty set means that the rewrite rule [— r fails to apply to
t in the sense of a matching failure between [and t.

We denote by — e the relation induced by the evaluation rule Fire.

Example 2.11 Some examples of the application of the evaluation rule Fire are:

° [a — b](a) —>Fire {b}
b g(ﬂ?, [QZ - c](a)) —Fire g($7 {C})
i [a - b](C) — Fire |

2.4.2 Applying operators

In order to push rewrite rule application deeper into terms, we introduce the two
Congruence evaluation rules of Figure 3. They deal with the application of a term of
the form f(uy,...,u,) (where f € F,) to another term of a similar form. When we

374

have the same head symbol for the two terms of the application [u](v) the arguments
of the term u are applied on those of the term v argument-wise. If the head symbols
are not the same, an empty set is obtained.

Cong [f(u17 7un)](f(vla'-' 77)”))

{f([ual(vr), - [un](va))}
CongFail [f(u1,...,un)](g(v1,-.. ,vm)) 0

=
=

F1G. 3. The evaluation rules Congruence of the pr-calculus

Remark 2.12 The Congruence rules are redundant with respect to the evaluation
rule Fire modulo an appropriate transformation of the initial term. Indeed, one could
notice that the application of a term f(u1,...,uy) to another p-term ¢ (i.e. the p-
term [f(uy,...,up)](t)) evaluates, using the rules Cong and CongFail, to the same
term as the application of the p-term f(z1,...,z,) = f([u1](z1),...,[un](z,)) on
the same term t (i.e. the p-term [f(zy1,... ,z,) = f([u1](z1),. .., [us](zn))](t)) using
the evaluation rule Fire. Although we can express the same computations by using
only the evaluation rule F'ire, we prefer to keep the evaluation rules Congruence in
the calculus for an explicit use of these rules and thus, a more concise representation
of terms.

2.4.3 Handling sets in the p;-calculus

The reductions describing the behavior of terms containing sets are described by the
evaluation rules in Figure 4:

e The rules Distrib and Batch describe the interaction between the application and
the set operators,

e The rules Switchy, and Switchg describe the interaction between the abstraction
and the set operators,

e The rule OpOnSet describe the interaction between the symbols of the signature
and the set operators.

e The rule describing the interaction between set operators will be described in the
next section.

The set representation for the results of the rewrite rule application has important
consequences concerning the behavior of the calculus. We can notice, in particular,
that the number of set symbols is unchanged by the evaluation rules Distrib, Batch,
Switchy,, Switchy and OpOnSet. This way, for a derivation involving only terms that
do not contain empty sets, the number of set symbols in a term counts the number
of rules Fire and Congruence that have been applied for its evaluation.

The application of the set of rewrite rules {a — b,a — ¢} to the term a (i.e.
the p-term [{a — b,a — c}](a)) is reduced, by using the evaluation rule Distrib,
to the set containing the application of each rule to the term a (i.e. the p-term
{la = b](a),[a — c](a)}). It is in particular useful when simulating ordinary term
rewriting by a set of rewrite rules. Moreover, we can factor a set of rewrite rules

375

Distrib - [{u1,...,un}|(v) = A{[u1](v),...,[un](v)}
Batch w]({ut, ... ,un}) = {[v](u1),...,[v](un)}
Switchy, {u1,... ,up} = v = {ug —v,...,u, > v}
Switchg uw — {v1,...,0,} = {u—v,...,u >v,}
OpOnSet f(vi,... {ut,... ,umb, ... ,vn) =>

{flor, .o yur, ey vn), e F(U1, o Uy ey 0n) }

FiG. 4. The evaluation rules Set of the pr-calculus

having the same left-hand side and use the p-term a — {b,c} which is reduced, by
applying the evaluation rule Switchg, to {a — b,a — ¢}. Thus, we can say that the
p-term [a — {b, c}](a) describes the non-deterministic choice between the application
of the rule a — b to the term a and the application of the rule a — ¢ to the same term
and this application is reduced to the set containing the results of the two applications,
i.e. {{b},{c}}.

Let us consider the p-term [f(a — b)](f(a)) which is reduced, by using the rules
Cong and Fire, to {f({b})} and then, by using the rule OpOnSet to {{f(b)}}. The
two set symbols corresponding to the two applications of the evaluation rules Fire
and Cong are thus preserved by the application of the rule OpOnSet.

A result of the form {} (i.e.) represents the failure of a rule application and such
failures are strictly propagated in p-terms by the Set rules. For instance, the p-term
g([a = b](c),{a}) is reduced to ¢g(0,{a}) and then, by using the rule OpOnSet, to
(. One should notice that in this case, the information on the number of Fire and
Congruence rules used in the reduction of the sub-term {a} is lost.

The rewrite relation generated by the evaluation rules Fire, Congruence and the
Set rules is finer (i.e. contains more elements) than the standard one (without sets)
and is obviously non-confluent. A reason for the non-confluence is the lack of a similar
evaluation rule for the propagation of sets on sets.

2.4.4 Flattening sets in the pp-calculus

We usually care about the set of results obtained by reducing the redexes and not
about the exact trace of the reduction leading to these results. In what follows we
present, the way this behavior is described in the p-calculus.

We use the evaluation rule Flat in Figure 5 that flattens the sets and eliminates the
(nested) set symbols. In this case, the information on the number of reduction steps
is lost. Notice that this implies that failure (the empty set) is not strictly propagated
on sets.

The same behavior can be described by two distinct evaluation rules: one that
would just flatten the sets and thus preserve the number of set braces, and another

376

Flat {uy,..., {vi, ..., o0}ty yttm}t = {U1,..., 01,000 ,Unyovn U}

Fia. 5. The evaluation rules Flat of the pr-calculus

one that would eliminate the nested set symbols.

This behavior of the calculus could be summarized by stating that failure prop-
agation by the Set rules is strict on all operators but sets. We will see later that
Fire may induce non-strict propagations in some particular cases (see Example 4.4
on page 388).

The design decision to use sets for representing reduction results has another impor-
tant consequence concerning the handling of sets with respect to matching. Indeed,
sets are just used to store results and we do not wish to make them part of the theory.
We are thus assuming that the matching operation used in the Fire evaluation rule is
not performed modulo the set axioms. As a consequence, this requires in some cases
to use a strategy that pushes set braces outside the terms whenever possible.

Every time a p-term is reduced using the rules Fire and Congruence of the
pr-calculus, a set is generated. These evaluation rules are the ones that describe
the application of a rewrite rule at the top level or deeper in a term. The set obtained
when applying one of the above evaluation rules can trigger the application of the
other evaluation rules of the calculus. These evaluation rules deal with the (propa-
gation of) sets and compute a “set-normal form” for the p-terms by pushing out the
set braces and flattening the sets.

Therefore, we consider that the evaluation rules of the pr-calculus consist of a set
of deduction rules (Fire, Cong, CongFail) and a set of computation rules (Distrib,
Batch, Switchy,, Switchg, OpOnSet, Flat) and that the reduction behaves as in
deduction modulo [14]. This means that we can consider the computation rules as
describing a congruence modulo which the deduction rules are applied. In such an
approach we say that [f(a — b)](f(a)) reduces to {f({b})} which is equivalent to

{£(b)}.

2.4.5 Using the pp-calculus

The aim of this section is to make concrete the concepts we have just introduced by
giving a few examples of p-terms and p-reductions. Many other examples could be
found on the ELAN web page [51].

The pp-calculus using syntactic matching (i.e. an empty matching theory) is de-
noted py-calculus or simply p-calculus when there is no ambiguity. =~ We denote by
pc-calculus, pa-calculus and pac-calculus the pr-calculus with a matching theory
commutative, associative and associative-commutative respectively.

Simple functional programming Let us start with the functional part of the cal-
culus and give the p-terms representing some A-terms. For example, the A-abstraction
Az.(y x), where y is a variable, is represented as the p-rule — [y](z). The applica-
tion of the above term to a constant a, (Az.(y x) a) is represented in the p-calculus
by the application [— [y](z)](a). This application reduces, in the A-calculus, to the

377

term (y a) while in the p-calculus the result of the reduction is the singleton {[y](a)}.
When a functional representation f(x) is chosen, the A-term A\z.f(x) is represented by
the p-term x — f(x) and a similar result is obtained for its application. One should
notice that for p-terms of this form (i.e. that have a variable as a left-hand side) the
syntactic matching performed in the p-calculus is trivial, i.e. it never fails and gives
only one result.

There is no difficulty to represent more elaborate A-terms in the p-calculus. Let us
consider the term Az.f(z) (Ay.y a) with the following 8-derivation: \z.f(z) (Ay.y a)
—p Az.f(z) a — g f(a). The same derivation can be recovered in the p-calculus
for the corresponding p-term: [z — f(2)|[([y — y](a)) —Fire [z = f(x)]({a})
—Bater {[z = f(@)](a)} —Fire {{f(@)}} —Fiat {f(a)}. Of course, several re-
duction strategies can be used in the A-calculus and reproduced accordingly in the
p-calculus. Indeed, we will see in Section 3.1 that the p-calculus strictly embeds the
A-calculus.

Rewriting Now, if we introduce contextual information in the left-hand sides
of the p-rules we obtain classical rewrite rules as f(a) — f(b) or f(z) — g(z,z).
When we apply such a rewrite rule, the matching can fail and consequently, the
application of the rewrite rule can fail. As we have already insisted in the previous
sections, the failure of a rewrite rule is not a meta-property in the p-calculus but is
represented by an empty set (of results). For example, in standard term rewriting we
say that the application of the rule f(a) — f(b) to the term f(c) fails and therefore
the term is unchanged. On the contrary, in the p-calculus the corresponding term
[f(a) = f(D)](f(c)) evaluates to .

Since, in the p-calculus, there is no restriction on the rewrite rules construction, a
rewrite rule may use a variable as left-hand side, as in z — z + 1, or it may introduce
new variables, as in f(z) — g(z,y). The free variables of the rewrite rules from
the p-calculus allow us to dynamically build classical rewrite rules. For example, in
the application [y — (f(z) — g(z,y))](a), the variable y is free in the rewrite rule
f(z) = g(x,y) but bound in the rule y — (f(x) = g(x,y)). The above application is
reduced to the set {f(z) — g(z,a)} containing a classical rewrite rule.

By using free variables in the right-hand side of a rewrite rule we can also “param-
eterize” the rules by “strategies”, as in the term y — [f(z) — [y](2)](f(a)) where the
term to be applied to x is not explicit in the rule f(z) — [y](z). When reducing the
application [y — [f(z) — [y](z)](f(a))](a — b), the variable y from the rewrite rule
is instantiated to @ — b and thus, the result of the reduction is {b}.

Non-determinism When the matching is done modulo an equational theory we
obtain interesting behaviors.

An associative matching theory allows us, for example, to express the fact that
an expression can be parenthesized in different ways. Take, for example, the list
operator o that appends two lists with elements of a given sort Elem. Any object of
sort, Elem represents a list consisting of this only object. If we define the operator o
as associative, the rewrite rule describing the decomposition of a list can be written in
the associative p4-calculus [ol’ — I. When applying this rule to the list aobocod we
obtain as result the p-term {a,aob,aoboc}. If the operator o had not been defined
as associative, we would have obtained as the result of the same rule application one
of the singletons {a} or {ao b} or {ao (boc)} or {(aob)oc}, depending on the way
the term a o b o c o d is parenthesized.

378

A commutative matching theory allows us, for example, to express the fact that
the order of the arguments is not significant. Let us consider a commutative operator
@ and the rewrite rule x @& y — = that selects one of the elements of the tuple z & y.
In the commutative pc-calculus, the application [z @ y — z]|(a @ b) evaluates to the
set {a, b} that represents the set of non-deterministic choices between the two results.
In standard rewriting, the result is not well defined; should it be a or b7

We can also use an associative-commutative theory like, for example, when an
operator describes multi-set formation. Let us go back to the o operator, but this
time we define it as associative-commutative and we use the rewrite rulex ox o L — L
that eliminates doubleton from lists of sort Elem. Since the matching is done modulo
associativity-commutativity, this rule eliminates the doubleton no matter what is their
position in the structure built using the o operator. For instance, in the p 4c-calculus
the application [t oz o L — L](aobocoaod) evaluates to {bocod}: the search for
the two equal elements is done thanks to associativity and commutativity.

Another facility is due to the use of sets for handling non-determinism. This allows
us to easily express the non-deterministic application of a set of rewrite rules to a
term. Let us consider, for example, the operator ® as a syntactic operator. If we
want the same behavior as before for the selection of each element of the couple z ®y,
two rewrite rules should be non-deterministically applied as in the following reduction:
fzoy 2 z,20y = y}l@a®b) —piss {[z @y = 2](@®b),lz©y = ylla®b)}
——Fire {{a}a {b}} —Flat {aa b}

2.5 Evaluation strategies for the pr-calculus

The last component of a calculus, i.e. the strategy S guiding the application of its
evaluation rules, is crucial for obtaining good properties for the p-calculus. For exam-
ple, the main property analyzed for the p-calculus is confluence and we will see that
if the rule Flire is applied under no conditions at any position of a p-term, confluence
does not hold.

Let us now define formally the notion of strategy. We specialize here to the
p-calculus, and the general definition can be found in [35].

Definition 2.13 An evaluation strategy in the p-calculus is a subset of the set of all
possible derivations.

For example, the ALL strategy is the set of all derivations, i.e. it imposes no
restrictions. The empty strategy does not allow any reduction. Standard strategies
are call by value or by name, leftmost innermost or outermost, lazy, needed.

The reasons for the non-confluence of the calculus are explained in Section 4 and
a solution is proposed for obtaining a confluent calculus. The confluent strategy can
be given explicitly or as a condition on the application of the rule Fire.

2.6 Summary

Starting from the notions introduced in the previous sections we give the definition
of the pp-calculus.

Definition 2.14 Given a set F of function symbols, a set X of variables, a theory

379

T on o(F,X) terms having a decidable matching problem, we call pp-calculus (or
generically rewriting calculus) a calculus defined by:

1. a non-empty subset o_(F, X) of the o(F, X) terms,

2. the (higher-order) substitution application to terms as defined in Section 2.2,

3. the theory T,

4. the set of evaluation rules £: Flire, Cong, CongFail, Distrib, Batch, Switchy,
Switchgr, OpOnSet, Flat,

5. an evaluation strategy S that controls the application of the evaluation rules. The
set o_(F,X) should be stable under the strategy controlled application of the
evaluation rules.

We use the notation pr = (p—(F,X),T,S) to make apparent the main components
of the rewriting calculus under consideration.

When the parameters of the general calculus are replaced with some specific values,
different variants of the calculus are obtained. The remainder of this paper will be
devoted, mainly, to the study of a specific instance of the pr-calculus: the p-calculus.

2.7 Definition of the p-calculus

We define the p-calculus as the pr-calculus where the matching theory 7 is restricted
to first-order syntactic matching. As an instance of Definition 2.14 we get:

Definition 2.15 The p-calculus is the calculus defined by:

e the subset gg(F, X) of o(F, X') whose rewrite rules are restricted to be of the form
u — v where u € T(F,X), i.e. u is a first-order term and thus does not contain
any set, application or abstraction symbol,

e the higher-order substitution application to terms,

e the matching theory T = 0, i.e. first-order syntactic matching,

e the set of evaluation rules R presented in Figure 6 (i.e. all the rules of the p-calculus
but Switchr,),

e the evaluation strategy ALL that imposes no conditions on the application of the
evaluation rules.

The p-calculus is therefore defined as the calculus py = (gg(F, X), 0, ALL).

Example 2.16 With the exception of the last term, all the p-terms from Example 2.3
are pg-terms.

The following remarks should be made with respect to the restrictions introduced
in the p-calculus:

e Since first-order syntactic matching is unitary (i.e. the match, when it exists, is
unique) the meta-rule Propagate from Section 2.4 gives always as result either the
singleton {or} or the empty set. Hence, the evaluation rule Fiire can be replaced
by the following simpler two rules:

Fire’ [l =r](ocl) = {or}
Fire" [l—=7rl(t) = 0
if there exists no o s.t. ol =1¢

380

e =0 - jviZEe {0} = Solution(l <} t)
Cong [flur, .- un)](f(ur, - vn)) = {f([w](v1), .- [un](vn))}
CongFail [f(ui,... un)l(g(vr,-.. ,vm)) = 0
Distrib [{uy,... ,un}](v) = {u]®),... , [ua](®)}
Batch [v]({ur,- . un}) = {](w),- .., [v](un)}
Switchg — w— {v1,... ,v,} = {u—ovi,...u— v}
OpOnSet f(vi, ... {ut,... tm},... vn) =

(Fory oo,y vn)see s FOL o Uy 0n))
Flat (ur, v, vnd o um) = {1, UL Ons et}

F1G. 6. The evaluation rules of the p-calculus

e The evaluation rule Switchy can never be used in the p-calculus due to the re-
stricted syntax imposed on pp-terms.

e For a specific instance of the pp-calculus, there is a strong relationship between the
terms allowed on the left-hand side of the rule and the theory T'. Intuitively, the
theory 1" should be powerful enough to fire rule applications in a way consistent
with the intended rewriting. For instance, it seems more interesting to use higher-
order matching instead of syntactic or equational matching when the left-hand
sides of rules contain abstractions and applications. This explains the restriction
imposed in the p-calculus for the formation of left-hand sides of rules.

e The term restrictions are made only on the left-hand sides of rewrite rules and
not on the right-hand side and this clearly leads to more terms than in A-calculus
or in term rewriting.

e The p-calculus is not terminating as w is a p-term (see Example 2.3).
The case of decidable finitary equational theories will induce more technicalities
but is conceptually similar to the case of the empty theory. The case of theories

with infinitary or undecidable matching problems could be treated using constraint
p-terms in the spirit of [34], and will be studied in forthcoming works.

3 Encoding A-calculus and term rewriting in the p-calculus

The aim of this section is to show in detail how the p-calculus can be used to give a
natural encoding of the A-calculus and term rewriting.

381

3.1 Encoding the \-calculus

We briefly present some of the notions used in the A-calculus, such as g-redex and
B-reduction, that will be used in this part of the paper. The reader should refer to [25]
and [2] for a detailed presentation.

Let X be a set of variables, written z, y, etc. The terms of the A-calculus are
inductively defined by:

ax=z|(aa)]|Ar.a
Definition 3.1 The S-reduction is defined by the rule:
Beta (Az.M N) ~ {z/N}M

Any term of the form (Az.M)N is called a §-redez, and the term {z/N}M is tra-
ditionally called its contractum. If a term P contains a redex, P can be (-contracted
into P’ which is denoted:

P — P
If @ is obtained from P by a finite (possibly empty) number of §-contractions we say
that P (-reduces to) and we denote:

P S5 Q.

Let us consider a restriction of the set of p-terms, denoted F), and inductively
defined as follows:

pa-terms t = x| {t}|[t](#) |z >t

where x € X.
Definition 3.2 The py-calculus is the p-calculus defined by:

e the F) terms,

e the higher-order substitution application to terms,
e the (matching) theory T' = 0,

e the set of evaluation rules of the p-calculus,

e the evaluation strategy ALL that imposes no conditions on the application of the
evaluation rules.

Compared to the syntax of the general p-calculus, the rewrite rules allowed in
the py-calculus can only have a variable as left-hand side. Additionally, all the sets
are singletons, hence one could consider an encoding not using sets. For uniformity
purposes, we chose to stick to the same encoding approach.

Because of the syntactic restrictions we have just imposed, the evaluation rules of
the p-calculus specialize to the ones described in Figure 7.

The evaluation rule Flire, initiates in the p-calculus (as the S-rule in the A-calculus)
the application of a substitution to a term. The rules Congruence are not used and
the rules Set and F'lat can be specialized to singletons and describe how to push out
the set braces.

382

Fire, [z —=7r](t) = {{z/t}r}
Distriby [{u}](v) = {[u](v)}
Batchy [v]({u}) = {[v](u)}
Switchy, = — {v} = {z—v}
Flaty, {{v}} = {v}

FiG. 7. The evaluation rules of the py-calculus

An immediate consequence of the restricted syntax of the py-calculus is that the
matching performed in the evaluation rule Firey always succeeds and the solution of
the matching equation that is necessarily of the form = <<5 t is always the singleton
{{a/t}}.

At this moment we can notice that any A-term can be represented by a p-term.
The function ¢ that transforms terms in the syntax of the A-calculus into the syntax
of the py-calculus is defined by the following transformation rules:

w(x) = gz, if z is a variable
p(Axt) = x— (i)
p(tu) = [p®)](p(u))

A similar translation function can be used in order to transform terms in the syntax
of the py-calculus into the syntax of the A-calculus:

0(x) = x, if z is a variable
() = o)

S([w) = (0(t) o))

0z —t) = Az.d(t)

The reductions in the A-calculus and in the py-calculus are equivalent modulo the
notations for the application and the abstraction and the handling of sets:

Proposition 3.3 Given two A-terms ¢ and ¢/, if t —5 ' then () —,, {p(#')}.
Given two py-terms u and u', if u —,, u’ then §(u) ——4 5(u').

ProOOF. We use an induction on —3 and —,, respectively:

o If ¢ is a variable z, then ¢’ = z and p(t) = p(t') = z.
o If t = Azx.u then t' = A\z.v' with w — 3 v’ and we have ¢(t) = ¢ — ¢(u). By
induction, we have p(u) —,, {p(u')}, and thus

p(t) =z = p(u) > T {pW)} —guiten, 12— o)} ={pt)}
o If ¢t = (u v) then we have either t' = (u' v) with v —3 v/, or t' = (u v') with

v—pgv,ort=Av.uvandt ={z/v}lu.
In the first case, we apply induction and we obtain

(1) = [p(W)](e(v)) ==y [{LW)H@©)) — Distrin, o))} = {o(t")}.

383

The second case is similar,
p(t) = lp(W)](p©)) o, He@N@®") — Distriv, Up@]e@)} = {o(t)}.
In the third case ¢(t) = [z = ¢(uw)](p(v)) and

o(t) = [z = pW)](p(v) —rires {{z/e()}p(u)} = o({z/v}u) = p(t).

Since the application of a substitution is the same in the A-calculus and the
p-calculus, we have, due to the definition of ¢, p({z/v}u) = {z/p(v)}p(u) and
thus, the property is verified.

Since in the py-calculus we can have only singletons and the § transformation strips
off the set symbols, the application of the evaluation rules Distriby, Batchy, Switchy
and Flaty corresponds to the identity in the A-calculus.

o If ¢t = [{u}|(v) then we have t — pjstrin, {[u](v)}. Since §([{u}](v)) = d(u) 6(v)
and d({[u](v)}) = 0(u) 0(v), the property is verified.
e If t = [x — u](v) then t — pipe, {{z/v}u}. We have

5(t) = Ae.d(u) 5(v) —>p {2/5(0)}3(w)} = 8({a/v}u) = 5(t).

The other cases are very similar to the first one and to their correspondents from

the first part.
O

Example 3.4 We consider the three combinators I = Az.z, K = Axy.x and § =
Azyz.zz(yz) and their representation in the p-calculus:

o/l =x—ux,
o K =ux— (y — .7;),
o S=u—(y— (z = [[z](2)]([y](2))))-

and, as expected, to a reduction SKK i)g I in the A-calculus it corresponds the
pa-reduction [[S](K)](K) —,, {I}.

[SIENEK) = [[z = (y = (2 = [[«]()]([¥](2) D]z = (y = 2)))(z = (y = 7)) —p,
{y = (z = [[z = (v = 0)](2)]([W](2))}](x = (y = 2)) —,
{lv = G ==y = 2)]EWEDE = =)} —
{ly = (z = {y = (W])](x = (y = @)} —p,

]
Hy—=(GE=ly— Z]([](Z)))](fv (y = 2)} — s

Hly = (= {zD)]@ = (y = 2))}} —p,
{Hly = (2=)@= (y = 2)H}} —0
{{{z = 21} —0

{z =z} = {I}

The need for adding a set symbol comes from the fact that in the p-calculus we are
mainly interested in the application of terms to some other terms. From this point of
view, the application of a term ¢ to another term u reduces to the same thing as the
application of the term {t} to the same term wu.

384

In the py-calculus, we could have introduced an evaluation rule eliminating all set
symbols. But as soon as failure, represented by the empty set, and non-determinism,
represented by sets with more than one element, are introduced such an evaluation
rule will not be meaningful anymore.

The confluence of the A-calculus holds for any complete reduction strategy (i.e. a
strategy that does not leave any redex un-reduced) and we would expect the same
result for its p-representation. As we have already noticed, since in the py-calculus all
the rewrite rules are left-linear and all the sets are singletons, the confluence conditions
that will be presented in Section 4.2 are always satisfied. Therefore, the evaluation
rule Firey can be used on any py-application without losing the confluence of the
pa-calculus.

Proposition 3.5 The py-calculus is confluent.

Notice finally that using the same technique, the A-calculus with patterns of [50]
can be encoded as a sub-calculus of the p-calculus.

3.2 Encoding finite rewrite sequences

As far as it concerns term rewriting, we just recall the basic notions that are consistent
with [16, 4] to which the reader is referred for a more detailed presentation.

A rewrite theory is a 4-tuple R = (X, F, E, R) where X is a given countably infinite
set of variables, F a set of ranked function symbols, E a set of T (F, X)-equalities,
and R a set of rewrite rules of the form | — r where I,r € T(F,X) satisfying
Var(r) C Var(l).

In what follows we consider E = () but we conjecture that all the results concerning
the encoding of rewriting in p-calculus can be smoothly extended to any equational
theory F.

Since the rewrite rules are trivially p-terms, the representation of rewrite sequences
in the p-calculus is quite simple. We consider a restriction of the p-calculus where the
right-hand sides of rewrite rules are terms of 7 (F, X’). The rewrite rules are trivially
translated in the p-calculus and the application of a rewrite rule at the top position
of a term is represented using the p-operator [](.).

We want to show that for any derivation in a rewriting theory, a corresponding
reduction can be found in the p-calculus. If we consider that a sub-term w of a term
t is reduced to w' by applying some rewrite rule (I — r) and thus,

t[w]P —R t[w’]p

then, we can build immediately the p-term t([l—"‘](wﬂp with the reduction:

isri(w)], —p t{wyl, —o {tw, }-

The above construction method for the p-term with a p-reduction similar to that
of the term ¢ according to the rule I — r is very easy but allows us to find the corre-
spondence for only one rewrite step. It is not easy to extend this representation for
an unspecified number of reduction steps w.r.t. a set of rewrite rules and a systematic
method for the construction of the corresponding p-term is desirable.

385

Proposition 3.6 Given a rewriting theory Tz and two first order ground terms ¢, ¢ €
T (F) such that t —5 t'. Then, there exist the p-terms uy, ... ,u, built using the

rewrite rules in R and the intermediate steps in the derivation ¢t —x ¢’ such that we
have [u,](. .. [u1](t)...) —p, {t'}

PROOF. We use induction on the length of the derivation ¢ —5 t'.
The base case: t —sp t (derivation in 0 steps)

We have immediately [z — z](t) L)pw {t}.

Induction: t —7 t' (derivation in n steps)
We consider that the rewrite rule [— r is applied at position p of the term ¢’ fwl,
obtained after n — 1 reduction steps,

—1
t n—)R t,[w]P —?l—rp t,[9T]P

where 6 is the grafting such that 6] = w.

By induction, there exist the p-terms w1, ... ,u,—1 such that we have the reduction
[n—1](-- [ua](t) ...) —=p, {t'1w,}- We consider the p-term uy = t'[;,,) and we
obtain the reduction
[wn] (- fu](®)) =g [Frimse) N 101, 1) —Baten {1007, 1(¢07,)}

L)C'ongruence {{t,]'[l—)r](w)]p}} — Fire {{t,[{9’r}]p}} L)OpOnS'et {{{tIW’r]P}}}
5 Flat {t"rorm,}
where the substitution ¢’ is such that {#'} = Solution(l <j w).

Since # = #' and in this case substitution and grafting are identical, we obtain

1o, = tror,,-

O
Until now we have used the evaluation rule Cong for constructing the reduction
[1y, JC o P o), N[s, J@)) 2, {1}
that corresponds, in the p-calculus, to the reduction, in the rewrite theory,
t=t), —hore Elul,, —eorps o ~Haoreps UTwa],, =t

As explained in Section 2.4, to any reduction performed using the rule Cong cor-
responds a reduction that is done using the rule Fire. Starting from the term u
corresponding to a reduction in n (Cong) steps we build the term u’ that reduces to
the same term as u but using Fire reductions:

[tn”n]m — tnfrn]pn](' .. ([tl Hl]pl — ¢! (,ﬂpl](t)) ..) ;)p {t’}

Remark 3.7 One can notice that the terms u; used in the proof above are similar to
the proof terms used in labeled rewriting logic [39]. Indeed we can see the p-terms
@,

as a generalization of such proof terms where the “;” is used as a notation for the
composition of terms, i.e. [u]([v](¢)) is denoted [v;u](t).

4 The confluence of p-calculus

It is easy to see, and we provide typical examples just below, that the p-calculus is non-
confluent. The main reason for the confluence failure comes from the introduction in

386

the syntax of the new function symbols for denoting sets, abstraction and application.
It results in a conflict between the use of syntactic matching and the set representation
for the reductions results. This leads, on one hand, to undesirable matching failures
due to terms that are not completely evaluated or not instantiated. On the other
hand, we can have sets with more than one element that can lead to undesirable
results in a non-linear context or empty sets that are not strictly propagated. In this
section, we summarize the results of [8] to which the reader is referred for full details.
In particular we show on typical examples the confluence problems and we give a
sufficient condition on the evaluation strategy of the p-calculus that allows to restore
confluence.

4.1 The raw p-calculus is not confluent

Let us begin to show typical examples of confluence failure. A first such situation
occurs when reducing a (sub-)term of the form v = [l — r|(t) by matching [and ¢
and when either ¢ contains a redex, or u is redex.

In Example 4.1.a the non-confluence is obtained when a matching failure results
from a non-reduced sub-term of ¢ but succeeds when the sub-term is reduced. A
similar situation is obtained when the evaluation rule Fire gives the @ result due to
a matching failure but the application of another evaluation rule before the rule Fire
leads to a non-empty set as in Example 4.1.b.

Example 4.1

2 o= b(a = a](a)) b [a— d({a})
Fire(internal) WGZ) Batchl k
[a = D]({a}) 0 {la = al(a)} 0
Batch Firel
{la — b](a)} {{a}}
Fire

{{b}}

In Example 4.2 one can notice that a term can be reduced to an empty set because
of a matching failure implying its bound variables. The result can be different from
the empty set if the reductions of the sub-terms containing the respective variables
are carried out only after the instantiation of these variables.

Example 4.2 [z = [a — D](2)](a)
Fire Fire
{[a = bl(a)} [z = 0](a)
Firel lSwitchR
{{6}} 0

387

In order to avoid this kind of situation we should prevent the reduction of an
application [I — r|(¢) if the matching between the terms [and ¢ fails due to the
matching rules VariableClash (Example 4.2) or SymbolClash (Example 4.1.a, 4.1.b)
and either some variables are not instantiated or some of the terms are not reduced,
or the term ¢ is a set.

The matching rules VariableClash and SymbolClash would be never applied if the
set of functional positions of the term [was a subset of the set of functional positions
of the term ¢. This is not the case in Example 4.2 where, in the term [a — b](z), a is a
functional position and the corresponding position in the argument of the rewrite rule
application is the variable position z. In Example 4.1.a and Example 4.1.b a functional
position in the left-hand side of the rewrite rule corresponds to an abstraction and
set position respectively and thus, the condition is not satisfied.

Therefore, we could consider that the evaluation rule Fire is applied only when the
condition on the functional positions is satisfied. Unfortunately, such a condition will
not suffice for avoiding a non-appropriate matching failure due to the application of
the rule MergingClash. As shown in Example 4.3, such a situation can be obtained
if the left-hand side of the rewrite rule to be applied is not linear.

a — a
Fire Fire
internal) (external
a,{a}))

Example 4.3

[9(z,) — z](g)
OPOnSet&BatChl Fire
(external
{l9(z,2) = 2](9(a,a))} "

Firel

{{a}}

Another pathological case arises when the term t contains an empty set or a sub-
term that can be reduced to the empty set. Indeed, the application of the rule Fire
can lead to the non-propagation of the failure and thus, to non-confluence as in the
next example:

Example 4.4 [z — b](0)

yw

{b} 0

We mention that a rewrite rule is quasi-regular if the set of variables of the left-hand
side is included in the set of variables of the right-hand side. In Section 4.2 we give
a formal definition for the notion of quasi-regular rewrite rule that takes into consid-
eration all the operators of the p-calculus. We have already seen in Example 4.4 that
the non-propagation of the failure is obtained when non-quasi-regular rewrite rules
are applied to a term containing (). When a quasi-regular rewrite rule is applied to a
term containing (), the empty set is present in the term resulting from the application

388

of a substitution of the form {z/0} to the right-hand side of the rewrite rule (unlike
in Example 4.4) and thus, the appropriate propagation of the) is guaranteed.

Another nasty situation, well known, in particular in graph rewriting, is obtained
due to uncontrolled copies of terms. When applying a non-right-linear rewrite rule to
a term that contains sets with more than one element, or terms that can be reduced
to such sets, we obtain undesirable results as in Example 4.5.

Example 4.5
[z = g(z,z)]({a,b})

Fire k
{9({a,b},{a,b})} {lz = g(z,2)](a), [r = g(z,)](b)}
OpOnSet lFire
{{g(a,{a,b}),9(b,{a,b})}} {{g(a,a)},{g(b,b)}}
OpOnSet lFlat
{{{9(a,a),9(a,0)},{g(b,a),g(b,b)} }} {g(a,a),g(b,b)}
Flat

{g(a,a),g(a,b),g(b,a),g(b,b)}

To sum-up, the non-confluence is due to the application of the evaluation rule Flire
too early in a derivation and the typical situations that we want to avoid consist in
using the rule Flire for reducing an application:

e containing non-instantiated variables,

e containing non-reduced terms,

e containing a non-left-linear rewrite rule,

e of a non-right-linear rewrite rule to a term containing sets with more than one
element,

e of a non-quasi-regular rewrite rule to a term containing empty sets.

We can notice that if we assume the computation rules (see Section 2.4) to be
applied eagerly, then some, but unfortunately not all of the above confluence problems
vanish. In particular, non-confluence examples involving sets, as Example 4.4 and
Example 4.5, are overcome by an eager application of the computation rules.

4.2 Enforcing confluence using strategies

As we have just seen in the previous section, the possibility of having empty sets
or sets with more than one element leads immediately to non-confluent reductions
implying the evaluation rules Fire and Congruence. But the confluence could be
restored under an appropriate evaluation strategy and, in particular, this strategy
should guarantee a strict failure propagation and an appropriate handling of the sets
with more than one element.

389

A first possible approach consists in reducing a p-term by initially applying all the
rules handling the sets (Distrib, Batch, Switchy,, Switchr, OpOnSet, Flat), i.e. the
computation rules, and only when none of these rules can be applied, apply one of
the rules Fire, Cong, CongFail, i.e. the deduction rules, to the terms containing no
sets.

But an application can be reduced, by using the rule F'ire, to an empty set or to
a set containing several elements and thus, this strategy can still lead, as previously,
to non-confluent reductions. Another disadvantage of this approach is that for no
restriction of the p-calculus the proposed strategy is reduced to the trivial strategy
ALL.

Since the sets (empty or having more than one element) are the main cause of the
non-confluence of the calculus, a natural strategy consists in reducing the application
of a rewrite rule by respecting the following steps: instantiate and reduce the argument
of the application, push out the resulting set braces by distributing them in the terms
and only when none of the previous reductions is possible, use the evaluation rule
Fire. We can easily express this strategy by imposing a simple condition for the
application of the evaluation rule Fire.

Definition 4.6 We call ConfStratStrict the strategy which consists in applying the
evaluation rule Fire to a redex [l — r](t) only if the term ¢ is a first order ground
term.

Proposition 4.7 When using the evaluation strategy ConfStratStrict, the p-calculus
is confluent.

PROOF. We consider the parallelization of the relation induced by the evaluation rules
Fire and Congruence on one hand and the relation induced by the other rules of the
calculus on the other hand. We show the confluence of the two relations and then
use Yokouchi’s Lemma [60] to prove the strong confluence of the relation obtained by
combining the former relations. This latter relation is the transitive closure of the
relation induced by the evaluation rules Fire and Congruence, and the evaluation
rules handling sets.

The Yokouchi Lemma can be easily proved due to the strict conditions on the appli-
cation of the rule Fiire and thus to the absence of interaction between the evaluation
rules of the calculus. a

The strategy ConfStratStrict is quite restrictive and we would like to define a general
strategy that becomes trivial (i.e. imposes no restriction) when restricted to some
simpler calculi, as the A-calculus.

A confluent strategy emerges from the above counterexamples and allows the appli-
cation of the evaluation rule Fire only if a possible failure in the matching is preserved
by the subsequent p-reductions and if the argument of the application cannot be re-
duced to an empty set or to a set having more than one element. Such a generic
strategy consists in applying the evaluation rule Fire to a redex [l — r|(t) only if:

et € T(F) is a first order ground term
or

e the term t is such that if the matching [<<E) t fails then, for all term ' obtained
by instantiating or reducing ¢, the matching [<<% t' fails, and

390

e the term ¢ cannot be reduced to an empty set or to a set having more than one
element.

If we consider an instance of the p-calculus such that all the sets are singletons
and all the applications are of the form [z — u](v) then, all the above conditions are
always satisfied. Hence, we can say that in this case the previous strategy is equivalent
to the strategy ALL, i.e. it imposes no restriction on the reductions. One can notice
that the py-terms satisfy the previous conditions and thus, such a strategy imposes
no restrictions on the reductions of this instance of the p-calculus.

The conditions imposed for the generic strategy when the term ¢ is not a first order
ground term are clearly not appropriate for an implementation of the p-calculus and
thus, we must define operational strategies guaranteeing the confluence of the calculus.
These strategies will impose some decidable conditions that correspond to (and imply)
the ones proposed above.

We introduce in what follows a more operational and more restrictive strategy
definition guaranteeing the matching “coherence” by imposing structural conditions
on the terms ! and ¢ involved in a matching problem [<<5 t. In order to ensure
the matching failure preservation by the p-reductions, the failure must be generated
only by different first order symbols in the corresponding positions of the two terms
l and t. This property is always verified if the two terms are first order terms but
an additional condition must be imposed if the term ¢ contains p-calculus specific
operators, as the abstraction or the application.

