
Interest Group in Pure and Applied Logi
s

Volume 9 Number 3 May 2001
LOGIC JOURNALofthe

Editor-in-Chief:DOV M. GABBAYExe
utive Editors:RUY de QUEIROZandHANS J�URGEN OHLBACHEditorial Board:Jon Barwise (de
eased)Wilfrid HodgesHans KampRobert KowalskiGrigori MintsEwa OrlowskaAmir PnueliVaughan PrattSaharon ShelahJohan van Benthem
OXFORDUNIVERSITYPRESSISSN 1367-0751

354

Subs
ription InformationVolume 9, 2001 (bimonthly) Full: Europe pounds sterling 275; Rest of World US$450. Personal: pounds sterling 138 (US$ 225). Please note that personal rates applyonly when
opies are sent to a private address and payment is made by a personal
heque or
redit
ard.Order informationSubs
riptions
an be a

epted for
omplete volumes only. Pri
es in
lude air-speededdelivery to Australia, Canada, India, Japan, New Zealand, and the USA. Deliveryelsewhere is by surfa
e post. Payment is required with all orders and may be madein the following ways:Cheque (made payable to Oxford University Press)National Girobank (a

ount 500 1056)Credit
ard (A

ess, Visa, Ameri
an Express, Diners Club)UNESCO CouponsBankers: Bar
lays Bank pl
, PO Box 333, Oxford, UK. Code 20-65-18, A

ount00715654.Requests for sample
opies, subs
ription enquiries, orders and
hanges of addressshould be sent to the Journals Subs
riptions Department, Oxford University Press,Great Clarendon Street, Oxford OX2 6DP, UK. Tel: 01865 267907. Fax: 01865267485.AdvertisementsAdvertising enquiries should be addressed to Peter Carpenter, PRC Asso
iates, TheAnnexe, Fitznells Manor, Chessington Road, Ewell Village, Surrey KT17 1TF, UK.Tel: 0181 786 7376. Fax: 0181 786 7262.Copyright

Oxford University Press 2001. All rights reserved: no part of this publi
ationmay be reprodu
ed, stored in a retrieval system, or transmitted in any form or byany means, ele
troni
, me
hani
al, photo
opying, re
ording, or otherwise, withouteither the prior written permission of the Publishers, or a li
en
e permitting restri
ted
opying issued in the UK by the Copyright Li
ensing Agen
y Ltd, 90 TottenhamCourt Road, London W1P 9HE, or in the USA by the Copyright Clearan
e Center,222 Rosewood Drive, Danvers, MA 01923.Logi
 Journal of the IGPL (ISSN 1367-0751) is published bimonthly in January,Mar
h, May, July, September and November by Oxford University Press, Oxford,UK. Annual subs
ription pri
e is US$ 450.00. Logi
 Journal of the IGPL is dis-tributed by M.A.I.L. Ameri
a, 2323 Randolph Avenue, Avenel, NJ 07001. Periodi
alpostage paid at Rahway, New Jersey, USA and at additional entry points.US Postmasters: Send address
hanges to Logi
 Journal of the IGPL,
/o Mer
uryInternational, 365 Blair Road, Avenel, NJ 07001, USA.

356Ba
k IssuesThe
urrent plus two ba
k volumes are available from Oxford University Press. Pre-vious volumes
an be obtained from Dawsons Ba
k Issues, Cannon House, Park FarmRoad, Folkestone, Kent CT19 5EE, UK. Tel: +44 (0) 1303 203612. Fax: +44 (0)1303 203617.

Logi
 Journal of the IGPLVolume 9, Number 3, May 2001Contents
359EditorialF. KamareddineOriginal Arti
les 363The rewriting
al
ulus | Part IH. Cirstea and C. Kir
hner 401The rewriting
al
ulus | Part IIH. Cirstea and C. Kir
hner 435Tableau Reasoning and Programming with Dynami
 FirstOrder Logi
J. van Eij
k, J. Heguiabehere and B. �O Nuall�ain 471Theorem Proving in In�nitesimal GeometryJ. D. Fleuriot 499A Simple Formalization and Proof for the Mutilated ChessBoardL. C. Paulson

Please visit the journal's World Wide Web site athttp://www.jigpal.oupjournals.org357

Logi
 Journal of the Interest Group inPure and Applied Logi
sEditor-in-Chief:Dov GabbayDepartment of Computer S
ien
eKing's CollegeStrandLondon WC2R 2LS, UKdg�d
s.k
l.a
.ukTel +44 20 7848 2930Fax +44 20 7240 1071Exe
utive Editors:Ruy de QueirozDepartamento de Inform�ati
aUFPE em Re
ifeCaixa Postal 7851Re
ife, PE 50732-970, Brazilruy�di.ufpe.brHans J�urgen Ohlba
hInst. f�ur InformatikLudwig-Maximilians-Universit�at�Ottingenstr. 67D-80538 M�un
henohlba
h�informatik.uni-muen
hen.deTel +49 2178 2200Fax +49 2178 2211Editorial Board:Jon Barwise (de
eased)Wilfrid Hodges, QMW, UKHans Kamp, Stuttgart, GermanyRobert Kowalski, ICSTM, UKGrigori Mints, Stanford, USAEwa Orlowska, Warsaw, PolandAmir Pnueli, Weizmann, IsraelVaughan Pratt, Stanford, USASaharon Shelah, JerusalemJohan van Benthem,ILLC, Amsterdam

S
ope of the JournalThe Journal is the oÆ
ial publi
ation of the International In-terest Group in Pure and Applied Logi
s (IGPL), whi
h issponsored by The European Foundation for Logi
, Languageand Information (FoLLI), and
urrently has a membership ofover a thousand resear
hers in various aspe
ts of logi
 (sym-boli
,
omputational, mathemati
al, philosophi
al, et
.) fromall over the world.The Journal is published in hard
opy and in ele
troni
 formsix times per year. Publi
ation is fully ele
troni
: submission,refereeing, revising, typesetting,
he
king proofs, and publish-ing, all is done via ele
troni
 mailing and ele
troni
 publishing.Papers are invited in all areas of pure and applied logi
, in-
luding: pure logi
al systems, proof theory, model theory, re-
ursion theory, type theory, non
lassi
al logi
s, nonmonotoni
logi
, numeri
al and un
ertainty reasoning, logi
 and AI, foun-dations of logi
 programming, logi
 and
omputation, logi
and language, and logi
 engineering.The Journal is an attempt to solve a problem in the logi
 (inparti
ular, IGPL)
ommunity:Æ Long delays and large ba
klogs in publi
ation of papers in
urrent journals.Æ Very tight time and page number limits on submission.Papers in the �nal form should be in LATEX. The review pro-
ess is qui
k, and is made mainly by other IGPL members.SubmissionsSubmissions are made by sending a submission letter to thee-mail address: jigpl�d
s.k
l.a
.uk, giving the title and theabstra
t of the paper, and informing:(i) of how to obtain the �le ele
troni
ally, if you have the .dvior .ps �le; or(ii) that you have put the �le (.dvi, .ps or .tex) inthe publi
 area ftp.d
s.k
l.a
.uk (137.73.8.10), dire
tory,pub/jigpl/submissionsor, by sending 5 (�ve) hard
opies of the paper to the Editor-in-Chief.URL: http://www.jigpal.oupjournals.org

EditorialThe 20th
entury gave birth to a
omputer te
hnology that has dominated our lives.Su
h te
hnology may be expensive to build and/or human lives may depend on it.We have overwhelming eviden
e from just under a
entury's work that the right logi
and the right notion of symboli
 manipulation (rewriting)
an guarantee the safetyand
orre
tness of this te
hnology saving money, and human lives and e�orts. Forthis reason, we have seen and will
ontinue to see new di�erent logi
s and rewritingsystems, extensions of old systems and the study of their theory and appli
ations willbe as thrive as it was in the last
entury. This is not surprising be
ause the twentieth
entury was indeed a
entury of
omplexity and this
omplexity will be
arried to this
entury. This
omplexity of information, the in
reasing interdependen
y of systems,the faster and more automati
 travel of information, and the disastrous
onsequen
esof failure, lead to the need for establishing Corre
tness. Moreover, modern te
h-nologi
al systems are just too
ompli
ated for humans to reason about unaided, soautomation is needed. Furthermore, be
ause modern systems have so many possiblestates, testing is often impra
ti
al. It seems that proofs are needed to
over in�nitelymany situations. The last
entury is eviden
e that formalisms needed to aid in designand to ensure safety must a

ommodate some rewriting and automati
 sear
h for and
he
king of proofs. These ideas were present long before the 20th
entury. In fa
t,Leibniz (1646{1717)
on
eived of automated dedu
tion, when he wanted to �nd:� a language L in whi
h arbitrary
on
epts
ould be formulated, and� a ma
hine to determine the
orre
tness of statements in L.Su
h a ma
hine
an not work for every statement a

ording to G�odel and Turing.Nevertheless, the need for automation has been overwhelming and its explorationin both the safe grounds and the dangerous borderlines
ontinues to be
hallenging.The relevan
e of rewriting and automation is witnessed by the number of international
onferen
es and events devoted to the subje
t. We
annot mention all these eventsand refer to the usual referen
es. This volume however, is a sele
tion of various papersthat were presented at a
olle
tion of events on rewriting, automation and theoremproving that took pla
e in year 2000 and were funded by di�erent sour
es in
luding:the European Union's IHP High Level S
ienti�
 Conferen
es support, the EuropeanEdu
ational Forum, the UK Engineering and Physi
al Resear
h Coun
il EPSRC, theRoyal So
iety and the Dut
h resear
h
oun
il NWO. The support of all these sour
esis greatly appre
iated. These events are as follows:�Winter Workshop in Logi
s, Types and Rewriting '00 on 2 February 2000.See http://www.
ee.hw.a
.uk/~fairouz/inaugural-workshop2000/� The EEF Foundations S
hool in Dedu
tion and Theorem Proving'00 on 6-16 April2000.See http://www.
ee.hw.a
.uk/~fairouz/ukiis
hool2000/ukiis
hool.html� Festival Workshop in Foundations and Computing, FC'00 on 17-18 July 2000.See http://www.
ee.hw.a
.uk/~fairouz/festival/workshop1/Due to the su

es of the above events, it was de
ided that a spe
ial issue should bepublished on the above themes. Some of the le
turers and speakers agreed to write359

360 Editorialtheir material as arti
les for this volume. Of the submitted arti
les, �ve were sele
tedfor this volume.The arti
le of Cirstea and Kir
hner is in two parts and is
on
erned with a new
al
ulus
alled the �-
al
ulus. The
hara
teristi
 feature of the �-
al
ulus is that it hasan operator ! used to build abstra
tions as in the �-
al
ulus as for instan
e x ! xfor the identity. Abstra
tions
an also
ontain patterns as in �rst-order rewriting.For instan
e the rewrite rule a! b is in the �-
al
ulus represented by the abstra
tiona! b. The appli
ation of an abstra
tion to an argument is as in the �-
al
ulus, butnow denoted by for instan
e [x ! x℄(y) for the identity applied to a variable y. Ifthe pattern of the left-hand side of the abstra
tion is not present in its argument,the appli
ation is rewritten to ;, representing failure. For instan
e [a ! b℄(b) �! ;.If the pattern of the left-hand side is present in the argument, then the appli
ationis rewritten to the set
onsisting of the
orresponding right-hand side. For instan
e,we have [x ! x℄(y) �! fyg and [a ! b℄(a) �! fbg. Also sets
onsisting of moreelements are used to represent non-determinism.In the �rst part, the
al
ulus is introdu
ed and motivated and its syntax andevaluation rules for any theory are presented. Then, the en
oding of the �-
al
ulusis presented and a dis
ussion of
on
uen
e is given. In the se
ond part,
onditionalrewriting is en
oded and the
al
ulus is extended with a �rst operator whose purposeis to dete
t rule appli
ation failure. This extension enables the en
oding of strategybased rewriting pro
esses and is used to give an operational semanti
s to ELAN whi
his an environment for spe
ifying and prototyping dedu
tion systems in a languagebased on labelled
onditional rules and strategies to
ontrol rule appli
ation.The arti
le of Jan van Eij
k and Juan Heguiabehere and Breannd�an �O Nuall�ainpresents a tableau system for dynami
 �rst-order logi
 (DFOL for short), a formalismoriginally introdu
ed by Groenendijk and Stokhof to a

ount for
ertain aspe
ts ofnatural language semanti
s and anaphora. The language presented in this paper
ontains expli
it substitutions and the
hoi
e operator [. The language is furtherextended with the �nite iteration *-operator (DFOL*). Soundness and
ompletenessof the tableau method for DFOL and then DFOL* is proved. The authors illustratethrough signi�
ant examples the usefulness of DFOL and DFOL* and of the relatedtableau method to represent program exe
ution and to derive pre/post
onditions inthe style of Hoare logi
. They also show the potential bene�t of their tableau methodas a tool in
omputational semanti
s of natural language.The arti
le of Ja
ques Fleuriot, reports the formalisation in the theorem proverIsabelle of a theory of non-standard geometry based on in�nitely small and large reals.The theory is based on so-
alled hyperreal ve
tors whi
h are sequen
es of real ve
torswith two su
h sequen
es being equal if they
oin
ide on an element in an ultra�lter(an abstra
t way to express that they are equal almost everywhere). The paper usesthe full power of the Isabelle-HOL formalism in order to get a smooth development. It
an be seen as a referen
e paper on the basis of in�nitesimal geometry. As mentionedby the author, extending usual operations to in�nitely small or large obje
ts is verysubtle and
an easily be done the wrong way. The fa
t that the theory is
ompletelydeveloped in Isabelle-HOL is
onsequently really useful.The arti
le of Paulson presents a short and natural me
hanisation of the proof of themutilated
hessboard problem in Isabelle. This exer
ise is used to demonstrate someimportant prin
iples in the manipulation of systems of this kind. Parti
ular emphasis

Editorial 361is put on the use of indu
tive de�nitions. These are of interest both be
ause they allowthe user to give intuitive de�nitions of e.g. what is a domino and what is a tiling,and be
ause they inherently
apture the essen
e of the
on
epts being formalised(therefore, for example, no erroneous tiling
an be generated in the development of aproof). Moreover, Isabelle's ta
ti
s te
hnology, together with the
on
iseness o�eredby indu
tive de�nitions, makes it possible to derive a formalisation that is mu
hshorter than in similar works based on other provers. Fairouz Kamareddine

362

The rewriting
al
ulus | Part IHORATIU CIRSTEA, LORIA and INRIA, Campus S
ienti�que,BP 239, 54506 Vandoeuvre-l�es-Nan
y, Fran
e.E-mail: Horatiu.Cirstea�loria.fr.CLAUDE KIRCHNER, LORIA and INRIA, Campus S
ienti�que,BP 239, 54506 Vandoeuvre-l�es-Nan
y, Fran
e.E-mail: Claude.Kir
hner�loria.fr.Abstra
tThe �-
al
ulus integrates in a uniform and simple setting �rst-order rewriting, �-
al
ulus and non-deterministi

omputations. Its abstra
tion me
hanism is based on the rewrite rule formation andits main evaluation rule is based on mat
hing modulo a theory T .In this �rst part, the
al
ulus is motivated and its syntax and evaluation rules for any theory T arepresented. In the synta
ti

ase, i.e. when T is the empty theory, we study its basi
 properties forthe untyped
ase. We �rst show how it uniformly en
odes �-
al
ulus as well as �rst-order rewritingderivations. Then we provide suÆ
ient
onditions for ensuring
on
uen
e of the
al
ulus.Keywords: rewriting, strategy, non-determinism, mat
hing, rewriting-
al
ulus, lambda-
al
ulus, rulebased language.1 Introdu
tion1.1 Rewriting,
omputer s
ien
e and logi
It is a
ommon
laim that rewriting is ubiquitous in
omputer s
ien
e and mathe-mati
al logi
. And indeed the rewriting
on
ept appears from the very theoreti
alsettings to the very pra
ti
al implementations. Some extreme examples are the mailsystem under Unix that uses rules in order to rewrite mail addresses in
anoni
alforms (see the /et
/sendmail.
f �le in the
on�guration of the mail system) andthe transition rules des
ribing the behaviors of tree automata. Rewriting is used insemanti
s in order to des
ribe the meaning of programming languages [31℄ as well asin program transformations like, for example, re-engineering of Cobol programs [54℄.It is used in order to
ompute [12℄, impli
itly or expli
itly as in Mathemati
a [59℄,MuPAD [42℄ or OBJ [22℄, but also to perform dedu
tion when des
ribing by inferen
erules a logi
 [23℄, a theorem prover [28℄ or a
onstraint solver [29℄. It is of
ourse
en-tral in systems making the notion of rule an expli
it and �rst
lass obje
t, like expertsystems, programming languages based on equational logi
 [45℄, algebrai
 spe
i�
a-tions (e.g. OBJ [22℄), fun
tional programming (e.g. ML [40℄) and transition systems(e.g. Murphi [11℄).It is hopeless to try to be exhaustive and the
ases we have just mentioned showpart of the huge diversity of the rewriting
on
ept. When one wants to fo
us on theunderlying notions, it be
omes qui
kly
lear that several te
hni
al points should besettled. For example, what kind of obje
ts are rewritten? Terms, graphs, strings, sets,363L. J. of the IGPL, Vol. 9 No. 3, pp. 363{399 2001

Oxford University Press

multisets, others? On
e we have established this, what is a rewrite rule? What is aleft-hand side, a right-hand side, a
ondition, a
ontext? And then, what is the e�e
tof a rule appli
ation? This leads immediately to de�ning more te
hni
al
on
eptslike variables in bound or free situations, substitutions and substitution appli
ation,mat
hing, repla
ement; all notions being spe
i�
 to the kind of obje
ts that have to berewritten. On
e this is solved one has to understand the meaning of the appli
ationof a set of rules on (
lasses of) obje
ts. And last but not least, depending on theintended use of rewriting, one would like to de�ne an indu
ed relation, or a logi
, ora
al
ulus.In this very general pi
ture, we introdu
e a
al
ulus whose main design
on
eptis to make all the basi
 ingredients of rewriting expli
it obje
ts, in parti
ular thenotions of rule appli
ation and result. We
on
entrate on term rewriting, we introdu
ea very general notion of rewrite rule and we make the rule appli
ation and resultexpli
it
on
epts. These are the basi
 ingredients of the rewriting- or �-
al
ulus whoseoriginality
omes from the fa
t that terms, rules, rule appli
ation and therefore ruleappli
ation strategies are all treated at the obje
t level.1.2 How does the rewriting
al
ulus work?In �-
al
ulus we
an expli
itly represent the appli
ation of a rewrite rule, as forexample 2 ! s(s(0)), to a term, e.g. the
onstant 2, as the obje
t [2 ! s(s(0))℄(2)whi
h evaluates to the singleton fs(s(0))g. This means that the rule appli
ationbinary symbol \[℄()" is part of the
al
ulus syntax.As we have seen a rule appli
ation
an be redu
ed to a singleton, but it may alsofail as in [2! s(s(0))℄(3) that evaluates to the empty set ;, or it
an be redu
ed to aset with more than one element as exempli�ed later in this se
tion and explained inSe
tion 2.4. Of
ourse, variables may be used in rewrite rules as in [x+0! x℄(4+0).In this last
ase the evaluation me
hanism of the
al
ulus will redu
e the appli
ationto f4g. In fa
t, when evaluating this expression, the variable x is bound to 4 via ame
hanism
lassi
ally
alled mat
hing, and the result of the evaluation is obtained byinstantiating a

ordingly the variable x from the right hand side of the rewrite rule.We re
over, thus, the
lassi
al way term rewriting is a
ting.Where this game be
omes even more interesting is that \ ! ", the rewrite binaryoperator, is integrally part of the
al
ulus syntax. This is a powerful abstra
tionoperator whose relationship with �-abstra
tion [7℄
ould provide a useful intuition:A �-expression �x:t
an be represented in the �-
al
ulus as the rewrite rule x ! t.Indeed, the �-redex (�x:t u) is nothing else than [x ! t℄(u) (i.e. the appli
ation ofthe rewrite rule x! t to the term u) whi
h redu
es to ffx=ugtg (i.e. the appli
ationof the substitution fx=ug to the term t).We are aware of other ways to abstra
t on terms or patterns in lambda-
al
uluse.g. the works of Colson, Kesner, van Oostrom [10, 57, 32℄ or Peyton-Jones [50℄. Forexample, the �-
al
ulus with patterns presented in [50℄
an be given a dire
t represen-tation in the �-
al
ulus. Let us
onsider, for example, the �-term �(PAIR x y):x thatsele
ts the �rst element of a pair and the appli
ation �(PAIR x y):x (PAIR a b)that evaluates to a. The representation in the �-
al
ulus of the �rst �-term isPAIR(x; y) ! x and the
orresponding appli
ation [PAIR(x; y) ! x℄(PAIR(a; b))�-evaluates to ffx=a; y=bgxg, that is to fag.364

Of
ourse we have to make
lear what a substitution fx=ug is and how it applies toa term. But there is no surprise here and we
onsider a substitution me
hanism thatpreserves the
orre
t variable bindings via the appropriate �-
onversion. In orderto make this point
lear in the paper, as in [13℄, we will make a strong distin
tionbetween substitution (whi
h takes
are of variable binding) and grafting (that performsrepla
ement dire
tly).When building abstra
tions, i.e. rewrite rules, there is a priori no restri
tion. Arewrite rule may introdu
e new variables as in the rule f(x) ! g(x; y) that whenapplied to the term f(a) evaluates to fg(a; y)g, leaving the variable y free. It may alsorewrite an obje
t into a rewrite rule as in the appli
ation [x ! (f(y) ! g(x; y))℄(a)that evaluates to the singleton ff(y)! g(a; y)g. In this
ase the variable x is free inthe rewrite rule f(y) ! g(x; y) but is bound in the rule x ! (f(y)! g(x; y)). Moregenerally, the obje
t formation in �-
al
ulus is un
onstrained. Thus, the appli
ationof the rule b !
 after the rule a ! b to the term a is written [b !
℄([a ! b℄(a))and as expe
ted the evaluation me
hanism will produ
e �rst [b !
℄(fbg) and thenf
g. It also allows us to make use in an expli
it and dire
t way of non-terminating ornon-
on
uent (equational) rewrite systems. For example the appli
ation of the rulea ! a to the term a ([a ! a℄(a)) terminates, sin
e it is applied only on
e and doesnot represent the repeated appli
ation of the rewrite rule a! a.So, basi
 �-
al
ulus obje
ts are built from a signature, a set of variables, the ab-stra
tion operator \!", the appli
ation operator \[℄()", and we
onsider sets ofsu
h obje
ts. This gives to the �-
al
ulus the ability to handle non-determinism inthe sense of sets of results. This is a
hieved via the expli
it handling of redu
tionresult sets, in
luding the empty set that re
ords the fundamental information of ruleappli
ation failure. For example, if the symbol + is assumed to be
ommutativethen x + y is equivalent modulo
ommutativity to y + x and thus applying the rulex+y ! x to the term a+b results in fa; bg. Sin
e there are two di�erent ways to apply(mat
h) this rewrite rule modulo
ommutativity the result is a set that
ontains twodi�erent elements
orresponding to two possibilities. This ability to integrate spe
i�

omputations in the mat
hing pro
ess allows us for example to use the �-
al
ulus fordedu
tion modulo purposes as proposed in [14℄.To summarize, in �-
al
ulus abstra
tion is handled via the arrow binary operator,mat
hing is used as the parameter passing me
hanism, substitution takes
are ofvariable bindings and results sets are handled expli
itly.1.3 Rewriting relation versus rewriting
al
ulusA �-
al
ulus term
ontains all the (rewrite rule) information needed for its evaluation.This is also the
ase for �-
al
ulus but it is quite di�erent from the usual way termrewrite relations are de�ned.The rewrite relation generated by a rewrite system R = fl1 ! r1; : : : ; ln ! rngis de�ned as the smallest transitive relation stable by
ontext and substitution and
ontaining (l1; r1); : : : ; (ln; rn). For example if R = fa ! f(a)g, then the rewriterelation
ontains (a; f(a)), (a; f(f(a))), (f(a); f(f(a))); : : : and one says that thederivation a! f(a)! f(f(a))! : : : is generated by R.In �-
al
ulus the situation is di�erent sin
e �-evaluation will redu
e a given �-term inwhi
h all the rewriting information is expli
it. It is
ustomary to say that the rewrite365

system a! a is not terminating be
ause it generates the derivation a! a! a! : : : .In �-
al
ulus the same in�nite derivation should be expli
itly built (for example usingan iterator) and all the evaluation information should be present in the starting termas in [a ! a℄([a ! a℄([a ! a℄(a))) whose evaluation
orresponds to the three stepsderivation a! a! a! a.There is thus a big di�eren
e between the way one
an de�ne rewrite derivationsgenerated by a rewrite system and their representation in �-
al
ulus: in the �rst
asethe derivation
onstru
tion is impli
it and left at the meta-level, in the later
ase, allrewrite steps should be expli
itly built.1.4 Integration of �rst-order rewriting and higher-order logi
We are introdu
ing a new
al
ulus in a heavily-
harged lands
ape. Why one more?There are several
omplementary answers that we will make expli
it in this work.One of them is the unifying prin
iple of the
al
ulus with respe
t to algebrai
 andhigher-order theories.The integration of �rst-order and higher-order paradigms has been one of the mainproblems raised sin
e the beginning of the study of programming language semanti
sand of proof environments. The �-
al
ulus emerged in the thirties and had a deepin
uen
e on the development of theoreti
al
omputer-s
ien
e as a simple but powerfultool for des
ribing programming language semanti
s as well as proof developmentsystems. Term rewriting for its part emerged as an identi�ed
on
ept in the latesixties and it had a deep in
uen
e in the development of algebrai
 spe
i�
ations aswell as in theorem proving.Be
ause the two paradigms have a lot in
ommon but have extremely useful
om-plementary properties, many works address the integration of term rewriting with�-
al
ulus. This has been handled either by enri
hing �rst-order rewriting withhigher-order
apabilities or by adding to �-
al
ulus algebrai
 features allowing one,in parti
ular, to deal with equality in an eÆ
ient way. In the �rst
ase, we �nd theworks on CRS [38℄, XRS [49℄ and other higher-order rewriting systems [58, 44℄, in these
ond
ase the works on
ombination of �-
al
ulus with term rewriting [46, 5, 21, 30℄to mention only a few.Our previous works on the
ontrol of term rewriting [35, 56, 3℄ led us to introdu
e the�-
al
ulus. Indeed we realized that the tool that is needed in order to
ontrol rewritingshould be made expli
it and
ould be itself naturally des
ribed using rewriting. Byviewing the arrow rewrite symbol as an abstra
tion operator, we stri
tly generalizethe abstra
tion me
hanism of �-
al
ulus, by making the rule appli
ation expli
it, weget full
ontrol of the rewrite me
hanism and as a
onsequen
e we obtain with the�-
al
ulus a uniform integration of algebrai

omputation and �-
al
ulus.1.5 Basi
 properties and uses of the �-
al
ulusOne of the main properties of the
al
ulus we are
on
entrating on is
on
uen
e. Wewill see that the �-
al
ulus is not
on
uent in the general
ase. The use of sets forrepresenting the redu
tion results is the main
ause of non-
on
uen
e. This
omesfrom the fa
t that in the de�nition of a standard rewrite step, a rule is applied onlywhen a su

essful mat
h is found and in this
ase the redu
ed term exists and is unique366

(even if several mat
hes exist). In �-
al
ulus we are in a very di�erent situation sin
ea rule appli
ation always yields a unique result
onsisting either of a non-empty setrepresenting all the possible redu
ed terms (one per di�erent mat
h) or of an emptyset representing the impossibility to apply a standard rewrite step.The
on
uen
e
an be re
overed if the evaluation rules of �-
al
ulus are guidedby an appropriate strategy. This strategy should �rst handle properly the problemsrelated to the propagation of failure over the operators of the
al
ulus. It should alsotake
are of the
orre
t handling of sets with more than one element in non-linear
ontexts. We are presenting this strategy whose full details are given in [8℄.We will see that the �-
al
ulus
an be used for representing some simpler
al
uli as�-
al
ulus and rewriting even in the
onditional
ase. This is a
hieved by restri
tingthe syntax and the evaluation rules of the �-
al
ulus in order to represent the termsof the two
al
uli. We then show that for any redu
tion in the �-
al
ulus or termrewriting, a
orresponding natural redu
tion in the �-
al
ulus
an be found.1.6 Stru
ture of this work and paperThe presentation of this work is divided in two parts, the se
ond one being
alledhereafter Part II.The purpose of this �rst part is to introdu
e the �-
al
ulus, its syntax and evaluationrules and to show how it
an be used in order to naturally en
ode �-
al
ulus andstandard term rewriting. We also show in Part II, and indeed this was our �rstmotivation, that it
an be used to en
ode
onditional rewriting and that it providesa semanti
s for the rewrite based language ELAN.In the next se
tion, we introdu
e the general �T -
al
ulus, where T is a theoryused to internalize spe
i�
 knowledge like asso
iativity and
ommutativity of
ertainoperators. We present the syntax of the
al
ulus, its evaluation rules together withexamples. We emphasize in parti
ular the important role of the mat
hing theoryT . We show in Se
tion 3 how �-
al
ulus
an be used to en
ode in a uniform wayterm rewriting and �-
al
ulus. Then, in Se
tion 4, we restri
t to the �;-
al
ulus (alsoshortly denoted �-
al
ulus), the
al
ulus where only synta
ti
 mat
hing is allowed(i.e. the theory T is assumed to be the trivial one), and we present the
on
uen
eproperties of this
al
ulus. We assume the reader familiar with the standard notionsof term rewriting [16, 36, 4, 33℄ and with the basi
 notions of �-
al
ulus [2℄. For thebasi

on
epts about rule based
onstraint solving and dedu
tion modulo, we referrespe
tively to [29, 37℄ and [14℄.2 De�nition of the �T -
al
ulusWe assume given in this se
tion a theory T de�ned equationally or by any othermeans.A
al
ulus is de�ned by the following �ve
omponents:1. First its syntax that makes pre
ise the formation of the obje
ts manipulated by the
al
ulus as well as the formation of substitutions that are used by the evaluationme
hanism. In the
ase of �T -
al
ulus, the
ore of the obje
t formation relies ona �rst-order signature together with rewrite rules formation, rule appli
ation and367

sets of results.2. The des
ription of the substitution appli
ation to terms. This des
ription is oftengiven at the meta-level, ex
ept for expli
it substitution frameworks. For the de-s
ription of the �T -
al
ulus that we give here, we use (higher-order) substitutionsand not grafting, i.e. the appli
ation takes
are of variable bindings and thereforeuses �-
onversion.3. The mat
hing algorithm used to bind variables to their a
tual values. In the
aseof �T -
al
ulus, this is mat
hing modulo the theory T . In pra
ti
al
ases it willbe higher-order-pattern mat
hing, or equational mat
hing, or simply synta
ti
mat
hing or
ombination of any of these. The mat
hing theory is spe
i�ed as aparameter (the theory T) of the
al
ulus and when it is
lear from the
ontextthis parameter is omitted.4. The evaluation rules des
ribing the way the
al
ulus operates. It is the gluebetween the previous
omponents. The simpli
ity and
larity of these rules arefundamental for its usability.5. The strategy guiding the appli
ation of the evaluation rules. Depending on thestrategy employed we obtain di�erent versions and therefore di�erent propertiesfor the
al
ulus.This se
tion makes expli
it all these
omponents for the �T -
al
ulus and
ommentsour main
hoi
es.2.1 Syntax of the �T -
al
ulusDe�nition 2.1We
onsider X a set of variables and F = SmFm a set of rankedfun
tion symbols, where for allm, Fm is the subset of fun
tion symbols of aritym. Weassume that ea
h symbol has a unique arity i.e. that the Fm are disjoint. We denoteby T (F ;X) the set of �rst-order terms built on F using the variables in X . The setof basi
 �-terms, denoted %(F ;X), is the smallest set of obje
ts formed a

ording tothe following rules:� the variables in X are �-terms,� if t1; : : : ; tn are �-terms and f 2 Fn then f(t1; : : : ; tn) is a �-term,� if t1; : : : ; tn are �-terms then ft1; : : : ; tng is a �-term (the empty set is denoted ;),� if t and u are �-terms then [t℄(u) is a �-term (appli
ation),� if t and u are �-terms then t! u is a �-term (abstra
tion or rewrite rule).The set of basi
 �-terms
an thus be indu
tively de�ned by the following grammar:�-terms t ::= x j f(t; : : : ; t) j ft; : : : ; tg j [t℄(t) j t! twhere x 2 X and f 2 F . Noti
e that this syntax does not make use of the theory T .A term may be viewed as a �nite labeled ordered tree, the leaves of whi
h are labeledwith variables or
onstants and the internal nodes of whi
h are labeled with symbolsof positive arity.De�nition 2.2 A position (also
alled o

urren
e) of a term (seen as a tree) is rep-resented as a sequen
e ! of positive integers des
ribing the path from the root of t to368

the root of the sub-term at that position. We denote by tdsep the term t
ontainingthe sub-term s at the position p. The symbol at the position p of a term t is denotedby t(p).We
all fun
tional position of a �-term t, any o

urren
e p of the term whose symbolbelongs to F , i.e. t(p) 2 F . The set of all positions of a term t is denoted by Pos(t).The set of all fun
tional positions of a term t is denoted by FPos(t).The position of a sub-term in a set �-term is obtained by
onsidering one of thepossible tree representations of the respe
tive �-term.We adopt a very general dis
ipline for the rewrite rule formation, and we do notenfor
e any of the standard restri
tions often used in the term rewriting
ommunitylike non-variable left-hand sides or o

urren
e of the right-hand side variables in theleft-hand side. We also
onsider rewrite rules
ontaining rewrite rules as well asrewrite rule appli
ation. For
onvenien
e, we
onsider that the symbols fg and ;both represent the empty set. We usually use the notation f instead of f() for afun
tion symbol of arity 0 (i.e. a
onstant). For the terms of the form ft1; : : : ; tng weassume, as usually, that the
omma is an asso
iative,
ommutative and idempotentfun
tion symbol.The main intuition behind this syntax is that a rewrite rule is an abstra
tion, theleft-hand side of whi
h determines the bound variables and some
ontextual infor-mation. Having new variables in the right-hand side is just the ability to have freevariables in the
al
ulus. We will
ome ba
k to this later but to support the intuitionlet us mention that the �-terms [2℄ and standard �rst-order rewrite rules [16, 4℄ are
learly obje
ts of this
al
ulus. For example, the �-term �x:(y x)
orresponds to the�-term x! [y℄(x) and a rewrite rule in �rst-order rewriting
orresponds to the samerewrite rule in the rewriting-
al
ulus.We have
hosen sets as the data stru
ture for handling the potential non-determi-nism. A set of terms
an be seen as the set of distin
t results obtained by applyinga rewrite rule to a term. Other
hoi
es
ould be made depending on the intendeduse of the
al
ulus. For example, if we want to provide all the results of an appli-
ation, in
luding the identi
al ones, a multi-set
ould be used. When the order ofthe
omputation of the results is important, lists
ould be employed. Sin
e in thispresentation of the
al
ulus we fo
us on the possible results of a
omputation andnot on their number or order, sets are used. The
on
uen
e properties presented inSe
tion 4 are preserved in a multi-set approa
h. It is
lear that for the list approa
honly a
on
uen
e modulo permutation of lists
an be obtained.The following examples show the very expressive syntax that is allowed for �-terms.Example 2.3 If we
onsider F0 = fa; b;
g, F1 = ffg, F2 = fgg, F = F0 [F1 [F2and x; y variables in X , some �-terms from %(F ;X) are:� [a ! b℄(a); this denotes the appli
ation of the rewrite rule a ! b to the term a.We will see that evaluating this appli
ation results in fbg.� [g(x; y)! f(x)℄(g(a; b)); a
lassi
al rewrite rule appli
ation.� [x ! x + y℄(a); a rewrite rule with a free variable y. We will see later why theresult of this appli
ation is fa+ yg where the variable y remains free.� [y ! [x ! x + y℄(b)℄([x ! x℄(a)); a �-term that
orresponds to the �-term(�y:((�x:x+ y) b)) ((�x:x) a). In the rewrite rule x! x+ y the variable y is freebut in the rewrite rule y ! [x! x+ y℄(b) this variable is bound.369

� [x ! [x℄(x)℄(x ! [x℄(x)); the well-known (!!) �-term. We will see that theevaluation of this term is not terminating.� [[(x ! x + 1) ! (1 ! x)℄(a ! a + 1)℄(1); a more
ompli
ated �-term without
orresponding standard rewrite rule or �-term.2.2 Grafting versus substitutionSin
e we are dealing with ! as a binder, like for any
al
ulus involving binders(as the �-
al
ulus), �-
onversion should be used to obtain a
orre
t substitution
al
ulus and the �rst-order substitution (
alled here grafting) is not dire
tly suitablefor the �-
al
ulus. We
onsider the usual notions of �-
onversion and higher-ordersubstitution as de�ned for example in [13℄.This is the reason for introdu
ing an appropriate notion of bound variables renamingin De�nition 2.5. It
omputes a variant of a �-term whi
h is equivalent modulo�-
onversion to the initial term.De�nition 2.4 The set of free variables of a �-term t is denoted by FV (t) and isde�ned by:1. if t = x then FV (t) = fxg,2. if t = f(u1; : : : ; un) then FV (t) = Si=1;::: ;n FV (ui),3. if t = fu1; : : : ; ung then FV (t) = Si=1;::: ;n FV (ui),4. if t = [u℄(v) then FV (t) = FV (u) [FV (v),5. if t = u! v then FV (t) = FV (v) n FV (u).De�nition 2.5 Given a set Y of variables, the appli
ation �Y (
alled �-
onversion)is de�ned by:� �Y (x) = x,� �Y (f(u1; : : : ; un)) = f(�Y (u1); : : : ; �Y (un)),� �Y (ftg) = f�Y(t)g,� �Y ([t℄(u)) = [�Y (t)℄(�Y (u)),� �Y (u! v) = �Y (u)! �Y(v), if FV (u) \ Y = ;,� �Y (u! v) = (fxi 7! yigxi2FV (u) �Y (u))! (fxi 7! yigxi2FV (u) �Y (v)),if xi 2 FV (u) \ Y and yi are \fresh" variables and where fx 7! yg denotes therepla
ement of the variable x by the variable y in the term on whi
h it is applied.This allows us to de�ne the usual substitution and grafting operations:De�nition 2.6 A valuation � is a �nite binding of the variables x1; : : : ; xn to theterms t1; : : : ; tn, i.e. a �nite set of
ouples f(x1; t1); : : : ; (xn; tn)g.From a given valuation � we
an de�ne the following two notions of substitutionand grafting:� the substitution extending � is denoted � = fx1=t1; : : : ; xn=tng,� the grafting extending � is denoted �� = fx1 7! t1; : : : ; xn 7! tng.370

� and �� are stru
turally de�ned by:{ �(x) = u, if (x; u) 2 � { ��(x) = u, if (x; u) 2 �{ �(f(t1 : : : tn)) = f(�(t1) : : :�(tn)) { ��(f(t1 : : : tn)) = f(��(t1) : : : ��(tn)){ �(ft1; : : : ; tng) = f�(t1); : : : ;�(tn)g { ��(ft1; : : : ; tng) = f��(t1); : : : ; ��(tn)g{ �([t℄(u)) = [�(t)℄(�(u)) { ��([t℄(u)) = [��(t)℄(��(u)){ �(u! v) = �(u0)! �(v0) { ��(u! v) = ��(u)! ��(v)where we
onsider that zi are fresh variables (i.e. �zi = zi), the zi do not o

ur in uand v and for any y 2 FV (u), zi 62 FV (�y), and u0, v0 are de�ned by:u0 = fyi 7! zigyi2FV (u) �FV (u)[Var(�)(u),v0 = fyi 7! zigyi2FV (u) �FV (u)[Var(�)(v).using the following notations: The set of variables fx1; : : : ; xng is
alled the domainof the substitution � or of the grafting �� and is denoted by Dom(�) or Dom(��)respe
tively. The set of all the variables from � is Var(�) = [x2Dom(�)�(x) [Dom(�).Re
all that fx1=t1; : : : ; xn=tng is the simultaneous substitution of the variablesx1; : : : ; xn by the terms t1; : : : ; tn and not the
omposition fx1=t1g : : : fxn=tng.There is nothing new in the de�nition of substitution and grafting ex
ept that theabstra
tion works here on terms and not only on variables. The burden of variablehandling
ould be avoided by using an expli
it substitution me
hanism in the spiritof [6℄. We sket
hed su
h an approa
h in [9℄ and this is detailed in [8℄.2.3 Mat
hingComputing the mat
hing substitutions from a �-term t to a �-term t0 is an importantparameter of the �T -
al
ulus. We �rst de�ne mat
hing problems in a general setting:De�nition 2.7 For a given theory T over �-terms, a T -mat
h-equation is a formulaof the form t�?T t0, where t and t0 are �-terms. A substitution � is a solution of theT -mat
h-equation t �?T t0 if T j= �(t) = t0. A T -mat
hing system is a
onjun
tionof T -mat
h-equations. A substitution is a solution of a T -mat
hing system P if it isa solution of all the T -mat
h-equations in P . We denote by F a T -mat
hing systemwithout solution. A T -mat
hing system is
alled trivial when all substitutions aresolution of it.We de�ne the fun
tion Solution on a T -mat
hing system S as returning the set of allT -mat
hes of S when S is not trivial and fID g, where ID is the identity substitution,when S is trivial.Noti
e that when the mat
hing system has no solution the fun
tion Solution returnsthe empty set.Sin
e in general we
ould
onsider arbitrary theories over �-terms, T -mat
hing isin general unde
idable, even when restri
ted to �rst-order equational theories [29℄. Inorder to over
ome this unde
idability problem, one
an think of using
onstraints asin
onstrained higher-order resolution [26℄ or
onstrained dedu
tion [34℄. But we areinterested here in the de
idable
ases. Among them we
an mention higher-order-pattern mat
hing that is de
idable and unitary as a
onsequen
e of the de
idabilityof pattern uni�
ation [41, 15℄, higher-order mat
hing whi
h is known to be de
idable371

up to the fourth order [47, 48, 17, 24℄ (the de
idability of the general
ase being stillopen), many �rst-order equational theories in
luding asso
iativity,
ommutativity,distributivity and most of their
ombinations [43, 52℄.For example when T is empty, the synta
ti
 mat
hing substitution from t to t0,when it exists, is unique and
an be
omputed by a simple re
ursive algorithm givenfor example by G. Huet [27℄. It
an also be
omputed by the following set of rulesSynta
ti
Mat
hing where f; g 2 F and the symbol ^ is assumed to be asso
iativeand
ommutative.De
omposition (f(t1; : : : ; tn)�?; f(t01; : : : ; t0n)) ^ P 7!7! Vi=1:::nti �?; t0i ^ PSymbolClash (f(t1; : : : ; tn)�?; g(t01; : : : ; t0m)) ^ P 7!7! Fif f 6= gMergingClash (x�?; t) ^ (x�?; t0) ^ P 7!7! Fif t 6= t0V ariableClash (f(t1; : : : ; tn)�?; x) ^ P 7!7! Fif x 2 XFig. 1. Synta
ti
Mat
hing - Rules for synta
ti
 mat
hingProposition 2.8 The normal form by the rules in Synta
ti
Mat
hing of any mat
h-ing problem t�?; t0 exists and is unique. After removing from the normal form anydupli
ated mat
h-equation and the trivial mat
h-equations of the form x �?; x forany variable x, if the resulting system is:1. F, then there is no mat
h from t to t0 and Solution(t�?; t0) = Solution(F) = ;,2. of the form Vi2I xi �?; ti with I 6= ;, then the substitution � = fxi=tigi2I is theunique mat
h from t to t0 and Solution(t�?; t0) = Solution(Vi2I xi �?; ti) = f�g,3. empty, then t and t0 are identi
al and Solution(t�?; t) = fID g.Proof. See [33℄. 2Example 2.9 If we
onsider the mat
hing problem (h(x; g(x; y)) �?; h(a; g(a; b)),�rst we apply the mat
hing rule De
omposition and we obtain the system with thetwo mat
h-equations (x �?; a) and (g(x; y) �?; g(a; b)). When we apply the samerule on
e again for the se
ond equation we obtain (x �?; a) and (y �?; b) and thus,the initial mat
h-equation is redu
ed to the system (x�?; a) ^ (x�?; a) ^ (y �?; b)and Solution(h(x; g(x; y))�?; h(a; g(a; b)) = ffx=a; y=bgg.For the mat
hing problem (g(x; x) �?; g(a; b)) we apply, as before, De
ompositionand we obtain the system (x�?; a) ^ (x�?; b). This latter system is redu
ed by themat
hing rule MergingClash to F and thus, Solution(g(x; x)�?; g(a; b)) = ;.This synta
ti
 mat
hing algorithm has an easy and natural extension when a symbol+ is assumed to be
ommutative. In this
ase, the previous set of rules should be372

ompleted withCommDe
 (t1 + t2)�?C(+) (t01 + t02) ^ P 7!7!((t1 �?C(+) t01 ^ t2 �?C(+) t02) _ (t1 �?C(+) t02 ^ t2 �?C(+) t01)) ^ Pwhere disjun
tion should be handled in the usual way. In this
ase of
ourse thenumber of mat
hes
ould be exponential in the size of the initial left-hand sides.Example 2.10When mat
hing modulo
ommutativity the term x+y, with + de�nedas
ommutative, against the term a+ b, the rule CommDe
 leads to((x�?C(+) a ^ y �?C(+) b) _ (x�?C(+) b ^ y �?C(+) a))and thus, we obtain two substitutions as solution for the initial mat
hing problem,i.e. Solution(x+ y �?C(+) a+ b) = ffx=a; y=bg; fx=b; y=agg.Mat
hing modulo asso
iativity-
ommutativity (AC) is often used. It
ould be de-�ned either in a rule based way as in [1, 37℄ or in a semanti
 way as in [18℄. Arestri
ted form of asso
iative mat
hing
alled list mat
hing is used in the ASF+SDFsystem [53℄. In the Maude system any
ombination of the asso
iative,
ommutativeand idempoten
y properties is available [19℄.2.4 Evaluation rules of the �T -
al
ulusAssume we are given a theory T over �-terms having a de
idable mat
hing problem.The use of
onstraints would allow us to drop this last restri
tion, but we have
hosenhere to sti
k to this simpler situation.As mentioned above, in the general
ase, the mat
hing is not unitary and thuswe should deal with (empty, �nite or in�nite) sets of substitutions. We
onsider asubstitution appli
ation at the meta-level of the
al
ulus represented by the operator\ hh ii" whose behavior is des
ribed by the meta-rule Propagate:Propagate rhhf�1; : : : ; �n; : : : gii ; f�1r; : : : ; �nr; : : : gNoti
e that sin
e this rule operates at the meta-level of the
al
ulus, it is di�erentfrom the evaluation rules like Fire and its arrow is denoted di�erently. A version ofthe
al
ulus
an also be given using expli
it substitution [8℄.The result of the appli
ation of a set of substitutions f�1; : : : ; �n; : : : g to a term ris the set of terms �ir, where �ir represents the result of the (meta-)appli
ation ofthe substitution �i to the term r as detailed in De�nition 2.6. Noti
e that when n is0, i.e. the set of substitutions is empty, the resulting set of instantiated terms is alsoempty.The evaluation rules of the �T -
al
ulus des
ribe the appli
ation of a �-term onanother one and spe
ify the behavior of the di�erent operators of the
al
ulus whensome arguments are sets. Following their spe
i�
ations they are des
ribed in Figure 2to 5. 373