Definition 4.8 A p-term [weakly subsumes a p-term t if
Vp € FPos(l) N Pos(t) = t(p) € F

Thus, a p-term [weakly subsumes a p-term ¢ if for any functional position of the
term [, either this position is not a position of the term ¢, or it is a functional position
of the term ¢.

Remark 4.9 If | € T(F,X') weakly subsumes ¢ then, for any non-functional position
(i.e. the position of a variable, an application, an abstraction or a set) in ¢, the
corresponding position in [, if it exists, is a variable position. Thus, if the top position
of t is not a functional position, then [is a variable.

One can notice that if a first order term [subsumes ¢, then [weakly subsumes ¢.

Example 4.10 The term h(a,y,c) weakly subsumes the term g(b, [z — z](c)) and
the term f(a) weakly subsumes the term g(b, [z — z](c)). The term g(a,y) weakly
subsumes the term g¢(b, [z — z](c)) while the term f(a) does not weakly subsumes

f(lz =](c))-

Definition 4.11 We call ConfStrat the strategy which consists in applying the eval-
uation rule Fire to a redex [l — 7](t) only if:

et € T(F)is a first order ground term

or

e the term [€ T(F, X) is linear and | weakly subsumes ¢, and

e the term ¢ contains no set with more than one element and no empty set, and

391

e for all sub-term [u — w](v) of t, u subsumes v, and
e the term ¢ contains no sub-term of the form [u](v) where u is not an abstraction.

One should notice that the conditions imposed by the strategy ConfStrat are de-
cidable even if the term ¢ is not a first order ground term. One can clearly decide
if a term is of the form [u](v) or [u — w](v) as well as the number of elements of
a finite set. The condition that [weakly subsumes ¢ is simply a condition on the
symbols on the same positions of the two terms and since matching is syntactic, then
the subsumption condition is also decidable. Consequently, all the conditions used in
the strategy ConfStrat are decidable.

The condition forbidding sub-terms of ¢ of the form [u](v) if u is not a rewrite
rule is imposed in order to prevent the application of the evaluation rule CongFail
leading to an empty set result. If one considers a version of the p-calculus without
the evaluation rules Congruence then, this last condition is no longer necessary in
the strategy ConfStrat. Hence, all the terms of the representation of the A-calculus
in the p-calculus trivially satisfy the above conditions and in this case the strategy
ConfStrat is equivalent to the strategy ALL.

Proposition 4.12 When using the evaluation strategy ConfStrat, the p-calculus is
confluent.

PRrOOF. Starting from the evaluation rule Fiire expressed as a conditional rule guarded
by the conditions defined in the strategy ConfStrat we define the relation FireCong
induced by this latter rule and the Congruence rules. The other evaluation rules of
the calculus induce a second relation called Set.

We denote by —r and —>g respectively, the compatible (context) closures of
these two relations, and by —»g the reflexive and transitive closure of —g.

We prove the confluence of the relation —g—p——g and we use an approach
similar to the one followed in [6] for proving the confluence of .

Thus, we have to prove the strong confluence of the relation — p, the conflu-
ence and termination of — g and the compatibility between the two relations (i.e.
Yokouchi’s Lemma.

Using a polynomial interpretation we show that — g terminates and by analyz-
ing the induced critical pairs we obtain the local confluence and consequently, the
confluence of this relation.

The relation — F is not strongly confluent but we define the parallel version of
this relation in the style of Tait & Martin-Lif. We denote this relation by —p, and
we show that is strongly confluent.

The Yokouchi Lemma is proved using the conditions imposed on the application of
the rule Fire. We obtain thus the strong confluence of the relation She— F g

and since this latter relation is the transitive closure of the relation —g—3p—>sg
we deduce the confluence of the calculus.

The proof is presented in full detail in [8]. O

The relatively restrictive conditions imposed in strategy ConfStrat can be relaxed
at the price of the simplicity of the strategy. The conditions that we want to weaken
concern on one hand, the number of elements of the sets and on the other hand, the
form of the rewrite rules.

First, the absence of sets having more than one element is necessary in order to
guarantee a good behavior for the non-right-linear rewrite rules. The right-linearity

392

of a rewrite rule is defined as the linearity of the right-hand side w.r.t. the variables
of the left-hand side. For example, © — g(x,y) is right-linear, but « — g(z,x) is
not right-linear. Moreover, the right-linearity can be imposed only to the operators
different from the set symbols ({_}) and thus, the rewrite rule z — {f(z), f(z)} can be
considered right-linear. Intuitively, we do not need to impose right-linearity for sets
since, due to the evaluation rule Flat, they do not lead to non-convergent reductions
as in Example 4.5.

Definition 4.13 The rewrite rule | — r is hereditary right-linear if any sub-term of
r that is not a set is linear w.r.t. the free variables of [and any rewrite rule of r is
hereditary right-linear.

The application of a rewrite rule which is not hereditary right-linear to a set with
more than one element can lead to non-convergent reductions, as shown in Exam-
ple 4.5, but this is not the case if the applied rewrite rule is hereditary right-linear:

Example 4.14
[z = {z, f(2)}]({a, b})

Fire

{{a, 0}, F({a,b})} {lz = {2, f(@)}(a), [x = {z, f(2)}](b)}

OpOnSetl lFire

{{a,0},{f(a), 7(0)}} {{{a, F(a)}}, {{0, F(0)}}}

Flat
|

{a,b,f(a), f(b)}

On another hand, in order to guarantee the strict propagation of the failure, we
impose that the evaluation rule Flire is applied only if the argument of the application
is not an empty set and it cannot lead to an empty set. In Example 4.4 we can notice
that the free variables of the left-hand side of the rewrite rule are not preserved in
the right-hand side of the rule. If the rewrite rule [— r of the application preserves
the variables of the left-hand side in the right-hand side (e.g. —), the application
of a substitution replacing one of these variables with an empty set (e.g. {z/0}) to r
leads to a term containing () and thus, which is possibly reduced to @.

We define thereafter more formally the rewrite rules preserving the variables and
we present a new strategy defined using this property. First, we introduce a concept
similar to that of free variable but, by considering this time the not-deterministic
nature of the sets.

Definition 4.15 The set of present variables of a p-term ¢ is denoted by PV (¢) and
is defined by:

1.if t = x then PV (t) = {z},

2.if t = {u1,... ,up} then PV(t) =N,_; , PV(w), (PV(0) = X),
3.if t = fur,... ,up) then PV(t) =U,_, ,, PV(w), (PV(c)=0if c € T(F)),
4.if t = [u](v) then PV (t) = PV (u)U PV (v),

393

5.if t =u — v then PV (t) = PV (v) \ FV (u).

The set of free variables of a set of p-terms is the union of the sets of free variables
of each p-term while the set of present variables of a set of p-terms is the intersection
of the sets of free variables of each p-term. We can say that a variable is present in a
set only if it is present in all the elements of the set. For example, PV ({z,y,z}) =0

and PV ({z,g(z,y)}) = {«}.

Definition 4.16 We say that the p-rewrite rule [— r is quasi-regular if FV(I) C
PV (r) and any rewrite rule of r is quasi-regular.

Intuitively, to each free variable of the left-hand side of a quasi-regular rewrite rule
corresponds, in a deterministic way, a free variable in the right-hand side of the rule.
For any set p-term in the right-hand side, the correspondence with the free variables
of the left-hand side should be verified for each element of the set.

Example 4.17 The rewrite rule z — g(z,y) is quasi-regular while the rewrite rule
z — {x,y} is non-quasi-regular.

The rewrite rule {f(z),g(z,z)} — z is quasi-regular while {f(z), g(z,y)} — = is
non-quasi-regular. If the definition of quasi-regular rewrite rules had asked for the
condition PV (l) C PV (t) instead, then the second rewrite rule would have become
quasi-regular as well. This is not desirable since the rewrite rule {f(z),g(z,y)} — =
reduces to {f(z) = z,g(z,y) — z} and only the first one is quasi-regular.

In the particular case of the p-calculus, since the left-hand side of a rewrite rule
I — r must be a first-order term (i.e. [€ T(F, X)), we have FV (I) = PV (l) = Var(l)
and thus the condition from Definition 4.16 can be changed to Var(l) C PV (t).

Let us consider the application a quasi-regular rewrite rule | — r to a term ¢ giving
as result the term {or}, where o is the matching substitution between [and ¢. If §
is a sub-term of ¢ and if | weakly subsumes r, then) is in o. Since the rewrite rule is
quasi-regular, we have Dom(o) C PV (r) and thus, we are sure that 0 is a sub-term
of or. Furthermore, if () instantiated a variable of a set in or then it is present in
all the elements of the set and thus, we avoid non-confluent results as the ones in
Example 4.4.

Example 4.18 A quasi-regular rule applied to @ gives only one result:

[z = {z,9(z,a)}](D)

[{33 — T, T = g(m,a)}](@) Batch {079(070’)}

Distrib l lOpOnSet
{lz = 2](0), [z > glw,)] (1)} — 2" Bt (0,0}

while a non-quasi-regular one yields two different results as shown in Example 4.4.

One should notice that if a rewrite rule I — r is reduced by the evaluation rule
Switch_R to a set of rewrite rules, each of these rules is quasi-regular and thus the
strict propagation of the empty set is ensured on all the right-hand sides of the
obtained rewrite rules.

394

Definition 4.19 We call ConfStratLin the strategy which consists in applying the
evaluation rule Fire to a redex [[— r](t) only if ¢t € T (F) is a first order ground term
or:

e the term [€ T(F, X) is linear and [weakly subsumes ¢,
and

o cither
— [— r is quasi-regular
or
— the term ¢ contains no empty set, and
— for all sub-term [u — w](v) of ¢, u subsumes v, and
— the term ¢ contains no sub-term of the form [u](v) where u is not an abstraction.

and

e cither
— [— r is hereditary right-linear
or
— the term ¢ contains no set with more than one element.

Compared to the strategy ConfStrat we added the possibility to test either the
quasi-regular condition on the rewrite rule [— r or the conditions on the reducibility
of the term ¢ to an empty set. Moreover, if the rewrite rule is hereditary right-linear
we allow arguments containing sets having more than one element. Since one can
clearly decide if a rule is quasi-regular or hereditary right-linear, all the conditions
used in the strategy ConfStratLin are decidable.

Proposition 4.20 When using the evaluation strategy ConfStratLin, the p-calculus
is confluent.

PROOF. The same approach as for the strategy ConfStrat is used but some additional
diagrams corresponding to the reductions that where not possible before are consid-
ered. These new cases are mainly introduced in the proof of Yokouchis’s Lemma. The
proof is detailled in [8]. i
When using a calculus integrating reduction modulo an equational theory (e.g.
associativity and commutativity), as explained in Section 2.4, the overall confluence
proof is different but uses lemmas similar to the ones of the former case. Therefore,
we conjecture that Proposition 4.12 and Proposition 4.20 can be extended to a pg-
calculus modulo a specific decidable and finitary equational matching theory E.

5 Conclusion

We have presented the pr-calculus together with some of its variants obtained as
instances of the general framework. By making explicit the notion of rule, rule appli-
cation and application result, the pp-calculus allows us to describe in a simple yet very
powerful and uniform manner algebraic and higher-order capabilities. This provides
therefore a simple and natural framework for their combination.

In the pp-calculus the non-determinism is handled by using sets of results and the
rule application failure is represented by the empty set. Handling sets is a delicate
problem and we have seen that the raw p-calculus, where the evaluation rules are

395

not guided by a strategy, is not confluent. When an appropriate but rather natural
generalized call-by-value evaluation strategy is used, the calculus is confluent.

The p-calculus is both conceptually simple as well as quite expressive. This allows
us to represent the terms and reductions from A-calculus and rewriting. We conjecture
that, following the lines of [55], it is also simple to encode other calculi of interest like
the m-calculus.

Part II, is devoted to the use of an extension of the calculus powerful enough to
encode rewriting strategies, conditional rewriting and to give a semantics to the ELAN
language. We refer to the conclusion of Part II for a presentation of the ongoing and
future works on the p-calculus.

Acknowledgments

We would like to thank Hélene Kirchner, Pierre-Etienne Moreau and Christophe
Ringeissen from the Protheo Team for the useful interactions we had on the top-
ics of this paper, Vincent van Oostrom for suggestions and pointers to the literature,
Roberto Bruni and David Wolfram for their detailed and very useful comments on
a preliminary version of this work and Delia Kesner for fruitful discussions. We are
grateful to Luigi Liquori for many comments and exciting discussions on the p-calculus
and its applications. Many thanks also to Thérese Hardin and Nachum Dershowitz
for their interest, encouragements and helpful suggestions for improvement. Finally
special thanks are due to the referees for the very complete and careful reading of the
paper as well as constructive and useful remarks.

References

[1] M. Adi and C. Kirchner. Associative commutative matching based on the syntacticity of the
AC theory. In F. Baader, J. Siekmann, and W. Snyder, editors, Proceedings 6th International
Workshop on Unification, Dagstuhl (Germany). Dagstuhl seminar, 1992.

[2] H. P. Barendregt. The Lambda-Calculus, its syntaz and semantics. Studies in Logic and the
Foundation of Mathematics. Elsevier Science Publishers B. V. (North-Holland), Amsterdam,
1984. Second edition.

[3] P. Borovansky, C. Kirchner, H. Kirchner, and C. Ringeissen. Rewriting with strategies in ELAN:
a functional semantics. International Journal of Foundations of Computer Science, 2001.

[4] F. Baader and T. Nipkow. Term Rewriting and all That. Cambridge University Press, 1998.

[5] V. Breazu-Tannen. Combining algebra and higher-order types. In Proceedings 3rd IEEE Sym-
posium on Logic in Computer Science, Edinburgh (UK), pages 82-90, 1988.

[6] P.-L. Curien, T. Hardin, and J.-J. Lévy. Confluence properties of weak and strong calculi of
explicit substitutions. Journal of the ACM, 43(2):362-397, 1996.

[7] A. Church. A formulation of the simple theory of types. Journal of Symbolic Logic, 5:56—68,
1940.

[8] H. Cirstea. Calcul de réécriture : fondements et applications. These de Doctorat d’Université,
Université Henri Poincaré - Nancy I, 2000.

[9] H. Cirstea and C. Kirchner. Combining higher-order and first-order computation using p-
calculus: Towards a semantics of ELAN. In D. Gabbay and M. de Rijke, editors, Frontiers
of Combining Systems 2, Research Studies, ISBN 0863802524, pages 95-120. Wiley, 1999.

[10] L. Colson. Une structure de données pour le A-calcul typé. Private Communication, 1988.

[11] D. Dill, A. Drexler, A. Hu, and C. Yang. Protocol verification as a hardware design aid. In IEEE
International Conference on Computer Design: VLSI in Computers and Processors, pages 522—
525. IEEE computer society, 1992.

396

[12] N. Dershowitz. Computing with rewrite systems. Information and Control, 65(2/3):122-157,
1985.

[13] G. Dowek, T. Hardin, and C. Kirchner. Higher-order unification via explicit substitutions,
extended abstract. In D. Kozen, editor, Proceedings of LICS’95, pages 366-374, San Diego,
June 1995.

[14] G. Dowek, T. Hardin, and C. Kirchner. Theorem proving modulo. Rapport de Recherche
3400, Institut National de Recherche en Informatique et en Automatique, April 1998.
ftp://ftp.inria.fr/INRIA/publication/RR/RR-3400.ps.gz.

[15] G. Dowek, T. Hardin, C. Kirchner, and F. Pfenning. Unification via explicit substitutions: The
case of higher-order patterns. In M. Maher, editor, Proceedings of JICSLP’96, Bonn (Germany),
September 1996. The MIT press.

[16] N. Dershowitz and J.-P. Jouannaud. Rewrite Systems. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science, chapter 6, pages 244-320. Elsevier Science Publishers B. V.
(North-Holland), 1990.

[17] G. Dowek. Third order matching is decidable. Annals of Pure and Applied Logic, 69:135-155,
1994.

[18] S. Eker. Associative-commutative matching via bipartite graph matching. Computer Journal,
38(5):381-399, 1995.

[19] S. Eker. Fast matching in combinations of regular equational theories. In J. Meseguer, editor,
Proceedings of the first international workshop on rewriting logic, volume 4, Asilomar (Califor-
nia), September 1996. Electronic Notes in Theoretical Computer Science.

[20] F. Fages and G. Huet. Unification and matching in equational theories. In Proceedings Fifth
Colloquium on Automata, Algebra and Programming, L’Aquila (Italy), volume 159 of Lecture
Notes in Computer Science, pages 205-220. Springer-Verlag, 1983.

[21] J. Gallier and V. Breazu-Tannen. Polymorphic rewriting conserves algebraic strong normaliza-
tion and confluence. In 16th Colloguium Automata, Languages and Programming, volume 372
of Lecture Notes in Computer Science, pages 137-150. Springer-Verlag, 1989.

[22] J. A. Goguen, C. Kirchner, H. Kirchner, A. Mégrelis, J. Meseguer, and T. Winkler. An intro-
duction to OBJ-3. In J.-P. Jouannaud and S. Kaplan, editors, Proceedings 1st International
Workshop on Conditional Term Rewriting Systems, Orsay (France), volume 308 of Lecture
Notes in Computer Science, pages 258-263. Springer-Verlag, July 1987. Also as internal report
CRIN: 88-R-001.

[23] J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types, volume 7 of Cambridge Tracts in
Theoretical Computer Science. Cambridge University Press, 1989.

[24] G. Huet and B. Lang. Proving and applying program transformations expressed with second-
order patterns. Acta Informatica, 11:31-55, 1978.

[25] J. R. Hindley and J. P. Seldin. Introduction to Combinators and Lambda-calculus. Cambridge
University, 1986.

[26] G. Huet. A mechanization of type theory. In Proceeding of the third international joint confer-
ence on artificial intelligence, pages 139-146, 1973.

[27] G. Huet. Résolution d’equations dans les langages d’ordre 1,2, ...,w. Theése de Doctorat d’Etat,
Université de Paris 7 (France), 1976.

[28] J.-P. Jouannaud and H. Kirchner. Completion of a set of rules modulo a set of equations. SIAM
Journal of Computing, 15(4):1155-1194, 1986. Preliminary version in Proceedings 11th ACM
Symposium on Principles of Programming Languages, Salt Lake City (USA), 1984.

[29] J.-P. Jouannaud and C. Kirchner. Solving equations in abstract algebras: a rule-based survey
of unification. In J.-L. Lassez and G. Plotkin, editors, Computational Logic. Essays in honor of
Alan Robinson, chapter 8, pages 257-321. The MIT press, Cambridge (MA, USA), 1991.

[30] J.-P. Jouannaud and M. Okada. Abstract data type systems. Theoretical Computer Science,
173(2):349-391, 28 February 1997.

[31] G. Kahn. Natural semantics. Technical Report 601, INRIA Sophia-Antipolis, February 1987.

[32] D. Kesner. La définition de fonctions par cas & l’aide de motifs dans des langages applicatifs.
PhD thesis, Université de Paris XI, December 1993.

[33] C. Kirchner and H. Kirchner. Rewriting, solving, proving. A preliminary version of a book
available at www.loria.fr/ ckirchne/rsp.ps.gz, 1999.

397

[34] C. Kirchner, H. Kirchner, and M. Rusinowitch. Deduction with symbolic constraints. Revue
d’Intelligence Artificielle, 4(3):9-52, 1990. Special issue on Automatic Deduction.

[35] C. Kirchner, H. Kirchner, and M. Vittek. Designing constraint logic programming languages
using computational systems. In P. Van Hentenryck and V. Saraswat, editors, Principles and
Practice of Constraint Programming. The Newport Papers., chapter 8, pages 131-158. The MIT
press, 1995.

[36] J. W. Klop. Term Rewriting Systems. In S. Abramsky, D. Gabbay, and T. Maibaum, editors,
Handbook of Logic in Computer Science, volume 1, chapter 6. Oxford University Press, 1990.

[37] C. Kirchner and C. Ringeissen. Rule-Based Constraint Programming. Fundamenta Informaticae,
34(3):225-262, September 1998.

[38] J. Klop, V. van Oostrom, and F. van Raamsdonk. Combinatory reduction systems: introduction
and survey. Theoretical Computer Science, 121:279-308, 1993.

[39] J. Meseguer. Conditional rewriting logic as a unified model of concurrency. Theoretical Computer
Science, 96(1):73-155, 1992.

[40] R. Milner. A proposal for standard ML. In Proceedings ACM Conference on LISP and Func-
tional Programmaing, 1984.

[41] D. Miller. A logic programming language with lambda-abstraction, function variables, and simple
unification. In P. Schroeder-Heister, editor, Eztensions of Logic Programming: International
Workshop, Tibingen, Germany, December 1989, volume 475 of Lecture Notes in Computer
Science, pages 253-281. Springer-Verlag, 1991.

[42] MuPAD Group, Benno Fuchssteiner et al. MuPAD User’s Manual - MuPAD Version 1.2.2.
John Wiley and sons, Chichester, New York, first edition, march 1996. includes a CD for Apple
Macintosh and UNIX.

[43] T. Nipkow. Combining matching algorithms: The regular case. In N. Dershowitz, editor, Pro-
ceedings 3rd Conference on Rewriting Techniques and Applications, Chapel Hill (N.C., USA),
volume 355 of Lecture Notes in Computer Science, pages 343—-358. Springer-Verlag, April 1989.

[44] T. Nipkow and C. Prehofer. Higher-order rewriting and equational reasoning. In W. Bibel and
P. Schmitt, editors, Automated Deduction — A Basis for Applications. Volume I: Foundations.
Kluwer, 1998.

[45] M. J. O’Donnell. Computing in Systems Described by Equations, volume 58 of Lecture Notes in
Computer Science. Springer-Verlag, 1977.

[46] M. Okada. Strong normalizability for the combined system of the typed A calculus and an
arbitrary convergent term rewrite system. In G. H. Gonnet, editor, Proceedings of the ACM-
SIGSAM 1989 International Symposium on Symbolic and Algebraic Computation: ISSAC ’89
/ July 17-19, 1989, Portland, Oregon, pages 357-363, New York, NY 10036, USA, 1989. ACM
Press.

[47] V. Padovani. Filtrage d’ordre supérieur. Thése de Doctorat d’Université, Université Paris VII,
1996.

[48] V. Padovani. Decidability of fourth-order matching. Mathematical Structures in Computer
Science, 3(10):361-372, June 2000.

[49] B. Pagano. X.R.S : Explicit Reduction Systems - A First-Order Calculus for Higher-Order
Calculi. In C. Kirchner and H. Kirchner, editors, 15th International Conference on Automated
Deduction, LNAI 1421, pages 72-87, Lindau, Germany, July 5-July 10, 1998. Springer-Verlag.

[50] S. Peyton-Jones. The implementation of functional programming languages. Prentice Hall, Inc.,
1987.

[51] Protheo Team. The ELAN home page. WWW Page, 2001. http://elan.loria.fr.

[52] C. Ringeissen. Combining Decision Algorithms for Matching in the Union of Disjoint Equational
Theories. Information and Computation, 126(2):144-160, May 1996.

[53] A. van Deursen. An Overview of ASF+SDF. In Language Prototyping, pages 1-31. World
Scientific, 1996. ISBN 981-02-2732-9.

[54] M. van den Brand, A. van Deursen, P. Klint, S. Klusener, and E. A. van der Meulen. Industrial
applications of ASF+SDF. In M. Wirsing and M. Nivat, editors, AMAST ’96, volume 1101 of
Lecture Notes in Computer Science, pages 9-18. Springer-Verlag, 1996.

[55] P. Viry. Input/Output for ELAN. In J. Meseguer, editor, Proceedings of the first interna-
tional workshop on rewriting logic, volume 4 of Electronic Notes in TCS, Asilomar (California),
September 1996.

398

[56] M. Vittek. ELAN: Un cadre logique pour le prototypage de langages de programmation avec
contraintes. These de Doctorat d’Université, Université Henri Poincaré — Nancy 1, October
1994.

[57] V. van Oostrom. Lambda calculus with patterns. Technical report, Vrije Universiteit, Amster-
dam, November 1990.

[58] D. A. Wolfram. The Clausal Theory of Types, volume 21 of Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press, 1993.

[59] S. Wolfram. The Mathematica Book, chapter Patterns, Transformation Rules and Definitions.
Cambridge University Press, 1999. ISBN 0-521-64314-7.

[60] H. Yokouchi and T. Hikita. A rewriting system for categorical combinators with multiple argu-
ments. SIAM Journal of Computing, 19(1), February 1990.

Received October 1, 2000. Revised: January 26, 2001, February 9, 2001

399

400

The rewriting calculus — Part Il

HORATIU CIRSTEA, LORIA and INRIA, Campus Scientifique,
BP 239, 54506 Vandoeuvre-les-Nancy, France,
E-mail: Horatiu. Cirstea@loria. fr.

CLAUDE KIRCHNER, LORIA and INRIA, Campus Scientifique,
BP 239, 54,506 Vandoeuvre-les-Nancy, France,
E-mail: Claude. Kirchner@loria.fr.

Abstract

The p-calculus integrates in a uniform and simple setting first-order rewriting, A-calculus and non-
deterministic computations. Its abstraction mechanism is based on the rewrite rule formation and
its main evaluation rule is based on matching modulo a theory 7'.

We have seen in the first part of this work the motivations, definitions and basic properties of the
p-calculus. This second part is first devoted to the use of an extension of the p-calculus for encoding
a (conditional) rewrite relation. This extension is based on the first operator whose purpose is to
detect rule application failure. It allows us to express recursively rule application and therefore to
encode strategy based rewriting processes. We then use this extended calculus to give an operational
semantics to ELAN programs.

We conclude with an overview of ongoing and future works on p-calculus.

Keywords: rewriting, strategy, non-determinism, matching, rewriting-calculus, lambda-calculus, rule

based language.

1 Introduction

This is the second part of the rewriting calculus description, study and applications.
In all the paper, we refer to the first part of this work as Part I.

As we have seen in Part I, we can encode in p-calculus the representation of a
finite derivation. But we need more since we want to be able the represent also in
the calculus the generic search for normalization derivations, when they exist. More
generally, we want to have a formal representation of rewriting strategies like the ones
used in ELAN [25].

To this end we extend the calculus with a first operator whose purpose is to detect
rule application failure. This extension allows us to express recursively rule applica-
tion and therefore to encode strategy based rewriting processes.

We then extend the p-encoding of conditional rewriting to more complicated rules
like the conditional rewrite rules with local assignments from the ELAN language. The
non-determinism that in ELAN is handled mainly by two basic strategy operators is
represented in the p-calculus by means of sets. We show finally how the p-calculus
provides a semantics to ELAN programs.

This paper is structured as follows. In Section 2 we extend the basic p-calculus
with a new operator and define term traversal and fixed-point operators using the
existing p-operators.

L. J. of the IGPL, Vol. 9 No. 3, pp. 401-434 2001 401 ©Oxford University Press

The encoding of non-conditional and conditional term rewriting by using the p-
operators defined in Section 2 is presented in Section 3. The calculus is finally used
in Section 4 in order to give an operational semantics to the rules used in the ELAN
language.

We conclude by providing some of the research directions that are of main interest
in the development of this formalism and in the context of ELAN, and more generally
of rewrite based languages as ASF+SDF [20], ML [23], Maude [7], Stratego [28] or
CafeOBJ [17].

2 Recursion and term traversal operators

In Part I we have shown that for any reduction in a rewrite theory there exists a
corresponding reduction in the p-calculus: if the term u reduces to the term v in a
rewrite theory R we can build a p-term &g (u) that reduces to the term {v}. The
method used for constructing the term &z (u) depends on all the reduction steps from
u to v in the theory R: £ (u) is a representation in the p-calculus of the derivation
trace. We want to go further on and to give a method for constructing a term &z (u)
without knowing a priori the derivation from « to v. Hence we want to answer to the
following question:

Given a rewrite theory R does there exist a p-term Er such that for any term u, if u
reduces to the term v in the rewrite theory R then [Er](u) p-reduces to a set contain-
ing the term v?

This means that we wish to describe in the p-calculus reduction strategies and,
mainly, normalization strategies. This will allow us to get, in particular, a natural
encoding of normal conditional term rewriting. Therefore, we want to answer the
more specific question:

Given a rewrite theory R does there exist a p-term &r such that for any term w if
u normalizes to the term v in the rewrite theory R then [{r](u) p-reduces to a set
containing the term v?

The definition of normalization strategies is in general done at the meta-level while
the p-calculus allows us to represent such derivations at the object level. We have
shown in Part I that the pg-calculus contains the A-calculus and thus, any computable
function as the normalization one is expressible in the formalism. What we bring here,
because of the matching power and of the use of non-determinism, is an increased
ease in the expression of such functions together with their expression in a uniform
formalism combining standard rewrite techniques and higher-order behaviors.

When computing the normal form of a term u w.r.t. a rewrite system R, the
rewrite rules are applied repeatedly at any position of a term u until no rule from R
is applicable. Hence, the ingredients needed for defining such a strategy are:

e an iteration operator that applies repeatedly a set of rewrite rules,
e a term traversal operator that applies a rewrite rule at any position of a term,

e an operator testing if a set of rewrite rules is applicable to a term.

402

In what follows we describe how the operators with the above functionalities can
be defined in the p-calculus. We start with some auxiliary operators and afterwards,
we introduce the p-operators that correspond to the functionalities listed above.

2.1 Some auziliary operators

First, we define three auxiliary operators that will be used in the next sections. These
operators are just aliases used to define more complex p-terms and are used for giving
more compact and clear definitions for the recursion operators.

The first of these operators is the identity (denoted id) that applied to any p-term
t evaluates to the singleton containing this term, that is [id](t) —, {t}. The p-term
id is nothing else but the rewrite rule x — z:

id2z— z.

In a similar way we can define the strategy fail which always fails, (i.e. applied to
any term, leads to 0):
fail & — 0.

R

The third one is the binary operator “;” that represents the sequential application
of two p-terms. A p-term of the form [u;v](t) represents the application of the term
v to the result of the application of u to ¢. Therefore, we define the operator ;” by:

uiv = 2 —] ([ul(2)).

In the following sections we generally employ the abbreviations of these operators
and not their expanded form but we sometimes show the corresponding reductions.

2.2 The first operator

We introduce now a new operator, similar to the THEN operator for combining tactics
and already present in LCF [18]. Its role is to select between its arguments the first
one that applied to a given p-term does not evaluate to (). If all the arguments evaluate
to () then the final result of the evaluation is (). The evaluation rules describing the
first operator and the auxiliary operator (_,...,_) are presented in Figure 1. We
do not know currently how to express these operators in the basic p-calculus and we
conjecture that this is not possible.

For simplicity, we considered that the operators first and () are of variable arity
but similar binary operators can be used instead.

The application of a p-term first(si,...,sy) to a term t returns the result of
the first “successful” application of one of its arguments to the term ¢. Hence, if
[s;](t) evaluates to @ for ¢ = 1,... ,k — 1, and [sg](t) does not evaluate to @, then
[first(si,...,sn)](t) evaluates to the same term as the term [sg](¢).

If the evaluation of the terms [s;](t), i = 1,... ,k — 1, leads to } and the evaluation
of [si](t) does not terminate then the evaluation of the term [first(si,... ,sn)](t)
does not terminate.

Definition 2.1 The set of p'*'-terms extends the set o(F, X) of basic p-terms, with
the following two rules:

403

First [first(s1,...,sn)](t) = ([s1](£),...,[sn](t))

FirstFail B, t1,..- ,tn) (t1,.. -, tn)
FirstSuccess (t,t1,...,tn) = {t}
if ¢ contains no redexes, no free
variables and is not §)
FirstSingle () = 0

l

FiG. 1. The first operator

eif ty,...,t, are p-terms then first(ty,...,t,) is a p-term,
eif ty,...,t, are p-terms then (t;,... ,t,) is a p-term.

This set of terms is denoted by o'*¢(F, X).

We define now the pi#t-calculus by considering the new operators and the corre-

sponding evaluation rules presented in Figure 1:

Definition 2.2 Given a set F of function symbols, a set X of variables, a theory
T on 't (F,X) terms having a decidable matching problem, we call p}t-calculus a

calculus defined by:

e a non-empty subset o'%¢(F, X) of the o'*!(F, X) terms,
e the (higher-order) substitution application to terms as defined in Part I,
e a theory T,

e the set of evaluation rules £,15¢: Fire, Cong, CongF'ail, Distrib, Batch, Switchy,
Switchgr, OpOnSet, Flat, First, FirstFail, FirstSuccess, FirstSingle,

e an evaluation strategy S that guides the application of the evaluation rules.

In what follows we consider the p'*-calculus, i.e. the p}t-calculus with a syntactic

matching and whose rewrite rules are restricted to be of the form v — v where u is a
first-order term.

The following examples present the evaluation of some p!'**-terms containing the
operators of the extended calculus.

Example 2.3 The non-deterministic application of one of the rules a — b, a — ¢,
a — d to the term a is represented in the p-calculus by the application [{a — b,a —
¢,a — d}](a). This last p-term is reduced to the term {b,c,d} which represents a
non-deterministic choice among the three terms. If we want to apply the above rules
in a deterministic way and in the specified order, we use the p-term [first(a — b,a —
¢,a — d)](a) with, for example, the reduction:

[first(a — b,a — c,a — d)](a)

— First ([a — b(a),la = c|(a),[a — d](a))
— Fire ({b}, [a = c|(a), [a — d|(a))
—?FirstSuccess {{b}}

—Flat {b}

404

We can notice that even if all the rewrite rules can be applied successfully (i.e. no
empty set) to the term a, the final result is given by the first tried rewrite rule.

Example 2.4 We consider now the case where some of the rules given in argument
to first lead to an empty set result:

[first(a — b,b — ¢,a — d)](b)

— First ([a = 0](b), [b — c](b), [a — d](b))
—Fire (0,16 —] (b),[a — d](b))
—?FirstFail <[b_)c]()7[a_)d]()>

—Fire <{C} [a’ - d]()>

—FirstSuccess {{C}}

—Flat {C}

Example 2.5 If none of the rules given in argument to first is applied successfully,
the result is obviously the empty set:

[first(a = b,a — ¢,a — d)](b)

— First ([a = 0](b),[a = c](b), [a — d](b))
L)Fire (07 w; 0)
L)FirstFail <>

—)FirstSingle 0

The operator first does not test explicitly the applicability of a term (rule) to
another term but allows us to recover from a failure and continue the evaluation. For
example, we can define a term

try(s) £ first(s,id)

that applied to the term ¢ evaluates to the result of [s](t), if [s](¢) does not evaluate
to 0 and to {t}, if [s](¢) evaluates to 0.

2.8 Term traversal operators

Let us now define operators that apply a p-term at some position of another p-term.
The first step is the definition of two operators that push the application of a p-term
one level deeper on another p-term. This is already possible in the p-calculus due to
the rule Cong but we want to define a generic operator that applies a p-term r to the
sub-terms u;, i = 1...n, of a term of the form F(uq,... ,u,) independently on the
head symbol F'.

To this end, we define two term traversal operators, ®(r) and ¥(r), whose behavior
is described by the rules in Figure 2. These operators are inspired by the operators
of the System S described in [27].

The application of the p-term ®(r) to a term ¢t = f(u1,...,up) results in the
successful application of the term r to one of the terms u;. More precisely, r is
applied to the first u;, ¢ = 1,... ,n such that [r](u;) does not evaluate to the empty
set. If there exists no such u; and in particular, if ¢ is a function with no arguments
(t is a constant), then the term [®(r)](¢) reduces to the empty set:

[(I)(T)](C) ——TraverseSeq <{}> ——FirstFail <> ——FirstSingle [2)

405

TraverseSeq [®(r)](f(u,...,u,)) =
M), sun)}y o {f (s] (un)))

TraversePar [¥(r)|(f(u1,...,un)) = {f([r](uw1),-..,[r](un))}

FiG. 2. The term traversal operators of the pr-calculus

When the p-term ¥(r) is applied to a term ¢ = f(uy,... ,u,) the term r is applied
to all the arguments w;, i = 1,... ,n if for all i, [r](u;) does not evaluate to §). If there
exists an wu; such that [r](u;) reduces to @), then the result is the empty set. If we
apply ¥(r) to a constant ¢, since there are no sub-terms the term [¥(r)](c) reduces
to {c}:

[\I’(’I")](C) ——TraversePar {C}

If we consider a p-calculus with a finite signature F and if we denote by Fy =
{c1,...,cn} the set of constant function symbols and by Fy = {fi,..., fm} the set
of function symbols with arity at least one, the two term traversal operators can be
expressed in the p-calculus by some appropriate p-terms.

If the following two definitions are considered

®'(r) £ first(fi(r,id, ... ,id),..., fi(id, ... id,r),...,
fm(ryid, ... id),..., fm(id,... id,r))

U(r) 2 e, sen, filryoor)yoes f(ry ..o m)}

with ¢; € 5o, =1,...,n,and f; € F4, j = 1,...,m, we obtain the following two
reductions,

(&7 (r)](f (i, - . s up))

2 [first(fi(r,id,... id),..., fm(id,... id,r)](fe(uwi,. .. up))
— First ([fi(r,id, ... id)](fru(ui, ... sup)),---, [fm(id, ... id, 7)](fr(u1,. .. ,up)))
—*>00ng @, ..., 0, {fr([r)(ur), - yup)}, oo {fr(ur, ..., [r](up))},0,...,0)
5 FirstFail fe(rl(ua)s ey up) by s {fk(ur, oo [r](up)) 1, 0,00, 0)
and
(B ()] (fr(u, ... up))
= Hews - sens filr, o), oo (oo s) H(Fe(ua, - up))
— Distrib {[Cl](fk(ula"' 7UP))7 """ 7[fm(r7"' 7r)](fk(u1:--' 7up))}

_*)Cong {wa s 7[2)7 {fk([r](ul)a R [T](U’IJ))}’ [2)7 B 7[2)}
— Flat {fe([r](ur), -5 [r)(up))}

The operator ®' does not correspond exactly to the definition from the Figure 2
but, as we have just seen above, a similar result is obtained when applying the terms
®(r) and ®'(r) to a term fr(u,... ,up).

Lemma 2.6 The term traversal operators ® and ¥ can be expressed in the p!'t-calculus.