2.4.1 Applying rewrite rulesThe appli
ation of a rewrite rule at the root position of a term is a

omplished bymat
hing the left-hand side of the rewrite rule on the term and returning the appro-priately instantiated right-hand side. It is des
ribed by the evaluation rule Fire inFigure 2. The rule Fire, like all the evaluation rules of the
al
ulus,
an be appliedat any position of a �-term.Fire [l! r℄(t) =) rhhSolution(l �?T t)iiFig. 2. The evaluation rule Fire of the �T -
al
ulusThe
entral idea is that applying a rewrite rule l ! r at the root (also
alledtop) o

urren
e of a term t, written as [l ! r℄(t),
onsists in repla
ing the termr by rhh�ii where � is the set of substitutions obtained by T -mat
hing l on t (i.e.Solution(l �?T t)). Therefore, when the mat
hing yields a failure represented by anempty set of substitutions, the result of the appli
ation of the rule Propagate andthus of the rule Fire is the empty set.One
an noti
e that the rule Fire
an be expressed without using the meta-rulePropagate:Fire [l! r℄(t) ; f�1r; : : : ; �nr; : : : gwhere f�1; : : : ; �n; : : : g = Solution(l�?T t)but we preferred the previous version for a smoother transition to the expli
it versionof the
al
ulus.We should point out that, as in �-
al
ulus, an appli
ation
an always be evaluated.But, unlike in �-
al
ulus, the set of results
an be empty. More generally, whenmat
hing modulo a theory T , the set of resulting mat
hes may be empty, a singleton(as in the empty theory), a �nite set (as for asso
iativity-
ommutativity) or in�nite(see [20℄). We have thus
hosen to represent the result of a rewrite rule appli
ationto a term as a set. An empty set means that the rewrite rule l ! r fails to apply tot in the sense of a mat
hing failure between l and t.We denote by �!Fire the relation indu
ed by the evaluation rule Fire.Example 2.11 Some examples of the appli
ation of the evaluation rule Fire are:� [a! b℄(a) �!Fire fbg� g(x; [x!
℄(a)) �!Fire g(x; f
g)� [a! b℄(
) �!Fire ;2.4.2 Applying operatorsIn order to push rewrite rule appli
ation deeper into terms, we introdu
e the twoCongruen
e evaluation rules of Figure 3. They deal with the appli
ation of a term ofthe form f(u1; : : : ; un) (where f 2 Fn) to another term of a similar form. When we374

have the same head symbol for the two terms of the appli
ation [u℄(v) the argumentsof the term u are applied on those of the term v argument-wise. If the head symbolsare not the same, an empty set is obtained.Cong [f(u1; : : : ; un)℄(f(v1; : : : ; vn)) =) ff([u1℄(v1); : : : ; [un℄(vn))gCongFail [f(u1; : : : ; un)℄(g(v1; : : : ; vm)) =) ;Fig. 3. The evaluation rules Congruen
e of the �T -
al
ulusRemark 2.12 The Congruen
e rules are redundant with respe
t to the evaluationrule Fire modulo an appropriate transformation of the initial term. Indeed, one
ouldnoti
e that the appli
ation of a term f(u1; : : : ; un) to another �-term t (i.e. the �-term [f(u1; : : : ; un)℄(t)) evaluates, using the rules Cong and CongFail, to the sameterm as the appli
ation of the �-term f(x1; : : : ; xn) ! f([u1℄(x1); : : : ; [un℄(xn)) onthe same term t (i.e. the �-term [f(x1; : : : ; xn)! f([u1℄(x1); : : : ; [un℄(xn))℄(t)) usingthe evaluation rule Fire. Although we
an express the same
omputations by usingonly the evaluation rule Fire, we prefer to keep the evaluation rules Congruen
e inthe
al
ulus for an expli
it use of these rules and thus, a more
on
ise representationof terms.2.4.3 Handling sets in the �T -
al
ulusThe redu
tions des
ribing the behavior of terms
ontaining sets are des
ribed by theevaluation rules in Figure 4:� The rules Distrib and Bat
h des
ribe the intera
tion between the appli
ation andthe set operators,� The rules Swit
hL and Swit
hR des
ribe the intera
tion between the abstra
tionand the set operators,� The rule OpOnSet des
ribe the intera
tion between the symbols of the signatureand the set operators.� The rule des
ribing the intera
tion between set operators will be des
ribed in thenext se
tion.The set representation for the results of the rewrite rule appli
ation has important
onsequen
es
on
erning the behavior of the
al
ulus. We
an noti
e, in parti
ular,that the number of set symbols is un
hanged by the evaluation rules Distrib, Bat
h,Swit
hL, Swit
hR and OpOnSet. This way, for a derivation involving only terms thatdo not
ontain empty sets, the number of set symbols in a term
ounts the numberof rules Fire and Congruen
e that have been applied for its evaluation.The appli
ation of the set of rewrite rules fa ! b; a !
g to the term a (i.e.the �-term [fa ! b; a !
g℄(a)) is redu
ed, by using the evaluation rule Distrib,to the set
ontaining the appli
ation of ea
h rule to the term a (i.e. the �-termf[a ! b℄(a); [a !
℄(a)g). It is in parti
ular useful when simulating ordinary termrewriting by a set of rewrite rules. Moreover, we
an fa
tor a set of rewrite rules375

Distrib [fu1; : : : ; ung℄(v) =) f[u1℄(v); : : : ; [un℄(v)gBat
h [v℄(fu1; : : : ; ung) =) f[v℄(u1); : : : ; [v℄(un)gSwit
hL fu1; : : : ; ung ! v =) fu1 ! v; : : : ; un ! vgSwit
hR u! fv1; : : : ; vng =) fu! v1; : : : ; u! vngOpOnSet f(v1; : : : ; fu1; : : : ; umg; : : : ; vn) =)ff(v1; : : : ; u1; : : : ; vn); : : : ; f(v1; : : : ; um; : : : ; vn)gFig. 4. The evaluation rules Set of the �T -
al
ulushaving the same left-hand side and use the �-term a ! fb;
g whi
h is redu
ed, byapplying the evaluation rule Swit
hR, to fa! b; a!
g. Thus, we
an say that the�-term [a! fb;
g℄(a) des
ribes the non-deterministi

hoi
e between the appli
ationof the rule a! b to the term a and the appli
ation of the rule a!
 to the same termand this appli
ation is redu
ed to the set
ontaining the results of the two appli
ations,i.e. ffbg; f
gg.Let us
onsider the �-term [f(a ! b)℄(f(a)) whi
h is redu
ed, by using the rulesCong and Fire, to ff(fbg)g and then, by using the rule OpOnSet to fff(b)gg. Thetwo set symbols
orresponding to the two appli
ations of the evaluation rules Fireand Cong are thus preserved by the appli
ation of the rule OpOnSet.A result of the form fg (i.e. ;) represents the failure of a rule appli
ation and su
hfailures are stri
tly propagated in �-terms by the Set rules. For instan
e, the �-termg([a ! b℄(
); fag) is redu
ed to g(;; fag) and then, by using the rule OpOnSet, to;. One should noti
e that in this
ase, the information on the number of Fire andCongruen
e rules used in the redu
tion of the sub-term fag is lost.The rewrite relation generated by the evaluation rules Fire, Congruen
e and theSet rules is �ner (i.e.
ontains more elements) than the standard one (without sets)and is obviously non-
on
uent. A reason for the non-
on
uen
e is the la
k of a similarevaluation rule for the propagation of sets on sets.2.4.4 Flattening sets in the �T -
al
ulusWe usually
are about the set of results obtained by redu
ing the redexes and notabout the exa
t tra
e of the redu
tion leading to these results. In what follows wepresent the way this behavior is des
ribed in the �-
al
ulus.We use the evaluation rule F lat in Figure 5 that
attens the sets and eliminates the(nested) set symbols. In this
ase, the information on the number of redu
tion stepsis lost. Noti
e that this implies that failure (the empty set) is not stri
tly propagatedon sets.The same behavior
an be des
ribed by two distin
t evaluation rules: one thatwould just
atten the sets and thus preserve the number of set bra
es, and another376

F lat fu1; : : : ; fv1; : : : ; vng; : : : ; umg =) fu1; : : : ; v1; : : : ; vn; : : : ; umgFig. 5. The evaluation rules F lat of the �T -
al
ulusone that would eliminate the nested set symbols.This behavior of the
al
ulus
ould be summarized by stating that failure prop-agation by the Set rules is stri
t on all operators but sets. We will see later thatFire may indu
e non-stri
t propagations in some parti
ular
ases (see Example 4.4on page 388).The design de
ision to use sets for representing redu
tion results has another impor-tant
onsequen
e
on
erning the handling of sets with respe
t to mat
hing. Indeed,sets are just used to store results and we do not wish to make them part of the theory.We are thus assuming that the mat
hing operation used in the Fire evaluation rule isnot performed modulo the set axioms. As a
onsequen
e, this requires in some
asesto use a strategy that pushes set bra
es outside the terms whenever possible.Every time a �-term is redu
ed using the rules Fire and Congruen
e of the�T -
al
ulus, a set is generated. These evaluation rules are the ones that des
ribethe appli
ation of a rewrite rule at the top level or deeper in a term. The set obtainedwhen applying one of the above evaluation rules
an trigger the appli
ation of theother evaluation rules of the
al
ulus. These evaluation rules deal with the (propa-gation of) sets and
ompute a \set-normal form" for the �-terms by pushing out theset bra
es and
attening the sets.Therefore, we
onsider that the evaluation rules of the �T -
al
ulus
onsist of a setof dedu
tion rules (Fire, Cong, CongFail) and a set of
omputation rules (Distrib,Bat
h, Swit
hL, Swit
hR, OpOnSet, F lat) and that the redu
tion behaves as indedu
tion modulo [14℄. This means that we
an
onsider the
omputation rules asdes
ribing a
ongruen
e modulo whi
h the dedu
tion rules are applied. In su
h anapproa
h we say that [f(a ! b)℄(f(a)) redu
es to ff(fbg)g whi
h is equivalent toff(b)g.2.4.5 Using the �T -
al
ulusThe aim of this se
tion is to make
on
rete the
on
epts we have just introdu
ed bygiving a few examples of �-terms and �-redu
tions. Many other examples
ould befound on the ELAN web page [51℄.The �T -
al
ulus using synta
ti
 mat
hing (i.e. an empty mat
hing theory) is de-noted �;-
al
ulus or simply �-
al
ulus when there is no ambiguity. We denote by�C-
al
ulus, �A-
al
ulus and �AC-
al
ulus the �T -
al
ulus with a mat
hing theory
ommutative, asso
iative and asso
iative-
ommutative respe
tively.Simple fun
tional programming Let us start with the fun
tional part of the
al-
ulus and give the �-terms representing some �-terms. For example, the �-abstra
tion�x:(y x), where y is a variable, is represented as the �-rule x ! [y℄(x). The appli
a-tion of the above term to a
onstant a, (�x:(y x) a) is represented in the �-
al
ulusby the appli
ation [x! [y℄(x)℄(a). This appli
ation redu
es, in the �-
al
ulus, to the377

term (y a) while in the �-
al
ulus the result of the redu
tion is the singleton f[y℄(a)g.When a fun
tional representation f(x) is
hosen, the �-term �x:f(x) is represented bythe �-term x ! f(x) and a similar result is obtained for its appli
ation. One shouldnoti
e that for �-terms of this form (i.e. that have a variable as a left-hand side) thesynta
ti
 mat
hing performed in the �-
al
ulus is trivial, i.e. it never fails and givesonly one result.There is no diÆ
ulty to represent more elaborate �-terms in the �-
al
ulus. Let us
onsider the term �x:f(x) (�y:y a) with the following �-derivation: �x:f(x) (�y:y a)�!� �x:f(x) a �!� f(a). The same derivation
an be re
overed in the �-
al
ulusfor the
orresponding �-term: [x ! f(x)℄([y ! y℄(a)) �!Fire [x ! f(x)℄(fag)�!Bat
h f[x ! f(x)℄(a)g �!Fire fff(a)gg �!Flat ff(a)g. Of
ourse, several re-du
tion strategies
an be used in the �-
al
ulus and reprodu
ed a

ordingly in the�-
al
ulus. Indeed, we will see in Se
tion 3.1 that the �-
al
ulus stri
tly embeds the�-
al
ulus.Rewriting Now, if we introdu
e
ontextual information in the left-hand sidesof the �-rules we obtain
lassi
al rewrite rules as f(a) ! f(b) or f(x) ! g(x; x).When we apply su
h a rewrite rule, the mat
hing
an fail and
onsequently, theappli
ation of the rewrite rule
an fail. As we have already insisted in the previousse
tions, the failure of a rewrite rule is not a meta-property in the �-
al
ulus but isrepresented by an empty set (of results). For example, in standard term rewriting wesay that the appli
ation of the rule f(a) ! f(b) to the term f(
) fails and thereforethe term is un
hanged. On the
ontrary, in the �-
al
ulus the
orresponding term[f(a)! f(b)℄(f(
)) evaluates to ;.Sin
e, in the �-
al
ulus, there is no restri
tion on the rewrite rules
onstru
tion, arewrite rule may use a variable as left-hand side, as in x! x+1, or it may introdu
enew variables, as in f(x) ! g(x; y). The free variables of the rewrite rules fromthe �-
al
ulus allow us to dynami
ally build
lassi
al rewrite rules. For example, inthe appli
ation [y ! (f(x) ! g(x; y))℄(a), the variable y is free in the rewrite rulef(x)! g(x; y) but bound in the rule y ! (f(x)! g(x; y)). The above appli
ation isredu
ed to the set ff(x)! g(x; a)g
ontaining a
lassi
al rewrite rule.By using free variables in the right-hand side of a rewrite rule we
an also \param-eterize" the rules by \strategies", as in the term y ! [f(x)! [y℄(x)℄(f(a)) where theterm to be applied to x is not expli
it in the rule f(x) ! [y℄(x). When redu
ing theappli
ation [y ! [f(x) ! [y℄(x)℄(f(a))℄(a ! b), the variable y from the rewrite ruleis instantiated to a! b and thus, the result of the redu
tion is fbg.Non-determinism When the mat
hing is done modulo an equational theory weobtain interesting behaviors.An asso
iative mat
hing theory allows us, for example, to express the fa
t thatan expression
an be parenthesized in di�erent ways. Take, for example, the listoperator Æ that appends two lists with elements of a given sort Elem. Any obje
t ofsort Elem represents a list
onsisting of this only obje
t. If we de�ne the operator Æas asso
iative, the rewrite rule des
ribing the de
omposition of a list
an be written inthe asso
iative �A-
al
ulus l Æ l0 ! l. When applying this rule to the list aÆ bÆ
Æd weobtain as result the �-term fa; a Æ b; a Æ b Æ
g. If the operator Æ had not been de�nedas asso
iative, we would have obtained as the result of the same rule appli
ation oneof the singletons fag or fa Æ bg or fa Æ (b Æ
)g or f(a Æ b) Æ
g, depending on the waythe term a Æ b Æ
 Æ d is parenthesized. 378

A
ommutative mat
hing theory allows us, for example, to express the fa
t thatthe order of the arguments is not signi�
ant. Let us
onsider a
ommutative operator� and the rewrite rule x� y ! x that sele
ts one of the elements of the tuple x� y.In the
ommutative �C-
al
ulus, the appli
ation [x � y ! x℄(a � b) evaluates to theset fa; bg that represents the set of non-deterministi

hoi
es between the two results.In standard rewriting, the result is not well de�ned; should it be a or b?We
an also use an asso
iative-
ommutative theory like, for example, when anoperator des
ribes multi-set formation. Let us go ba
k to the Æ operator, but thistime we de�ne it as asso
iative-
ommutative and we use the rewrite rule x Æ x Æ L! Lthat eliminates doubleton from lists of sort Elem. Sin
e the mat
hing is done moduloasso
iativity-
ommutativity, this rule eliminates the doubleton no matter what is theirposition in the stru
ture built using the Æ operator. For instan
e, in the �AC-
al
ulusthe appli
ation [x Æ x ÆL! L℄(a Æ b Æ
 Æ a Æ d) evaluates to fb Æ
 Æ dg: the sear
h forthe two equal elements is done thanks to asso
iativity and
ommutativity.Another fa
ility is due to the use of sets for handling non-determinism. This allowsus to easily express the non-deterministi
 appli
ation of a set of rewrite rules to aterm. Let us
onsider, for example, the operator
 as a synta
ti
 operator. If wewant the same behavior as before for the sele
tion of ea
h element of the
ouple x
y,two rewrite rules should be non-deterministi
ally applied as in the following redu
tion:[fx
 y ! x; x
 y ! yg℄(a
 b) �!Distrib f[x
 y ! x℄(a
 b); [x
 y ! y℄(a
 b)g�!Fire ffag; fbgg �!Flat fa; bg.2.5 Evaluation strategies for the �T -
al
ulusThe last
omponent of a
al
ulus, i.e. the strategy S guiding the appli
ation of itsevaluation rules, is
ru
ial for obtaining good properties for the �-
al
ulus. For exam-ple, the main property analyzed for the �-
al
ulus is
on
uen
e and we will see thatif the rule Fire is applied under no
onditions at any position of a �-term,
on
uen
edoes not hold.Let us now de�ne formally the notion of strategy. We spe
ialize here to the�-
al
ulus, and the general de�nition
an be found in [35℄.De�nition 2.13 An evaluation strategy in the �-
al
ulus is a subset of the set of allpossible derivations.For example, the ALL strategy is the set of all derivations, i.e. it imposes norestri
tions. The empty strategy does not allow any redu
tion. Standard strategiesare
all by value or by name, leftmost innermost or outermost, lazy, needed.The reasons for the non-
on
uen
e of the
al
ulus are explained in Se
tion 4 anda solution is proposed for obtaining a
on
uent
al
ulus. The
on
uent strategy
anbe given expli
itly or as a
ondition on the appli
ation of the rule Fire.2.6 SummaryStarting from the notions introdu
ed in the previous se
tions we give the de�nitionof the �T -
al
ulus.De�nition 2.14 Given a set F of fun
tion symbols, a set X of variables, a theory379

T on %(F ;X) terms having a de
idable mat
hing problem, we
all �T -
al
ulus (orgeneri
ally rewriting
al
ulus) a
al
ulus de�ned by:1. a non-empty subset %�(F ;X) of the %(F ;X) terms,2. the (higher-order) substitution appli
ation to terms as de�ned in Se
tion 2.2,3. the theory T ,4. the set of evaluation rules E : Fire, Cong, CongFail, Distrib, Bat
h, Swit
hL,Swit
hR, OpOnSet, F lat,5. an evaluation strategy S that
ontrols the appli
ation of the evaluation rules. Theset %�(F ;X) should be stable under the strategy
ontrolled appli
ation of theevaluation rules.We use the notation �T = (%�(F ;X); T;S) to make apparent the main
omponentsof the rewriting
al
ulus under
onsideration.When the parameters of the general
al
ulus are repla
ed with some spe
i�
 values,di�erent variants of the
al
ulus are obtained. The remainder of this paper will bedevoted, mainly, to the study of a spe
i�
 instan
e of the �T -
al
ulus: the �-
al
ulus.2.7 De�nition of the �-
al
ulusWe de�ne the �-
al
ulus as the �T -
al
ulus where the mat
hing theory T is restri
tedto �rst-order synta
ti
 mat
hing. As an instan
e of De�nition 2.14 we get:De�nition 2.15 The �-
al
ulus is the
al
ulus de�ned by:� the subset %;(F ;X) of %(F ;X) whose rewrite rules are restri
ted to be of the formu ! v where u 2 T (F ;X), i.e. u is a �rst-order term and thus does not
ontainany set, appli
ation or abstra
tion symbol,� the higher-order substitution appli
ation to terms,� the mat
hing theory T = ;, i.e. �rst-order synta
ti
 mat
hing,� the set of evaluation rulesR presented in Figure 6 (i.e. all the rules of the �-
al
ulusbut Swit
hL),� the evaluation strategy ALL that imposes no
onditions on the appli
ation of theevaluation rules.The �-
al
ulus is therefore de�ned as the
al
ulus �; = (%;(F ;X); ;;ALL).Example 2.16With the ex
eption of the last term, all the �-terms from Example 2.3are �;-terms.The following remarks should be made with respe
t to the restri
tions introdu
edin the �-
al
ulus:� Sin
e �rst-order synta
ti
 mat
hing is unitary (i.e. the mat
h, when it exists, isunique) the meta-rule Propagate from Se
tion 2.4 gives always as result either thesingleton f�rg or the empty set. Hen
e, the evaluation rule Fire
an be repla
edby the following simpler two rules:Fire0 [l ! r℄(�l) =) f�rgFire00 [l ! r℄(t) =) ;if there exists no � s.t. �l = t380

Fire [l! r℄(t) =) f�rgwhere f�g = Solution(l�?T t)Cong [f(u1; : : : ; un)℄(f(v1; : : : ; vn)) =) ff([u1℄(v1); : : : ; [un℄(vn))gCongFail [f(u1; : : : ; un)℄(g(v1; : : : ; vm)) =) ;Distrib [fu1; : : : ; ung℄(v) =) f[u1℄(v); : : : ; [un℄(v)gBat
h [v℄(fu1; : : : ; ung) =) f[v℄(u1); : : : ; [v℄(un)gSwit
hR u! fv1; : : : ; vng =) fu! v1; : : : ; u! vngOpOnSet f(v1; : : : ; fu1; : : : ; umg; : : : ; vn) =)ff(v1; : : : ; u1; : : : ; vn); : : : ; f(v1; : : : ; um; : : : ; vn)gF lat fu1; : : : ; fv1; : : : ; vng; : : : ; umg =) fu1; : : : ; v1; : : : ; vn; : : : ; umgFig. 6. The evaluation rules of the �-
al
ulus� The evaluation rule Swit
hL
an never be used in the �-
al
ulus due to the re-stri
ted syntax imposed on �;-terms.� For a spe
i�
 instan
e of the �T -
al
ulus, there is a strong relationship between theterms allowed on the left-hand side of the rule and the theory T . Intuitively, thetheory T should be powerful enough to �re rule appli
ations in a way
onsistentwith the intended rewriting. For instan
e, it seems more interesting to use higher-order mat
hing instead of synta
ti
 or equational mat
hing when the left-handsides of rules
ontain abstra
tions and appli
ations. This explains the restri
tionimposed in the �-
al
ulus for the formation of left-hand sides of rules.� The term restri
tions are made only on the left-hand sides of rewrite rules andnot on the right-hand side and this
learly leads to more terms than in �-
al
ulusor in term rewriting.� The �-
al
ulus is not terminating as [!℄(!) is a �-term (see Example 2.3).The
ase of de
idable �nitary equational theories will indu
e more te
hni
alitiesbut is
on
eptually similar to the
ase of the empty theory. The
ase of theorieswith in�nitary or unde
idable mat
hing problems
ould be treated using
onstraint�-terms in the spirit of [34℄, and will be studied in forth
oming works.3 En
oding �-
al
ulus and term rewriting in the �-
al
ulusThe aim of this se
tion is to show in detail how the �-
al
ulus
an be used to give anatural en
oding of the �-
al
ulus and term rewriting.381

3.1 En
oding the �-
al
ulusWe brie
y present some of the notions used in the �-
al
ulus, su
h as �-redex and�-redu
tion, that will be used in this part of the paper. The reader should refer to [25℄and [2℄ for a detailed presentation.Let X be a set of variables, written x, y, et
. The terms of the �-
al
ulus areindu
tively de�ned by: a ::= x j (a a) j �x:aDe�nition 3.1 The �-redu
tion is de�ned by the rule:Beta (�x:M N) ; fx=NgMAny term of the form (�x:M)N is
alled a �-redex, and the term fx=NgM is tra-ditionally
alled its
ontra
tum. If a term P
ontains a redex, P
an be �-
ontra
tedinto P 0 whi
h is denoted: P �!� P 0:If Q is obtained from P by a �nite (possibly empty) number of �-
ontra
tions we saythat P �-redu
es to Q and we denote:P ��!� Q:Let us
onsider a restri
tion of the set of �-terms, denoted F�, and indu
tivelyde�ned as follows:��-terms t ::= x j ftg j [t℄(t) j x! twhere x 2 X .De�nition 3.2 The ��-
al
ulus is the �-
al
ulus de�ned by:� the F� terms,� the higher-order substitution appli
ation to terms,� the (mat
hing) theory T = ;,� the set of evaluation rules of the �-
al
ulus,� the evaluation strategy ALL that imposes no
onditions on the appli
ation of theevaluation rules.Compared to the syntax of the general �-
al
ulus, the rewrite rules allowed inthe ��-
al
ulus
an only have a variable as left-hand side. Additionally, all the setsare singletons, hen
e one
ould
onsider an en
oding not using sets. For uniformitypurposes, we
hose to sti
k to the same en
oding approa
h.Be
ause of the synta
ti
 restri
tions we have just imposed, the evaluation rules ofthe �-
al
ulus spe
ialize to the ones des
ribed in Figure 7.The evaluation rule Fire� initiates in the �-
al
ulus (as the �-rule in the �-
al
ulus)the appli
ation of a substitution to a term. The rules Congruen
e are not used andthe rules Set and F lat
an be spe
ialized to singletons and des
ribe how to push outthe set bra
es. 382

Fire� [x! r℄(t) =) ffx=tgr gDistrib� [fug℄(v) =) f[u℄(v)gBat
h� [v℄(fug) =) f[v℄(u)gSwit
h� x! fvg =) fx! vgF lat� ffvgg =) fvgFig. 7. The evaluation rules of the ��-
al
ulusAn immediate
onsequen
e of the restri
ted syntax of the ��-
al
ulus is that themat
hing performed in the evaluation rule Fire� always su

eeds and the solution ofthe mat
hing equation that is ne
essarily of the form x �?; t is always the singletonffx=tgg.At this moment we
an noti
e that any �-term
an be represented by a �-term.The fun
tion ' that transforms terms in the syntax of the �-
al
ulus into the syntaxof the ��-
al
ulus is de�ned by the following transformation rules:'(x) = x; if x is a variable'(�x:t) = x! '(t)'(t u) = ['(t)℄('(u))A similar translation fun
tion
an be used in order to transform terms in the syntaxof the ��-
al
ulus into the syntax of the �-
al
ulus:Æ(x) = x; if x is a variableÆ(ftg) = Æ(t)Æ([t℄(u)) = (Æ(t) Æ(u))Æ(x! t) = �x:Æ(t)The redu
tions in the �-
al
ulus and in the ��-
al
ulus are equivalent modulo thenotations for the appli
ation and the abstra
tion and the handling of sets:Proposition 3.3 Given two �-terms t and t0, if t �!� t0 then '(t) ��!�� f'(t0)g.Given two ��-terms u and u0, if u �!�� u0 then Æ(u) ��!� Æ(u0).Proof. We use an indu
tion on �!� and �!�� respe
tively:� If t is a variable x, then t0 = x and '(t) = '(t0) = x.� If t = �x:u then t0 = �x:u0 with u �!� u0 and we have '(t) = x ! '(u). Byindu
tion, we have '(u) ��!�� f'(u0)g, and thus'(t) = x! '(u) ��!�� x! f'(u0)g �!Swit
h� fx! '(u0)g = f'(t0)g� If t = (u v) then we have either t0 = (u0 v) with u �!� u0, or t0 = (u v0) withv �!� v0, or t = �x:u v and t0 = fx=vgu.In the �rst
ase, we apply indu
tion and we obtain'(t) = ['(u)℄('(v)) ��!�� [f'(u0)g℄('(v)) �!Distrib� f['(u0)℄('(v))g = f'(t0)g:383

The se
ond
ase is similar,'(t) = ['(u)℄('(v)) ��!�� [f'(u)g℄('(v0)) �!Distrib� f['(u)℄('(v0))g = f'(t0)g:In the third
ase '(t) = [x! '(u)℄('(v)) and'(t) = [x! '(u)℄('(v)) �!Fire� ffx='(v)g'(u)g = '(fx=vgu) = '(t0):Sin
e the appli
ation of a substitution is the same in the �-
al
ulus and the�-
al
ulus, we have, due to the de�nition of ', '(fx=vgu) = fx='(v)g'(u) andthus, the property is veri�ed.Sin
e in the ��-
al
ulus we
an have only singletons and the Æ transformation stripso� the set symbols, the appli
ation of the evaluation rules Distrib�, Bat
h�, Swit
h�and F lat�
orresponds to the identity in the �-
al
ulus.� If t = [fug℄(v) then we have t �!Distrib� f[u℄(v)g. Sin
e Æ([fug℄(v)) = Æ(u) Æ(v)and Æ(f[u℄(v)g) = Æ(u) Æ(v), the property is veri�ed.� If t = [x! u℄(v) then t �!Fire� ffx=vgug. We haveÆ(t) = �x:Æ(u) Æ(v) �!� fx=Æ(v)gÆ(u)g = Æ(fx=vgu) = Æ(t0):The other
ases are very similar to the �rst one and to their
orrespondents fromthe �rst part. 2Example 3.4We
onsider the three
ombinators I = �x:x, K = �xy:x and S =�xyz:xz(yz) and their representation in the �-
al
ulus:� I = x! x,� K = x! (y ! x),� S = x! (y ! (z ! [[x℄(z)℄([y℄(z)))).and, as expe
ted, to a redu
tion SKK ��!� I in the �-
al
ulus it
orresponds the��-redu
tion [[S℄(K)℄(K) ��!�� fIg.[[S℄(K)℄(K) = [[x! (y ! (z ! [[x℄(z)℄([y℄(z))))℄(x ! (y ! x))℄(x ! (y ! x)) �!��[fy ! (z ! [[x! (y ! x)℄(z)℄([y℄(z)))g℄(x ! (y ! x)) �!��f[y ! (z ! [[x! (y ! x)℄(z)℄([y℄(z)))℄(x ! (y ! x))g �!��f[y ! (z ! [fy ! zg℄([y℄(z)))℄(x! (y ! x))g �!��ff[y ! (z ! [y ! z℄([y℄(z)))℄(x! (y ! x))gg �!��ff[y ! (z ! fzg)℄(x! (y ! x))gg �!��fff[y ! (z ! z)℄(x! (y ! x))ggg �!��ffffz ! zgggg �!��fz ! zg = fIgThe need for adding a set symbol
omes from the fa
t that in the �-
al
ulus we aremainly interested in the appli
ation of terms to some other terms. From this point ofview, the appli
ation of a term t to another term u redu
es to the same thing as theappli
ation of the term ftg to the same term u.384

In the ��-
al
ulus, we
ould have introdu
ed an evaluation rule eliminating all setsymbols. But as soon as failure, represented by the empty set, and non-determinism,represented by sets with more than one element, are introdu
ed su
h an evaluationrule will not be meaningful anymore.The
on
uen
e of the �-
al
ulus holds for any
omplete redu
tion strategy (i.e. astrategy that does not leave any redex un-redu
ed) and we would expe
t the sameresult for its �-representation. As we have already noti
ed, sin
e in the ��-
al
ulus allthe rewrite rules are left-linear and all the sets are singletons, the
on
uen
e
onditionsthat will be presented in Se
tion 4.2 are always satis�ed. Therefore, the evaluationrule Fire�
an be used on any ��-appli
ation without losing the
on
uen
e of the��-
al
ulus.Proposition 3.5 The ��-
al
ulus is
on
uent.Noti
e �nally that using the same te
hnique, the �-
al
ulus with patterns of [50℄
an be en
oded as a sub-
al
ulus of the �-
al
ulus.3.2 En
oding �nite rewrite sequen
esAs far as it
on
erns term rewriting, we just re
all the basi
 notions that are
onsistentwith [16, 4℄ to whi
h the reader is referred for a more detailed presentation.A rewrite theory is a 4-tuple R = (X ;F ; E;R) where X is a given
ountably in�niteset of variables, F a set of ranked fun
tion symbols, E a set of T (F ;X)-equalities,and R a set of rewrite rules of the form l ! r where l; r 2 T (F ;X) satisfyingVar(r) � Var(l).In what follows we
onsider E = ; but we
onje
ture that all the results
on
erningthe en
oding of rewriting in �-
al
ulus
an be smoothly extended to any equationaltheory E.Sin
e the rewrite rules are trivially �-terms, the representation of rewrite sequen
esin the �-
al
ulus is quite simple. We
onsider a restri
tion of the �-
al
ulus where theright-hand sides of rewrite rules are terms of T (F ;X). The rewrite rules are triviallytranslated in the �-
al
ulus and the appli
ation of a rewrite rule at the top positionof a term is represented using the �-operator [℄().We want to show that for any derivation in a rewriting theory, a
orrespondingredu
tion
an be found in the �-
al
ulus. If we
onsider that a sub-term w of a termt is redu
ed to w0 by applying some rewrite rule (l! r) and thus,tdwep �!R tdw0epthen, we
an build immediately the �-term td[l!r℄(w)ep with the redu
tion:td[l!r℄(w)ep �!� tdfw0gep ��!� ftdw0epg:The above
onstru
tion method for the �-term with a �-redu
tion similar to thatof the term t a

ording to the rule l ! r is very easy but allows us to �nd the
orre-sponden
e for only one rewrite step. It is not easy to extend this representation foran unspe
i�ed number of redu
tion steps w.r.t. a set of rewrite rules and a systemati
method for the
onstru
tion of the
orresponding �-term is desirable.385

Proposition 3.6 Given a rewriting theory TR and two �rst order ground terms t; t0 2T (F) su
h that t ��!R t0. Then, there exist the �-terms u1; : : : ; un built using therewrite rules in R and the intermediate steps in the derivation t ��!R t0 su
h that wehave [un℄(: : : [u1℄(t) : : :) ��!�; ft0g.Proof. We use indu
tion on the length of the derivation t ��!R t0.The base
ase: t 0�!R t (derivation in 0 steps)We have immediately [x! x℄(t) 0�!�; ftg.Indu
tion: t n�!R t0 (derivation in n steps)We
onsider that the rewrite rule l ! r is applied at position p of the term t0dwepobtained after n� 1 redu
tion steps,t n�1�!R t0dwep �!l!r;p t0d�repwhere � is the grafting su
h that �l = w.By indu
tion, there exist the �-terms u1; : : : ; un�1 su
h that we have the redu
tion[un�1℄(: : : [u1℄(t) : : :) ��!�; ft0dwepg. We
onsider the �-term un = t0dl!rep and weobtain the redu
tion[un℄(: : : [u1℄(t) : : :) ��!�; [t0dl!rep ℄(ft0dwepg) �!Bat
h f[t0dl!rep ℄(t0dwep)g��!Congruen
e fft0d[l!r℄(w)epgg �!Fire fft0df�0rgepgg ��!OpOnSet ffft0d�0repggg��!Flat ft0d�0repgwhere the substitution �0 is su
h that f�0g = Solution(l�?; w).Sin
e � = �0 and in this
ase substitution and grafting are identi
al, we obtaint0d�0rep = t0d�rep . 2Until now we have used the evaluation rule Cong for
onstru
ting the redu
tion[tndln!rnepn ℄(: : : [t2dl2!r2ep2 ℄([t1dl1!r1ep1 ℄(t)) : : :) ��!� ft0gthat
orresponds, in the �-
al
ulus, to the redu
tion, in the rewrite theory,t = t1dw1ep1 �!l1!r1;p1 t2dw2ep2 �!l2!r2;p2 : : : �!ln!rn;pn tndwnepn = t0As explained in Se
tion 2.4, to any redu
tion performed using the rule Cong
or-responds a redu
tion that is done using the rule Fire. Starting from the term u
orresponding to a redu
tion in n (Cong) steps we build the term u0 that redu
es tothe same term as u but using Fire redu
tions:[tndlnepn ! tndrnepn ℄(: : : ([t1dl1ep1 ! t1dr1ep1 ℄(t)) : : :) ��!� ft0gRemark 3.7 One
an noti
e that the terms ui used in the proof above are similar tothe proof terms used in labeled rewriting logi
 [39℄. Indeed we
an see the �-termsas a generalization of su
h proof terms where the \;" is used as a notation for the
omposition of terms, i.e. [u℄([v℄(t)) is denoted [v;u℄(t).4 The
on
uen
e of �-
al
ulusIt is easy to see, and we provide typi
al examples just below, that the �-
al
ulus is non-
on
uent. The main reason for the
on
uen
e failure
omes from the introdu
tion in386

the syntax of the new fun
tion symbols for denoting sets, abstra
tion and appli
ation.It results in a
on
i
t between the use of synta
ti
 mat
hing and the set representationfor the redu
tions results. This leads, on one hand, to undesirable mat
hing failuresdue to terms that are not
ompletely evaluated or not instantiated. On the otherhand, we
an have sets with more than one element that
an lead to undesirableresults in a non-linear
ontext or empty sets that are not stri
tly propagated. In thisse
tion, we summarize the results of [8℄ to whi
h the reader is referred for full details.In parti
ular we show on typi
al examples the
on
uen
e problems and we give asuÆ
ient
ondition on the evaluation strategy of the �-
al
ulus that allows to restore
on
uen
e.4.1 The raw �-
al
ulus is not
on
uentLet us begin to show typi
al examples of
on
uen
e failure. A �rst su
h situationo

urs when redu
ing a (sub-)term of the form u = [l ! r℄(t) by mat
hing l and tand when either t
ontains a redex, or u is redex.In Example 4.1.a the non-
on
uen
e is obtained when a mat
hing failure resultsfrom a non-redu
ed sub-term of t but su

eeds when the sub-term is redu
ed. Asimilar situation is obtained when the evaluation rule Fire gives the ; result due toa mat
hing failure but the appli
ation of another evaluation rule before the rule Fireleads to a non-empty set as in Example 4.1.b.Example 4.1a. [a! b℄([a! a℄(a))Fire(internal)
��

Fire(external)
&&NNNNNNNNNNNNN[a! b℄(fag)Bat
h

��

;f[a! b℄(a)gFire
��ffbgg

b. [a! a℄(fag)Bat
h
��

Fire
$$JJJ

JJJJ
JJJJf[a! a℄(a)gFire

��

;ffagg
In Example 4.2 one
an noti
e that a term
an be redu
ed to an empty set be
auseof a mat
hing failure implying its bound variables. The result
an be di�erent fromthe empty set if the redu
tions of the sub-terms
ontaining the respe
tive variablesare
arried out only after the instantiation of these variables.Example 4.2 [x! [a! b℄(x)℄(a)Fire(external)

uulllllllllllll Fire(internal)
((QQQQQQQQQQQQQf[a! b℄(a)gFire

��

[x! ;℄(a)Swit
hR
��ffbgg ;387

In order to avoid this kind of situation we should prevent the redu
tion of anappli
ation [l ! r℄(t) if the mat
hing between the terms l and t fails due to themat
hing rules V ariableClash (Example 4.2) or SymbolClash (Example 4.1.a, 4.1.b)and either some variables are not instantiated or some of the terms are not redu
ed,or the term t is a set.The mat
hing rules V ariableClash and SymbolClash would be never applied if theset of fun
tional positions of the term l was a subset of the set of fun
tional positionsof the term t. This is not the
ase in Example 4.2 where, in the term [a! b℄(x), a is afun
tional position and the
orresponding position in the argument of the rewrite ruleappli
ation is the variable position x. In Example 4.1.a and Example 4.1.b a fun
tionalposition in the left-hand side of the rewrite rule
orresponds to an abstra
tion andset position respe
tively and thus, the
ondition is not satis�ed.Therefore, we
ould
onsider that the evaluation rule Fire is applied only when the
ondition on the fun
tional positions is satis�ed. Unfortunately, su
h a
ondition willnot suÆ
e for avoiding a non-appropriate mat
hing failure due to the appli
ation ofthe rule MergingClash. As shown in Example 4.3, su
h a situation
an be obtainedif the left-hand side of the rewrite rule to be applied is not linear.Example 4.3 [g(x; x)! x℄(g(a; [a! a℄(a)))Fire(internal)
sshhhhhhhhhhhhhhhhhhh Fire(external)

((RRRRRRRRRRRRRRRR[g(x; x)! x℄(g(a; fag))OpOnSet&Bat
h
��

Fire(external)
++VVVVVVVVVVVVVVVVVVVVVVVV

;f[g(x; x)! x℄(g(a; a))gFire
��

;ffaggAnother pathologi
al
ase arises when the term t
ontains an empty set or a sub-term that
an be redu
ed to the empty set. Indeed, the appli
ation of the rule Fire
an lead to the non-propagation of the failure and thus, to non-
on
uen
e as in thenext example:Example 4.4 [x! b℄(;)Fire
zzuu

uu
uu

uu
uu Bat
h

##HH
HHH

HH
HHHfbg ;We mention that a rewrite rule is quasi-regular if the set of variables of the left-handside is in
luded in the set of variables of the right-hand side. In Se
tion 4.2 we givea formal de�nition for the notion of quasi-regular rewrite rule that takes into
onsid-eration all the operators of the �-
al
ulus. We have already seen in Example 4.4 thatthe non-propagation of the failure is obtained when non-quasi-regular rewrite rulesare applied to a term
ontaining ;. When a quasi-regular rewrite rule is applied to aterm
ontaining ;, the empty set is present in the term resulting from the appli
ation388

of a substitution of the form fx=;g to the right-hand side of the rewrite rule (unlikein Example 4.4) and thus, the appropriate propagation of the ; is guaranteed.Another nasty situation, well known, in parti
ular in graph rewriting, is obtaineddue to un
ontrolled
opies of terms. When applying a non-right-linear rewrite rule toa term that
ontains sets with more than one element, or terms that
an be redu
edto su
h sets, we obtain undesirable results as in Example 4.5.Example 4.5[x! g(x; x)℄(fa; bg)Fire
��

Bat
h
,,XXXXXXXXXXXXXXXXXXXXXXXfg(fa; bg; fa; bg)gOpOnSet

��

f[x! g(x; x)℄(a); [x ! g(x; x)℄(b)gFire
��ffg(a; fa; bg); g(b; fa; bg)ggOpOnSet

��

ffg(a; a)g; fg(b; b)ggFlat
��fffg(a; a); g(a; b)g; fg(b; a); g(b; b)gggFlat

��

fg(a; a); g(b; b)gfg(a; a); g(a; b); g(b; a); g(b; b)gTo sum-up, the non-
on
uen
e is due to the appli
ation of the evaluation rule Firetoo early in a derivation and the typi
al situations that we want to avoid
onsist inusing the rule Fire for redu
ing an appli
ation:�
ontaining non-instantiated variables,�
ontaining non-redu
ed terms,�
ontaining a non-left-linear rewrite rule,� of a non-right-linear rewrite rule to a term
ontaining sets with more than oneelement,� of a non-quasi-regular rewrite rule to a term
ontaining empty sets.We
an noti
e that if we assume the
omputation rules (see Se
tion 2.4) to beapplied eagerly, then some, but unfortunately not all of the above
on
uen
e problemsvanish. In parti
ular, non-
on
uen
e examples involving sets, as Example 4.4 andExample 4.5, are over
ome by an eager appli
ation of the
omputation rules.4.2 Enfor
ing
on
uen
e using strategiesAs we have just seen in the previous se
tion, the possibility of having empty setsor sets with more than one element leads immediately to non-
on
uent redu
tionsimplying the evaluation rules Fire and Congruen
e. But the
on
uen
e
ould berestored under an appropriate evaluation strategy and, in parti
ular, this strategyshould guarantee a stri
t failure propagation and an appropriate handling of the setswith more than one element. 389

A �rst possible approa
h
onsists in redu
ing a �-term by initially applying all therules handling the sets (Distrib, Bat
h, Swit
hL, Swit
hR, OpOnSet, F lat), i.e. the
omputation rules, and only when none of these rules
an be applied, apply one ofthe rules Fire, Cong, CongFail, i.e. the dedu
tion rules, to the terms
ontaining nosets.But an appli
ation
an be redu
ed, by using the rule Fire, to an empty set or toa set
ontaining several elements and thus, this strategy
an still lead, as previously,to non-
on
uent redu
tions. Another disadvantage of this approa
h is that for norestri
tion of the �-
al
ulus the proposed strategy is redu
ed to the trivial strategyALL.Sin
e the sets (empty or having more than one element) are the main
ause of thenon-
on
uen
e of the
al
ulus, a natural strategy
onsists in redu
ing the appli
ationof a rewrite rule by respe
ting the following steps: instantiate and redu
e the argumentof the appli
ation, push out the resulting set bra
es by distributing them in the termsand only when none of the previous redu
tions is possible, use the evaluation ruleFire. We
an easily express this strategy by imposing a simple
ondition for theappli
ation of the evaluation rule Fire.De�nition 4.6We
all ConfStratStri
t the strategy whi
h
onsists in applying theevaluation rule Fire to a redex [l ! r℄(t) only if the term t is a �rst order groundterm.Proposition 4.7When using the evaluation strategy ConfStratStri
t, the �-
al
ulusis
on
uent.Proof. We
onsider the parallelization of the relation indu
ed by the evaluation rulesFire and Congruen
e on one hand and the relation indu
ed by the other rules of the
al
ulus on the other hand. We show the
on
uen
e of the two relations and thenuse Yokou
hi's Lemma [60℄ to prove the strong
on
uen
e of the relation obtained by
ombining the former relations. This latter relation is the transitive
losure of therelation indu
ed by the evaluation rules Fire and Congruen
e, and the evaluationrules handling sets.The Yokou
hi Lemma
an be easily proved due to the stri
t
onditions on the appli-
ation of the rule Fire and thus to the absen
e of intera
tion between the evaluationrules of the
al
ulus. 2The strategyConfStratStri
t is quite restri
tive and we would like to de�ne a generalstrategy that be
omes trivial (i.e. imposes no restri
tion) when restri
ted to somesimpler
al
uli, as the �-
al
ulus.A
on
uent strategy emerges from the above
ounterexamples and allows the appli-
ation of the evaluation rule Fire only if a possible failure in the mat
hing is preservedby the subsequent �-redu
tions and if the argument of the appli
ation
annot be re-du
ed to an empty set or to a set having more than one element. Su
h a generi
strategy
onsists in applying the evaluation rule Fire to a redex [l! r℄(t) only if:� t 2 T (F) is a �rst order ground termor� the term t is su
h that if the mat
hing l �?; t fails then, for all term t0 obtainedby instantiating or redu
ing t, the mat
hing l�?; t0 fails, and390

� the term t
annot be redu
ed to an empty set or to a set having more than oneelement.If we
onsider an instan
e of the �-
al
ulus su
h that all the sets are singletonsand all the appli
ations are of the form [x! u℄(v) then, all the above
onditions arealways satis�ed. Hen
e, we
an say that in this
ase the previous strategy is equivalentto the strategy ALL, i.e. it imposes no restri
tion on the redu
tions. One
an noti
ethat the ��-terms satisfy the previous
onditions and thus, su
h a strategy imposesno restri
tions on the redu
tions of this instan
e of the �-
al
ulus.The
onditions imposed for the generi
 strategy when the term t is not a �rst orderground term are
learly not appropriate for an implementation of the �-
al
ulus andthus, we must de�ne operational strategies guaranteeing the
on
uen
e of the
al
ulus.These strategies will impose some de
idable
onditions that
orrespond to (and imply)the ones proposed above.We introdu
e in what follows a more operational and more restri
tive strategyde�nition guaranteeing the mat
hing \
oheren
e" by imposing stru
tural
onditionson the terms l and t involved in a mat
hing problem l �?; t. In order to ensurethe mat
hing failure preservation by the �-redu
tions, the failure must be generatedonly by di�erent �rst order symbols in the
orresponding positions of the two termsl and t. This property is always veri�ed if the two terms are �rst order terms butan additional
ondition must be imposed if the term t
ontains �-
al
ulus spe
i�
operators, as the abstra
tion or the appli
ation.De�nition 4.8 A �-term l weakly subsumes a �-term t if8p 2 FPos(l) \ Pos(t)) t(p) 2 FThus, a �-term l weakly subsumes a �-term t if for any fun
tional position of theterm l, either this position is not a position of the term t, or it is a fun
tional positionof the term t.Remark 4.9 If l 2 T (F ;X) weakly subsumes t then, for any non-fun
tional position(i.e. the position of a variable, an appli
ation, an abstra
tion or a set) in t, the
orresponding position in l, if it exists, is a variable position. Thus, if the top positionof t is not a fun
tional position, then l is a variable.One
an noti
e that if a �rst order term l subsumes t, then l weakly subsumes t.Example 4.10 The term h(a; y;
) weakly subsumes the term g(b; [x ! x℄(
)) andthe term f(a) weakly subsumes the term g(b; [x ! x℄(
)). The term g(a; y) weaklysubsumes the term g(b; [x ! x℄(
)) while the term f(a) does not weakly subsumesf([x! x℄(
)).De�nition 4.11We
all ConfStrat the strategy whi
h
onsists in applying the eval-uation rule Fire to a redex [l ! r℄(t) only if:� t 2 T (F) is a �rst order ground termor� the term l 2 T (F ;X) is linear and l weakly subsumes t, and� the term t
ontains no set with more than one element and no empty set, and391