406

Proor. If we consider ¢ = fi(ug,...,up,) and if for all i = 1,...,p we have the re-

ductions [r](u;) —, 0 then, according to the evaluation rules describing the behavior
of ®(r), we obtain:

[@(r)] (i (u, - - s up))

—1raverseseq ({fe([F](ua), o up)ts oo {fk(un, o [7](up) 1)
_*)P <{ ())}7"'7{fk(u1,-..,0)}>
L>OpOnSet ({ } {@}>

_*)Flat (07 >
_*)FirstFail ()

—?FirstSingle @

Otherwise, if there exists an [such that [r](u;) —, 0, i = 1,...,l — 1 and

[r](w) —, v |, with v, | a ground term containing no redex, the following re-
duction is obtained:

()] (felur, . 1))

—TraverseSeq {fe([r](ua), ... 7“1))}7--- Afw(ug, ... 7[7'](up))}>

%p {Fe@@, .. yup) by (v, o by up) by { (U, o0, 0))
L)OpOnSet (@ {fk(ul,... , Ul J,, ,up)},@,... ,@)

_*)FirstFail ({fk(ul,... , U1 J,, ,up)},(l),... ,@)

Depending on the evaluation strategy, the terms following fr(ui,... v d,... ,up)
can be reduced or not to the empty set and we have chosen here the former alternative
for a more compact representation.

Now, if we consider the definition of ®'(r) and if for all ¢ = 1,... ,p we have
[r](ui) —, O then, we obtain:

[()] (fe(urs. .. up))
—p e, - up)ts oo e, - [P (up)) 3,0, 0)
L)P <{ (7up)}7 --7{fk(u1;--'70)}707"'70>
—0pOnSet {0}, ..., {00, 0)
L)14_‘lat (07 7@; ;0)
_*)FirstFail ()

—)FirstSingle 0

For the same term [®'(r)](fx(u1,. .. ,up)), if it exists an [such that [7](u;) —, 0,
i=1,...,0 —1and [F](u) —, v; |, with v; | a ground term containing no redex,
the following reduction is obtained:

(@ (r)](fr(us, ... up))

— {fe(rlua)s - up)ts oo kv, - [P (up)) 3,0, 0)
L)p e, .. yup) by {fe(ur, o by up) 10,00, 0)
L)01)0715875 <{0}7 X 7{0}7{fk(u17--- ULy 7up)}7wa 7w>

5 Flat @,0, {fu(ur,...,ud,-..,up)},0,...,0)
_*)FirstFaz'l ({fk(ul,... , U1 J,, ,up)},(i),... ,@)

407

We can notice that the results of the reductions for the application of a term r to the

arguments of a term fi(u1, ... ,up) by using the two operators, ® and ®', are identical.
If the terms u;, ¢ = 1...p, are ground terms containing no redex then, the final result
of the two reductions in the case without failure is {fx(u1,... v },... ,up)}.

When the operators are applied to a constant ¢, € Fo we obtain:
[@'(r)](c) —=p () —5 0,

[®(r)](ex) —p {ex}-

2.4 Iterators

The definition of the evaluation (normalization) strategies as, for example, top-down
or bottom-up, is based on the application of one term to the top position or to the
deepest positions of another term.

For the moment, we have the possibility of applying a p-term r either to one or
all the arguments u; of a p-term ¢t = f(uy,... ,uy), or to the sub-terms of ¢ at an
explicitly specified depth. But the depth of a term is not known a priori and thus,
we cannot apply a term r to the deepest positions of a term ¢. If we want to apply
the term 7 to the sub-terms at the maximum depth of a term ¢ we must define a
recursive operator which reiterates the application of the ®(r) and ¥(r) terms and
thus, pushes the application deeper into terms.

We start by presenting the p-term used for describing recursive applications in the
p-calculus. Starting from the fixed-point combinators of the A-calculus, we define
a p-term which recursively applies a given p-term. We use the classical fixed-point
combinator of the A-calculus ([2]), ©x = (A) A)) where

A\ = Azy.y(zzy)

and O, is called the Turing fixed-point combinator ([26]).
This term corresponds in the p-calculus to the p-term © = A with

A=z = (y = []([«](@)]y))-
In A-calculus, for any A-term G we have the reduction
0\ G 55 G(0) G).
In p-calculus, we have a similar reduction
[0](G) ==, {IGI([6)(G))} (Fized Point)

as this can be checked as follows:

]
— Fire [{y = [yI([[AI(A)] () H(G)
— istriv 1y = WI([AI(A]()](G)}
— Fire HIGI(AIANG)) +

)
— Flat {[GI({[AI(AIG)}
£ {[G1([elG)}

408

We have obtained the desired result but the last application of the rule Flire in
the above reduction can be replaced by a reduction in the sub-term [[A](A4)](y). We
can thus reduce [[4](A)](y) £ [[' = (5’ > [¥')([[#)@)]G)(A)() to the term
{[v1([[AI(A)] ()} £ {[v]([©](v))}. We therefore obtain the following derivation:

[0)(G)

which does not terminate if the same redex [©](y) is always selected for reduction.

In an operational approach we do not want the new constructions to lead to non-
terminating reductions. Since the p-term [@](G) can obviously lead to infinite reduc-
tions, a strategy should be used in order to obtain termination and thus the desired
behavior.

We should thus use a strategy which applies the evaluation rules to a sub-term of
the form [©](G) only when no other reduction is possible. From an operational point
of view, this strategy is rather difficult to implement and obviously not very efficient
in a calculus where the © term is represented by its extended form and thus, more
difficult to identify. If © is considered as an independent p-term with the behavior
described by an evaluation rule corresponding to the reduction (Fized Point), the
strategy suggested previously could be easily implemented.

A strategy satisfying the termination condition and easier to implement could ini-
tially apply the evaluation rules at the top positions of the terms and only when no
evaluation rule can be applied at the top position, reduce the sub-terms at deeper
positions. In what follows we will generally use this outermost strategy. It is clear
that such a strategy prevents only the infinite reductions due to the operator ©, but
it cannot ensure the termination of the untyped p-calculus.

As we mentioned previously, the main goal of this section is the representation of
normalization strategies by p-terms and thus, we want to describe the application
of a term 7 to all the positions of another term ¢. Therefore, we must define the
appropriate term G that propagates the application of a p-term in the sub-terms of
another p-term.

2.4.1 Multiple applications

First, we want to define the operators BottomUp and TopDown describing the appli-
cation of a term r to all the sub-terms of a term ¢ starting with the deepest positions
of t and respectively with the top position of t. We want thus to find a term which
recursively applies the term r to all the sub-terms of ¢ and afterwards at the top
position of the result term and another term which initially applies the term r at the
top position of the term ¢ and then to the sub-terms of the result term. The term r
must be applied to the sub-terms only if this application does not lead to a failure.

We propose first two “naive” definitions for the former operator and we comment the
encountered problems. We analyze the obtained reductions and we define afterwards
the operators describing the desired behavior.

409

The first natural possibility is to define the p-term
Gsas(r) & f = (@ = [T(f);7](2))
Let us consider the p-term SDS (for SpreadDownSimple),
SDS(r) £ [0](Gsas(r))

and its application to the term ¢t = f(t1,...,t,). Then, the following derivation is
obtained:

[SDS()](t) £ [[O](Gsas(r))](2)
t

= AlGsas(MI([O](Gaas (r)))]()}

£ {ll¢ sds(r)](S S(r)](6)}

£ {{lf = (&= [¥(f);r](@)](SDS(r))l(t)}
—, {{z = [2(SDS(r)):T](fv)}]()}

—, A{[Z(SDS(r));r](f(t, ...))}

—, ARESDSE)(f(tr,- -)}

=, AFFASDS@)](t), - [SDS()I(tn)))}

As we can see from this derivation, the term SDS(r) is recursively applied to the
sub-terms of the initial term and the term r is applied at the top position of the
result. If one of the applications of the term r leads to a failure, then this failure is
propagated and the empty set is obtained as the result of the derivation.

When using a confluent strategy, as the ones presented in Part I, the derivation
presented above is possible only if the term G45(r) cannot be reduced to a set with
more than one element. This condition is obviously not respected if r is a set with
more than one element since, for example, Gy4s({a,b}) —, {Gsas(a),Gsas(b)}. We
want to prevent the evaluation of the term Ggqs(r) to a set with more than one
element even when r does not satisfy this condition and therefore, we define the term

Gaa(r) £ f = (@ = ((Z(f);7](2)))

and respectively SD (for SpreadDown),

1>

SD(r) = [0](Gsa(r))-

If r = {a,b} then, the term Gyq(r) = Gsqa({a,b}) is not reduced to the term
{Gsa(a),Gsqa(b)} as it was the case for G444(r) but
(

Gaa(r) £ f = (z = ([2(f); {a,b}](2))
— f= (2 = ({a, b}]([¥(N)](2))))
—pistrin [= (@ = {[al((2(H)](@), LI[EAHI)})

In this last term, the first argument of the operator () contains the free variable x
and thus, it cannot be reduced by using the evaluation rule FirstSuccess.

Since this last term is not a set, the propagation of the set symbols is not per-
formed in the case of the operator G54 and we can reduce the term [O](Gsq(r)) to
{[G5a(M)]([O](Gs4a(r)))}. Consequently, we obtain the reduction:

410

[SD()](t) = [[©](Gsa(r)](t)
—p AlGaM([O1(Gsa(m))(®)}
= {{[Gsa(r](SD(r)](1)}
= {{lf = (&= QU r)@NSDr)IE)}
—, Az = ((¥(SD@)); (@) NB)}
—, AR(SDE))rl(f(t, -)}
—p UIFASD@(t), -, [SD()](Ea)))}

Example 2.7 If we use a strategy which initially applies the evaluation rules at the
top positions of terms then, the following derivation is obtained:

[SD({a = b,id})](g(a, f(a)))

— {(l{a = b,id}](g([SD({a = b,id})](a), [SD({a = b,id})|(f(a)))))}
— pistriv {{{{e = bl(9([SD({a = b,id})](a), [SD({a = b,id}))(f(a)))),

[id)(9([SD({a — b,id})](a), [SD({a = b,id})](f(a);;;D}

—rrire {({0, [id](g([SD({a — b,id})](a), [SD({a = b,id})](f(a)))) 1)}
— e {({9([SD({a = b,id})](a), [SD({a = b,id})](f(a)))})}

— {{{g({{[{a = b,id}](a))}, [SD({a = b,id}))(f(a))) 1)}

— {{{g({{b, a}, [SD({a = b,id})](f(a))})}

— {({g({d,a}, ([{a = b,id}](f([SD({a = b,id})](a))))})}

— {({g({b,a}, fF({b,a})) N}

— {9(b, £(b)), 9(a, (b)), 9(b, f(a)), g(a, f(a))}

We can notice that the application [SD(r)](t) does not guarantee that the appli-
cations of the term r to the deepest sub-terms of ¢ are the first ones to be reduced.
For example, since we try to apply the evaluation rules at the top position, in the
derivation of Example 2.7 we obtain, by applying the evaluation rule Fire,

[a = 0](g([SD({a = b,id})](a), [SD({a = b,id})])(f(a)))) — Fire 0

and not

[a = 0](g([SD({a = b,id})](a), [SD({a = b,id})](f(a))))
—p [a = 0)(g({b, a}, {f({b,a})})) =, 0

as in an innermost reduction.

The disadvantage of the non-confluence in the case of the operator SDS was elim-
inated by using the operator () in the definition of the operator SD, but we have not
obtained yet the desired behavior for this type of iterator. In the evaluation of the
term [SD(r)](t), if one of the applications of the term r to a sub-term of ¢ is evaluated
to @ then, this failure is propagated and the empty set is obtained as the result of the
reduction.

If we want to keep unchanged the sub-terms of ¢ on which the application of the
term 7 evaluates to (), we can use the term id either in the same way as in Example 2.7,
or by defining the operator Gy,,:

Gu(r) £ f = (z = [first(¥(f),id); first(r,id)](z))
In the same manner as for the previous cases we obtain the operator BottomU p:

BottomUp(r) £ [0](Gyy(r))

411

corresponding to the description presented at the beginning of this section.

Lemma 2.8 The BottomUp operator describing the application of a term to all the
sub-terms of another term in a bottom-up manner can be expressed in the p'*-calculus.

PRrROOF. We analyze the reductions of the application of a term BottomUp(r) to a

constant and to a functional term with several arguments. A complete proof is given

in [9]. m|
A top-down like reduction is immediately obtained if we take the term

Gua(r) £ f = (x = ([first(r,id); first(¥(f),id)](z)))

and we define the term
TopDown(r) £ [0)(Gya(r))-

Lemma 2.9 The TopDown operator describing the application of a term to all the
sub-terms of another term in a top-down manner can be expressed in the p'*¢-calculus.

2.4.2 Singular applications

Using the term traversal operator ® we can define similar p-terms that apply a specific
term only at one position of a p-term in a bottom-up or top-down way. We will see
that the operators built using the ® operator are convenient for the construction of
normalization operators.

The p-term used in the bottom-up case is

Hyu(r) £ f = (@ — [first(2(f),r)](2))
and we define an operator that applies only once a p-term in a bottom-up way,
Oncepy(r) 2 [0©](Hpu(r)).

As for the previous operators, the term [Oncey, (1)](t) £ [[©](Hpu(7))](t) can lead
to an infinite reduction if an appropriate strategy is not employed. As for the
SpreadDown operator it is enough to apply the evaluation rules first to the top
position and only if this is not possible, to deeper positions. We can state:

Lemma 2.10 The Oncey, operator describing the application of a term to a sub-term
of another term in a bottom-up manner can be expressed in the p't-calculus.

Example 2.11 The application [Oncep,(a — b)](a) is reduced to {([(a — b)](a))}
and thus, to the term {b}.

The application of the rule a — b to the leftmost-innermost position of a term
g(a, f(a)) is represented by the term [Oncep,(a — b)](g(a, f(a))) and the correspond-
ing evaluation is presented below:

[Oncepu(a = b)](g(a, f(a)))
—+, {{{g([Oncepu(a = b)](a), f(a)), gla, [Oncepu(a — b)](£(a)))), [a — b](g(a, f(a))))}
—, {{(g({b}, f()), g(a, [Oncepu(a = b)](f(a)))), [a — bl(g(a, f(a))))}
—0 {{g(®, f(@)},[a = b](g(a, f(a)))}
—, {9(b, f(a))}

412

If we want to define an operator that applies a specific term only at one position
of a p-term in a top-down way we should use the p-term

Hya(r) £ f = (z = [first(r, ®(f))](z))

and we obtain immediately the operator Onceq,
Onceq(r) 2 [O](Hyq(r)).

In the case of an application [Oncetq(r)](t), the application of the term r is first
tried at the top position of ¢ and in the case of a failure, r is applied deeper in the
term t. As previously, we can state:

Lemma 2.12 The Oncegq operator describing the application of a term to a sub-term
of another term in a top-down manner can be expressed in the p'®t-calculus.

2.5 Repetition and normalization operators

In the previous sections we have defined operators that describe the application of a
term at some position of another term (e.g. Oncep,) and operators that allow us to
recover from failing evaluations (first).

Now we want to define an operator that applies repeatedly a given strategy r to
a p-term t. We call it repeat and its behavior can be described by the following
evaluation rule:

Repeat [repeat(r)|(t) = [repeat(r)]([r](t))

We use once again the fixed-point operator presented in the previous section and
we define the p-term

I(r) 2 f = (z = [r; f](=))

that is used for describing a repeat operator,
repeat(r) 2 [©](I(r)).

This approach has two obvious drawbacks. First, the termination of the evaluation
is not guaranteed even when the strategy used for the previous operators is used.

When the strategy applies the evaluation rules first to the top position of an appli-
cation [u](v) and only afterwards to the right sub-term v and then to the left sub-term
u, we do not obtain the desired result. When using this rightmost-outermost strategy,
the following non-terminating derivation is obtained:

[repeat(r)](t) —, {[repeat(r]([r](t)} —, ...

—p {[repeat ()] ([r]([r)(- .. [F1(8) ...))} — -

Second, when the evaluation terminates the result is always the empty set. If at
some point in the evaluation the application of the term r is reduced to the empty
set, then () is strictly propagated and thus the term [repeat(r)](t) is reduced to the
empty set.

413

Repeat+' [repeat*(r)](t) = [repeats*(r)]([r](t))

if [7](t) is not reduced to @
Repeatx" [repeatx(r)](t) = t

if [r](t) is reduced to ()

Fi1G. 3. The operator repeat*

In order to overcome these two problems, we can define an operator called repeat=
with a behavior defined by the evaluation rules presented in Figure 3.

Hence, we need an operator similar to the repeat one, that stores the last non-failing
result and when no further application is possible returns this result. We modify the
term I(r) that becomes

J(r) & f = (z = [first(r; f, id)](z))
and we define, as before, the term
repeat(r) = [0](J(r))

We should not forget that we assume here that an application [u](v) is reduced by
applying the evaluation rules at the top position, then to its argument v and only
afterwards to the term u. Once again, we get:

Lemma 2.13 The operator repeat* describing the repeated application of a term
while the result is not () can be expressed in the p'**-calculus.

Example 2.14 The repeated application of the rewrite rules @ — b and b — ¢ on
the term a is represented by the term [repeat*({a — b,b — ¢})](a) that evaluates as
follows:

[repeat*({a — b,b — c})](a)

—p {([repeatx({a = b,b = c}H]([{a = b,b = ¢}](a)), [id](a))}
—p {([repeatx ({a = b,b — c})]({b}), [id](a))}
—p {({{[repeatx({a — b,b = })]([{a = b,b = c}](b)), [id] (b))}, [id] ()}
—p {({([repeat+({a —= b,b = c})]({c}), [id] (b))}, [id](a)) }
—p {{{{[repeat+({a — b,b = c})]([{a —= b,b — c}](0)), [id](c))}, [id) (D))}, [id)(a)) }
—p {{{([repeat+({a — b,b = c})](0), {c})}, [id] (b))}, [id](a)) }
L>p {{{{(0,{ch)}, [id] (b))}, [id](a)) }
—p {{{c}, [id](b))}, [id](a)) }
—p {({{c}}, [id](a))}
—, {c}

Using the above operators it is easy to define some specific normalization strategies.
For example, the innermost strategy is defined by

im(r) £ repeat*(Oncepy,(r))

414

and an outermost strategy is defined by
om(r) £ repeat(Oncesq(r)).

Corollary 2.15 The operators im et om describing the innermost and outermost
normalization can be expressed in the p'®!-calculus.

We have now all the ingredients needed for describing the normalization of a term
t in a rewrite theory R. The term &x(u) described at the beginning of this section
can be defined using the im(R) or om(R) operators and thus, we can represent the
normalization of a term w w.r.t. a rewriting theory R by the p-terms

{r(u)

>

[im(R)](u)
&r(u) £ [om(R)](u).

Example 2.16 If we denote by R the set of rewrite rules {a — b, g(z, f(z)) = =},
we represent by [im(R)](g(a, f(a))) the leftmost-innermost normalization of the term
g(a, f(a)) according to the set of rules R and the following derivation is obtained:

[im(R)](g(a, f(a)))

£ [repeatx(Oncepu(R))(9(a, f(a)))
—>p {{[repeat «(Onceyu(R))|([Oncepu (R)](9(a, f(a)))), [id](g(a, f(a))))}
— {([repeat+(Onceru(R))]({9(b, f(a))}), [id](g(a, f(a))))}
—, {{{[repeat+(Oncepu(R))](g(b, f(a)))}, [id] (g(a, f(a))))}
—, {{({{{[repeat*(Onceypu(R))]([Oncepu (R)](9(b, f(a)))),
[id](g(b, f(a))))}}, [id](g(a, f(a)))}}
—, {{{{[repeat*(Oncep(R)]({g(b, f(b))}),
[id](g(b, f(a))))}, [id](g(a, f(a))))}
— o {{{{{[repeat*(Oncepu(R))]([Onceru(R)](g(b, f())))}
[id](g(b, £ (b))}, [id](g(b, f(a))))}, [id](g(a, f(a))))}
— {{{{{[repeat=(Oncepu(R))]({0})},
[id])(g(b, £ (b))}, [id](g(b, f(a))))}, [id](g(a, f(a))))}
—, {{{{{{([repeat*(Oncepu(R))]([Oncep, (R)](1)), [id)(b)),
[id])(g(b, £ (b))}, [id](g(b, f(a))))}, [id](g(a, f(a))))}
—, {{{{([repeat = (Oncep,(R))](D), [id] (b)),
[id](g(b, f(0))))}, [id](g(b, f(a))))}, [id](g(a, f(a))))}
—p {
f

{({{{(0, [id](0))
[id](g(b, £ (b)

-

p LHLH{{D}}, [d] (g
—*>p {({{{{b}}, [id] (g (b, f(
— {{{{b}}, [id](g(a, f(a)
—p {({b}, [id(g(a, F(a))))}

in» {v}

Given a term u, if the rewriting theory R is not confluent then, the result of the
reduction of the term [im(R)](u) is a set representing all the possible results of the

415

reduction of the term u in the rewriting theory R. Each of the elements of the
result set represents the result of a reduction in the rewriting theory R for a given
application order of the rewrite rules in R.

Example 2.17 Let us consider the set R = {a — b,a — ¢,g(x,2) — =z} of non-
confluent rewrite rules. The term [im(R)](g9(a, a)) representing the innermost nor-
malization of the term g(a,a) according to the set of rewrite rules R is reduced to
{b,9(c,b),g(b,c),c}. The term [om(R)](g(a,a)) representing the outermost normal-
ization is reduced to {b, c}.

We have now all the ingredients necessary to describe in a concise way the nor-
malization process induced by a rewrite theory. Of course, the standard properties of
termination and confluence of the rewrite system will allow us to get uniqueness of
the result. Our approach differs from this and we define this normalization even in
the case where there is no unique normal form or where termination is not warranted.
This is why in general we do not get termination or uniqueness of the normal form.

3 Using the p'*’-calculus

We have shown in Part I that a finite derivation in term rewriting can be mimicked
as an appropriate p-term that indeed represents the trace of the reduction. It is often
more interesting to find such a derivation.

3.1 Encoding rewriting in the p**t-calculus

We are interested to build a p-term describing the reduction, in term rewriting, of
term t w.r.t. a set of rewrite rules, but without knowing a priori the intermediate
steps of the derivation of ¢. For this, we can use the pi#t-calculus and the operators

defining innermost and outermost normalization strategies.

Proposition 3.1 Given a rewriting theory 7z and two first order ground terms ¢, ¢} €
T (F) such that ¢ is normalized to ¢} w.r.t. the set of rewrite rules R. Then, [im(R)](¢)
is p-reduced to a set containing the term ¢ .

PRroOF. By induction on the number of reduction steps for the term ¢.
O

Example 3.2 Let us consider a rewrite system R containing the rewrite rules (z =
z) = True and b — a. Then, the term a = b reduces to True in this rewrite
system and a p-term reducing to {T'rue} can be built as shown in Part I or using the
fixed-point operators.

In the former case the corresponding p-term is

[(x = z) = True](fa = (b — a)](a = b)).
For the latter approach we build the term
[im({(z = z) = True,b — a})](a = b).

Since in this case we can obtain empty sets and additionally, sets with more than one
element are obtained when equational matching is not unitary, a reduction strategy

416

as presented in Part I should be used in order to ensure confluence. If no reduction
strategy is used then undesired results can be obtained.

3.2 Encoding conditional rewriting

As shown before, any term rewriting reduction can be described by a reduction in
the p-calculus. In this section we give a representation in the p-calculus of the condi-
tional rewriting reductions. We will propose thus, methods for defining a p-term that
contains all the information needed for reduction including the condition evaluation
that is normally performed on the meta-level.

The main difficulty here resides in the fact that for conditional rewriting, the re-
duction relation is recursively applied in order to evaluate the condition when firing
a conditional rule. We can use the same approach as our explicit description of
non-conditional rewriting (see Part I) but the p-terms used in order to describe the
conditional rewriting reduction become very complicated in this case. Instead, a de-
tailed description by a concise p-term of the normalization process of the conditions
can be obtained by using the normalization operators presented in the Section 2.5.

3.2.1 Definition of conditional rewriting

Many conditional rewriting relations have been designed and mainly differ in the way
the conditions are understood [15]. We consider here the normal conditional rewriting
defined as follows.

Definition 3.3 A normal rewrite system R is composed of conditional rewrite rules
of the form (I — r if ¢) where [, 7, ¢ are elements of 7 (F,X') with variables satisfying
the condition Var(r) U Var(c) C Var(l), and such that for each ground substitution
o satisfying Var(c) C Dom(o), the normal form under R of oc is either the boolean
True or False. Given a conditional rewrite system R composed of such rules, the
application of the rewrite rule (I — r if ¢) of R on a term ¢ at occurrence m consists
in:

(i) matching, using the substitution o, the left-hand side of the rule against the term
tim

(i1) normalizing the instantiated condition oc using R and, provided the resulting
term is T'rue,

111) replace t),,, by or in t.
P lm DY

1—rif ¢

This is denoted ¢ —m tlor], -

3.2.2 Encoding

As we have mentioned, the main difficulty in the encoding of conditional rewriting
is to make precise the evaluation process of the condition. In the case of normal
rewriting, this means computing the normal form of the condition.

We denote by ¢, the p-term that, when instantiated by the proper substitution (i.e.
fc,), normalizes to the term {u} if the term ¢, instantiated accordingly (i.e. 6c), is
normalized into u in the rewrite theory R. When the term c¢ is a boolean condition

417

and when the rewrite system is completely defined over the booleans [5], the term u
should be one of the two constants True or False.

If the reduction in a rewrite theory R is known, we can define, as in Part I, the
p-term ¢, £ [u,](...[u1](c)...) that evaluates to {u}, i.e. to {True} or {False}. If
¢, is the p-term describing the reduction of the term c then, the conditional rewrite
rule [— 7 if ¢ is represented by the p-term

l = [{True — r,False — 0}](c,)
or even the simpler, but maybe less suggestive one,
Il = [True = 7](cp).

In the case when ¢, reduces to {False}, in the latter representation the matching
fails and the result of the application is, as in the former one, the empty set. When
¢, reduces to {True}, the result of the reduction is obviously the same in the two
cases, i.e. the same as the application of [— r.

By using the above representation, we can extend the Proposition given in Part I
and show that any derivation in a conditional rewriting theory is representable by an
appropriate p-term.

Proposition 3.4 Given a conditional rewriting theory 7z and two first order ground
terms t,t' € T (F) such that t —% t'. Then, there exist the p-terms uy, ... ,u,, built
using the rewrite rules in R and the intermediate steps in the derivation t ——5 ¢/
such that we have [u,](...[u1](t)...) —=,, {t'}-

The construction approach used in Part I for unconditional rewriting is obviously
not convenient and we need a method that allows us to build the p-term corresponding
to a rewrite reduction without knowing a priori the reduction steps. In order to
build the p-term c, using only the term c and the rewrite rules of R, we can use the
normalization operators defined in Section 2. For example, we can define

1>

¢p = [im(R)](c).
Example 3.5 Let us assume that the set of rules describing the order on integers is
denoted by R~. We consider the rewrite rule (f(z) — g(x) if x > 1) that applied to
the term f(2) reduces to g(2) since z is instantiated by 2 and the condition (2 > 1)
reduces to True by using the rewrite rule (2 > 1) — True.

If we consider that the condition is normalized according to R, then the corre-
sponding reduction in the p-calculus is the following:

[f(z) = [True = g(@)]([im(R<)](z > 1))](f(2))
— rire {[True — g(2)](im(R)](2 > 1))}
—, A[True — g(2)]({True})}
—>Baten, {{[True — g(2)](True)}}
—Fire {{{9(2)}}}

—rrae {9(2)}

The conditions of the rewrite rules can be normalized according to a set of condi-
tional rewrite rules, including the current rule, and thus the definition of the p-rewrite

418

rules representing this normalization is intrinsically recursive and cannot be realized
only by using the operator im.
We use the fixed-point operator © described in Section 2.4 to represent the appli-
cation of the same set of rewrite rules for the normalization of all the conditions.
Given a set of rewrite rules R = R,, UR. where R,, and R. represent the subset of
non-conditional rewrite rules and respectively the subset of conditional rewrite rules
of the form (I — r if ¢). We define the term

RE f— (y— [im({l; = [True = r]([f](c:)) | i=1...m} UR,)|(y))
where R ={l; = r;ifc; |i=1...m}, Ry ={l; = r} | i=1...n} and respectively
IM(R) £ [O](R).

Thus, for describing the normalization of the term ¢ w.r.t. the rewrite rules of R
we use the p-term [IM(R)](t).

The normalization strategy for the conditions is now abstracted by the variable f
and since I M (R) £ [O](R) is reduced to[R]([O](R)) then this variable is instantiated
at the beginning by [O](R) (i.e. IM(R)). Thus, not only the initial term but also
the conditions are reduced according to IM (R). This instantiation can be possibly
reiterated if some conditional rules suppose the application of other conditional rules.

We obtain thus a result similar to Proposition 3.4 but with a method of construction
for the corresponding p-term based only on the initial term and on the set of rewrite
rules.

Proposition 3.6 Given a conditional rewriting theory 7z and two first order ground
terms t,t} € T(F) such that ¢ is normalized to ¢} w.r.t. the set of rewrite rules R.
Then, [IM(R)](t) is p-reduced to a set containing the term ¢|.

Example 3.7 We consider the set of rewrite rules R containing the rewrite rule
(zx =) = True and the conditional rewrite rules (f(z) — g(z) if h(z) =b) and
(h(z) = b if £ = a). The term f(a) reduces to g(a) using the rewrite rules of R and
we show below the corresponding reduction in p-calculus.

Using the method presented above we obtain the p-term:

RE f—= (y— [im({f(x) = [True = g()]([f1(h(x) = b)),
h(z) = [True — bl([f](z = a)),
(z =z) > True

D))

We show the main steps in the reduction of the term [IM(R)](f(a)). We obtain
immediately the reduction

[IM(R)](f(a)) £ [O](R)](f(a)) —, [RI([O1(R)](f(a)) = [RI(IM(R))](f(a))
and the final result is the same as the one obtained for the term

[im({f(z) = [True = g(2)|([IM (R)](h(z) = b)),
h(z) = [True — b([IM(R)](z = a)),
(x =) = True

DI(f(a)))

419

and thus for

[f(z) = [True = g(x)|(IM (R)](h(x) = b))](f(a))
—, {[True = g(a)](IM (R)](h(a) = b))}

For the term [IM(R)](h(a) = b) we proceed as previously and thus, we have to
reduce the term

[im({f(z) = [True = g()|(IM(R)](h(x) = b)),
hz) = [True — D)([IM(R)](z = a)),
(x = z) = True}

)l(h(a) = b)
with the intermediate reduction

*

(h(z) = [True = H(IM(R)](x = a)(h(a)) =, {[True - b(IM(R))(a = a))}

Since we easily obtain [[M(R)](a = a) —, {True} then, the previous term is
reduced to {[True — b]({True})} —, {b} and we have

[IM(R))(h(a) =b) —>, [im(...)]({b} =b) —, {True}
We come back to the reduction of the initial term and we get

{{True — g(@)([IM (R)](h(a) = b))} —, {[True = g(a)]({True})} —, {g(a)}

We have thus obtained the same result as in conditional term rewriting.

Starting from the results presented in this section we will give in the next section a
representation of the more elaborated rewrite rules used in ELAN, a language based
on conditional rewrite rules with local assignments.

4 The rewriting calculus as a semantics of ELAN

4.1 ELAN's rewrite rules

ELAN (a name that expresses the dynamism of the arrow), is an environment for spec-
ifying and prototyping deduction systems in a language based on labeled conditional
rewrite rules and strategies to control rule application. The ELAN system offers a
compiler and an interpreter of the language. The ELAN language allows us to de-
scribe in a natural and elegant way various deduction systems [29, 19, 3]. It has been
experimented on several non-trivial applications ranging from decision procedures,
constraint solvers [6], logic programming [21] and automated theorem proving [10]
but also specification and exhaustive verification of authentication protocols [8].

ELAN’s rewrite rules are conditional rewrite rules with local assignments. The
local assignments are let-like constructions that allow applications of strategies to
some terms. The general syntax of an ELAN rule is:

[I=r [if cond | where y:=(S)u]|* end

where cond is an ELAN expression that can be reduced to a boolean value. If all the
conditions are reduced to the true value and all local variables (e.g. y) are assigned

420

with success (i.e. the application of the strategy from the right-hand side of the local
assignment does not fail) then the rewrite rule can be applied.

We should notice that the square brackets ([]) in ELAN are used to indicate the
label of the rule and should be distinguished from the square brackets of the p-calculus
that represent the application of a rewrite rule (p-term).

A partial semantics could be given to an ELAN program using rewriting logic [22,
4], but more conveniently all ELAN’s rules (and not only the conditional ones) and
strategies can be expressed using the p-calculus and thus an ELAN program is just a
a p-term. The results of the evaluation of this p-term correspond to all the possible
results of the execution of the initial ELAN program.

Example 4.1 An example of a labeled ELAN rule describing a possible naive way to
search the minimal element of a list by sorting the list and taking the first element is
the following:

[min-rule] min(1) = m
if 1 !'= nil
where sl := (sort) 1
where m := () head(sl) end

The strategy sort can be any sorting strategy. The operator head is supposed to
be described by a confluent and terminating set of unlabeled rewrite rules. Thus,
sl is assigned the result of the application of a given set of labeled rules guided
by the strategy (sort), while m is assigned the result of the application of a given
set of unlabeled rules guided by the strategy () (i.e. the implicit built-in innermost
strategy).

The evaluation strategy used for evaluating the conditions is a leftmost innermost
standard rewriting strategy.

The non-determinism is handled mainly by two basic strategy operators: dont
care choose (denoted dc(sy,...,s,)) that returns the results of at most one non-
deterministicly chosen unfailing strategy from its arguments and dont know choose
(denoted dk(s1,...,s,)) that returns all the possible results. A variant of the dont
care choose operator is the first choose operator (denoted first(si,...,sp))
that returns the results of the first unfailing strategy from its arguments.

Several strategy operators implemented in ELAN allow us a simple and concise de-
scription of user defined strategies. For example, the concatenation operator denoted
“;” builds the sequential composition of two strategies s; and so. The strategy si; so
fails if s fails, otherwise it returns all results (maybe none) of s2 applied to the results
of s1. Using the operator repeat* we can describe the repeated application of a given
strategy. Thus, repeat*(s) iterates the strategy s until it fails and then returns the
last obtained result.

Any rule in ELAN is considered as a basic strategy and several other strategy
operators are available for describing the computations. Here is a simple example
illustrating the way the first and dk strategies work.

Example 4.2 If the strategy dk(x=>x+1,x=>x+2) is applied to the term a, ELAN
provides two results: a+1 and a+2. When the strategy first (x=>x+1,x=>x+2) is ap-
plied to the same term only the a+ 1 result is obtained. The strategy first (b=>b+1,
a=>a+2) applied to the term a yields the result a + 2.

421

Using non-deterministic strategies, we can explore exhaustively the search space of
a given problem and find paths described by some specific properties.

For example, for proving the correctness of the Needham-Schroeder authentication
protocol [24] we look for possible attacks among all the behaviors during a session. In
Example 4.3 we present just one of the rules of the protocol and we give the strategy
looking for all the possible attacks, a more detailed description of the implementation
is given in [8].

Example 4.3 We consider the rewrite rules describing the Needham-Schroeder au-
thentication protocol that aims to establish a mutual authentication between an ini-
tiator and a responder that communicate via an insecure network (é.e. in presence of
intruders).

The strategy looking for possible attacks applies repeatedly and non-deterministicly
all the rewrite rules describing the behavior of the protocol (e.g. initiate) and of the
intruder (e.g. intruder) and selects only those results representing an attack.

[JattStrat => repeat*(
dk(initiate, ..., intruder)
);
attackFound end

The non-deterministic application is described with the operator dk. The result of
the strategy repeat*(...) is the set of all possible behaviors in a protocol session
where messages can be intercepted or faked by an intruder. The strategy attackFound
just checks if the term received as input represents an attack (by trying to apply the
rewrite rules corresponding to the negation of the desired invariants) and therefore
selects from the previous set of results only those representing an attack.

4.2 The p-calculus representation of ELAN rules

The rules of the system ELAN can be expressed using the p-calculus. A rule with no
conditions and no local assignments | = r is represented by [— r and a conditional
rule is expressed as in Section 3.2.

4.2.1 Rules with local assignments
The ELAN rewrite rules with local assignments but without conditions of the form

(4] =)= r(z,y)
where y := (S)u

can be represented by the p-term

l(z) = r(z,[Sp](u))
or the p-term
(@) = [y = r(z,y)]([S,](w))
with S, the p-term corresponding to the strategy S in the p-calculus.

The first representation syntactically replaces all variables of the right-hand side
of the rewrite rule defined in a local assignment with the term which instantiates

422

the respective variable. In the second representation, each variable defined in a local
assignment is bound in a p-rewrite rule which is applied to the corresponding term.

Example 4.4 The ELAN rule

[deriveSum] p_1 + p_2 => p_1’ + p_2’
where p_1’ := (derive)p_1
where p_2’ := (derive)p_2 end

can be represented by one of the following two p-terms
p1 + p2 — [derive](pr) + [derive](p2),
p1+p2 = [p1 = [ph —= ph + pa)([derive(ps))]([derive] (p1))-

At this moment one can notice the usefulness of free variables in the rewrite rules.
The latter representation of an ELAN rule with local assignments would not be possible
if the variable p| was not allowed to be free in the p-rule p, — p] + p). The free
variables in the right-hand side of a p-rewrite-rule also enables the parameterization
of rewrite rules by strategies as in y — [f(z) — [y](z)](f(a)) where the strategy to
be applied on z is not known in the rule f(z) — [y](z).

Example 4.5 We consider the ELAN rule

[deriveSum] x => y +y
where y := (derive)x end

Let us consider that the strategy derive is dk (a=>b,a=>c). Then, the application
of the strategy derive to the term a gives the two results b and ¢. Thus, the appli-
cation of the rule deriveSum to the term a provides non-deterministically one of the
four results b+ b, b+ ¢, c+ b, c+ec.

The p-representation of this rule is

z = [{a = ba—c}](x)+[{a—=ba— c}(z)
that applied to a reduces as follows

[= [{a = b,a = c}](z) + [{a = b,a = c}](z)](a)
— Fire {[{a = b,a = c}](a) + [{a = b,a — c}](a)}
%*Dism'b Hla = bl(a), [a = c|(a)} + {[a = b](a), [a — c|[(a) }}
—rrire {{{0} {c}}+ {{b}, {c}}}
—Flat {{bac} + {b,C}}
—>OpOnSet {{b + {b, C}, c+ {b, C}}}
——O0pOnSet {{{b + b7 b+ C}, {C + b7 c+ C}}}
——O0pOnSet {{{b + b7 b+ C}, {C + b7 c+ C}}}
=5 Flat {b+b,b+c,c+b,c+c}

This set represents exactly the four results obtained in ELAN.

If we consider more general ELAN rules containing local assignments as well as
conditions on the local variables, the combination of the methods used for conditional
rules and rules with local assignments should be done carefully. If we had used a
representation closed to the first one from Example 4.4 we would have obtained some
incorrect results as in Example 4.6.

423

Example 4.6 We consider the description of an automaton by a set of rewrite rules,
each one describing the transition from a state to another. The potential execution
of a double transition from an initial state in a final state passing by a non-final
intermediate state, can be described by the following ELAN rule:

[double] x => next(y)
where y := (dk(sl => s2,s1 => s3)) x
if nf(y)

end

The term next (y) represents the state obtained by carrying out a transition from
y and this behavior can be easily represented in ELAN by a set of unlabeled rules
describing the operator nf. We note by R the set of rewrite rules describing the
final states and we suppose that s2 is a final state but s3 is not.

By using the first representation approach of a rule with local assignments and the
coding method for conditional rules presented in Section 3.2, we obtain the p-term
corresponding to the previous ELAN rule:

z = [True — next([{sl = 52,51 —= s3}|(x))]([im(Rys)](nf([{s1 = s2,s1 = s3}](x))))

This term applied to sl leads to the following reduction

[z = [True — next([{sl — s2,s1 — s3}|(z))]
([im(Rp)l(nf([{s1 = 52,51 = $3}](x))))](s1)
—, {[True — next([{sl — s2,s1 — s3}]|(s1))]
([im(Rp)l(nf([{s1 — 2,51 = s3}](s1))))}
—p {[True = next({s2, s3})|([im(Ry)l(nf({52,s3})))}
—p {[True — {next(s2), next(s3)}]([im(R ;)| ({nf(s2), nf (s3)}))}
s, {[True — {next(s2), next(s3)}]({ False, True})}
s, {{[True — {next(s2),next(s3)}|(False), [True — {next(s2), next(s3)}|(True)}}
—, {0, [True — {next(s2),next(s3)}](True)}
—5, {0, {next(s2),next(s3)}}
—, {next(s2),next(s3)}

while in ELAN we obtain the only result next (s3) that would be represented by the
p-term {next(s3)}.

The problem in the Example 4.6 is the double evaluation of the term
[{s1 — s2,s1 = s3}|(s1) replacing the local variable y: once in the condition and
once in the right-hand side of the rule. If this term is evaluated to a set with more
than one element and one of its elements satisfies the condition, then this set replaces
the corresponding variables in the right-hand side of the rule, while only the sub-
set of elements satisfying the condition should be considered. Therefore, we need a
mechanism that evaluates only once each of the local assignments of a rule.

We use an approach combining the second representation approach of a rule with
local assignments and the p-representation of conditional rules. Without losing gen-
erality, we consider that an ELAN rule that has the following form:

424

[label] | = 1,
where z := (s)t
if C[x]p

end

Then, the ELAN rule presented above is expressed as the p-term
I = [z = [{True = ry) , False — 0}]([im(R)[(Cra1,))1([s](2))
or the simpler one

I = [z = [True = rip J([im(R)](Cray)I([s](2))

where R represents the set of rewrite rules modulo which we normalize the conditions.

In order to simplify the presentation we supposed that the rules of the set R are
rewrite rules of the form [— 7 and thus, the operator im is sufficient to define
normalization w.r.t. such a set. If we consider conditional unlabeled rules, then the
operator I M must be employed.

The way the transformation is applied to an ELAN rewrite rule and the correspond-
ing reduction are illustrated by taking again the Example 4.6 and considering the new
representation.

Example 4.7 The ELAN rewrite rule from Example 4.6 is represented by the p-term
z = [y = [True = next(y)|([im(R)] (nf(y))([{s1 — 2,51 = s3}](x))

that, applied to the term sl leads to the following reduction

[z = [y = [True — next(y)|([im(Rp)](nf ()]([{s1 = 52,51 = s3}](x))](s1)
— rire{ly = [True = next(y)]([im(Ry)](nf(y))([{s1 = 52,51 = s3}](s1))}
—p Ay = [True — neat(y)|[im(Ry)](nf(y))({s2,s3})}
—p Ay = [True — next(y)]([im (Rf)](”f(y)))](2),

[y = [True = next(y)]([im(Rf)](nf(y)))](s3)}
—pire {{[Tue = next(s2)]([im(Ry)](nf(52)))}

{[True — next(s3)]([im(Ry)](nf(s3)))}}
5, A{[True — next(s2)](False), [True — next(s3)](True)}
Sy {0, neat(s3)}}
5, {next(s3)}

)

that is the representation of the result obtained in ELAN.

The same result as in Example 4.6 is obtained if the evaluation rule Fiire is applied
before the distribution of the set {s2,s3}. But the confluent strategies presented in
Part I forbid such a reduction and thus, the correct result is obtained.

This latter representation not only allows a correct transformation of ELAN re-
ductions in p-reductions but gives also a hint on the implementation details of such
rewrite rules. On one hand the implementation should ensure the correctness of the
result and on the other hand it should take into account the efficiency problems. For
instance, the representation used in Example 4.5 is correct but obviously less efficient

425

than a representation as in Example 4.7 and this is due to the double evaluation of
the same application.

The ELAN evaluation mechanism is more complex than presented above since it
distinguishes between labeled rewrite rules and unlabeled rewrite rules. The unlabeled
rewrite rules are used to normalize the result of all the applications of a labeled rewrite
rule to a term. When evaluating a local assignment where v:=(S) t of an ELAN
rewrite rule, the term t is first normalized according to the specified set of unlabeled
rewrite rules and then the strategy S is applied to its normal form. Moreover, each
time a labeled rewrite rule is applied to a term, the ELAN evaluation mechanism
normalizes the result of its application with respect to the set of unlabeled rewrite
rules.

Hence, the ELAN rewrite rule from Example 4.6 should be represented in the
p-calculus by the term

z = [im(Ry)|([y = [True — next(y)]
(m(Rp)I(nf(y))]({s1 = s2,51 = s3}]([im(R)](2))))

where R represents the set of (unlabeled) rewrite rules modulo which we normalize
the local assignments.

4.2.2 General strategies in the local assignments

Until now we have considered in the local assignments of a rule only strategies that
do not use the respective rewrite rule. The representation of an ELAN rule with local
calls to strategies defined by using this rule must be parameterized by the definition
of the respective strategies. For example, a rule with local assignments of the form

[label] | = r where x := (s)t

is represented by the p-term

label(f) £ 1 — [z — r]([[f]1(s)](t)

where the free variable f will be instantiated by the set of strategies of the program
containing the rule labeled by label.

4.2.3 ELAN strategies and programs

The elementary ELAN strategies has, in most of the cases, a direct representation in
the p-calculus. The identity (id) and the failure (fail) as well as the concatenation
(;) are directly represented in the p-calculus by the p-operators id, fail and *;”
respectively, defined in Section 2.1. The strategy dk(Si,...,Sy) is represented in the
p-calculus by the set {S1,...,Sp} and the strategy first(Sy,...,S,) by the p-term
first(Si,...,Sn) defined in Section 2.2. The iteration strategy operator repeat# is
easily represented by using the p-operator repeatx .

Strategies can be used in the evaluation of the local assignments and these strategies
are expressed using rewrite rules. Therefore, the ELAN strategies can be represented
by p-terms in the same way as the ELAN rewrite rules.

426

Example 4.8 The ELAN strategy attStrat used in Example 4.3 is immediately rep-
resented by the p-term

attStrat, — repeat*({initiate,, ... ,intruder,}); attackFound,

where we suppose that initiate,, intruder,, attackFound, are the representations in
p-calculus of the corresponding ELAN strategies.

For the representation of the user-defined strategies in an ELAN program we use
an approach based on the fixed-point operator and similar to that used in the case
of conditional rules in Section 3.2. If we consider an ELAN program containing the

strategies Sp,...,S, and a set of labeled rules, then the p-term representing the
program is

P 2 [0](S)
where

SEf—(y—=[{Si— Body; |i=1...n}](y))

and Body; represent the right-hand sides of the strategies with each strategy S; re-
placed by [f](S;), each rule label replaced by the p-representation of the rule and each
ELAN strategy operator replaced by its correspondent in the p-calculus.

To sum-up, we present the transformation of an ELAN program in a p-term.

Definition 4.9 We consider an ELAN without importations.

1. The signature of the corresponding p-calculus is obtained from the operator dec-
larations of the ELAN program.

2. Starting from unlabeled rules of the form

L@ = nr®7)
where (sort) u;(y) := ()t:(T)
if ¢(T,7)

end

we build the term

Run & f— (2= [im({li(@) - [wi(7) -
[True — ri(@, 9 ([f](ci(7, 7))

The innermost normalization w.r.t. the set of unlabeled rules is represented by
the term
IM,, £ [O](Run)

The encoding is extended in an incremental way to rules containing several condi-
tions and local assignments. The encoding can be simplified if the program does
not contain unlabeled conditional rules; in this case the term IM,, becomes

My 2 im({Li(T) = [wi@) = (@] @) |i=1...n})

where the rules with local assignments can be simplified to elementary rules.

427

3. For each labeled rule of the form

[label] 1(T) = r(Z,7)
where (sort) u(y) := (s)t(%)
if o(Z,7)

end

we build the term

label(f) £ f = (IT) = [[Mn]([u(@) —
[True = r(@, 9)|([I Mnn](c(7,7)))
J(LAI Mo (£(T))))

)

4. For each strategy of the form

| S= Body
end

we build the term
S — BodyRho(f)

where BodyRho represents the right-hand side Body of the strategy with each
strategy symbol S; replaced by [f](S;), each rule label label replaced by the
p-representation label(f) of the rule and each ELAN strategy operator replaced
by its correspondent in the p-calculus.

The ELAN program defining the strategies Si, ... ,.S, is represented by the p-term
P 2[0)(9)

where
S 2 f— (2= [{Si = BodyRho;(f) | i=1...n}](2))

and BodyRho;(f) represents the encoding of the strategy S;.

The application of a strategy S of an ELAN program P to a term ¢ is represented
by the p-term [[P](s)](¢) where P is the p-term representing the program P and s
is the name of the strategy S. If the execution of the program P for evaluating the
term ¢ according to the strategy S leads to the results uq,... ,uy,, then the p-term
[[P](s)](t) is reduced to the set term {uy, ..., un}.

In Example 4.10 we present an ELAN module and the p-interpretations of all the
rules and strategies and thus, of the ELAN program.

Example 4.10 The module automaton describes an automaton with the states s1,s2,
s3,s4,s5 and with the non-deterministic transitions described by a set of rules con-
taining the rules labeled with r12,r13,r25,r32,r34,r41. The operator next defines
the next state in a deterministic manner and its behavior is described by a set of un-
labeled rules. The states can be “final” (final) or “closed” (closed). The double
transitions with an intermediate non-final and non-closed state are described by the
rules double_f and respectively double_c.

428

module automaton

import global bool;end

sort state ;end

operators global
sl,s2,s3,s4,s5 : state;
next (@) : (state) state;
final(@) : (state) bool;
closed(@) : (state) bool;

end
stratop global
follow . <state -> state> bs;
gen_double : <state -> state> bs;
cond_double : <state -> state> bs;
end
rules for bool
global
[1 final(s_1) => false end [1 closed(s_1)
[final(s_2) => true end [1 closed(s_2)
[] final(s_3) => false end [1 closed(s_3)
[1 final(s_4) => false end [1 closed(s_4)
[final(s_5) => true end [1 closed(s_5)
end

rules for state
X,y : state;

global
[r12] s1 => s2 end [] next(sl) =
[r13] s1 => s3 end [] next(s2) =
[r25] s2 => sb end [] next(s3) =
[r32] 83 => s2 end [] next(s4) =
[r34] s3 => s4 end [] next(sb) =

[r41] s4 => si end

[double_f] x => next(y)
where y := (follow) x
if not final(y)
[double_c] x => next(y)
where y := (follow) x
if not closed(y)
end

strategies for state

implicit
[1follow => dk(r12,r13,r25,r32,r34,r41)
[Jgen_double => follow;follow
[lcond_double => dk(double_f,double_c)

end

end

429

=> false
=> false
=> true

=> true

=> true

> s3 end
> sb end
> 82 end
> s1 end
> sb end
end

end

end
end
end
end
end

end
end
end

We denote by B the set of unlabeled rules defined in the imported modules bool
and describing operations on booleans.

The set of unlabeled rules from the module automaton are represented by the
p-term

R £ {newt(sl) — s3,... ,newt(s5) — s5,
final(sl) — false, ..., final(s5) — true,
closed(sl) — false,. .., closed(s5) — true}

and we note RC = R U B.
The rules labeled with double_f and double_c are represented by the p-rules

double_f(f) 2 x — [im(RC)]([y — [True — next(y)]([im(RC)](not final(y)))]
([[f1(follow)]([im(RC)](x))))

and respectively

double_c(f) £ z — [im(RC)]([y — [True — next(y)]([im(RC)](not closed(y)))]
([[F1(Follow)]([im(RC)](=))))

The strategies from the module automaton are represented by the p-terms

follow
gen_double(f)
cond_double(f)

follow — {s1 — 52,51 — 3,52 = $5,83 — $2,$3 — 54,54 — s1}
gen_double — [f](follow); [f](follow)
cond_double — {double_f(f), double_c(f)}

e 1> 1>

and we obtain the term representing the ELAN program automaton
automaton = [0](S)

where
S £ f— (y— [{follow, gen_double(f),cond_double(f)}]|(y))

The execution of the program automaton for evaluating the term s1 with the strat-
egy cond_double corresponds to the reduction of the term

[[automaton](cond_double)](s1)

In ELAN, we obtain for such an execution the results 2 and 5 and the reduction of
the corresponding p-term leads to the set {2,5}.

In Example 4.10 we presented a relatively simple ELAN module but, representative
for the main features of the ELAN language. Following the same methodology, more
complicated rules and strategies can be handled.

Notice that this provides, in particular, a very precise description of all the rewriting
primitives, including the semantics of the conditional rewriting used by the language.
To the best of our knowledge, this is the first explicit and full description of a rewrite
based programming language.

430

5 Conclusion

Using the p'®t-calculus, an extension of the p-calculus, appropriate definitions of term
traversal operators and of a fixed-point operator can be given. This enables us to apply
repeatedly a (set of) rewrite rule(s) and consequently to define a p-term representing
the normalization according to a set of rewrite rules. Starting from this representation
we showed how the p'®t-calculus can be used to define conditional rewriting and to
give a semantics to ELAN modules. Of course, this could be applied to many other
frameworks, including rewrite based languages like ASF+SDF, ML, Maude, Stratego
or CafeOBJ but also production systems and non-deterministic transition systems.

Starting from these first results on the rewriting calculus, we have already explored,
in subsequent papers, two different directions: the p-calculus with explicit substitu-
tions and typed rewriting calculi. In [9] we have proposed a version of the calculus
where the substitution application is described at the same level as the other evalua-
tion rules. Starting from the A-calculus with explicit substitutions, and in particular
the Aog-calculus, we developed the p-calculus with explicit substitutions, called the
po-calculus and we showed that the po-calculus is confluent under the same conditions
as the pp-calculus. Indeed, what makes the explicit substitution setting even more
interesting than in the case of A-calculus is that not only the substitution and there-
fore renaming mechanism is handled explicitly, but the substitution itself is explicitly
represented. This is extremely useful since computing a substitution could be very
expensive like for associativity-commutativity where the matching algorithm is expo-
nential in the size of terms. Moreover, since a derivation may fail (like when searching
for the right instance of a conditional), memorizing the substitution is mandatory.
This allows us in particular to use the p-calculus with explicit substitutions as the
language to describe proof terms of ELAN computations.

The p-calculus is not terminating in the untyped case. In order to recover this
property we have imposed in [11] a more strict discipline on the p-term formation
by introducing a type for each term. We presented a type system for the pg-calculus
and we showed that it has the subject reduction and strong normalization properties,
i.e. that the reduction of any well-typed term is terminating and preserves the type
of the initial term. Additionally, we have given a new presentation d la Church to
the p-calculus [13], together with nine (841) type systems which can be placed in a
p-cube that extends the A-cube of Barendregt. Quite interestingly, this typed calculus
uses only one abstractor, namely the rule arrow. It provides therefore a solution to
the identification of the A and II abstractors.

We used the sets to represent the non-determinism and we mentioned that other
structures can be used. For example, if we want to represent all the results of an
application and not only the different results, then multisets must be used and if the
order of the results is significant, then a list structure is more suitable. We have thus
started the study of another description of the p-calculus having as parameter not only
the matching theory but also the structure used for the results and we have already
shown its expressive power [12]. More precisely, we analyzed the correspondence
between the p-calculus and two object oriented calculi: the “Object Calculus” of
Abadi and Cardelli [1] and the “Lambda Calculus of Objects” of Fisher, Honsell and
Mitchell [16]. The approach that we proposed allows the representation of objects
in the style of the two mentioned calculi but also of more elaborate objects whose

431

behavior is described by using the matching power.

As a new emergent framework, the pp-calculus offers an original view point on
rewriting and higher-order logic and it opens new challenges to further understand
related topics. First, to go further in the study and the use of the pp-calculus for
the combination of first-order and higher-order paradigms, the investigation of the
relationship of this calculus with higher-order rewrite concepts like CRS and HOR [30]
should be deepened. Second, several directions should be investigated, amongst them,
we can mention the following:

- The analysis of the properties of the pp-calculus with a matching theory 7" more
elaborate than syntactic matching.

- A generic description of the conditions which must be imposed for the matching
theory T in order to obtain the confluence and the termination of the pp-calculus
should be defined and then, show that these conditions are satisfied for particular
theories such as associativity and commutativity.

- The models of the rewriting calculus should be defined, studied and compared
with the ones of the algebraic as well as higher-order structures.

- As mentioned previously, we conjecture that the p'**-calculus can not be expressed
in the p-calculus because of the semantics of the empty set as rule application
failure.

Finally, from the practical point of view, the various instances of the p-calculus
must be further implemented and used as rewriting tools. We have already realized
an implementation in ELAN of the pg-calculus and we experimented with various
evaluation strategies. This implementation could be further used in order to define
object oriented paradigms. Dually, an object oriented version of the ELAN language
has been realized [14], with a semantics given by the rewriting calculus.

This shows that this new calculus is very attractive in terms of semantics as well as
unifying capabilities and we believe that it can serve as a basic tool for the integration
of semantic and logical frameworks.

Acknowledgments

We would like to thank Hélene Kirchner, Pierre-Etienne Moreau and Christophe
Ringeissen from the Protheo Team for the useful interactions we had on the top-
ics of this paper, Vincent van Qostrom for suggestions and pointers to the literature,
Roberto Bruni and David Wolfram for their detailed and very useful comments on
a preliminary version of this work and Delia Kesner for fruitful discussions. We are
grateful to Luigi Liquori for many comments and exciting discussions on the p-calculus
and its applications. Many thanks also to Thérese Hardin and Nachum Dershowitz
for their interest, encouragements and helpful suggestions for improvement. Finally
special thanks are due to the referees for the very complete and careful reading of the
paper as well as constructive and useful remarks.

432

References

[1] M. Abadi and L. Cardelli. A Theory of Objects. Springer Verlag, 1996.

[2] H. P. Barendregt. The Lambda-Calculus, its syntaz and semantics. Studies in Logic and the
Foundation of Mathematics. Elsevier Science Publishers B. V. (North-Holland), Amsterdam,
1984. Second edition.

[3] P. Borovansky, C. Kirchner, H. Kirchner, P.-E. Moreau, and M. Vittek. ELAN: A logical frame-
work based on computational systems. In J. Meseguer, editor, Proceedings of the first interna-
tional workshop on rewriting logic, volume 4 of Electronic Notes in TCS, Asilomar (California),
September 1996.

[4] P. Borovansky, C. Kirchner, H. Kirchner, and P.-E. Moreau. ELAN from the rewriting logic
point of view. Research report, LORIA, November 1999.

[5] A. Bouhoula and M. Rusinowitch. Implicit induction in conditional theories. Journal of Auto-
mated Reasoning, 14(2):189-235, 1995.

[6] C. Castro. Une approche déductive de la résolution de problémes de satisfaction de contraintes.
These de Doctorat d’Université, Université Henri Poincaré — Nancy 1, France, 1998.

[7] M. Clavel, S. Eker, P. Lincoln, and J. Meseguer. Principles of Maude. In J. Meseguer, editor,
Proceedings of the first international workshop on rewriting logic, volume 4, Asilomar (Califor-
nia), September 1996. Electronic Notes in Theoretical Computer Science.

[8] H. Cirstea. Specifying Authentication Protocols Using ELAN. In Workshop on Modelling and
Verification, Besancon, France, December 1999.

[9] H. Cirstea. Calcul de réécriture : fondements et applications. Theése de Doctorat d’Université,
Université Henri Poincaré - Nancy I, 2000.

[10] H. Cirstea and C. Kirchner. Theorem Proving Using Computational Systems: The Case of the
B Predicate Prover. In Workshop CCL’97, Schlof Dagstuhl, Germany, September 1997.

[11] H. Cirstea and C. Kirchner. The Simply Typed Rewriting Calculus. In 3rd International Work-
shop on Rewriting Logic and its Applications, Kanazawa, Japan, September 2000. Electronic
Notes in Theoretical Computer Science.

[12] H. Cirstea, C. Kirchner, and L. Liquori. Matching Power. In A. Middeldorp, editor, Proceed-
ings of RTA’2001, Lecture Notes in Computer Science, Utrecht (The Netherlands), May 2001.
Springer-Verlag.

[13] H. Cirstea, C. Kirchner, and L. Liquori. The Rho Cube. In F. Honsell, editor, Foundations
of Software Science and Computation Structures, Lecture Notes in Computer Science, Genova,
Italy, April 2001.

[14] H. Dubois and H. Kirchner. Objects, rules and strategies in ELAN. In Proceedings of the second
AMAST workshop on Algebraic Methods in Language Processing, lowa City, Iowa, USA, May
2000.

[15] N. Dershowitz and M. Okada. A rationale for conditional equational programming. Theoretical
Computer Science, 75:111-138, 1990.

[16] K. Fisher, F. Honsell, and J. C. Mitchell. A Lambda Calculus of Objects and Method Special-
izatio n. Nordic Journal of Computing, 1(1):3-37, 1994.

[17] K. Futatsugi and A. Nakagawa. An overview of CAFE specification environment — an alge-
braic approach for creating, verifying, and maintaining formal specifications over networks. In
Proceedings of the 1st IEEE Int. Conference on Formal Engineering Methods, 1997.

[18] M. Gordon, A. Milner, and C. Wadsworth. Edinburgh LCF: A Mechanized Logic of Computation,
volume 78 of Lecture Notes in Computer Science. Springer-Verlag, New York (NY, USA), 1979.

[19] C. Kirchner, H. Kirchner, and M. Vittek. Designing constraint logic programming languages
using computational systems. In P. Van Hentenryck and V. Saraswat, editors, Principles and
Practice of Constraint Programming. The Newport Papers., chapter 8, pages 131-158. The MIT
press, 1995.

[20] P. Klint. The ASF+SDF Meta-environment User’s Guide. Technical report, CWI, 1993.

[21] C. Kirchner and C. Ringeissen. Rule-Based Constraint Programming. Fundamenta Informaticae,
34(3):225-262, September 1998.

[22] J. Meseguer. Conditional rewriting logic as a unified model of concurrency. Theoretical Computer
Science, 96(1):73-155, 1992.

433

[23] R. Milner. A proposal for standard ML. In Proceedings ACM Conference on LISP and Func-
tional Programming, 1984.

[24] R. Needham and M. Schroeder. Using encryption for authentication in large networks of com-
puters. Communications of the ACM, 21(12):993-999, 1978.

[25] Protheo Team. The ELAN home page. WWW Page, 2001. http://elan.loria.fr.

[26] A. M. Turing. The p-functions in A-K-conversion. The Journal of Symbolic Logic, 2:164, 1937.

[27] E. Visser and Z. el Abidine Benaissa. A core language for rewriting. In C. Kirchner and
H. Kirchner, editors, Proceedings of the second International Workshop on Rewriting Logic
and Applications, volume 15, http://wuw.elsevier.nl/locate/entcs/volume16.html, Pont-a-
Mousson (France), September 1998. Electronic Notes in Theoretical Computer Science.

[28] E. Visser. Strategic pattern matching. In P. Narendran and M. Rusinowitch, editors, Rewriting
Techniques and Applications (RTA’99), volume 1631 of Lecture Notes in Computer Science,
pages 30-44, Trento, Italy, July 1999. Springer-Verlag.

[29] M. Vittek. ELAN: Un cadre logique pour le prototypage de langages de programmation avec
contraintes. These de Doctorat d’Université, Université Henri Poincaré — Nancy 1, October
1994.

[30] V. van Oostrom and F. van Raamsdonk. Comparing combinatory reduction systems and higher-
order rewrite systems. In HOA’93, volume 816 of Lecture Notes in Computer Science, pages
276-304. Springer-Verlag, 1993.

Received October 1, 2000. Revised: January 26, 2001, February 9, 2001

434

Tableau Reasoning and
Programming with Dynamic First
Order Logic

Jan van Eijck, CWI and ILLC, Amsterdam, E-mail: juve@cwi.nl.
Juan Heguiabehere, ILLC, Amsterdam, E-mail: juanh@uins.uva.nl.

Breannddn O Nuallain, ILLC, Amsterdam, E-mail: bon@illc.uva.nl.

Abstract

Dynamic First Order Logic (DFOL) results from interpreting quantification over a variable v as
change of valuation over the v position, conjunction as sequential composition, disjunction as non-
deterministic choice, and negation as (negated) test for continuation. We present a tableau style
calculus for DFOL with explicit (simultaneous) binding, prove its soundness and completeness, and
point out its relevance for programming with DFOL, for automated program analysis including loop
invariant detection, and for semantics of natural language. We also extend this to an infinitary
calculus for DFOL with iteration and connect up with other work in dynamic logic.

Keywords: Dynamic Logic, First Order Logic, Assertion Calculus, Tableau Reasoning

1 Introduction

The language we use and analyze in this paper consists of formulas that can be used
both for programming and for making assertions about programs. The only difference
between a program and an assertion is that an assertion is a program with its further
computational effect blocked off. In the notation we will introduce below: if ¢ is a
program, then ((¢)) is the assertion that the program ¢ can be executed. Execution
of ¢ will in general lead to a set of computed answer bindings, execution of (¢)) to a
yes/no answer indicating success or failure of ¢.

Since the formulas of our language, DFOL, can be used for description and com-
putation alike, our calculus is both an execution mechanism for DFOL and a tool for
theorem proving in DFOL. One of the benefits of mixing calculation and assertion is
that the calculus can be put to use to automatically derive assertions about programs
for purposes of verification. And since DFOL has its roots in Natural Language pro-
cessing (just as Prolog does), we also see a future for our tool-set in a computational
semantics of natural language.

We start our enterprise by developing a theory of binding for DFOL that we then
put to use in a calculus for DFOL with explicit binding. The explicit bindings repre-
sent the intermediate results of calculation that get carried along in the computation
process. We illustrate with examples from standard first order reasoning, natural
language processing, imperative programming, and derivation of postconditions for
imperative programs.

L. J. of the IGPL, Vol. 9 No. 3, pp. 435-469 2001 435 @©Oxford University Press

436 Tableau Reasoning and Programming with Dynamic First Order Logic

Finally, we develop an infinitary calculus for DFOL plus iteration, with a complete-
ness proof. Details of the relationships with existing calculi are given below. The two
calculi that are the subject of this paper form the computation and inference en-
gine of a toy programming language for theorem proving and computing with DFOL,
Dynamo.

2 Dynamic First Order Logic

Dynamic First Order Logic results from interpreting quantification over v as change
of valuation over the v position, conjunction as sequential composition, disjunction as
nondeterministic choice, and negation as (negated) test for continuation. See Groe-
nendijk and Stokhof [16] for a presentation and Visser [31] for an in-depth analysis. A
sound and complete sequent style calculus for DFOL (without choice) was presented
in Van Eijck [12]. In this paper we present a calculus that also covers the choice op-
erator, and that is much closer to standard analytic tableau style reasoning for FOL
(see Smullyan [29] for a classical presentation, Fitting [13] for a textbook treatment
and connections with automated theorem proving, [17] for an excellent overview, and
[8] for an encyclopedic account).

For applications of DFOL to programming, the presence of the choice operation U in
the language is crucial: choice is the basis of ‘if then else’, and of all nondeterministic
programming constructs for exploring various avenues towards a solution. It can (and
has been) argued that the full expressive power of U is not necessary for applications of
DFOL to natural language semantics. In fact, the presentation of dynamic predicate
logic (DPL) in [16] does not cover U: in DPL, choice is handled in terms of negation
and conjunction, with the argument that natural language ‘or’ is externally static.
This means that an ‘or’ construction behaves like a test. The present calculus deals
with DFOL including choice.

A very convenient extension that we immediately add to DFOL is representation
of simultaneous binding. It is well known that bindings or substitutions are definable
in DFOL. Still we will consider them as operators in their own right, in the spirit of
Venema [30], where substitutions are studied as modal operators. Simultaneous bind-
ings can in general not be expressed in terms of single bindings without introducing
auxiliary variables. E.g., the swap of variables z and y in the simultaneous binding
l[y/z,x/y] can only be expressed as a sequence of single bindings at the expense of
availing ourselves of an extra variable z, as z := z;2 := y;y := z. The dynamic
effect of this sequence of single bindings is not quite the same as that of [y/z,z/y],
for z := x;x := y;y := z changes the value of z, while [y/z,z/y] does not, and the
semantics of DFOL is sensitive to such subtle differences.

A first order signature ¥ is a pair (Py, Fy;), with Py a set of predicate constants
and Fy, a set of function constants. Let V' be an infinite set of variables, and let
a: (Ps UFs) — N be a function that assigns to every predicate or function symbol
its arity. The function symbols with arity 0 are the individual constants. The set T,

of terms over the signature is given in the familiar way, by t ::= v | ft; - - - t,,, where
v ranges over V and f over Fy,, with a(f) = n. The sub-terms of a term are given as
usual. We will write sequences of terms t1,...,t, as t.

A binding 6 is a function V' — Tx that makes only a finite number of changes,
i.e., # has the property that dom(f) = {v € V | §(v) # v} is finite. See Apt [1] and

2. DYNAMIC FIRST ORDER LOGIC 437

Doets [10] for lucid introductions to the subject of binding in the context of logic
programming. We will use rng(6) for {#(v) € Tx | 8(v) # v}, and var(rng(d)) for
U{var(6(v)) | v € dom(6)}, where var(t) is the set of variables occurring as a subterm
in ¢. An explicit form (or: a representation) for binding 6 is a sequence

[B(v1)/v1,...,0(vs)/vn],

where {v1,...,v,} = dom(0), (i-e., 8(v;) # v;, for only the changes are listed), and
i # j implies v; # v; (i.e., each variable in the domain is mentioned only once).
We will use [] for the binding that changes nothing, i.e, [] is the only binding 6
with dom(f) = 0. We use 6, p, possibly with indices, as meta-variables ranging over
bindings. Representations for bindings are given, as usual, by:

0 == []|[ti/v1,-.-,tn/vn] provided t; # v;, and v; = v; implies 7 = j.
We let o denote the syntactic operation of composition of binding representations:

Let 6 = [t1/v1,...,tn/vy] and p = [r1 /w1, ..., Ty /wy,] be binding representa-
tions. Then 6 o p is the result of removing from the sequence

[O(r1)/wi, ..., 0(m)/Wm,t1/v1, .. tnfvn]

the binding pairs 6(r;)/w; for which 6(r;) = w;, and the binding pairs ¢;/v;
for which v; € {wy,..., wn}.

For example, [2/y] o [y/2] = [v/2,/y], [#/2,y/a] o /o] = [x/2].
We are now in a position to define the DFOL language Ls; over signature 3. We
distinguish between DFOL units and DFOL formulas (or sequences).

Definition 2.1 (The DFOL language Ls over signature X)

t = v]|ft
U == 0|F|Pt|ty =tz |(d) | (¢1U¢2)

We will omit parentheses where it doesn’t create syntactic ambiguity, and allow the
usual abbreviations: we write L for —([]), =Pt for =(Pt), t1 # t for =(t; = t2),
1 U ¢y for (¢ U ¢2). Similarly, (¢ — 1) abbreviates —(¢; =(¢)), Yv(¢) abbreviates
=(Jv;=(¢)). A formula ¢ is a literal if ¢ is of the form Pt or =P, or of the form
t; =ty or t; # ty. The complement ¢ of a formula ¢ is given by: ¢ := 1) if ¢ has the
form —(¢)) and ¢ := —(¢) otherwise. We abbreviate =—(¢) as ((¢)), and we will call
formulas of the form ((¢)) block formulas.

We can think of formula ¢ as built up from units U by concatenation. For formula
induction arguments, it is sometimes convenient to read a unit U as the formula U;]
(recall that [] is the empty binding), thus using [] for the empty list formula. In other
words, we will silently add the [] at the end of a formula list when we need its presence
in recursive definitions or induction arguments on formula structure.

Given a first order model M = (D, I) for signature ¥, the semantics of DFOL
language Ly is given as a binary relation on the set VD, the set of all variable maps
(variable states, valuations) into the domain of the model. We impose the usual non-
empty domain constraint of FOL: any ¥ model M = (D,I) has D # (. If s,u € VD,

438 Tableau Reasoning and Programming with Dynamic First Order Logic

we use s ~, u to indicate that s, u differ at most in their value for v, and s ~x u to
indicate that s, u differ at most in their values for the members of X. If s € VD and
v,v" € V, we use s[v'/v] for the valuation u given by u(v) = s(v'), and u(w) = s(w)
for all w € V with w # v. Also, if s and v are as before and d € D we use s[d/v] for
the valuation u given by u(v) = d, and u(w) = s(w) for all w € V' with w # v.

M [Ptindicates that s satisfies the predicate Pt in M according to the standard
truth definition for classical first order logic. [t]J™ gives the denotation of ¢ in M
under s. If 6 is a binding and s a valuation (a member of VD), we will use sy for the
valuation u given by u(v) = [#(v)].

Definition 2.2 (Semantics of DFOL)
SOIM iff u=sg
SN iff s~pu
SPIOLY iff s =wu and M =5 Pt
sl =6l i s=uand [1])" =[]
SOOI iff s =u and there is no u' with ,[¢]
s[o1 U ¢2]]£4 iff S[[Qsl]]uM or S[[d)z]]ﬁ/l

s[U; ng]]uM iff there is a u' with s[[U]]uM and [[ng]]uM
Note that it follows from this definition that
S(@)IM iff s = u and there is a u' with ,[¢] M.

Thus, block formulas have their dynamic effects blocked off: double negation trans-
forms the semantic transition relation into a test.

We introduce a syntactic blocking operation on formulas as follows (= is used for
syntactic identity):

Definition 2.3 (Blocking Operation on Formulas)

0 = (®)

(F)” = (3v)
(PO = PI
(t1 = tQ)D = tl = t2

(@) = —(9)
o _ [(1U¢) if e =167 = oo,
(Qsl U ¢2) = { ((qsll U QSZZ)) othelrwise v i
‘ (U ifUS =U,¢" = ¢,
(U,¢)B T { (U; @) otherwise.

E.g., (3z; Px)” = ((3z; Px)), and (=(3z; Pz))Y = —(3z; Pr). By induction on for-
mula structure we get from Definitions 2.2 and 2.3 that the blocking operation makes
a formula into a test, in the following sense:

3. BINDING IN DFOL 439

Proposition 2.4 For all M and all valuations s,u for M, all Ly, formulas ¢: S[[(j)m]]u/\/’
iff s = u and there is a u' with s[¢] M

The key relation we want to get to grips with in this paper is the dynamic entailment
relation that is due to [16]:

Definition 2.5 (Entailment in DFOL) ¢ dynamically entails v, notation ¢ = 1,
:& for all Ly models M, all valuations s,u for M, if J[p]M then there is a variable
state u' for which]

3 Binding in DFOL

Bindings 6 are lifted to (sequences of) terms and (sets of) formulas in the familiar
way:

Definition 3.1 (Binding in DFOL)

O(ftr---tn) = [O(t1)---0(tn)
O(ts, ... tn) = O(t1),...,0(tn)
f(p) = Bop
0(p;¢) = (Bop)o
0(3v;) = Fv;0'¢ where ' =O\{t/v|t e T}
0(P i9) = POt 00

)

)

)

(=ta;0) = Ot =0ty;09
0((d1 U 2);¢3) = 0(d15¢3) UbO(d2;03)
(= (1);¢2) = —(0¢1); 002

({¢17;¢n}) = {0(¢1)77 (¢n)}

Note that it follows from this definition that

0((¢1)); p2) = (091)); 0.

Thus, binding distributes over block: this accounts for how ((---)) insulates dynamic
binding effects.!

The composition 8 - p of two bindings 6 and p has its usual meaning of ‘@ after p’,
which we get by means of 6 - p(v) := 6(p(v)). It can be proved in the usual way, by
induction on term structure, that the definition has the desired effect, in the sense
that for all ¢t € T', for all binding representations 8, p: (6o p)(t) = 8(p(t)) = (8 - p)(¢).

Here is an example of how to apply a binding to a formula:

[a/z]Pz; (Qz U 3z;—~Px); Sz = Pa;[a/z](Qz U Iz; ~Px); Sz
= Pa;([a/2]Qx; Sz U [a/z]Fz; - Px; Sz) = Pa;(Qa; Sa;[a/z]U 3z; ~Px; St)

The binding definition for DFOL fleshes out what has been called the ‘folklore idea in
dynamic logic’ (Van Benthem [6]) that syntactic binding [t/v] works semantically as

1Our reasons, by the way, for preferring prefix notation for application of bindings over the more usual postfix
notation have to do with the fact that in the rules of our calculus bindings have an effect on formulas on their right.

440 Tableau Reasoning and Programming with Dynamic First Order Logic

the program instruction v := ¢ (Goldblatt [15]), with semantics given by ¢[v :=]}
iff u = s[[t]M /v]. To see the connection, note that v := t can be viewed as DFOL
shorthand for Jv; v = ¢, on the assumption that v ¢ var(t).

In standard first order logic, sometimes it is not safe to apply a binding to a
formula, because it leads to accidental capture of free variables. The same applies
here. Applying binding [z/y] to Jz; Rxy is not safe, as it would lead to accidental
capture of the free variable y. The following definition defines safety of binding.