� for all sub-term [u! w℄(v) of t, u subsumes v, and� the term t
ontains no sub-term of the form [u℄(v) where u is not an abstra
tion.One should noti
e that the
onditions imposed by the strategy ConfStrat are de-
idable even if the term t is not a �rst order ground term. One
an
learly de
ideif a term is of the form [u℄(v) or [u ! w℄(v) as well as the number of elements ofa �nite set. The
ondition that l weakly subsumes t is simply a
ondition on thesymbols on the same positions of the two terms and sin
e mat
hing is synta
ti
, thenthe subsumption
ondition is also de
idable. Consequently, all the
onditions used inthe strategy ConfStrat are de
idable.The
ondition forbidding sub-terms of t of the form [u℄(v) if u is not a rewriterule is imposed in order to prevent the appli
ation of the evaluation rule CongFailleading to an empty set result. If one
onsiders a version of the �-
al
ulus withoutthe evaluation rules Congruen
e then, this last
ondition is no longer ne
essary inthe strategy ConfStrat. Hen
e, all the terms of the representation of the �-
al
ulusin the �-
al
ulus trivially satisfy the above
onditions and in this
ase the strategyConfStrat is equivalent to the strategy ALL.Proposition 4.12When using the evaluation strategy ConfStrat, the �-
al
ulus is
on
uent.Proof. Starting from the evaluation rule Fire expressed as a
onditional rule guardedby the
onditions de�ned in the strategy ConfStrat we de�ne the relation FireCongindu
ed by this latter rule and the Congruen
e rules. The other evaluation rules ofthe
al
ulus indu
e a se
ond relation
alled Set.We denote by �!F and �!S respe
tively, the
ompatible (
ontext)
losures ofthese two relations, and by ��!S the re
exive and transitive
losure of �!S .We prove the
on
uen
e of the relation ��!S�!F ��!S and we use an approa
hsimilar to the one followed in [6℄ for proving the
on
uen
e of �*.Thus, we have to prove the strong
on
uen
e of the relation �!F , the
on
u-en
e and termination of �!S and the
ompatibility between the two relations (i.e.Yokou
hi's Lemma.Using a polynomial interpretation we show that �!S terminates and by analyz-ing the indu
ed
riti
al pairs we obtain the lo
al
on
uen
e and
onsequently, the
on
uen
e of this relation.The relation �!F is not strongly
on
uent but we de�ne the parallel version ofthis relation in the style of Tait & Martin-L�of. We denote this relation by �!Fk andwe show that is strongly
on
uent.The Yokou
hi Lemma is proved using the
onditions imposed on the appli
ation ofthe rule Fire. We obtain thus the strong
on
uen
e of the relation ��!S�!Fk ��!Sand sin
e this latter relation is the transitive
losure of the relation ��!S�!F ��!Swe dedu
e the
on
uen
e of the
al
ulus.The proof is presented in full detail in [8℄. 2The relatively restri
tive
onditions imposed in strategy ConfStrat
an be relaxedat the pri
e of the simpli
ity of the strategy. The
onditions that we want to weaken
on
ern on one hand, the number of elements of the sets and on the other hand, theform of the rewrite rules.First, the absen
e of sets having more than one element is ne
essary in order toguarantee a good behavior for the non-right-linear rewrite rules. The right-linearity392

of a rewrite rule is de�ned as the linearity of the right-hand side w.r.t. the variablesof the left-hand side. For example, x ! g(x; y) is right-linear, but x ! g(x; x) isnot right-linear. Moreover, the right-linearity
an be imposed only to the operatorsdi�erent from the set symbols (f g) and thus, the rewrite rule x! ff(x); f(x)g
an be
onsidered right-linear. Intuitively, we do not need to impose right-linearity for setssin
e, due to the evaluation rule F lat, they do not lead to non-
onvergent redu
tionsas in Example 4.5.De�nition 4.13 The rewrite rule l ! r is hereditary right-linear if any sub-term ofr that is not a set is linear w.r.t. the free variables of l and any rewrite rule of r ishereditary right-linear.The appli
ation of a rewrite rule whi
h is not hereditary right-linear to a set withmore than one element
an lead to non-
onvergent redu
tions, as shown in Exam-ple 4.5, but this is not the
ase if the applied rewrite rule is hereditary right-linear:Example 4.14[x! fx; f(x)g℄(fa; bg)Fire
��

Bat
h
++WWWWWWWWWWWWWWWWWWWWWffa; bg; f(fa; bg)gOpOnSet

��

f[x! fx; f(x)g℄(a); [x! fx; f(x)g℄(b)gFire
��ffa; bg; ff(a); f(b)gg Flat

++WWWWWWWWWWWWWWWWWWWWW
fffa; f(a)gg; ffb; f(b)gggFlat

��fa; b; f(a); f(b)gOn another hand, in order to guarantee the stri
t propagation of the failure, weimpose that the evaluation rule Fire is applied only if the argument of the appli
ationis not an empty set and it
annot lead to an empty set. In Example 4.4 we
an noti
ethat the free variables of the left-hand side of the rewrite rule are not preserved inthe right-hand side of the rule. If the rewrite rule l ! r of the appli
ation preservesthe variables of the left-hand side in the right-hand side (e.g. x! x), the appli
ationof a substitution repla
ing one of these variables with an empty set (e.g. fx=;g) to rleads to a term
ontaining ; and thus, whi
h is possibly redu
ed to ;.We de�ne thereafter more formally the rewrite rules preserving the variables andwe present a new strategy de�ned using this property. First, we introdu
e a
on
eptsimilar to that of free variable but, by
onsidering this time the not-deterministi
nature of the sets.De�nition 4.15 The set of present variables of a �-term t is denoted by PV (t) andis de�ned by:1. if t = x then PV (t) = fxg,2. if t = fu1; : : : ; ung then PV (t) = Ti=1:::n PV (ui), (PV (;) = X),3. if t = f(u1; : : : ; un) then PV (t) = Si=1:::n PV (ui), (PV (
) = ; if
 2 T (F)),4. if t = [u℄(v) then PV (t) = PV (u) [PV (v),393

5. if t = u! v then PV (t) = PV (v) n FV (u).The set of free variables of a set of �-terms is the union of the sets of free variablesof ea
h �-term while the set of present variables of a set of �-terms is the interse
tionof the sets of free variables of ea
h �-term. We
an say that a variable is present in aset only if it is present in all the elements of the set. For example, PV (fx; y; xg) = ;and PV (fx; g(x; y)g) = fxg.De�nition 4.16We say that the �-rewrite rule l ! r is quasi-regular if FV (l) �PV (r) and any rewrite rule of r is quasi-regular.Intuitively, to ea
h free variable of the left-hand side of a quasi-regular rewrite rule
orresponds, in a deterministi
 way, a free variable in the right-hand side of the rule.For any set �-term in the right-hand side, the
orresponden
e with the free variablesof the left-hand side should be veri�ed for ea
h element of the set.Example 4.17 The rewrite rule x ! g(x; y) is quasi-regular while the rewrite rulex! fx; yg is non-quasi-regular.The rewrite rule ff(x); g(x; x)g ! x is quasi-regular while ff(x); g(x; y)g ! x isnon-quasi-regular. If the de�nition of quasi-regular rewrite rules had asked for the
ondition PV (l) � PV (t) instead, then the se
ond rewrite rule would have be
omequasi-regular as well. This is not desirable sin
e the rewrite rule ff(x); g(x; y)g ! xredu
es to ff(x)! x; g(x; y)! xg and only the �rst one is quasi-regular.In the parti
ular
ase of the �-
al
ulus, sin
e the left-hand side of a rewrite rulel! r must be a �rst-order term (i.e. l 2 T (F ;X)), we have FV (l) = PV (l) = Var(l)and thus the
ondition from De�nition 4.16
an be
hanged to Var(l) � PV (t).Let us
onsider the appli
ation a quasi-regular rewrite rule l! r to a term t givingas result the term f�rg, where � is the mat
hing substitution between l and t. If ;is a sub-term of t and if l weakly subsumes r, then ; is in �. Sin
e the rewrite rule isquasi-regular, we have Dom(�) � PV (r) and thus, we are sure that ; is a sub-termof �r. Furthermore, if ; instantiated a variable of a set in �r then it is present inall the elements of the set and thus, we avoid non-
on
uent results as the ones inExample 4.4.Example 4.18 A quasi-regular rule applied to ; gives only one result:[x! fx; g(x; a)g℄(;)Swit
hL
tthhhhhhhhhhhhhhhhhh Bat
h

��

Fire
((RRRRRRRRRRRRR[fx! x; x! g(x; a)g℄(;)Distrib

��

f;; g(;; a)gOpOnSet
��f[x! x℄(;); [x! g(x; a)℄(;)g Fire&OpOnSet&Flat // ; f;; ;gFlatoowhile a non-quasi-regular one yields two di�erent results as shown in Example 4.4.One should noti
e that if a rewrite rule l ! r is redu
ed by the evaluation ruleSwit
h R to a set of rewrite rules, ea
h of these rules is quasi-regular and thus thestri
t propagation of the empty set is ensured on all the right-hand sides of theobtained rewrite rules. 394

De�nition 4.19We
all ConfStratLin the strategy whi
h
onsists in applying theevaluation rule Fire to a redex [l ! r℄(t) only if t 2 T (F) is a �rst order ground termor :� the term l 2 T (F ;X) is linear and l weakly subsumes t,and� either{ l! r is quasi-regularor{ the term t
ontains no empty set, and{ for all sub-term [u! w℄(v) of t, u subsumes v, and{ the term t
ontains no sub-term of the form [u℄(v) where u is not an abstra
tion.and� either{ l! r is hereditary right-linearor{ the term t
ontains no set with more than one element.Compared to the strategy ConfStrat we added the possibility to test either thequasi-regular
ondition on the rewrite rule l! r or the
onditions on the redu
ibilityof the term t to an empty set. Moreover, if the rewrite rule is hereditary right-linearwe allow arguments
ontaining sets having more than one element. Sin
e one
an
learly de
ide if a rule is quasi-regular or hereditary right-linear, all the
onditionsused in the strategy ConfStratLin are de
idable.Proposition 4.20When using the evaluation strategy ConfStratLin, the �-
al
ulusis
on
uent.Proof. The same approa
h as for the strategy ConfStrat is used but some additionaldiagrams
orresponding to the redu
tions that where not possible before are
onsid-ered. These new
ases are mainly introdu
ed in the proof of Yokou
his's Lemma. Theproof is detailled in [8℄. 2When using a
al
ulus integrating redu
tion modulo an equational theory (e.g.asso
iativity and
ommutativity), as explained in Se
tion 2.4, the overall
on
uen
eproof is di�erent but uses lemmas similar to the ones of the former
ase. Therefore,we
onje
ture that Proposition 4.12 and Proposition 4.20
an be extended to a �E-
al
ulus modulo a spe
i�
 de
idable and �nitary equational mat
hing theory E.5 Con
lusionWe have presented the �T -
al
ulus together with some of its variants obtained asinstan
es of the general framework. By making expli
it the notion of rule, rule appli-
ation and appli
ation result, the �T -
al
ulus allows us to des
ribe in a simple yet verypowerful and uniform manner algebrai
 and higher-order
apabilities. This providestherefore a simple and natural framework for their
ombination.In the �T -
al
ulus the non-determinism is handled by using sets of results and therule appli
ation failure is represented by the empty set. Handling sets is a deli
ateproblem and we have seen that the raw �-
al
ulus, where the evaluation rules are395

not guided by a strategy, is not
on
uent. When an appropriate but rather naturalgeneralized
all-by-value evaluation strategy is used, the
al
ulus is
on
uent.The �-
al
ulus is both
on
eptually simple as well as quite expressive. This allowsus to represent the terms and redu
tions from �-
al
ulus and rewriting. We
onje
turethat, following the lines of [55℄, it is also simple to en
ode other
al
uli of interest likethe �-
al
ulus.Part II, is devoted to the use of an extension of the
al
ulus powerful enough toen
ode rewriting strategies,
onditional rewriting and to give a semanti
s to the ELANlanguage. We refer to the
on
lusion of Part II for a presentation of the ongoing andfuture works on the �-
al
ulus.A
knowledgmentsWe would like to thank H�el�ene Kir
hner, Pierre-Etienne Moreau and ChristopheRingeissen from the Protheo Team for the useful intera
tions we had on the top-i
s of this paper, Vin
ent van Oostrom for suggestions and pointers to the literature,Roberto Bruni and David Wolfram for their detailed and very useful
omments ona preliminary version of this work and Delia Kesner for fruitful dis
ussions. We aregrateful to Luigi Liquori for many
omments and ex
iting dis
ussions on the �-
al
ulusand its appli
ations. Many thanks also to Th�er�ese Hardin and Na
hum Dershowitzfor their interest, en
ouragements and helpful suggestions for improvement. Finallyspe
ial thanks are due to the referees for the very
omplete and
areful reading of thepaper as well as
onstru
tive and useful remarks.Referen
es[1℄ M. Adi and C. Kir
hner. Asso
iative
ommutative mat
hing based on the synta
ti
ity of theAC theory. In F. Baader, J. Siekmann, and W. Snyder, editors, Pro
eedings 6th InternationalWorkshop on Uni�
ation, Dagstuhl (Germany). Dagstuhl seminar, 1992.[2℄ H. P. Barendregt. The Lambda-Cal
ulus, its syntax and semanti
s. Studies in Logi
 and theFoundation of Mathemati
s. Elsevier S
ien
e Publishers B. V. (North-Holland), Amsterdam,1984. Se
ond edition.[3℄ P. Borovansk�y, C. Kir
hner, H. Kir
hner, and C. Ringeissen. Rewriting with strategies in ELAN:a fun
tional semanti
s. International Journal of Foundations of Computer S
ien
e, 2001.[4℄ F. Baader and T. Nipkow. Term Rewriting and all That . Cambridge University Press, 1998.[5℄ V. Breazu-Tannen. Combining algebra and higher-order types. In Pro
eedings 3rd IEEE Sym-posium on Logi
 in Computer S
ien
e, Edinburgh (UK), pages 82{90, 1988.[6℄ P.-L. Curien, T. Hardin, and J.-J. L�evy. Con
uen
e properties of weak and strong
al
uli ofexpli
it substitutions. Journal of the ACM, 43(2):362{397, 1996.[7℄ A. Chur
h. A formulation of the simple theory of types. Journal of Symboli
 Logi
, 5:56{68,1940.[8℄ H. Cirstea. Cal
ul de r�e�e
riture : fondements et appli
ations. Th�ese de Do
torat d'Universit�e,Universit�e Henri Poin
ar�e - Nan
y I, 2000.[9℄ H. Cirstea and C. Kir
hner. Combining higher-order and �rst-order
omputation using �-
al
ulus: Towards a semanti
s of ELAN. In D. Gabbay and M. de Rijke, editors, Frontiersof Combining Systems 2, Resear
h Studies, ISBN 0863802524, pages 95{120. Wiley, 1999.[10℄ L. Colson. Une stru
ture de donn�ees pour le �-
al
ul typ�e. Private Communi
ation, 1988.[11℄ D. Dill, A. Drexler, A. Hu, and C. Yang. Proto
ol veri�
ation as a hardware design aid. In IEEEInternational Conferen
e on Computer Design: VLSI in Computers and Pro
essors, pages 522{525. IEEE
omputer so
iety, 1992. 396

[12℄ N. Dershowitz. Computing with rewrite systems. Information and Control, 65(2/3):122{157,1985.[13℄ G. Dowek, T. Hardin, and C. Kir
hner. Higher-order uni�
ation via expli
it substitutions,extended abstra
t. In D. Kozen, editor, Pro
eedings of LICS'95, pages 366{374, San Diego,June 1995.[14℄ G. Dowek, T. Hardin, and C. Kir
hner. Theorem proving modulo. Rapport de Re
her
he3400, Institut National de Re
her
he en Informatique et en Automatique, April 1998.ftp://ftp.inria.fr/INRIA/publi
ation/RR/RR-3400.ps.gz.[15℄ G. Dowek, T. Hardin, C. Kir
hner, and F. Pfenning. Uni�
ation via expli
it substitutions: The
ase of higher-order patterns. In M. Maher, editor, Pro
eedings of JICSLP'96, Bonn (Germany),September 1996. The MIT press.[16℄ N. Dershowitz and J.-P. Jouannaud. Rewrite Systems. In J. van Leeuwen, editor, Handbookof Theoreti
al Computer S
ien
e,
hapter 6, pages 244{320. Elsevier S
ien
e Publishers B. V.(North-Holland), 1990.[17℄ G. Dowek. Third order mat
hing is de
idable. Annals of Pure and Applied Logi
, 69:135{155,1994.[18℄ S. Eker. Asso
iative-
ommutative mat
hing via bipartite graph mat
hing. Computer Journal,38(5):381{399, 1995.[19℄ S. Eker. Fast mat
hing in
ombinations of regular equational theories. In J. Meseguer, editor,Pro
eedings of the �rst international workshop on rewriting logi
, volume 4, Asilomar (Califor-nia), September 1996. Ele
troni
 Notes in Theoreti
al Computer S
ien
e.[20℄ F. Fages and G. Huet. Uni�
ation and mat
hing in equational theories. In Pro
eedings FifthColloquium on Automata, Algebra and Programming, L'Aquila (Italy), volume 159 of Le
tureNotes in Computer S
ien
e, pages 205{220. Springer-Verlag, 1983.[21℄ J. Gallier and V. Breazu-Tannen. Polymorphi
 rewriting
onserves algebrai
 strong normaliza-tion and
on
uen
e. In 16th Colloquium Automata, Languages and Programming, volume 372of Le
ture Notes in Computer S
ien
e, pages 137{150. Springer-Verlag, 1989.[22℄ J. A. Goguen, C. Kir
hner, H. Kir
hner, A. M�egrelis, J. Meseguer, and T. Winkler. An intro-du
tion to OBJ-3. In J.-P. Jouannaud and S. Kaplan, editors, Pro
eedings 1st InternationalWorkshop on Conditional Term Rewriting Systems, Orsay (Fran
e), volume 308 of Le
tureNotes in Computer S
ien
e, pages 258{263. Springer-Verlag, July 1987. Also as internal reportCRIN: 88-R-001.[23℄ J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types, volume 7 of Cambridge Tra
ts inTheoreti
al Computer S
ien
e. Cambridge University Press, 1989.[24℄ G. Huet and B. Lang. Proving and applying program transformations expressed with se
ond-order patterns. A
ta Informati
a, 11:31{55, 1978.[25℄ J. R. Hindley and J. P. Seldin. Introdu
tion to Combinators and Lambda-
al
ulus. CambridgeUniversity, 1986.[26℄ G. Huet. A me
hanization of type theory. In Pro
eeding of the third international joint
onfer-en
e on arti�
ial intelligen
e, pages 139{146, 1973.[27℄ G. Huet. R�esolution d'equations dans les langages d'ordre 1,2, ...,!. Th�ese de Do
torat d'Etat,Universit�e de Paris 7 (Fran
e), 1976.[28℄ J.-P. Jouannaud and H. Kir
hner. Completion of a set of rules modulo a set of equations. SIAMJournal of Computing, 15(4):1155{1194, 1986. Preliminary version in Pro
eedings 11th ACMSymposium on Prin
iples of Programming Languages, Salt Lake City (USA), 1984.[29℄ J.-P. Jouannaud and C. Kir
hner. Solving equations in abstra
t algebras: a rule-based surveyof uni�
ation. In J.-L. Lassez and G. Plotkin, editors, Computational Logi
. Essays in honor ofAlan Robinson,
hapter 8, pages 257{321. The MIT press, Cambridge (MA, USA), 1991.[30℄ J.-P. Jouannaud and M. Okada. Abstra
t data type systems. Theoreti
al Computer S
ien
e,173(2):349{391, 28 February 1997.[31℄ G. Kahn. Natural semanti
s. Te
hni
al Report 601, INRIA Sophia-Antipolis, February 1987.[32℄ D. Kesner. La d�e�nition de fon
tions par
as �a l'aide de motifs dans des langages appli
atifs.PhD thesis, Universit�e de Paris XI, De
ember 1993.[33℄ C. Kir
hner and H. Kir
hner. Rewriting, solving, proving. A preliminary version of a bookavailable at www.loria.fr/~
kir
hne/rsp.ps.gz, 1999.397

[34℄ C. Kir
hner, H. Kir
hner, and M. Rusinowit
h. Dedu
tion with symboli

onstraints. Revued'Intelligen
e Arti�
ielle, 4(3):9{52, 1990. Spe
ial issue on Automati
 Dedu
tion.[35℄ C. Kir
hner, H. Kir
hner, and M. Vittek. Designing
onstraint logi
 programming languagesusing
omputational systems. In P. Van Hentenry
k and V. Saraswat, editors, Prin
iples andPra
ti
e of Constraint Programming. The Newport Papers.,
hapter 8, pages 131{158. The MITpress, 1995.[36℄ J. W. Klop. Term Rewriting Systems. In S. Abramsky, D. Gabbay, and T. Maibaum, editors,Handbook of Logi
 in Computer S
ien
e, volume 1,
hapter 6. Oxford University Press, 1990.[37℄ C. Kir
hner and C. Ringeissen. Rule-Based Constraint Programming. Fundamenta Informati
ae,34(3):225{262, September 1998.[38℄ J. Klop, V. van Oostrom, and F. van Raamsdonk. Combinatory redu
tion systems: introdu
tionand survey. Theoreti
al Computer S
ien
e, 121:279{308, 1993.[39℄ J. Meseguer. Conditional rewriting logi
 as a uni�ed model of
on
urren
y. Theoreti
al ComputerS
ien
e, 96(1):73{155, 1992.[40℄ R. Milner. A proposal for standard ML. In Pro
eedings ACM Conferen
e on LISP and Fun
-tional Programming, 1984.[41℄ D. Miller. A logi
 programming language with lambda-abstra
tion, fun
tion variables, and simpleuni�
ation. In P. S
hroeder-Heister, editor, Extensions of Logi
 Programming: InternationalWorkshop, T�ubingen, Germany, De
ember 1989, volume 475 of Le
ture Notes in ComputerS
ien
e, pages 253{281. Springer-Verlag, 1991.[42℄ MuPAD Group, Benno Fu
hssteiner et al. MuPAD User's Manual - MuPAD Version 1.2.2.John Wiley and sons, Chi
hester, New York, �rst edition, mar
h 1996. in
ludes a CD for AppleMa
intosh and UNIX.[43℄ T. Nipkow. Combining mat
hing algorithms: The regular
ase. In N. Dershowitz, editor, Pro-
eedings 3rd Conferen
e on Rewriting Te
hniques and Appli
ations, Chapel Hill (N.C., USA),volume 355 of Le
ture Notes in Computer S
ien
e, pages 343{358. Springer-Verlag, April 1989.[44℄ T. Nipkow and C. Prehofer. Higher-order rewriting and equational reasoning. In W. Bibel andP. S
hmitt, editors, Automated Dedu
tion | A Basis for Appli
ations. Volume I: Foundations.Kluwer, 1998.[45℄ M. J. O'Donnell. Computing in Systems Des
ribed by Equations, volume 58 of Le
ture Notes inComputer S
ien
e. Springer-Verlag, 1977.[46℄ M. Okada. Strong normalizability for the
ombined system of the typed �
al
ulus and anarbitrary
onvergent term rewrite system. In G. H. Gonnet, editor, Pro
eedings of the ACM-SIGSAM 1989 International Symposium on Symboli
 and Algebrai
 Computation: ISSAC '89/ July 17{19, 1989, Portland, Oregon, pages 357{363, New York, NY 10036, USA, 1989. ACMPress.[47℄ V. Padovani. Filtrage d'ordre sup�erieur. Th�ese de Do
torat d'Universit�e, Universit�e Paris VII,1996.[48℄ V. Padovani. De
idability of fourth-order mat
hing. Mathemati
al Stru
tures in ComputerS
ien
e, 3(10):361{372, June 2000.[49℄ B. Pagano. X.R.S : Expli
it Redu
tion Systems - A First-Order Cal
ulus for Higher-OrderCal
uli. In C. Kir
hner and H. Kir
hner, editors, 15th International Conferen
e on AutomatedDedu
tion, LNAI 1421, pages 72{87, Lindau, Germany, July 5{July 10, 1998. Springer-Verlag.[50℄ S. Peyton-Jones. The implementation of fun
tional programming languages. Prenti
e Hall, In
.,1987.[51℄ Protheo Team. The ELAN home page. WWW Page, 2001. http://elan.loria.fr.[52℄ C. Ringeissen. Combining De
ision Algorithms for Mat
hing in the Union of Disjoint EquationalTheories. Information and Computation, 126(2):144{160, May 1996.[53℄ A. van Deursen. An Overview of ASF+SDF. In Language Prototyping, pages 1{31. WorldS
ienti�
, 1996. ISBN 981-02-2732-9.[54℄ M. van den Brand, A. van Deursen, P. Klint, S. Klusener, and E. A. van der Meulen. Industrialappli
ations of ASF+SDF. In M. Wirsing and M. Nivat, editors, AMAST '96, volume 1101 ofLe
ture Notes in Computer S
ien
e, pages 9{18. Springer-Verlag, 1996.[55℄ P. Viry. Input/Output for ELAN. In J. Meseguer, editor, Pro
eedings of the �rst interna-tional workshop on rewriting logi
, volume 4 of Ele
troni
 Notes in TCS, Asilomar (California),September 1996. 398

[56℄ M. Vittek. ELAN: Un
adre logique pour le prototypage de langages de programmation ave

ontraintes. Th�ese de Do
torat d'Universit�e, Universit�e Henri Poin
ar�e { Nan
y 1, O
tober1994.[57℄ V. van Oostrom. Lambda
al
ulus with patterns. Te
hni
al report, Vrije Universiteit, Amster-dam, November 1990.[58℄ D. A. Wolfram. The Clausal Theory of Types, volume 21 of Cambridge Tra
ts in Theoreti
alComputer S
ien
e. Cambridge University Press, 1993.[59℄ S. Wolfram. The Mathemati
a Book,
hapter Patterns, Transformation Rules and De�nitions.Cambridge University Press, 1999. ISBN 0-521-64314-7.[60℄ H. Yokou
hi and T. Hikita. A rewriting system for
ategori
al
ombinators with multiple argu-ments. SIAM Journal of Computing, 19(1), February 1990.Re
eived O
tober 1, 2000. Revised: January 26, 2001, February 9, 2001

399

400

The rewriting
al
ulus | Part IIHORATIU CIRSTEA, LORIA and INRIA, Campus S
ienti�que,BP 239, 54506 Vandoeuvre-l�es-Nan
y, Fran
e,E-mail: Horatiu.Cirstea�loria.fr.CLAUDE KIRCHNER, LORIA and INRIA, Campus S
ienti�que,BP 239, 54506 Vandoeuvre-l�es-Nan
y, Fran
e,E-mail: Claude.Kir
hner�loria.fr.Abstra
tThe �-
al
ulus integrates in a uniform and simple setting �rst-order rewriting, �-
al
ulus and non-deterministi

omputations. Its abstra
tion me
hanism is based on the rewrite rule formation andits main evaluation rule is based on mat
hing modulo a theory T .We have seen in the �rst part of this work the motivations, de�nitions and basi
 properties of the�-
al
ulus. This se
ond part is �rst devoted to the use of an extension of the �-
al
ulus for en
odinga (
onditional) rewrite relation. This extension is based on the �rst operator whose purpose is todete
t rule appli
ation failure. It allows us to express re
ursively rule appli
ation and therefore toen
ode strategy based rewriting pro
esses. We then use this extended
al
ulus to give an operationalsemanti
s to ELAN programs.We
on
lude with an overview of ongoing and future works on �-
al
ulus.Keywords: rewriting, strategy, non-determinism, mat
hing, rewriting-
al
ulus, lambda-
al
ulus, rulebased language.1 Introdu
tionThis is the se
ond part of the rewriting
al
ulus des
ription, study and appli
ations.In all the paper, we refer to the �rst part of this work as Part I.As we have seen in Part I, we
an en
ode in �-
al
ulus the representation of a�nite derivation. But we need more sin
e we want to be able the represent also inthe
al
ulus the generi
 sear
h for normalization derivations, when they exist. Moregenerally, we want to have a formal representation of rewriting strategies like the onesused in ELAN [25℄.To this end we extend the
al
ulus with a �rst operator whose purpose is to dete
trule appli
ation failure. This extension allows us to express re
ursively rule appli
a-tion and therefore to en
ode strategy based rewriting pro
esses.We then extend the �-en
oding of
onditional rewriting to more
ompli
ated ruleslike the
onditional rewrite rules with lo
al assignments from the ELAN language. Thenon-determinism that in ELAN is handled mainly by two basi
 strategy operators isrepresented in the �-
al
ulus by means of sets. We show �nally how the �-
al
ulusprovides a semanti
s to ELAN programs.This paper is stru
tured as follows. In Se
tion 2 we extend the basi
 �-
al
uluswith a new operator and de�ne term traversal and �xed-point operators using theexisting �-operators. 401L. J. of the IGPL, Vol. 9 No. 3, pp. 401{434 2001

Oxford University Press

The en
oding of non-
onditional and
onditional term rewriting by using the �-operators de�ned in Se
tion 2 is presented in Se
tion 3. The
al
ulus is �nally usedin Se
tion 4 in order to give an operational semanti
s to the rules used in the ELANlanguage.We
on
lude by providing some of the resear
h dire
tions that are of main interestin the development of this formalism and in the
ontext of ELAN, and more generallyof rewrite based languages as ASF+SDF [20℄, ML [23℄, Maude [7℄, Stratego [28℄ orCafeOBJ [17℄.2 Re
ursion and term traversal operatorsIn Part I we have shown that for any redu
tion in a rewrite theory there exists a
orresponding redu
tion in the �-
al
ulus: if the term u redu
es to the term v in arewrite theory R we
an build a �-term �R(u) that redu
es to the term fvg. Themethod used for
onstru
ting the term �R(u) depends on all the redu
tion steps fromu to v in the theory R: �R(u) is a representation in the �-
al
ulus of the derivationtra
e. We want to go further on and to give a method for
onstru
ting a term �R(u)without knowing a priori the derivation from u to v. Hen
e we want to answer to thefollowing question:Given a rewrite theory R does there exist a �-term �R su
h that for any term u, if uredu
es to the term v in the rewrite theory R then [�R℄(u) �-redu
es to a set
ontain-ing the term v?This means that we wish to des
ribe in the �-
al
ulus redu
tion strategies and,mainly, normalization strategies. This will allow us to get, in parti
ular, a naturalen
oding of normal
onditional term rewriting. Therefore, we want to answer themore spe
i�
 question:Given a rewrite theory R does there exist a �-term �R su
h that for any term u ifu normalizes to the term v in the rewrite theory R then [�R℄(u) �-redu
es to a set
ontaining the term v?The de�nition of normalization strategies is in general done at the meta-level whilethe �-
al
ulus allows us to represent su
h derivations at the obje
t level. We haveshown in Part I that the �;-
al
ulus
ontains the �-
al
ulus and thus, any
omputablefun
tion as the normalization one is expressible in the formalism. What we bring here,be
ause of the mat
hing power and of the use of non-determinism, is an in
reasedease in the expression of su
h fun
tions together with their expression in a uniformformalism
ombining standard rewrite te
hniques and higher-order behaviors.When
omputing the normal form of a term u w.r.t. a rewrite system R, therewrite rules are applied repeatedly at any position of a term u until no rule from Ris appli
able. Hen
e, the ingredients needed for de�ning su
h a strategy are:� an iteration operator that applies repeatedly a set of rewrite rules,� a term traversal operator that applies a rewrite rule at any position of a term,� an operator testing if a set of rewrite rules is appli
able to a term.402

In what follows we des
ribe how the operators with the above fun
tionalities
anbe de�ned in the �-
al
ulus. We start with some auxiliary operators and afterwards,we introdu
e the �-operators that
orrespond to the fun
tionalities listed above.2.1 Some auxiliary operatorsFirst, we de�ne three auxiliary operators that will be used in the next se
tions. Theseoperators are just aliases used to de�ne more
omplex �-terms and are used for givingmore
ompa
t and
lear de�nitions for the re
ursion operators.The �rst of these operators is the identity (denoted id) that applied to any �-termt evaluates to the singleton
ontaining this term, that is [id℄(t) �!� ftg. The �-termid is nothing else but the rewrite rule x! x:id 4= x! x:In a similar way we
an de�ne the strategy fail whi
h always fails, (i.e. applied toany term, leads to ;): fail 4= x! ;:The third one is the binary operator \;" that represents the sequential appli
ationof two �-terms. A �-term of the form [u; v℄(t) represents the appli
ation of the termv to the result of the appli
ation of u to t. Therefore, we de�ne the operator \;" by:u; v 4= x! [v℄([u℄(x)):In the following se
tions we generally employ the abbreviations of these operatorsand not their expanded form but we sometimes show the
orresponding redu
tions.2.2 The first operatorWe introdu
e now a new operator, similar to the then operator for
ombining ta
ti
sand already present in LCF [18℄. Its role is to sele
t between its arguments the �rstone that applied to a given �-term does not evaluate to ;. If all the arguments evaluateto ; then the �nal result of the evaluation is ;. The evaluation rules des
ribing thefirst operator and the auxiliary operator h ; : : : ; i are presented in Figure 1. Wedo not know
urrently how to express these operators in the basi
 �-
al
ulus and we
onje
ture that this is not possible.For simpli
ity, we
onsidered that the operators first and hi are of variable aritybut similar binary operators
an be used instead.The appli
ation of a �-term first(s1; : : : ; sn) to a term t returns the result ofthe �rst \su

essful" appli
ation of one of its arguments to the term t. Hen
e, if[si℄(t) evaluates to ; for i = 1; : : : ; k � 1, and [sk℄(t) does not evaluate to ;, then[first(s1; : : : ; sn)℄(t) evaluates to the same term as the term [sk℄(t).If the evaluation of the terms [si℄(t), i = 1; : : : ; k� 1, leads to ; and the evaluationof [sk℄(t) does not terminate then the evaluation of the term [first(s1; : : : ; sn)℄(t)does not terminate.De�nition 2.1 The set of �1st-terms extends the set %(F ;X) of basi
 �-terms, withthe following two rules: 403

First [first(s1; : : : ; sn)℄(t) =) h[s1℄(t); : : : ; [sn℄(t)iFirstFail h;; t1; : : : ; tni =) ht1; : : : ; tniFirstSu

ess ht; t1; : : : ; tni =) ftgif t
ontains no redexes, no freevariables and is not ;FirstSingle hi =) ;Fig. 1. The first operator� if t1; : : : ; tn are �-terms then first(t1; : : : ; tn) is a �-term,� if t1; : : : ; tn are �-terms then ht1; : : : ; tni is a �-term.This set of terms is denoted by %1st(F ;X).We de�ne now the �1stT -
al
ulus by
onsidering the new operators and the
orre-sponding evaluation rules presented in Figure 1:De�nition 2.2 Given a set F of fun
tion symbols, a set X of variables, a theoryT on %1st(F ;X) terms having a de
idable mat
hing problem, we
all �1stT -
al
ulus a
al
ulus de�ned by:� a non-empty subset %1st� (F ;X) of the %1st(F ;X) terms,� the (higher-order) substitution appli
ation to terms as de�ned in Part I,� a theory T ,� the set of evaluation rules E�1st : Fire, Cong, CongFail, Distrib, Bat
h, Swit
hL,Swit
hR, OpOnSet, F lat, First, FirstFail, FirstSu

ess, FirstSingle,� an evaluation strategy S that guides the appli
ation of the evaluation rules.In what follows we
onsider the �1st-
al
ulus, i.e. the �1stT -
al
ulus with a synta
ti
mat
hing and whose rewrite rules are restri
ted to be of the form u! v where u is a�rst-order term.The following examples present the evaluation of some �1st-terms
ontaining theoperators of the extended
al
ulus.Example 2.3 The non-deterministi
 appli
ation of one of the rules a ! b, a !
,a! d to the term a is represented in the �-
al
ulus by the appli
ation [fa! b; a!
; a ! dg℄(a). This last �-term is redu
ed to the term fb;
; dg whi
h represents anon-deterministi

hoi
e among the three terms. If we want to apply the above rulesin a deterministi
 way and in the spe
i�ed order, we use the �-term [first(a! b; a!
; a! d)℄(a) with, for example, the redu
tion:[first(a! b; a!
; a! d)℄(a)�!First h[a! b℄(a); [a!
℄(a); [a! d℄(a)i�!Fire hfbg; [a!
℄(a); [a! d℄(a)i�!FirstSu

ess ffbgg�!Flat fbg 404

We
an noti
e that even if all the rewrite rules
an be applied su

essfully (i.e. noempty set) to the term a, the �nal result is given by the �rst tried rewrite rule.Example 2.4We
onsider now the
ase where some of the rules given in argumentto first lead to an empty set result:[first(a! b; b!
; a! d)℄(b)�!First h[a! b℄(b); [b!
℄(b); [a! d℄(b)i�!Fire h;; [b!
℄(b); [a! d℄(b)i�!FirstFail h[b!
℄(b); [a! d℄(b)i�!Fire hf
g; [a! d℄(b)i�!FirstSu

ess ff
gg�!Flat f
gExample 2.5 If none of the rules given in argument to first is applied su

essfully,the result is obviously the empty set:[first(a! b; a!
; a! d)℄(b)�!First h[a! b℄(b); [a!
℄(b); [a! d℄(b)i��!Fire h;; ;; ;i��!FirstFail hi�!FirstSingle ;The operator first does not test expli
itly the appli
ability of a term (rule) toanother term but allows us to re
over from a failure and
ontinue the evaluation. Forexample, we
an de�ne a term try(s) 4= first(s; id)that applied to the term t evaluates to the result of [s℄(t), if [s℄(t) does not evaluateto ; and to ftg, if [s℄(t) evaluates to ;.2.3 Term traversal operatorsLet us now de�ne operators that apply a �-term at some position of another �-term.The �rst step is the de�nition of two operators that push the appli
ation of a �-termone level deeper on another �-term. This is already possible in the �-
al
ulus due tothe rule Cong but we want to de�ne a generi
 operator that applies a �-term r to thesub-terms ui, i = 1 : : : n, of a term of the form F (u1; : : : ; un) independently on thehead symbol F .To this end, we de�ne two term traversal operators, �(r) and 	(r), whose behavioris des
ribed by the rules in Figure 2. These operators are inspired by the operatorsof the System S des
ribed in [27℄.The appli
ation of the �-term �(r) to a term t = f(u1; : : : ; un) results in thesu

essful appli
ation of the term r to one of the terms ui. More pre
isely, r isapplied to the �rst ui, i = 1; : : : ; n su
h that [r℄(ui) does not evaluate to the emptyset. If there exists no su
h ui and in parti
ular, if t is a fun
tion with no arguments(t is a
onstant), then the term [�(r)℄(t) redu
es to the empty set:[�(r)℄(
) �!TraverseSeq hfgi �!FirstFail hi �!FirstSingle ;405

TraverseSeq [�(r)℄(f(u1; : : : ; un)) =)hff([r℄(u1); : : : ; un)g; : : : ; ff(u1; : : : ; [r℄(un))giTraversePar [(r)℄(f(u1; : : : ; un)) =) ff([r℄(u1); : : : ; [r℄(un))gFig. 2. The term traversal operators of the �T -
al
ulusWhen the �-term 	(r) is applied to a term t = f(u1; : : : ; un) the term r is appliedto all the arguments ui, i = 1; : : : ; n if for all i, [r℄(ui) does not evaluate to ;. If thereexists an ui su
h that [r℄(ui) redu
es to ;, then the result is the empty set. If weapply 	(r) to a
onstant
, sin
e there are no sub-terms the term [(r)℄(
) redu
esto f
g: [(r)℄(
) �!TraversePar f
gIf we
onsider a �-
al
ulus with a �nite signature F and if we denote by F0 =f
1; : : : ;
ng the set of
onstant fun
tion symbols and by F+ = ff1; : : : ; fmg the setof fun
tion symbols with arity at least one, the two term traversal operators
an beexpressed in the �-
al
ulus by some appropriate �-terms.If the following two de�nitions are
onsidered�0(r) 4= first(f1(r; id; : : : ; id); : : : ; f1(id; : : : ; id; r); : : : ;fm(r; id; : : : ; id); : : : ; fm(id; : : : ; id; r))	(r) 4= f
1; : : : ;
n; f1(r; : : : ; r); : : : ; fm(r; : : : ; r)gwith
i 2 F0, i = 1; : : : ; n, and fj 2 F+, j = 1; : : : ;m, we obtain the following tworedu
tions, [�0(r)℄(fk(u1; : : : ; up))4= [first(f1(r; id; : : : ; id); : : : ; fm(id; : : : ; id; r))℄(fk(u1; : : : ; up))�!First h[f1(r; id; : : : ; id)℄(fk(u1; : : : ; up)); : : : ; [fm(id; : : : ; id; r)℄(fk(u1; : : : ; up))i��!Cong h;; : : : ; ;; ffk([r℄(u1); : : : ; up)g; : : : ; ffk(u1; : : : ; [r℄(up))g; ;; : : : ; ;i��!FirstFail hffk([r℄(u1); : : : ; up)g; : : : ; ffk(u1; : : : ; [r℄(up))g; ;; : : : ; ;iand [(r)℄(fk(u1; : : : ; up))4= [f
1; : : : ;
n; f1(r; : : : ; r); : : : ; fm(r; : : : ; r)g℄(fk(u1; : : : ; up))�!Distrib f[
1℄(fk(u1; : : : ; up)); : : : : : : ; [fm(r; : : : ; r)℄(fk(u1; : : : ; up))g��!Cong f;; : : : ; ;; ffk([r℄(u1); : : : ; [r℄(up))g; ;; : : : ; ;g��!Flat ffk([r℄(u1); : : : ; [r℄(up))gThe operator �0 does not
orrespond exa
tly to the de�nition from the Figure 2but, as we have just seen above, a similar result is obtained when applying the terms�(r) and �0(r) to a term fk(u1; : : : ; up).Lemma 2.6 The term traversal operators � and 	
an be expressed in the �1st-
al
ulus.406

Proof. If we
onsider t = fk(u1; : : : ; up) and if for all i = 1; : : : ; p we have the re-du
tions [r℄(ui) ��!� ; then, a

ording to the evaluation rules des
ribing the behaviorof �(r), we obtain:[�(r)℄(fk(u1; : : : ; up))�!TraverseSeq hffk([r℄(u1); : : : ; up)g; : : : ; ffk(u1; : : : ; [r℄(up))gi��!� hffk(;; : : : ; up)g; : : : ; ffk(u1; : : : ; ;)gi��!OpOnSet hf;g; : : : ; f;gi��!Flat h;; : : : ; ;i��!FirstFail hi�!FirstSingle ;Otherwise, if there exists an l su
h that [r℄(ui) ��!� ;, i = 1; : : : ; l � 1 and[r℄(ul) ��!� vl #, with vl # a ground term
ontaining no redex, the following re-du
tion is obtained:[�(r)℄(fk(u1; : : : ; up))�!TraverseSeq hffk([r℄(u1); : : : ; up)g; : : : ; ffk(u1; : : : ; [r℄(up))gi��!� hffk(;; : : : ; up)g; : : : ; ffk(u1; : : : ; vl #; : : : ; up)g; : : : ; ffk(u1; : : : ; ;)gi��!OpOnSet h;; : : : ; ;; ffk(u1; : : : ; vl #; : : : ; up)g; ;; : : : ; ;i��!FirstFail hffk(u1; : : : ; vl #; : : : ; up)g; ;; : : : ; ;iDepending on the evaluation strategy, the terms following fk(u1; : : : ; vl #; : : : ; up)
an be redu
ed or not to the empty set and we have
hosen here the former alternativefor a more
ompa
t representation.Now, if we
onsider the de�nition of �0(r) and if for all i = 1; : : : ; p we have[r℄(ui) ��!� ; then, we obtain:[�0(r)℄(fk(u1; : : : ; up))��!� hffk([r℄(u1); : : : ; up)g; : : : ; ffk(u1; : : : ; [r℄(up))g; ;; : : : ; ;i��!� hffk(;; : : : ; up)g; : : : ; ffk(u1; : : : ; ;)g; ;; : : : ; ;i��!OpOnSet hf;g; : : : ; f;g; ;; : : : ; ;i��!Flat h;; : : : ; ;; : : : ; ;i��!FirstFail hi�!FirstSingle ;For the same term [�0(r)℄(fk(u1; : : : ; up)), if it exists an l su
h that [r℄(ui) ��!� ;,i = 1; : : : ; l � 1 and [r℄(ul) ��!� vl #, with vl # a ground term
ontaining no redex,the following redu
tion is obtained:[�0(r)℄(fk(u1; : : : ; up))��!� hffk([r℄(u1); : : : ; up)g; : : : ; ffk(u1; : : : ; [r℄(up))g; ;; : : : ; ;i��!� hffk(;; : : : ; up)g; : : : ; ffk(u1; : : : ; vl #; : : : ; up)g; ;; : : : ; ;i��!OpOnSet hf;g; : : : ; f;g; ffk(u1; : : : ; vl #; : : : ; up)g; ;; : : : ; ;i��!Flat h;; : : : ; ;; ffk(u1; : : : ; vl #; : : : ; up)g; ;; : : : ; ;i��!FirstFail hffk(u1; : : : ; vl #; : : : ; up)g; ;; : : : ; ;i407

We
an noti
e that the results of the redu
tions for the appli
ation of a term r to thearguments of a term fk(u1; : : : ; up) by using the two operators, � and �0, are identi
al.If the terms ui, i = 1 : : : p, are ground terms
ontaining no redex then, the �nal resultof the two redu
tions in the
ase without failure is ffk(u1; : : : ; vl #; : : : ; up)g.When the operators are applied to a
onstant
k 2 F0 we obtain:[�0(r)℄(
k) ��!� hi �!� ;;[(r)℄(
k) ��!� f
kg: 22.4 IteratorsThe de�nition of the evaluation (normalization) strategies as, for example, top-downor bottom-up, is based on the appli
ation of one term to the top position or to thedeepest positions of another term.For the moment, we have the possibility of applying a �-term r either to one orall the arguments ui of a �-term t = f(u1; : : : ; un), or to the sub-terms of t at anexpli
itly spe
i�ed depth. But the depth of a term is not known a priori and thus,we
annot apply a term r to the deepest positions of a term t. If we want to applythe term r to the sub-terms at the maximum depth of a term t we must de�ne are
ursive operator whi
h reiterates the appli
ation of the �(r) and 	(r) terms andthus, pushes the appli
ation deeper into terms.We start by presenting the �-term used for des
ribing re
ursive appli
ations in the�-
al
ulus. Starting from the �xed-point
ombinators of the �-
al
ulus, we de�nea �-term whi
h re
ursively applies a given �-term. We use the
lassi
al �xed-point
ombinator of the �-
al
ulus ([2℄), �� = (A� A�) whereA� = �xy:y(xxy)and �� is
alled the Turing �xed-point
ombinator ([26℄).This term
orresponds in the �-
al
ulus to the �-term � = [A℄(A) withA = x! (y ! [y℄([[x℄(x)℄(y))):In �-
al
ulus, for any �-term G we have the redu
tion�� G ��!� G(�� G):In �-
al
ulus, we have a similar redu
tion[�℄(G) ��!� f[G℄([�℄(G))g (Fixed Point)as this
an be
he
ked as follows:[�℄(G) 4= [[A℄(A)℄(G) 4= [[x! (y ! [y℄([[x℄(x)℄(y)))℄(A)℄(G)�!Fire [fy ! [y℄([[A℄(A)℄(y))g℄(G)�!Distrib f[y ! [y℄([[A℄(A)℄(y))℄(G)g�!Fire ff[G℄([[A℄(A)℄(G))gg�!Flat f[G℄([[A℄(A)℄(G))g4= f[G℄([�℄(G))g 408

We have obtained the desired result but the last appli
ation of the rule Fire inthe above redu
tion
an be repla
ed by a redu
tion in the sub-term [[A℄(A)℄(y). We
an thus redu
e [[A℄(A)℄(y) 4= [[x0 ! (y0 ! [y0℄([[x0℄(x0)℄(y0)))℄(A)℄(y) to the termf[y℄([[A℄(A)℄(y))g 4= f[y℄([�℄(y))g. We therefore obtain the following derivation:[�℄(G)��!� f[y ! [y℄([[A℄(A)℄(y))℄(G)g 4= f[y ! [y℄([�℄(y))℄(G)g��!� f[y ! [y℄(f[y℄([�℄(y))g)℄(G)g��!� f[y ! [y℄([y℄([�℄(y)))℄(G)g��!� : : :whi
h does not terminate if the same redex [�℄(y) is always sele
ted for redu
tion.In an operational approa
h we do not want the new
onstru
tions to lead to non-terminating redu
tions. Sin
e the �-term [�℄(G)
an obviously lead to in�nite redu
-tions, a strategy should be used in order to obtain termination and thus the desiredbehavior.We should thus use a strategy whi
h applies the evaluation rules to a sub-term ofthe form [�℄(G) only when no other redu
tion is possible. From an operational pointof view, this strategy is rather diÆ
ult to implement and obviously not very eÆ
ientin a
al
ulus where the � term is represented by its extended form and thus, morediÆ
ult to identify. If � is
onsidered as an independent �-term with the behaviordes
ribed by an evaluation rule
orresponding to the redu
tion (Fixed Point), thestrategy suggested previously
ould be easily implemented.A strategy satisfying the termination
ondition and easier to implement
ould ini-tially apply the evaluation rules at the top positions of the terms and only when noevaluation rule
an be applied at the top position, redu
e the sub-terms at deeperpositions. In what follows we will generally use this outermost strategy. It is
learthat su
h a strategy prevents only the in�nite redu
tions due to the operator �, butit
annot ensure the termination of the untyped �-
al
ulus.As we mentioned previously, the main goal of this se
tion is the representation ofnormalization strategies by �-terms and thus, we want to des
ribe the appli
ationof a term r to all the positions of another term t. Therefore, we must de�ne theappropriate term G that propagates the appli
ation of a �-term in the sub-terms ofanother �-term.2.4.1 Multiple appli
ationsFirst, we want to de�ne the operators BottomUp and TopDown des
ribing the appli-
ation of a term r to all the sub-terms of a term t starting with the deepest positionsof t and respe
tively with the top position of t. We want thus to �nd a term whi
hre
ursively applies the term r to all the sub-terms of t and afterwards at the topposition of the result term and another term whi
h initially applies the term r at thetop position of the term t and then to the sub-terms of the result term. The term rmust be applied to the sub-terms only if this appli
ation does not lead to a failure.We propose �rst two \naive" de�nitions for the former operator and we
omment theen
ountered problems. We analyze the obtained redu
tions and we de�ne afterwardsthe operators des
ribing the desired behavior.409