Definition 3.2 (Binding 6 is safe for ¢)

0 is safe for p always
0 is safe for p;¢ <= B op is safe for ¢
0 is safe for Pt;¢p :<= 0 is safe for ¢
0 is safe for t1 =t2;¢0 <= 0 is safe for ¢
0 is safe for Jv;p <= v & var(rng 0') and ¢’ is safe for ¢
where 0" = 6\{(v,t) |t € T}
0 is safe for ~($1);d2 <= @ is safe for ¢1 and 0 is safe for ¢po
0 is safe for (01 U ¢=); 3 <= 0 is safe for ¢1; 03 and 6 is safe for ¢o; P3

Note that there are ¢ with [| not safe for ¢. E.g., [| is not safe for [y/z]Jy; Rzxy,
because [y/x] is not safe for Jy; Rxy. The connection between syntactic binding and
semantic assignment is formally spelled out in the following;:

Lemma 3.3 (Binding Lemma for DFOL) For all ¥ models M, all M-valuations
s,u, all Ly, formulas ¢, all bindings 0 that are safe for ¢:

SI0OL iff J16; 1"
PROOF. Induction on the structure of ¢. [|
Immediately from this we get the following;:

Proposition 3.4 DFOL has greater expressive power than DFOL with quantification
replaced by definite assignment v :=d.

PROOF. If ¢ is an Ly formula without quantifiers, every binding 6 is safe for ¢. By
the binding lemma for DFOL, ¢ is equivalent to an Ly formula without quantifiers
but with trailing bindings. It is not difficult to see that both satisfiability and validity
of quantifier free Ly formulas with binding trails is decidable. [|

In fact, the tableau system below constitutes a decision algorithm for satisfiability
or validity of quantifier free Ly formulas, while the trailing bindings summarize the
finite changes made to input valuations.

A comparison of our definition of binding for DFOL with that of Visser [31] and
[32] reveals that Visser’s notion of binding follows a different intuition, namely that
binding in the empty formula yields the empty formula. We think our notion is more
truly dynamic, as is witnessed by the fact that it allows us to prove a binding lemma
in the presence of U, which Visser’s notion does not.

In the calculus we will need input(¢), the set of variables that have an input con-
straining occurrence in ¢ (with ¢ € Ls), Let var(f) be the variables occurring in
t.

4. ADAPTATION OF TABLEAU REASONING TO A DYNAMIC SETTING 441

Definition 3.5 (Input constrained variables of Ly formulas)

input(—(¢1); 2
input((p1 U ¢2); d3

inpub(¢1) U input(¢2)
= input(di; ¢3) U input(gpz; d3).

input(9) = war(rng())
input(d; ¢) = war(rng(0)) U (input(d)\ dom(0))
input(@u;8) = input($)\{v}
input(Pt;¢) := wvar(t) U input(p)
input(ty = ta;) = wvar{ty,t2} U input(d)
)
)

The following proposition (the DFOL counterpart to the finiteness lemma from
classical FOL) can be proved by induction on formula structure:

Proposition 3.6 For all Ly, models M, all valuations s,s’,u,u’ for M, all Lx. for-
mulas ¢:

s[o]X and s ~vinputie) S tmply u' with ¢ o]

4 Adaptation of Tableau Reasoning to a Dynamic Setting

We will use one-sided tableaux, with the rule for every operator o matched by a —o
rule.

In the dynamic version of FOL, order matters: the sequencing operator ‘;’ is not
commutative in general. Suppose ® were to consist of the two formulas dz; Px and
= Pz. Then if we read ® as Jdz; Px; Pz, we get a contradiction, but if we read ® as
= Px;3dz; Px then the formula set has a model that contains both Ps and non-Ps.

Local Bindings Versus Global Substitutions

We will only perform a binding 6 on ¢ when needed; rather than compute ¢, the
tableau rules will store 8; ¢, and compute the binding in single steps as the need arises.
Tableau theorem proving can be viewed as a process of gradually building a domain D
and working out requirements to be imposed on that domain. The tableau procedure
that investigates whether ¢ dynamically implies ¢ will build a domain with positive
and negative facts. For this we employ an infinite set Fgj, of skolem functions,
with Fgpo N Fx = 0, plus a set of fresh variables X, with VN X = . Call the
extended signature ¥*, and the extended language Lx+. Let Tx+ be the terms of the
extended language, and Ty. the terms of the extended language without occurrences
of members of X . Call these the frozen terms of Lx+, and bear in mind that frozen
terms, unlike ground terms, may contain occurrences of variables in V. Call an Ly«
literal frozen if it contains only frozen terms.

The variables in X will function as universal tableau variables [13]. While the
bindings of the variables from V are local to a tableau branch, the bindings of the
variables from X are global to the whole tableau. Next to the (local) bindings for the
variables V' of Ly, we introduce (global) substitutions o for the fresh variables X in
Ls~, and extend these to (sequences of) terms and (sets of) formulas in the manner
of Definition 3.1. A substitution o is a unifier of a set of (sequences of) terms T' if oT
contains a single term (sequence of terms). It is a most general unifier (MGU) of T'
if o is a unifier of T', and for all unifiers p of T there is a 8 with o = 0 - p. Similarly

442 Tableau Reasoning and Programming with Dynamic First Order Logic

for formulas. Note that only unifiers for global substitutions (the term maps for the
global tableau variables from X') will ever be computed.

The definitions and results on binding extend to bindings with values in T+, and
to substitutions (domain C X, values in T%-+). Still, the global substitutions play
an altogether different role in the tableau construction process, so we use a different
notation for them, and write (representations for) global substitutions as

{ml =ty , Ty |—>tn}

5 Tableaux for DFOL Formula Sets

If ¥ is a first order signature, a DFOL tableau over X is a finitely branching tree with
nodes consisting of (sets of) Ly« formulas. A branch in a tableau T is a maximal
path in T'. We will follow custom in occasionally identifying a branch B with the set
of its formulas.

Let @ be a set of Ly, formulas. A DFOL tableau for @ is constructed by a (possibly
infinite) sequence of applications of the following rules:

Initialization The tree consisting of a single node [] is a tableau for ®.

Binding Composition Suppose T is a tableau for ® and B a branch in T'. Let
¢ € BU®, let 6;p occur in ¢, and let ¢' be the result of replacing #;p in ¢ by
6 o p. Then the tree T' constructed from T by extending B by ¢' is a tableau for
.

Expansion Suppose T is a tableau for ® and B a branch in T'. Let ¢ € BU®. Then
the tree T' constructed from T by extending B according to one of the tableau
expansion rules, applied to ¢, is a tableau for ®.

Equality Replacement Suppose T is a tableau for ® and B a branch in T'. Let
ty =ty € BUborty =t; € BU®, and L(t3) € BU®, where L is a literal. Suppose
t1,t3 are unifiable with MGU . Then T' constructed from T by applying o to
all formulas in T', and extending branch o B with L(ots) is a tableau for ®.

Closure Suppose T is a tableau for ® and B a branch in T, and L, L’ are literals in
BU®. If L, I/ are unifiable with MGU o then T’ constructed from T by applying
o to all formulas in T is a tableau for ®.

Any tableau branch can be thought of as a database ® of formulas true on that
branch. Because our databases may contain (negated) identities, we need some pre-
liminaries in order to define closure of a tableau. When checking for closure, we
may consider the parameters from V' occurring in literals along a tableau branch as
existentially quantified. Occurrence of Pv along branch B does not mean that ev-
erything has property P, but rather that the thing referred to as v has P. Thus, the
V-variables occurring in literals can be taken as names. We can freeze the parameters
from X by mapping them to fresh parameters from V. Applying a freezing substi-
tution to a tableau replaces references to ‘arbitrary objects’ @, y, ..., by ‘arbitrary
names.” What this means is that we can determine closure of a branch B in terms of
the congruence closure of the set of equalities occurring in a frozen image o B of the
branch. See [5], Chapter 4, for what follows about congruence closure.

If @ is set of Ly« formulas without parameters from X, the congruence closure of ®,
notation ~g, is the smallest congruence on 7' that contains all the equalities in ®. In

6. TABLEAU EXPANSION RULES 443

general, ~¢ will be infinite: if @ = b is an equality in ®, and f is a one-placed function
symbol in the language, then ~¢ will contain fa = fb, ffa = ffb,fffa= fffb,...
Therefore, one uses congruence closure modulo some finite set instead.

Let S be the set of all sub-terms (not necessarily proper) of terms occurring in a
literal in ®. Then the congruence closure of ® modulo S, notation CCg(®), is the
finite set of equalities ~¢ N (S x S). We can decide whether ¢t = ¢’ in CCg(®); [5]
gives an algorithm for computing CCg(G), for finite sets of equalities G and terms S,
in polynomial time.

Definition 5.1 t ~ t' is suspended in frozen Lx+ formula set ® if t =t € CCs(P),
where S is the set of all sub-terms of terms occurring in literals in ®. We extend this
notation to sequences: t ~ t' is suspended in ® if t; = t],...,t, & t), are suspended
mn ®.

A frozen Ly~ formula set ® is closed if either —(0) € ® (recall that L is an abbre-
viation for —([])), or for some t = t' suspended in ® we have Pt € ®, =P’ € ®, or
for a pair of terms t1,ts with t1 ~ to suspended in ® we have t; # ts € ®.

A tableau T is closed if there is a freezing substitution o of T such that each of its

branches o B is closed.

6 Tableau Expansion Rules

Note that we can take the form of any Ly« formula to be 6; ¢, by prefixing or suffixing
[| as the need arises. The tableau rules have the effect that bindings get pushed from
left to right in the tableaux, and appear as computed results at the open end nodes.

Conjunctive Type Here are the rules for formulas of conjunctive type (type « in the
Smullyan taxonomy):

6; Pt; ¢ 0; t1 =to2; @ 0; ty =12 ¢
Pot 0t, = Oty 0t; = Oty
0; ¢ 6o [0t;/v]; ¢ 0; ¢
where 0t; =v € V,i € {1,2} where 0t; ¢ V,i € {1,2}
—(6; (¢1L|J¢2); $3) v; ((¢1|)); b2 0; _'(ﬁﬂ; ¢2
(05 b1 h3) (8; ¢1) =(0; ¢1)
=(0; ¢2; #3) 0; ¢2 0; o2

Call the formula at the top node of a rule of this kind a and the formulas at the
leaves ay,as. To expand a tableau branch B by an « rule, extend B with both a;
and Q.

Disjunctive Type The rules for formulas of disjunctive type (Smullyan’s type 3):

444 Tableau Reasoning and Programming with Dynamic First Order Logic

-(6; Pt; ¢) —(6; t1 =to; @) 6; (¢1 U d2); o3

-Pot —(6; ¢) Oty #£ 0ty —(6; ¢) 0; 1503 0;h2; b3
=(0; =(91); ¢2)
/\

((0; ¢>1)) ((95 ¢>2))

Call the formula at the top node of a rule of this kind [, the formula at the left
leaf 81 and the formula at the right leaf 8. To expand a tableau branch B by an
rule, either extend B with 8; or with (.

Universal Type Rule for universal formulas (Smullyan’s type 7):

—(8; ?v; b)
—(0 o [z/v]; &)

Here x is a universal variable taken from X that is new to the tableau. Call the
formula at the top node of a rule of this kind ~y(v), and the formula at the leaf v;. To
expand a tableau branch B by an v rule, extend B with ~;.

Ezistential Type Rule for existential formulas (Smullyan’s type 9d):

0; Jv; ¢
|

0 o [sko;3u:6(@1, - - -, 20) [0]; ¢

Here «1,...,x, are the universal parameters upon which interpretation of Jv; ¢
depends, and skg,3,,4(21,-..,%,) is a skolem constant that is new to the tableau
branch.?

By Proposition 3.6, {x1,...,x,} is a subset of input(6; Jv; ¢), or, since no members

of X occur in ¢ or in dom(f), a subset of X N input(f) = X Nwar(rng(f)). From this
set, we only need?

{Z1,...,xn} := X Noar(rng(0 | (input(p)\{v}))).

Call the formula at the top node of a rule of this kind §(v), and the formula at the
leaf ;. To expand a tableau branch B by an ¢ rule, extend B with d;.

2It is well-known that this can be optimized so that the choice of skolem constant only depends on 6; Jv; ¢.

3In an implementation, it may be more efficient to not bother about computing input(¢), and instead work with
{®1,..., @yn } := X Novar(rng(9)).

7. SOUNDNESS OF THE TABLEAU CALCULUS 445

Protected Versions of the Rules All of the rules above have protected versions, i.e.,
versions with the formula ¢ to which the rule applies of the form ™. The blocking
operator is inherited by all the daughter formulas. As an example, here are the
protected versions of one of the conjunctive and one of the disjunctive rules:

(6; PE; ¢)™ (05 (1 U o); ¢3)™
| /\

559;35 (05615 03) (8; 6o 63)"

Applying Definition 2.3, we see that this boils down to the following:
(6; P|¥;) ((W))

Pot 0; 615 b3 0; d2; b3
(©:9) (() ()

The tableau calculus specifies guidelines for extending a tableau tree with new leaf
nodes. If one starts out from a single formula, at each stage only a finite number
of rules can be applied. Breadth first search will get us all the possible tableau
developments for a given initial formula, but this procedure is not an algorithm for
tableau proof construction: as in the tableau systems for classical FOL, there is no
guarantee of termination.

7 Soundness of the Tableau Calculus

Valuations for ¥* models M = (D, I) are functions in VUX — D. Any such function
g can be viewed as a union sUh of a function s € V' — D and a function h € X — D
(take s =g [V and h = ¢g | X). For satisfaction in ¥* models we use the notation
sun[?]M, to be understood in the obvious way. In terms of this we define the notion
that we need to account for the universal nature of the X variables.

Definition 7.1 Let ¢ € Ly+, M = (D,I) a £* model, s,u € V — D.

Then Y[#]™ iff for every h: X — D thereis au: V UX — D with sun[o]M'. We
say: s universally satisfies ¢ in M.

For any tableau T we say that C(T) if there is an ¥* model M, a branch B of T
and a 'V wvaluation s for M such that every formula ¢ of B is universally satisfied by
s in M.

Lemma 7.2 If s universally satisfies ¢ in M, and o is a substitution on X that is
safe for ¢, then s universally satisfies o¢ in M.

PRrOOF. If Y[¢]™ then for every X valuation h in M there is a V U X valuation u in
M with gun[#]M. Thus for every h in M there is a V U X valuation u in M with

sUho- [[d)]]uM)
and therefore for every h in M there is a V U X valuation u in M with
sUh IIU: QS]]UM .

Since o is safe for ¢ we have by the binding lemma that [o¢]™ = [o; #]M, and it
follows that s universally satisfies o¢p in M. [|

446 Tableau Reasoning and Programming with Dynamic First Order Logic

With this, we can show that the tableau building rules preserve the C(T') relation.

Lemma 7.3 (Tableau Expansion Lemma) 1. If tableau T for ® yields tableau
T' by an application of binding composition, then C(T) implies C(T").
2. If tableau T for ® yields tableau T' by an application of a tableau expansion rule,
then C(T) implies C(T").
3. If tableau T for ® yields tableau T' by an application of equality replacement, then
C(T) implies C(T").
4. If tableau T for ® yields tableau T' by an application of closure, then C(T) implies
Cc(T).
PrROOF. 1. Immediate from the fact that 6; p and 6 o p have the same interpretation.

2. All of the a and S rules are straightforward, except perhaps for the a equality
rules. The change of 6 to 6 o [0t;/v], where 8t; = v (i,j € {1,2},i # j,) reflects the
fact that 0t; = 0t, gives us the information to instantiate v.

The v rule. Assume —(6; Jv; @) is universally satisfied by s in M. We may assume
that 6 is safe for Jv; ¢. If © € X, x fresh to the tableau, then 6 o [x/v] will be safe
for ¢, and —(o [x/v]; $) will be universally satisfied by s in M.

The 0 rule. Assume s universally satisfies 8; Jv; ¢ in M. By induction on tableau
structure, dom(f) C V. Define a new model M’ where skg,5,;¢ is interpreted as the
function f : D™ — D given by f(dy,...,d,) := some d for which ¢ succeeds in M for
input state sg[dy/x1,...,d,/®,,d/v]. By the fact that s universally satisfies ; Jv; ¢

in M and by the way we have picked xi,...,x,, such a d must exist. Then s will
universally satisfy 6 o [skg,30;¢(21, ..., %n)/v]; ¢ in M', while universal satisfaction of
other formulas on the branch is not affected by the switch from M to M'.

3 and 4 follow immediately from Lemma 7.2. [|
Theorem 7.4 (Soundness) If ¢, € Ly, and the tableau for ¢; (1) closes, then
¢ .

PrOOF. If the tableau for ¢;—(1) closes, then by the Tableau Expansion Lemma,
there are no M, s such that ?[¢; =(1/)]™. Since ¢,v € Lx, there are no M, s, u with
s[#; ()M, In other words, for every ¥ model M and every pair of variable states
s,u for M with ;[¢] there has to be a variable state u’ with ,[¢)]!. Thus, we have
¢ |= 1 in the sense of Definition 2.5. [|

8 Derived Principles

Universal Quantification Immediately from the definition of Yv(¢) we get:

9;Vv(<|1>1);¢2
(6 0 [z/v];$1))
0; p2

where © € X new to the tableau

Blocks Detachment A sequence of blocks £(¢1);...;£(¢n), where £(¢;) is either
(1)) or —=(¢;), yields the set of its components, by a series of applications of distribu-
tion of the empty substitution over block or negation. This is useful, as the formulas
+(é1),-..,%(d,) can be processed in any order. In a schema:

9. EXAMPLES 447

+(6n)

Negation Splitting The following rules are admissible in the calculus:

= (5 =(1); x) =(5 ()5 x)
PN P
(59) (%) (=) =(é5x)

Negation splitting can be viewed as the DFOL guise of a well known principle from
modal logic: O(AV B) = (CAVOB). To see the connection, note that —(¢; =(¢); x)
is semantically equivalent to —(¢; =(¢» U =(x))), where —(¢; —---) behaves as a O
modality.

9 Examples

In the examples we will use vg, vy, ... as 0-ary skolem terms for v, etcetera.
Syllogistic Reasoning Consider the syllogism:

Vz(Az — Bx),Vz(Bx — Cz) E Vz(Az = Cx).
This is an abbreviation of (9.1).
—(3z; Ax; —Bz),~(3z; Bx; -Cx) = —(3z; Az; -Cx) (9.1)
The DFOL tableau for this example, a tableau refutation of
—(3z; Ax; - Bz); ~(3z; Bx; ~Cx); (3z; Az; ~Cx))

is in Figure 1.
Dynamic Donkey Reasoning The hackneyed example for dynamic binding in natural
language, If a farmer owns a donkey, he beats it, has the following DFOL shape:

(3z; Jy; Fz; Dy; Ozy — Bzy),
which is shorthand for:
—(3z; Jy; Fz; Dy; Oxy; ~Bzxy).
Counsider the natural language text in (9.2).
If a farmer owns a donkey, he beats it. A. is a farmer and owns a donkey. (9.2)

Figure 2 shows how to draw conclusions from the DFOL version of this text in a
DFOL tableau calculation.

The open tableau branch in Figure 2 yields the fact Bazi, plus the following further
information about z1: Dz1,Oaz;. This further information is useful to identify z; as

448 Tableau Reasoning and Programming with Dynamic First Order Logic

=(3x; Ax; 2Bx); ~(3x; Bx; —Cx); (3x; Ax; -Cx))

—(3z; Az; - Bx)
=(3x; Bx; ~Cx)
(3z; Az; ~C1))

([z1/x]; Az; ~Cx))

AiUl
([z1/z]; ~C)

_'CZL“l
([z1/])

~([#/x]; Az; ~Bx)

ﬂf‘xw ~([2/2]; ~Bu)
{z - a1} Bz

X |
~([y/x]; Bx; =C)

—~By ~([y/z]; ~Cz)

{x =z, y— a1} Cy
X

{x—= a1, y— a1}
X

FiG. 1. DFOL Tableau for Syllogistic Reasoning (9.1)

9. EXAMPLES 449
—(3z; y; Fz; Dy; Ozy; ~Bry); Fa; 3z; Dz; Oaz
~(3x; 3y; Fa; Dy; Oxy; ~Bay)

Fa
dz; Dz; Oaz

[21/2]; Dz; Oaz

DZl
Oaz

[21/2]

([x/z,y/y]; Fx; Dy; Oxy; ~Bxy)

~Fx ~([z/z,y/y]; Dy; Ozy; ~Bzxy)
|
{z ” a} ~Dy ~([z/z,y/y]; Owy; ~Bay)
|
{z oY = 21} -Ozy ~([z/z,y/y); ~Buxy)
| |
{x—a,y— 21} Bzy

' |
{r—a,y— 2z}

Fia. 2. Tableau for Dynamic Donkey Reasoning (9.2)

the donkey that Alfonso owns (or perhaps a donkey that Alfonso owns) that was
introduced in the text.

Open Tableau Branches, Partial Models, Reference Resolution An open tableau
branch for a DFOL formula ¢ may be viewed as a partial model for ¢, with just
enough information to verify the formula. For instance, the open branch in the
previous example does not specify whether donkey z; also beats Alfonso or not: Bzja
is neither among the facts (true atoms) nor among the negated facts (false atoms) of
the branch.

In tableau branches involving equality there is also another kind of partiality in-
volved: the terms are proto-objects rather than genuine objects, in sense that they
have not yet ‘made up their minds’ about which individual they are: two terms ¢y,
on a tableau that does not contain ¢; # t» may be interpreted as a single individ-
ual. This is because the information about equality that the branch provides is also

450 Tableau Reasoning and Programming with Dynamic First Order Logic

partial. Also, variables from X (free tableau variables) can be resolved to any object
whatsoever.

The level of tableau style generation of partial models for discourse may be just the
right level for pronoun reference resolution (cf. the suggestion in [7]). Since reference
resolution is a processing step that links a pronoun to a suitable antecedent, what
about equating the suitable antecedents with the available terms of the branches in
a tableau? After all, reference resolution for pronouns is part of semantic processing,
so it has a more natural habitat at the level of processing NL representations than at
the level of mere representation of NL meaning.

Building on this idea, we (tentatively) introduce the following rule for pronoun
resolution:

Ppro - Ppro
Pt -Pt
t occurs on the branch t occurs on the branch

Of course, for a full account one would need rules to determine the salient terms for
pronoun resolution along a branch, but here we will just demonstrate the rule with a
tableau for the following piece of discourse.

Every farmer owns a donkey. Some farmer beats it. (9.3)

See Figure 3. Intuitively, in this tableau, the following happens. First, a term z; in-
troduced for Some farmer. This leads to an unresolved fact ‘B(z1,1t)’ in the database
of the partial model under construction. Later, the pronoun it is resolved to ‘the
donkey that z; owns’ generated from every farmer owns a donkey, and represented
in the database of the partial model as sky (z1).

Here is another well-known example from the literature that is hard to crack in
a purely representational setting (a piece of evidence against the claim, by the way,
that ‘or’ in natural language is externally static):

John owns a motorbike or a car. It is in the garage. (9.4)

Again, in the tableau setting there is no problem: the tableau for (9.4) will have two
branches, and both of the branches will contain a suitable antecedent for it.
Reasoning about ‘<’ Consider example (9.5).

y < x;—(3z; Jy; ¢ < y). (9.5)

This is contradictory, for first two objects of different size are introduced, and next we
are told that all objects have the same size. The contradiction is derived as follows:

9. EXAMPLES 451

Va(Fz — Jy; Dy; Oxy); 3z; Fz; B(z,it)

Vz(Fz — Jy; Dy; Ozy)
3z; Fz; B(z,it)

[21/2]; Fz; B(z,it)

FZl
[21/2]; B(z,it)

B(z,it)

=(3z; Fz; ~(Jy; Dy; Oxy))

~([z/z]; Fz; ~(3y; Dy; Oxy))

ﬂz‘?m ([/]; 3y; Dy; Oxy))
{z ':: z1} ([/=, ski(z) /y]; Dy; Oxy))
Dsk; (x)

([z/z,ski(z)/y]; Ozy))
O(x, skq (x))

B(Zl, Sk1 (:17))

{x— 21}

Fi1G. 3. Tableau for Donkey Reasoning with Pronoun Resolution (9.3)

452 Tableau Reasoning and Programming with Dynamic First Order Logic

y < x;-(37;Jy; 2 < y)
y<z
=(Fz; 3y < y)
[z /z, x2/y]; @ < y)

) < Ty
{:131 =Y, T2 — ;L'}
X

More Reasoning about < Assume that 1,2, 3, ... are shorthand for s0, ss0, sss0,
We derive a contradiction from the assumption that 4 < 2 together with two axioms
for <. See Figure 4, with arrows connecting the literals that effect closure.

Computation of Answer Substitutions, with Variable Reuse Figure 5 demonstrates
how the computed answer substitution stores the final value for z, under the renaming
x1. Because of the renaming, the database information for x; does not conflict with
that for z.

Closure by FEquality Replacement This example illustrates closure by means of
equality replacement, in reasoning about Jz;dy;x # y; Ix; ~(Jy; ¢ # y). Note that
x1,Y1, %o serve as names for objects in the domain under construction. What the
argument boils down to is: if the name z2 applies to everything, then it cannot be
the case that there are two different objects x1,y;. See Figure 6.

The first application of equality replacement in Figure 6 unifies * with z; and
concludes from zo = x,x; # y; that 2 # y;. The second application of equality
replacement unifies y with y; and concludes from zo = y, 2 # y; that x5 # x,.

Loop Invariant Checking To check that x = y! is a loop invariant for y .= y+1;2 :=
Ty, assume it is not, and use the calculus to derive a contradiction with the definition
of I. Note that y := y+ 1; 2 := x xy appears in our notation as [y + 1/y]; [t *y/z]. See
Figure 7. A more detailed account would of course have to use the DFOL definitions
of +, x and !.

Loop Invariant Detection This time, we inspect the code [z * (y + 1)/z]; [y + 1/y]
starting from scratch. Since y is the variable that gets incremented, we may assume
that = depends on y via an unknown function f. Thus, we start in a situation where
fy = . We check what has happened to this dependency after execution of the
code [z * (y + 1)/z]; [y + 1/y], by means of a tableau calculation for fy = z; [z * (y +
1)/z);[y+1/y]; fy = z. See Figure 7. The tableau shows that [z (y+1)/z]; [y +1/y]
is a loop for the factorial function.

Postcondition Reasoning for ‘If Then Else’ For another example of this, consider a
loop through the following programming code:

i =1+ 1;if £ < a[i] then z := a[i] else skip. (9.6)

Assume we know that before the loop « is the maximum of array elements a[0] through
a[i]. Then our calculus allows us to derive a characterization of the value of z at the
end of the loop. Note that the loop code appears in DFOL under the following guise:

[i +1/i]; (z < a[i]; [a[i]/z] U~z < a[i]).

10. COMPLETENESS 453
=(3z; 2 < 0);4 < 2;-(Fx; Jy; sz < sy; —x < y)

—(3z;z < 0)
4<2
=(3x; Jy; sz < sy; —w < y)

ﬂ([w/ftf]';fc <0)

- <0
|

([y/z, z/y]; sz < sy; ~x < y)

-5y |< sz (([y/x,2/|y];x <)
{y— 3,z 1} y<z
X |
{y — 3,|z — 1}

3<1
|

[y, /2, z1/yl; 52 < sy; ~x < y)

sy < 521 (([yl/w,z1|/y];w <)

{y1 — 2,21 = 0} Yy, < z1
x

{y; = 2,21 — 0}

Fia. 4. More Reasoning about <.

The situation of z at the start of the loop can be given by an identity z = m?, where
m is a two-placed function. To get a characterization of z at the end, we just put
X =z (X a constant) at the end, and see what we get (Figure 8). What the leaf nodes
tell us is that in any case, X is the maximum of a[0],..,a[¢ + 1], and this maximum
gets computed in x.

10 Completeness

Completeness for this calculus can be proved by a variation on completeness proofs for
tableau calculi in classical FOL. First we define trace sets for DFOL as an analogue
to Hintikka sets for FOL. A trace set is a set of DFOL formulas satisfying the closure

454 Tableau Reasoning and Programming with Dynamic First Order Logic

r=0x=yUy =2;dz;2 =2

z=0
[0/z];2 =yUy = 2;3z;2 =2

[0/z];x = y;Ax;x =2 [0/x];y = 2; 3z =2
0=y 2=y
[0/z,0/y]; Jz; 2 = 2 [0/z,2/y]; Jz;z = 2
[z1/2,0/y]; & =2 [z1/x,2/y]; 2 =2
Iy =2 T =2
[21/2,0/y,2/x:] [21/2,2/y,2/x:]

Fic. 5. Computation of Answer Substitutions, with Variable Reuse

conditions that can be read off from the tableau rules. Trace sets can be viewed as
blow-by-blow accounts of particular consistent DFOL computation paths (i.e., paths
that do not close).

Definition 10.1 A set ¥ of Ly« formulas is a trace set if the following hold:

1.-(0) ¢ .

2.Ifp€ W, thenp ¢ U,

3. If0; 0 € U, then 8¢ € V.

4. If a € ¥ then all a; € V.

5. If B € ¥ then at least one B; € V.

6. If y(v) € U, then v1(t) € ¥ for all t € TY. (all terms that do not contain variables
from X).

7. If §(v) € U, then §,(t) € U for some t € TY. (some term t that does not contain
variables from X).

This definition is motivated by the Trace Lemmas:

Lemma 10.2 (Trace Lemma) The elements of every trace set ¥ are simultaneously
satisfiable.

PROOF. Define a canonical model My in the standard fashion, using congruence clo-
sure on the trace set ¥ over the set of terms occurring in @, to get a suitable congru-
ence = on terms. Next, define a canonical valuation sp by means of so(v) := [v]= for
members of V and so(sky) = [sk{]= for O-ary skolem terms. Verify that s, satisfies
every member of ® in M. [|

10. COMPLETENESS

r=yly+1/yl;

[y!/x]; [y + 1/yl;

[y!/z,y +1/y];

[y +1/y,y! * (y

dz;ysz £ y; oy ~Fy; v Ay
[w1/z,y1/y);x # y; Fo;~Tysz #y

T £
[z2/2,y1/y]; ~Fys 2 # y

[yl;z #y

Slxe/z, @

:EQiCZT

{x -z}
T2 #y1

Sz /T, y/ylie #y

.’L'Qiy

{ly=u}
o 752132
X

Fia. 6. Reasoning With Equality

[z xy/a];x # y!
rxy/a];x ! fy
R R e e (4
zxy/x];x # y!
eyl [fy* (w + 1)/];
+1)/alz # y!

[fy*(y+1)/z,

455

fy=zzxy+1)/zlily+ 1yl fy==

;]; ly+1/yl;fy==

y+1/yl;fy==

y+1/ylify==

ylx(y+1) £y +1)!

fly+1)=fyx(y+1)
[fy*(y+1)/z,y+1/y]

Fic. 7. Loop Invariant Checking and Loop Invariant Detection.

456 Tableau Reasoning and Programming with Dynamic First Order Logic

z=mY; i+ 1/i];z < afi];[ali]/z] U~z < a[i; X =z

(m/z]; [i + 1/i];z < a[i];[ai]/z] U -z < a[i]; X =z

[(mQ/z,i+ 1/i];z < a[i]; [a[i]/z] U~z < a[i; X =z

[m?/x,i+ 1/il;x <alil; [ali]/2}; X =2 U[m/z,i+1/i; -2 <a[i; X =
i i1 < ol ol ol X = 0 /e, + 1/ifi e < alil; X =@
m? < afi + 1] o < afi+ 1], i+ i) X = x
[m?/z,i+1/i);[ali]/z]; X =z [i + 1], [m? /@, i+ 1/i]
-m{ < afi +1]

[i+1/i,afi+1]/z]; X =« X=m)
[m9/z,i+ 1/i]

X =ali+1]
[i +1/i,ali +1]/x]

F1G. 8. Postcondition Reasoning for (9.6)

To employ the lemma, we need the standard notion of a fair computation rule. A
computation rule is a function F' that for any set of formulas ® and any tableau T,
computes the next rule to be applied on T'. This defines a partial order on the set of
tableaux for ®, with the successor of T' given by F. Then there is a (possibly infinite)
sequence of tableaux for ® starting from the initial tableau, and with supremum 7.
A computation rule F' is fair if the following holds for all branches B in T :

1. All formulas of type «, 8,9 occurring on B or in & were used to expand B,

2. All formulas of type 7 occurring on B or in ® were used infinitely often to expand
B.

Theorem 10.3 (Completeness) For all ¢,1) € Ly.: if ¢ =1 then there is a tableau
refutation of ¢; —(1).

PrOOF. Let Ty,... be a sequence of tableaux for ¢; —(v)) constructed with a fair
computation rule, without closure rule applications, and with supremum T',,. Define
a freezing map o on T, as follows (see, e.g., [17]). Let (Bg)r>0 be an enumeration
of the branches of T', let (¢;)i>0 be an enumeration of the type vy formulas of T',
and let x;;, be the variable introduced for the j-th application of v formula ¢; along
branch By. If (t;);>0 is an enumeration of all the frozen terms of T, we can set
Ooo(@iji) :=tj foralli, j, k > 0. Note that o is not, strictly speaking, a substitution
since dom(o) is not finite.

11. ADDING ITERATION 457

Suppose 0T« contains an open branch. Then from this branch we get a trace set,
which in turn would give a canonical model and a canonical valuation for ¢; =(v), and
contradiction with the assumption that ¢ |= . Therefore, 05T« must be closed.

Since the tree T, is finitely branching and all formulas having an effect on closure
are at finite distance from the root, there is a finite T, with o, T, closed. Finally,
construct an MGU o for T',, on the basis of the part of o that is actually used in
the closure of T',,, and we are done.

Theorem 10.4 (Computation Theorem) If ¢ is satisfiable, then all bindings 6
produced by open tableau branches B satisfy s[[d)]]?;', where M is the canonical model
constructed from B, and s the canonical valuation.

PROOF. Let Ty, ... be a sequence of tableaux for ¢ constructed with a fair compu-
tation rule, without closure rule applications, and with supremum 7T',,. Consider
0T, where o, is the canonical freezing substitution. Then since ¢ is satisfiable,
0 ooT o will have open branches (Bj)r>o (the number need not be finite). It follows
from the format of the tableau expansion rules that every open branch will develop
one binding.

We say that a binding 8 occurs non-protected in a formula ¢ if ¢ has the form ;1.
Check that the tableau expansion rules on formulas of the forms ((¢)) or =(¢) never
yield non-protected bindings # # []. Check that each application of an a, 3,7y or §
rule to a formula with a non-protected binding extends a branch with exactly one
non-protected binding. It follows that every tableau branch Bj has a highest node
where a formula of the form 6 appears. This # can be thought of as the result of
pulling the initial binding [] through the initial formula ¢. For every such By, and 6
there is a finite T',, with a branch By that already contains (a generalization of) 6.

It can be proved by induction on the length of By that ;[¢]}!, for M the canonical
model and s the canonical valuation for that branch. [|

Note that the computation theorem gives no recipe for generating all correct bind-
ings for a given ¢. Specifying appropriate computation rules for generating these
bindings for specific sets of DFOL formulas remains a topic for future research.

Variation: Using the Calculus with a Fized Model Computing with respect to a
fixed model is but a slight variation on the general scheme. The technique of using
tableau rules for model checking is well known. Assume that a model M = (D, I) is
given. Then instead of storing ground predicates P8t (ground equalities 0t; = 6t5),
we check the model for M = POt (for [0t] = [0t2]™), and close the branch if
the test fails, continue otherwise. Similarly, instead of storing ground predicates POt
(ground equalities 8¢, = 0ty) under negation, we check the model for M = POt (for
[0t M # [0t2]™), and close the branch if the test fails, continue otherwise.

11 Adding Iteration

Let L3, be the language that results from extending Ly with formulas of the form ¢*.
The intended relational meaning of ¢* is that ¢ gets executed a finite (> 0) number
of times. This extension makes L3, into a full-fledged programming language, with
its assertion language built in for good measure.

458 Tableau Reasoning and Programming with Dynamic First Order Logic

The semantic clause for ¢* runs as follows:

S[[¢*]]UM iff either s=u
or s, ysn(n > 1) with S [L5 o, [T

817

It is easy to see that it follows from this definition that:
S I AfE either s = u or 3s; with s[[gzﬁ]]?f and 4, [¢*]M. (11.1)

Note, however, that (11.1) is not equivalent to the definition of s[¢*]M, for (11.1)
does not rule out infinite ¢ paths.

Let ¢" be given by: ¢° := [and ¢" ! := ¢; ¢". Now ¢* is equivalent to “for some
neN: .

What we will do in our calculus for DFOL* is take (11.1) as the cue to the star
rules. This will allow star computations to loop, which does not pose any problem,
given that we extend our notion of closure to ‘closure in the limit’ (see below).

The calculus for DFOL* has all expansion rules of the DFOL calculus, plus the
following a* and 8* rules.

a* ezxpansion rule Call ¥* the star formula of the rule.

B* expansion rule Call * the star formula of the rule. The * rule also has a
protected version.

&9 x
;X ;9% x

To see that the a* rule is sound, assume that s universally satisfies —(¢;¥*;x) in
M = (D,I). By (11.1), this means that there is at least one h : X — D for which
there is no u with ,u5[¢; X]M and no u with ,un[¢;9;¢*; x]M. Thus, s universally
satisfies =(¢; x) and = (¢; ¢;¢"; x) in M.

For the 8* rule, assume that s universally satisfies ¢;¢*;x in M. Then for every
h : X — D there are u,u’ with su[¢]21 and ,[v*;x]M. Then, by (11.1), either
«[XIA" or there is a uy with [¢/]3! and o, [¢7; x]2!. Thus, s universally satisfies
either ¢; x or ¢;;9*;x in M.

Closure in the Limit To deal with the inflationary nature of the a* and B* rules
(the star formula of the rule reappears at a leaf node), we need a modification of our
notion of tableau closure. We allow closure in the limit, as follows.

11. ADDING ITERATION 459

Definition 11.1 An infinite tableau branch closes in the limit if it contains an infinite
star development, i.e., an infinite number of a* or B* applications to the same star
formula.

Example of Closure in the Limit We will give an example of an infinite star devel-
opment. Consider formula (11.2):

—Jw—(Fv;v = 0; (v # w; v+ 1/v])";0v = w). (11.2)

What (11.2) says is that there is no object w that cannot be reached in a finite number
of steps from v = 0, or in other words that the successor relation v — v+1, considered
as a graph, is well-founded. This is the Peano induction axiom: it characterizes the
natural numbers up to isomorphism. What it says is that any set A that contains 0
and is closed under successor contains all the natural numbers. The fact that Peano
induction is expressible as an L5, formula is evidence that £3 has greater expressive
power than FOL. In FOL no single formula can express Peano induction: no formula
can distinguish the standard model (N, s) from the non-standard models. In a non-
standard model of the natural numbers it may take an infinite number of s-steps to
get from one natural number n to a larger number m.