The �rst natural possibility is to de�ne the �-termGsds(r) 4= f ! (x! [(f); r℄(x))Let us
onsider the �-term SDS (for SpreadDownSimple),SDS(r) 4= [�℄(Gsds(r))and its appli
ation to the term t = f(t1; : : : ; tn). Then, the following derivation isobtained: [SDS(r)℄(t) 4= [[�℄(Gsds(r))℄(t)��!� f[[Gsds(r)℄([�℄(Gsds(r)))℄(t)g4= f[[Gsds(r)℄(SDS(r))℄(t)g4= f[[f ! (x! [(f); r℄(x))℄(SDS(r))℄(t)g��!� f[fx! [(SDS(r)); r℄(x)g℄(t)g��!� f[(SDS(r)); r℄(f(t1; : : : ; tn))g��!� f[r℄([(SDS(r))℄(f(t1; : : : ; tn)))g��!� f[r℄(f([SDS(r)℄(t1); : : : ; [SDS(r)℄(tn)))gAs we
an see from this derivation, the term SDS(r) is re
ursively applied to thesub-terms of the initial term and the term r is applied at the top position of theresult. If one of the appli
ations of the term r leads to a failure, then this failure ispropagated and the empty set is obtained as the result of the derivation.When using a
on
uent strategy, as the ones presented in Part I, the derivationpresented above is possible only if the term Gsds(r)
annot be redu
ed to a set withmore than one element. This
ondition is obviously not respe
ted if r is a set withmore than one element sin
e, for example, Gsds(fa; bg) ��!� fGsds(a); Gsds(b)g. Wewant to prevent the evaluation of the term Gsds(r) to a set with more than oneelement even when r does not satisfy this
ondition and therefore, we de�ne the termGsd(r) 4= f ! (x! h[(f); r℄(x)i)and respe
tively SD (for SpreadDown),SD(r) 4= [�℄(Gsd(r)):If r = fa; bg then, the term Gsd(r) = Gsd(fa; bg) is not redu
ed to the termfGsd(a); Gsd(b)g as it was the
ase for Gsds(r) butGsd(r) 4= f ! (x! h[(f); fa; bg℄(x)i)��!� f ! (x! h[fa; bg℄([(f)℄(x))i)��!Distrib f ! (x! hf[a℄([(f)℄(x)); [b℄([(f)℄(x))gi)In this last term, the �rst argument of the operator hi
ontains the free variable xand thus, it
annot be redu
ed by using the evaluation rule FirstSu

ess.Sin
e this last term is not a set, the propagation of the set symbols is not per-formed in the
ase of the operator Gsd and we
an redu
e the term [�℄(Gsd(r)) tof[Gsd(r)℄([�℄(Gsd(r)))g. Consequently, we obtain the redu
tion:410

[SD(r)℄(t) 4= [[�℄(Gsd(r))℄(t)��!� f[[Gsd(r)℄([�℄(Gsd(r)))℄(t)g4= f[[Gsd(r)℄(SD(r))℄(t)g4= f[[f ! (x! h[(f); r℄(x)i)℄(SD(r))℄(t)g��!� f[fx! h[(SD(r)); r℄(x)ig℄(t)g��!� fh[(SD(r)); r℄(f(t1 ; : : : ; tn))ig��!� fh[r℄(f([SD(r)℄(t1); : : : ; [SD(r)℄(tn)))igExample 2.7 If we use a strategy whi
h initially applies the evaluation rules at thetop positions of terms then, the following derivation is obtained:[SD(fa! b; idg)℄(g(a; f(a)))��!� fh[fa! b; idg℄(g([SD(fa! b; idg)℄(a); [SD(fa! b; idg)℄(f(a))))ig�!Distrib fhf[a! b℄(g([SD(fa! b; idg)℄(a); [SD(fa! b; idg)℄(f(a))));[id℄(g([SD(fa! b; idg)℄(a); [SD(fa! b; idg)℄(f(a))))gig�!Fire fhf;; [id℄(g([SD(fa! b; idg)℄(a); [SD(fa! b; idg)℄(f(a))))gig�!Flat fhfg([SD(fa! b; idg)℄(a); [SD(fa! b; idg)℄(f(a)))gig��!� fhfg(fh[fa! b; idg℄(a)ig; [SD(fa! b; idg)℄(f(a)))gig��!� fhfg(ffb; ag; [SD(fa! b; idg)℄(f(a)))gig��!� fhfg(fb; ag; h[fa! b; idg℄(f([SD(fa! b; idg)℄(a))))gig��!� fhfg(fb; ag; f(fb; ag))gig��!� fg(b; f(b)); g(a; f(b)); g(b; f(a)); g(a; f(a))gWe
an noti
e that the appli
ation [SD(r)℄(t) does not guarantee that the appli-
ations of the term r to the deepest sub-terms of t are the �rst ones to be redu
ed.For example, sin
e we try to apply the evaluation rules at the top position, in thederivation of Example 2.7 we obtain, by applying the evaluation rule Fire,[a! b℄(g([SD(fa! b; idg)℄(a); [SD(fa! b; idg)℄(f(a)))) �!Fire ;and not [a! b℄(g([SD(fa! b; idg)℄(a); [SD(fa! b; idg)℄(f(a))))��!� [a! b℄(g(fb; ag; ff(fb; ag)g)) ��!� ;as in an innermost redu
tion.The disadvantage of the non-
on
uen
e in the
ase of the operator SDS was elim-inated by using the operator hi in the de�nition of the operator SD, but we have notobtained yet the desired behavior for this type of iterator. In the evaluation of theterm [SD(r)℄(t), if one of the appli
ations of the term r to a sub-term of t is evaluatedto ; then, this failure is propagated and the empty set is obtained as the result of theredu
tion.If we want to keep un
hanged the sub-terms of t on whi
h the appli
ation of theterm r evaluates to ;, we
an use the term id either in the same way as in Example 2.7,or by de�ning the operator Gbu:Gbu(r) 4= f ! (x! [first((f); id); first(r; id)℄(x))In the same manner as for the previous
ases we obtain the operator BottomUp:BottomUp(r) 4= [�℄(Gbu(r))411

orresponding to the des
ription presented at the beginning of this se
tion.Lemma 2.8 The BottomUp operator des
ribing the appli
ation of a term to all thesub-terms of another term in a bottom-up manner
an be expressed in the �1st-
al
ulus.Proof. We analyze the redu
tions of the appli
ation of a term BottomUp(r) to a
onstant and to a fun
tional term with several arguments. A
omplete proof is givenin [9℄. 2A top-down like redu
tion is immediately obtained if we take the termGtd(r) 4= f ! (x! h[first(r; id); first((f); id)℄(x)i)and we de�ne the term TopDown(r) 4= [�℄(Gtd(r)):Lemma 2.9 The TopDown operator des
ribing the appli
ation of a term to all thesub-terms of another term in a top-down manner
an be expressed in the �1st-
al
ulus.2.4.2 Singular appli
ationsUsing the term traversal operator � we
an de�ne similar �-terms that apply a spe
i�
term only at one position of a �-term in a bottom-up or top-down way. We will seethat the operators built using the � operator are
onvenient for the
onstru
tion ofnormalization operators.The �-term used in the bottom-up
ase isHbu(r) 4= f ! (x! [first(�(f); r)℄(x))and we de�ne an operator that applies only on
e a �-term in a bottom-up way,On
ebu(r) 4= [�℄(Hbu(r)):As for the previous operators, the term [On
ebu(r)℄(t) 4= [[�℄(Hbu(r))℄(t)
an leadto an in�nite redu
tion if an appropriate strategy is not employed. As for theSpreadDown operator it is enough to apply the evaluation rules �rst to the topposition and only if this is not possible, to deeper positions. We
an state:Lemma 2.10 The On
ebu operator des
ribing the appli
ation of a term to a sub-termof another term in a bottom-up manner
an be expressed in the �1st-
al
ulus.Example 2.11 The appli
ation [On
ebu(a ! b)℄(a) is redu
ed to fh[(a ! b)℄(a)igand thus, to the term fbg.The appli
ation of the rule a ! b to the leftmost-innermost position of a termg(a; f(a)) is represented by the term [On
ebu(a! b)℄(g(a; f(a))) and the
orrespond-ing evaluation is presented below:[On
ebu(a! b)℄(g(a; f(a)))��!� fhhg([On
ebu(a! b)℄(a); f(a)); g(a; [On
ebu(a! b)℄(f(a)))i; [a! b℄(g(a; f(a)))ig��!� fhhg(fbg; f(a)); g(a; [On
ebu(a! b)℄(f(a)))i; [a! b℄(g(a; f(a)))ig��!� fhfg(b; f(a))g; [a! b℄(g(a; f(a)))ig��!� fg(b; f(a))g 412

If we want to de�ne an operator that applies a spe
i�
 term only at one positionof a �-term in a top-down way we should use the �-termHtd(r) 4= f ! (x! [first(r;�(f))℄(x))and we obtain immediately the operator On
etd,On
etd(r) 4= [�℄(Htd(r)):In the
ase of an appli
ation [On
etd(r)℄(t), the appli
ation of the term r is �rsttried at the top position of t and in the
ase of a failure, r is applied deeper in theterm t. As previously, we
an state:Lemma 2.12 The On
etd operator des
ribing the appli
ation of a term to a sub-termof another term in a top-down manner
an be expressed in the �1st-
al
ulus.2.5 Repetition and normalization operatorsIn the previous se
tions we have de�ned operators that des
ribe the appli
ation of aterm at some position of another term (e.g. On
ebu) and operators that allow us tore
over from failing evaluations (first).Now we want to de�ne an operator that applies repeatedly a given strategy r toa �-term t. We
all it repeat and its behavior
an be des
ribed by the followingevaluation rule: Repeat [repeat(r)℄(t) =) [repeat(r)℄([r℄(t))We use on
e again the �xed-point operator presented in the previous se
tion andwe de�ne the �-term I(r) 4= f ! (x! [r; f ℄(x))that is used for des
ribing a repeat operator,repeat(r) 4= [�℄(I(r)):This approa
h has two obvious drawba
ks. First, the termination of the evaluationis not guaranteed even when the strategy used for the previous operators is used.When the strategy applies the evaluation rules �rst to the top position of an appli-
ation [u℄(v) and only afterwards to the right sub-term v and then to the left sub-termu, we do not obtain the desired result. When using this rightmost-outermost strategy,the following non-terminating derivation is obtained:[repeat(r)℄(t) ��!� f[repeat(r)℄([r℄(t))g ��!� : : :��!� f[repeat(r)℄([r℄([r℄(: : : [r℄(t) : : :)))g ��!� : : :Se
ond, when the evaluation terminates the result is always the empty set. If atsome point in the evaluation the appli
ation of the term r is redu
ed to the emptyset, then ; is stri
tly propagated and thus the term [repeat(r)℄(t) is redu
ed to theempty set. 413

Repeat�0 [repeat�(r)℄(t) =) [repeat�(r)℄([r℄(t))if [r℄(t) is not redu
ed to ;Repeat�00 [repeat�(r)℄(t) =) tif [r℄(t) is redu
ed to ;Fig. 3. The operator repeat�In order to over
ome these two problems, we
an de�ne an operator
alled repeat�with a behavior de�ned by the evaluation rules presented in Figure 3.Hen
e, we need an operator similar to the repeat one, that stores the last non-failingresult and when no further appli
ation is possible returns this result. We modify theterm I(r) that be
omesJ(r) 4= f ! (x! [first(r; f; id)℄(x))and we de�ne, as before, the termrepeat�(r) 4= [�℄(J(r))We should not forget that we assume here that an appli
ation [u℄(v) is redu
ed byapplying the evaluation rules at the top position, then to its argument v and onlyafterwards to the term u. On
e again, we get:Lemma 2.13 The operator repeat� des
ribing the repeated appli
ation of a termwhile the result is not ;
an be expressed in the �1st-
al
ulus.Example 2.14 The repeated appli
ation of the rewrite rules a ! b and b !
 onthe term a is represented by the term [repeat�(fa! b; b!
g)℄(a) that evaluates asfollows:[repeat�(fa! b; b!
g)℄(a)��!� fh[repeat�(fa! b; b!
g)℄([fa! b; b!
g℄(a)); [id℄(a)ig��!� fh[repeat�(fa! b; b!
g)℄(fbg); [id℄(a)ig��!� fhfh[repeat�(fa! b; b!
g)℄([fa! b; b!
g℄(b)); [id℄(b)ig; [id℄(a)ig��!� fhfh[repeat�(fa! b; b!
g)℄(f
g); [id℄(b)ig; [id℄(a)ig��!� fhfhfh[repeat�(fa! b; b!
g)℄([fa! b; b!
g℄(
)); [id℄(
)ig; [id℄(b)ig; [id℄(a)ig��!� fhfhfh[repeat�(fa! b; b!
g)℄(;); f
gig; [id℄(b)ig; [id℄(a)ig��!� fhfhfh;; f
gig; [id℄(b)ig; [id℄(a)ig��!� fhfhf
g; [id℄(b)ig; [id℄(a)ig��!� fhff
gg; [id℄(a)ig��!� f
gUsing the above operators it is easy to de�ne some spe
i�
 normalization strategies.For example, the innermost strategy is de�ned byim(r) 4= repeat�(On
ebu(r))414

and an outermost strategy is de�ned byom(r) 4= repeat�(On
etd(r)):Corollary 2.15 The operators im et om des
ribing the innermost and outermostnormalization
an be expressed in the �1st-
al
ulus.We have now all the ingredients needed for des
ribing the normalization of a termt in a rewrite theory R. The term �R(u) des
ribed at the beginning of this se
tion
an be de�ned using the im(R) or om(R) operators and thus, we
an represent thenormalization of a term u w.r.t. a rewriting theory R by the �-terms�R(u) 4= [im(R)℄(u)or �R(u) 4= [om(R)℄(u):Example 2.16 If we denote by R the set of rewrite rules fa ! b; g(x; f(x)) ! xg,we represent by [im(R)℄(g(a; f(a))) the leftmost-innermost normalization of the termg(a; f(a)) a

ording to the set of rules R and the following derivation is obtained:[im(R)℄(g(a; f(a)))4= [repeat�(On
ebu(R))℄(g(a; f(a)))��!� fh[repeat�(On
ebu(R))℄([On
ebu(R)℄(g(a; f(a)))); [id℄(g(a; f(a)))ig��!� fh[repeat�(On
ebu(R))℄(fg(b; f(a))g); [id℄(g(a; f(a)))ig��!� fhf[repeat�(On
ebu(R))℄(g(b; f(a)))g; [id℄(g(a; f(a)))ig��!� fhffh[repeat�(On
ebu(R))℄([On
ebu(R)℄(g(b; f(a))));[id℄(g(b; f(a)))igg; [id℄(g(a; f(a)))ig��!� fhfh[repeat�(On
ebu(R))℄(fg(b; f(b))g);[id℄(g(b; f(a)))ig; [id℄(g(a; f(a)))ig��!� fhfhfhf[repeat�(On
ebu(R))℄([On
ebu(R)℄(g(b; f(b))))g;[id℄(g(b; f(b)))ig; [id℄(g(b; f(a)))ig; [id℄(g(a; f(a)))ig��!� fhfhfhf[repeat�(On
ebu(R))℄(fbg)g;[id℄(g(b; f(b)))ig; [id℄(g(b; f(a)))ig; [id℄(g(a; f(a)))ig��!� fhfhfhfh[repeat�(On
ebu(R))℄([On
ebu(R)℄(b)); [id℄(b)i;[id℄(g(b; f(b)))ig; [id℄(g(b; f(a)))ig; [id℄(g(a; f(a)))ig��!� fhfhfhfh[repeat�(On
ebu(R))℄(;); [id℄(b)i;[id℄(g(b; f(b)))ig; [id℄(g(b; f(a)))ig; [id℄(g(a; f(a)))ig��!� fhfhfhfh;; [id℄(b)i;[id℄(g(b; f(b)))ig; [id℄(g(b; f(a)))ig; [id℄(g(a; f(a)))ig��!� fhfhfhfffbggg; [id℄(g(b; f(b)))ig; [id℄(g(b; f(a)))ig; [id℄(g(a; f(a)))ig��!� fhfhffbgg; [id℄(g(b; f(a)))ig; [id℄(g(a; f(a)))ig��!� fhffbgg; [id℄(g(a; f(a)))ig��!� fhfbg; [id℄(g(a; f(a)))ig��!� fbgGiven a term u, if the rewriting theory R is not
on
uent then, the result of theredu
tion of the term [im(R)℄(u) is a set representing all the possible results of the415

redu
tion of the term u in the rewriting theory R. Ea
h of the elements of theresult set represents the result of a redu
tion in the rewriting theory R for a givenappli
ation order of the rewrite rules in R.Example 2.17 Let us
onsider the set R = fa ! b; a !
; g(x; x) ! xg of non-
on
uent rewrite rules. The term [im(R)℄(g(a; a)) representing the innermost nor-malization of the term g(a; a) a

ording to the set of rewrite rules R is redu
ed tofb; g(
; b); g(b;
);
g. The term [om(R)℄(g(a; a)) representing the outermost normal-ization is redu
ed to fb;
g.We have now all the ingredients ne
essary to des
ribe in a
on
ise way the nor-malization pro
ess indu
ed by a rewrite theory. Of
ourse, the standard properties oftermination and
on
uen
e of the rewrite system will allow us to get uniqueness ofthe result. Our approa
h di�ers from this and we de�ne this normalization even inthe
ase where there is no unique normal form or where termination is not warranted.This is why in general we do not get termination or uniqueness of the normal form.3 Using the �1st-
al
ulusWe have shown in Part I that a �nite derivation in term rewriting
an be mimi
kedas an appropriate �-term that indeed represents the tra
e of the redu
tion. It is oftenmore interesting to �nd su
h a derivation.3.1 En
oding rewriting in the �1st-
al
ulusWe are interested to build a �-term des
ribing the redu
tion, in term rewriting, ofterm t w.r.t. a set of rewrite rules, but without knowing a priori the intermediatesteps of the derivation of t. For this, we
an use the �1stT -
al
ulus and the operatorsde�ning innermost and outermost normalization strategies.Proposition 3.1 Given a rewriting theory TR and two �rst order ground terms t; t#2T (F) su
h that t is normalized to t# w.r.t. the set of rewrite rulesR. Then, [im(R)℄(t)is �-redu
ed to a set
ontaining the term t#.Proof. By indu
tion on the number of redu
tion steps for the term t. 2Example 3.2 Let us
onsider a rewrite system R
ontaining the rewrite rules (x =x) ! True and b ! a. Then, the term a = b redu
es to True in this rewritesystem and a �-term redu
ing to fTrueg
an be built as shown in Part I or using the�xed-point operators.In the former
ase the
orresponding �-term is[(x = x)! True℄([a = (b! a)℄(a = b)):For the latter approa
h we build the term[im(f(x = x)! True; b! ag)℄(a = b):Sin
e in this
ase we
an obtain empty sets and additionally, sets with more than oneelement are obtained when equational mat
hing is not unitary, a redu
tion strategy416

as presented in Part I should be used in order to ensure
on
uen
e. If no redu
tionstrategy is used then undesired results
an be obtained.3.2 En
oding
onditional rewritingAs shown before, any term rewriting redu
tion
an be des
ribed by a redu
tion inthe �-
al
ulus. In this se
tion we give a representation in the �-
al
ulus of the
ondi-tional rewriting redu
tions. We will propose thus, methods for de�ning a �-term that
ontains all the information needed for redu
tion in
luding the
ondition evaluationthat is normally performed on the meta-level.The main diÆ
ulty here resides in the fa
t that for
onditional rewriting, the re-du
tion relation is re
ursively applied in order to evaluate the
ondition when �ringa
onditional rule. We
an use the same approa
h as our expli
it des
ription ofnon-
onditional rewriting (see Part I) but the �-terms used in order to des
ribe the
onditional rewriting redu
tion be
ome very
ompli
ated in this
ase. Instead, a de-tailed des
ription by a
on
ise �-term of the normalization pro
ess of the
onditions
an be obtained by using the normalization operators presented in the Se
tion 2.5.3.2.1 De�nition of
onditional rewritingMany
onditional rewriting relations have been designed and mainly di�er in the waythe
onditions are understood [15℄. We
onsider here the normal
onditional rewritingde�ned as follows.De�nition 3.3 A normal rewrite system R is
omposed of
onditional rewrite rulesof the form (l ! r if
) where l; r;
 are elements of T (F ;X) with variables satisfyingthe
ondition Var(r) [Var(
) � Var(l), and su
h that for ea
h ground substitution� satisfying Var(
) � Dom(�), the normal form under R of �
 is either the booleanTrue or False. Given a
onditional rewrite system R
omposed of su
h rules, theappli
ation of the rewrite rule (l ! r if
) of R on a term t at o

urren
e m
onsistsin:(i) mat
hing, using the substitution �, the left-hand side of the rule against the termtjm(ii) normalizing the instantiated
ondition �
 using R and, provided the resultingterm is True,(iii) repla
e tjm by �r in t.This is denoted t �!l!r if
[m℄ td�rem .3.2.2 En
odingAs we have mentioned, the main diÆ
ulty in the en
oding of
onditional rewritingis to make pre
ise the evaluation pro
ess of the
ondition. In the
ase of normalrewriting, this means
omputing the normal form of the
ondition.We denote by
� the �-term that, when instantiated by the proper substitution (i.e.�
�), normalizes to the term fug if the term
, instantiated a

ordingly (i.e. �
), isnormalized into u in the rewrite theory R. When the term
 is a boolean
ondition417

and when the rewrite system is
ompletely de�ned over the booleans [5℄, the term ushould be one of the two
onstants True or False.If the redu
tion in a rewrite theory R is known, we
an de�ne, as in Part I, the�-term
� 4= [un℄(: : : [u1℄(
) : : :) that evaluates to fug, i.e. to fTrueg or fFalseg. If
� is the �-term des
ribing the redu
tion of the term
 then, the
onditional rewriterule l! r if
 is represented by the �-terml! [fTrue! r; False! ;g℄(
�)or even the simpler, but maybe less suggestive one,l! [True! r℄(
�):In the
ase when
� redu
es to fFalseg, in the latter representation the mat
hingfails and the result of the appli
ation is, as in the former one, the empty set. When
� redu
es to fTrueg, the result of the redu
tion is obviously the same in the two
ases, i.e. the same as the appli
ation of l! r.By using the above representation, we
an extend the Proposition given in Part Iand show that any derivation in a
onditional rewriting theory is representable by anappropriate �-term.Proposition 3.4 Given a
onditional rewriting theory TR and two �rst order groundterms t; t0 2 T (F) su
h that t ��!R t0. Then, there exist the �-terms u1; : : : ; un builtusing the rewrite rules in R and the intermediate steps in the derivation t ��!R t0su
h that we have [un℄(: : : [u1℄(t) : : :) ��!�; ft0g.The
onstru
tion approa
h used in Part I for un
onditional rewriting is obviouslynot
onvenient and we need a method that allows us to build the �-term
orrespondingto a rewrite redu
tion without knowing a priori the redu
tion steps. In order tobuild the �-term
� using only the term
 and the rewrite rules of R, we
an use thenormalization operators de�ned in Se
tion 2. For example, we
an de�ne
� 4= [im(R)℄(
):Example 3.5 Let us assume that the set of rules des
ribing the order on integers isdenoted by R<. We
onsider the rewrite rule (f(x) ! g(x) if x � 1) that applied tothe term f(2) redu
es to g(2) sin
e x is instantiated by 2 and the
ondition (2 � 1)redu
es to True by using the rewrite rule (2 � 1)! True.If we
onsider that the
ondition is normalized a

ording to R<, then the
orre-sponding redu
tion in the �-
al
ulus is the following:[f(x)! [True! g(x)℄([im(R<)℄(x � 1))℄(f(2))�!Fire f[True! g(2)℄([im(R<)℄(2 � 1))g��!� f[True! g(2)℄(fTrueg)g�!Bat
h ff[True! g(2)℄(True)gg�!Fire fffg(2)ggg��!Flat fg(2)gThe
onditions of the rewrite rules
an be normalized a

ording to a set of
ondi-tional rewrite rules, in
luding the
urrent rule, and thus the de�nition of the �-rewrite418

rules representing this normalization is intrinsi
ally re
ursive and
annot be realizedonly by using the operator im.We use the �xed-point operator � des
ribed in Se
tion 2.4 to represent the appli-
ation of the same set of rewrite rules for the normalization of all the
onditions.Given a set of rewrite rules R = Rn [R
 where Rn and R
 represent the subset ofnon-
onditional rewrite rules and respe
tively the subset of
onditional rewrite rulesof the form (l ! r if
). We de�ne the termR 4= f ! (y ! [im(fli ! [True! ri℄([f ℄(
i)) j i = 1 : : :mg [Rn)℄(y))where R
 = fli ! ri if
i j i = 1 : : :mg, Rn = fl0i ! r0i j i = 1 : : : ng and respe
tivelyIM(R) 4= [�℄(R):Thus, for des
ribing the normalization of the term t w.r.t. the rewrite rules of Rwe use the �-term [IM(R)℄(t).The normalization strategy for the
onditions is now abstra
ted by the variable fand sin
e IM(R) 4= [�℄(R) is redu
ed to[R℄([�℄(R)) then this variable is instantiatedat the beginning by [�℄(R) (i.e. IM(R)). Thus, not only the initial term but alsothe
onditions are redu
ed a

ording to IM(R). This instantiation
an be possiblyreiterated if some
onditional rules suppose the appli
ation of other
onditional rules.We obtain thus a result similar to Proposition 3.4 but with a method of
onstru
tionfor the
orresponding �-term based only on the initial term and on the set of rewriterules.Proposition 3.6 Given a
onditional rewriting theory TR and two �rst order groundterms t; t#2 T (F) su
h that t is normalized to t# w.r.t. the set of rewrite rules R.Then, [IM(R)℄(t) is �-redu
ed to a set
ontaining the term t#.Example 3.7We
onsider the set of rewrite rules R
ontaining the rewrite rule(x = x) ! True and the
onditional rewrite rules (f(x) ! g(x) if h(x) = b) and(h(x) ! b if x = a). The term f(a) redu
es to g(a) using the rewrite rules of R andwe show below the
orresponding redu
tion in �-
al
ulus.Using the method presented above we obtain the �-term:R 4= f ! (y ! [im(ff(x)! [True! g(x)℄([f ℄(h(x) = b));h(x)! [True! b℄([f ℄(x = a));(x = x)! Trueg)℄(y))We show the main steps in the redu
tion of the term [IM(R)℄(f(a)). We obtainimmediately the redu
tion[IM(R)℄(f(a)) 4= [[�℄(R)℄(f(a)) ��!� [[R℄([�℄(R))℄(f(a)) 4= [[R℄(IM(R))℄(f(a))and the �nal result is the same as the one obtained for the term[im(ff(x)! [True! g(x)℄([IM(R)℄(h(x) = b));h(x)! [True! b℄([IM(R)℄(x = a));(x = x)! Trueg)℄(f(a))) 419

and thus for[f(x)! [True! g(x)℄([IM(R)℄(h(x) = b))℄(f(a))��!� f[True! g(a)℄([IM(R)℄(h(a) = b))gFor the term [IM(R)℄(h(a) = b) we pro
eed as previously and thus, we have toredu
e the term[im(ff(x)! [True! g(x)℄([IM(R)℄(h(x) = b));h(x)! [True! b℄([IM(R)℄(x = a));(x = x)! Trueg)℄(h(a) = b)with the intermediate redu
tion[h(x)! [True! b℄([IM(R)℄(x = a))℄(h(a)) ��!� f[True! b℄([IM(R)℄(a = a))gSin
e we easily obtain [IM(R)℄(a = a) ��!� fTrueg then, the previous term isredu
ed to f[True! b℄(fTrueg)g ��!� fbg and we have[IM(R)℄(h(a) = b) ��!� [im(: : :)℄(fbg = b) ��!� fTruegWe
ome ba
k to the redu
tion of the initial term and we getf[True! g(a)℄([IM(R)℄(h(a) = b))g ��!� f[True! g(a)℄(fTrueg)g ��!� fg(a)gWe have thus obtained the same result as in
onditional term rewriting.Starting from the results presented in this se
tion we will give in the next se
tion arepresentation of the more elaborated rewrite rules used in ELAN, a language basedon
onditional rewrite rules with lo
al assignments.4 The rewriting
al
ulus as a semanti
s of ELAN4.1 ELAN's rewrite rulesELAN (a name that expresses the dynamism of the arrow), is an environment for spe
-ifying and prototyping dedu
tion systems in a language based on labeled
onditionalrewrite rules and strategies to
ontrol rule appli
ation. The ELAN system o�ers a
ompiler and an interpreter of the language. The ELAN language allows us to de-s
ribe in a natural and elegant way various dedu
tion systems [29, 19, 3℄. It has beenexperimented on several non-trivial appli
ations ranging from de
ision pro
edures,
onstraint solvers [6℄, logi
 programming [21℄ and automated theorem proving [10℄but also spe
i�
ation and exhaustive veri�
ation of authenti
ation proto
ols [8℄.ELAN's rewrite rules are
onditional rewrite rules with lo
al assignments. Thelo
al assignments are let-like
onstru
tions that allow appli
ations of strategies tosome terms. The general syntax of an ELAN rule is:[`℄ l) r [if
ond j where y := (S)u ℄� endwhere
ond is an ELAN expression that
an be redu
ed to a boolean value. If all the
onditions are redu
ed to the true value and all lo
al variables (e.g. y) are assigned420

with su

ess (i.e. the appli
ation of the strategy from the right-hand side of the lo
alassignment does not fail) then the rewrite rule
an be applied.We should noti
e that the square bra
kets ([℄) in ELAN are used to indi
ate thelabel of the rule and should be distinguished from the square bra
kets of the �-
al
ulusthat represent the appli
ation of a rewrite rule (�-term).A partial semanti
s
ould be given to an ELAN program using rewriting logi
 [22,4℄, but more
onveniently all ELAN's rules (and not only the
onditional ones) andstrategies
an be expressed using the �-
al
ulus and thus an ELAN program is just aa �-term. The results of the evaluation of this �-term
orrespond to all the possibleresults of the exe
ution of the initial ELAN program.Example 4.1 An example of a labeled ELAN rule des
ribing a possible naive way tosear
h the minimal element of a list by sorting the list and taking the �rst element isthe following:[min-rule℄ min(l) => mif l != nilwhere sl := (sort) lwhere m := () head(sl) endThe strategy sort
an be any sorting strategy. The operator head is supposed tobe des
ribed by a
on
uent and terminating set of unlabeled rewrite rules. Thus,sl is assigned the result of the appli
ation of a given set of labeled rules guidedby the strategy (sort), while m is assigned the result of the appli
ation of a givenset of unlabeled rules guided by the strategy () (i.e. the impli
it built-in innermoststrategy).The evaluation strategy used for evaluating the
onditions is a leftmost innermoststandard rewriting strategy.The non-determinism is handled mainly by two basi
 strategy operators: dont
are
hoose (denoted d
(s1; : : : ; sn)) that returns the results of at most one non-deterministi
ly
hosen unfailing strategy from its arguments and dont know
hoose(denoted dk(s1; : : : ; sn)) that returns all the possible results. A variant of the dont
are
hoose operator is the first
hoose operator (denoted first(s1; : : : ; sn))that returns the results of the �rst unfailing strategy from its arguments.Several strategy operators implemented in ELAN allow us a simple and
on
ise de-s
ription of user de�ned strategies. For example, the
on
atenation operator denoted\;" builds the sequential
omposition of two strategies s1 and s2. The strategy s1; s2fails if s1 fails, otherwise it returns all results (maybe none) of s2 applied to the resultsof s1. Using the operator repeat* we
an des
ribe the repeated appli
ation of a givenstrategy. Thus, repeat*(s) iterates the strategy s until it fails and then returns thelast obtained result.Any rule in ELAN is
onsidered as a basi
 strategy and several other strategyoperators are available for des
ribing the
omputations. Here is a simple exampleillustrating the way the first and dk strategies work.Example 4.2 If the strategy dk(x=>x+1,x=>x+2) is applied to the term a, ELANprovides two results: a+1 and a+2. When the strategy first(x=>x+1,x=>x+2) is ap-plied to the same term only the a+1 result is obtained. The strategy first(b=>b+1,a=>a+2) applied to the term a yields the result a+ 2.421

Using non-deterministi
 strategies, we
an explore exhaustively the sear
h spa
e ofa given problem and �nd paths des
ribed by some spe
i�
 properties.For example, for proving the
orre
tness of the Needham-S
hroeder authenti
ationproto
ol [24℄ we look for possible atta
ks among all the behaviors during a session. InExample 4.3 we present just one of the rules of the proto
ol and we give the strategylooking for all the possible atta
ks, a more detailed des
ription of the implementationis given in [8℄.Example 4.3We
onsider the rewrite rules des
ribing the Needham-S
hroeder au-thenti
ation proto
ol that aims to establish a mutual authenti
ation between an ini-tiator and a responder that
ommuni
ate via an inse
ure network (i.e. in presen
e ofintruders).The strategy looking for possible atta
ks applies repeatedly and non-deterministi
lyall the rewrite rules des
ribing the behavior of the proto
ol (e.g. initiate) and of theintruder (e.g. intruder) and sele
ts only those results representing an atta
k.[℄attStrat => repeat*(dk(initiate, ..., intruder));atta
kFound endThe non-deterministi
 appli
ation is des
ribed with the operator dk. The result ofthe strategy repeat*(...) is the set of all possible behaviors in a proto
ol sessionwhere messages
an be inter
epted or faked by an intruder. The strategy atta
kFoundjust
he
ks if the term re
eived as input represents an atta
k (by trying to apply therewrite rules
orresponding to the negation of the desired invariants) and thereforesele
ts from the previous set of results only those representing an atta
k.4.2 The �-
al
ulus representation of ELAN rulesThe rules of the system ELAN
an be expressed using the �-
al
ulus. A rule with no
onditions and no lo
al assignments l) r is represented by l ! r and a
onditionalrule is expressed as in Se
tion 3.2.4.2.1 Rules with lo
al assignmentsThe ELAN rewrite rules with lo
al assignments but without
onditions of the form[`℄ l(x)) r(x; y)where y := (S)u
an be represented by the �-terml(x)! r(x; [S�℄(u))or the �-term l(x)! [y ! r(x; y)℄([S�℄(u))with S�, the �-term
orresponding to the strategy S in the �-
al
ulus.The �rst representation synta
ti
ally repla
es all variables of the right-hand sideof the rewrite rule de�ned in a lo
al assignment with the term whi
h instantiates422

the respe
tive variable. In the se
ond representation, ea
h variable de�ned in a lo
alassignment is bound in a �-rewrite rule whi
h is applied to the
orresponding term.Example 4.4 The ELAN rule[deriveSum℄ p_1 + p_2 => p_1' + p_2'where p_1' := (derive)p_1where p_2' := (derive)p_2 end
an be represented by one of the following two �-termsp1 + p2 ! [derive℄(p1) + [derive℄(p2);p1 + p2 ! [p01 ! [p02 ! p01 + p02℄([derive℄(p2))℄([derive℄(p1)):At this moment one
an noti
e the usefulness of free variables in the rewrite rules.The latter representation of an ELAN rule with lo
al assignments would not be possibleif the variable p01 was not allowed to be free in the �-rule p02 ! p01 + p02. The freevariables in the right-hand side of a �-rewrite-rule also enables the parameterizationof rewrite rules by strategies as in y ! [f(x) ! [y℄(x)℄(f(a)) where the strategy tobe applied on x is not known in the rule f(x)! [y℄(x).Example 4.5We
onsider the ELAN rule[deriveSum℄ x => y + ywhere y := (derive)x endLet us
onsider that the strategy derive is dk(a=>b,a=>
). Then, the appli
ationof the strategy derive to the term a gives the two results b and
. Thus, the appli-
ation of the rule deriveSum to the term a provides non-deterministi
ally one of thefour results b+ b, b+
,
+ b,
+
.The �-representation of this rule isx! [fa! b; a!
g℄(x) + [fa! b; a!
g℄(x)that applied to a redu
es as follows[x! [fa! b; a!
g℄(x) + [fa! b; a!
g℄(x)℄(a)�!Fire f[fa! b; a!
g℄(a) + [fa! b; a!
g℄(a)g��!Distrib ff[a! b℄(a); [a!
℄(a)g+ f[a! b℄(a); [a!
℄(a)gg��!Fire fffbg; f
gg+ ffbg; f
ggg�!Flat ffb;
g+ fb;
gg�!OpOnSet ffb+ fb;
g;
+ fb;
ggg�!OpOnSet fffb+ b; b+
g; f
+ b;
+
ggg�!OpOnSet fffb+ b; b+
g; f
+ b;
+
ggg��!Flat fb+ b; b+
;
+ b;
+
gThis set represents exa
tly the four results obtained in ELAN.If we
onsider more general ELAN rules
ontaining lo
al assignments as well as
onditions on the lo
al variables, the
ombination of the methods used for
onditionalrules and rules with lo
al assignments should be done
arefully. If we had used arepresentation
losed to the �rst one from Example 4.4 we would have obtained somein
orre
t results as in Example 4.6. 423

Example 4.6We
onsider the des
ription of an automaton by a set of rewrite rules,ea
h one des
ribing the transition from a state to another. The potential exe
utionof a double transition from an initial state in a �nal state passing by a non-�nalintermediate state,
an be des
ribed by the following ELAN rule:[double℄ x => next(y)where y := (dk(s1 => s2,s1 => s3)) xif nf(y)endThe term next(y) represents the state obtained by
arrying out a transition fromy and this behavior
an be easily represented in ELAN by a set of unlabeled rulesdes
ribing the operator nf. We note by Rf the set of rewrite rules des
ribing the�nal states and we suppose that s2 is a �nal state but s3 is not.By using the �rst representation approa
h of a rule with lo
al assignments and the
oding method for
onditional rules presented in Se
tion 3.2, we obtain the �-term
orresponding to the previous ELAN rule:x! [True! next([fs1! s2; s1! s3g℄(x))℄([im(Rf)℄(nf([fs1! s2; s1! s3g℄(x))))This term applied to s1 leads to the following redu
tion[x! [True! next([fs1! s2; s1! s3g℄(x))℄([im(Rf)℄(nf([fs1! s2; s1! s3g℄(x))))℄(s1)�!� f[True! next([fs1! s2; s1! s3g℄(s1))℄([im(Rf)℄(nf([fs1! s2; s1! s3g℄(s1))))g��!� f[True! next(fs2; s3g)℄([im(Rf)℄(nf(fs2; s3g)))g��!� f[True! fnext(s2); next(s3)g℄([im(Rf)℄(fnf(s2); nf(s3)g))g��!� f[True! fnext(s2); next(s3)g℄(fFalse; T rueg)g��!� ff[True! fnext(s2); next(s3)g℄(False); [True! fnext(s2); next(s3)g℄(True)gg��!� f;; [True! fnext(s2); next(s3)g℄(True)g��!� f;; fnext(s2); next(s3)gg��!� fnext(s2); next(s3)gwhile in ELAN we obtain the only result next(s3) that would be represented by the�-term fnext(s3)g.The problem in the Example 4.6 is the double evaluation of the term[fs1 ! s2; s1 ! s3g℄(s1) repla
ing the lo
al variable y: on
e in the
ondition andon
e in the right-hand side of the rule. If this term is evaluated to a set with morethan one element and one of its elements satis�es the
ondition, then this set repla
esthe
orresponding variables in the right-hand side of the rule, while only the sub-set of elements satisfying the
ondition should be
onsidered. Therefore, we need ame
hanism that evaluates only on
e ea
h of the lo
al assignments of a rule.We use an approa
h
ombining the se
ond representation approa
h of a rule withlo
al assignments and the �-representation of
onditional rules. Without losing gen-erality, we
onsider that an ELAN rule that has the following form:424

[label℄ l =) rdxeq where x := (s)tif CdxependThen, the ELAN rule presented above is expressed as the �-terml! [x! [fTrue! rdxeq ; False! ;g℄([im(R)℄(Cdxep))℄([s℄(t))or the simpler onel ! [x! [True! rdxeq ℄([im(R)℄(Cdxep))℄([s℄(t))where R represents the set of rewrite rules modulo whi
h we normalize the
onditions.In order to simplify the presentation we supposed that the rules of the set R arerewrite rules of the form l ! r and thus, the operator im is suÆ
ient to de�nenormalization w.r.t. su
h a set. If we
onsider
onditional unlabeled rules, then theoperator IM must be employed.The way the transformation is applied to an ELAN rewrite rule and the
orrespond-ing redu
tion are illustrated by taking again the Example 4.6 and
onsidering the newrepresentation.Example 4.7 The ELAN rewrite rule from Example 4.6 is represented by the �-termx! [y ! [True! next(y)℄([im(Rf)℄(nf(y)))℄([fs1! s2; s1! s3g℄(x))that, applied to the term s1 leads to the following redu
tion[x! [y ! [True! next(y)℄([im(Rf)℄(nf(y)))℄([fs1! s2; s1! s3g℄(x))℄(s1)�!Firef[y ! [True! next(y)℄([im(Rf)℄(nf(y)))℄([fs1! s2; s1! s3g℄(s1))g��!� f[y ! [True! next(y)℄([im(Rf)℄(nf(y)))℄(fs2; s3g)g��!� f[y ! [True! next(y)℄([im(Rf)℄(nf(y)))℄(s2);[y ! [True! next(y)℄([im(Rf)℄(nf(y)))℄(s3)g��!Fireff[True! next(s2)℄([im(Rf)℄(nf(s2)))g;f[True! next(s3)℄([im(Rf)℄(nf(s3)))gg��!� f[True! next(s2)℄(False); [True! next(s3)℄(True)g��!� f;; fnext(s3)gg��!� fnext(s3)gthat is the representation of the result obtained in ELAN.The same result as in Example 4.6 is obtained if the evaluation rule Fire is appliedbefore the distribution of the set fs2; s3g. But the
on
uent strategies presented inPart I forbid su
h a redu
tion and thus, the
orre
t result is obtained.This latter representation not only allows a
orre
t transformation of ELAN re-du
tions in �-redu
tions but gives also a hint on the implementation details of su
hrewrite rules. On one hand the implementation should ensure the
orre
tness of theresult and on the other hand it should take into a

ount the eÆ
ien
y problems. Forinstan
e, the representation used in Example 4.5 is
orre
t but obviously less eÆ
ient425

than a representation as in Example 4.7 and this is due to the double evaluation ofthe same appli
ation.The ELAN evaluation me
hanism is more
omplex than presented above sin
e itdistinguishes between labeled rewrite rules and unlabeled rewrite rules. The unlabeledrewrite rules are used to normalize the result of all the appli
ations of a labeled rewriterule to a term. When evaluating a lo
al assignment where v:=(S) t of an ELANrewrite rule, the term t is �rst normalized a

ording to the spe
i�ed set of unlabeledrewrite rules and then the strategy S is applied to its normal form. Moreover, ea
htime a labeled rewrite rule is applied to a term, the ELAN evaluation me
hanismnormalizes the result of its appli
ation with respe
t to the set of unlabeled rewriterules.Hen
e, the ELAN rewrite rule from Example 4.6 should be represented in the�-
al
ulus by the termx! [im(Rf)℄([y ! [True! next(y)℄([im(Rf)℄(nf(y)))℄([fs1! s2; s1! s3g℄([im(Rf)℄(x))))where Rf represents the set of (unlabeled) rewrite rules modulo whi
h we normalizethe lo
al assignments.4.2.2 General strategies in the lo
al assignmentsUntil now we have
onsidered in the lo
al assignments of a rule only strategies thatdo not use the respe
tive rewrite rule. The representation of an ELAN rule with lo
al
alls to strategies de�ned by using this rule must be parameterized by the de�nitionof the respe
tive strategies. For example, a rule with lo
al assignments of the form[label℄ l =) r where x := (s)tis represented by the �-termlabel(f) 4= l ! [x! r℄([[f ℄(s)℄(t))where the free variable f will be instantiated by the set of strategies of the program
ontaining the rule labeled by label.4.2.3 ELAN strategies and programsThe elementary ELAN strategies has, in most of the
ases, a dire
t representation inthe �-
al
ulus. The identity (id) and the failure (fail) as well as the
on
atenation(;) are dire
tly represented in the �-
al
ulus by the �-operators id, fail and \;"respe
tively, de�ned in Se
tion 2.1. The strategy dk(S1; : : : ; Sn) is represented in the�-
al
ulus by the set fS1; : : : ; Sng and the strategy first(S1; : : : ; Sn) by the �-termfirst(S1; : : : ; Sn) de�ned in Se
tion 2.2. The iteration strategy operator repeat� iseasily represented by using the �-operator repeat� .Strategies
an be used in the evaluation of the lo
al assignments and these strategiesare expressed using rewrite rules. Therefore, the ELAN strategies
an be representedby �-terms in the same way as the ELAN rewrite rules.426

Example 4.8 The ELAN strategy attStrat used in Example 4.3 is immediately rep-resented by the �-termattStrat� ! repeat�(finitiate�; : : : ; intruder�g); atta
kFound�where we suppose that initiate�, intruder�, atta
kFound� are the representations in�-
al
ulus of the
orresponding ELAN strategies.For the representation of the user-de�ned strategies in an ELAN program we usean approa
h based on the �xed-point operator and similar to that used in the
aseof
onditional rules in Se
tion 3.2. If we
onsider an ELAN program
ontaining thestrategies S1; : : : ; Sn and a set of labeled rules, then the �-term representing theprogram is P 4= [�℄(S)where S 4= f ! (y ! [fSi ! Bodyi j i = 1 : : : ng℄(y))and Bodyi represent the right-hand sides of the strategies with ea
h strategy Si re-pla
ed by [f ℄(Si), ea
h rule label repla
ed by the �-representation of the rule and ea
hELAN strategy operator repla
ed by its
orrespondent in the �-
al
ulus.To sum-up, we present the transformation of an ELAN program in a �-term.De�nition 4.9We
onsider an ELAN without importations.1. The signature of the
orresponding �-
al
ulus is obtained from the operator de
-larations of the ELAN program.2. Starting from unlabeled rules of the form[℄ li(x) =) ri(x; y) where (sort) ui(y) := ()ti(x)if
i(x; y)endwe build the termRnn 4= f ! (z ! [im(fli(x)! [ui(y)! [True! ri(x; y)℄([f ℄(
i(x; y)))℄(ti(x))j i = 1 : : : ng)℄(z))The innermost normalization w.r.t. the set of unlabeled rules is represented bythe term IMnn 4= [�℄(Rnn)The en
oding is extended in an in
remental way to rules
ontaining several
ondi-tions and lo
al assignments. The en
oding
an be simpli�ed if the program doesnot
ontain unlabeled
onditional rules; in this
ase the term IMnn be
omesIMnn 4= im(fli(x)! [ui(y)! ri(x; y)℄(ti(x)) j i = 1 : : : ng)where the rules with lo
al assignments
an be simpli�ed to elementary rules.427

3. For ea
h labeled rule of the form[label℄ l(x) =) r(x; y) where (sort) u(y) := (s)t(x)if
(x; y)endwe build the termlabel(f) 4= f ! (l(x)! [IMnn℄([u(y)! [True! r(x; y)℄([IMnn℄(
(x; y)))℄([[f ℄(s)℄([IMnn℄(t(x))))))4. For ea
h strategy of the form[℄ S =) Bodyendwe build the termS ! BodyRho(f)where BodyRho represents the right-hand side Body of the strategy with ea
hstrategy symbol Si repla
ed by [f ℄(Si), ea
h rule label label repla
ed by the�-representation label(f) of the rule and ea
h ELAN strategy operator repla
edby its
orrespondent in the �-
al
ulus.The ELAN program de�ning the strategies S1; : : : ; Sn is represented by the �-termP 4= [�℄(S)where S 4= f ! (z ! [fSi ! BodyRhoi(f) j i = 1 : : : ng℄(z))and BodyRhoi(f) represents the en
oding of the strategy Si.The appli
ation of a strategy S of an ELAN program P to a term t is representedby the �-term [[P ℄(s)℄(t) where P is the �-term representing the program P and sis the name of the strategy S. If the exe
ution of the program P for evaluating theterm t a

ording to the strategy S leads to the results u1; : : : ; un, then the �-term[[P ℄(s)℄(t) is redu
ed to the set term fu1; : : : ; ung.In Example 4.10 we present an ELAN module and the �-interpretations of all therules and strategies and thus, of the ELAN program.Example 4.10 The module automaton des
ribes an automaton with the states s1,s2,s3,s4,s5 and with the non-deterministi
 transitions des
ribed by a set of rules
on-taining the rules labeled with r12,r13,r25,r32,r34,r41. The operator next de�nesthe next state in a deterministi
 manner and its behavior is des
ribed by a set of un-labeled rules. The states
an be \�nal" (final) or \
losed" (
losed). The doubletransitions with an intermediate non-�nal and non-
losed state are des
ribed by therules double f and respe
tively double
.428

module automatonimport global bool;endsort state ;endoperators globals1,s2,s3,s4,s5 : state;next(�) : (state) state;final(�) : (state) bool;
losed(�) : (state) bool;endstratop globalfollow : <state -> state> bs;gen_double : <state -> state> bs;
ond_double : <state -> state> bs;endrules for boolglobal[℄ final(s_1) => false end [℄
losed(s_1) => false end[℄ final(s_2) => true end [℄
losed(s_2) => false end[℄ final(s_3) => false end [℄
losed(s_3) => true end[℄ final(s_4) => false end [℄
losed(s_4) => true end[℄ final(s_5) => true end [℄
losed(s_5) => true endendrules for statex,y : state;global[r12℄ s1 => s2 end [℄ next(s1) => s3 end[r13℄ s1 => s3 end [℄ next(s2) => s5 end[r25℄ s2 => s5 end [℄ next(s3) => s2 end[r32℄ s3 => s2 end [℄ next(s4) => s1 end[r34℄ s3 => s4 end [℄ next(s5) => s5 end[r41℄ s4 => s1 end[double_f℄ x => next(y)where y := (follow) xif not final(y) end[double_
℄ x => next(y)where y := (follow) xif not
losed(y) endendstrategies for stateimpli
it[℄follow => dk(r12,r13,r25,r32,r34,r41) end[℄gen_double => follow;follow end[℄
ond_double => dk(double_f,double_
) endendend 429

We denote by B the set of unlabeled rules de�ned in the imported modules booland des
ribing operations on booleans.The set of unlabeled rules from the module automaton are represented by the�-termR 4= fnext(s1)! s3; : : : ; next(s5)! s5;final(s1)! false; : : : ; final(s5)! true;
losed(s1)! false; : : : ;
losed(s5)! truegand we note RC = R [B.The rules labeled with double f and double
 are represented by the �-rulesdouble f(f) 4= x! [im(RC)℄([y ! [True! next(y)℄([im(RC)℄(not final(y)))℄([[f ℄(follow)℄([im(RC)℄(x))))and respe
tivelydouble
(f) 4= x! [im(RC)℄([y ! [True! next(y)℄([im(RC)℄(not
losed(y)))℄([[f ℄(follow)℄([im(RC)℄(x))))The strategies from the module automaton are represented by the �-termsfollow 4= follow ! fs1! s2; s1! s3; s2! s5; s3! s2; s3! s4; s4! s1ggen double(f) 4= gen double! [f ℄(follow); [f ℄(follow)
ond double(f) 4=
ond double! fdouble f(f); double
(f)gand we obtain the term representing the ELAN program automatonautomaton 4= [�℄(S)whereS 4= f ! (y ! [ffollow; gen double(f);
ond double(f)g℄(y))The exe
ution of the program automaton for evaluating the term s1 with the strat-egy
ond double
orresponds to the redu
tion of the term[[automaton℄(
ond double)℄(s1)In ELAN, we obtain for su
h an exe
ution the results 2 and 5 and the redu
tion ofthe
orresponding �-term leads to the set f2; 5g.In Example 4.10 we presented a relatively simple ELAN module but, representativefor the main features of the ELAN language. Following the same methodology, more
ompli
ated rules and strategies
an be handled.Noti
e that this provides, in parti
ular, a very pre
ise des
ription of all the rewritingprimitives, in
luding the semanti
s of the
onditional rewriting used by the language.To the best of our knowledge, this is the �rst expli
it and full des
ription of a rewritebased programming language. 430

5 Con
lusionUsing the �1st-
al
ulus, an extension of the �-
al
ulus, appropriate de�nitions of termtraversal operators and of a �xed-point operator
an be given. This enables us to applyrepeatedly a (set of) rewrite rule(s) and
onsequently to de�ne a �-term representingthe normalization a

ording to a set of rewrite rules. Starting from this representationwe showed how the �1st-
al
ulus
an be used to de�ne
onditional rewriting and togive a semanti
s to ELAN modules. Of
ourse, this
ould be applied to many otherframeworks, in
luding rewrite based languages like ASF+SDF, ML, Maude, Strategoor CafeOBJ but also produ
tion systems and non-deterministi
 transition systems.Starting from these �rst results on the rewriting
al
ulus, we have already explored,in subsequent papers, two di�erent dire
tions: the �-
al
ulus with expli
it substitu-tions and typed rewriting
al
uli. In [9℄ we have proposed a version of the
al
uluswhere the substitution appli
ation is des
ribed at the same level as the other evalua-tion rules. Starting from the �-
al
ulus with expli
it substitutions, and in parti
ularthe ��*-
al
ulus, we developed the �-
al
ulus with expli
it substitutions,
alled the��-
al
ulus and we showed that the ��-
al
ulus is
on
uent under the same
onditionsas the �;-
al
ulus. Indeed, what makes the expli
it substitution setting even moreinteresting than in the
ase of �-
al
ulus is that not only the substitution and there-fore renaming me
hanism is handled expli
itly, but the substitution itself is expli
itlyrepresented. This is extremely useful sin
e
omputing a substitution
ould be veryexpensive like for asso
iativity-
ommutativity where the mat
hing algorithm is expo-nential in the size of terms. Moreover, sin
e a derivation may fail (like when sear
hingfor the right instan
e of a
onditional), memorizing the substitution is mandatory.This allows us in parti
ular to use the �-
al
ulus with expli
it substitutions as thelanguage to des
ribe proof terms of ELAN
omputations.The �-
al
ulus is not terminating in the untyped
ase. In order to re
over thisproperty we have imposed in [11℄ a more stri
t dis
ipline on the �-term formationby introdu
ing a type for ea
h term. We presented a type system for the �;-
al
ulusand we showed that it has the subje
t redu
tion and strong normalization properties,i.e. that the redu
tion of any well-typed term is terminating and preserves the typeof the initial term. Additionally, we have given a new presentation �a la Chur
h tothe �-
al
ulus [13℄, together with nine (8+1) type systems whi
h
an be pla
ed in a�-
ube that extends the �-
ube of Barendregt. Quite interestingly, this typed
al
ulususes only one abstra
tor, namely the rule arrow. It provides therefore a solution tothe identi�
ation of the � and � abstra
tors.We used the sets to represent the non-determinism and we mentioned that otherstru
tures
an be used. For example, if we want to represent all the results of anappli
ation and not only the di�erent results, then multisets must be used and if theorder of the results is signi�
ant, then a list stru
ture is more suitable. We have thusstarted the study of another des
ription of the �-
al
ulus having as parameter not onlythe mat
hing theory but also the stru
ture used for the results and we have alreadyshown its expressive power [12℄. More pre
isely, we analyzed the
orresponden
ebetween the �-
al
ulus and two obje
t oriented
al
uli: the \Obje
t Cal
ulus" ofAbadi and Cardelli [1℄ and the \Lambda Cal
ulus of Obje
ts" of Fisher, Honsell andMit
hell [16℄. The approa
h that we proposed allows the representation of obje
tsin the style of the two mentioned
al
uli but also of more elaborate obje
ts whose431

behavior is des
ribed by using the mat
hing power.As a new emergent framework, the �T -
al
ulus o�ers an original view point onrewriting and higher-order logi
 and it opens new
hallenges to further understandrelated topi
s. First, to go further in the study and the use of the �T -
al
ulus forthe
ombination of �rst-order and higher-order paradigms, the investigation of therelationship of this
al
ulus with higher-order rewrite
on
epts like CRS and HOR [30℄should be deepened. Se
ond, several dire
tions should be investigated, amongst them,we
an mention the following:- The analysis of the properties of the �T -
al
ulus with a mat
hing theory T moreelaborate than synta
ti
 mat
hing.- A generi
 des
ription of the
onditions whi
h must be imposed for the mat
hingtheory T in order to obtain the
on
uen
e and the termination of the �T -
al
ulusshould be de�ned and then, show that these
onditions are satis�ed for parti
ulartheories su
h as asso
iativity and
ommutativity.- The models of the rewriting
al
ulus should be de�ned, studied and
omparedwith the ones of the algebrai
 as well as higher-order stru
tures.- As mentioned previously, we
onje
ture that the �1st-
al
ulus
an not be expressedin the �-
al
ulus be
ause of the semanti
s of the empty set as rule appli
ationfailure.Finally, from the pra
ti
al point of view, the various instan
es of the �-
al
ulusmust be further implemented and used as rewriting tools. We have already realizedan implementation in ELAN of the �;-
al
ulus and we experimented with variousevaluation strategies. This implementation
ould be further used in order to de�neobje
t oriented paradigms. Dually, an obje
t oriented version of the ELAN languagehas been realized [14℄, with a semanti
s given by the rewriting
al
ulus.This shows that this new
al
ulus is very attra
tive in terms of semanti
s as well asunifying
apabilities and we believe that it
an serve as a basi
 tool for the integrationof semanti
 and logi
al frameworks.A
knowledgmentsWe would like to thank H�el�ene Kir
hner, Pierre-Etienne Moreau and ChristopheRingeissen from the Protheo Team for the useful intera
tions we had on the top-i
s of this paper, Vin
ent van Oostrom for suggestions and pointers to the literature,Roberto Bruni and David Wolfram for their detailed and very useful
omments ona preliminary version of this work and Delia Kesner for fruitful dis
ussions. We aregrateful to Luigi Liquori for many
omments and ex
iting dis
ussions on the �-
al
ulusand its appli
ations. Many thanks also to Th�er�ese Hardin and Na
hum Dershowitzfor their interest, en
ouragements and helpful suggestions for improvement. Finallyspe
ial thanks are due to the referees for the very
omplete and
areful reading of thepaper as well as
onstru
tive and useful remarks.
432

Referen
es[1℄ M. Abadi and L. Cardelli. A Theory of Obje
ts. Springer Verlag, 1996.[2℄ H. P. Barendregt. The Lambda-Cal
ulus, its syntax and semanti
s. Studies in Logi
 and theFoundation of Mathemati
s. Elsevier S
ien
e Publishers B. V. (North-Holland), Amsterdam,1984. Se
ond edition.[3℄ P. Borovansk�y, C. Kir
hner, H. Kir
hner, P.-E. Moreau, and M. Vittek. ELAN: A logi
al frame-work based on
omputational systems. In J. Meseguer, editor, Pro
eedings of the �rst interna-tional workshop on rewriting logi
, volume 4 of Ele
troni
 Notes in TCS, Asilomar (California),September 1996.[4℄ P. Borovansk�y, C. Kir
hner, H. Kir
hner, and P.-E. Moreau. ELAN from the rewriting logi
point of view. Resear
h report, LORIA, November 1999.[5℄ A. Bouhoula and M. Rusinowit
h. Impli
it indu
tion in
onditional theories. Journal of Auto-mated Reasoning, 14(2):189{235, 1995.[6℄ C. Castro. Une appro
he d�edu
tive de la r�esolution de probl�emes de satisfa
tion de
ontraintes.Th�ese de Do
torat d'Universit�e, Universit�e Henri Poin
ar�e { Nan
y 1, Fran
e, 1998.[7℄ M. Clavel, S. Eker, P. Lin
oln, and J. Meseguer. Prin
iples of Maude. In J. Meseguer, editor,Pro
eedings of the �rst international workshop on rewriting logi
, volume 4, Asilomar (Califor-nia), September 1996. Ele
troni
 Notes in Theoreti
al Computer S
ien
e.[8℄ H. Cirstea. Spe
ifying Authenti
ation Proto
ols Using ELAN. In Workshop on Modelling andVeri�
ation, Besan
on, Fran
e, De
ember 1999.[9℄ H. Cirstea. Cal
ul de r�e�e
riture : fondements et appli
ations. Th�ese de Do
torat d'Universit�e,Universit�e Henri Poin
ar�e - Nan
y I, 2000.[10℄ H. Cirstea and C. Kir
hner. Theorem Proving Using Computational Systems: The Case of theB Predi
ate Prover. In Workshop CCL'97, S
hlo� Dagstuhl, Germany, September 1997.[11℄ H. Cirstea and C. Kir
hner. The Simply Typed Rewriting Cal
ulus. In 3rd International Work-shop on Rewriting Logi
 and its Appli
ations, Kanazawa, Japan, September 2000. Ele
troni
Notes in Theoreti
al Computer S
ien
e.[12℄ H. Cirstea, C. Kir
hner, and L. Liquori. Mat
hing Power. In A. Middeldorp, editor, Pro
eed-ings of RTA'2001, Le
ture Notes in Computer S
ien
e, Utre
ht (The Netherlands), May 2001.Springer-Verlag.[13℄ H. Cirstea, C. Kir
hner, and L. Liquori. The Rho Cube. In F. Honsell, editor, Foundationsof Software S
ien
e and Computation Stru
tures, Le
ture Notes in Computer S
ien
e, Genova,Italy, April 2001.[14℄ H. Dubois and H. Kir
hner. Obje
ts, rules and strategies in ELAN. In Pro
eedings of the se
ondAMAST workshop on Algebrai
 Methods in Language Pro
essing, Iowa City, Iowa, USA, May2000.[15℄ N. Dershowitz and M. Okada. A rationale for
onditional equational programming. Theoreti
alComputer S
ien
e, 75:111{138, 1990.[16℄ K. Fisher, F. Honsell, and J. C. Mit
hell. A Lambda Cal
ulus of Obje
ts and Method Spe
ial-izatio n. Nordi
 Journal of Computing, 1(1):3{37, 1994.[17℄ K. Futatsugi and A. Nakagawa. An overview of CAFE spe
i�
ation environment { an alge-brai
 approa
h for
reating, verifying, and maintaining formal spe
i�
ations over networks. InPro
eedings of the 1st IEEE Int. Conferen
e on Formal Engineering Methods, 1997.[18℄ M. Gordon, A. Milner, and C. Wadsworth. Edinburgh LCF: A Me
hanized Logi
 of Computation,volume 78 of Le
ture Notes in Computer S
ien
e. Springer-Verlag, New York (NY, USA), 1979.[19℄ C. Kir
hner, H. Kir
hner, and M. Vittek. Designing
onstraint logi
 programming languagesusing
omputational systems. In P. Van Hentenry
k and V. Saraswat, editors, Prin
iples andPra
ti
e of Constraint Programming. The Newport Papers.,
hapter 8, pages 131{158. The MITpress, 1995.[20℄ P. Klint. The ASF+SDF Meta-environment User's Guide. Te
hni
al report, CWI, 1993.[21℄ C. Kir
hner and C. Ringeissen. Rule-Based Constraint Programming. Fundamenta Informati
ae,34(3):225{262, September 1998.[22℄ J. Meseguer. Conditional rewriting logi
 as a uni�ed model of
on
urren
y. Theoreti
al ComputerS
ien
e, 96(1):73{155, 1992. 433

[23℄ R. Milner. A proposal for standard ML. In Pro
eedings ACM Conferen
e on LISP and Fun
-tional Programming, 1984.[24℄ R. Needham and M. S
hroeder. Using en
ryption for authenti
ation in large networks of
om-puters. Communi
ations of the ACM, 21(12):993{999, 1978.[25℄ Protheo Team. The ELAN home page. WWW Page, 2001. http://elan.loria.fr.[26℄ A. M. Turing. The }-fun
tions in �-K-
onversion. The Journal of Symboli
 Logi
, 2:164, 1937.[27℄ E. Visser and Z. el Abidine Benaissa. A
ore language for rewriting. In C. Kir
hner andH. Kir
hner, editors, Pro
eedings of the se
ond International Workshop on Rewriting Logi
and Appli
ations, volume 15, http://www.elsevier.nl/lo
ate/ent
s/volume16.html, Pont-�a-Mousson (Fran
e), September 1998. Ele
troni
 Notes in Theoreti
al Computer S
ien
e.[28℄ E. Visser. Strategi
 pattern mat
hing. In P. Narendran and M. Rusinowit
h, editors, RewritingTe
hniques and Appli
ations (RTA'99), volume 1631 of Le
ture Notes in Computer S
ien
e,pages 30{44, Trento, Italy, July 1999. Springer-Verlag.[29℄ M. Vittek. ELAN: Un
adre logique pour le prototypage de langages de programmation ave

ontraintes. Th�ese de Do
torat d'Universit�e, Universit�e Henri Poin
ar�e { Nan
y 1, O
tober1994.[30℄ V. van Oostrom and F. van Raamsdonk. Comparing
ombinatory redu
tion systems and higher-order rewrite systems. In HOA'93, volume 816 of Le
ture Notes in Computer S
ien
e, pages276{304. Springer-Verlag, 1993.Re
eived O
tober 1, 2000. Revised: January 26, 2001, February 9, 2001

434

Tableau Reasoning andProgramming with Dynami
 FirstOrder Logi
Jan van Eij
k, CWI and ILLC, Amsterdam, E-mail: jve�
wi.nl.Juan Heguiabehere, ILLC, Amsterdam, E-mail: juanh�wins.uva.nl.Breannd�an �O Nuall�ain, ILLC, Amsterdam, E-mail: bon�ill
.uva.nl.Abstra
tDynami
 First Order Logi
 (DFOL) results from interpreting quanti�
ation over a variable v as
hange of valuation over the v position,
onjun
tion as sequential
omposition, disjun
tion as non-deterministi

hoi
e, and negation as (negated) test for
ontinuation. We present a tableau style
al
ulus for DFOL with expli
it (simultaneous) binding, prove its soundness and
ompleteness, andpoint out its relevan
e for programming with DFOL, for automated program analysis in
luding loopinvariant dete
tion, and for semanti
s of natural language. We also extend this to an in�nitary
al
ulus for DFOL with iteration and
onne
t up with other work in dynami
 logi
.Keywords: Dynami
 Logi
, First Order Logi
, Assertion Cal
ulus, Tableau Reasoning1 Introdu
tionThe language we use and analyze in this paper
onsists of formulas that
an be usedboth for programming and for making assertions about programs. The only di�eren
ebetween a program and an assertion is that an assertion is a program with its further
omputational e�e
t blo
ked o�. In the notation we will introdu
e below: if � is aprogram, then ((�)) is the assertion that the program �
an be exe
uted. Exe
utionof � will in general lead to a set of
omputed answer bindings, exe
ution of ((�)) to ayes/no answer indi
ating su

ess or failure of �.Sin
e the formulas of our language, DFOL,
an be used for des
ription and
om-putation alike, our
al
ulus is both an exe
ution me
hanism for DFOL and a tool fortheorem proving in DFOL. One of the bene�ts of mixing
al
ulation and assertion isthat the
al
ulus
an be put to use to automati
ally derive assertions about programsfor purposes of veri�
ation. And sin
e DFOL has its roots in Natural Language pro-
essing (just as Prolog does), we also see a future for our tool-set in a
omputationalsemanti
s of natural language.We start our enterprise by developing a theory of binding for DFOL that we thenput to use in a
al
ulus for DFOL with expli
it binding. The expli
it bindings repre-sent the intermediate results of
al
ulation that get
arried along in the
omputationpro
ess. We illustrate with examples from standard �rst order reasoning, naturallanguage pro
essing, imperative programming, and derivation of post
onditions forimperative programs. 435L. J. of the IGPL, Vol. 9 No. 3, pp. 435{469 2001

Oxford University Press

436 Tableau Reasoning and Programming with Dynami
 First Order Logi
Finally, we develop an in�nitary
al
ulus for DFOL plus iteration, with a
omplete-ness proof. Details of the relationships with existing
al
uli are given below. The two
al
uli that are the subje
t of this paper form the
omputation and inferen
e en-gine of a toy programming language for theorem proving and
omputing with DFOL,Dynamo.2 Dynami
 First Order Logi
Dynami
 First Order Logi
 results from interpreting quanti�
ation over v as
hangeof valuation over the v position,
onjun
tion as sequential
omposition, disjun
tion asnondeterministi

hoi
e, and negation as (negated) test for
ontinuation. See Groe-nendijk and Stokhof [16℄ for a presentation and Visser [31℄ for an in-depth analysis. Asound and
omplete sequent style
al
ulus for DFOL (without
hoi
e) was presentedin Van Eij
k [12℄. In this paper we present a
al
ulus that also
overs the
hoi
e op-erator, and that is mu
h
loser to standard analyti
 tableau style reasoning for FOL(see Smullyan [29℄ for a
lassi
al presentation, Fitting [13℄ for a textbook treatmentand
onne
tions with automated theorem proving, [17℄ for an ex
ellent overview, and[8℄ for an en
y
lopedi
 a

ount).For appli
ations of DFOL to programming, the presen
e of the
hoi
e operation [inthe language is
ru
ial:
hoi
e is the basis of `if then else', and of all nondeterministi
programming
onstru
ts for exploring various avenues towards a solution. It
an (andhas been) argued that the full expressive power of [is not ne
essary for appli
ations ofDFOL to natural language semanti
s. In fa
t, the presentation of dynami
 predi
atelogi
 (DPL) in [16℄ does not
over [: in DPL,
hoi
e is handled in terms of negationand
onjun
tion, with the argument that natural language `or' is externally stati
.This means that an `or'
onstru
tion behaves like a test. The present
al
ulus dealswith DFOL in
luding
hoi
e.A very
onvenient extension that we immediately add to DFOL is representationof simultaneous binding. It is well known that bindings or substitutions are de�nablein DFOL. Still we will
onsider them as operators in their own right, in the spirit ofVenema [30℄, where substitutions are studied as modal operators. Simultaneous bind-ings
an in general not be expressed in terms of single bindings without introdu
ingauxiliary variables. E.g., the swap of variables x and y in the simultaneous binding[y=x; x=y℄
an only be expressed as a sequen
e of single bindings at the expense ofavailing ourselves of an extra variable z, as z := x;x := y; y := z. The dynami
e�e
t of this sequen
e of single bindings is not quite the same as that of [y=x; x=y℄,for z := x;x := y; y := z
hanges the value of z, while [y=x; x=y℄ does not, and thesemanti
s of DFOL is sensitive to su
h subtle di�eren
es.A �rst order signature � is a pair hP�; F�i, with P� a set of predi
ate
onstantsand F� a set of fun
tion
onstants. Let V be an in�nite set of variables, and leta : (P� [F�) ! N be a fun
tion that assigns to every predi
ate or fun
tion symbolits arity. The fun
tion symbols with arity 0 are the individual
onstants. The set T�of terms over the signature is given in the familiar way, by t ::= v j ft1 � � � tn, wherev ranges over V and f over F�, with a(f) = n. The sub-terms of a term are given asusual. We will write sequen
es of terms t1; : : : ; tn as �t.A binding � is a fun
tion V ! T� that makes only a �nite number of
hanges,i.e., � has the property that dom(�) = fv 2 V j �(v) 6= vg is �nite. See Apt [1℄ and

2. DYNAMIC FIRST ORDER LOGIC 437Doets [10℄ for lu
id introdu
tions to the subje
t of binding in the
ontext of logi
programming. We will use rng(�) for f�(v) 2 T� j �(v) 6= vg, and var(rng(�)) for[fvar(�(v)) j v 2 dom(�)g, where var(t) is the set of variables o

urring as a subtermin t. An expli
it form (or: a representation) for binding � is a sequen
e[�(v1)=v1; : : : ; �(vn)=vn℄;where fv1; : : : ; vng = dom(�), (i.e., �(vi) 6= vi, for only the
hanges are listed), andi 6= j implies vi 6= vj (i.e., ea
h variable in the domain is mentioned only on
e).We will use [℄ for the binding that
hanges nothing, i.e, [℄ is the only binding �with dom(�) = ;. We use �; �, possibly with indi
es, as meta-variables ranging overbindings. Representations for bindings are given, as usual, by:� ::= [℄ j [t1=v1; : : : ; tn=vn℄ provided ti 6= vi; and vi = vj implies i = j:We let Æ denote the synta
ti
 operation of
omposition of binding representations:Let � = [t1=v1; : : : ; tn=vn℄ and � = [r1=w1; : : : ; rm=wm℄ be binding representa-tions. Then � Æ � is the result of removing from the sequen
e[�(r1)=w1; : : : ; �(rm)=wm; t1=v1; : : : ; tn=vn℄the binding pairs �(ri)=wi for whi
h �(ri) = wi, and the binding pairs tj=vjfor whi
h vj 2 fw1; : : : ; wmg.For example, [x=y℄ Æ [y=z℄ = [x=z; x=y℄, [x=z; y=x℄ Æ [z=x℄ = [x=z℄.We are now in a position to de�ne the DFOL language L� over signature �. Wedistinguish between DFOL units and DFOL formulas (or sequen
es).De�nition 2.1 (The DFOL language L� over signature �)t ::= v j f�tU ::= � j 9v j P �t j t1 := t2 j :(�) j (�1 [�2)We will omit parentheses where it doesn't
reate synta
ti
 ambiguity, and allow theusual abbreviations: we write ? for :([℄), :P �t for :(P �t), t1 6= t2 for :(t1 := t2),�1 [�2 for (�1 [�2). Similarly, (� !) abbreviates :(�;:()), 8v(�) abbreviates:(9v;:(�)). A formula � is a literal if � is of the form P �t or :P �t, or of the formt1 := t2 or t1 6= t2. The
omplement � of a formula � is given by: � := if � has theform :() and � := :(�) otherwise. We abbreviate ::(�) as ((�)), and we will
allformulas of the form ((�)) blo
k formulas.We
an think of formula � as built up from units U by
on
atenation. For formulaindu
tion arguments, it is sometimes
onvenient to read a unit U as the formula U ; [℄(re
all that [℄ is the empty binding), thus using [℄ for the empty list formula. In otherwords, we will silently add the [℄ at the end of a formula list when we need its presen
ein re
ursive de�nitions or indu
tion arguments on formula stru
ture.Given a �rst order model M = (D; I) for signature �, the semanti
s of DFOLlanguage L� is given as a binary relation on the set VD, the set of all variable maps(variable states, valuations) into the domain of the model. We impose the usual non-empty domain
onstraint of FOL: any � modelM = (D; I) has D 6= ;. If s; u 2 VD,

438 Tableau Reasoning and Programming with Dynami
 First Order Logi
we use s �v u to indi
ate that s; u di�er at most in their value for v, and s �X u toindi
ate that s; u di�er at most in their values for the members of X . If s 2 VD andv; v0 2 V , we use s[v0=v℄ for the valuation u given by u(v) = s(v0), and u(w) = s(w)for all w 2 V with w 6= v. Also, if s and v are as before and d 2 D we use s[d=v℄ forthe valuation u given by u(v) = d, and u(w) = s(w) for all w 2 V with w 6= v.M j=s P �t indi
ates that s satis�es the predi
ate P �t inM a

ording to the standardtruth de�nition for
lassi
al �rst order logi
. [[t℄℄Ms gives the denotation of t in Munder s. If � is a binding and s a valuation (a member of VD), we will use s� for thevaluation u given by u(v) = [[�(v)℄℄Ms .De�nition 2.2 (Semanti
s of DFOL)s[[�℄℄Mu i� u = s�s[[9v℄℄Mu i� s �v us[[P �t℄℄Mu i� s = u and M j=s P �ts[[t1 := t2℄℄Mu i� s = u and [[t1℄℄Ms = [[t2℄℄Mss[[:(�)℄℄Mu i� s = u and there is no u0 with s[[�℄℄Mu0s[[�1 [�2℄℄Mu i� s[[�1℄℄Mu or s[[�2℄℄Mus[[U ;�℄℄Mu i� there is a u0 with s[[U ℄℄Mu0 and u0 [[�℄℄MuNote that it follows from this de�nition thats[[((�))℄℄Mu i� s = u and there is a u0 with s[[�℄℄Mu0 :Thus, blo
k formulas have their dynami
 e�e
ts blo
ked o�: double negation trans-forms the semanti
 transition relation into a test.We introdu
e a synta
ti
 blo
king operation on formulas as follows (= is used forsynta
ti
 identity):De�nition 2.3 (Blo
king Operation on Formulas)(�)� := ((�))(9v)� := ((9v))(P �t)� := P �t(t1 := t2)� := t1 := t2(:(�))� := :(�)(�1 [�2)� := � (�1 [�2) if �1� = �1; �2� = �2;((�1 [�2)) otherwise(U ;�)� := � U ;� if U� = U; �� = �;((U ;�)) otherwise.E.g., (9x;Px)� = ((9x;Px)), and (:(9x;Px))� = :(9x;Px). By indu
tion on for-mula stru
ture we get from De�nitions 2.2 and 2.3 that the blo
king operation makesa formula into a test, in the following sense:

3. BINDING IN DFOL 439Proposition 2.4 For allM and all valuations s; u forM, all L� formulas �: s[[��℄℄Mui� s = u and there is a u0 with s[[�℄℄Mu0 .The key relation we want to get to grips with in this paper is the dynami
 entailmentrelation that is due to [16℄:De�nition 2.5 (Entailment in DFOL) � dynami
ally entails , notation � j= ,:, for all L� models M, all valuations s; u for M, if s[[�℄℄Mu then there is a variablestate u0 for whi
h u[[℄℄Mu0 .3 Binding in DFOLBindings � are lifted to (sequen
es of) terms and (sets of) formulas in the familiarway:De�nition 3.1 (Binding in DFOL)�(ft1 � � � tn) := f�(t1) � � � �(tn)�(t1; : : : ; tn) := �(t1); : : : ; �(tn)�(�) := � Æ ��(�;�) := (� Æ �)��(9v;�) := 9v; �0� where �0 = �nft=v j t 2 Tg�(P �t;�) := P��t; ���(t1 := t2;�) := �t1 := �t2; ���((�1 [�2);�3) := �(�1;�3) [�(�2;�3)�(:(�1);�2) := :(��1); ��2�(f�1; : : : ; �ng) := f�(�1); : : : ; �(�n)gNote that it follows from this de�nition that�(((�1));�2) = ((��1)); ��2:Thus, binding distributes over blo
k: this a

ounts for how ((� � �)) insulates dynami
binding e�e
ts.1The
omposition � � � of two bindings � and � has its usual meaning of `� after �',whi
h we get by means of � � �(v) := �(�(v)). It
an be proved in the usual way, byindu
tion on term stru
ture, that the de�nition has the desired e�e
t, in the sensethat for all t 2 T , for all binding representations �, �: (� Æ �)(t) = �(�(t)) = (� � �)(t).Here is an example of how to apply a binding to a formula:[a=x℄Px; (Qx [9x;:Px);Sx = Pa; [a=x℄(Qx [9x;:Px);Sx= Pa; ([a=x℄Qx;Sx [[a=x℄9x;:Px;Sx) = Pa; (Qa;Sa; [a=x℄ [9x;:Px;Sx)The binding de�nition for DFOL
eshes out what has been
alled the `folklore idea indynami
 logi
' (Van Benthem [6℄) that synta
ti
 binding [t=v℄ works semanti
ally as1Our reasons, by the way, for preferring pre�x notation for appli
ation of bindings over the more usual post�xnotation have to do with the fa
t that in the rules of our
al
ulus bindings have an e�e
t on formulas on their right.

440 Tableau Reasoning and Programming with Dynami
 First Order Logi
the program instru
tion v := t (Goldblatt [15℄), with semanti
s given by s[[v := t℄℄Mui� u = s[[[t℄℄Ms =v℄. To see the
onne
tion, note that v := t
an be viewed as DFOLshorthand for 9v; v = t, on the assumption that v =2 var(t).In standard �rst order logi
, sometimes it is not safe to apply a binding to aformula, be
ause it leads to a

idental
apture of free variables. The same applieshere. Applying binding [x=y℄ to 9x;Rxy is not safe, as it would lead to a

idental
apture of the free variable y. The following de�nition de�nes safety of binding.De�nition 3.2 (Binding � is safe for �)� is safe for � always� is safe for �;� :() � Æ � is safe for �� is safe for P �t;� :() � is safe for �� is safe for t1 := t2;� :() � is safe for �� is safe for 9v;� :() v =2 var(rng �0) and �0 is safe for �where �0 = �nf(v; t) j t 2 Tg� is safe for :(�1);�2 :() � is safe for �1 and � is safe for �2� is safe for (�1 [�2);�3 :() � is safe for �1;�3 and � is safe for �2;�3Note that there are � with [℄ not safe for �. E.g., [℄ is not safe for [y=x℄9y;Rxy,be
ause [y=x℄ is not safe for 9y;Rxy. The
onne
tion between synta
ti
 binding andsemanti
 assignment is formally spelled out in the following:Lemma 3.3 (Binding Lemma for DFOL) For all � models M, all M-valuationss; u, all L� formulas �, all bindings � that are safe for �:s[[��℄℄Mu i� s[[�;�℄℄Mu :Proof. Indu
tion on the stru
ture of �.Immediately from this we get the following:Proposition 3.4 DFOL has greater expressive power than DFOL with quanti�
ationrepla
ed by de�nite assignment v := d.Proof. If � is an L� formula without quanti�ers, every binding � is safe for �. Bythe binding lemma for DFOL, � is equivalent to an L� formula without quanti�ersbut with trailing bindings. It is not diÆ
ult to see that both satis�ability and validityof quanti�er free L� formulas with binding trails is de
idable.In fa
t, the tableau system below
onstitutes a de
ision algorithm for satis�abilityor validity of quanti�er free L� formulas, while the trailing bindings summarize the�nite
hanges made to input valuations.A
omparison of our de�nition of binding for DFOL with that of Visser [31℄ and[32℄ reveals that Visser's notion of binding follows a di�erent intuition, namely thatbinding in the empty formula yields the empty formula. We think our notion is moretruly dynami
, as is witnessed by the fa
t that it allows us to prove a binding lemmain the presen
e of [, whi
h Visser's notion does not.In the
al
ulus we will need input(�), the set of variables that have an input
on-straining o

urren
e in � (with � 2 L�), Let var(�t) be the variables o

urring in�t.

4. ADAPTATION OF TABLEAU REASONING TO A DYNAMIC SETTING 441De�nition 3.5 (Input
onstrained variables of L� formulas)input(�) := var(rng(�))input(�;�) := var(rng(�)) [(input(�)ndom(�))input(9v;�) := input(�)nfvginput(P �t;�) := var(�t) [input(�)input(t1 := t2;�) := varft1; t2g [input(�)input(:(�1);�2) := input(�1) [input(�2)input((�1 [�2);�3) := input(�1;�3) [input(�2;�3):The following proposition (the DFOL
ounterpart to the �niteness lemma from
lassi
al FOL)
an be proved by indu
tion on formula stru
ture:Proposition 3.6 For all L� models M, all valuations s; s0; u; u0 for M, all L� for-mulas �: s[[�℄℄Mu and s �V ninput(�) s0 imply 9u0 with s0 [[�℄℄Mu0 :4 Adaptation of Tableau Reasoning to a Dynami
 SettingWe will use one-sided tableaux, with the rule for every operator o mat
hed by a :orule.In the dynami
 version of FOL, order matters: the sequen
ing operator `;' is not
ommutative in general. Suppose � were to
onsist of the two formulas 9x;Px and:Px. Then if we read � as 9x;Px;:Px, we get a
ontradi
tion, but if we read � as:Px; 9x;Px then the formula set has a model that
ontains both P s and non-P s.Lo
al Bindings Versus Global SubstitutionsWe will only perform a binding � on � when needed; rather than
ompute ��, thetableau rules will store �;�, and
ompute the binding in single steps as the need arises.Tableau theorem proving
an be viewed as a pro
ess of gradually building a domain Dand working out requirements to be imposed on that domain. The tableau pro
edurethat investigates whether � dynami
ally implies will build a domain with positiveand negative fa
ts. For this we employ an in�nite set Fsko of skolem fun
tions,with Fsko \ F� = ;, plus a set of fresh variables X, with V \ X = ;. Call theextended signature ��, and the extended language L�� . Let T�� be the terms of theextended language, and T V�� the terms of the extended language without o

urren
esof members of X. Call these the frozen terms of L�� , and bear in mind that frozenterms, unlike ground terms, may
ontain o

urren
es of variables in V . Call an L��literal frozen if it
ontains only frozen terms.The variables in X will fun
tion as universal tableau variables [13℄. While thebindings of the variables from V are lo
al to a tableau bran
h, the bindings of thevariables fromX are global to the whole tableau. Next to the (lo
al) bindings for thevariables V of L�, we introdu
e (global) substitutions � for the fresh variables X inL�� , and extend these to (sequen
es of) terms and (sets of) formulas in the mannerof De�nition 3.1. A substitution � is a uni�er of a set of (sequen
es of) terms T if �T
ontains a single term (sequen
e of terms). It is a most general uni�er (MGU) of Tif � is a uni�er of T , and for all uni�ers � of T there is a � with � = � � �. Similarly

442 Tableau Reasoning and Programming with Dynami
 First Order Logi
for formulas. Note that only uni�ers for global substitutions (the term maps for theglobal tableau variables from X) will ever be
omputed.The de�nitions and results on binding extend to bindings with values in T�� , andto substitutions (domain � X, values in T��). Still, the global substitutions playan altogether di�erent rôle in the tableau
onstru
tion pro
ess, so we use a di�erentnotation for them, and write (representations for) global substitutions asfx1 7! t1; : : : ;xn 7! tng:5 Tableaux for DFOL Formula SetsIf � is a �rst order signature, a DFOL tableau over � is a �nitely bran
hing tree withnodes
onsisting of (sets of) L�� formulas. A bran
h in a tableau T is a maximalpath in T . We will follow
ustom in o

asionally identifying a bran
h B with the setof its formulas.Let � be a set of L� formulas. A DFOL tableau for � is
onstru
ted by a (possiblyin�nite) sequen
e of appli
ations of the following rules:Initialization The tree
onsisting of a single node [℄ is a tableau for �.Binding Composition Suppose T is a tableau for � and B a bran
h in T . Let� 2 B [�, let �; � o

ur in �, and let �0 be the result of repla
ing �; � in � by� Æ �. Then the tree T 0
onstru
ted from T by extending B by �0 is a tableau for�.Expansion Suppose T is a tableau for � and B a bran
h in T . Let � 2 B[�. Thenthe tree T 0
onstru
ted from T by extending B a

ording to one of the tableauexpansion rules, applied to �, is a tableau for �.Equality Repla
ement Suppose T is a tableau for � and B a bran
h in T . Lett1 := t2 2 B[� or t2 := t1 2 B[�, and L(t3) 2 B[�, where L is a literal. Supposet1; t3 are uni�able with MGU �. Then T 0
onstru
ted from T by applying � toall formulas in T , and extending bran
h �B with L(�t2) is a tableau for �.Closure Suppose T is a tableau for � and B a bran
h in T , and L;L0 are literals inB[�. If L;L0 are uni�able with MGU � then T 0
onstru
ted from T by applying� to all formulas in T is a tableau for �.Any tableau bran
h
an be thought of as a database � of formulas true on thatbran
h. Be
ause our databases may
ontain (negated) identities, we need some pre-liminaries in order to de�ne
losure of a tableau. When
he
king for
losure, wemay
onsider the parameters from V o

urring in literals along a tableau bran
h asexistentially quanti�ed. O

urren
e of Pv along bran
h B does not mean that ev-erything has property P , but rather that the thing referred to as v has P . Thus, theV -variables o

urring in literals
an be taken as names. We
an freeze the parametersfrom X by mapping them to fresh parameters from V . Applying a freezing substi-tution to a tableau repla
es referen
es to `arbitrary obje
ts' x, y, . . . , by `arbitrarynames.' What this means is that we
an determine
losure of a bran
h B in terms ofthe
ongruen
e
losure of the set of equalities o

urring in a frozen image �B of thebran
h. See [5℄, Chapter 4, for what follows about
ongruen
e
losure.If � is set of L�� formulas without parameters fromX, the
ongruen
e
losure of �,notation ��, is the smallest
ongruen
e on T that
ontains all the equalities in �. In

6. TABLEAU EXPANSION RULES 443general, �� will be in�nite: if a := b is an equality in �, and f is a one-pla
ed fun
tionsymbol in the language, then �� will
ontain fa := fb; ffa := ffb; fffa := fffb; : : :.Therefore, one uses
ongruen
e
losure modulo some �nite set instead.Let S be the set of all sub-terms (not ne
essarily proper) of terms o

urring in aliteral in �. Then the
ongruen
e
losure of � modulo S, notation CCS(�), is the�nite set of equalities �� \ (S � S). We
an de
ide whether t := t0 in CCS(�); [5℄gives an algorithm for
omputing CCS(G), for �nite sets of equalities G and terms S,in polynomial time.De�nition 5.1 t � t0 is suspended in frozen L�� formula set � if t := t0 2 CCS(�),where S is the set of all sub-terms of terms o

urring in literals in �. We extend thisnotation to sequen
es: �t � �t0 is suspended in � if t1 � t01; : : : ; tn � t0n are suspendedin �.A frozen L�� formula set � is
losed if either :(�) 2 � (re
all that ? is an abbre-viation for :([℄)), or for some �t � �t0 suspended in � we have P �t 2 �, :P �t0 2 �, orfor a pair of terms t1; t2 with t1 � t2 suspended in � we have t1 6= t2 2 �.A tableau T is
losed if there is a freezing substitution � of T su
h that ea
h of itsbran
hes �B is
losed.6 Tableau Expansion RulesNote that we
an take the form of any L�� formula to be �;�, by pre�xing or suÆxing[℄ as the need arises. The tableau rules have the e�e
t that bindings get pushed fromleft to right in the tableaux, and appear as
omputed results at the open end nodes.Conjun
tive Type Here are the rules for formulas of
onjun
tive type (type � in theSmullyan taxonomy):�; Pt; �P�t�; � �; t1 := t2; ��t1 := �t2� Æ [�ti=v℄; �where �ti = v 2 V; i 2 f1; 2g �; t1 := t2; ��t1 := �t2�; �where �ti =2 V; i 2 f1; 2g:(�; (�1 [�2); �3):(�; �1; �3):(�; �2; �3) �; ((�1)); �2((�; �1))�; �2 �; :(�1); �2:(�; �1)�; �2Call the formula at the top node of a rule of this kind � and the formulas at theleaves �1; �2. To expand a tableau bran
h B by an � rule, extend B with both �1and �2.Disjun
tive Type The rules for formulas of disjun
tive type (Smullyan's type �):

444 Tableau Reasoning and Programming with Dynami
 First Order Logi
:(�; Pt; �)bbb""":P�t :(�; �) :(�; t1 := t2; �)HHH����t1 6= �t2 :(�; �) �; (�1 [�2); �3HHH����;�1;�3 �;�2;�3:(�; :(�1); �2)HHH���((�; �1)) ((�; �2))Call the formula at the top node of a rule of this kind �, the formula at the leftleaf �1 and the formula at the right leaf �2. To expand a tableau bran
h B by an �rule, either extend B with �1 or with �2.Universal Type Rule for universal formulas (Smullyan's type
)::(�; 9v; �):(� Æ [x=v℄; �)Here x is a universal variable taken from X that is new to the tableau. Call theformula at the top node of a rule of this kind
(v), and the formula at the leaf
1. Toexpand a tableau bran
h B by an
 rule, extend B with
1.Existential Type Rule for existential formulas (Smullyan's type Æ):�; 9v; �� Æ [sk�;9v;�(x1; : : : ;xn)=v℄; �Here x1; : : : ;xn are the universal parameters upon whi
h interpretation of 9v;�depends, and sk�;9v;�(x1; : : : ;xn) is a skolem
onstant that is new to the tableaubran
h.2By Proposition 3.6, fx1; : : : ;xng is a subset of input(�; 9v;�), or, sin
e no membersof X o

ur in � or in dom(�), a subset of X \ input(�) =X \ var(rng(�)). From thisset, we only need3fx1; : : : ;xng :=X \ var(rng(� � (input(�)nfvg))):Call the formula at the top node of a rule of this kind Æ(v), and the formula at theleaf Æ1. To expand a tableau bran
h B by an Æ rule, extend B with Æ1.2It is well-known that this
an be optimized so that the
hoi
e of skolem
onstant only depends on �; 9v; �.3In an implementation, it may be more eÆ
ient to not bother about
omputing input(�), and instead work withfx1; : : : ;xng := X \ var(rng(�)).

7. SOUNDNESS OF THE TABLEAU CALCULUS 445Prote
ted Versions of the Rules All of the rules above have prote
ted versions, i.e.,versions with the formula � to whi
h the rule applies of the form �. The blo
kingoperator is inherited by all the daughter formulas. As an example, here are theprote
ted versions of one of the
onjun
tive and one of the disjun
tive rules:(�;Pt;�)�(P�t)�(�;�)� (�; (�1 [�2);�3)�aaaa!!!!(�;�1;�3)� (�;�2;�3)�Applying De�nition 2.3, we see that this boils down to the following:((�;Pt;�))P�t((�;�)) ((�; (�1 [�2);�3))aaa!!!((�;�1;�3)) ((�;�2;�3))The tableau
al
ulus spe
i�es guidelines for extending a tableau tree with new leafnodes. If one starts out from a single formula, at ea
h stage only a �nite numberof rules
an be applied. Breadth �rst sear
h will get us all the possible tableaudevelopments for a given initial formula, but this pro
edure is not an algorithm fortableau proof
onstru
tion: as in the tableau systems for
lassi
al FOL, there is noguarantee of termination.7 Soundness of the Tableau Cal
ulusValuations for �� modelsM = (D; I) are fun
tions in V [X ! D. Any su
h fun
tiong
an be viewed as a union s[h of a fun
tion s 2 V ! D and a fun
tion h 2X ! D(take s = g � V and h = g � X). For satisfa
tion in �� models we use the notations[h[[�℄℄Mu , to be understood in the obvious way. In terms of this we de�ne the notionthat we need to a

ount for the universal nature of the X variables.De�nition 7.1 Let � 2 L�� , M = (D; I) a �� model, s; u 2 V ! D.Then 8s [[�℄℄M i� for every h :X ! D there is a u : V [X ! D with s[h[[�℄℄Mu . Wesay: s universally satis�es � in M.For any tableau T we say that C(T) if there is an �� model M, a bran
h B of Tand a V valuation s for M su
h that every formula � of B is universally satis�ed bys in M.Lemma 7.2 If s universally satis�es � in M, and � is a substitution on X that issafe for �, then s universally satis�es �� in M.Proof. If 8s [[�℄℄M then for every X valuation h in M there is a V [X valuation u inM with s[h[[�℄℄Mu . Thus for every h in M there is a V [X valuation u in M withs[h� [[�℄℄Mu ;and therefore for every h in M there is a V [X valuation u in M withs[h[[�;�℄℄Mu :Sin
e � is safe for � we have by the binding lemma that [[��℄℄M = [[�;�℄℄M, and itfollows that s universally satis�es �� in M.