The expressive power of Lx* is the same as that of quantified dynamic logic ([25,
15]). Arithmetical truth is undecidable, so there can be no finitary refutation system
for £3,. The finitary tableau system for Ly is evidence for the fact that DFOL validity
is recursively enumerable: all non-validities are detected by a finite tableau refutation.
This property is lost in the case of £5: the language is just too expressive to admit
of finitary tableau refutations.

Therefore, some tableau refutations must be infinitary, and the tableau development
for the negation of (11.2) is a case in point. Let us see what happens if we attempt to
refute the negation of (11.2). A successful refutation will identify the natural numbers
up to isomorphism. See Figure 9. This is indeed a successful refutation, for the tree
closes in the limit. But the refutation tree is infinite: it takes an infinite amount of
time to do all the checks.

Theorem 11.2 (Soundness Theorem for £}) The calculus for DFOL* is sound:
For all ¢,v € L% : if the tableau for ¢;—(v) closes then ¢ |= 1.

The modified tableau method does not always give finite refutations. Still, it is a
very useful reasoning tool, more powerful than Hoare reasoning, and more practical
than the infinitary calculus for quantified dynamic logic developed in [14, 15]. Dy-
namic logic itself has been put to practical use, e.g. in KIV, a system for interactive
software verification [26]. It is our hope that the present calculus can be used to
further automate the software verification process.

Precondition/postcondition Reasoning For a further example of reasoning with the
calculus, consider formula (11.3). This gives an £, version of Euclid’s GCD algorithm.

(x #y; (x> y;[r —y/a]Uy > z;[y — x/y]))" 52 = y. (11.3)

To do automated precondition-postcondition reasoning on this, we must find a trivial
correctness statement. Even if we don’t know what ged(x,y) is, we know that its
value should not change during the program. So putting gecd(z,y) equal to some

460 Tableau Reasoning and Programming with Dynamic First Order Logic

Jw-(Jv;v = 0; (v # Tv; [v+1/v])*5v = w)

(w1 /w]=(Fv;v = 0; (v T w; [v+1/v])"50 = w)
~([wy/w, 0/v]; (v # 1|U; [v+1/0])%v =w)
~([wr/w,0/v];v #ﬁuEETgiwi/OI{]?](;vvii)[v +1/v])"50 = w)
i
—([wy/w, 1/v]; (v # 1|U; [v+1/0])%0 =w)

~([wr /w, 1/v];v = w)
~([wr/w, 1/v];v # wifv + 1/r]; (v # w;[v+1/v])%v = w)
1 7é|w1
([wy /w, 2/v]; (v # w; v + 1/v])*;0 = w)

([wy /w, 2/v];v = w)
=([wr /w, 2/v];v # w; [v + l/r]; (v # w;[v+1/v])*v=w)
275’[1)1
|
=([wy /w, 3/v]; (v # 1|u; [v+1/v])*;0v = w)
~([w1/w,3/v];v = w)
=([wr /w, 3/v];v # w; [v + l/r]; (v # w; v+ 1/v])* v =w)
37é|’LU1
~([ws/w, 4/v]; (v # l|U; [v+1/v]))%50 =w)
~([w1/w,4/v];0 = w)
~([wr/w, 4/v];v # wi v + 1/r]; (v # w;[v+1/v])%v = w)
47£|w1
“([wr/w,5/0]; (v # w; v+ 1/v])"; 0 = w)

|
x

Fi1c. 9. ‘Infinite Proof’ of the Peano Induction Axiom.

12. COMPLETENESS FOR DFOL* 461

arbitrary value and see what happens would seem to be a good start. We will use the
correctness statement z = ged(x, y). The statement that the result gets computed in
x can then take the form z = x. The program with these trivial correctness statements
included becomes:

z = ged(z, y);
(z #y; (@ >y —y/a];z = ged(z,y) Uy > 5[y — x/yl; 2 = ged(z,9)))"; (11.4)
T=Y;2 =1.
We can now put the calculus to work. Abbreviating
(z #y; (x> y; [z —y/a];z = ged(w,y) Uy > 5[y — /yl; 2 = ged(z, 9)))”

as A*, we get:

z=ged(w,y); Ao =yz =

[gcd(w,y)/Z]ix =yz=a [ged(z,y)/2]; A A% e =y;z2 =
x =y, ged(z,y) =2 >y y>zw
ged(z,y) = ged(z -y,) ged(z,y) = ged(z,y — x)
[gcd(:c,y)/z,x—y/x],A*, [ng(xay)/Zay_x/y])A*a
T=y;z == rT=y;z =2

The second split is caused by an application of the rule for U. By the soundness
of the calculus any model satisfying the annotated program (11.4) will satisfy one of
the branches. This shows that if the program succeeds (computes an answer), the
following disjunction will be true:

(z =y Aged(z,y) =)
v ($>y/\gcd(,y)z d(z —y,y) A @) (11.5)
\ (y>.’L‘/\ng(7y) (»Tay—fﬂ)/\lf’)a

where ¢ and ¢ abbreviate, respectively, [ged(z,y)/z, ¢ — y/x]; A*;x = y;z = x and
lged(z,y)/z,y —x/y]; A*; & = y; z = x. From this it follows that the following weaker
disjunction is also true:

(z =y Aged(z,y) = 2)
Vv ($>y/\gcd(yy) = ged(z —y,y)) (11.6)
vV (y >z Aged(z,y) = ged(z,y — x))

Note that (11.6) looks remarkably like a functional program for GCD.

12 Completeness for DFOL*

The method of trace sets for proving completeness from Section 10 still applies. Trace
sets for DFOL* will have to satisfy the obvious extra conditions. In order to preserve
the correspondence between trace sets and open tableau branches, we must adapt the
definition of a fair computation rule. A computation rule F' for £*y is fair if it is fair
for Ly, and in addition, the following holds for all branches B in T,

462 Tableau Reasoning and Programming with Dynamic First Order Logic
e All formulas of type a*, 3* occurring on B or in ® were used to expand B.

We can again prove a trace lemma for DFOL*, in the same manner as before: Again,
open branches in the supremum of a fair tableau sequence will correspond to trace
sets, and we can satisfy these trace sets in canonical models. The definition of trace
sets is extended as follows:

Definition 12.1 A set ¥ of LS. formulas is a *-trace set if the following hold:

o U s a trace set,

o If 3* € W then at least one 3] € V.

o If ¢;0*;x € U, then there is some n > 0 with ¢;¢™;x ¢ ¥ for all m > n.
Similarly for (;¢*; x)).

e For all ¢,v, x it holds that —(¢;*;x) ¢ V.

Note that the final two requirements are met thanks to our stipulation about closure
in the limit. In the same manner as before, we get:

Theorem 12.2 (Completeness for £*) For all ¢,¢ € L*: if ¢ |= 1 then the
tableau for ¢; () closes.

So we have a complete logic for DFOL*, but of course it comes at a price: we may
occasionally get in a refutation loop. However, as our tableau construction examples
illustrate, this does hardly affect the usefulness of the calculus.

13 Related Work

Comparison with tableau reasoning for (fragments of) FOL The present calculus for
DFOL can be viewed as a more dynamic version of tableau style reasoning for FOL
and for modal fragments of FOL. Instead of just checking for valid consequence and
constructing counterexamples from open tableau branches, our open tableau branches
yield computed answer bindings as an extra. The connection with tableau reasoning
for FOL is also evident in the proof method of our completeness theorems. Our
calculus can be used for FOL reasoning via the following translation of FOL into
DFOL:

(PH)* = Pt
() = g
(eA9)* = ¢%9¢°
(pVve)® = ¢*UP*
(Fz¢)* = (Fz;9%)
(Vzg)® = —(3z;-9°)

It is easy to check that for every FOL formula ¢ it holds that ¢* = ¢*“, i.e., all FOL
translations are DFOL tests. Moreover, the translation is adequate in the sense that
for every FOL formula ¢ over signature X, every X-model M, every valuation s for
M it holds that M =, ¢ iff s[¢°]M.

13. RELATED WORK 463

Connection with Logic Programming The close connection between tableau reason-
ing for DFOL and Logic Programming can be seen by developing a DFOL tableau
for the following formula set:

Vo A([], z,), VaVyVzVi(A(z,y, z) = A([ilz], y, [i|2])), =3z A([al[b[]], [][]],)-

This will give a tableau for the append relation, with a MGU substitution {x —
[a|[b]c|[]]]} that closes the tableau, where x is the universal tableau variable used in the
application of the v rule to =3z A([a|[b|[]], [c|[]],). The example may serve as a hint to
the unifying perspective on logic programming and imperative programming provided
by tableau reasoning for DFOL. In future work, we hope to elaborate the further
connections between our delayed substitution rules and constraint logic programming,
and between our computational handling of equality and equational reasoning in logic
programs.

Comparison with other Calculi for DFOL and for DRT The calculus developed in
[12] uses swap rules for moving quantifiers to the front of formulas. The key idea of the
present calculus is entirely different: encode dynamic binding in explicit bindings and
protect outside environments from dynamic side effects by means of block operations.
In a sense, the present calculus offers a full account of the phenomenon of local variable
use in DFOL.

Kohlhase [22] gives a tableau calculus for DRT (Discourse Representation Theory,
see [21]) that has essentially the same scope as the [12] calculus for DPL: the version
of DRT disjunction that is treated is externally static, and the DRT analogue of U is
not treated.

The Kohlhase calculus follows an old DRT tradition in relying on an implicit trans-
lation to standard FOL: see [27] for an earlier example of this. Kohlhase motivates
his calculus with the need for (minimal) model generation in dynamic NL seman-
tics. In order to make his calculus generate minimal models, he replaces the rule
for existential quantification by a ‘scratchpaper’ version (well-known from textbook
treatments of tableau reasoning; see [20] for further background, and for discussion
of non-monotonic consequence based on minimal models generated with this rule):
first try out if you can avoid closure with a term already available at the node. If all
these attempts result in closure, it does not follow from this that the information at
the node is inconsistent, for it may just be that we have ‘overburdened’ the available
terms with demands. So in this case, and only in this case, introduce a new individual.

This ‘exhaustion of existing terms’ approach has the virtue that it generates ‘small’
models when they exist, whereas the more general procedure ‘always introduce a fresh
variable and postpone instantiation’ may generate infinite models where finite models
exist. Note, however, that the strategy only makes sense for a signature without
function symbols, and for a tableau calculus without free tableau variables.

Kohlhase discusses applications in NL processing, where it often makes sense to
construct a minimal model for a text, and where the assumption of minimality can
be used to facilitate issues of anaphora resolution and presupposition handling.

Comparison with Apt and Bezem’s Ezecutable FOL Apt and Bezem present what
can be viewed as an exciting new mix of tableau style reasoning and model checking
for FOL. Our treatment of equality uses a generalization of a stratagem from their
[3]: in the context of a partial variable map 6, they call v = t a 6 assignment if
v ¢ dom(6), and all variables occurring in ¢ are in dom(#). We generalize this on two

464 Tableau Reasoning and Programming with Dynamic First Order Logic

counts:

e Because our computation results are bindings (term maps) rather than maps to
objects in the domain of some model, we allow computation of non-ground terms
as values.

e Because our bindings are total, in our calculus execution of ¢; = t» atoms never
gives rise to an error condition.

It should be noted for the record that the first of these points is addressed in [2]. Apt
and Bezem present their work as an underpinning for Alma-0, a language that infuses
Modula style imperative programming with features from logic programming (see [4]).
In a similar way, the present calculus provides logical underpinnings for Dynamo, a
language for programming with an extension of DFOL. For a detailed comparison of
Alma-0 and Dynamo we refer the reader to [11].

Connection with WHILE, GCL 1t is easy to give an explicit binding semantics for
WHILE, the favorite toy language of imperative programming from the textbooks (see
e.g., [23]), or for GCL, the non-deterministic variation on this proposed by Dijkstra
(see, e.g. [9]). DFOL is in fact quite closely related to these, and it is not hard to see
that DFOL* has the same expressive power as GCL. Our tableau calculus for DFOL*
can therefore be regarded as an execution engine cum reasoning engine for WHILE
or GCL.

Connection with PDL, QDL There is also a close connection between DFOL* on one
hand and propositional dynamic logic (PDL) and quantified dynamic logic (QDL) on
the other. QDL is a language proposed in [25] to analyze imperative programming,
and PDL is its propositional version. See [28, 24] for complete axiomatizations of
PDL, [15] for an exposition of both PDL and QDL, and for a complete (but infinitary)
axiomatization of QDL, [19] for an overview, and [18] for a a study of QDL and various
extensions. In PDL/QDL, programs are treated as modalities and assertions about
programs are formulas in which the programs occur as modal operators. Thus, if
A is a program, (A)¢ asserts that A has a successful termination ending in a state
satisfying ¢. As is well-known, this cannot be expressed without further ado in Hoare
logic.

The main difference between DFOL* and PDL/QDL is that in DFOL* the dis-
tinction between formulas and programs is abolished. Everything is a program, and
assertions about programs are test programs that are executed along the way, but
with their dynamic effects blocked. To express that A has a successful termination
ending in a ¢ state, we can just say ((4;¢)). To check whether A has a successful
termination ending in a ¢ state, try to refute the statement by constructing a tableau
for —(4; ¢).

To illustrate the connection with QDL and PDL, consider MIX, the first of the two
PDL axioms for x:

[A%]¢ — ¢ A [A][A%]e. (13.1)
Writing this with (A), =, A, V, and replacing —¢ by ¢, we get:
(=(A%)d A (9 V (A4)(A7)9)). (13.2)

This has the following DFOL* counterpart:
~(=(A%;9); (9 U (4; 4% 9))). (13.3)

13. RELATED WORK 465

For a refutation proof of (13.3), we leave out the outermost negation.
—(A%;9); (o |U (4; 4% 9))

(4% ¢)
(pU (A|;A*;¢))
¢
=(A; A*; 9)

/\
¢ (4; 4% 9)
X x
The tableau closes, so we have proved that (13.3) is a DFOL* theorem (and thus,
a DFOL* validity).

We will also derive the validity of the DFOL* counterpart to IND, the other PDL
axiom for *:

(¢ A [A%](¢ — [A]9)) — [A7]9- (13.4)
Equivalently, this can be written with only (A), =, A, V, as follows:
(@ A (A7) (P A (A)=0) A (A%)=9). (13.5)
The DFOL* counterpart of (13.5) is:
~(¢5 (A" 95 A5 29); AT). (13.6)

We will give a refutation proof of (13.6) in two stages. First, we show that (13.7) can
be refuted for any n > 0, and next, we use this for the proof of (13.6).

¢;(A"; ¢ A;); A" . (13.7)
Here is the case of (13.7) with n = 0:

¢; (A% ¢;|A; —¢); ¢
¢
(A% ¢; A;¢)
—¢

X

Bearing in mind that A is a dynamic action and ¢ is a test, we can apply the rule of
Negation Splitting to formulas of the form —(A"; ¢; A; —¢), as follows:

(A" ¢; A;)

(A" =g) (A" =)

Note that —(A™; ¢; A; ~¢) can be derived from —(A*; ¢; A; —~¢) by n applications of
the o rule. Using this, we get the following refutation tableau for the case of (13.7)
withn =k + 1:

466 Tableau Reasoning and Programming with Dynamic First Order Logic
¢; (A% 65 A; =9); AMFL 6

]
—(A*; p; A; —9)
ARt =g

|
i
—(AF; ¢; A; =)
(A*¥5=g) —(AFF1=g)

X X

The left-hand branch closes because of the refutation of ¢; ~(A*;¢; A; ~¢); A¥; =g,
which is given by the induction hypothesis.

Next, use these refutations of =¢, A;—p, A% =¢, ..., to prove (13.6) by means
of a refutation in the limit, as follows:

¢; (A" §; A;—¢); A5 ¢

¢
—(A%; 65 A;0)

A0

A;_'(b 2. A*.
. A% A%

A2;_'¢ 3. A*.
% A ;A :_'(b
A3;—|¢

This closed tableau establishes (13.6) as a DFOL* theorem. That closure in the
limit is needed to establish the DFOL* induction principle is not surprising. The
DFOL * rules express that * computes a fix-point, while the fact that this fix-point
is a least fix-point is captured by the stipulation about closure in the limit. The
induction principle (13.6) hinges on the fact that * computes a least fix-point.

Goldblatt [14, 15] develops an infinitary proof system for QDL with the following
key rule of inference:

If ¢ — [A1; AS]9 is a theorem for every n € N, then ¢ — [A;; A3]Y is a theorem.
(13.8)
To see how this is related to the present calculus, assume that one attempts to refute
¢ — [A1; A3]4, or rather, its DFOL* counterpart —(¢; A;; AS; =), on the assumption
that for any n € N there exists a refutation of ¢; A;; A%; —).

14. CONCLUSION 467

¢; Ar; Ay
P 65 Av; Ay A3~
¢;A1;:<42;W ¢; A1; Ay Ag; AS;)
QS;A“A‘;;A%W ¢; Av; Ag; Ag; Ay A5~

¢; Av; Ag; Ao Ao —p
X

We can close off the ¢; A;; AY; —p branches by the assumption that there exist
refutations for these, for every n € N. The whole tableau gives an infinite 8* de-
velopment, and the infinite branch closes in the limit, so the tableau closes, thus
establishing that in the DFOL* calculus validity of —(¢; Ay; A3; —1) follows from the
fact that —=(¢; Ar; AY;) is valid for every n € N.

14 Conclusion

Starting out from an analysis of binding in dynamic FOL, we have given a tableau
calculus for reasoning with DFOL. The format for the calculus and the role of explicit
bindings for computing answers to queries were motivated by our search for logical
underpinnings for programming with (extensions of) DFOL. The DFOL tableau cal-
culus presented here constitutes the theoretical basis for Dynamo, a toy programming
language based on DFOL. The versions of Dynamo implemented so far implement
tableau reasoning for DFOL with respect to a fixed model: see [11].

To find the answer to a query, given a formula ¢ considered as Dynamo program
data, Dynamo essentially puts the tableau calculus to work on a formula ¢, all the
while checking predicates with respect to the fixed model of the natural numbers,
and storing values for variables from the inspection of equality statements. If the
tableau closes, this means that ¢ is inconsistent (with the information obtained from
testing on the natural numbers), and Dynamo reports ‘false’. If the tableau remains
open, Dynamo reports that ¢ is consistent (again with the information obtained from
inspecting predicates on the natural numbers), and lists the computed bindings for
the output variables at the end of the open branches. But the Dynamo engine also
works for general tableau reasoning, and for general queries. The literals collected
along the open branches together with the explicit bindings at the trail ends constitute
the computed answers.

Dynamo can be viewed as a combined engine for program execution and reasoning,.
We are currently working on an new implementation of Dynamo that takes the insights
reported above into account. The advantages of the combination of execution and
reasoning embodied in Dynamo should be evident from our examples of strongest
postcondition generation in Section 9. To our knowledge, this use of dynamic first
order logic for analyzing imperative programming by means of calculating trace sets is
new. We claim that our calculus opens the road to a more intuitive way of reasoning
about imperative programs, and we hope to develop automated reasoning tools for

468 Tableau Reasoning and Programming with Dynamic First Order Logic

program analysis based on it.

Finally, since natural language semantics is a key application area of dynamic varia-
tions on first order logic, we expect that both the calculus itself and its implementation
in the form of an improved execution mechanism for Dynamo also have a role to play
in a truly computational semantics for natural language.

Acknowledgments

The research for this paper was sponsored by Spinoza Logic In Action. Thanks to
Johan van Benthem, Balder ten Cate, Anne Kaldewaij, Fairouz Kamareddine, Michael
Kohlhase, Maarten Marx, Joachim Niehren, Kees Vermeulen, Albert Visser and Joe
Wells for stimulating discussion and helpful criticism. Two anonymous reviewers of
this journal made suggestions that prompted a complete overhaul of the presentation.
Proposition (3.4) was triggered by a question from Krzysztof Apt.

References

[1] K.R. Apt. From Logic Programming to Prolog. Prentice Hall, 1997.

[2] K.R. Apt. A denotational semantics for first-order logic. In Proc. of the Computational Logic
Conference (CL2000), Notes in Artificial Intelligence 1861, pages 53-69. Springer, 2000.

[3] K.R. Apt and M. Bezem. Formulas as programs. In K.R. Apt, V. Marek, M. Truszczyski, and
D.S. Warren, editors, The Logic Programming Paradigm: a 25 Years Perspective, pages 75-107.
Springer Verlag, 1999. Paper available as http://xxx.lanl.gov/abs/cs.L0/9811017.

[4] K.R. Apt, J. Brunekreef, V. Partington, and A. Schaerf. Alma-0: An imperative language that
supports declarative programming. ACM Toplas, 20:1014-1066, 1998.

[5] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press, 1998.

[6] J. van Benthem. Ezploring Logical Dynamics. CSLI & Folli, 1996.

[7] J. van Benthem and J. van Eijck. The dynamics of interpretation. Journal of Semantics,
1(1):3-20, 1982.

[8] M. D’Agostino, D.M. Gabbay, R. Hihnle, and J. Posegga, editors. Handbook of Tableau Methods.
Kluwer, Dordrecht, 1999.

[9] E.W Dijkstra and C.S. Scholten. Predicate Calculus and Program Semantics. Texts and Mono-
graphs in Computer Science. Springer-Verlag, 1990.

[10] H.C. Doets. From Logic to Logic Programming. MIT Press, Cambridge, Massachusetts, 1994.

[11] J. van Eijck. Programming with dynamic predicate logic. Technical Report CT-1998-06, ILLC,
1998. Available from www.cwi.nl/"jve/dynamo.

[12] J. van Eijck. Axiomatising dynamic logics for anaphora. Journal of Language and Computation,
1:103-126, 1999.

[13] M. Fitting. First-order Logic and Automated Theorem Proving; Second Edition. Springer Verlag,
Berlin, 1996.

[14] R. Goldblatt. Aziomatising the Logic of Computer Programming. Springer, 1982.

[15] R. Goldblatt. Logics of Time and Computation, Second Edition, Revised and Ezpanded, vol-
ume 7 of CSLI Lecture Notes. CSLI, Stanford, 1992 (first edition 1987). Distributed by University
of Chicago Press.

[16] J. Groenendijk and M. Stokhof. Dynamic predicate logic. Linguistics and Philosophy, 14:39-100,
1991.

[17] R. Hahnle. Tableaux and related methods. In Alan Robinson and Andrei Voronkov, editors,
Handbook of Automated Reasoning. Elsevier Science Publishers, to appear, 2001.

[18] D. Harel. First-Order Dynamic Logic. Number 68 in Lecture Notes in Computer Science.
Springer, 1979.

[19] D. Harel. Dynamic logic. In D. Gabbay and F. Guenthner, editors, Handbook of Philosophical
Logic, pages 497-604. Reidel, Dordrecht, 1984. Volume II.

14. CONCLUSION 469

[20] J. Hintikka. Model minimization — an alternative to circumscription. Journal of Automated
Reasoning, 4:1-13, 1988.

[21] H. Kamp. A theory of truth and semantic representation. In J. Groenendijk et al., editors,
Formal Methods in the Study of Language. Mathematisch Centrum, Amsterdam, 1981.

[22] M. Kohlhase. Model generation for Discoure Representation Theory. In ECAI Proceedings,
2000. Available from http://www.ags.uni-sb.de/ kohlhase/.

[23] H.R. Nielson and F. Nielson. Semantics with Applications. John Wiley and Sons, 1992.

[24] R. Parikh. The completeness of propositional dynamic logic. In Mathematical Foundations of
Computer Science 1978, pages 403—415. Springer, 1978.

[25] V. Pratt. Semantical considerations on Floyd—Hoare logic. Proceedings 17th IEEE Symposium
on Foundations of Computer Science, pages 109-121, 1976.

[26] W. Reif. The KIV-approach to software verification. In M. Broy and S. Jdhnichen, editors,
KORSO: Methods, Languages, and Tools for the Construction of Correct Software, Springer
LNCS 1009, pages 339-368, 1995.

[27] C. Sedogbo and M. Eytan. A tableau calculus for DRT. Logique et Analyse, 31:379-402, 1988.

[28] K. Segerberg. A completeness theorem in the modal logic of programs. In T. Traczyck, editor,
Universal Algebra and Applications, pages 36—-46. Polish Science Publications, 1982.

[29] R. Smullyan. First-order logic. Springer, Berlin, 1968.

[30] Y. Venema. A modal logic of quantification and substitution. In L. Czirmaz, D.M. Gabbay, and
M. de Rijke, editors, Logic Colloguium ’92, Studies in Logic, Language and Computation, pages
293-309. CSLI and FOLLI, 1995.

[31] A. Visser. Contexts in dynamic predicate logic. Journal of Logic, Language and Information,
7(1):21-52, 1998.

[32] A. Visser. A note on substitution in dynamic semantics. Unpublished draft, Utrecht University,
2000.

Received September 8, 2000. Revised: December 9, 2000, January 30, 2001

470

Theorem Proving in Infinitesimal
Geometry

JACQUES D. FLEURIOT, Division of Informatics, University of
Edinburgh, 80 South Bridge, Edinburgh EH1 1HN, UK.
Email: jdf@dai.ed. ac.uk

Abstract

This paper describes some of the work done in our formal investigation of concepts and properties
that arise when infinitely small and infinite notions are introduced in a geometry theory. An algebraic
geometry theory is developed in the theorem prover Isabelle using real and hyperreal vectors. We use
this to investigate some new geometric relations as well as ways of rigorously mechanizing geometric
proofs that involve infinitesimal and infinite arguments. We follow a strictly definitional approach
and build our theory of vectors within the nonstandard analysis framework developed in Isabelle.

Keywords: nonstandard analysis, geometry, hyperreals, theorem proving, higher order logic, Isabelle

1 Introduction

In our previous work on the mechanization of Newton’s Principia, we introduced,
through a combination of techniques from geometry theorem proving (GTP) and
nonstandard analysis (NSA), the notion of an infinitesimal geometry in which quan-
tities can be infinitely small [11, 12]. The main aim was to capture and mechanize
the limit or ultimate notions used by Newton in his proofs, while respecting as much
as possible his original geometric arguments.

Our formalization task, within the interactive framework of Isabelle, was made pos-
sible through the use of concepts from powerful— yet geometrically intuitive— GTP
techniques known as the signed area and full-angle methods [3, 4]. These methods
were highly adequate to our goals as they provided us with lemmas powerful enough
to prove the results we wanted but also used geometric notions such as areas and
ratios of segments that were directly relevant to Newton’s proofs.

In the current work, however, we depart to some extent from the framework al-
ready established in Isabelle for geometry. Our aim, now, is to formally explore the
properties of the infinitesimal geometry theory developed in Isabelle. To this end,
we formulate an alternative treatment of geometry based on the notions of hyperreal
vectors. We want to provide a rigorous yet powerful theory that can capture formally
the properties of our geometry, as well as provide a secure foundations for our previous
work [11, 12, 10].

Moreover, the approach we describe in this paper also differs from that previously
adopted in that it is fully definitional. In other words, we now formally define and
derive all mathematical notions rather than postulate any of them. This approach
guarantees consistency, which cannot be ensured when axioms are introduced (see
Section 3.3 for a brief overview of this methodology).

As a further motivation for the current work, our rigorous development within

L. J. of the IGPL, Vol. 9 No. 3, pp. 471-498 2001 471 @©Oxford University Press

472 Theorem Proving in Infinitesimal Geometry

Isabelle can be viewed as providing formal justifications for the basic rules and lemmas
used in the automatic GTP methods of Chou et al. [3, 4, 2]. Indeed, as outlined later
in this paper, we formally derive in our definitional theory many of the rules used
in their geometry theorem provers. In addition, since the nonstandard approach
presented in this work can be used to prove standard geometry theorems, it should
be of interest to the mechanical geometry theorem proving community. Our approach
might provide ways of extending current automatic methods to produce proofs that
incorporate infinitely small notions without resulting in degeneracy.

In what follows, we first present some (historical) motivation for the existence of a
geometry involving infinitesimal notions (Section 2). We then give a brief overview of
Isabelle in which this work is carried out (Section 3). We also introduce some of the
basic (mechanized) notions from nonstandard analysis that will prove useful to our
discussion(Section 4). In particular, we look briefly at the construction of the hyper-
real numbers and how operations like addition are defined and also at the nonstandard
extension of functions. Next, we give an overview of the vector theory developed in
Isabelle (Section 5) by reviewing the vector algebra, the vectorial definitions used for
familiar geometric properties, and some of the infinitesimal geometry theorems that
follow. We then describe some of the novel infinitesimal geometric concepts formalized
in the work so far (Section 6). We then describe a new approach, based on nonstan-
dard methods, that can be used for proving standard geometry theorems (Section 7).
Finally, we outline some of the further work currently in the pipeline (Section 8) and
share some of the conclusions we have reached so far (Section 9).

In the next section, we present some motivation for our geometry by briefly exam-
ining the related notion of non-Archimedean geometry.

2 Non-Archimedean Geometry

The Aziom of Archimedes or Aziom of Continuity from Hilbert’s Foundations of
Geometry [16] may be stated as follows:

Let A, B, C, and D be four distinct points. Then on the ray AB there is a
finite set of distinct points, Ay, As,..., A, such that each segment A;A4;,; is
congruent to the segment C'D and such that B is between A and A,,.

This means that given any line segment of length [and any measure m, there exists an
integer n such that n units of measure yield a line segment greater than the given line
segment i.e. [< n-m. Geometrically speaking, this means that the length of a line has
no limit, which is a tacit assumption of Euclid. This axiom of Hilbert can therefore
be viewed as stating that the points on the line are in one-to-one correspondence with
the real numbers IR.

After introducing the various groups of axioms, Hilbert proceeds to show their
consistency and mutual independence. This is done by interpreting every geometric
concept arithmetically and making sure that all the axioms are satisfied in the inter-
pretation. For example, a point is identified with the ordered pair of real numbers (a,b)
and a line with the ratio (u:v:w) in which u and v are both non-zero. A point lies on
a line if ua 4+ vb+ w = 0. Properties such as convergence are interpreted algebraically
by means of the expressions for translation and rotation of analytic geometry. Thus,
a model is constructed for the axioms of geometry and any contradiction deduced

2. NON-ARCHIMEDEAN GEOMETRY 473

from these would mean that the axioms of arithmetic are inconsistent.

The possibility of a non-Archimedean geometry is exposed when proving the mutual
independence of Hilbert’s sets of axioms. Indeed, it is possible to construct a model
that satisfies all the various axioms except the Axiom of Archimedes. In such a
geometry, our measure m can be laid off successively upon our line segment of length
l an arbitrary number of times without ever reaching the end point of the line. This
geometry might be seen, intuitively, as one in which infinitesimal notions are allowed.
Of course, the most famous example of an axiom being denied in geometry is that of
the parallel axiom, which leads to non-Euclidean geometry.

It is worth noting that one of the first to attempt a systematic investigation of non-
Archimedean geometry was the Italian mathematician Veronese in his Fundamenti
di Geometria. As observed by Fisher [9], his work was often unacknowledged by
contemporary mathematicians such as Hilbert and Poincaré and only recently have
historians given its influence due recognition. Veronese’s poor and tortuous exposition
has been blamed to some extent for this.

In his review of Hilbert’s Foundations of Geometry, Henri Poincaré makes the
following important observation about non-Archimedean geometry [21]:

. the coordinates of a point would be measured not by ordinary numbers
but by non-Archimedean numbers, while the usual operations of the straight
lines and the plane would hold, as well as the analytic expressions for angles
and lengths. It is clear that in this space all the axioms would remain true
except that of Archimedes.

And moreover, he notes

On every straight line new points would be interpolated between ordinary
points.

This matches our approach in which we effectively replace the real number line with
a hyperreal one. The hyperreal numbers of NSA (which we review in Section 4) thus
correspond to Poincaré’s non-Archimedean numbers. Poincaré also gives a geometric
example where an ordinary line is compared with a non-Archimedean one:

If, for example, Dy is an ordinary straight line, and D; the corresponding non-
Archimedean straight line; if P is any ordinary point of Dy, and if this point
divides Dy into two half rays S and S’ (I add, for precision, that I consider P
as not belonging to either S or S’) then there will be on D; an infinity of new
points as well between P and S as between P and S’. Then there will be on Dy
an infinity of new points which will lie to the right of all the ordinary points of
Dy. In short, our ordinary space is only a part of the non-Archimedean space.

This geometrical representation means that points can be infinitely close to each other
on line D;. Indeed, the first infinity of new points mentioned by Poincaré corresponds
to those infinitely close to P. And then, we also have the new points on D; that lie
beyond those of Dy. These points to the right of all of the points of Dy thus correspond
to the infinite hyperreals. These observations motivate the establishment of a one-
to-one correspondence f between the hyperreals and a line L instead of the usual
correspondence with the reals. A coordinate system, f, for L is then such that each
point P on it has a unique hyperreal coordinate given by x = f(P).

474 Theorem Proving in Infinitesimal Geometry

We next give a brief introduction to Isabelle and to the HOL object logic in which
this work was carried out.

3 Isabelle/HOL

Isabelle [19] is a generic theorem prover, written in ML, into which the user can encode
their own object-level logics. Examples of such object logics are higher order logic
(HOL), Zermelo-Fraenkel set theory (ZF), and first order logic (FOL). Terms from
the object logics are represented and manipulated in Isabelle’s intuitionistic higher
order meta-logic, which supports polymorphic typing.

3.1 Theories in Isabelle

Isabelle’s theories provide a hierarchical organization for the syntax, declarations and
axioms of a mathematical development and can be developed using theory definition
files [19]. A typical theory file will organize the definitions of types and functions. It
may also contain the primitive axioms that are asserted (without proofs) by the user.
A particular theory will usually collect (in a separate file) the proven named theorems
and make them available to all its children theories.

The meta-level connectives are implication (=), universal quantifier and equality.
Throughout the presentation, we will be using mostly conventional mathematical
notations when describing our development. However, there are cases where we might
use the ASCII notations actually used to express terms and rules in Isabelle as explicit
examples.

An inference rule with n premises or antecedents has the following form in Isabelle:

pr;. . 50nll = ¢
This abbreviates the nested implication ¢; = (... ¢, = ¢ ...). Such a rule can
also be viewed as the proof state with subgoals ¢1,...,¢, and main goal ¢ [19].

Alternatively, this can be viewed as meaning “if ¢; A --- A ¢y, then 9",

3.2 Higher Order Logic in Isabelle

One of Isabelle’s logics is HOL, a higher order logic that supports polymorphism
and type constructors. Isabelle/HOL is based on Gordon’s HOL theorem prover [15]
which itself originates from Church’s paper [5]. Isabelle/HOL is well developed and
widely used. It has a wide library of theories defined in it including the naturals,
integers and real numbers, set theory, well-founded recursion, inductive definitions,
and equivalence relations.

Though Isabelle is mainly used interactively as a proof assistant, it also provides
substantial support for automation. It has a generic simplification package, which is
set up for many of the logics including HOL. Isabelle’s simplifier performs conditional
and unconditional rewritings and makes use of context information [19]. The user
is free to add new rules to the simplification set (the simpset) either permanently
or temporarily. Isabelle also provides a number of generic automatic tactics that
can execute proof procedures in the various logics. The automatic tactics provided
by Isabelle’s classical reasoner include a fast tableau prover called Blast_tac coded

4. A FEW CONCEPTS FROM NONSTANDARD ANALYSIS 475

directly in ML and Auto_tac which attempts to prove all subgoals by a combination of
simplification and classical reasoning. Other powerful theorem proving tactics include
those which, unlike Blast_tac, construct proofs directly in Isabelle: for example,
Fast_tac implements a depth-first search automatic tactic. In addition to these
various tools, Isabelle/HOL now also provides decision procedures for linear arithmetic
that greatly simplify many proofs over the real numbers.

3.8 The HOL Methodology

The HOL methodology, which derives from work done by Gordon in the HOL theorem
prover [15], admits only conservative extensions to a theory. This means, as we al-
ready mentioned in the introduction, defining and deriving the required mathematical
notions rather than postulating them. The definitional approach of HOL requires that
assertions are proved about some model instead of being postulated. Such a rigorous
definitional extension guarantees consistency, which cannot be ensured when axioms
are introduced. With regards to the foundations of infinitesimals and of our geome-
try, the definitional approach is certainly advisable when one considers the numerous
inconsistent axiomatizations that have been proposed in the past [6].

4 A Few Concepts from Nonstandard Analysis

An immediate consequence of our decision to formalize nonstandard rather than stan-
dard analysis is the extra amount of work spent on number constructions. The ul-
trapower construction of the hyperreals, for example, first required proving Zorn’s
Lemma and developing a theory of filters and ultrafilters for Isabelle/HOL. We have
described details of the construction elsewhere [10, 13], and so will only outline a few
of the aspects relevant to this paper in what follows.

4.1 On the Construction

The construction of the hyperreals (denoted by IR*) resembles to some extent that of
the reals from the rationals using equivalence classes induced by Cauchy sequences. In
this case, however, a free ultrafilter Un over the natural numbers is used to partition
the set of all sequences of real numbers into equivalence classes. The free ultrafilter
Un, whose existence is proved using Zorn’s Lemma, is a collection of subsets of IN
with the following properties (amongst others)[13, 10]:

[Z)€U1N and IN € Uy X € Uy = —finite X
XeUnNNY eUn=XNY €Un Xeln &< —-X¢Un
XeUnNANXCY =Y eUn

In Isabelle, the following equivalence relation on sequences of real numbers is then
defined:!

hyprel :: ((nat = real) * (nat = real)) set
hyprel = {p. Irs.p=(r,8) A {n.r(n) = s(n)} € Un}

1The Isabelle notation a::7 denotes that a is of type 7

476 Theorem Proving in Infinitesimal Geometry

The set of equivalence classes, that is the quotient set, arising from hyprel is used to
define the new type hypreal denoting the hyperreals:

hypreal = {z::(nat = real).True}/hyprel

Thus, it follows from the definition of hyprel that for two hyperreals to be equal,
the corresponding entries in their equivalence class representatives must be equal at
an infinite number of positions. This is because Un cannot contain any finite set.
Once the new type has been introduced, Isabelle provides coercion functions — the
abstraction and representation functions — that enable the basic operations to be
defined. In this particular case, the functions

Abs hypreal :: (nat = real)set = hypreal
Rep_hypreal :: hypreal = (nat = real) set

are added to the theory such that hypreal and {z:: nat = real. True}/hyprel are
isomorphic by Rep_hypreal and its inverse Abs_hypreal.

The familiar operations (addition, subtraction, multiplication, inverse) and the or-
dering relation on the new type hypreal are then defined in terms of pointwise op-
erations on the underlying sequences. For example, let [(X},)] denote the equivalence
class (i.e. hyperreal) containing (X,) then multiplication is defined by

[(X)] - [(Y)] = [(Xn - V)] (4.1)
or, more specifically, in Isabelle as:

P - Q= Abs hypreal (|J X € Rep-hypreal(P).
UY € Rep.hypreal(Q).hyprel " {An.Xn - Y n})

where

U:C € A B[z] = {y.3x € A.y € B} (union of family of sets).

s = {y. 3z € s. (x,y) € r} (image of set s under relation r).

Equation (4.1) above is in fact proved as a theorem. All the expected field properties of
the hyperreals are easily established since they follow nicely from the corresponding
properties of the reals. We define an embedding of the reals in the hyperreals by
having the following map in Isabelle:

hypreal_of_real :: real = hypreal
hypreal of real r = Abs_hypreal (hyprel~"{An:nat.r})

In other words, we represent each real number 7 in IR* by the equivalence class
[(r,7,7,...)]. The properties of the embedding function, with respect to multiplication,
addition and so on, follow trivially since they are just special cases of the operations
on the hyperreals. In what follows, we will denote an embedded real r by r unless we
use the Isabelle embedding function explicitly.

The ordering relation on the hyperreals, for its part, is defined as follows:

P < Q= 31X € Rep-hypreal P.
Y € Rep.hypreal Q. {n.Xn <Y n} € Un

4. A FEW CONCEPTS FROM NONSTANDARD ANALYSIS 477

We prove the corresponding simplification theorem expressing the order relation in
terms of equivalence classes of sequences of real numbers:

Abs_hypreal (hyprel~"{X n}) < Abs_hypreal (hyprel~"{Y n})
— {n.Xn<Y¥Yn}eln

With this done, it is straightforward to show that < is total [10, 13]. This means that
R* is a total ordered field.

This section has provided a brief summary of the construction of the nonstan-
dard numbers. Our main intention was to illustrate some of the key concepts of our
definitional approach. However, this overview will also be useful to our subsequent
exposition as the construction of hyperreal vectors is almost identical to that of the
hyperreals: one simply considers equivalence classes of sequences of real vectors rather
than sequences of real numbers (see Section 5).

4.2 Nonstandard Numbers

The embedding function enables us to define the set of embedded reals SReal explic-
itly, and prove that it is a proper subfield of IR*. The proof shows that the well-defined
hyperreal [(1,2,3,...)] (denoted by w) cannot be equal to any of the embedded reals
as no singleton set is allowed in Upn. Once the embedding is defined and various of
its properties proved, we formalize the definitions characterizing the various types of
numbers that make up the new extended field:

Infinitesimal = {z. Vr € SReal. 0 < r — abs z < r}
Finite = {z. Ir € SReal. abs z < r}
Infinite = —Finite

With this done, a number of theorems are proved, including;:

« € Infinitesimal y € Infinitesimal x € Finite y € Finite
x op y € Infinitesimal x op y € Finite
where op is +, —, or - (i.e. both sets are subrings of IR*). Other Isabelle theorems
proved include amongst many others:
z € Infinitesimal y € Finite z € Infinitesimal z <y
x -y € Infinitesimal z+z<y

A substantial number of theorems are proved about the properties of the hyperreals
and their inter-relationships. In addition, we use our free ultrafilter to extend the
natural numbers and construct the hypernatural numbers, IN*. This additional type
of nonstandard numbers provides us with infinitely large numbers greater than all
the members of IN. The set of infinite hypernaturals is denoted by HNatInfinite in
Isabelle. We also define the function hypnat_of nat, an embedding of the natural
numbers into the hypernaturals [10].

4.3 Infinitely Close Relation and Standard Part Theorem

In addition to the nonstandard numbers, we need to mechanize a few more important
concepts for us to have with an adequate framework for our proofs. Firstly, we define

478 Theorem Proving in Infinitesimal Geometry

the crucial infinitely close relation ~:
r~y=x—yc Infinitesimal
This is an equivalence relation about which we prove a number of properties such as:2

[la=bjecrd]=a+crb+d

[|s € SReal;b € SReal|] = (a ~ b) = (a = b) (4.2)
s € Finite = dlr. r € SReal As~r (4.3)
[la ~ b;c € Finite|]] = a-cxb-c (4.4)

Theorem (4.3)above is known as the Standard Part Theorem and is especially impor-
tant as it enables us to formalize the notion of standard part. The standard part of
a finite nonstandard number is defined as the unique real number infinitely close to
it. The actual definition in Isabelle uses the Hilbert choice operator € and returns a
number of type real rather than an embedded real:

str :: hypreal = real
str & = (er.x € Finite A hypreal of real r =~ x)

All the important properties of the standard part operator are proved. These include,
for example:

r € Finite z € Finite y € Finite
stre =z stre &z (z = y) = (strz = stry)

In Section 5.3, we present an extension of the infinitely close relation to hyperreal
vectors and use it to investigate the various notions formalized by this work.

4.4 Nonstandard Eztensions

Nonstandard extensions provide systematic ways through which sets and functions
defined on the reals are extended to the hyperreals (a process sometimes known as
the *-transform [17]).

In particular, if f is a function from IR to IR, then it can be extended to a function
f* from R* to R* by the following rule: z = [(X,,)] € IR* maps into y = [(V,,)] =
f*(z) € R if and only if {n € IN. f(X,,) =Y, } = Un. In Isabelle, this is rendered
as:

xf* 1 (real = real) = hypreal = hypreal
xfx fo = Abs_hypreal (|JX € Rep_hypreal(z).hyprel~"{An. f(Xn)})

Thus, the nonstandard extension operator provides a generic way through which,
given a function taking standard arguments, we can define an analogous one that
accepts nonstandard arguments. In what follows, we will denote the nonstandard

23!1. P stands for the unique existence quantifier, and the “if and only if”connective is denoted by = in Is-
abelle/HOL.

5. A MECHANIZED THEORY OF HYPERREAL VECTORS 479

extension of a given real function f either by f* or by its equivalent Isabelle notation
(x¢£xf). We prove this important simplification theorem:

(#¢fx f) (Abs_hypreal (hyprel™"{An. Xn})) =
(Abs_hypreal (hyprel~"{An. f(Xn)}))

In other words, we have that f*[(X,)] = [(f(X,))]- This is useful as it allows us
to formalize definitions and prove properties of nonstandard functions by couching
them in terms of the corresponding real functions and our free ultrafilter. We easily
prove a number of theorems about nonstandard extensions such as f*(r) = f(r) and
f*(x) + g*(x) = Qwu. f(u) + g(u))*(z). We will come across others as we further
outline our formalization of analysis.

We also extend functions from IN to IR: given such a function s, its *-transform
is the function s* : IN* — IR* where s*([(X,)]) = [(s(X,))] for any [(X,)] € IN*.
In Isabelle, the nonstandard extension is denoted by («fNat* s) and is useful in the
formalization of sequences, for example [10, 13].

We now have enough the basic notions to describe the hyperreal vector and the
infinitesimal geometric theories.

5 A Mechanized Theory of Hyperreal Vectors

Apart from using an interactive (hence slower) approach to GTP, the current work
also differs from the traditional automated approach by residing within the higher-
order logic framework of Isabelle/HOL [20]. One of the main reasons for choosing
Isabelle/HOL is that it provides a rigorous framework for the formalization of the
infinitesimal— a notoriously difficult task. The suitability of Isabelle/HOL for our
development stems mostly from the benefits gained by adopting the HOL methodology
(cf. Section 3.3).

The way to proceed in developing our geometry theory is very much in the spirit
of Hilbert’s Grundlagen: we show that there is a number system, say a field such as
the hyperreals, associated with the geometry and reduce consistency of Isabelle’s geo-
metric theory to that of hyperreal arithmetic. This is readily achieved, when working
within the context of Isabelle/HOL, by developing the geometry theory according
to the HOL-methodology i.e. strictly through definitions that capture the notions
(points, lines, signed areas, etc.) that are being dealt with and then proving that the
various properties follow.

To carry out this task, the hyperreal theories of Isabelle are extended with the
notions of hyperreal vectors. In essence, this is an algebraic approach which develops
geometric objects and relations between these objects in the Cartesian product IR*™
of the field of hyperreals, where n = 2. We have also developed a theory of vectors
in three dimensions (and defined operations such as cross-products) but since this
paper addresses geometry theorem proving in the plane, we shall only consider two
dimensional vectors. The hyperreals are chosen rather than the reals since we can then
express infinitesimal geometric notions as well. The definitions that are mechanized
are given next— we start with a real vector theory which we then extend to get the
hyperreal vectors and their algebraic operations.

480 Theorem Proving in Infinitesimal Geometry

5.1 Real Vector Space

In general, the simplest definition for a real vector in n dimensions is as an n-tuple
of real numbers, (r1,...,r,). However, a more geometric definition can be provided
that suits our purpose well.

Definition 5.1 Given two points P = (z1,y1) and Q = (v2,y2) in R?, the vector
Q — P is called the directed line segment from P to (). The components of the directed
line segment are the terms in the pair (xo — T1,y> — y1).

In this definition, we implicitly assume that the origin is given by the real coordinates
(0,0) and hence that a particular point is specified by the vector whose components
correspond to its Cartesian coordinates. In Isabelle, we formulate a theory of two-
dimensional vectors by first introducing vectors as a new type corresponding to a pair
of real numbers:

realv = {p :: (real x real). True}

As for the hyperreals, Isabelle automatically provides coercion functions — Rep_realv
and its inverse Abs_realv in this case— that enable us to define basic operations on
the new type. On a more intuitive level, one may simply read Abs_realv as:

Abs_realv (z,y) = <:;>

in what follows.

We can then define the various operations on the new type. For example, the inner
product or dot product of two vectors P and @ is defined, using tuples as patterns in
abstractions [20], by:>

P-Q= (M(z1,y1); (22,92)). z122 + y1y2) (Rep_realv P, Rep_realv Q)

This definition is slightly more complicated than the usual textbook one since it
uses an explicit A\-abstraction and the representation function. However, we prove
theorems that capture the more familiar definitions and which can then be fed to
Isabelle’s simplifier for rewriting. So, for the dot product, we have:

Abs realv (x1,y1) - Abs_realv (x2,y2) = T1%2 + Y1y2

Similarly, we also define other important operations, such as outer product (x) and
scalar multiplication (-5). For clarity, we give their definitions as the simplification
theorems proved in Isabelle rather than the actual definitions in terms of Rep_realv
and A-abstractions. The Isabelle definitions unfortunately tend to be slightly cluttered
and become somewhat hard to read. So, for outer and scalar products we prove the
following rules:

Abs_realv (z1,y1) X Abs_realv (z2,¥y2) = T1Ys — Y1T2

a-s Abs_realv (x,y) = Abs_realv (ax,ay)

3In what follows, the multiplication sign (-) between real variables is omitted whenever no ambiguity is likely to
result.

5. A MECHANIZED THEORY OF HYPERREAL VECTORS 481

For any two vectors P and @, the outer product can be viewed as defining the oriented
area of a parallelogram, with the vectors as two of the sides of the parallelogram. With
this nice geometric interpretation in mind, the next step involves proving various
properties of the outer product. The following theorem, which shows that the outer
product is not commutative, is thus proved:

PxQ=(-Q)x P

Geometrically, this means a change in the orientation of the area while its magnitude
remains unaffected. The negation of a vector P, for its part, is defined by negating
its various components. In Isabelle:

—P = (A(z1,22). Abs_realv (—x;, —z2))(Rep_realv P)

In the next section, the definition of signed area of a triangle follows directly from the
geometric interpretation and algebraic behaviour associated with the outer product.

Various other algebraic properties of the operations introduced so far are proved in
Isabelle. A few straightforward ones that are useful to the development are as follows:

U vV=Uv-u u-(v+w)=u-v+u-w
uxXu=0 (a-su)-(b-sv)=ab-s (u-v)
u-(uxv)=0 (a-su) x (b-5v) =ab-s (uxv)

In these theorems, the zero vector is defined, as expected, by
0 = Abs_realv (0,0)

Another important concept that has not yet been introduced is that of the length
or norm of a vector. For a vector P, this is defined by taking the square root of the
dot product P - P. In Isabelle,

rvlen P = sqrt (P - P)

The above definition is formalized directly but does rely on the square root operation
and theorems about its properties being available in Isabelle. For instance, to prove
that?

rvlen (ks u) = abs kxrvlenwu

the following theorem (with z,y € IR) needs to be available in the theorem prover:
[0 < 20 < yl] = sqrt (z-y) = sqrt 7 - sqrt y

The existence of operations such as square root is often taken for granted in textbooks
when new definitions depending on them are introduced. However, in a definitional
mechanization such as ours, formalizing such concepts and their properties can some-
times result in a fair amount of work. In this particular case though, we benefit from
our work on the mechanization of nonstandard real analysis [10, 14, 13]: this provides
us with the square root operator and various theorems about it. Other important
theorems proved in the theory include:

4In Isabelle, abs = denotes |z].

482 Theorem Proving in Infinitesimal Geometry

e Cauchy-Schwarz inequality: abs (u-v) < rvlenu - rvlenv
e Minkowski inequality: rvlen (u+ v) < rvlenu + rvlen v

After proving some further results of vector algebra, we develop a simple geometry
theory based on the geometric interpretation of vectors and their operations. In the
next sections, the definitions and results of the vector geometry development, as it
currently stands, are outlined.

5.2 Real Vector Geometry

Chou, Gao, and Zhang have also used vector calculations in automated geometry
theorem proving [2]. They assert a set of basic rules about the operations that can
be carried out on vectors. Theorems are then derived using these basic axioms of
the theory. The algorithm used by Chou et al. is nice and relatively simple: given a
construction sequence for a geometric configuration, the points (i.e. vector variables)
are eliminated one at a time from the vector expression standing for the conclusion,
until only independent vector variables are left. The conclusion that results is then
tested to see if it is identically zero.

In contrast to the above approach, we proceed by means of definitions only and
having introduced real vectors and defined the operations on them, there is enough
algebraic power for the theories to express geometric concepts: orthogonality and par-
allelism, signed (or oriented) areas, congruence of angles and much more. Moreover,
we proceed mostly through simplification and substitution steps that are be applied
to both the conclusion and premises of the current goal. That is, the proof steps in
Isabelle are not limited to point elimination only.

We first introduce as basic geometric objects the notions of points and lines by
defining the following types in Isabelle:

pt = {p :: hypvec. True}
line = {1 :: (pt * pt). True}

From these definitions, a point is therefore specified by a position vector and a (di-
rected) line given by a pair of vectors representing its end-points. These definitions
give the theory a separate, nicer geometric interpretation in which geometric objects
(points and lines) are dealt with rather than vectors of hyperreal numbers. The ab-
straction and representation functions of Isabelle enable us to deal with the underlying
vector theory to prove basic properties of parallelism, perpendicularity, collinearity
etc. Once this is done, we can hope to work at a higher abstract level which deals
with geometric relations and interact rather minimally with the underlying vector
constructions. This is similar in spirit with our construction of numbers, say the reals
by Dedekind cuts, where initially for each operation we have to prove cut properties
but as more theorems are proved, we deal less and less with the actual cuts and more
with the algebra of the reals.

However, in the subsequent exposition we shall regard position vectors and points
as being interchangeable when giving the definitions and describing properties proved.
This abuse of notation is simply to make the definitions more readable on paper since
it avoids the use of the coercion functions. We will show the definitions or theorems as
actually formulated if the need ever arises. We also note that the notation A— B, used

5. A MECHANIZED THEORY OF HYPERREAL VECTORS 483

in Isabelle for a line from point A to point B, is syntactic sugar for Abs_line(A, B).
Therefore, for each geometric condition, we have the corresponding vector definition:

1. That A, B, and C are collinear:
collCAB=(C-A)x(B-A)=0

2. That AB is parallel to CD:

A—B||C—D=(B-A)x(D-C)=0
3. That AB is perpendicular to C'D:

A—BLC—D=(B-A4)-(D-C)=0
4. The length of a line AB:

len (A — B) =rvlen (B — A)
5. The signed area of triangle ABC"
areaABC=1/2-,(B—A) x(C—A4)
6. The angle between AB and CD:
(A——B,B — () = arcos (unitv (A — B) -unitv (C — B))

where
unitv P = (1/rvlen P) s P

The definition of the angle relies on the theory of transcendental functions devel-
oped in Isabelle. In our work on the formalization of analysis, the various trigono-
metric functions are defined over the reals through their power series expansions,
and then extended to the hyperreals [14].

With these definitions set up, we verify that the basic properties of signed areas
actually hold and justify the statements of geometric relations that were made by
Chou et al. in terms of them [3]. The theorems about the sign of the area depending
on the ordering of the vertices of the triangle are all proved automatically without
any problems since our definition makes them direct consequences of the algebraic
properties of the outer product. Consider, for example:

—areaachb =-1/25(c—a) x (b—a)
=12, (~(b—a)) x c—a)
=——1/25(b—a)x(c—a)

—areaabc

Many similar rules are proved with the help of Isabelle’s automatic tactic and added
to the simplifier. The definition of parallelism in terms of signed areas, as given by
Chou et al. [3], is also easily verified:

a——>bl| c—d<= (areaabc=areaabd)

484 Theorem Proving in Infinitesimal Geometry

and the following theorem defining incidence (or collinearity) in terms of signed area:
collabc <= (areaabc =0) (5.1)

We also extend the definition of incidence to that of a set of points incident on a
line, thereby enabling us to prove some more theorems. We can deal with the ratios
of oriented lines by proving theorems such as these:

eA——B| C—D (C# D):

len(A—B) (B—A)-(D-C)

len(C—D) (D-C)-(D-0C)
e if R is the foot of the perpendicular from point A to line PQ (P # Q):

len(P—R) (A—P)-(Q—P)

len (P—@Q) len (P —Q)?

e if two non-parallel lines intersect at a point R:
len (P—R) - (Q—P)x(V-U)=1len(P—Q)- (U-P)x (V-U)

Some of the results above are unproved, high level lemmas stated by Chou et al. as
being used in their automated GTP method based on vectors [2]. We verify all of
them in Isabelle and store them as lemmas that become valuable when proving com-
plicated geometry theorems. This verification of lemmas used in various established
GTP methods is not a mere exercise as it supports the axiomatic geometry that we
previously used in Isabelle for our mechanization of theorems from Newton’s Prin-
cipial[ll, 10]. From a more general standpoint, it can also be viewed as provided a
rigorous foundations for several automatic methods used in geometry theorem prov-
ing. Finally, since we are able to prove the expected geometric properties in the
formalization, this gives us a relatively high degree of assurance that we are using the
right definitions for various concepts.

5.8 Introducing the Infinitesimal Geometry

We start by defining the new type of hyperreal vectors using sequences of real vectors
(i.e. essentially sequences of pairs of real numbers) and our free ultrafilter Un. As
mentioned previously, the definitions are analogous to those used for defining the
hyperreals. Once again, the various operations (e.g. dot product, outer product,
addition, etc.) are defined in terms of pointwise operations on the underlying sequence
(Fig. 1). Various properties, analogous to those of real vectors (see Section 5.1), are
proved for the hyperreal vectors and their associated operations. All the mechanized
proofs are straightforward as the properties follow directly from their real vector
counterparts.

In addition, we distinguish between various types of vectors by means of their
lengths. This characterization is analogous and closely related to that of the hyperreal
numbers:

5. A MECHANIZED THEORY OF HYPERREAL VECTORS 485

HyperVector = Transc +
constdefs
(* equivalence relation *)

hvrel "((nat = realv) * (nat = realv)) set"
"hvrel = {p. 3 r s. p= (r,s) A {n. r n = s n}eUn}"

typedef

hrealv = "{x::(nat = realv). True}/hvrel" (Equiv.quotient_def)
instance

hrealv :: {zero, plus, minus}

defs

hrealv_zero_def "O = Abs_hrealv(hvrel”"{An::nat. 0})"

constdefs

(* norm can use nonstandard extension of square root operation *)
hvlen :: hrealv = hypreal

"hvlen u = (xf* sqrt) (u - w)"

hrealv_minus :: hrealv = hrealv
"- P = Abs_hrealv(|JX€Rep_hrealv(P). hyvrel”~{An::nat. - (X n)})"

(* embedding for the real vectors: use constant sequence *)
hrealv_of_realv :: realv = hrealv

"hrealv_of_realv u = Abs_hrealv(hvrel~"{An::nat. u})"

(* hyperreal unit vector *)

hunitv :: hrealv = hrealv
"hunitv u = inv(hvlen u) -5 u"
defs

hrealv_add_def
"P + Q = Abs_hrealv(| JX€Rep_hrealv(P).|JYERep_hrealv(Q).
hvrel~"{An::nat. X n + Y n})"

hrealv_dot_def
"P . Q = Abs_hrealv(|JX€Rep_hrealv(P).|JY€Rep_hrealv(Q).
hvrel™"{An::nat. X n - Y n})"

hrealv_oprod_def
"P X Q = Abs_hrealv(|JX€Rep_hrealv(P).|JYERep_hrealv(Q).
hvrel™"{An::nat. X n X Y n})"

Fia. 1. Isabelle/HOL theory for hyperreal vectors

486 Theorem Proving in Infinitesimal Geometry

Definition 5.2 A hyperreal vector P is said to be infinitesimal, finite, or infinite if
its length (hvlen P) is infinitesimal, finite, or infinite respectively. Moreover, P is
infinitely close to Q (P =, Q) if and only if @ — P is infinitesimal.

With this definition formalized in Isabelle, the following equivalence theorem about
infinitely close vectors is proved:

(Xl & [(Yo)] <= [(£st((Xn))] ~ [(Est((Yn)))] (5.2)
A [(snd((Xn)))] % [(snd((Yn)))]

where [(X,,)] denotes the equivalence class of sequences of real vectors containing
(X,), and fst and snd are the first and second projection functions respectively
provided by Isabelle for reasoning about pairs. The actual Isabelle theorem, though
slightly overwhelming maybe, shows the relation between the various concepts explic-
itly and can be instructive:

Abs_hrealv (hvrel~"{X}) =, Abs_hrealv (hvrel~"{Y})
<= Abs_hypreal (hyprel~"{An.fst(X,)}) ~

Abs_hypreal (hyprel™~{An.fst(Y,)}) A
Abs_hypreal (hyprel™"{An.snd(X,)}) =~
Abs_hypreal (hyprel~~{An.snd(Y,)})

In other words, two hyperreal vectors are infinitely close if and only if their components
in corresponding positions are infinitely close to one another. This is a useful theorem
that can be used in many cases to reduce infinitesimal reasoning involving hyperreal
vectors to similar reasoning over the real vectors or even over the reals. We also prove
the following important theorems about the different types of vectors:

1. P is infinitesimal if and only if all its components are infinitesimal.
2. P is finite if and only if all its components are finite.
3. P is infinite if and only if at least one of its components is infinite.

and many other interesting nonstandard theorems about the algebra of the operations
and relations on them, such as:

a € Finite — Infinitesimal = (a s w xy a5 2) = (W Ry 2)

¢ € Finite — Infinitesimal = (c s w =, b5 2) = (w =, (b/c) -5 2)
[la = 0;u € VFinite|]| = a s u &, 0

T R,y —hvlenz ~ hvleny

u € VFinite — VInfinitesimal = w -« € Finite — Infinitesimal

u € VFinite — VInfinitesimal = (u x v~ 0) = (Fk.v =, k-5 u)

where VInfinitesimal and VFinite denote the sets of infinitesimal and finite vectors
respectively. Most of these theorems are relatively straightforward to prove although
some like (5.6) and (5.8)are more challenging. We highlight some of the issues involved
in their mechanization by examining part of the proof of theorem (5.8) more closely.
At first sight, one might expect the proof of the theorem to be similar to that of:

uz0= (uxv=0)=Fk.v=Fk-su) (5.9)

5. A MECHANIZED THEORY OF HYPERREAL VECTORS 487

which is easily proved in Isabelle by unfolding the definitions of the various vector
operations and then reducing the reasoning to equation solving. However, a similar
approach in which we unfold 2, using (5.2)and then try to prove the theorem by rea-
soning over the hyperreals is much harder. This is because the infinitely close relation
(=), unlike equality, is not closed under multiplication and goals involving multipli-
cation and = require a lot of work (case-splits) to be established. Our mechanization,
therefore goes for a direct approach involving reasoning over hyperreal vectors and
their operations. We will only consider the (trickier) first part of the proof which
involves showing that:

[lu € VFinite — VInfinitesimalju x v & 0|] = k. v~y k-5 u (5.10)

For the mechanization of this goal, after some experimentation, we decide to define
the following operation on real vectors:

ortho (Abs_realv (z1,y;)) = Abs_realv (—y1,21)
with the following nonstandard extension to hyperreal vectors:
hortho [(X,,)] = [(ortho X,,)]

Geometrically, the operation can be viewed as defining a new vector orthogonal (per-
pendicular) to the given one. Using these definitions, we then easily prove by simpli-
fication the following theorems:

(v X w) -shorthou = (u-v) s w—(u-w) sv (5.11)
u € VFinite = hortho u € VFinite (5.12)

As a brief remark, we note that theorem (5.11)can be viewed as a lower dimensional
(planar) analogy of the spatial triple vector product u X (v X w) (in which vector
v X w, for example, then denotes the so-called cross product). Now, using theorems
(5.5)and (5.12)with the assumptions of conjecture (5.10),we derive:

(u X v) - hortho u =, 0
which, using theorem (5.11),rewrites to:
(u-u) sv Ry (W-v) su (5.13)
From the first assumption of goal (5.10)and theorem (5.7), we have:
% +u —> Finite — Infinitesimal
Using this and theorem (5.4),we derive that
0 Ry (0 0)/ (- w)) - u

from which the conclusion of (5.10)follows immediately. This overview demonstrates,
we hope, the somewhat intricate nature of proofs involving nonstandard concepts.
Although the statement of the theorem (5.10)is very similar to that of theorem (5.9),
the actual proofs are very different. The infinitely close relation introduces numerous

488 Theorem Proving in Infinitesimal Geometry

subtleties that one might overlook were it not for the strict definitional framework of
Isabelle/HOL. In particular, the care that must be exercised when multiplying two
infinitely close quantities (e.g. a =2, b) with some other quantity (say c) to ensure
that the results are also infinitely close (¢ s a & ¢ -5 b) is never allowed to lapse.
The proof that we have just outlined, though relatively easy to understand, is not an
immediately obvious one; its mechanization required a fair amount of thought and
subsequent experimentation in Isabelle.

As a final note on this proof, we remark that the operator ortho (and hence
hortho) is not a concept that we considered when developing the initial vector
theory. It was defined during the mechanization of theorem (5.10)to simplify the
proof. Subsequently, however, we realised that it had many nice properties, such as
u X v = ortho u v, ortho (u +v) = ortho u + ortho v, and u - ortho u = 0 amongst
others. This highlights how the mechanization of a particular theorem can lead to
the definition of new concepts which further enrich the theory.

The nonstandard vector theorems, we believe, have clear geometric readings and
formalize the intuitive behaviour one would expect. Theorem (5.6),for example, can

a

c

Fia. 2. A “shrinking” triangle

be used directly to prove an intuitive theorem about a shrinking triangle in which one
of the sides is infinitesimal. In Fig. 2, for example, one can intuitively see that as the
length of bc becomes smaller, the lengths of ab and ac approach each other, until they
are infinitely close when bc is infinitesimal. This is captured by the following Isabelle
theorem:

len (b——c¢) ® 0 = len (a — b) = len (a —— ¢)

Interestingly, if the lengths of the sides ab and bc are real valued, then they have to
be equal (i.e. triangle abe is an isosceles) when be is infinitesimal:

[[llen (e — b) € R;1len (b —¢) € IR;1en (a — ¢) = 0]]
= len (a —b) = len (b ——¢)

This is because of theorem (4.2) stating that two real numbers that are infinitely close
to one another are effectively equal. We also formally derive, for example, theorems

6. SOME INFINITESIMAL GEOMETRIC NOTIONS 489
such as:
[|[len (a — b) € Finite;len (b — ¢) € Infinitesimal|] = areaabc =0
and
[[collabc;areapbc~ 0] = areapacmareapab (5.14)

The latter (see Fig. 3) is proved using the cancellation theorem (5.3),as well as var-
ious others involving associativity and commutativity of vector addition to perform
AC-rewriting. These are just a few of the infinitesimal geometry theorems involving

Y

a Cc
Fic. 3. Infinitely close areas

familiar geometric concepts. We next introduce a number of basic concepts system-
atically defined using the various notions from our nonstandard vector theory.

6 Some Infinitesimal Geometric Notions

Each of the new definitions can be viewed as weakening of the more familiar ones.
We start with a nonstandard formulation of parallelism and orthogonality.

Almost parallel and almost perpendicular

Just as the concept of two lines being parallel was introduced, using hyperreal vectors
the weaker notion of two lines being almost parallel is defined (with A # B and

C # D):

A——B|,C—D= hunitv (B — A) =, hunitv (D - C) Vv
hunitv (B — A) &, —hunitv (D — C)

We trivially prove that this is an equivalence relation. More importantly, the relation
between this definition and that of parallel lines, given in Section 5.2, is highlighted
by the following theorem, also proved in Isabelle:

D — C € VFinite — VInfinitesimal (6.1)
= A—DB|,C—D<+= (B-A)x(D-C)=0

The theorem expresses the almost parallel property in a form similar to that of or-
dinary parallelism, with equality replaced by the infinitely close relation. However,
there is a notable difference which is shown as an additional condition on one of the

490 Theorem Proving in Infinitesimal Geometry

two lines (C'D in this particular case, although it could have been on AB since ||, is
symmetric). Without the condition, (6.1) above is not a theorem as the outer product
of an infinitesimal and infinite vector is not necessarily infinitely close to zero. Also,
in terms of area, justifying a more geometrically intuitive definition based on signed
areas, we have:

len (C — D) € Finite — Infinitesimal =
A——B|,C ——D <= (areaacd~ areab cd)

We also define the notion of two lines being almost perpendicular. Once again, we
make use of the notion of unit vector to get a suitable definition. Lines

A——B1,C ——D =hunitv (B — A) -hunitv (D - C) =~ 0

We note that since the dot product produces a hyperreal, we use the infinitely close
relation & over these numbers rather than =2, which is defined over hyperreal vectors.

Almost collinear

We next introduce the notion of three points being almost collinear. Intuitively, one
might expect three points a, b, and ¢ to be almost collinear (denoted by acoll abe
in Isabelle) if and only if the signed area area a b c is infinitely close to zero. Such
a definition would be very similar in spirit to the equivalence theorem (5.1).However,
since our geometry allows both infinitesimal and infinite quantities, this definition is
inadequate: it does not hold in the case where two of the points concerned, say b and
¢, are infinitely far apart and the third one, say a, is infinitely close to the line be.
This is because the outer product (¢ — b) X (@ — b) is not necessarily infinitely close
to zero in this case as well. Instead, we define the property as follows:

acollabec=(b—a) |lo (b—c)

and prove a number of theorems involving it such as the variant of (5.14),shown in
Fig. 4:

[|[Llen (b —— a) € Finite — Infinitesimal;acoll abc;areap b ¢ = 0|]
—> areapac=areapab

Infinitesimal angles

Our NSA theory is powerful enough to prove theorems involving the trigonometric
functions and infinitesimal angles. For example, we can formally formulate and prove
assertions such as

sin(f) = 6 and cos(f) =1 where 8 is infinitely small

that one often sees in textbooks. These are rarely given any further justification: the
reader needs to rely on her knowledge of trigonometric functions and on her intuition
about what infinitely small means to see that the statements are indeed plausible.

6. SOME INFINITESIMAL GEOMETRIC NOTIONS 491
p

a C

FiG. 4. Infinitely close areas

Such assertions can be formalized in NSA, however, by making 6 an infinitesimal and
replacing equality by the infinitely close relation . The proofs are intuitive, yet
rigorous, and relatively easy to mechanize. We give, as an example, a brief proof of
the statement sin* () ~ 6.

In the NSA theory [13] of Isabelle/HOL, the formal nonstandard definition of the
derivative of a function f at z (DERIV) is given by:

(x+h)— f(x)

DERIV(z) f :> d = Vh € Infinitesimal — {0}. e N d

This is simply saying that the derivative of f at z is d if 2—’; is infinitely close to d.
With this, and assuming the standard results (proved in Isabelle) that

cos(0) = 1,sin(0) = 0,
and
DERIV(z) (Az. sin(z)) :> cos (z),
we can easily prove that sin*(#) ~ € for all infinitesimal 6.

Proof:

if 8 = 0: This is trivial since = is reflexive.
else if @ # 0: Since DERIV(z) Az. sin(z) :> cos(z), for all z, we have that

DERIV(0) Az. sin(z) :> cos(0)

sin* (0 + k) — sin(0
= Vh € Infinitesimal — {0}. () © ~1

h
sin*(0 + 6) — sin(0)
0
~1

~1

sin*(6)
R
= sin*(0) ~ 0

As a remark, we note that we have used theorem (4.4) and a theorem stating that
Infinitesimal C Finite to reach the final step. Through a similar reasoning, we
also prove that cos*(f) ~ 1 and, interestingly, that tan*(n/2 + #) € Infinite, for

492 Theorem Proving in Infinitesimal Geometry

all infinitesimal 6. We expect such results involving angles and trigonometry will to
prove useful in the further development of the geometry.

In addition, we also prove that the angle between two lines which are almost per-
pendicular is infinitely close to 7/2, i.e.,

a—blyc—d<= (a—bc—d)~m/2

Almost similar triangles

This is basically the notion of ultimately similar triangles that we have described and
used a number of times before [11, 12]. We briefly recall its definition here:

USIMabecad b ¢ = (b—a,a—c)= b —d,a —) A
(a —c,c—Db) = (' — ', ¢ —b') A
(c—b,b—a) = (' — b, b —a')

We are still formally investigating the properties of this concept. We have already
reproduced in our new setting most of the theorems described in previous work [12].
Similarly, we have defined the notion of two triangles being almost congruent.

7 Nonstandard Proofs of Standard Geometry Theorems

Our nonstandard technique is strong enough to produce nice proofs of traditional
geometry theorems. We consider, as a short case study, a nonstandard proof that
the area of a circle of radius r is wr?. The area of the circle will be shown to be
infinitely close to the area of an enclosed (inscribed) polygon with infinitely many
sides. The exact real value area can then be obtained by taking the standard part of
this polygonal area.

F1G. 5. A closed polygon

In Fig. 5, the area of the closed polygon A; ... A, is defined by the formula:
area A1 - An = OA1A2 + OA2A3 + ...+ OAn—lAn + OAnAl

7. NONSTANDARD PROOFS OF STANDARD GEOMETRY THEOREMS 493

where OA; As, for example, represents the area of triangle OA; Ay which was defined
in Section 5.2 in terms of the vector outer-product in the plane. The value of the
polygonal area is independent of O but depends on OA;, the radius vector to the
ith point. The definition of polygonal area looks recursive except for the last area
term (OAy, A1) and so, in Isabelle, motivates the following formalization with the zero
vector as the origin O:

polyArea :: (nat = real = realv) = nat = real = real
polyArea P nr =pArea P n+area0 (Pnr) (POr)

and the following primitive recursive definition for the area from Ag to A,,_1:

pArea:: (nat = real = realv) = nat = real = real
primrec

pArea POr =20

pArea P (Sucn) r = pArea Pnr +area0 (Pnr) (P (Sucn)r)

Thus, according to our definition, the polygon is defined as a sequence of functions
from reals to real vectors. The real value r acts as a parameter which can be used
to determine the ith point. This is needed as often the radius vectors OA; does
not depend on just ¢ but also on some other quantity such as an angle. The two
parameters (e.g. multiplied) together enable us to progress along the curve being
approximated. An alternative way of looking at the polygon is to consider each
radius vector as being given by A,(;. This means that we could probably specify the
definitions above without the fixed parameter r being given explicitly— it would be
part of the definition of the polygon. However, one possible advantage of our chosen
formalization is that we can have a general definition for the inscribed polygon (see
(7.1), for example) which specifies the angle as a argument to be supplied.

Now, if C is a circle of radius 1, for example, we can inscribe a polygon A, --- A,
by choosing points Ay, As,..., A, in order along it. If n is an infinite hypernatural
number then the points A; crowd one another, and we expect to arrive at the formula
for the area enclosed by C. We call such a polygon an hyperfinite polygon.

Our definition polyArea, however, is purely standard and can only consider the
area of polygons with increasingly large but still finite (natural) number of points.
We therefore extend the definition to deal with polygons with a hypernatural i.e.
nonstandard number of points. This is defined as follows:

hpolyArea :: (nat = real = realv) = hypnat = hypreal = hypreal
hpolyArea PN R =Abs_hypreal(|J X € Rep_hypnat N.
UY € Rep_hypreal R.
hyprel~~{An.polyArea P (Xn) (Yn)})

or, equivalently, without the coercion functions:
hpolyArea P [(X,,)] [(Y.)] = [(polyArea P X, Y,,)]

With this defined, we can now see how to determine the area of the circle using our
infinite polygonal approximation technique.

494 Theorem Proving in Infinitesimal Geometry

B |
r'sin(2mvn)

I'cos(21Vn)

F1G. 6. Inscribing a polygon of n sides in a semi-circle

In our mechanized proof, we first consider the unit semi-circle ABC (see Fig. 6).
Using the angle 6 between successive radius vectors as parameter, the polygon can be
defined by the following sequence of real vectors:

Ak 8. Abs_realv (cos kf, sin k) (7.1)

where k denotes the k-th point of the polygon. Hence, given that n € IN points are
inscribed in the semi-circle, the angle between the radius vectors is m/n and so the
polygonal area is denoted by:

polyArea (Ak 6. Abs_realv (coskf,sin kf)) n (7w /n)
We then easily prove by induction and with the help of the mechanized lemma:
sin(z — y) = cosysinz — siny cosz
supplied to Isabelle’s simplifier that the following theorem holds:
polyArea (Ak 6. Abs_realv (cos kf,sinkf)) n (r/n) = 1/2nsin(n/n) (7.2)
We also prove the following property of polygonal areas:
polyArea (Anr.c-s Pnr) N R=c’-polyArea P N R
which means that for a semi-circle of radius r € IR, we have:
polyArea (\k 6. Abs realv (r coskf,rsinkf)) n (w/n) = 1/2r’nsin(n/n) (7.3)

Now, if n = [(X,,,)], the number of inscribed points, is an infinite hypernatural num-
ber, we have that = /n is infinitesimal. But, from the result in the previous section
about infinitesimal angles, we know that:®

sin*(7/n)

(m/n)

5For clarity, we omit to show the embedding functions hypreal_of_hypnat and hypreal_of_real used to embed the

~1

hypernatural number n and 7 respectively in the hyperreals.