446 Tableau Reasoning and Programming with Dynami
 First Order Logi
With this, we
an show that the tableau building rules preserve the C(T) relation.Lemma 7.3 (Tableau Expansion Lemma) 1. If tableau T for � yields tableauT 0 by an appli
ation of binding
omposition, then C(T) implies C(T 0).2. If tableau T for � yields tableau T 0 by an appli
ation of a tableau expansion rule,then C(T) implies C(T 0).3. If tableau T for � yields tableau T 0 by an appli
ation of equality repla
ement, thenC(T) implies C(T 0).4. If tableau T for � yields tableau T 0 by an appli
ation of
losure, then C(T) impliesC(T 0).Proof. 1. Immediate from the fa
t that �; � and � Æ � have the same interpretation.2. All of the � and � rules are straightforward, ex
ept perhaps for the � equalityrules. The
hange of � to � Æ [�ti=v℄, where �tj = v (i; j 2 f1; 2g; i 6= j;) re
e
ts thefa
t that �t1 := �t2 gives us the information to instantiate v.The
 rule. Assume :(�; 9v;�) is universally satis�ed by s in M. We may assumethat � is safe for 9v;�. If x 2 X, x fresh to the tableau, then � Æ [x=v℄ will be safefor �, and :(� Æ [x=v℄;�) will be universally satis�ed by s in M.The Æ rule. Assume s universally satis�es �; 9v;� in M. By indu
tion on tableaustru
ture, dom(�) � V . De�ne a new model M0 where sk�;9v;� is interpreted as thefun
tion f : Dn ! D given by f(d1; : : : ; dn) := some d for whi
h � su

eeds inM forinput state s�[d1=x1; : : : ; dn=xn; d=v℄. By the fa
t that s universally satis�es �; 9v;�in M and by the way we have pi
ked x1; : : : ;xn, su
h a d must exist. Then s willuniversally satisfy � Æ [sk�;9v;�(x1; : : : ;xn)=v℄;� in M0, while universal satisfa
tion ofother formulas on the bran
h is not a�e
ted by the swit
h from M to M0.3 and 4 follow immediately from Lemma 7.2.Theorem 7.4 (Soundness) If �; 2 L�, and the tableau for �;:()
loses, then� j= .Proof. If the tableau for �;:()
loses, then by the Tableau Expansion Lemma,there are no M; s su
h that 8s [[�;:()℄℄M. Sin
e �; 2 L�, there are no M; s; u withs[[�;:()℄℄Mu . In other words, for every � model M and every pair of variable statess; u forM with s[[�℄℄Mu there has to be a variable state u0 with u[[℄℄Mu0 . Thus, we have� j= in the sense of De�nition 2.5.8 Derived Prin
iplesUniversal Quanti�
ation Immediately from the de�nition of 8v(�) we get:�;8v(�1);�2((� Æ [x=v℄;�1))�;�2where x 2X new to the tableauBlo
ks Deta
hment A sequen
e of blo
ks �(�1); : : : ;�(�n), where �(�i) is either((�i)) or :(�i), yields the set of its
omponents, by a series of appli
ations of distribu-tion of the empty substitution over blo
k or negation. This is useful, as the formulas�(�1); : : : ;�(�n)
an be pro
essed in any order. In a s
hema:

9. EXAMPLES 447�(�1); : : : ;�(�n)�(�1)...�(�n)Negation Splitting The following rules are admissible in the
al
ulus::(�;:();�)bbb"""((�;)) :(�;�) :(�; (());�)HHH���((�;:())) :(�;�)Negation splitting
an be viewed as the DFOL guise of a well known prin
iple frommodal logi
: 2(A_B)! (3A_2B). To see the
onne
tion, note that :(�;:();�)is semanti
ally equivalent to :(�;:([:(�))), where :(�;: � � �) behaves as a 2modality.9 ExamplesIn the examples we will use v0; v1; : : : as 0-ary skolem terms for v, et
etera.Syllogisti
 Reasoning Consider the syllogism:8x(Ax! Bx);8x(Bx! Cx) j= 8x(Ax! Cx):This is an abbreviation of (9.1).:(9x;Ax;:Bx);:(9x;Bx;:Cx) j= :(9x;Ax;:Cx) (9.1)The DFOL tableau for this example, a tableau refutation of:(9x;Ax;:Bx);:(9x;Bx;:Cx); ((9x;Ax;:Cx))is in Figure 1.Dynami
 Donkey Reasoning The ha
kneyed example for dynami
 binding in naturallanguage, If a farmer owns a donkey, he beats it, has the following DFOL shape:(9x; 9y;Fx;Dy;Oxy ! Bxy);whi
h is shorthand for: :(9x; 9y;Fx;Dy;Oxy;:Bxy):Consider the natural language text in (9.2).If a farmer owns a donkey, he beats it. A. is a farmer and owns a donkey: (9.2)Figure 2 shows how to draw
on
lusions from the DFOL version of this text in aDFOL tableau
al
ulation.The open tableau bran
h in Figure 2 yields the fa
t Baz1, plus the following furtherinformation about z1: Dz1; Oaz1. This further information is useful to identify z1 as

448 Tableau Reasoning and Programming with Dynami
 First Order Logi

:(9x;Ax;:Bx);:(9x;Bx;:Cx); ((9x;Ax;:Cx)):(9x;Ax;:Bx):(9x;Bx;:Cx)((9x;Ax;:Cx))(([x1=x℄;Ax;:Cx))Ax1(([x1=x℄;:Cx)):Cx1(([x1=x℄)):([x=x℄;Ax;:Bx)`````````̀ :Axfx 7! x1g� :([x=x℄;:Bx)Bx:([y=x℄;Bx;:Cx)PPPPPPP�������:Byfx 7! x1;y 7! x1g� :([y=x℄;:Cx)Cyfx 7! x1;y 7! x1g�Fig. 1. DFOL Tableau for Syllogisti
 Reasoning (9.1)

9. EXAMPLES 449:(9x; 9y;Fx;Dy;Oxy;:Bxy);Fa; 9z;Dz;Oaz:(9x; 9y;Fx;Dy;Oxy;:Bxy)Fa9z;Dz;Oaz[z1=z℄;Dz;OazDz1Oaz1[z1=z℄:([x=x;y=y℄;Fx;Dy;Oxy;:Bxy)XXXXXXXXX���������:Fxfx 7! ag� :([x=x;y=y℄;Dy;Oxy;:Bxy)XXXXXXXX��������:Dyfx 7! a;y 7! z1g� :([x=x;y=y℄;Oxy;:Bxy)aaaaaa!!!!!!:Oxyfx 7! a;y 7! z1g� :([x=x;y=y℄;:Bxy)Bxyfx 7! a;y 7! z1gFig. 2. Tableau for Dynami
 Donkey Reasoning (9.2)the donkey that Alfonso owns (or perhaps a donkey that Alfonso owns) that wasintrodu
ed in the text.Open Tableau Bran
hes, Partial Models, Referen
e Resolution An open tableaubran
h for a DFOL formula � may be viewed as a partial model for �, with justenough information to verify the formula. For instan
e, the open bran
h in theprevious example does not spe
ify whether donkey z1 also beats Alfonso or not: Bz1ais neither among the fa
ts (true atoms) nor among the negated fa
ts (false atoms) ofthe bran
h.In tableau bran
hes involving equality there is also another kind of partiality in-volved: the terms are proto-obje
ts rather than genuine obje
ts, in sense that theyhave not yet `made up their minds' about whi
h individual they are: two terms t1; t2on a tableau that does not
ontain t1 6= t2 may be interpreted as a single individ-ual. This is be
ause the information about equality that the bran
h provides is also

450 Tableau Reasoning and Programming with Dynami
 First Order Logi
partial. Also, variables from X (free tableau variables)
an be resolved to any obje
twhatsoever.The level of tableau style generation of partial models for dis
ourse may be just theright level for pronoun referen
e resolution (
f. the suggestion in [7℄). Sin
e referen
eresolution is a pro
essing step that links a pronoun to a suitable ante
edent, whatabout equating the suitable ante
edents with the available terms of the bran
hes ina tableau? After all, referen
e resolution for pronouns is part of semanti
 pro
essing,so it has a more natural habitat at the level of pro
essing NL representations than atthe level of mere representation of NL meaning.Building on this idea, we (tentatively) introdu
e the following rule for pronounresolution: PproPtt o

urs on the bran
h :Ppro:Ptt o

urs on the bran
hOf
ourse, for a full a

ount one would need rules to determine the salient terms forpronoun resolution along a bran
h, but here we will just demonstrate the rule with atableau for the following pie
e of dis
ourse.Every farmer owns a donkey. Some farmer beats it. (9.3)See Figure 3. Intuitively, in this tableau, the following happens. First, a term z1 in-trodu
ed for Some farmer. This leads to an unresolved fa
t `B(z1; it)' in the databaseof the partial model under
onstru
tion. Later, the pronoun it is resolved to `thedonkey that z1 owns' generated from every farmer owns a donkey, and representedin the database of the partial model as sk1(z1).Here is another well-known example from the literature that is hard to
ra
k ina purely representational setting (a pie
e of eviden
e against the
laim, by the way,that `or' in natural language is externally stati
):John owns a motorbike or a
ar. It is in the garage. (9.4)Again, in the tableau setting there is no problem: the tableau for (9.4) will have twobran
hes, and both of the bran
hes will
ontain a suitable ante
edent for it.Reasoning about `<' Consider example (9.5).y < x;:(9x; 9y;x < y): (9.5)This is
ontradi
tory, for �rst two obje
ts of di�erent size are introdu
ed, and next weare told that all obje
ts have the same size. The
ontradi
tion is derived as follows:

9. EXAMPLES 451
8x(Fx! 9y;Dy;Oxy); 9z;Fz;B(z; it)8x(Fx! 9y;Dy;Oxy)9z;Fz;B(z; it)[z1=z℄;Fz;B(z; it)Fz1[z1=z℄;B(z; it)B(z; it):(9x;Fx;:(9y;Dy;Oxy)):([x=x℄;Fx;:(9y;Dy;Oxy))PPPPPPP�������:Fxfx 7! z1g� (([x=x℄; 9y;Dy;Oxy))(([x=x; sk1(x)=y℄;Dy;Oxy))Dsk1(x)(([x=x; sk1(x)=y℄;Oxy))O(x; sk1(x))B(z1; sk1(x))fx 7! z1gFig. 3. Tableau for Donkey Reasoning with Pronoun Resolution (9.3)

452 Tableau Reasoning and Programming with Dynami
 First Order Logi
y < x;:(9x; 9y;x < y)y < x:(9x; 9y;x < y):([x1=x;x2=y℄;x < y):x1 < x2fx1 7! y;x2 7! xg�More Reasoning about < Assume that 1; 2; 3; : : : are shorthand for s0; ss0; sss0; : : :.We derive a
ontradi
tion from the assumption that 4 < 2 together with two axiomsfor <. See Figure 4, with arrows
onne
ting the literals that e�e
t
losure.Computation of Answer Substitutions, with Variable Reuse Figure 5 demonstrateshow the
omputed answer substitution stores the �nal value for x, under the renamingx1. Be
ause of the renaming, the database information for x1 does not
on
i
t withthat for x.Closure by Equality Repla
ement This example illustrates
losure by means ofequality repla
ement, in reasoning about 9x; 9y;x 6= y; 9x;:(9y;x 6= y). Note thatx1; y1; x2 serve as names for obje
ts in the domain under
onstru
tion. What theargument boils down to is: if the name x2 applies to everything, then it
annot bethe
ase that there are two di�erent obje
ts x1; y1. See Figure 6.The �rst appli
ation of equality repla
ement in Figure 6 uni�es x with x1 and
on
ludes from x2 := x; x1 6= y1 that x2 6= y1. The se
ond appli
ation of equalityrepla
ement uni�es y with y1 and
on
ludes from x2 := y; x2 6= y1 that x2 6= x2.Loop Invariant Che
king To
he
k that x = y! is a loop invariant for y := y+1;x :=x�y, assume it is not, and use the
al
ulus to derive a
ontradi
tion with the de�nitionof !. Note that y := y+1;x := x�y appears in our notation as [y+1=y℄; [x�y=x℄. SeeFigure 7. A more detailed a

ount would of
ourse have to use the DFOL de�nitionsof +, � and !.Loop Invariant Dete
tion This time, we inspe
t the
ode [x � (y + 1)=x℄; [y + 1=y℄starting from s
rat
h. Sin
e y is the variable that gets in
remented, we may assumethat x depends on y via an unknown fun
tion f . Thus, we start in a situation wherefy = x. We
he
k what has happened to this dependen
y after exe
ution of the
ode [x � (y + 1)=x℄; [y + 1=y℄, by means of a tableau
al
ulation for fy := x; [x � (y +1)=x℄; [y+1=y℄; fy := x. See Figure 7. The tableau shows that [x� (y+1)=x℄; [y+1=y℄is a loop for the fa
torial fun
tion.Post
ondition Reasoning for `If Then Else' For another example of this,
onsider aloop through the following programming
ode:i := i+ 1; if x < a[i℄ then x := a[i℄ else skip: (9.6)Assume we know that before the loop x is the maximum of array elements a[0℄ througha[i℄. Then our
al
ulus allows us to derive a
hara
terization of the value of x at theend of the loop. Note that the loop
ode appears in DFOL under the following guise:[i+ 1=i℄; (x < a[i℄; [a[i℄=x℄ [:x < a[i℄):

10. COMPLETENESS 453:(9x;x < 0); 4 < 2;:(9x; 9y; sx < sy;:x < y):(9x;x < 0)4 < 2:(9x; 9y; sx < sy;:x < y):([x=x℄;x < 0):x < 0:([y=x; z=y℄; sx < sy;:x < y)hhhhhhhhhh((((((((((:sy < szfy 7! 3; z 7! 1g� (([y=x; z=y℄;x < y))y < zfy 7! 3; z 7! 1g3 < 1:([y1=x; z1=y℄; sx < sy;:x < y)hhhhhhh(((((((:sy1 < sz1fy1 7! 2; z1 7! 0g� (([y1=x; z1=y℄;x < y))y1 < z1fy1 7! 2; z1 7! 0g2 < 0fx 7! 2g�Fig. 4. More Reasoning about <.The situation of x at the start of the loop
an be given by an identity x = m0i , wherem is a two-pla
ed fun
tion. To get a
hara
terization of x at the end, we just putX = x (X a
onstant) at the end, and see what we get (Figure 8). What the leaf nodestell us is that in any
ase, X is the maximum of a[0℄; ::; a[i+ 1℄, and this maximumgets
omputed in x.10 CompletenessCompleteness for this
al
ulus
an be proved by a variation on
ompleteness proofs fortableau
al
uli in
lassi
al FOL. First we de�ne tra
e sets for DFOL as an analogueto Hintikka sets for FOL. A tra
e set is a set of DFOL formulas satisfying the
losure

454 Tableau Reasoning and Programming with Dynami
 First Order Logi
x := 0;x := y [y := 2; 9x;x := 2x := 0[0=x℄;x := y [y := 2; 9x;x := 2PPPPPPP�������[0=x℄;x := y; 9x;x := 20 := y[0=x; 0=y℄; 9x;x := 2[x1=x; 0=y℄;x := 2x1 := 2[x1=x; 0=y; 2=x1℄
[0=x℄; y := 2; 9x;x := 22 := y[0=x; 2=y℄; 9x;x := 2[x1=x; 2=y℄;x := 2x1 := 2[x1=x; 2=y; 2=x1℄Fig. 5. Computation of Answer Substitutions, with Variable Reuse
onditions that
an be read o� from the tableau rules. Tra
e sets
an be viewed asblow-by-blow a

ounts of parti
ular
onsistent DFOL
omputation paths (i.e., pathsthat do not
lose).De�nition 10.1 A set 	 of L�� formulas is a tra
e set if the following hold:1. :(�) =2 	.2. If � 2 	, then � =2 	.3. If �;� 2 	, then �� 2 	.4. If � 2 	 then all �i 2 	.5. If � 2 	 then at least one �i 2 	.6. If
(v) 2 	, then
1(t) 2 	 for all t 2 T V�� (all terms that do not
ontain variablesfrom X).7. If Æ(v) 2 	, then Æ1(t) 2 	 for some t 2 T V�� (some term t that does not
ontainvariables from X).This de�nition is motivated by the Tra
e Lemma:Lemma 10.2 (Tra
e Lemma) The elements of every tra
e set 	 are simultaneouslysatis�able.Proof. De�ne a
anoni
al model M0 in the standard fashion, using
ongruen
e
lo-sure on the tra
e set 	 over the set of terms o

urring in �, to get a suitable
ongru-en
e � on terms. Next, de�ne a
anoni
al valuation s0 by means of s0(v) := [v℄� formembers of V and s0(sk0i) = [sk0i ℄� for 0-ary skolem terms. Verify that so satis�esevery member of � in M0.

10. COMPLETENESS 4559x; 9y;x 6= y; 9x;:9y;x 6= y[x1=x; y1=y℄;x 6= y; 9x;:9y;x 6= yx1 6= y1[x2=x; y1=y℄;:9y;x 6= y:[x2=x;x=y℄;x 6= yx2 := xfx 7! x1gx2 6= y1:[x2=x;y=y℄;x 6= yx2 := yfy 7! y1gx2 6= x2�Fig. 6. Reasoning With Equalityx = y!; [y + 1=y℄; [x � y=x℄;x 6= y![y!=x℄; [y + 1=y℄; [x � y=x℄;x 6= y![y!=x; y + 1=y℄; [x � y=x℄;x 6= y![y + 1=y; y! � (y + 1)=x℄;x 6= y!y! � (y + 1) 6= (y + 1)!
fy := x; [x � (y + 1)=x℄; [y + 1=y℄; fy := xfy := x[fy=x℄; [x � (y + 1)=x℄; [y + 1=y℄; fy := x[fy � (y + 1)=x℄; [y + 1=y℄; fy := x[fy � (y + 1)=x; y + 1=y℄; fy := xf(y + 1) := fy � (y + 1)[fy � (y + 1)=x; y + 1=y℄Fig. 7. Loop Invariant Che
king and Loop Invariant Dete
tion.

456 Tableau Reasoning and Programming with Dynami
 First Order Logi
x = m0i ; [i+ 1=i℄;x < a[i℄; [a[i℄=x℄ [:x < a[i℄;X = x[m0i =x℄; [i+ 1=i℄;x < a[i℄; [a[i℄=x℄ [:x < a[i℄;X = x[m0i =x; i+ 1=i℄;x < a[i℄; [a[i℄=x℄ [:x < a[i℄;X = x[m0i =x; i+ 1=i℄;x < a[i℄; [a[i℄=x℄;X = x [[m0i =x; i+ 1=i℄;:x < a[i℄;X = x``````````̀ [m0i =x; i+ 1=i℄;x < a[i℄; [a[i℄=x℄;X = xm0i < a[i+ 1℄[m0i =x; i+ 1=i℄; [a[i℄=x℄;X = x[i+ 1=i; a[i+ 1℄=x℄;X = xX = a[i+ 1℄[i+ 1=i; a[i+ 1℄=x℄
[m0i =x; i+ 1=i℄;:x < a[i℄;X = x:m0i < a[i+ 1℄; [m0i =x; i+ 1=i℄;X = x:m0i < a[i+ 1℄X = m0i[m0i =x; i+ 1=i℄

Fig. 8. Post
ondition Reasoning for (9.6)To employ the lemma, we need the standard notion of a fair
omputation rule. A
omputation rule is a fun
tion F that for any set of formulas � and any tableau T ,
omputes the next rule to be applied on T . This de�nes a partial order on the set oftableaux for �, with the su

essor of T given by F . Then there is a (possibly in�nite)sequen
e of tableaux for � starting from the initial tableau, and with supremum T1.A
omputation rule F is fair if the following holds for all bran
hes B in T1:1. All formulas of type �; �; Æ o

urring on B or in � were used to expand B,2. All formulas of type
 o

urring on B or in � were used in�nitely often to expandB.Theorem 10.3 (Completeness) For all �; 2 L�: if � j= then there is a tableaurefutation of �;:().Proof. Let T 0; : : : be a sequen
e of tableaux for �;:()
onstru
ted with a fair
omputation rule, without
losure rule appli
ations, and with supremum T1. De�nea freezing map �1 on T1 as follows (see, e.g., [17℄). Let (Bk)k�0 be an enumerationof the bran
hes of T1, let (�i)i�0 be an enumeration of the type
 formulas of T1,and let xijk be the variable introdu
ed for the j-th appli
ation of
 formula �i alongbran
h Bk. If (tj)j�0 is an enumeration of all the frozen terms of T1, we
an set�1(xijk) := tj for all i; j; k � 0. Note that �1 is not, stri
tly speaking, a substitutionsin
e dom(�1) is not �nite.

11. ADDING ITERATION 457Suppose �1T1
ontains an open bran
h. Then from this bran
h we get a tra
e set,whi
h in turn would give a
anoni
al model and a
anoni
al valuation for �;:(), and
ontradi
tion with the assumption that � j= . Therefore, �1T1 must be
losed.Sin
e the tree T1 is �nitely bran
hing and all formulas having an e�e
t on
losureare at �nite distan
e from the root, there is a �nite T n with �1T n
losed. Finally,
onstru
t an MGU � for T n on the basis of the part of �1 that is a
tually used inthe
losure of T n, and we are done.Theorem 10.4 (Computation Theorem) If � is satis�able, then all bindings �produ
ed by open tableau bran
hes B satisfy s[[�℄℄Ms� , where M is the
anoni
al model
onstru
ted from B, and s the
anoni
al valuation.Proof. Let T 0; : : : be a sequen
e of tableaux for �
onstru
ted with a fair
ompu-tation rule, without
losure rule appli
ations, and with supremum T1. Consider�1T1, where �1 is the
anoni
al freezing substitution. Then sin
e � is satis�able,�1T1 will have open bran
hes (Bk)k�0 (the number need not be �nite). It followsfrom the format of the tableau expansion rules that every open bran
h will developone binding.We say that a binding � o

urs non-prote
ted in a formula � if � has the form �; .Che
k that the tableau expansion rules on formulas of the forms (()) or :() neveryield non-prote
ted bindings � 6= [℄. Che
k that ea
h appli
ation of an �; �;
 or Ærule to a formula with a non-prote
ted binding extends a bran
h with exa
tly onenon-prote
ted binding. It follows that every tableau bran
h Bk has a highest nodewhere a formula of the form � appears. This �
an be thought of as the result ofpulling the initial binding [℄ through the initial formula �. For every su
h Bk and �there is a �nite T n with a bran
h Bk0 that already
ontains (a generalization of) �.It
an be proved by indu
tion on the length of Bk0 that s[[�℄℄Ms� , forM the
anoni
almodel and s the
anoni
al valuation for that bran
h.Note that the
omputation theorem gives no re
ipe for generating all
orre
t bind-ings for a given �. Spe
ifying appropriate
omputation rules for generating thesebindings for spe
i�
 sets of DFOL formulas remains a topi
 for future resear
h.Variation: Using the Cal
ulus with a Fixed Model Computing with respe
t to a�xed model is but a slight variation on the general s
heme. The te
hnique of usingtableau rules for model
he
king is well known. Assume that a model M = (D; I) isgiven. Then instead of storing ground predi
ates P��t (ground equalities �t1 := �t2),we
he
k the model for M j= P��t (for [[�t1℄℄M = [[�t2℄℄M), and
lose the bran
h ifthe test fails,
ontinue otherwise. Similarly, instead of storing ground predi
ates P��t(ground equalities �t1 := �t2) under negation, we
he
k the model for M 6j= P��t (for[[�t1℄℄M 6= [[�t2℄℄M), and
lose the bran
h if the test fails,
ontinue otherwise.11 Adding IterationLet L�� be the language that results from extending L� with formulas of the form ��.The intended relational meaning of �� is that � gets exe
uted a �nite (� 0) numberof times. This extension makes L�� into a full-
edged programming language, withits assertion language built in for good measure.

458 Tableau Reasoning and Programming with Dynami
 First Order Logi
The semanti

lause for �� runs as follows:s[[��℄℄Mu i� either s = uor 9s1; : : : ; sn(n � 1) with s[[�℄℄Ms1 ; : : : ; sn [[�℄℄Mu :It is easy to see that it follows from this de�nition that:s[[��℄℄Mu i� either s = u or 9s1 with s[[�℄℄Ms1 and s1 [[��℄℄Mu : (11.1)Note, however, that (11.1) is not equivalent to the de�nition of s[[��℄℄Mu , for (11.1)does not rule out in�nite � paths.Let �n be given by: �0 := [℄ and �n+1 := �;�n. Now �� is equivalent to `for somen 2 N : �n'.What we will do in our
al
ulus for DFOL� is take (11.1) as the
ue to the starrules. This will allow star
omputations to loop, whi
h does not pose any problem,given that we extend our notion of
losure to `
losure in the limit' (see below).The
al
ulus for DFOL� has all expansion rules of the DFOL
al
ulus, plus thefollowing �� and �� rules.�� expansion rule Call � the star formula of the rule.:(�; �;�):(�;�):(�; ; �;�)�� expansion rule Call � the star formula of the rule. The �� rule also has aprote
ted version. �; �;�PPPP�����;� �; ; �;�To see that the �� rule is sound, assume that s universally satis�es :(�; �;�) inM = (D; I). By (11.1), this means that there is at least one h : X ! D for whi
hthere is no u with s[h[[�;�℄℄Mu and no u with s[h[[�; ; �;�℄℄Mu . Thus, s universallysatis�es :(�;�) and :(�; ; �;�) in M.For the �� rule, assume that s universally satis�es �; �;� in M. Then for everyh : X ! D there are u; u0 with s[h[[�℄℄Mu and u[[�;�℄℄Mu0 . Then, by (11.1), eitheru[[�℄℄Mu0 or there is a u1 with u[[℄℄Mu1 and u1 [[��1;�℄℄Mu0 . Thus, s universally satis�eseither �;� or �; ; �;� in M.Closure in the Limit To deal with the in
ationary nature of the �� and �� rules(the star formula of the rule reappears at a leaf node), we need a modi�
ation of ournotion of tableau
losure. We allow
losure in the limit, as follows.

11. ADDING ITERATION 459De�nition 11.1 An in�nite tableau bran
h
loses in the limit if it
ontains an in�nitestar development, i.e., an in�nite number of �� or �� appli
ations to the same starformula.Example of Closure in the Limit We will give an example of an in�nite star devel-opment. Consider formula (11.2)::9w:(9v; v = 0; (v 6= w; [v + 1=v℄)�; v = w): (11.2)What (11.2) says is that there is no obje
t w that
annot be rea
hed in a �nite numberof steps from v = 0, or in other words that the su

essor relation v 7! v+1,
onsideredas a graph, is well-founded. This is the Peano indu
tion axiom: it
hara
terizes thenatural numbers up to isomorphism. What it says is that any set A that
ontains 0and is
losed under su

essor
ontains all the natural numbers. The fa
t that Peanoindu
tion is expressible as an L�� formula is eviden
e that L�� has greater expressivepower than FOL. In FOL no single formula
an express Peano indu
tion: no formula
an distinguish the standard model (N; s) from the non-standard models. In a non-standard model of the natural numbers it may take an in�nite number of s-steps toget from one natural number n to a larger number m.The expressive power of L�� is the same as that of quanti�ed dynami
 logi
 ([25,15℄). Arithmeti
al truth is unde
idable, so there
an be no �nitary refutation systemfor L��. The �nitary tableau system for L� is eviden
e for the fa
t that DFOL validityis re
ursively enumerable: all non-validities are dete
ted by a �nite tableau refutation.This property is lost in the
ase of L��: the language is just too expressive to admitof �nitary tableau refutations.Therefore, some tableau refutations must be in�nitary, and the tableau developmentfor the negation of (11.2) is a
ase in point. Let us see what happens if we attempt torefute the negation of (11.2). A su

essful refutation will identify the natural numbersup to isomorphism. See Figure 9. This is indeed a su

essful refutation, for the tree
loses in the limit. But the refutation tree is in�nite: it takes an in�nite amount oftime to do all the
he
ks.Theorem 11.2 (Soundness Theorem for L��) The
al
ulus for DFOL� is sound:For all �; 2 L��: if the tableau for �;:()
loses then � j= .The modi�ed tableau method does not always give �nite refutations. Still, it is avery useful reasoning tool, more powerful than Hoare reasoning, and more pra
ti
althan the in�nitary
al
ulus for quanti�ed dynami
 logi
 developed in [14, 15℄. Dy-nami
 logi
 itself has been put to pra
ti
al use, e.g. in KIV, a system for intera
tivesoftware veri�
ation [26℄. It is our hope that the present
al
ulus
an be used tofurther automate the software veri�
ation pro
ess.Pre
ondition/post
ondition Reasoning For a further example of reasoning with the
al
ulus,
onsider formula (11.3). This gives an L�� version of Eu
lid's GCD algorithm.(x 6= y; (x > y; [x� y=x℄ [y > x; [y � x=y℄))�;x := y: (11.3)To do automated pre
ondition-post
ondition reasoning on this, we must �nd a trivial
orre
tness statement. Even if we don't know what g
d(x; y) is, we know that itsvalue should not
hange during the program. So putting g
d(x; y) equal to some

460 Tableau Reasoning and Programming with Dynami
 First Order Logi
9w:(9v; v := 0; (v 6= w; [v + 1=v℄)�; v := w)[w1=w℄:(9v; v := 0; (v 6= w; [v + 1=v℄)�; v := w):([w1=w; 0=v℄; (v 6= w; [v + 1=v℄)�; v := w):([w1=w; 0=v℄; v := w):([w1=w; 0=v℄; v 6= w; [v + 1=v℄; (v 6= w; [v + 1=v℄)�; v := w)0 6= w1:([w1=w; 1=v℄; (v 6= w; [v + 1=v℄)�; v := w):([w1=w; 1=v℄; v := w):([w1=w; 1=v℄; v 6= w; [v + 1=v℄; (v 6= w; [v + 1=v℄)�; v := w)1 6= w1:([w1=w; 2=v℄; (v 6= w; [v + 1=v℄)�; v := w):([w1=w; 2=v℄; v := w):([w1=w; 2=v℄; v 6= w; [v + 1=v℄; (v 6= w; [v + 1=v℄)�; v := w)2 6= w1:([w1=w; 3=v℄; (v 6= w; [v + 1=v℄)�; v := w):([w1=w; 3=v℄; v := w):([w1=w; 3=v℄; v 6= w; [v + 1=v℄; (v 6= w; [v + 1=v℄)�; v := w)3 6= w1:([w1=w; 4=v℄; (v 6= w; [v + 1=v℄)�; v := w):([w1=w; 4=v℄; v := w):([w1=w; 4=v℄; v 6= w; [v + 1=v℄; (v 6= w; [v + 1=v℄)�; v := w)4 6= w1:([w1=w; 5=v℄; (v 6= w; [v + 1=v℄)�; v := w)...�Fig. 9. `In�nite Proof' of the Peano Indu
tion Axiom.

12. COMPLETENESS FOR DFOL� 461arbitrary value and see what happens would seem to be a good start. We will use the
orre
tness statement z := g
d(x; y). The statement that the result gets
omputed inx
an then take the form z := x. The program with these trivial
orre
tness statementsin
luded be
omes:z := g
d(x; y);(x 6= y; (x > y; [x� y=x℄; z := g
d(x; y) [y > x; [y � x=y℄; z := g
d(x; y)))�;x := y; z := x: (11.4)We
an now put the
al
ulus to work. Abbreviating(x 6= y; (x > y; [x� y=x℄; z := g
d(x; y) [y > x; [y � x=y℄; z := g
d(x; y)))�as A�, we get: z := g
d(x; y);A�;x := y; z := xhhhhhhhhhh(((((((((([g
d(x; y)=z℄;x := y; z := xx := y; g
d(x; y) := x [g
d(x; y)=z℄;A;A�;x := y; z := xhhhhhhh(((((((x > yg
d(x; y) := g
d(x� y; y)[g
d(x; y)=z; x� y=x℄;A�;x := y; z := x y > xg
d(x; y) := g
d(x; y � x)[g
d(x; y)=z; y � x=y℄;A�;x := y; z := xThe se
ond split is
aused by an appli
ation of the rule for [. By the soundnessof the
al
ulus any model satisfying the annotated program (11.4) will satisfy one ofthe bran
hes. This shows that if the program su

eeds (
omputes an answer), thefollowing disjun
tion will be true:(x := y ^ g
d(x; y) := x)_ (x > y ^ g
d(x; y) := g
d(x� y; y) ^ �)_ (y > x ^ g
d(x; y) := g
d(x; y � x) ^); (11.5)where � and abbreviate, respe
tively, [g
d(x; y)=z; x � y=x℄;A�;x := y; z := x and[g
d(x; y)=z; y�x=y℄;A�;x := y; z := x. From this it follows that the following weakerdisjun
tion is also true:(x := y ^ g
d(x; y) := x)_ (x > y ^ g
d(x; y) := g
d(x� y; y))_ (y > x ^ g
d(x; y) := g
d(x; y � x)) (11.6)Note that (11.6) looks remarkably like a fun
tional program for GCD.12 Completeness for DFOL�The method of tra
e sets for proving
ompleteness from Se
tion 10 still applies. Tra
esets for DFOL� will have to satisfy the obvious extra
onditions. In order to preservethe
orresponden
e between tra
e sets and open tableau bran
hes, we must adapt thede�nition of a fair
omputation rule. A
omputation rule F for L�� is fair if it is fairfor L�, and in addition, the following holds for all bran
hes B in T1:

462 Tableau Reasoning and Programming with Dynami
 First Order Logi
� All formulas of type ��; �� o

urring on B or in � were used to expand B.We
an again prove a tra
e lemma for DFOL�, in the same manner as before: Again,open bran
hes in the supremum of a fair tableau sequen
e will
orrespond to tra
esets, and we
an satisfy these tra
e sets in
anoni
al models. The de�nition of tra
esets is extended as follows:De�nition 12.1 A set 	 of L��� formulas is a �-tra
e set if the following hold:� 	 is a tra
e set,� If �� 2 	 then at least one ��i 2 	.� If �; �;� 2 	, then there is some n � 0 with �; m;� =2 	 for all m > n.Similarly for ((�; �;�)).� For all �; ; � it holds that :(�; �;�) =2 	.Note that the �nal two requirements are met thanks to our stipulation about
losurein the limit. In the same manner as before, we get:Theorem 12.2 (Completeness for L�) For all �; 2 L�: if � j= then thetableau for �;:()
loses.So we have a
omplete logi
 for DFOL�, but of
ourse it
omes at a pri
e: we mayo

asionally get in a refutation loop. However, as our tableau
onstru
tion examplesillustrate, this does hardly a�e
t the usefulness of the
al
ulus.13 Related WorkComparison with tableau reasoning for (fragments of) FOL The present
al
ulus forDFOL
an be viewed as a more dynami
 version of tableau style reasoning for FOLand for modal fragments of FOL. Instead of just
he
king for valid
onsequen
e and
onstru
ting
ounterexamples from open tableau bran
hes, our open tableau bran
hesyield
omputed answer bindings as an extra. The
onne
tion with tableau reasoningfor FOL is also evident in the proof method of our
ompleteness theorems. Our
al
ulus
an be used for FOL reasoning via the following translation of FOL intoDFOL: (P �t)� := P �t(:�)� := :��(� ^)� := ��; �(� _)� := �� [�(9x�)� := ((9x;��))(8x�)� := :(9x;:��)It is easy to
he
k that for every FOL formula � it holds that �� = ���, i.e., all FOLtranslations are DFOL tests. Moreover, the translation is adequate in the sense thatfor every FOL formula � over signature �, every �-model M, every valuation s forM it holds that M j=s � i� s[[��℄℄Ms .

13. RELATED WORK 463Conne
tion with Logi
 Programming The
lose
onne
tion between tableau reason-ing for DFOL and Logi
 Programming
an be seen by developing a DFOL tableaufor the following formula set:8xA([℄; x; x);8x8y8z8i(A(x; y; z)! A([ijx℄; y; [ijz℄));:9xA([aj[bj[℄℄; [
j[℄℄; x):This will give a tableau for the append relation, with a MGU substitution fx 7![aj[bj
j[℄℄℄g that
loses the tableau, where x is the universal tableau variable used in theappli
ation of the
 rule to :9xA([aj[bj[℄℄; [
j[℄℄; x). The example may serve as a hint tothe unifying perspe
tive on logi
 programming and imperative programming providedby tableau reasoning for DFOL. In future work, we hope to elaborate the further
onne
tions between our delayed substitution rules and
onstraint logi
 programming,and between our
omputational handling of equality and equational reasoning in logi
programs.Comparison with other Cal
uli for DFOL and for DRT The
al
ulus developed in[12℄ uses swap rules for moving quanti�ers to the front of formulas. The key idea of thepresent
al
ulus is entirely di�erent: en
ode dynami
 binding in expli
it bindings andprote
t outside environments from dynami
 side e�e
ts by means of blo
k operations.In a sense, the present
al
ulus o�ers a full a

ount of the phenomenon of lo
al variableuse in DFOL.Kohlhase [22℄ gives a tableau
al
ulus for DRT (Dis
ourse Representation Theory,see [21℄) that has essentially the same s
ope as the [12℄
al
ulus for DPL: the versionof DRT disjun
tion that is treated is externally stati
, and the DRT analogue of [isnot treated.The Kohlhase
al
ulus follows an old DRT tradition in relying on an impli
it trans-lation to standard FOL: see [27℄ for an earlier example of this. Kohlhase motivateshis
al
ulus with the need for (minimal) model generation in dynami
 NL seman-ti
s. In order to make his
al
ulus generate minimal models, he repla
es the rulefor existential quanti�
ation by a `s
rat
hpaper' version (well-known from textbooktreatments of tableau reasoning; see [20℄ for further ba
kground, and for dis
ussionof non-monotoni

onsequen
e based on minimal models generated with this rule):�rst try out if you
an avoid
losure with a term already available at the node. If allthese attempts result in
losure, it does not follow from this that the information atthe node is in
onsistent, for it may just be that we have `overburdened' the availableterms with demands. So in this
ase, and only in this
ase, introdu
e a new individual.This `exhaustion of existing terms' approa
h has the virtue that it generates `small'models when they exist, whereas the more general pro
edure `always introdu
e a freshvariable and postpone instantiation' may generate in�nite models where �nite modelsexist. Note, however, that the strategy only makes sense for a signature withoutfun
tion symbols, and for a tableau
al
ulus without free tableau variables.Kohlhase dis
usses appli
ations in NL pro
essing, where it often makes sense to
onstru
t a minimal model for a text, and where the assumption of minimality
anbe used to fa
ilitate issues of anaphora resolution and presupposition handling.Comparison with Apt and Bezem's Exe
utable FOL Apt and Bezem present what
an be viewed as an ex
iting new mix of tableau style reasoning and model
he
kingfor FOL. Our treatment of equality uses a generalization of a stratagem from their[3℄: in the
ontext of a partial variable map �, they
all v := t a � assignment ifv =2 dom(�), and all variables o

urring in t are in dom(�). We generalize this on two

464 Tableau Reasoning and Programming with Dynami
 First Order Logi

ounts:� Be
ause our
omputation results are bindings (term maps) rather than maps toobje
ts in the domain of some model, we allow
omputation of non-ground termsas values.� Be
ause our bindings are total, in our
al
ulus exe
ution of t1 := t2 atoms nevergives rise to an error
ondition.It should be noted for the re
ord that the �rst of these points is addressed in [2℄. Aptand Bezem present their work as an underpinning for Alma-0, a language that infusesModula style imperative programming with features from logi
 programming (see [4℄).In a similar way, the present
al
ulus provides logi
al underpinnings for Dynamo, alanguage for programming with an extension of DFOL. For a detailed
omparison ofAlma-0 and Dynamo we refer the reader to [11℄.Conne
tion with WHILE, GCL It is easy to give an expli
it binding semanti
s forWHILE, the favorite toy language of imperative programming from the textbooks (seee.g., [23℄), or for GCL, the non-deterministi
 variation on this proposed by Dijkstra(see, e.g. [9℄). DFOL is in fa
t quite
losely related to these, and it is not hard to seethat DFOL� has the same expressive power as GCL. Our tableau
al
ulus for DFOL�
an therefore be regarded as an exe
ution engine
um reasoning engine for WHILEor GCL.Conne
tion with PDL, QDL There is also a
lose
onne
tion between DFOL� on onehand and propositional dynami
 logi
 (PDL) and quanti�ed dynami
 logi
 (QDL) onthe other. QDL is a language proposed in [25℄ to analyze imperative programming,and PDL is its propositional version. See [28, 24℄ for
omplete axiomatizations ofPDL, [15℄ for an exposition of both PDL and QDL, and for a
omplete (but in�nitary)axiomatization of QDL, [19℄ for an overview, and [18℄ for a a study of QDL and variousextensions. In PDL/QDL, programs are treated as modalities and assertions aboutprograms are formulas in whi
h the programs o

ur as modal operators. Thus, ifA is a program, hAi� asserts that A has a su

essful termination ending in a statesatisfying �. As is well-known, this
annot be expressed without further ado in Hoarelogi
.The main di�eren
e between DFOL� and PDL/QDL is that in DFOL� the dis-tin
tion between formulas and programs is abolished. Everything is a program, andassertions about programs are test programs that are exe
uted along the way, butwith their dynami
 e�e
ts blo
ked. To express that A has a su

essful terminationending in a � state, we
an just say ((A;�)). To
he
k whether A has a su

essfultermination ending in a � state, try to refute the statement by
onstru
ting a tableaufor :(A;�).To illustrate the
onne
tion with QDL and PDL,
onsider MIX, the �rst of the twoPDL axioms for �: [A�℄�! � ^ [A℄[A�℄�: (13.1)Writing this with hAi;:;^;_, and repla
ing :� by �, we get::(:hA�i� ^ (� _ hAihA�i�)): (13.2)This has the following DFOL�
ounterpart::(:(A�;�); (� [(A;A�;�))): (13.3)

13. RELATED WORK 465For a refutation proof of (13.3), we leave out the outermost negation.:(A�;�); (� [(A;A�;�)):(A�;�)(� [(A;A�;�)):�:(A;A�;�)XXXX������ (A;A�;�)�The tableau
loses, so we have proved that (13.3) is a DFOL� theorem (and thus,a DFOL� validity).We will also derive the validity of the DFOL�
ounterpart to IND, the other PDLaxiom for �: (� ^ [A�℄(�! [A℄�)) ! [A�℄�: (13.4)Equivalently, this
an be written with only hAi;:;^;_, as follows::(� ^ :hA�i(� ^ hAi:�) ^ hA�i:�): (13.5)The DFOL�
ounterpart of (13.5) is::(�;:(A�;�;A;:�);A�;:�): (13.6)We will give a refutation proof of (13.6) in two stages. First, we show that (13.7)
anbe refuted for any n � 0, and next, we use this for the proof of (13.6).�;:(A�;�;A;:�);An;:�: (13.7)Here is the
ase of (13.7) with n = 0:�;:(A�;�;A;:�);:��:(A�;�;A;:�):��Bearing in mind that A is a dynami
 a
tion and � is a test, we
an apply the rule ofNegation Splitting to formulas of the form :(An;�;A;:�), as follows::(An;�;A;:�)aaaa!!!!((An;:�)) :(An+1;:�)Note that :(An;�;A;:�)
an be derived from :(A�;�;A;:�) by n appli
ations ofthe �� rule. Using this, we get the following refutation tableau for the
ase of (13.7)with n = k + 1:

466 Tableau Reasoning and Programming with Dynami
 First Order Logi
�;:(A�;�;A;:�);Ak+1 ;:��:(A�;�;A;:�)Ak+1;:�...:(Ak ;�;A;:�)PPPP����((Ak ;:�))� :(Ak+1;:�)�The left-hand bran
h
loses be
ause of the refutation of �;:(A�;�;A;:�);Ak ;:�,whi
h is given by the indu
tion hypothesis.Next, use these refutations of :�; A;:�; A2;:�, . . . , to prove (13.6) by meansof a refutation in the limit, as follows:�;:(A�;�;A;:�);A�;:��:(A�;�;A;:�)A�;:�PPPPP�����:�� A;A�;:�PPPPP�����A;:�� A2;A�;:�PPPP����A2;:�� A3;A�;:�bbb"""A3;:� . . .This
losed tableau establishes (13.6) as a DFOL� theorem. That
losure in thelimit is needed to establish the DFOL� indu
tion prin
iple is not surprising. TheDFOL � rules express that �
omputes a �x-point, while the fa
t that this �x-pointis a least �x-point is
aptured by the stipulation about
losure in the limit. Theindu
tion prin
iple (13.6) hinges on the fa
t that �
omputes a least �x-point.Goldblatt [14, 15℄ develops an in�nitary proof system for QDL with the followingkey rule of inferen
e:If �! [A1;An2 ℄ is a theorem for every n 2 N, then �! [A1;A�2℄ is a theorem.(13.8)To see how this is related to the present
al
ulus, assume that one attempts to refute�! [A1;A�2℄ , or rather, its DFOL�
ounterpart :(�;A1;A�2;:), on the assumptionthat for any n 2 N there exists a refutation of �;A1;An2 ;: .

14. CONCLUSION 467�;A1;A�2;: hhhhhhhh((((((((�;A1;: � �;A1;A2;A�2;: hhhhhhhh((((((((�;A1;A2;: � �;A1;A2;A2;A�2;: hhhhhhh(((((((�;A1;A2;A2;: � �;A1;A2;A2;A2;A�2;: PPPP�����;A1;A2;A2;A2;: � . . .We
an
lose o� the �;A1;An2 ;: bran
hes by the assumption that there existrefutations for these, for every n 2 N. The whole tableau gives an in�nite �� de-velopment, and the in�nite bran
h
loses in the limit, so the tableau
loses, thusestablishing that in the DFOL�
al
ulus validity of :(�;A1;A�2;:) follows from thefa
t that :(�;A1;An2 ;:) is valid for every n 2 N.14 Con
lusionStarting out from an analysis of binding in dynami
 FOL, we have given a tableau
al
ulus for reasoning with DFOL. The format for the
al
ulus and the role of expli
itbindings for
omputing answers to queries were motivated by our sear
h for logi
alunderpinnings for programming with (extensions of) DFOL. The DFOL tableau
al-
ulus presented here
onstitutes the theoreti
al basis for Dynamo, a toy programminglanguage based on DFOL. The versions of Dynamo implemented so far implementtableau reasoning for DFOL with respe
t to a �xed model: see [11℄.To �nd the answer to a query, given a formula �
onsidered as Dynamo programdata, Dynamo essentially puts the tableau
al
ulus to work on a formula �, all thewhile
he
king predi
ates with respe
t to the �xed model of the natural numbers,and storing values for variables from the inspe
tion of equality statements. If thetableau
loses, this means that � is in
onsistent (with the information obtained fromtesting on the natural numbers), and Dynamo reports `false'. If the tableau remainsopen, Dynamo reports that � is
onsistent (again with the information obtained frominspe
ting predi
ates on the natural numbers), and lists the
omputed bindings forthe output variables at the end of the open bran
hes. But the Dynamo engine alsoworks for general tableau reasoning, and for general queries. The literals
olle
tedalong the open bran
hes together with the expli
it bindings at the trail ends
onstitutethe
omputed answers.Dynamo
an be viewed as a
ombined engine for program exe
ution and reasoning.We are
urrently working on an new implementation of Dynamo that takes the insightsreported above into a

ount. The advantages of the
ombination of exe
ution andreasoning embodied in Dynamo should be evident from our examples of strongestpost
ondition generation in Se
tion 9. To our knowledge, this use of dynami
 �rstorder logi
 for analyzing imperative programming by means of
al
ulating tra
e sets isnew. We
laim that our
al
ulus opens the road to a more intuitive way of reasoningabout imperative programs, and we hope to develop automated reasoning tools for

468 Tableau Reasoning and Programming with Dynami
 First Order Logi
program analysis based on it.Finally, sin
e natural language semanti
s is a key appli
ation area of dynami
 varia-tions on �rst order logi
, we expe
t that both the
al
ulus itself and its implementationin the form of an improved exe
ution me
hanism for Dynamo also have a role to playin a truly
omputational semanti
s for natural language.A
knowledgmentsThe resear
h for this paper was sponsored by Spinoza Logi
 In A
tion. Thanks toJohan van Benthem, Balder ten Cate, Anne Kaldewaij, Fairouz Kamareddine, Mi
haelKohlhase, Maarten Marx, Joa
him Niehren, Kees Vermeulen, Albert Visser and JoeWells for stimulating dis
ussion and helpful
riti
ism. Two anonymous reviewers ofthis journal made suggestions that prompted a
omplete overhaul of the presentation.Proposition (3.4) was triggered by a question from Krzysztof Apt.Referen
es[1℄ K.R. Apt. From Logi
 Programming to Prolog. Prenti
e Hall, 1997.[2℄ K.R. Apt. A denotational semanti
s for �rst-order logi
. In Pro
. of the Computational Logi
Conferen
e (CL2000), Notes in Arti�
ial Intelligen
e 1861, pages 53{69. Springer, 2000.[3℄ K.R. Apt and M. Bezem. Formulas as programs. In K.R. Apt, V. Marek, M. Trusz
zyski, andD.S. Warren, editors, The Logi
 Programming Paradigm: a 25 Years Perspe
tive, pages 75{107.Springer Verlag, 1999. Paper available as http://xxx.lanl.gov/abs/
s.LO/9811017.[4℄ K.R. Apt, J. Brunekreef, V. Partington, and A. S
haerf. Alma-0: An imperative language thatsupports de
larative programming. ACM Toplas, 20:1014{1066, 1998.[5℄ F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press, 1998.[6℄ J. van Benthem. Exploring Logi
al Dynami
s. CSLI & Folli, 1996.[7℄ J. van Benthem and J. van Eij
k. The dynami
s of interpretation. Journal of Semanti
s,1(1):3{20, 1982.[8℄ M. D'Agostino, D.M. Gabbay, R. H�ahnle, and J. Posegga, editors. Handbook of Tableau Methods.Kluwer, Dordre
ht, 1999.[9℄ E.W Dijkstra and C.S. S
holten. Predi
ate Cal
ulus and Program Semanti
s. Texts and Mono-graphs in Computer S
ien
e. Springer-Verlag, 1990.[10℄ H.C. Doets. From Logi
 to Logi
 Programming. MIT Press, Cambridge, Massa
husetts, 1994.[11℄ J. van Eij
k. Programming with dynami
 predi
ate logi
. Te
hni
al Report CT-1998-06, ILLC,1998. Available from www.
wi.nl/~jve/dynamo.[12℄ J. van Eij
k. Axiomatising dynami
 logi
s for anaphora. Journal of Language and Computation,1:103{126, 1999.[13℄ M. Fitting. First-order Logi
 and Automated Theorem Proving; Se
ond Edition. Springer Verlag,Berlin, 1996.[14℄ R. Goldblatt. Axiomatising the Logi
 of Computer Programming. Springer, 1982.[15℄ R. Goldblatt. Logi
s of Time and Computation, Se
ond Edition, Revised and Expanded, vol-ume 7 of CSLI Le
ture Notes. CSLI, Stanford, 1992 (�rst edition 1987). Distributed by Universityof Chi
ago Press.[16℄ J. Groenendijk and M. Stokhof. Dynami
 predi
ate logi
. Linguisti
s and Philosophy, 14:39{100,1991.[17℄ R. H�ahnle. Tableaux and related methods. In Alan Robinson and Andrei Voronkov, editors,Handbook of Automated Reasoning. Elsevier S
ien
e Publishers, to appear, 2001.[18℄ D. Harel. First-Order Dynami
 Logi
. Number 68 in Le
ture Notes in Computer S
ien
e.Springer, 1979.[19℄ D. Harel. Dynami
 logi
. In D. Gabbay and F. Guenthner, editors, Handbook of Philosophi
alLogi
, pages 497{604. Reidel, Dordre
ht, 1984. Volume II.