8. FURTHER WORK 495

and hence that
nsin*(r/n) =

This result, with (7.3) above, allows us to prove that:
hpolyArea (Ak#. Abs_realv (r cos kfl,rsin kf)) n (7/n) ~ 1/2mwr?
since

hpolyArea (Ak 6. Abs_realv (r coskf,rsinkf)) n (7/n)
= hpolyArea (Ak 6. Abs_realv (r coskf,rsin kf)) [(X,,)] (7/[(X:m)])
= [(polyArea (Ak 6. Abs_realv (rcoskd,rsinkd)) X,, (7/Xm))]

= [(1/2r*(X) sin(m/ X))
= 1/2r°[(X)] sin* (7 /[(X.n)]) = 1/2r°n sin*(7/n)

From this result, we deduce that for a circle, with the angle between successive radius
vectors given by 27 /n, the following holds:

hpolyArea (Ak . Abs realv (rcoskf,rsin k) n (2m/n) ~ mr?

Hence, by “exhausting” the circle with an inscribed polygon of infinite number of
sides, we have formalized a nice, geometrically intuitive, proof that the area of the
circle of radius r, is infinitely close to 7r2. In fact, if we assume that the area of the
circle is real, then by the standard part theorem, it is equal to mr2. We may get this
behaviour directly by defining the polygonal area that we want (call it PolyArea)
as the real quantity equal to the standard part of the hyperfinite polygonal area
hpolyAreai.e.,
PolyArea Pnr = str (hpolyArea Pnr)

This means that our infinite approximation can, in effect, provide an exact real quan-
tity for the area that we are exhausting. As a final note, we remark that most of
the theorems just described are proved with a high degree of automation. Theorem
(7.2), for example, is proved in two steps: induction on n followed by a call to one of
Isabelle’s automatic tactic.

8 Further Work

This paper has described some of our current work on the formalization and inves-
tigation of a geometry that rigorously admits both infinitesimal and infinite notions.
We still have much of the geometry to explore though: one currently unproved con-
jecture, for example, is that two (co-planar) lines which are almost parallel do meet
at a point infinitely far away i.e., we expect to have a well-defined, non-degenerate
solution to the problem.

As a by-product of this work, we now have a relatively well developed vector theory
in Isabelle. This contains many of the familiar theorems about vector operations as
well as the new theorems involving the infinitely close relation, infinitesimal and
infinite vectors, and other nonstandard concepts. As the work proceeds, we expect
to add more theorems to provide a theory that can be useful for other purposes (e.g.
proofs in mechanics that often involve vectors and as well as infinitesimals).

496 Theorem Proving in Infinitesimal Geometry

We will be introducing and investigating other, perhaps less obvious, almost rela-
tions. For example, we have recently mechanized notions of approximate geometric
objects in which an ellipse with infinitely close foci, for instance, can be regarded as
being almost (but not quite) a circle. Other notions include “almost betweenness”,
approximate point inclusion in a triangle, and “almost a tangent” to a circle, for
example.

We will pursue our mechanization of geometric proofs that use infinitesimal and
infinite quantities to reach infinitely accurate approximation results. We have in-
troduced the inductive notion of area for a closed polygon which can be used to
approximate any closed figure (curve). Our example showed how this can be used
to derive a relatively simple proof about the area of the circle using infinite numbers
and infinitesimals. Our approach rigorously mechanizes the informal argument that
one might give for such an proof. A standard proof of the same result, however,
would have required us to introduce sequential limit arguments and then deal with
the alternating quantifiers [10, 13].

Our geometric techniques capture well the ideas embodied in proofs that use the
“Method of Exhaustion” of Archimedes. In these, one figure is usually approximated
more and more accurately by another one in order to compute geometric quantities
such as boundaries, areas, and volumes. This sort of reasoning, however, cannot be
dealt with by existing (standard) mechanical geometry theorem proving methods.
The work of Baron [1], for example, provides a wealth of such proofs throughout the
centuries for us to work with and mechanize.

9 Concluding Remarks

In this paper, we have formally introduced the notion of an infinitesimal geometry
based on hyperreal vectors. We have briefly sketched some aspects relating this hy-
perreal geometry to non-Archimedean geometry. Various theorems have been proved
that have no direct counterparts in Euclidean geometry since the latter only deals
with real numbers.

Vector algebra offers an attractive approach to mechanical geometry theorem prov-
ing. There is much active research going on using the related field of Clifford algebra,
which is generally regarded as being more expressive [22, 8]. In our case, since we
are doing interactive rather than automatic theorem proving, vectors provide a simple
and adequate approach to analytic geometry. Also, as was shown by Dieudonné, inner
(dot) and outer products of vectors are sufficient to develop elementary geometry [7].

As far as we are aware, this is the first mechanization of a theory of hyperreal
vectors. Moreover, Keisler’s textbook is, to our knowledge, the only work to give a
brief exposition of a vector theory [18]. As a result, most of the theorems mechanized
in Isabelle have been proved independently of any previous work or textbooks. We
have shown that these vectors obey the usual algebraic rules for vectors since they
form an inner product space over the field IR*. By using the extended vectors instead
of real vectors, it is possible to describe, in addition to ordinary geometric concepts,
the novel notions of infinitesimal geometry presented in this paper.

The analytic geometry development was carried out to provide a rigorous defini-
tional approach in which to investigate our infinitesimal geometry. By following the
HOL methodology, we have the guarantee that our formalization is consistent and

9. CONCLUDING REMARKS 497

that all results proved are actual theorems about the geometry we have developed.

We also remark on an important realisation emphasized by the current work: the
inclusion of infinitesimals and other nonstandard concepts in geometry introduces sub-
tle issues that can easily lead to inadequate definitions. Indeed, it can be problematic
to formulate concepts that rely on some form of product (outer, dot, multiplication
etc.) as the operation can be ill-defined whenever it involves both an infinitesimal and
an infinite quantity. We became especially aware of the subtlety involved when our
initial definition for almost parallel lines (we used the equivalence theorem (6.1)with-
out the associated condition) proved inadequate. We could not prove some of the
properties we felt should hold since we were implicitly ruling out an infinitesimal line
and an infinite line being almost parallel.

The realisation came after some experimentation with the framework and did force
us to exercise much more care. However, the fact that we encountered such a problem
is probably unsurprising. After all, the flaw that we found in one of the famous proofs
of the great Newton was also of this nature [12]; it involved taking the ill-defined
product of an infinitesimal and an infinite quantity. This is a useful experience that
will help us as we explore more challenging concepts in this geometry.

Acknowledgement

This research was funded by ESPRC grant GR/M45030 ‘Computational Modelling
of Mathematical Reasoning’. I would like to thank the anonymous referees for their
insightful comments.

References

[1] M. E. Baron. The Origins of the Infinitesimal Calculus. Pergammon Press, 1969.

[2] S. C. Chou, X. S. Gao, and J. Z. Zhang. Automated geometry theorem proving by vector
calculation. In ACM-ISSAC, pages 284-291, Kiev Ukraine, July 1993.

[3] S.C. Chou, X.S. Gao, and J. Z. Zhang. Automated generation of readable proofs with geometric
invariants, I. multiple and shortest proof generation. Journal of Automated Reasoning, 17:325—
347, 1996.

[4] S.C. Chou, X. S. Gao, and J. Z. Zhang. Automated generation of readable proofs with geometric
invariants, II. theorem proving with full-angles. Journal of Automated Reasoning, 17:349-370,
1996.

[5] A. Church. A formulation of the simple theory of type. Journal of Symbolic Logic, 5:56—68,
1940.

[6] P.J. Davis and R. Hersh. The Mathematical Exzperience. Harmondsworth, Penguin, 1983.

[7] J. Dieudonné. Linear Algebra and Geometry. Hermann, 1969. Translated from the original
French text Algébre linéaire et géométrie élémentaire.

[8] S. Fevre and D. Wang. Proving geometric theorems using clifford algebra and rewrite rules. In
C Kirchner and H. Kirchner, editors, Automated Deduction — CADE-15, volume 1421 of Lecture
Notes in Artificial Intelligence, pages 17-32. Springer-Verlag, July 1998.

[9] G. Fisher. Veronese’s non-Archimedean linear continuum. In P. Ehrlich, editor, Real Numbers,
Generalizations of the Reals, and Theories of Continua, volume 242 of Synthese Library. Kluwer
Academic Publisher, 1994.

[10] J. D. Fleuriot. A combination of geometry theorem proving and nonstandard analysis, with
application to Newton’s Principia. PhD thesis, Computer Laboratory, University of Cambridge,
1999. Available as Computer Laboratory Technical Report 469.

[11] J. D. Fleuriot and L. C. Paulson. A combination of geometry theorem proving and nonstandard
analysis, with application to Newton’s Principia. In C Kirchner and H. Kirchner, editors,

498 Theorem Proving in Infinitesimal Geometry

Automated Deduction — CADE-15, volume 1421 of Lecture Notes in Artificial Intelligence, pages
3-16. Springer-Verlag, July 1998.

[12] J. D. Fleuriot and L. C. Paulson. Proving Newton’s Propositio Kepleriana using geometry
and nonstandard analysis in Isabelle. In X.-S. Gao, D. Wang, and L. Yang, editors, Automated
Deduction in Geometry, volume 1669 of Lecture Notes in Artificial Intelligence. Springer-Verlag,
1999.

[13] J. D. Fleuriot and L. C. Paulson. Mechanizing nonstandard real analysis. LMS Journal of
Computation and Mathematics, 3:140-190, 2000.

[14] Jacques D. Fleuriot. On the mechanization of real analysis in Isabelle/HOL. In J. Harrison and
M. Aagaard, editors, Theorem Proving in Higher Order Logics: 13th International Conference,
TPHOLs 2000, volume 1869 of Lecture Notes in Computer Science, pages 146-162. Springer-
Verlag, 2000.

[15] M. Gordon and T. Melham. Introduction to HOL: A theorem proving environment for Higher
Order Logic. Cambridge University Press, 1993.

[16] D. Hilbert. The Foundations of Geometry. The Open Court Company, 1901. Translation by E.
J. Townsend.

[17] A. E. Hurd and P. A. Loeb. An Introduction to Nonstandard Real Analysis, volume 118 of Pure
and Applied Mathematics. Academic Press Inc., 1985.

[18] H. J. Keisler. Foundations of Infinitesimal Calculus. Prindle, Weber & Schmidt, 1976.

[19] L. C. Paulson. Isabelle: A Generic Theorem Prover, volume 828 of Lecture Notes in Computer
Science. Springer, 1994.

[20] L. C. Paulson. Isabelle’s object-logics. Technical Report 286, Computer Laboratory, University
of Cambridge, February 1998.

[21] H. Poincaré. Review of Hilbert’s foundations of geometry (1902). In P. Ehrlich, editor, Real
Numbers, Generalizations of the Reals, and Theories of Continua, volume 242 of Synthese
Library. Kluwer Academic Publisher, 1994.

[22] D. Wang. Clifford algebraic calculus for geometric reasoning, with application to computer
vision. In D. Wang, R. Caferra, L. Farinas del Cerro, and H. Shi, editors, Automated Deduction
in Geometry, ADG’96, volume 1360 of Lecture Notes in Artificial Intelligence, pages 115-140.
Springer, 1997.

Received September 1, 2000. Revised: December 1, 2000, January 19, 2001

A Simple Formalization and Proof
for the Mutilated Chess Board

LAWRENCE C. PAULSON, Computer Laboratory, University of
Cambridge, England, E-mail: lep@cl.cam.ac.uk.

Abstract

The impossibility of tiling the mutilated chess board has been formalized and verified using Isabelle.
The formalization is concise because it is expressed using inductive definitions. The proofs are
straightforward except for some lemmas concerning finite cardinalities. This exercise is an object
lesson in choosing a good formalization: one at the right level of abstraction.

Keywords: mutilated chess board, inductive definitions, Isabelle

1 Introduction

A chess board can be tiled by 32 dominoes, each covering two squares. If two di-
agonally opposite squares are removed, can the remaining 62 squares be tiled by
dominoes? No. Each domino covers a white square and a black square, so a tiled
area must have equal numbers of both colours. The mutilated board cannot be tiled
because the two removed squares have the same colour (Fig.1).

The mutilated chess board problem has stood as a challenge to the automated
reasoning community since McCarthy [8] posed it in 1964. Robinson [15] outlines the
history of the problem, citing Max Black as its originator.

Anybody can grasp the argument instantly, but even formalizing the problem seems
hard, let alone proving it. McCarthy has recently renewed his challenge, publishing
a formalization that he claims is suitable for any ‘heavy duty set theory’ prover [9].

Formalizations like this destroy the simplicity of the original problem. They typ-
ically define complicated predicates to recognize objects. To recognize dominoes, a
predicate checks whether its argument contains two adjacent squares. Subramanian
defines adjacent by comparing co-ordinates [17, 18]:

(defn adjp (sl s2)
(or (and (equal (car s1) (car s2))
(equal (plus 1 (cdr s1)) (cdr s2)))
(and (equal (cdr s1) (cdr s2))
(equal (plus 1 (car s1)) (car s2)))
)

Subramanian makes other definitions whose combined effect is to recognize a list of
non-overlapping dominoes and to compute the region covered. McCarthy’s formal-
ization has a similar flavour, though posed in the language of sets. It is concise but
formidable.

An alternative is to express the notion of tiling by an inductive definition. It
is concise and nearly as clear as the informal problem statement. It provides an
induction principle that is well-suited to proving the desired theorem.

L. J. of the IGPL, Vol. 9 No. 3, pp. 499-509 2001 499 @©Oxford University Press

500 A Simple Formalization and Proof for the Mutilated Chess Board

F1G. 1. The Mutilated Chess Board

2 Mathematical development

First we must make the intuitive argument rigorous. A tile is a set, regarded as a set
of positions. A tiling (using a given set A of tiles) is defined inductively to be either
the empty set or the union of a tiling with a tile a € A disjoint from it. Thus, a tiling
is a finite union of disjoint tiles drawn from A.

This view is abstract and general. None of the sets have to be finite; we need not
specify what positions are allowed. Now let us focus on chess boards.

A square is a pair (i,7) of natural numbers: an even (or white) square if i + j is
even and otherwise an odd (or black) square.

Let lessThan(n) = {i | i < n}. (In set theory n = {i | i < n} by definition, but
some people find that confusing.) The Cartesian product lessThan(8) x lessThan(8)
expresses a 64-square chess board; it is the union of 8 disjoint rows of the form
{i} x lessThan(8) for i =0, ..., 7.

A domino is a tile of the form {(Z,7), (¢,7 + 1)} or {(4,4), (i + 1,5)}. Since tilings
are finite, we can use induction to prove that every tiling using dominoes has equally
many even squares as odd squares.

Every row of the form {i} x lessThan(2n) can be tiled using dominoes. As the
union of two disjoint tilings is itself a tiling, every matrix of the form lessThan(2m) x
lessThan(2n) can be tiled using dominoes. So every 2m x 2n matrix has as many even
squares as odd squares. (Informal treatments never bother to prove that a chess board
has equal numbers of black and white squares.) The diagonally opposite squares (0, 0)
and (2m —1,2n — 1) are both even; removing them results in a set that has fewer even
squares than odd squares. No such set, including the mutilated chess board, can be
tiled using dominoes.

3 The formal definitions

Isabelle [12] is a generic proof assistant, supporting many logics including zF set the-
ory and higher-order logic. I have done this exercise using both Isabelle/zF and Isa-

3. THE FORMAL DEFINITIONS 501

Mutil = Main +

consts tiling :: "(’a set) set = (’a set) set"
inductive "tiling A"
intrs
empty "{} € tiling A"
Un "[a € A; t € tiling A4; a Nt = {}]

— a Ut € tiling A"

consts domino :: "(nat*nat)set set"
inductive "domino"
intrs

horiz "{(i, j), (i, Suc j)} € domino"
vertl "{(i, j), (Suc i, j)} € domino"

constdefs
coloured :: "nat = (nat*nat)set"
"coloured b == {(i,j). (i+j) mod #2 = b}"

end

Fia. 2. Isabelle/HOL Definitions of Dominoes and Tilings

belle/HOL. The definitions and proofs are similar in both systems. My formalization
should be easy to mechanize in theorem provers that support inductive definitions,
such as Coq [4] and HOL [5]. Higher-order logic simplifies the presentation slightly;
type checking eliminates premises such as i € nat.

Figure 2 presents the theory file for the Isabelle/HOL version. It makes all the defi-
nitions needed for the chess board problem: tilings, dominoes and square colourings.
Note that Suc is the successor function (mapping n to n + 1) and that #2 denotes the
number two. Keywords of the theory file syntax are underlined for clarity.

An inductive definition specifies the desired introduction rules. An Isabelle package
defines the appropriate least fixedpoint and proves the introduction and induction
rules [11]. The set of tilings using a set A of tiles is defined inductively. The Isabelle
syntax appearing in Fig2 expresses these two rules:

a€ A tetiling(4d) ant=10
a Ut € tiling(A)

0 € tiling(A)

Why does tiling have type (’a set)set = (’a set)set? The symbol ’ais a type
variable. Isabelle/HOL is polymorphic: the type-checker automatically replaces each
type variable by the type required by the context. In effect, ’a is the type of squares.
Each tile is a set of squares, so it has type ’a set. The set A of tiles therefore has
type (’a set)set, as does the set of tilings generated by A.

The set of dominoes is inductively defined too. The Isabelle syntax expresses two
introduction rules:

{(i,4),(,7 + 1)} € domino {(i,7), (i +1,5)} € domino

The ‘induction’ here is trivial, but no matter, this definition is easy to use. It is
declarative. Contrast it with the version appearing in Sect. 1, which is a piece of Lisp

502 A Simple Formalization and Proof for the Mutilated Chess Board

code. The constant domino has type (nat*nat)set set because it is a set of sets of
pairs of natural numbers.

Figure 2 defines coloured b as set of squares having colour b. Formally, it is the
set of even squares if b = 0 and the odd squares if b = 1. The set lessThan(n) is
predefined in Isabelle/HOL to be {i | i < n}.

4 A primer on rule induction

You are probably familiar with ‘mathematical induction’ and with structural induc-
tion over lists and similar datatypes. An inductive definition gives rise to a principle
sometimes known as rule induction. Given the definition of tiling, Isabelle generates
the corresponding induction rule, shown here using mathematical notation:

[ae A tetiling(4) P() ant=10]

z € tiling(A) P(0) P(a:U t)

In English, a property P that is closed under the introduction rules for tiling(A) holds
for all elements of tiling(A). Induction is sound because tiling(A) is the least set closed
under those rules. (This is why it is called rule induction.) In the inductive step, we
are given an arbitrary tile a € A and tiling ¢ € tiling(A) that are disjoint (a Nt = 0)
and satisfy the induction hypothesis P(t).

A trivial rule induction proves that if each a € A is a finite set then so is tiling(A).
Here P(z) is the property finite(z). By induction, it suffices to show

o finite(()), which is trivial,
e and that a € A and finite(¢) imply finite(aUt). This holds because we have assumed
finite(a) for all a € A.

The induction rule for dominoes has no induction hypothesis. A property holds
for all dominoes provided it holds for the two possibilities given in the inductive
definition. In the last two premises, 7 and j are arbitrary natural numbers.

z € domino P({(i,4), (i, s+ D}) P({(i,4), (i +1,5)})
P(z2)

It is time for a harder example of induction. Let us prove that the union of two
disjoint tilings is itself a tiling:
t € tiling(4) wu e tiling(4) tNu=10
tUu € tiling(A)

This induction must be set up with care. Here P(z) is the formula
u € tiling(4) = (tNu=0 - tUu € tiling(A)) (4.1)

The induction formula must be an implication because the induction variable, ¢, also
occurs in t Nu = .
By induction on ¢ there are two cases.

5. THE MECHANICAL PROOFS 503

Goal "t € tiling A —
u € tiling A - t Nu=9{} - t Uu € tiling A";
by (etac tiling.induct 1);
by (simp_tac (simpset() addsimps [Un_assoc]) 2);
by Auto_tac;

F1a. 3. Isabelle/HOL Proof: the Union of Disjoint Tilings is a Tiling

e Base case. Putting t = () in the formula (4.1), we must show
u € tiling(A) - 0Nu=0— dUu € tiling(A4))

This is trivial because) Uu = u € tiling(A).

e Inductive step. We assume disjoint sets a € A and t € tiling(A), as usual. The
induction hypothesis is simply (4.1). We must show

u € tiling(4) = ((eUt)Nu=0 — (aUt) Uu € tiling(4))

To prove this implication, we assume u € tiling(4) and (a U ¢) Nu = (), which
yields aNu = 0 and ¢t Nw = @. From the induction hypothesis (4.1) we have
tUuwu € tiling(A4). Since a is disjoint from both ¢ and u, we may add it to the tiling
t Uwu to obtain a U (t U u) € tiling(A).

5 The mechanical proofs

The Isabelle proofs offer few surprises. Finite cardinalities are tricky to reason about,
as I have noted in previous work [14]. I needed a couple of hours to find a machine
proof that a domino consists of one even square and one odd square. Another trouble
spot was to prove that removing elements from a finite set reduces its cardinality:
|A — {z}| < |A] if A is finite and z € A. One outcome of this exercise is a collec-
tion of general theorems about remainders and cardinality, which I have installed in
Isabelle/HOL.

Apart from these trouble spots, the mechanized proof was straightforward. Devel-
oping the original ZF version took under 24 working hours. Excluding facts added
to libraries, the (HOL) definitions and proof script occupy about 4400 bytes. They
execute in 8.5 seconds on a 600MHz Pentium. Both figures are tiny, as suits this toy
problem.

Figure 3 presents part of the script: the inductive proof outlined in the previous
section. The script may be difficult to understand, but we see that proving this
theorem requires little detail from the user. The Goal command supplies the theorem
to be proved. The next line applies rule induction. Then the simplifier (simp_tac) is
called with an associativity theorem in order to replace (a Ut) Uu by aU (t Uu). The
rest of the proof is done by the automatic proof tactic, Auto_tac.

The full proof script, comprising 13 theorems, is Appendix A. Isabelle can display
formulas using the fonts of X-symbol package [19], making formulas much more read-
able on-screen than they are in raw Ascil; I have edited the script to use similar
symbols. Let us review the proofs informally.

504 A Simple Formalization and Proof for the Mutilated Chess Board

5.1 On tiling chess boards

The first theorem has already been discussed in Sect.4 and Fig.3. We now develop a
geometry of chess boards. The next two theorems (each proved by Auto_tac) relate
lessThan(Suc n) and Cartesian products.

lessThan(Suc n) X B
A X lessThan(Suc n)

({n} x B) U ((lessThan n) X B)
(A x {n}) U (A X (lessThan n))

Next comes a lemma, proved by Auto_tac, concerning singleton sets and Cartesian
products. It makes a useful rewrite rule.

i} x o} U i x P = {{,m), (1,0}

The next two results state that a row or matriz with an even number of columns can
be tiled with dominoes.

{i} X lessThan(#2*n) € tiling domino
(lessThan m) X lessThan(#2*n) € tiling domino

These theorems apply to a standard 8 x 8 chess board, but not to a 9 x 9 one.
The first theorem has a four-step proof, by induction on n. The simplifier massages
lessThan(#2 * Suc n) into the union of a domino with the tiling given in the in-
duction hypothesis. Then a tiling rule is applied explicitly. Finally, the automatic
tactic (given the lemma proved above) finishes off. The second theorem has a trivial
proof: induction over m followed by Auto_tac.

5.2 On colours and dominoes

Here is a simple fact about the squares in a tiling of a specified colour.

coloured b N (insert (i,j) t) =
(if (i+j) mod #2 = b then insert (i,j) (coloured b N t)
else coloured b N t)

Here insertz A denotes {x} U A. The b-coloured squares of {(i,7)} Ut comprise the
b-coloured squares of ¢ along with (i, 7), if this square is coloured b. Although obvious,
this fact is useful for rewriting. The proof is a one-liner: Auto_tac.

This fact is used to prove that a domino covers one square of each colour:

d € domino —
(3i j. coloured 0 N d
(dm n. coloured 1 N d

{1, A
{(m,n)})

The proof is again simple. The first step is induction (really case analysis) on the
domino. The automatic tactic finishes the proof, given a rewrite rule that reduces
(m + 1) mod n to m mod n.

5.8 On the cardinalities of some finite sets

For us, a domino is a two-element set of squares. Clearly all dominoes are finite, and
a region tiled by dominoes is finite. Both proofs use induction followed by Auto_tac.

6. RELATED WORK AND CONCLUSIONS 505

d € domino —> finite d
t € tiling domino — finite t

Most of the papers describing the chess board proof omit to mention that the board
has finitely many squares. However, finiteness is crucial to the counting argument.
(Infinite tiling problems are very different from finite ones. An infinite chess board
can be tiled with dominoes even after one black square has been removed.)

Every set tiled by dominoes (such as an 8 x 8 chess board) contains equally many
black squares as white ones. Here card is the cardinality function.

t € tiling domino —= card(coloured O N t) = card(coloured 1 N t)

This fact is also usually omitted from informal accounts, presumably because it is
obvious. But its proof, six steps long, is not trivial. After applying induction, we use
a fact proved above, namely that a domino covers one square of each colour. We are
left having to show

card(insert sq0 (coloured 0 N t)) = card(insert sql (coloured 1 N t))

where sq0 and sql are the newly covered squares. The induction hypothesis is

card(coloured 0 N t) = card(coloured 1 N t).

Two proof steps show that the uses of insert add a square that was not already in
the set. The result follows because both cardinalities increase by one.

5.4 Towards the main result

The main result presents some difficulties. Take the general case of removing any two
white (even) squares, not necessarily in the corners.
[t € tiling domino;
(i+j) mod #2 = 0; (m+n) mod #2 = 0;
{(1,7),(m,n)} C t]
= (t - {(1,j0} - {(m,n)}) ¢ tiling domino

In English, removing two white squares from a region tiled with dominoes leaves a
region that cannot be tiled. The proof consists of five steps. The first simply assumes
that the region can be tiled, for contradiction. Next we claim that there are fewer
white squares than black, from which (step 3) we immediately obtain a contradiction.
The last two steps prove the claim. It is surprisingly hard to prove that removing two
elements from the set of white squares reduces its cardinality.

The main result is proved for any board with positive even dimensions. The muti-
lated board (less the two corners) cannot be tiled with dominoes.

t = lessThan(#2 * Suc m) X lessThan(#2 * Suc n)
= t - {(0,0)} - {(Suc(#2*m), Suc(#2*n))} ¢ tiling domino

The proof applies the general theorem just discussed and discharges the first subgoal
using a tiling lemma proved in Sect.5.1. The rest falls to Auto_tac.

6 Related work and conclusions

In this note there is no space for a full literature review. Several efforts [2, 16, 18] are
in the same spirit as the present work: the chess board is formalized and impossibility

506 A Simple Formalization and Proof for the Mutilated Chess Board

of tiling proved following the intuitive argument about colours. Other work has used
exhaustive search or radical reformulations of the problem.

The Isabelle formalization compares favourably with the others. The definitions
(Fig.2) are concise, and in my view, easy to understand. The script is short: under
120 lines compared with over 500 for Subramanian [17]. (In terms of characters, which
is more accurate, the ratio drops to 1:3.) According to McCarthy [9], Bancerek’s
mechanization [2] in Mizar requires 400 lines. Rudnicki’s version [16] (also in Mizar)
requires 300 lines. Andrews [1] reports a complex proof; it is not clear how much
effort is needed to generate it.

When are inductive definitions appropriate? The choice is partly a matter of taste;
published formalizations of the mutilated chess board show great diversity. Inductive
definitions are ideal for finite constructions that allow non-determinism; the laying
down of tiles fits that description precisely. The inductive definition plays the same
role as Subramanian’s finite state machine [18]. The initial state is the empty board,;
next states are obtained by adding disjoint tiles; properties that hold of all reachable
states are proved by induction. Giving an illegal input to the state machine sends it
to an error state — a concept usually avoided with inductive definitions, since they
describe only the legal constructions.

The finite state machine approach that Subramanian describes has been applied to
substantial system verifications [10]. The inductive approach described above is an
effective means of verifying cryptographic protocols [13]. Inductive definitions scale
up to serious problems.

Acknowledgements. 1 learned of the expressiveness of inductive definitions through
participation in the ESPRIT project 6453 TYPES, and especially through the work
of Gérard Huet [6, 7]. John Harrison and anonymous referees commented on this

paper.

References

[1] Peter B. Andrews and Matthew Bishop. On sets, types, fixed points, and checkerboards. In
Pierangelo Miglioli, Ugo Moscato, Daniele Mundici, and Mario Ornaghi, editors, Theorem
Proving with Analytic Tableaur and Related Methods: 5th international workshop,
TABLEAUX 96, LNAI 1071, pages 1-15. Springer, 1996.

[2] Grzegorz Bancerek. The mutilated chessboard problem — checked by Mizar. In Boyer and
Trybulec [3].

[3] Robert Boyer and Andrzej Trybulec, editors. QED Workshop II. On the World Wide Web at
http://www.mcs.anl.gov/qed/, 1995.

[4] The Coq proof assistant. http://coq.inria.fr/, 2000.

[5] M. J. C. Gordon and T. F. Melham. Introduction to HOL: A Theorem Proving Environment
for Higher Order Logic. Cambridge University Press, 1993.

[6] Gérard Huet. The Gallina specification language : A case study. In Proceedings of 12th
FST/TCS Conference, New Delhi, LNCS 652. Springer, 1992.

[7] Gérard Huet. Residual theory in A-calculus: A formal development. Journal of Functional
Programming, 4(3):371-394, 1994.

[8] John McCarthy. A tough nut for proof procedures. Memo 16, Stanford Artificial Intelligence
Project, July 1964.

[9] John McCarthy. The mutilated checkerboard in set theory. In Boyer and Trybulec [3].

[10] J Strother Moore. Piton: A Mechanically Verified Assembly-Level Language. Kluwer
Academic Publishers, 1996.

A. FULL PROOF SCRIPT 507

[11] Lawrence C. Paulson. A fixedpoint approach to implementing (co)inductive definitions. In
Alan Bundy, editor, Automated Deduction — CADE-12 International Conference, LNAI 814,
pages 148-161. Springer, 1994.

[12] Lawrence C. Paulson. Isabelle: A Generic Theorem Prover. Springer, 1994. LNCS 828.

[13] Lawrence C. Paulson. The inductive approach to verifying cryptographic protocols. Journal of
Computer Security, 6:85-128, 1998.

[14] Lawrence C. Paulson and Krzysztof Grabczewski. Mechanizing set theory: Cardinal arithmetic
and the axiom of choice. Journal of Automated Reasoning, 17(3):291-323, December 1996.

[15] J. A. Robinson. Formal and informal proofs. In Robert S. Boyer, editor, Automated Reasoning:
Essays in Honor of Woody Bledsoe, pages 267-281. Kluwer Academic Publishers, 1991.

[16] Piotr Rudnicki. The mutilated checkerboard problem in the lightweight set theory of Mizar.
http://web.cs.ualberta.ca/“piotr/Mizar/Mutcheck, November 1995

[17] Sakthi Subramanian. A mechanically checked proof of the mutilated checkerboard theorem.
ftp://ftp.cs.utexas.edu/pub/boyer/nqthm/nqthm-1992/examples/subramanian/, 1994.

[18] Sakthi Subramanian. An interactive solution to the n X n mutilated checkerboard problem.
Journal of Logic and Computation, 6(4):573-598, 1996.

[19] Christoph Wedler. Emacs package “x-symbol”: Overview.
http://www.fmi.uni-passau.de/ wedler/x-symbol/, 2000.

A Full proof script

(*
The Mutilated Chess Board Problem, formalized inductively
*)

Addsimps (tiling.intrs @ domino.intrs);
AddIs tiling.intrs;

Material discussed in Sect. 5.1

(** The union of two disjoint tilings is a tiling *%*)

Goal "t& tiling A — u€ tiling A - t Nu ={} - t U u € tiling A";
by (etac tiling.induct 1);

by (simp_tac (simpset() addsimps [Un_assoc]) 2);

by Auto_tac;

qed_spec_mp "tiling_UnI";

AddIs [tiling_UnI];

(*** Chess boards **x*)

Goalw [lessThan_def]
"lessThan(Suc n) X B

by Auto_tac;
qed "Sigma_Sucl";

({n} x B) U ((lessThan n) X B)";

Goalw [lessThan_def]

"A X lessThan(Suc n) = (A X {n}) U (A X (lessThan n))";
by Auto_tac;
qed "Sigma_Suc2";

Addsimps [Sigma_Sucl, Sigma_Suc2];

Goal "({i} x {n}) U ({i} x {m}) = {(i,m), (i,n)}";

508 A Simple Formalization and Proof for the Mutilated Chess Board

by Auto_tac;
ged "sing_Times_lemma";

Goal "{i} X lessThan(#2*n) € tiling domino";

by (induct_tac "n" 1);

by (ALLGOALS (asm_simp_tac (simpset() addsimps [Un_assoc RS sym])));
by (rtac tiling.Un 1);

by (auto_tac (claset(), simpset() addsimps [sing_Times_lemma]));

ged "dominoes_tile_row";

AddSIs [dominoes_tile_row];

Goal "(lessThan m) X lessThan(#2*n) € tiling domino";
by (induct_tac "m" 1);

by Auto_tac;

ged "dominoes_tile_matrix";

Material discussed in Sect. 5.2

(*** "coloured" and Dominoes *x*%)

Goalw [coloured_def]
"coloured b N (insert (i,j) t) =
(if (i+j) mod #2 = b then insert (i,j) (coloured b N t)
else coloured b N t)";
by Auto_tac;
ged "coloured_insert";
Addsimps [coloured_insert];

Goal "d € domino = (Ji j. coloured 0 N d = {(i,j)}) &
(dm n. coloured 1 N d = {(m,n)})";

by (etac domino.elim 1);

by (auto_tac (claset(), simpset() addsimps [mod_Sucl));

ged "domino_singletons";

Material discussed in Sect. 5.4

Goal "d € domino = finite d4d";
by (etac domino.elim 1);

by Auto_tac;

ged "domino_finite";

Addsimps [domino_finite];

(*** Tilings of dominoes *%x*)

Goal "t € tiling domino — finite t";
by (etac tiling.induct 1);

by Auto_tac;

ged "tiling_domino_finite";

Addsimps [tiling_domino_finite, Int_Un_distrib, Diff_Int_distrib];
Goal "t € tiling domino = card(coloured 0 N t) = card(coloured 1 N t)";

by (etac tiling.induct 1);
by (dtac domino_singletons 2);

A. FULL PROOF SCRIPT

by Auto_tac;

(*this lemma tells us that both "inserts" are non-trivialx)
by (subgoal_tac "Vp C. C N a={p} - p & t" 1);

by (Asm_simp_tac 1);

by (Blast_tac 1);

ged "tiling_domino_0_1";

Material discussed in Sect. 5.3

(#Final argument is surprisingly complexx*)
Goal "[t € tiling domino;

(i+j) mod #2 = 0; (m+n) mod #2 = 0;

{(1,7),(@m,n)} C t |

= (t - {(i,j)} - {(m,n)}) ¢ tiling domino";
by (rtac notI 1);
by (subgoal_tac "card (coloured 0 N (t - {(i,j)} - {(m,n)})) <
card (coloured 1 N (t - {(i,70} - {(m,n)}))" 1);
by (force_tac (claset(), HOL_ss addsimps [tiling_domino_0_1]) 1);
by (asm_simp_tac (simpset() addsimps [tiling_domino_0_1 RS sym]) 1);
by (asm_full_simp_tac
(simpset() addsimps [coloured_def, card_Diff2_less]) 1);

ged "gen_mutil_not_tiling";

(*Apply the general theorem to the well-known casex)
Goal "t = lessThan(#2 * Suc m) X lessThan(#2 * Suc n)
= t - {(0,0)} - {(Suc(#2*m), Suc(#2*n))} & tiling domino";
by (rtac gen_mutil_not_tiling 1);
by (blast_tac (claset() addSIs [dominoes_tile_matrix]) 1);
by Auto_tac;
ged "mutil_not_tiling";

Received 11 September 2000. Revised: November 8, 2000, January 15, 2001

509

510

Acknowledgements

The Editor-in-Chief and the editor of this special issue would like to thank the fol-
lowing colleagues who have helped maintain the standards set for a scientific journal,
through their refereeing of the papers that have been submitted.!

Roel Bloo

Carsten Butz

Thérese Hardin

Daniel Hirschkoff
Patrik Holt

Michael Kohlhase
Tobias Nipkow

Nicola Olivetti
Vincent van Oostrom
Christine Paulin-Mohring
Randy Pollack

Femke van Raamsdonk
Nick Taylor.

1The list includes the referees for the papers in this issue, plus the referees of papers rejected meanwhile.

511

Interest Group in Pure and Applied
Logics (IGPL)

The Interest Group in Pure and Applied Logics (IGPL) is sponsored by The Euro-
pean Association for Logic, Language and Information (FoLLI), and currently has
a membership of over a thousand researchers in various aspects of logic (symbolic,
mathematical, computational, philosophical, etc.) from all over the world (currently,
more than 50 countries). Our main activity is that of a research and information
clearing house.

Our activities include:

e Exchanging information about research problems, references and common interest
among group members, and among different communities in pure and applied
logic.

e Helping to obtain photocopies of papers to colleagues (under the appropriate copy-
right restrictions), especially where there may be difficulties of access.

e Supplying review copies of books through the journals on which some of us are
editors.

¢ Helping to organise exchange visits and workshops among members.

e Advising on papers for publication.

e Editing and distributing a Newsletter and a Journal (the first scientific journal
on logic which is FULLY electronic: submission, refereeing, revising, typesetting,
publishing, distribution; first issue: July 1993): the Logic Journal of the Interest
Group on Pure and Applied Logics. (For more information on the Logic Journal
of the IGPL, see the Web homepage: http://www.jigpal.oupjournals.org)

e Keeping a public archive of papers, abstracts, etc., accessible via ftp.

e Wherever possible, obtaining reductions on group (6 or more) purchases of logic
books from publishers.

If you are interested, please send your details (name, postal address, phone, fax, e-mail
address, research interests) to:

IGPL Headquarters

c/o Prof. Dov Gabbay

King’s College, Dept of Computer Science
Strand

London WC2R 2LS

United Kingdom

e-mail: dg@dcs.kcl.ac.uk

For the organisation, Dov Gabbay, Ruy de Queiroz and Hans Jiirgen Ohlbach

912