14. CONCLUSION 469[20℄ J. Hintikka. Model minimization | an alternative to
ir
ums
ription. Journal of AutomatedReasoning, 4:1{13, 1988.[21℄ H. Kamp. A theory of truth and semanti
 representation. In J. Groenendijk et al., editors,Formal Methods in the Study of Language. Mathematis
h Centrum, Amsterdam, 1981.[22℄ M. Kohlhase. Model generation for Dis
oure Representation Theory. In ECAI Pro
eedings,2000. Available from http://www.ags.uni-sb.de/~kohlhase/.[23℄ H.R. Nielson and F. Nielson. Semanti
s with Appli
ations. John Wiley and Sons, 1992.[24℄ R. Parikh. The
ompleteness of propositional dynami
 logi
. In Mathemati
al Foundations ofComputer S
ien
e 1978, pages 403{415. Springer, 1978.[25℄ V. Pratt. Semanti
al
onsiderations on Floyd{Hoare logi
. Pro
eedings 17th IEEE Symposiumon Foundations of Computer S
ien
e, pages 109{121, 1976.[26℄ W. Reif. The KIV-approa
h to software veri�
ation. In M. Broy and S. J�ahni
hen, editors,KORSO: Methods, Languages, and Tools for the Constru
tion of Corre
t Software, SpringerLNCS 1009, pages 339{368, 1995.[27℄ C. Sedogbo and M. Eytan. A tableau
al
ulus for DRT. Logique et Analyse, 31:379{402, 1988.[28℄ K. Segerberg. A
ompleteness theorem in the modal logi
 of programs. In T. Tra
zy
k, editor,Universal Algebra and Appli
ations, pages 36{46. Polish S
ien
e Publi
ations, 1982.[29℄ R. Smullyan. First-order logi
. Springer, Berlin, 1968.[30℄ Y. Venema. A modal logi
 of quanti�
ation and substitution. In L. Czirmaz, D.M. Gabbay, andM. de Rijke, editors, Logi
 Colloquium '92, Studies in Logi
, Language and Computation, pages293{309. CSLI and FOLLI, 1995.[31℄ A. Visser. Contexts in dynami
 predi
ate logi
. Journal of Logi
, Language and Information,7(1):21{52, 1998.[32℄ A. Visser. A note on substitution in dynami
 semanti
s. Unpublished draft, Utre
ht University,2000.Re
eived September 8, 2000. Revised: De
ember 9, 2000, January 30, 2001

470

Theorem Proving in In�nitesimalGeometryJACQUES D. FLEURIOT, Division of Informati
s, University ofEdinburgh, 80 South Bridge, Edinburgh EH1 1HN, UK.Email: jdf�dai.ed.a
.ukAbstra
tThis paper des
ribes some of the work done in our formal investigation of
on
epts and propertiesthat arise when in�nitely small and in�nite notions are introdu
ed in a geometry theory. An algebrai
geometry theory is developed in the theorem prover Isabelle using real and hyperreal ve
tors. We usethis to investigate some new geometri
 relations as well as ways of rigorously me
hanizing geometri
proofs that involve in�nitesimal and in�nite arguments. We follow a stri
tly de�nitional approa
hand build our theory of ve
tors within the nonstandard analysis framework developed in Isabelle.Keywords: nonstandard analysis, geometry, hyperreals, theorem proving, higher order logi
, Isabelle1 Introdu
tionIn our previous work on the me
hanization of Newton's Prin
ipia, we introdu
ed,through a
ombination of te
hniques from geometry theorem proving (GTP) andnonstandard analysis (NSA), the notion of an in�nitesimal geometry in whi
h quan-tities
an be in�nitely small [11, 12℄. The main aim was to
apture and me
hanizethe limit or ultimate notions used by Newton in his proofs, while respe
ting as mu
has possible his original geometri
 arguments.Our formalization task, within the intera
tive framework of Isabelle, was made pos-sible through the use of
on
epts from powerful| yet geometri
ally intuitive| GTPte
hniques known as the signed area and full-angle methods [3, 4℄. These methodswere highly adequate to our goals as they provided us with lemmas powerful enoughto prove the results we wanted but also used geometri
 notions su
h as areas andratios of segments that were dire
tly relevant to Newton's proofs.In the
urrent work, however, we depart to some extent from the framework al-ready established in Isabelle for geometry. Our aim, now, is to formally explore theproperties of the in�nitesimal geometry theory developed in Isabelle. To this end,we formulate an alternative treatment of geometry based on the notions of hyperrealve
tors. We want to provide a rigorous yet powerful theory that
an
apture formallythe properties of our geometry, as well as provide a se
ure foundations for our previouswork [11, 12, 10℄.Moreover, the approa
h we des
ribe in this paper also di�ers from that previouslyadopted in that it is fully de�nitional. In other words, we now formally de�ne andderive all mathemati
al notions rather than postulate any of them. This approa
hguarantees
onsisten
y, whi
h
annot be ensured when axioms are introdu
ed (seeSe
tion 3.3 for a brief overview of this methodology).As a further motivation for the
urrent work, our rigorous development within471L. J. of the IGPL, Vol. 9 No. 3, pp. 471{498 2001

Oxford University Press

472 Theorem Proving in In�nitesimal GeometryIsabelle
an be viewed as providing formal justi�
ations for the basi
 rules and lemmasused in the automati
 GTP methods of Chou et al. [3, 4, 2℄. Indeed, as outlined laterin this paper, we formally derive in our de�nitional theory many of the rules usedin their geometry theorem provers. In addition, sin
e the nonstandard approa
hpresented in this work
an be used to prove standard geometry theorems, it shouldbe of interest to the me
hani
al geometry theorem proving
ommunity. Our approa
hmight provide ways of extending
urrent automati
 methods to produ
e proofs thatin
orporate in�nitely small notions without resulting in degenera
y.In what follows, we �rst present some (histori
al) motivation for the existen
e of ageometry involving in�nitesimal notions (Se
tion 2). We then give a brief overview ofIsabelle in whi
h this work is
arried out (Se
tion 3). We also introdu
e some of thebasi
 (me
hanized) notions from nonstandard analysis that will prove useful to ourdis
ussion(Se
tion 4). In parti
ular, we look brie
y at the
onstru
tion of the hyper-real numbers and how operations like addition are de�ned and also at the nonstandardextension of fun
tions. Next, we give an overview of the ve
tor theory developed inIsabelle (Se
tion 5) by reviewing the ve
tor algebra, the ve
torial de�nitions used forfamiliar geometri
 properties, and some of the in�nitesimal geometry theorems thatfollow. We then des
ribe some of the novel in�nitesimal geometri

on
epts formalizedin the work so far (Se
tion 6). We then des
ribe a new approa
h, based on nonstan-dard methods, that
an be used for proving standard geometry theorems (Se
tion 7).Finally, we outline some of the further work
urrently in the pipeline (Se
tion 8) andshare some of the
on
lusions we have rea
hed so far (Se
tion 9).In the next se
tion, we present some motivation for our geometry by brie
y exam-ining the related notion of non-Ar
himedean geometry.2 Non-Ar
himedean GeometryThe Axiom of Ar
himedes or Axiom of Continuity from Hilbert's Foundations ofGeometry [16℄ may be stated as follows:Let A, B, C, and D be four distin
t points. Then on the ray AB there is a�nite set of distin
t points, A1, A2,: : : , An su
h that ea
h segment AiAi+1 is
ongruent to the segment CD and su
h that B is between A and An.This means that given any line segment of length l and any measurem, there exists aninteger n su
h that n units of measure yield a line segment greater than the given linesegment i.e. l < n �m. Geometri
ally speaking, this means that the length of a line hasno limit, whi
h is a ta
it assumption of Eu
lid. This axiom of Hilbert
an thereforebe viewed as stating that the points on the line are in one-to-one
orresponden
e withthe real numbers IR.After introdu
ing the various groups of axioms, Hilbert pro
eeds to show their
onsisten
y and mutual independen
e. This is done by interpreting every geometri

on
ept arithmeti
ally and making sure that all the axioms are satis�ed in the inter-pretation. For example, a point is identi�ed with the ordered pair of real numbers (a,b)and a line with the ratio (u:v:w) in whi
h u and v are both non-zero. A point lies ona line if ua+ vb+w = 0. Properties su
h as
onvergen
e are interpreted algebrai
allyby means of the expressions for translation and rotation of analyti
 geometry. Thus,a model is
onstru
ted for the axioms of geometry and any
ontradi
tion dedu
ed

2. NON-ARCHIMEDEAN GEOMETRY 473from these would mean that the axioms of arithmeti
 are in
onsistent.The possibility of a non-Ar
himedean geometry is exposed when proving the mutualindependen
e of Hilbert's sets of axioms. Indeed, it is possible to
onstru
t a modelthat satis�es all the various axioms ex
ept the Axiom of Ar
himedes. In su
h ageometry, our measure m
an be laid o� su

essively upon our line segment of lengthl an arbitrary number of times without ever rea
hing the end point of the line. Thisgeometry might be seen, intuitively, as one in whi
h in�nitesimal notions are allowed.Of
ourse, the most famous example of an axiom being denied in geometry is that ofthe parallel axiom, whi
h leads to non-Eu
lidean geometry.It is worth noting that one of the �rst to attempt a systemati
 investigation of non-Ar
himedean geometry was the Italian mathemati
ian Veronese in his Fundamentidi Geometria. As observed by Fisher [9℄, his work was often una
knowledged by
ontemporary mathemati
ians su
h as Hilbert and Poin
ar�e and only re
ently havehistorians given its in
uen
e due re
ognition. Veronese's poor and tortuous expositionhas been blamed to some extent for this.In his review of Hilbert's Foundations of Geometry, Henri Poin
ar�e makes thefollowing important observation about non-Ar
himedean geometry [21℄:: : : the
oordinates of a point would be measured not by ordinary numbersbut by non-Ar
himedean numbers, while the usual operations of the straightlines and the plane would hold, as well as the analyti
 expressions for anglesand lengths. It is
lear that in this spa
e all the axioms would remain trueex
ept that of Ar
himedes.And moreover, he notesOn every straight line new points would be interpolated between ordinarypoints.This mat
hes our approa
h in whi
h we e�e
tively repla
e the real number line witha hyperreal one. The hyperreal numbers of NSA (whi
h we review in Se
tion 4) thus
orrespond to Poin
ar�e's non-Ar
himedean numbers. Poin
ar�e also gives a geometri
example where an ordinary line is
ompared with a non-Ar
himedean one:If, for example, D0 is an ordinary straight line, and D1 the
orresponding non-Ar
himedean straight line; if P is any ordinary point of D0, and if this pointdivides D0 into two half rays S and S0 (I add, for pre
ision, that I
onsider Pas not belonging to either S or S0) then there will be on D1 an in�nity of newpoints as well between P and S as between P and S0. Then there will be on D1an in�nity of new points whi
h will lie to the right of all the ordinary points ofD0. In short, our ordinary spa
e is only a part of the non-Ar
himedean spa
e.This geometri
al representation means that points
an be in�nitely
lose to ea
h otheron line D1. Indeed, the �rst in�nity of new points mentioned by Poin
ar�e
orrespondsto those in�nitely
lose to P . And then, we also have the new points on D1 that liebeyond those ofD0. These points to the right of all of the points ofD0 thus
orrespondto the in�nite hyperreals. These observations motivate the establishment of a one-to-one
orresponden
e f between the hyperreals and a line L instead of the usual
orresponden
e with the reals. A
oordinate system, f , for L is then su
h that ea
hpoint P on it has a unique hyperreal
oordinate given by x = f(P).

474 Theorem Proving in In�nitesimal GeometryWe next give a brief introdu
tion to Isabelle and to the HOL obje
t logi
 in whi
hthis work was
arried out.3 Isabelle/HOLIsabelle [19℄ is a generi
 theorem prover, written in ML, into whi
h the user
an en
odetheir own obje
t-level logi
s. Examples of su
h obje
t logi
s are higher order logi
(HOL), Zermelo-Fraenkel set theory (ZF), and �rst order logi
 (FOL). Terms fromthe obje
t logi
s are represented and manipulated in Isabelle's intuitionisti
 higherorder meta-logi
, whi
h supports polymorphi
 typing.3.1 Theories in IsabelleIsabelle's theories provide a hierar
hi
al organization for the syntax, de
larations andaxioms of a mathemati
al development and
an be developed using theory de�nition�les [19℄. A typi
al theory �le will organize the de�nitions of types and fun
tions. Itmay also
ontain the primitive axioms that are asserted (without proofs) by the user.A parti
ular theory will usually
olle
t (in a separate �le) the proven named theoremsand make them available to all its
hildren theories.The meta-level
onne
tives are impli
ation (=)), universal quanti�er and equality.Throughout the presentation, we will be using mostly
onventional mathemati
alnotations when des
ribing our development. However, there are
ases where we mightuse the ASCII notations a
tually used to express terms and rules in Isabelle as expli
itexamples.An inferen
e rule with n premises or ante
edents has the following form in Isabelle:[j�1; : : : ;�nj℄ =) This abbreviates the nested impli
ation �1 =) (: : : �n =) : : :). Su
h a rule
analso be viewed as the proof state with subgoals �1; : : : ; �n and main goal [19℄.Alternatively, this
an be viewed as meaning \if �1 ^ � � � ^ �n then ".3.2 Higher Order Logi
 in IsabelleOne of Isabelle's logi
s is HOL, a higher order logi
 that supports polymorphismand type
onstru
tors. Isabelle/HOL is based on Gordon's HOL theorem prover [15℄whi
h itself originates from Chur
h's paper [5℄. Isabelle/HOL is well developed andwidely used. It has a wide library of theories de�ned in it in
luding the naturals,integers and real numbers, set theory, well-founded re
ursion, indu
tive de�nitions,and equivalen
e relations.Though Isabelle is mainly used intera
tively as a proof assistant, it also providessubstantial support for automation. It has a generi
 simpli�
ation pa
kage, whi
h isset up for many of the logi
s in
luding HOL. Isabelle's simpli�er performs
onditionaland un
onditional rewritings and makes use of
ontext information [19℄. The useris free to add new rules to the simpli�
ation set (the simpset) either permanentlyor temporarily. Isabelle also provides a number of generi
 automati
 ta
ti
s that
an exe
ute proof pro
edures in the various logi
s. The automati
 ta
ti
s providedby Isabelle's
lassi
al reasoner in
lude a fast tableau prover
alled Blast ta

oded

4. A FEW CONCEPTS FROM NONSTANDARD ANALYSIS 475dire
tly in ML and Auto ta
 whi
h attempts to prove all subgoals by a
ombination ofsimpli�
ation and
lassi
al reasoning. Other powerful theorem proving ta
ti
s in
ludethose whi
h, unlike Blast ta
,
onstru
t proofs dire
tly in Isabelle: for example,Fast ta
 implements a depth-�rst sear
h automati
 ta
ti
. In addition to thesevarious tools, Isabelle/HOL now also provides de
ision pro
edures for linear arithmeti
that greatly simplify many proofs over the real numbers.3.3 The HOL MethodologyThe HOL methodology, whi
h derives from work done by Gordon in the HOL theoremprover [15℄, admits only
onservative extensions to a theory. This means, as we al-ready mentioned in the introdu
tion, de�ning and deriving the required mathemati
alnotions rather than postulating them. The de�nitional approa
h of HOL requires thatassertions are proved about some model instead of being postulated. Su
h a rigorousde�nitional extension guarantees
onsisten
y, whi
h
annot be ensured when axiomsare introdu
ed. With regards to the foundations of in�nitesimals and of our geome-try, the de�nitional approa
h is
ertainly advisable when one
onsiders the numerousin
onsistent axiomatizations that have been proposed in the past [6℄.4 A Few Con
epts from Nonstandard AnalysisAn immediate
onsequen
e of our de
ision to formalize nonstandard rather than stan-dard analysis is the extra amount of work spent on number
onstru
tions. The ul-trapower
onstru
tion of the hyperreals, for example, �rst required proving Zorn'sLemma and developing a theory of �lters and ultra�lters for Isabelle/HOL. We havedes
ribed details of the
onstru
tion elsewhere [10, 13℄, and so will only outline a fewof the aspe
ts relevant to this paper in what follows.4.1 On the Constru
tionThe
onstru
tion of the hyperreals (denoted by IR�) resembles to some extent that ofthe reals from the rationals using equivalen
e
lasses indu
ed by Cau
hy sequen
es. Inthis
ase, however, a free ultra�lter UIN over the natural numbers is used to partitionthe set of all sequen
es of real numbers into equivalen
e
lasses. The free ultra�lterUIN, whose existen
e is proved using Zorn's Lemma, is a
olle
tion of subsets of INwith the following properties (amongst others)[13, 10℄:; 62 UIN and IN 2 UIN X 2 UIN =) : finite XX 2 UIN ^ Y 2 UIN =) X \ Y 2 UIN X 2 UIN () �X 62 UINX 2 UIN ^X � Y =) Y 2 UINIn Isabelle, the following equivalen
e relation on sequen
es of real numbers is thende�ned:1 hyprel :: ((nat) real) � (nat) real)) sethyprel � fp: 9rs: p = (r; s) ^ fn: r(n) = s(n)g 2 UINg1The Isabelle notation a::� denotes that a is of type �

476 Theorem Proving in In�nitesimal GeometryThe set of equivalen
e
lasses, that is the quotient set, arising from hyprel is used tode�ne the new type hypreal denoting the hyperreals:hypreal � fx::(nat) real):Trueg=hyprelThus, it follows from the de�nition of hyprel that for two hyperreals to be equal,the
orresponding entries in their equivalen
e
lass representatives must be equal atan in�nite number of positions. This is be
ause UIN
annot
ontain any �nite set.On
e the new type has been introdu
ed, Isabelle provides
oer
ion fun
tions | theabstra
tion and representation fun
tions | that enable the basi
 operations to bede�ned. In this parti
ular
ase, the fun
tionsAbs hypreal :: (nat) real) set) hyprealRep hypreal :: hypreal) (nat) real) setare added to the theory su
h that hypreal and fx:: nat) real: Trueg=hyprel areisomorphi
 by Rep hypreal and its inverse Abs hypreal.The familiar operations (addition, subtra
tion, multipli
ation, inverse) and the or-dering relation on the new type hypreal are then de�ned in terms of pointwise op-erations on the underlying sequen
es. For example, let [hXni℄ denote the equivalen
e
lass (i.e. hyperreal)
ontaining hXni then multipli
ation is de�ned by[hXni℄ � [hYni℄ � [hXn � Yni℄ (4.1)or, more spe
i�
ally, in Isabelle as:P � Q � Abs hypreal (SX 2 Rep hypreal(P):SY 2 Rep hypreal(Q): hyprel^̂ f�n:X n � Y ng)where [x 2 A:B[x℄ � fy: 9x 2 A: y 2 Bg (union of family of sets).r̂ ŝ � fy: 9x 2 s: (x; y) 2 rg (image of set s under relation r).Equation (4.1) above is in fa
t proved as a theorem. All the expe
ted �eld properties ofthe hyperreals are easily established sin
e they follow ni
ely from the
orrespondingproperties of the reals. We de�ne an embedding of the reals in the hyperreals byhaving the following map in Isabelle:hypreal of real :: real) hyprealhypreal of real r � Abs hypreal (hyprel^̂ f�n::nat: rg)In other words, we represent ea
h real number r in IR� by the equivalen
e
lass[hr; r; r; : : :i℄. The properties of the embedding fun
tion, with respe
t to multipli
ation,addition and so on, follow trivially sin
e they are just spe
ial
ases of the operationson the hyperreals. In what follows, we will denote an embedded real r by r unless weuse the Isabelle embedding fun
tion expli
itly.The ordering relation on the hyperreals, for its part, is de�ned as follows:P < Q � 9X 2 Rep hypreal P:9Y 2 Rep hypreal Q: fn:X n < Y ng 2 UIN

4. A FEW CONCEPTS FROM NONSTANDARD ANALYSIS 477We prove the
orresponding simpli�
ation theorem expressing the order relation interms of equivalen
e
lasses of sequen
es of real numbers:Abs hypreal (hyprel^̂ fX ng) < Abs hypreal (hyprel^̂ fY ng)() fn:X n < Y ng 2 UINWith this done, it is straightforward to show that < is total [10, 13℄. This means thatIR� is a total ordered �eld.This se
tion has provided a brief summary of the
onstru
tion of the nonstan-dard numbers. Our main intention was to illustrate some of the key
on
epts of ourde�nitional approa
h. However, this overview will also be useful to our subsequentexposition as the
onstru
tion of hyperreal ve
tors is almost identi
al to that of thehyperreals: one simply
onsiders equivalen
e
lasses of sequen
es of real ve
tors ratherthan sequen
es of real numbers (see Se
tion 5).4.2 Nonstandard NumbersThe embedding fun
tion enables us to de�ne the set of embedded reals SReal expli
-itly, and prove that it is a proper sub�eld of IR�. The proof shows that the well-de�nedhyperreal [h1; 2; 3; : : :i℄ (denoted by !)
annot be equal to any of the embedded realsas no singleton set is allowed in UIN. On
e the embedding is de�ned and various ofits properties proved, we formalize the de�nitions
hara
terizing the various types ofnumbers that make up the new extended �eld:Infinitesimal� fx: 8r 2 SReal: 0 < r ! abs x < rgFinite � fx: 9r 2 SReal: abs x < rgInfinite � �FiniteWith this done, a number of theorems are proved, in
luding:x 2 In�nitesimal y 2 In�nitesimalx op y 2 In�nitesimal x 2 Finite y 2 Finitex op y 2 Finitewhere op is +, �, or � (i.e. both sets are subrings of IR�). Other Isabelle theoremsproved in
lude amongst many others:x 2 In�nitesimal y 2 Finitex � y 2 In�nitesimal z 2 In�nitesimal x < yx+ z < yA substantial number of theorems are proved about the properties of the hyperrealsand their inter-relationships. In addition, we use our free ultra�lter to extend thenatural numbers and
onstru
t the hypernatural numbers, IN�. This additional typeof nonstandard numbers provides us with in�nitely large numbers greater than allthe members of IN. The set of in�nite hypernaturals is denoted by HNatInfinite inIsabelle. We also de�ne the fun
tion hypnat of nat, an embedding of the naturalnumbers into the hypernaturals [10℄.4.3 In�nitely Close Relation and Standard Part TheoremIn addition to the nonstandard numbers, we need to me
hanize a few more important
on
epts for us to have with an adequate framework for our proofs. Firstly, we de�ne

478 Theorem Proving in In�nitesimal Geometrythe
ru
ial in�nitely
lose relation �:x � y � x� y 2 InfinitesimalThis is an equivalen
e relation about whi
h we prove a number of properties su
h as:2[ja � b;
 � dj℄ =) a+
 � b+ d[js 2 SReal; b 2 SRealj℄ =) (a � b) = (a = b) (4.2)s 2 Finite =) 9!r: r 2 SReal^ s � r (4.3)[ja � b;
 2 Finitej℄ =) a �
 � b �
 (4.4)Theorem (4.3)above is known as the Standard Part Theorem and is espe
ially impor-tant as it enables us to formalize the notion of standard part. The standard part ofa �nite nonstandard number is de�ned as the unique real number in�nitely
lose toit. The a
tual de�nition in Isabelle uses the Hilbert
hoi
e operator � and returns anumber of type real rather than an embedded real:str :: hypreal) realstr x � (�r:x 2 Finite^ hypreal of real r � x)All the important properties of the standard part operator are proved. These in
lude,for example: str x = x x 2 Finitestr x � x x 2 Finite y 2 Finite(x � y) = (str x = str y)In Se
tion 5.3, we present an extension of the in�nitely
lose relation to hyperrealve
tors and use it to investigate the various notions formalized by this work.4.4 Nonstandard ExtensionsNonstandard extensions provide systemati
 ways through whi
h sets and fun
tionsde�ned on the reals are extended to the hyperreals (a pro
ess sometimes known asthe �-transform [17℄).In parti
ular, if f is a fun
tion from IR to IR, then it
an be extended to a fun
tionf� from IR� to IR� by the following rule: x = [hXni℄ 2 IR� maps into y = [hYni℄ =f�(x) 2 IR� if and only if fn 2 IN: f(Xn) = Yng = UIN. In Isabelle, this is renderedas: �f� :: (real) real)) hypreal) hypreal�f� f x � Abs hypreal (SX 2 Rep hypreal(x): hyprel^̂ f�n: f(Xn)g)Thus, the nonstandard extension operator provides a generi
 way through whi
h,given a fun
tion taking standard arguments, we
an de�ne an analogous one thata

epts nonstandard arguments. In what follows, we will denote the nonstandard29!x: P stands for the unique existen
e quanti�er, and the \if and only if"
onne
tive is denoted by = in Is-abelle/HOL.

5. A MECHANIZED THEORY OF HYPERREAL VECTORS 479extension of a given real fun
tion f either by f� or by its equivalent Isabelle notation(�f�f). We prove this important simpli�
ation theorem:(�f� f) (Abs hypreal (hyprel^̂ f�n: Xng)) =(Abs hypreal (hyprel^̂ f�n: f(Xn)g))In other words, we have that f�[hXni℄ = [hf(Xn)i℄. This is useful as it allows usto formalize de�nitions and prove properties of nonstandard fun
tions by
ou
hingthem in terms of the
orresponding real fun
tions and our free ultra�lter. We easilyprove a number of theorems about nonstandard extensions su
h as f�(r) = f(r) andf�(x) + g�(x) = (�u: f(u) + g(u))�(x). We will
ome a
ross others as we furtheroutline our formalization of analysis.We also extend fun
tions from IN to IR: given su
h a fun
tion s, its �-transformis the fun
tion s� : IN� ! IR� where s�([hXni℄) = [hs(Xn)i℄ for any [hXni℄ 2 IN�.In Isabelle, the nonstandard extension is denoted by (�fNat� s) and is useful in theformalization of sequen
es, for example [10, 13℄.We now have enough the basi
 notions to des
ribe the hyperreal ve
tor and thein�nitesimal geometri
 theories.5 A Me
hanized Theory of Hyperreal Ve
torsApart from using an intera
tive (hen
e slower) approa
h to GTP, the
urrent workalso di�ers from the traditional automated approa
h by residing within the higher-order logi
 framework of Isabelle/HOL [20℄. One of the main reasons for
hoosingIsabelle/HOL is that it provides a rigorous framework for the formalization of thein�nitesimal| a notoriously diÆ
ult task. The suitability of Isabelle/HOL for ourdevelopment stems mostly from the bene�ts gained by adopting the HOL methodology(
f. Se
tion 3.3).The way to pro
eed in developing our geometry theory is very mu
h in the spiritof Hilbert's Grundlagen: we show that there is a number system, say a �eld su
h asthe hyperreals, asso
iated with the geometry and redu
e
onsisten
y of Isabelle's geo-metri
 theory to that of hyperreal arithmeti
. This is readily a
hieved, when workingwithin the
ontext of Isabelle/HOL, by developing the geometry theory a

ordingto the HOL-methodology i.e. stri
tly through de�nitions that
apture the notions(points, lines, signed areas, et
.) that are being dealt with and then proving that thevarious properties follow.To
arry out this task, the hyperreal theories of Isabelle are extended with thenotions of hyperreal ve
tors. In essen
e, this is an algebrai
 approa
h whi
h developsgeometri
 obje
ts and relations between these obje
ts in the Cartesian produ
t IR�nof the �eld of hyperreals, where n = 2. We have also developed a theory of ve
torsin three dimensions (and de�ned operations su
h as
ross-produ
ts) but sin
e thispaper addresses geometry theorem proving in the plane, we shall only
onsider twodimensional ve
tors. The hyperreals are
hosen rather than the reals sin
e we
an thenexpress in�nitesimal geometri
 notions as well. The de�nitions that are me
hanizedare given next| we start with a real ve
tor theory whi
h we then extend to get thehyperreal ve
tors and their algebrai
 operations.

480 Theorem Proving in In�nitesimal Geometry5.1 Real Ve
tor Spa
eIn general, the simplest de�nition for a real ve
tor in n dimensions is as an n-tupleof real numbers, (r1; : : : ; rn). However, a more geometri
 de�nition
an be providedthat suits our purpose well.De�nition 5.1 Given two points P = (x1; y1) and Q = (x2; y2) in IR2, the ve
torQ�P is
alled the dire
ted line segment from P to Q. The
omponents of the dire
tedline segment are the terms in the pair (x2 � x1; y2 � y1).In this de�nition, we impli
itly assume that the origin is given by the real
oordinates(0; 0) and hen
e that a parti
ular point is spe
i�ed by the ve
tor whose
omponents
orrespond to its Cartesian
oordinates. In Isabelle, we formulate a theory of two-dimensional ve
tors by �rst introdu
ing ve
tors as a new type
orresponding to a pairof real numbers: realv � fp :: (real � real): TruegAs for the hyperreals, Isabelle automati
ally provides
oer
ion fun
tions | Rep realvand its inverse Abs realv in this
ase| that enable us to de�ne basi
 operations onthe new type. On a more intuitive level, one may simply read Abs realv as:Abs realv (x; y) � �xy�in what follows.We
an then de�ne the various operations on the new type. For example, the innerprodu
t or dot produ
t of two ve
tors P and Q is de�ned, using tuples as patterns inabstra
tions [20℄, by:3P �Q � (�((x1; y1); (x2; y2)): x1x2 + y1y2) (Rep realv P; Rep realv Q)This de�nition is slightly more
ompli
ated than the usual textbook one sin
e ituses an expli
it �-abstra
tion and the representation fun
tion. However, we provetheorems that
apture the more familiar de�nitions and whi
h
an then be fed toIsabelle's simpli�er for rewriting. So, for the dot produ
t, we have:Abs realv (x1; y1) � Abs realv (x2; y2) = x1x2 + y1y2Similarly, we also de�ne other important operations, su
h as outer produ
t (�) ands
alar multipli
ation (�s). For
larity, we give their de�nitions as the simpli�
ationtheorems proved in Isabelle rather than the a
tual de�nitions in terms of Rep realvand �-abstra
tions. The Isabelle de�nitions unfortunately tend to be slightly
lutteredand be
ome somewhat hard to read. So, for outer and s
alar produ
ts we prove thefollowing rules:Abs realv (x1; y1)� Abs realv (x2; y2) = x1y2 � y1x2a �s Abs realv (x; y) = Abs realv (ax; ay)3In what follows, the multipli
ation sign (�) between real variables is omitted whenever no ambiguity is likely toresult.

5. A MECHANIZED THEORY OF HYPERREAL VECTORS 481For any two ve
tors P and Q, the outer produ
t
an be viewed as de�ning the orientedarea of a parallelogram, with the ve
tors as two of the sides of the parallelogram. Withthis ni
e geometri
 interpretation in mind, the next step involves proving variousproperties of the outer produ
t. The following theorem, whi
h shows that the outerprodu
t is not
ommutative, is thus proved:P �Q = (�Q)� PGeometri
ally, this means a
hange in the orientation of the area while its magnituderemains una�e
ted. The negation of a ve
tor P , for its part, is de�ned by negatingits various
omponents. In Isabelle:�P � (�(x1; x2): Abs realv (�x1;�x2))(Rep realv P)In the next se
tion, the de�nition of signed area of a triangle follows dire
tly from thegeometri
 interpretation and algebrai
 behaviour asso
iated with the outer produ
t.Various other algebrai
 properties of the operations introdu
ed so far are proved inIsabelle. A few straightforward ones that are useful to the development are as follows:u � v = v � u u � (v + w) = u � v + u � wu� u = 0 (a �s u) � (b �s v) = ab �s (u � v)u � (u� v) = 0 (a �s u)� (b �s v) = ab �s (u� v)In these theorems, the zero ve
tor is de�ned, as expe
ted, by0 � Abs realv (0; 0)Another important
on
ept that has not yet been introdu
ed is that of the lengthor norm of a ve
tor. For a ve
tor P , this is de�ned by taking the square root of thedot produ
t P � P . In Isabelle,rvlen P � sqrt (P � P)The above de�nition is formalized dire
tly but does rely on the square root operationand theorems about its properties being available in Isabelle. For instan
e, to provethat4 rvlen (k �s u) = abs k � rvlen uthe following theorem (with x; y 2 IR) needs to be available in the theorem prover:[j0 � x; 0 � yj℄ =) sqrt (x � y) = sqrt x � sqrt yThe existen
e of operations su
h as square root is often taken for granted in textbookswhen new de�nitions depending on them are introdu
ed. However, in a de�nitionalme
hanization su
h as ours, formalizing su
h
on
epts and their properties
an some-times result in a fair amount of work. In this parti
ular
ase though, we bene�t fromour work on the me
hanization of nonstandard real analysis [10, 14, 13℄: this providesus with the square root operator and various theorems about it. Other importanttheorems proved in the theory in
lude:4In Isabelle, abs x denotes jxj.

482 Theorem Proving in In�nitesimal Geometry� Cau
hy-S
hwarz inequality: abs (u � v) � rvlen u � rvlen v� Minkowski inequality: rvlen (u+ v) � rvlen u+ rvlen vAfter proving some further results of ve
tor algebra, we develop a simple geometrytheory based on the geometri
 interpretation of ve
tors and their operations. In thenext se
tions, the de�nitions and results of the ve
tor geometry development, as it
urrently stands, are outlined.5.2 Real Ve
tor GeometryChou, Gao, and Zhang have also used ve
tor
al
ulations in automated geometrytheorem proving [2℄. They assert a set of basi
 rules about the operations that
anbe
arried out on ve
tors. Theorems are then derived using these basi
 axioms ofthe theory. The algorithm used by Chou et al. is ni
e and relatively simple: given a
onstru
tion sequen
e for a geometri

on�guration, the points (i.e. ve
tor variables)are eliminated one at a time from the ve
tor expression standing for the
on
lusion,until only independent ve
tor variables are left. The
on
lusion that results is thentested to see if it is identi
ally zero.In
ontrast to the above approa
h, we pro
eed by means of de�nitions only andhaving introdu
ed real ve
tors and de�ned the operations on them, there is enoughalgebrai
 power for the theories to express geometri

on
epts: orthogonality and par-allelism, signed (or oriented) areas,
ongruen
e of angles and mu
h more. Moreover,we pro
eed mostly through simpli�
ation and substitution steps that are be appliedto both the
on
lusion and premises of the
urrent goal. That is, the proof steps inIsabelle are not limited to point elimination only.We �rst introdu
e as basi
 geometri
 obje
ts the notions of points and lines byde�ning the following types in Isabelle:pt � fp :: hypve
: Truegline � fl :: (pt � pt): TruegFrom these de�nitions, a point is therefore spe
i�ed by a position ve
tor and a (di-re
ted) line given by a pair of ve
tors representing its end-points. These de�nitionsgive the theory a separate, ni
er geometri
 interpretation in whi
h geometri
 obje
ts(points and lines) are dealt with rather than ve
tors of hyperreal numbers. The ab-stra
tion and representation fun
tions of Isabelle enable us to deal with the underlyingve
tor theory to prove basi
 properties of parallelism, perpendi
ularity,
ollinearityet
. On
e this is done, we
an hope to work at a higher abstra
t level whi
h dealswith geometri
 relations and intera
t rather minimally with the underlying ve
tor
onstru
tions. This is similar in spirit with our
onstru
tion of numbers, say the realsby Dedekind
uts, where initially for ea
h operation we have to prove
ut propertiesbut as more theorems are proved, we deal less and less with the a
tual
uts and morewith the algebra of the reals.However, in the subsequent exposition we shall regard position ve
tors and pointsas being inter
hangeable when giving the de�nitions and des
ribing properties proved.This abuse of notation is simply to make the de�nitions more readable on paper sin
eit avoids the use of the
oer
ion fun
tions. We will show the de�nitions or theorems asa
tually formulated if the need ever arises. We also note that the notationA��B, used

5. A MECHANIZED THEORY OF HYPERREAL VECTORS 483in Isabelle for a line from point A to point B, is synta
ti
 sugar for Abs line(A;B).Therefore, for ea
h geometri

ondition, we have the
orresponding ve
tor de�nition:1. That A, B, and C are
ollinear:
oll C AB � (C �A)� (B �A) = 02. That AB is parallel to CD:A��B k C ��D � (B �A)� (D � C) = 03. That AB is perpendi
ular to CD:A��B ? C ��D � (B �A) � (D � C) = 04. The length of a line AB:len (A��B) � rvlen (B �A)5. The signed area of triangle ABC:area A B C � 1=2 �s (B �A)� (C �A)6. The angle between AB and CD:hA��B;B ��Ci � ar
os (unitv (A�B) � unitv (C �B))where unitv P = (1=rvlen P) �s PThe de�nition of the angle relies on the theory of trans
endental fun
tions devel-oped in Isabelle. In our work on the formalization of analysis, the various trigono-metri
 fun
tions are de�ned over the reals through their power series expansions,and then extended to the hyperreals [14℄.With these de�nitions set up, we verify that the basi
 properties of signed areasa
tually hold and justify the statements of geometri
 relations that were made byChou et al. in terms of them [3℄. The theorems about the sign of the area dependingon the ordering of the verti
es of the triangle are all proved automati
ally withoutany problems sin
e our de�nition makes them dire
t
onsequen
es of the algebrai
properties of the outer produ
t. Consider, for example:�area a
 b = �1=2 �s (
� a)� (b� a)= �1=2 �s (�(b� a))� (
� a)= �� 1=2 �s (b� a)� (
� a)= area a b
Many similar rules are proved with the help of Isabelle's automati
 ta
ti
 and addedto the simpli�er. The de�nition of parallelism in terms of signed areas, as given byChou et al. [3℄, is also easily veri�ed:a�� b k
�� d() (area a b
 = area a b d)

484 Theorem Proving in In�nitesimal Geometryand the following theorem de�ning in
iden
e (or
ollinearity) in terms of signed area:
oll a b
() (area a b
 = 0) (5.1)We also extend the de�nition of in
iden
e to that of a set of points in
ident on aline, thereby enabling us to prove some more theorems. We
an deal with the ratiosof oriented lines by proving theorems su
h as these:� A��B k C ��D (C 6= D):len (A��B)len (C ��D) = (B �A) � (D � C)(D � C) � (D � C)� if R is the foot of the perpendi
ular from point A to line PQ (P 6= Q):len (P ��R)len (P ��Q) = (A� P) � (Q� P)len (P ��Q)2� if two non-parallel lines interse
t at a point R:len (P ��R) � (Q� P)� (V � U) = len (P ��Q) � (U � P)� (V � U)Some of the results above are unproved, high level lemmas stated by Chou et al. asbeing used in their automated GTP method based on ve
tors [2℄. We verify all ofthem in Isabelle and store them as lemmas that be
ome valuable when proving
om-pli
ated geometry theorems. This veri�
ation of lemmas used in various establishedGTP methods is not a mere exer
ise as it supports the axiomati
 geometry that wepreviously used in Isabelle for our me
hanization of theorems from Newton's Prin-
ipia[11, 10℄. From a more general standpoint, it
an also be viewed as provided arigorous foundations for several automati
 methods used in geometry theorem prov-ing. Finally, sin
e we are able to prove the expe
ted geometri
 properties in theformalization, this gives us a relatively high degree of assuran
e that we are using theright de�nitions for various
on
epts.5.3 Introdu
ing the In�nitesimal GeometryWe start by de�ning the new type of hyperreal ve
tors using sequen
es of real ve
tors(i.e. essentially sequen
es of pairs of real numbers) and our free ultra�lter UIN. Asmentioned previously, the de�nitions are analogous to those used for de�ning thehyperreals. On
e again, the various operations (e.g. dot produ
t, outer produ
t,addition, et
.) are de�ned in terms of pointwise operations on the underlying sequen
e(Fig. 1). Various properties, analogous to those of real ve
tors (see Se
tion 5.1), areproved for the hyperreal ve
tors and their asso
iated operations. All the me
hanizedproofs are straightforward as the properties follow dire
tly from their real ve
tor
ounterparts.In addition, we distinguish between various types of ve
tors by means of theirlengths. This
hara
terization is analogous and
losely related to that of the hyperrealnumbers:

5. A MECHANIZED THEORY OF HYPERREAL VECTORS 485HyperVe
tor = Trans
 +
onstdefs(* equivalen
e relation *)hvrel "((nat) realv) * (nat) realv)) set""hvrel � {p. 9 r s. p = (r,s) ^ {n. r n = s n}2UIN}"typedefhrealv � "{x::(nat) realv). True}/hvrel" (Equiv.quotient_def)instan
ehrealv :: {zero, plus, minus}defshrealv_zero_def "0 � Abs_hrealv(hvrel^^{�n::nat. 0})"
onstdefs(* norm
an use nonstandard extension of square root operation *)hvlen :: hrealv) hypreal"hvlen u � (*f* sqrt) (u � u)"hrealv_minus :: hrealv) hrealv"- P � Abs_hrealv(SX2Rep_hrealv(P). hyvrel^^{�n::nat. - (X n)})"(* embedding for the real ve
tors: use
onstant sequen
e *)hrealv_of_realv :: realv) hrealv"hrealv_of_realv u � Abs_hrealv(hvrel^^{�n::nat. u})"(* hyperreal unit ve
tor *)hunitv :: hrealv) hrealv"hunitv u � inv(hvlen u) �s u"defshrealv_add_def"P + Q � Abs_hrealv(SX2Rep_hrealv(P).SY2Rep_hrealv(Q).hvrel^^{�n::nat. X n + Y n})"hrealv_dot_def"P � Q � Abs_hrealv(SX2Rep_hrealv(P).SY2Rep_hrealv(Q).hvrel^^{�n::nat. X n � Y n})": : :hrealv_oprod_def"P � Q � Abs_hrealv(SX2Rep_hrealv(P).SY2Rep_hrealv(Q).hvrel^^{�n::nat. X n � Y n})"Fig. 1. Isabelle/HOL theory for hyperreal ve
tors

486 Theorem Proving in In�nitesimal GeometryDe�nition 5.2 A hyperreal ve
tor P is said to be in�nitesimal, �nite, or in�nite ifits length (hvlen P) is in�nitesimal, �nite, or in�nite respe
tively. Moreover, P isin�nitely
lose to Q (P �v Q) if and only if Q� P is in�nitesimal.With this de�nition formalized in Isabelle, the following equivalen
e theorem aboutin�nitely
lose ve
tors is proved:[hXni℄ �v [hYni℄() [hfst((Xn))i℄ � [hfst((Yn))i℄^ [hsnd((Xn))i℄ � [hsnd((Yn))i℄ (5.2)where [hXni℄ denotes the equivalen
e
lass of sequen
es of real ve
tors
ontaininghXni, and fst and snd are the �rst and se
ond proje
tion fun
tions respe
tivelyprovided by Isabelle for reasoning about pairs. The a
tual Isabelle theorem, thoughslightly overwhelming maybe, shows the relation between the various
on
epts expli
-itly and
an be instru
tive:Abs hrealv (hvrel^̂ fXg) �v Abs hrealv (hvrel^̂ fY g)() Abs hypreal (hyprel^̂ f�n: fst(Xn)g) �Abs hypreal (hyprel^̂ f�n: fst(Yn)g) ^Abs hypreal (hyprel^̂ f�n: snd(Xn)g) �Abs hypreal (hyprel^̂ f�n: snd(Yn)g)In other words, two hyperreal ve
tors are in�nitely
lose if and only if their
omponentsin
orresponding positions are in�nitely
lose to one another. This is a useful theoremthat
an be used in many
ases to redu
e in�nitesimal reasoning involving hyperrealve
tors to similar reasoning over the real ve
tors or even over the reals. We also provethe following important theorems about the di�erent types of ve
tors:1. P is in�nitesimal if and only if all its
omponents are in�nitesimal.2. P is �nite if and only if all its
omponents are �nite.3. P is in�nite if and only if at least one of its
omponents is in�nite.and many other interesting nonstandard theorems about the algebra of the operationsand relations on them, su
h as:a 2 Finite� Infinitesimal=) (a �s w �v a �s z) = (w �v z) (5.3)
 2 Finite� Infinitesimal=) (
 �s w �v b �s z) = (w �v (b=
) �s z) (5.4)[ja � 0;u 2 VFinitej℄ =) a �s u �v 0 (5.5)x �v y =) hvlen x � hvlen y (5.6)u 2 VFinite� VInfinitesimal=) u � u 2 Finite� Infinitesimal (5.7)u 2 VFinite� VInfinitesimal=) (u� v � 0) = (9k: v �v k �s u) (5.8)where VInfinitesimal and VFinite denote the sets of in�nitesimal and �nite ve
torsrespe
tively. Most of these theorems are relatively straightforward to prove althoughsome like (5.6) and (5.8)are more
hallenging. We highlight some of the issues involvedin their me
hanization by examining part of the proof of theorem (5.8) more
losely.At �rst sight, one might expe
t the proof of the theorem to be similar to that of:u 6= 0 =) (u� v = 0) = (9k: v = k �s u) (5.9)

5. A MECHANIZED THEORY OF HYPERREAL VECTORS 487whi
h is easily proved in Isabelle by unfolding the de�nitions of the various ve
toroperations and then redu
ing the reasoning to equation solving. However, a similarapproa
h in whi
h we unfold �v using (5.2)and then try to prove the theorem by rea-soning over the hyperreals is mu
h harder. This is be
ause the in�nitely
lose relation(�), unlike equality, is not
losed under multipli
ation and goals involving multipli-
ation and � require a lot of work (
ase-splits) to be established. Our me
hanization,therefore goes for a dire
t approa
h involving reasoning over hyperreal ve
tors andtheir operations. We will only
onsider the (tri
kier) �rst part of the proof whi
hinvolves showing that:[ju 2 VFinite� VInfinitesimal;u� v � 0j℄ =) 9k: v �v k �s u (5.10)For the me
hanization of this goal, after some experimentation, we de
ide to de�nethe following operation on real ve
tors:ortho (Abs realv (x1; y1)) = Abs realv (�y1; x1)with the following nonstandard extension to hyperreal ve
tors:hortho [hXni℄ � [hortho Xni℄Geometri
ally, the operation
an be viewed as de�ning a new ve
tor orthogonal (per-pendi
ular) to the given one. Using these de�nitions, we then easily prove by simpli-�
ation the following theorems:(v � w) �s hortho u = (u � v) �s w � (u � w) �s v (5.11)u 2 VFinite =) hortho u 2 VFinite (5.12)As a brief remark, we note that theorem (5.11)
an be viewed as a lower dimensional(planar) analogy of the spatial triple ve
tor produ
t u � (v � w) (in whi
h ve
torv � w, for example, then denotes the so-
alled
ross produ
t). Now, using theorems(5.5)and (5.12)with the assumptions of
onje
ture (5.10),we derive:(u� v) �s hortho u �v 0whi
h, using theorem (5.11),rewrites to:(u � u) �s v �v (u � v) �s u (5.13)From the �rst assumption of goal (5.10)and theorem (5.7), we have:u � u =) Finite� InfinitesimalUsing this and theorem (5.4),we derive thatv �v ((u � v)=(u � u)) �s ufrom whi
h the
on
lusion of (5.10)follows immediately. This overview demonstrates,we hope, the somewhat intri
ate nature of proofs involving nonstandard
on
epts.Although the statement of the theorem (5.10)is very similar to that of theorem (5.9),the a
tual proofs are very di�erent. The in�nitely
lose relation introdu
es numerous

488 Theorem Proving in In�nitesimal Geometrysubtleties that one might overlook were it not for the stri
t de�nitional framework ofIsabelle/HOL. In parti
ular, the
are that must be exer
ised when multiplying twoin�nitely
lose quantities (e.g. a �v b) with some other quantity (say
) to ensurethat the results are also in�nitely
lose (
 �s a �
 �s b) is never allowed to lapse.The proof that we have just outlined, though relatively easy to understand, is not animmediately obvious one; its me
hanization required a fair amount of thought andsubsequent experimentation in Isabelle.As a �nal note on this proof, we remark that the operator ortho (and hen
ehortho) is not a
on
ept that we
onsidered when developing the initial ve
tortheory. It was de�ned during the me
hanization of theorem (5.10)to simplify theproof. Subsequently, however, we realised that it had many ni
e properties, su
h asu� v = ortho u � v, ortho (u+ v) = ortho u+ ortho v, and u � ortho u = 0 amongstothers. This highlights how the me
hanization of a parti
ular theorem
an lead tothe de�nition of new
on
epts whi
h further enri
h the theory.The nonstandard ve
tor theorems, we believe, have
lear geometri
 readings andformalize the intuitive behaviour one would expe
t. Theorem (5.6),for example,
an
b

c

a

Fig. 2. A \shrinking" trianglebe used dire
tly to prove an intuitive theorem about a shrinking triangle in whi
h oneof the sides is in�nitesimal. In Fig. 2, for example, one
an intuitively see that as thelength of b
 be
omes smaller, the lengths of ab and a
 approa
h ea
h other, until theyare in�nitely
lose when b
 is in�nitesimal. This is
aptured by the following Isabelletheorem: len (b��
) � 0 =) len (a�� b) � len (a��
)Interestingly, if the lengths of the sides ab and b
 are real valued, then they have tobe equal (i.e. triangle ab
 is an isos
eles) when b
 is in�nitesimal:[jlen (a�� b) 2 IR; len (b��
) 2 IR; len (a��
) � 0j℄=) len (a�� b) = len (b��
)This is be
ause of theorem (4.2) stating that two real numbers that are in�nitely
loseto one another are e�e
tively equal. We also formally derive, for example, theorems

6. SOME INFINITESIMAL GEOMETRIC NOTIONS 489su
h as:[jlen (a�� b) 2 Finite; len (b��
) 2 Infinitesimalj℄ =) area a b
 � 0and [j
oll a b
; area p b
 � 0j℄ =) area p a
 � area p a b (5.14)The latter (see Fig. 3) is proved using the
an
ellation theorem (5.3),as well as var-ious others involving asso
iativity and
ommutativity of ve
tor addition to performAC-rewriting. These are just a few of the in�nitesimal geometry theorems involving
p

b
caFig. 3. In�nitely
lose areasfamiliar geometri

on
epts. We next introdu
e a number of basi

on
epts system-ati
ally de�ned using the various notions from our nonstandard ve
tor theory.6 Some In�nitesimal Geometri
 NotionsEa
h of the new de�nitions
an be viewed as weakening of the more familiar ones.We start with a nonstandard formulation of parallelism and orthogonality.Almost parallel and almost perpendi
ularJust as the
on
ept of two lines being parallel was introdu
ed, using hyperreal ve
torsthe weaker notion of two lines being almost parallel is de�ned (with A 6= B andC 6= D): A��B ka C ��D � hunitv (B �A) �v hunitv (D � C) _hunitv (B �A) �v �hunitv (D � C)We trivially prove that this is an equivalen
e relation. More importantly, the relationbetween this de�nition and that of parallel lines, given in Se
tion 5.2, is highlightedby the following theorem, also proved in Isabelle:D � C 2 VFinite� VInfinitesimal=) A��B ka C ��D() (B �A)� (D � C) � 0 (6.1)The theorem expresses the almost parallel property in a form similar to that of or-dinary parallelism, with equality repla
ed by the in�nitely
lose relation. However,there is a notable di�eren
e whi
h is shown as an additional
ondition on one of the

490 Theorem Proving in In�nitesimal Geometrytwo lines (CD in this parti
ular
ase, although it
ould have been on AB sin
e ka issymmetri
). Without the
ondition, (6.1) above is not a theorem as the outer produ
tof an in�nitesimal and in�nite ve
tor is not ne
essarily in�nitely
lose to zero. Also,in terms of area, justifying a more geometri
ally intuitive de�nition based on signedareas, we have: len (C ��D) 2 Finite� Infinitesimal=)A��B ka C ��D() (area a
 d � area b
 d)We also de�ne the notion of two lines being almost perpendi
ular. On
e again, wemake use of the notion of unit ve
tor to get a suitable de�nition. LinesA��B ?a C ��D � hunitv (B �A) � hunitv (D � C) � 0We note that sin
e the dot produ
t produ
es a hyperreal, we use the in�nitely
loserelation � over these numbers rather than �v whi
h is de�ned over hyperreal ve
tors.Almost
ollinearWe next introdu
e the notion of three points being almost
ollinear. Intuitively, onemight expe
t three points a, b, and
 to be almost
ollinear (denoted by a
oll a b
in Isabelle) if and only if the signed area area a b
 is in�nitely
lose to zero. Su
ha de�nition would be very similar in spirit to the equivalen
e theorem (5.1).However,sin
e our geometry allows both in�nitesimal and in�nite quantities, this de�nition isinadequate: it does not hold in the
ase where two of the points
on
erned, say b and
, are in�nitely far apart and the third one, say a, is in�nitely
lose to the line b
.This is be
ause the outer produ
t (
 � b) � (a � b) is not ne
essarily in�nitely
loseto zero in this
ase as well. Instead, we de�ne the property as follows:a
oll a b
 � (b� a) ka (b�
)and prove a number of theorems involving it su
h as the variant of (5.14),shown inFig. 4: [jlen (b�� a) 2 Finite� Infinitesimal; a
oll a b
; area p b
 � 0j℄=) area p a
 � area p a bIn�nitesimal anglesOur NSA theory is powerful enough to prove theorems involving the trigonometri
fun
tions and in�nitesimal angles. For example, we
an formally formulate and proveassertions su
h assin(�) = � and
os(�) = 1 where � is in�nitely smallthat one often sees in textbooks. These are rarely given any further justi�
ation: thereader needs to rely on her knowledge of trigonometri
 fun
tions and on her intuitionabout what in�nitely small means to see that the statements are indeed plausible.

6. SOME INFINITESIMAL GEOMETRIC NOTIONS 491
a

b

p

cFig. 4. In�nitely
lose areasSu
h assertions
an be formalized in NSA, however, by making � an in�nitesimal andrepla
ing equality by the in�nitely
lose relation �. The proofs are intuitive, yetrigorous, and relatively easy to me
hanize. We give, as an example, a brief proof ofthe statement sin�(�) � �.In the NSA theory [13℄ of Isabelle/HOL, the formal nonstandard de�nition of thederivative of a fun
tion f at x (DERIV) is given by:DERIV(x) f :> d � 8h 2 In�nitesimal� f0g: f�(x+ h)� f(x)h � dThis is simply saying that the derivative of f at x is d if �f�x is in�nitely
lose to d.With this, and assuming the standard results (proved in Isabelle) that
os(0) = 1; sin(0) = 0;and DERIV(x) (�x: sin(x)) :>
os (x);we
an easily prove that sin�(�) � � for all in�nitesimal �.Proof:if � = 0: This is trivial sin
e � is re
exive.else if � 6= 0: Sin
e DERIV(x) �x: sin(x) :>
os(x), for all x, we have thatDERIV(0) �x: sin(x) :>
os(0)) 8h 2 Infinitesimal� f0g: sin�(0 + h)� sin(0)h � 1) sin�(0 + �)� sin(0)� � 1) sin�(�)� � 1) sin�(�) � �As a remark, we note that we have used theorem (4.4) and a theorem stating thatInfinitesimal � Finite to rea
h the �nal step. Through a similar reasoning, wealso prove that
os�(�) � 1 and, interestingly, that tan�(�=2 + �) 2 Infinite, for

492 Theorem Proving in In�nitesimal Geometryall in�nitesimal �. We expe
t su
h results involving angles and trigonometry will toprove useful in the further development of the geometry.In addition, we also prove that the angle between two lines whi
h are almost per-pendi
ular is in�nitely
lose to �=2, i.e.,a�� b ?a
�� d() ha�� b;
�� di � �=2Almost similar trianglesThis is basi
ally the notion of ultimately similar triangles that we have des
ribed andused a number of times before [11, 12℄. We brie
y re
all its de�nition here:USIM a b
 a0 b0
0 � hb�� a; a��
i � hb0 �� a0; a0 ��
0i ^ha��
;
�� bi � ha0 ��
0;
0 �� b0i ^h
�� b; b�� ai � h
0 �� b0; b0 �� a0iWe are still formally investigating the properties of this
on
ept. We have alreadyreprodu
ed in our new setting most of the theorems des
ribed in previous work [12℄.Similarly, we have de�ned the notion of two triangles being almost
ongruent.7 Nonstandard Proofs of Standard Geometry TheoremsOur nonstandard te
hnique is strong enough to produ
e ni
e proofs of traditionalgeometry theorems. We
onsider, as a short
ase study, a nonstandard proof thatthe area of a
ir
le of radius r is �r2. The area of the
ir
le will be shown to bein�nitely
lose to the area of an en
losed (ins
ribed) polygon with in�nitely manysides. The exa
t real value area
an then be obtained by taking the standard part ofthis polygonal area.
A4

An

A1

A2

A3

o

Fig. 5. A
losed polygonIn Fig. 5, the area of the
losed polygon A1 : : : An is de�ned by the formula:area A1 : : : An � OA1A2 +OA2A3 + : : :+OAn�1An +OAnA1

7. NONSTANDARD PROOFS OF STANDARD GEOMETRY THEOREMS 493where OA1A2, for example, represents the area of triangle OA1A2 whi
h was de�nedin Se
tion 5.2 in terms of the ve
tor outer-produ
t in the plane. The value of thepolygonal area is independent of O but depends on OAi, the radius ve
tor to theith point. The de�nition of polygonal area looks re
ursive ex
ept for the last areaterm (OAnA1) and so, in Isabelle, motivates the following formalization with the zerove
tor as the origin O:polyArea :: (nat) real) realv)) nat) real) realpolyArea P n r � pArea P n+ area 0 (P n r) (P 0 r)and the following primitive re
ursive de�nition for the area from A0 to An�1:pArea :: (nat) real) realv)) nat) real) realprimre
pArea P 0 r = 0pArea P (Su
 n) r = pArea P n r + area 0 (P n r) (P (Su
 n) r)Thus, a

ording to our de�nition, the polygon is de�ned as a sequen
e of fun
tionsfrom reals to real ve
tors. The real value r a
ts as a parameter whi
h
an be usedto determine the ith point. This is needed as often the radius ve
tors OAi doesnot depend on just i but also on some other quantity su
h as an angle. The twoparameters (e.g. multiplied) together enable us to progress along the
urve beingapproximated. An alternative way of looking at the polygon is to
onsider ea
hradius ve
tor as being given by Ar(i). This means that we
ould probably spe
ify thede�nitions above without the �xed parameter r being given expli
itly| it would bepart of the de�nition of the polygon. However, one possible advantage of our
hosenformalization is that we
an have a general de�nition for the ins
ribed polygon (see(7.1), for example) whi
h spe
i�es the angle as a argument to be supplied.Now, if C is a
ir
le of radius 1, for example, we
an ins
ribe a polygon A1 � � �Anby
hoosing points A1, A2,..., An in order along it. If n is an in�nite hypernaturalnumber then the points Ai
rowd one another, and we expe
t to arrive at the formulafor the area en
losed by C. We
all su
h a polygon an hyper�nite polygon.Our de�nition polyArea, however, is purely standard and
an only
onsider thearea of polygons with in
reasingly large but still �nite (natural) number of points.We therefore extend the de�nition to deal with polygons with a hypernatural i.e.nonstandard number of points. This is de�ned as follows:hpolyArea :: (nat) real) realv)) hypnat) hypreal) hyprealhpolyArea PNR �Abs hypreal(SX 2 Rep hypnatN:SY 2 Rep hyprealR:hyprel^̂ f�n: polyArea P (Xn) (Y n)g)or, equivalently, without the
oer
ion fun
tions:hpolyArea P [hXni℄ [hYni℄ � [hpolyArea P Xn Yni℄With this de�ned, we
an now see how to determine the area of the
ir
le using ourin�nite polygonal approximation te
hnique.

494 Theorem Proving in In�nitesimal Geometry
π/n

/nπsin(2)r

π/ncos(2)�r

B

C A

r

Fig. 6. Ins
ribing a polygon of n sides in a semi-
ir
leIn our me
hanized proof, we �rst
onsider the unit semi-
ir
le ABC (see Fig. 6).Using the angle � between su

essive radius ve
tors as parameter, the polygon
an bede�ned by the following sequen
e of real ve
tors:�k �: Abs realv (
os k�; sin k�) (7.1)where k denotes the k-th point of the polygon. Hen
e, given that n 2 IN points areins
ribed in the semi-
ir
le, the angle between the radius ve
tors is �=n and so thepolygonal area is denoted by:polyArea (�k �: Abs realv (
os k�; sin k�)) n (�=n)We then easily prove by indu
tion and with the help of the me
hanized lemma:sin(x� y) =
os y sinx� sin y
osxsupplied to Isabelle's simpli�er that the following theorem holds:polyArea (�k �: Abs realv (
os k�; sin k�)) n (�=n) = 1=2n sin(�=n) (7.2)We also prove the following property of polygonal areas:polyArea (�nr:
 �s P n r) N R =
2 � polyArea P N Rwhi
h means that for a semi-
ir
le of radius r 2 IR, we have:polyArea (�k �: Abs realv (r
os k�; r sin k�)) n (�=n) = 1=2r2n sin(�=n) (7.3)Now, if n = [hXmi℄, the number of ins
ribed points, is an in�nite hypernatural num-ber, we have that �=n is in�nitesimal. But, from the result in the previous se
tionabout in�nitesimal angles, we know that:5sin�(�=n)(�=n) � 15For
larity, we omit to show the embedding fun
tions hypreal of hypnat and hypreal of real used to embed thehypernatural number n and � respe
tively in the hyperreals.

8. FURTHER WORK 495and hen
e that n sin�(�=n) � �This result, with (7.3) above, allows us to prove that:hpolyArea (�k �: Abs realv (r
os k�; r sin k�)) n (�=n) � 1=2�r2sin
e hpolyArea (�k �: Abs realv (r
os k�; r sin k�)) n (�=n)= hpolyArea (�k �: Abs realv (r
os k�; r sin k�)) [hXmi℄ (�=[hXmi℄)= [hpolyArea (�k �: Abs realv (r
os k�; r sin k�)) Xm (�=Xm)i℄= [h1=2r2(Xm) sin(�=Xm)i℄= 1=2r2[hXmi℄ sin�(�=[hXmi℄) = 1=2r2n sin�(�=n)From this result, we dedu
e that for a
ir
le, with the angle between su

essive radiusve
tors given by 2�=n, the following holds:hpolyArea (�k �: Abs realv (r
os k�; r sin k�)) n (2�=n) � �r2Hen
e, by \exhausting" the
ir
le with an ins
ribed polygon of in�nite number ofsides, we have formalized a ni
e, geometri
ally intuitive, proof that the area of the
ir
le of radius r, is in�nitely
lose to �r2. In fa
t, if we assume that the area of the
ir
le is real, then by the standard part theorem, it is equal to �r2. We may get thisbehaviour dire
tly by de�ning the polygonal area that we want (
all it PolyArea)as the real quantity equal to the standard part of the hyper�nite polygonal areahpolyArea i.e., PolyArea P n r = str (hpolyArea P n r)This means that our in�nite approximation
an, in e�e
t, provide an exa
t real quan-tity for the area that we are exhausting. As a �nal note, we remark that most ofthe theorems just des
ribed are proved with a high degree of automation. Theorem(7.2), for example, is proved in two steps: indu
tion on n followed by a
all to one ofIsabelle's automati
 ta
ti
.8 Further WorkThis paper has des
ribed some of our
urrent work on the formalization and inves-tigation of a geometry that rigorously admits both in�nitesimal and in�nite notions.We still have mu
h of the geometry to explore though: one
urrently unproved
on-je
ture, for example, is that two (
o-planar) lines whi
h are almost parallel do meetat a point in�nitely far away i.e., we expe
t to have a well-de�ned, non-degeneratesolution to the problem.As a by-produ
t of this work, we now have a relatively well developed ve
tor theoryin Isabelle. This
ontains many of the familiar theorems about ve
tor operations aswell as the new theorems involving the in�nitely
lose relation, in�nitesimal andin�nite ve
tors, and other nonstandard
on
epts. As the work pro
eeds, we expe
tto add more theorems to provide a theory that
an be useful for other purposes (e.g.proofs in me
hani
s that often involve ve
tors and as well as in�nitesimals).

496 Theorem Proving in In�nitesimal GeometryWe will be introdu
ing and investigating other, perhaps less obvious, almost rela-tions. For example, we have re
ently me
hanized notions of approximate geometri
obje
ts in whi
h an ellipse with in�nitely
lose fo
i, for instan
e,
an be regarded asbeing almost (but not quite) a
ir
le. Other notions in
lude \almost betweenness",approximate point in
lusion in a triangle, and \almost a tangent" to a
ir
le, forexample.We will pursue our me
hanization of geometri
 proofs that use in�nitesimal andin�nite quantities to rea
h in�nitely a

urate approximation results. We have in-trodu
ed the indu
tive notion of area for a
losed polygon whi
h
an be used toapproximate any
losed �gure (
urve). Our example showed how this
an be usedto derive a relatively simple proof about the area of the
ir
le using in�nite numbersand in�nitesimals. Our approa
h rigorously me
hanizes the informal argument thatone might give for su
h an proof. A standard proof of the same result, however,would have required us to introdu
e sequential limit arguments and then deal withthe alternating quanti�ers [10, 13℄.Our geometri
 te
hniques
apture well the ideas embodied in proofs that use the\Method of Exhaustion" of Ar
himedes. In these, one �gure is usually approximatedmore and more a

urately by another one in order to
ompute geometri
 quantitiessu
h as boundaries, areas, and volumes. This sort of reasoning, however,
annot bedealt with by existing (standard) me
hani
al geometry theorem proving methods.The work of Baron [1℄, for example, provides a wealth of su
h proofs throughout the
enturies for us to work with and me
hanize.9 Con
luding RemarksIn this paper, we have formally introdu
ed the notion of an in�nitesimal geometrybased on hyperreal ve
tors. We have brie
y sket
hed some aspe
ts relating this hy-perreal geometry to non-Ar
himedean geometry. Various theorems have been provedthat have no dire
t
ounterparts in Eu
lidean geometry sin
e the latter only dealswith real numbers.Ve
tor algebra o�ers an attra
tive approa
h to me
hani
al geometry theorem prov-ing. There is mu
h a
tive resear
h going on using the related �eld of Cli�ord algebra,whi
h is generally regarded as being more expressive [22, 8℄. In our
ase, sin
e weare doing intera
tive rather than automati
 theorem proving, ve
tors provide a simpleand adequate approa
h to analyti
 geometry. Also, as was shown by Dieudonn�e, inner(dot) and outer produ
ts of ve
tors are suÆ
ient to develop elementary geometry [7℄.As far as we are aware, this is the �rst me
hanization of a theory of hyperrealve
tors. Moreover, Keisler's textbook is, to our knowledge, the only work to give abrief exposition of a ve
tor theory [18℄. As a result, most of the theorems me
hanizedin Isabelle have been proved independently of any previous work or textbooks. Wehave shown that these ve
tors obey the usual algebrai
 rules for ve
tors sin
e theyform an inner produ
t spa
e over the �eld IR�. By using the extended ve
tors insteadof real ve
tors, it is possible to des
ribe, in addition to ordinary geometri

on
epts,the novel notions of in�nitesimal geometry presented in this paper.The analyti
 geometry development was
arried out to provide a rigorous de�ni-tional approa
h in whi
h to investigate our in�nitesimal geometry. By following theHOL methodology, we have the guarantee that our formalization is
onsistent and

9. CONCLUDING REMARKS 497that all results proved are a
tual theorems about the geometry we have developed.We also remark on an important realisation emphasized by the
urrent work: thein
lusion of in�nitesimals and other nonstandard
on
epts in geometry introdu
es sub-tle issues that
an easily lead to inadequate de�nitions. Indeed, it
an be problemati
to formulate
on
epts that rely on some form of produ
t (outer, dot, multipli
ationet
.) as the operation
an be ill-de�ned whenever it involves both an in�nitesimal andan in�nite quantity. We be
ame espe
ially aware of the subtlety involved when ourinitial de�nition for almost parallel lines (we used the equivalen
e theorem (6.1)with-out the asso
iated
ondition) proved inadequate. We
ould not prove some of theproperties we felt should hold sin
e we were impli
itly ruling out an in�nitesimal lineand an in�nite line being almost parallel.The realisation
ame after some experimentation with the framework and did for
eus to exer
ise mu
h more
are. However, the fa
t that we en
ountered su
h a problemis probably unsurprising. After all, the
aw that we found in one of the famous proofsof the great Newton was also of this nature [12℄; it involved taking the ill-de�nedprodu
t of an in�nitesimal and an in�nite quantity. This is a useful experien
e thatwill help us as we explore more
hallenging
on
epts in this geometry.A
knowledgementThis resear
h was funded by ESPRC grant GR/M45030 `Computational Modellingof Mathemati
al Reasoning'. I would like to thank the anonymous referees for theirinsightful
omments.Referen
es[1℄ M. E. Baron. The Origins of the In�nitesimal Cal
ulus. Pergammon Press, 1969.[2℄ S. C. Chou, X. S. Gao, and J. Z. Zhang. Automated geometry theorem proving by ve
tor
al
ulation. In ACM-ISSAC, pages 284{291, Kiev Ukraine, July 1993.[3℄ S. C. Chou, X. S. Gao, and J. Z. Zhang. Automated generation of readable proofs with geometri
invariants, I. multiple and shortest proof generation. Journal of Automated Reasoning, 17:325{347, 1996.[4℄ S. C. Chou, X. S. Gao, and J. Z. Zhang. Automated generation of readable proofs with geometri
invariants, II. theorem proving with full-angles. Journal of Automated Reasoning, 17:349{370,1996.[5℄ A. Chur
h. A formulation of the simple theory of type. Journal of Symboli
 Logi
, 5:56{68,1940.[6℄ P. J. Davis and R. Hersh. The Mathemati
al Experien
e. Harmondsworth, Penguin, 1983.[7℄ J. Dieudonn�e. Linear Algebra and Geometry. Hermann, 1969. Translated from the originalFren
h text Alg�ebre lin�eaire et g�eom�etrie �el�ementaire.[8℄ S. Fevre and D. Wang. Proving geometri
 theorems using
li�ord algebra and rewrite rules. InC Kir
hner and H. Kir
hner, editors, Automated Dedu
tion { CADE-15, volume 1421 of Le
tureNotes in Arti�
ial Intelligen
e, pages 17{32. Springer-Verlag, July 1998.[9℄ G. Fisher. Veronese's non-Ar
himedean linear
ontinuum. In P. Ehrli
h, editor, Real Numbers,Generalizations of the Reals, and Theories of Continua, volume 242 of Synthese Library. KluwerA
ademi
 Publisher, 1994.[10℄ J. D. Fleuriot. A
ombination of geometry theorem proving and nonstandard analysis, withappli
ation to Newton's Prin
ipia. PhD thesis, Computer Laboratory, University of Cambridge,1999. Available as Computer Laboratory Te
hni
al Report 469.[11℄ J. D. Fleuriot and L. C. Paulson. A
ombination of geometry theorem proving and nonstandardanalysis, with appli
ation to Newton's Prin
ipia. In C Kir
hner and H. Kir
hner, editors,

498 Theorem Proving in In�nitesimal GeometryAutomated Dedu
tion { CADE-15, volume 1421 of Le
ture Notes in Arti�
ial Intelligen
e, pages3{16. Springer-Verlag, July 1998.[12℄ J. D. Fleuriot and L. C. Paulson. Proving Newton's Propositio Kepleriana using geometryand nonstandard analysis in Isabelle. In X.-S. Gao, D. Wang, and L. Yang, editors, AutomatedDedu
tion in Geometry, volume 1669 of Le
ture Notes in Arti�
ial Intelligen
e. Springer-Verlag,1999.[13℄ J. D. Fleuriot and L. C. Paulson. Me
hanizing nonstandard real analysis. LMS Journal ofComputation and Mathemati
s, 3:140{190, 2000.[14℄ Ja
ques D. Fleuriot. On the me
hanization of real analysis in Isabelle/HOL. In J. Harrison andM. Aagaard, editors, Theorem Proving in Higher Order Logi
s: 13th International Conferen
e,TPHOLs 2000, volume 1869 of Le
ture Notes in Computer S
ien
e, pages 146{162. Springer-Verlag, 2000.[15℄ M. Gordon and T. Melham. Introdu
tion to HOL: A theorem proving environment for HigherOrder Logi
. Cambridge University Press, 1993.[16℄ D. Hilbert. The Foundations of Geometry. The Open Court Company, 1901. Translation by E.J. Townsend.[17℄ A. E. Hurd and P. A. Loeb. An Introdu
tion to Nonstandard Real Analysis, volume 118 of Pureand Applied Mathemati
s. A
ademi
 Press In
., 1985.[18℄ H. J. Keisler. Foundations of In�nitesimal Cal
ulus. Prindle, Weber & S
hmidt, 1976.[19℄ L. C. Paulson. Isabelle: A Generi
 Theorem Prover, volume 828 of Le
ture Notes in ComputerS
ien
e. Springer, 1994.[20℄ L. C. Paulson. Isabelle's obje
t-logi
s. Te
hni
al Report 286, Computer Laboratory, Universityof Cambridge, February 1998.[21℄ H. Poin
ar�e. Review of Hilbert's foundations of geometry (1902). In P. Ehrli
h, editor, RealNumbers, Generalizations of the Reals, and Theories of Continua, volume 242 of SyntheseLibrary. Kluwer A
ademi
 Publisher, 1994.[22℄ D. Wang. Cli�ord algebrai

al
ulus for geometri
 reasoning, with appli
ation to
omputervision. In D. Wang, R. Caferra, L. Fari~nas del Cerro, and H. Shi, editors, Automated Dedu
tionin Geometry, ADG'96, volume 1360 of Le
ture Notes in Arti�
ial Intelligen
e, pages 115{140.Springer, 1997.Re
eived September 1, 2000. Revised: De
ember 1, 2000, January 19, 2001

A Simple Formalization and Prooffor the Mutilated Chess BoardLAWRENCE C. PAULSON, Computer Laboratory, University ofCambridge, England, E-mail: l
p�
l.
am.a
.uk.Abstra
tThe impossibility of tiling the mutilated
hess board has been formalized and veri�ed using Isabelle.The formalization is
on
ise be
ause it is expressed using indu
tive de�nitions. The proofs arestraightforward ex
ept for some lemmas
on
erning �nite
ardinalities. This exer
ise is an obje
tlesson in
hoosing a good formalization: one at the right level of abstra
tion.Keywords: mutilated
hess board, indu
tive de�nitions, Isabelle1 Introdu
tionA
hess board
an be tiled by 32 dominoes, ea
h
overing two squares. If two di-agonally opposite squares are removed,
an the remaining 62 squares be tiled bydominoes? No. Ea
h domino
overs a white square and a bla
k square, so a tiledarea must have equal numbers of both
olours. The mutilated board
annot be tiledbe
ause the two removed squares have the same
olour (Fig. 1).The mutilated
hess board problem has stood as a
hallenge to the automatedreasoning
ommunity sin
e M
Carthy [8℄ posed it in 1964. Robinson [15℄ outlines thehistory of the problem,
iting Max Bla
k as its originator.Anybody
an grasp the argument instantly, but even formalizing the problem seemshard, let alone proving it. M
Carthy has re
ently renewed his
hallenge, publishinga formalization that he
laims is suitable for any `heavy duty set theory' prover [9℄.Formalizations like this destroy the simpli
ity of the original problem. They typ-i
ally de�ne
ompli
ated predi
ates to re
ognize obje
ts. To re
ognize dominoes, apredi
ate
he
ks whether its argument
ontains two adja
ent squares. Subramaniande�nes adja
ent by
omparing
o-ordinates [17, 18℄:(defn adjp (s1 s2)(or (and (equal (
ar s1) (
ar s2))(equal (plus 1 (
dr s1)) (
dr s2)))(and (equal (
dr s1) (
dr s2))(equal (plus 1 (
ar s1)) (
ar s2)))))Subramanian makes other de�nitions whose
ombined e�e
t is to re
ognize a list ofnon-overlapping dominoes and to
ompute the region
overed. M
Carthy's formal-ization has a similar
avour, though posed in the language of sets. It is
on
ise butformidable.An alternative is to express the notion of tiling by an indu
tive de�nition. Itis
on
ise and nearly as
lear as the informal problem statement. It provides anindu
tion prin
iple that is well-suited to proving the desired theorem.499L. J. of the IGPL, Vol. 9 No. 3, pp. 499{509 2001

Oxford University Press

500 A Simple Formalization and Proof for the Mutilated Chess Board

Fig. 1. The Mutilated Chess Board2 Mathemati
al developmentFirst we must make the intuitive argument rigorous. A tile is a set, regarded as a setof positions. A tiling (using a given set A of tiles) is de�ned indu
tively to be eitherthe empty set or the union of a tiling with a tile a 2 A disjoint from it. Thus, a tilingis a �nite union of disjoint tiles drawn from A.This view is abstra
t and general. None of the sets have to be �nite; we need notspe
ify what positions are allowed. Now let us fo
us on
hess boards.A square is a pair (i; j) of natural numbers: an even (or white) square if i + j iseven and otherwise an odd (or bla
k) square.Let lessThan(n) = fi j i < ng. (In set theory n = fi j i < ng by de�nition, butsome people �nd that
onfusing.) The Cartesian produ
t lessThan(8) � lessThan(8)expresses a 64-square
hess board; it is the union of 8 disjoint rows of the formfig � lessThan(8) for i = 0, : : :, 7.A domino is a tile of the form f(i; j); (i; j + 1)g or f(i; j); (i+ 1; j)g. Sin
e tilingsare �nite, we
an use indu
tion to prove that every tiling using dominoes has equallymany even squares as odd squares.Every row of the form fig � lessThan(2n)
an be tiled using dominoes. As theunion of two disjoint tilings is itself a tiling, every matrix of the form lessThan(2m)�lessThan(2n)
an be tiled using dominoes. So every 2m�2n matrix has as many evensquares as odd squares. (Informal treatments never bother to prove that a
hess boardhas equal numbers of bla
k and white squares.) The diagonally opposite squares (0; 0)and (2m�1; 2n�1) are both even; removing them results in a set that has fewer evensquares than odd squares. No su
h set, in
luding the mutilated
hess board,
an betiled using dominoes.3 The formal de�nitionsIsabelle [12℄ is a generi
 proof assistant, supporting many logi
s in
luding zf set the-ory and higher-order logi
. I have done this exer
ise using both Isabelle/zf and Isa-

3. THE FORMAL DEFINITIONS 501Mutil = Main +
onsts tiling :: "('a set) set) ('a set) set"indu
tive "tiling A"intrsempty "{} 2 tiling A"Un "[[a 2 A; t 2 tiling A; a \ t = {}℄℄=) a [t 2 tiling A"
onsts domino :: "(nat*nat)set set"indu
tive "domino"intrshoriz "{(i, j), (i, Su
 j)} 2 domino"vertl "{(i, j), (Su
 i, j)} 2 domino"
onstdefs
oloured :: "nat) (nat*nat)set""
oloured b == {(i,j). (i+j) mod #2 = b}"end Fig. 2. Isabelle/hol De�nitions of Dominoes and Tilingsbelle/hol. The de�nitions and proofs are similar in both systems. My formalizationshould be easy to me
hanize in theorem provers that support indu
tive de�nitions,su
h as Coq [4℄ and HOL [5℄. Higher-order logi
 simpli�es the presentation slightly;type
he
king eliminates premises su
h as i 2 nat.Figure 2 presents the theory �le for the Isabelle/hol version. It makes all the de�-nitions needed for the
hess board problem: tilings, dominoes and square
olourings.Note that Su
 is the su

essor fun
tion (mapping n to n+1) and that #2 denotes thenumber two. Keywords of the theory �le syntax are underlined for
larity.An indu
tive de�nition spe
i�es the desired introdu
tion rules. An Isabelle pa
kagede�nes the appropriate least �xedpoint and proves the introdu
tion and indu
tionrules [11℄. The set of tilings using a set A of tiles is de�ned indu
tively. The Isabellesyntax appearing in Fig 2 expresses these two rules:; 2 tiling(A) a 2 A t 2 tiling(A) a \ t = ;a [t 2 tiling(A)Why does tiling have type ('a set)set) ('a set)set? The symbol 'a is a typevariable. Isabelle/hol is polymorphi
: the type-
he
ker automati
ally repla
es ea
htype variable by the type required by the
ontext. In e�e
t, 'a is the type of squares.Ea
h tile is a set of squares, so it has type 'a set. The set A of tiles therefore hastype ('a set)set, as does the set of tilings generated by A.The set of dominoes is indu
tively de�ned too. The Isabelle syntax expresses twointrodu
tion rules:f(i; j); (i; j + 1)g 2 domino f(i; j); (i+ 1; j)g 2 dominoThe `indu
tion' here is trivial, but no matter, this de�nition is easy to use. It isde
larative. Contrast it with the version appearing in Se
t. 1, whi
h is a pie
e of Lisp

502 A Simple Formalization and Proof for the Mutilated Chess Board
ode. The
onstant domino has type (nat*nat)set set be
ause it is a set of sets ofpairs of natural numbers.Figure 2 de�nes
oloured b as set of squares having
olour b. Formally, it is theset of even squares if b = 0 and the odd squares if b = 1. The set lessThan(n) isprede�ned in Isabelle/hol to be fi j i < ng.4 A primer on rule indu
tionYou are probably familiar with `mathemati
al indu
tion' and with stru
tural indu
-tion over lists and similar datatypes. An indu
tive de�nition gives rise to a prin
iplesometimes known as rule indu
tion. Given the de�nition of tiling, Isabelle generatesthe
orresponding indu
tion rule, shown here using mathemati
al notation:z 2 tiling(A) P (;) [a 2 A t 2 tiling(A) P (t) a \ t = ;℄....P (a [t)P (z)In English, a property P that is
losed under the introdu
tion rules for tiling(A) holdsfor all elements of tiling(A). Indu
tion is sound be
ause tiling(A) is the least set
losedunder those rules. (This is why it is
alled rule indu
tion.) In the indu
tive step, weare given an arbitrary tile a 2 A and tiling t 2 tiling(A) that are disjoint (a \ t = ;)and satisfy the indu
tion hypothesis P (t).A trivial rule indu
tion proves that if ea
h a 2 A is a �nite set then so is tiling(A).Here P (z) is the property �nite(z). By indu
tion, it suÆ
es to show� �nite(;), whi
h is trivial,� and that a 2 A and �nite(t) imply �nite(a[t). This holds be
ause we have assumed�nite(a) for all a 2 A.The indu
tion rule for dominoes has no indu
tion hypothesis. A property holdsfor all dominoes provided it holds for the two possibilities given in the indu
tivede�nition. In the last two premises, i and j are arbitrary natural numbers.z 2 domino P (f(i; j); (i; j + 1)g) P (f(i; j); (i+ 1; j)g)P (z)It is time for a harder example of indu
tion. Let us prove that the union of twodisjoint tilings is itself a tiling:t 2 tiling(A) u 2 tiling(A) t \ u = ;t [u 2 tiling(A)This indu
tion must be set up with
are. Here P (z) is the formulau 2 tiling(A)! (t \ u = ; ! t [u 2 tiling(A)) (4.1)The indu
tion formula must be an impli
ation be
ause the indu
tion variable, t, alsoo

urs in t \ u = ;.By indu
tion on t there are two
ases.

5. THE MECHANICAL PROOFS 503Goal "t 2 tiling A =)u 2 tiling A ! t \ u = {} ! t [u 2 tiling A";by (eta
 tiling.indu
t 1);by (simp_ta
 (simpset() addsimps [Un_asso
℄) 2);by Auto_ta
;Fig. 3. Isabelle/hol Proof: the Union of Disjoint Tilings is a Tiling� Base
ase. Putting t = ; in the formula (4.1), we must showu 2 tiling(A)! (; \ u = ; ! ; [u 2 tiling(A))This is trivial be
ause ; [u = u 2 tiling(A).� Indu
tive step. We assume disjoint sets a 2 A and t 2 tiling(A), as usual. Theindu
tion hypothesis is simply (4.1). We must showu 2 tiling(A)! ((a [t) \ u = ; ! (a [t) [u 2 tiling(A))To prove this impli
ation, we assume u 2 tiling(A) and (a [t) \ u = ;, whi
hyields a \ u = ; and t \ u = ;. From the indu
tion hypothesis (4.1) we havet[u 2 tiling(A). Sin
e a is disjoint from both t and u, we may add it to the tilingt [u to obtain a [(t [u) 2 tiling(A).5 The me
hani
al proofsThe Isabelle proofs o�er few surprises. Finite
ardinalities are tri
ky to reason about,as I have noted in previous work [14℄. I needed a
ouple of hours to �nd a ma
hineproof that a domino
onsists of one even square and one odd square. Another troublespot was to prove that removing elements from a �nite set redu
es its
ardinality:jA � fxgj < jAj if A is �nite and x 2 A. One out
ome of this exer
ise is a
olle
-tion of general theorems about remainders and
ardinality, whi
h I have installed inIsabelle/hol.Apart from these trouble spots, the me
hanized proof was straightforward. Devel-oping the original zf version took under 24 working hours. Ex
luding fa
ts addedto libraries, the (hol) de�nitions and proof s
ript o

upy about 4400 bytes. Theyexe
ute in 8.5 se
onds on a 600MHz Pentium. Both �gures are tiny, as suits this toyproblem.Figure 3 presents part of the s
ript: the indu
tive proof outlined in the previousse
tion. The s
ript may be diÆ
ult to understand, but we see that proving thistheorem requires little detail from the user. The Goal
ommand supplies the theoremto be proved. The next line applies rule indu
tion. Then the simpli�er (simp ta
) is
alled with an asso
iativity theorem in order to repla
e (a[t)[u by a[(t[u). Therest of the proof is done by the automati
 proof ta
ti
, Auto ta
.The full proof s
ript,
omprising 13 theorems, is Appendix A. Isabelle
an displayformulas using the fonts of X-symbol pa
kage [19℄, making formulas mu
h more read-able on-s
reen than they are in raw as
ii; I have edited the s
ript to use similarsymbols. Let us review the proofs informally.

504 A Simple Formalization and Proof for the Mutilated Chess Board5.1 On tiling
hess boardsThe �rst theorem has already been dis
ussed in Se
t. 4 and Fig. 3. We now develop ageometry of
hess boards. The next two theorems (ea
h proved by Auto ta
) relatelessThan(Su
 n) and Cartesian produ
ts.lessThan(Su
 n) � B = ({n} � B) [((lessThan n) � B)A � lessThan(Su
 n) = (A � {n}) [(A � (lessThan n))Next
omes a lemma, proved by Auto ta
,
on
erning singleton sets and Cartesianprodu
ts. It makes a useful rewrite rule.({i} � {n}) [({i} � {m}) = {(i,m), (i,n)}The next two results state that a row or matrix with an even number of
olumns
anbe tiled with dominoes.{i} � lessThan(#2*n) 2 tiling domino(lessThan m) � lessThan(#2*n) 2 tiling dominoThese theorems apply to a standard 8 � 8
hess board, but not to a 9 � 9 one.The �rst theorem has a four-step proof, by indu
tion on n. The simpli�er massageslessThan(#2 * Su
 n) into the union of a domino with the tiling given in the in-du
tion hypothesis. Then a tiling rule is applied expli
itly. Finally, the automati
ta
ti
 (given the lemma proved above) �nishes o�. The se
ond theorem has a trivialproof: indu
tion over m followed by Auto ta
.5.2 On
olours and dominoesHere is a simple fa
t about the squares in a tiling of a spe
i�ed
olour.
oloured b \ (insert (i,j) t) =(if (i+j) mod #2 = b then insert (i,j) (
oloured b \ t)else
oloured b \ t)Here insertxA denotes fxg [A. The b-
oloured squares of f(i; j)g [t
omprise theb-
oloured squares of t along with (i; j), if this square is
oloured b. Although obvious,this fa
t is useful for rewriting. The proof is a one-liner: Auto ta
.This fa
t is used to prove that a domino
overs one square of ea
h
olour:d 2 domino =)(9i j.
oloured 0 \ d = {(i,j)}) ^(9m n.
oloured 1 \ d = {(m,n)})The proof is again simple. The �rst step is indu
tion (really
ase analysis) on thedomino. The automati
 ta
ti
 �nishes the proof, given a rewrite rule that redu
es(m+ 1) mod n to m mod n.5.3 On the
ardinalities of some �nite setsFor us, a domino is a two-element set of squares. Clearly all dominoes are �nite, anda region tiled by dominoes is �nite. Both proofs use indu
tion followed by Auto ta
.

6. RELATED WORK AND CONCLUSIONS 505d 2 domino =) finite dt 2 tiling domino =) finite tMost of the papers des
ribing the
hess board proof omit to mention that the boardhas �nitely many squares. However, �niteness is
ru
ial to the
ounting argument.(In�nite tiling problems are very di�erent from �nite ones. An in�nite
hess board
an be tiled with dominoes even after one bla
k square has been removed.)Every set tiled by dominoes (su
h as an 8� 8
hess board)
ontains equally manybla
k squares as white ones. Here
ard is the
ardinality fun
tion.t 2 tiling domino =)
ard(
oloured 0 \ t) =
ard(
oloured 1 \ t)This fa
t is also usually omitted from informal a

ounts, presumably be
ause it isobvious. But its proof, six steps long, is not trivial. After applying indu
tion, we usea fa
t proved above, namely that a domino
overs one square of ea
h
olour. We areleft having to show
ard(insert sq0 (
oloured 0 \ t)) =
ard(insert sq1 (
oloured 1 \ t))where sq0 and sq1 are the newly
overed squares. The indu
tion hypothesis is
ard(
oloured 0 \ t) =
ard(
oloured 1 \ t).Two proof steps show that the uses of insert add a square that was not already inthe set. The result follows be
ause both
ardinalities in
rease by one.5.4 Towards the main resultThe main result presents some diÆ
ulties. Take the general
ase of removing any twowhite (even) squares, not ne
essarily in the
orners.[[t 2 tiling domino;(i+j) mod #2 = 0; (m+n) mod #2 = 0;{(i,j),(m,n)} � t ℄℄=) (t - {(i,j)} - {(m,n)}) 62 tiling dominoIn English, removing two white squares from a region tiled with dominoes leaves aregion that
annot be tiled. The proof
onsists of �ve steps. The �rst simply assumesthat the region
an be tiled, for
ontradi
tion. Next we
laim that there are fewerwhite squares than bla
k, from whi
h (step 3) we immediately obtain a
ontradi
tion.The last two steps prove the
laim. It is surprisingly hard to prove that removing twoelements from the set of white squares redu
es its
ardinality.The main result is proved for any board with positive even dimensions. The muti-lated board (less the two
orners)
annot be tiled with dominoes.t = lessThan(#2 * Su
 m) � lessThan(#2 * Su
 n)=) t - {(0,0)} - {(Su
(#2*m), Su
(#2*n))} 62 tiling dominoThe proof applies the general theorem just dis
ussed and dis
harges the �rst subgoalusing a tiling lemma proved in Se
t. 5.1. The rest falls to Auto ta
.6 Related work and
on
lusionsIn this note there is no spa
e for a full literature review. Several e�orts [2, 16, 18℄ arein the same spirit as the present work: the
hess board is formalized and impossibility

506 A Simple Formalization and Proof for the Mutilated Chess Boardof tiling proved following the intuitive argument about
olours. Other work has usedexhaustive sear
h or radi
al reformulations of the problem.The Isabelle formalization
ompares favourably with the others. The de�nitions(Fig. 2) are
on
ise, and in my view, easy to understand. The s
ript is short: under120 lines
ompared with over 500 for Subramanian [17℄. (In terms of
hara
ters, whi
his more a

urate, the ratio drops to 1:3.) A

ording to M
Carthy [9℄, Ban
erek'sme
hanization [2℄ in Mizar requires 400 lines. Rudni
ki's version [16℄ (also in Mizar)requires 300 lines. Andrews [1℄ reports a
omplex proof; it is not
lear how mu
he�ort is needed to generate it.When are indu
tive de�nitions appropriate? The
hoi
e is partly a matter of taste;published formalizations of the mutilated
hess board show great diversity. Indu
tivede�nitions are ideal for �nite
onstru
tions that allow non-determinism; the layingdown of tiles �ts that des
ription pre
isely. The indu
tive de�nition plays the samerole as Subramanian's �nite state ma
hine [18℄. The initial state is the empty board;next states are obtained by adding disjoint tiles; properties that hold of all rea
hablestates are proved by indu
tion. Giving an illegal input to the state ma
hine sends itto an error state | a
on
ept usually avoided with indu
tive de�nitions, sin
e theydes
ribe only the legal
onstru
tions.The �nite state ma
hine approa
h that Subramanian des
ribes has been applied tosubstantial system veri�
ations [10℄. The indu
tive approa
h des
ribed above is ane�e
tive means of verifying
ryptographi
 proto
ols [13℄. Indu
tive de�nitions s
aleup to serious problems.A
knowledgements. I learned of the expressiveness of indu
tive de�nitions throughparti
ipation in the ESPRIT proje
t 6453 TYPES, and espe
ially through the workof G�erard Huet [6, 7℄. John Harrison and anonymous referees
ommented on thispaper.Referen
es[1℄ Peter B. Andrews and Matthew Bishop. On sets, types, �xed points, and
he
kerboards. InPierangelo Miglioli, Ugo Mos
ato, Daniele Mundi
i, and Mario Ornaghi, editors, TheoremProving with Analyti
 Tableaux and Related Methods: 5th international workshop,TABLEAUX '96, LNAI 1071, pages 1{15. Springer, 1996.[2℄ Grzegorz Ban
erek. The mutilated
hessboard problem |
he
ked by Mizar. In Boyer andTrybule
 [3℄.[3℄ Robert Boyer and Andrzej Trybule
, editors. QED Workshop II. On the World Wide Web athttp://www.m
s.anl.gov/qed/, 1995.[4℄ The Coq proof assistant. http://
oq.inria.fr/, 2000.[5℄ M. J. C. Gordon and T. F. Melham. Introdu
tion to HOL: A Theorem Proving Environmentfor Higher Order Logi
. Cambridge University Press, 1993.[6℄ G�erard Huet. The Gallina spe
i�
ation language : A
ase study. In Pro
eedings of 12thFST/TCS Conferen
e, New Delhi, LNCS 652. Springer, 1992.[7℄ G�erard Huet. Residual theory in �-
al
ulus: A formal development. Journal of Fun
tionalProgramming, 4(3):371{394, 1994.[8℄ John M
Carthy. A tough nut for proof pro
edures. Memo 16, Stanford Arti�
ial Intelligen
eProje
t, July 1964.[9℄ John M
Carthy. The mutilated
he
kerboard in set theory. In Boyer and Trybule
 [3℄.[10℄ J Strother Moore. Piton: A Me
hani
ally Veri�ed Assembly-Level Language. KluwerA
ademi
 Publishers, 1996.

A. FULL PROOF SCRIPT 507[11℄ Lawren
e C. Paulson. A �xedpoint approa
h to implementing (
o)indu
tive de�nitions. InAlan Bundy, editor, Automated Dedu
tion | CADE-12 International Conferen
e, LNAI 814,pages 148{161. Springer, 1994.[12℄ Lawren
e C. Paulson. Isabelle: A Generi
 Theorem Prover. Springer, 1994. LNCS 828.[13℄ Lawren
e C. Paulson. The indu
tive approa
h to verifying
ryptographi
 proto
ols. Journal ofComputer Se
urity, 6:85{128, 1998.[14℄ Lawren
e C. Paulson and Krzysztof Gr�ab
zewski. Me
hanizing set theory: Cardinal arithmeti
and the axiom of
hoi
e. Journal of Automated Reasoning, 17(3):291{323, De
ember 1996.[15℄ J. A. Robinson. Formal and informal proofs. In Robert S. Boyer, editor, Automated Reasoning:Essays in Honor of Woody Bledsoe, pages 267{281. Kluwer A
ademi
 Publishers, 1991.[16℄ Piotr Rudni
ki. The mutilated
he
kerboard problem in the lightweight set theory of Mizar.http://web.
s.ualberta.
a/~piotr/Mizar/Mut
he
k, November 1995.[17℄ Sakthi Subramanian. A me
hani
ally
he
ked proof of the mutilated
he
kerboard theorem.ftp://ftp.
s.utexas.edu/pub/boyer/nqthm/nqthm-1992/examples/subramanian/, 1994.[18℄ Sakthi Subramanian. An intera
tive solution to the n� n mutilated
he
kerboard problem.Journal of Logi
 and Computation, 6(4):573{598, 1996.[19℄ Christoph Wedler. Ema
s pa
kage \x-symbol": Overview.http://www.fmi.uni-passau.de/~wedler/x-symbol/, 2000.A Full proof s
ript(*The Mutilated Chess Board Problem, formalized indu
tively*)Addsimps (tiling.intrs � domino.intrs);AddIs tiling.intrs;Material dis
ussed in Se
t. 5.1(** The union of two disjoint tilings is a tiling **)Goal "t2 tiling A =) u2 tiling A ! t \ u = {} ! t [u 2 tiling A";by (eta
 tiling.indu
t 1);by (simp_ta
 (simpset() addsimps [Un_asso
℄) 2);by Auto_ta
;qed_spe
_mp "tiling_UnI";AddIs [tiling_UnI℄;(*** Chess boards ***)Goalw [lessThan_def℄"lessThan(Su
 n) � B = ({n} � B) [((lessThan n) � B)";by Auto_ta
;qed "Sigma_Su
1";Goalw [lessThan_def℄"A � lessThan(Su
 n) = (A � {n}) [(A � (lessThan n))";by Auto_ta
;qed "Sigma_Su
2";Addsimps [Sigma_Su
1, Sigma_Su
2℄;Goal "({i} � {n}) [({i} � {m}) = {(i,m), (i,n)}";

508 A Simple Formalization and Proof for the Mutilated Chess Boardby Auto_ta
;qed "sing_Times_lemma";Goal "{i} � lessThan(#2*n) 2 tiling domino";by (indu
t_ta
 "n" 1);by (ALLGOALS (asm_simp_ta
 (simpset() addsimps [Un_asso
 RS sym℄)));by (rta
 tiling.Un 1);by (auto_ta
 (
laset(), simpset() addsimps [sing_Times_lemma℄));qed "dominoes_tile_row";AddSIs [dominoes_tile_row℄;Goal "(lessThan m) � lessThan(#2*n) 2 tiling domino";by (indu
t_ta
 "m" 1);by Auto_ta
;qed "dominoes_tile_matrix";Material dis
ussed in Se
t. 5.2(*** "
oloured" and Dominoes ***)Goalw [
oloured_def℄"
oloured b \ (insert (i,j) t) =(if (i+j) mod #2 = b then insert (i,j) (
oloured b \ t)else
oloured b \ t)";by Auto_ta
;qed "
oloured_insert";Addsimps [
oloured_insert℄;Goal "d 2 domino =) (9i j.
oloured 0 \ d = {(i,j)}) &(9m n.
oloured 1 \ d = {(m,n)})";by (eta
 domino.elim 1);by (auto_ta
 (
laset(), simpset() addsimps [mod_Su
℄));qed "domino_singletons";Material dis
ussed in Se
t. 5.4Goal "d 2 domino =) finite d";by (eta
 domino.elim 1);by Auto_ta
;qed "domino_finite";Addsimps [domino_finite℄;(*** Tilings of dominoes ***)Goal "t 2 tiling domino =) finite t";by (eta
 tiling.indu
t 1);by Auto_ta
;qed "tiling_domino_finite";Addsimps [tiling_domino_finite, Int_Un_distrib, Diff_Int_distrib℄;Goal "t 2 tiling domino =)
ard(
oloured 0 \ t) =
ard(
oloured 1 \ t)";by (eta
 tiling.indu
t 1);by (dta
 domino_singletons 2);

A. FULL PROOF SCRIPT 509by Auto_ta
;(*this lemma tells us that both "inserts" are non-trivial*)by (subgoal_ta
 "8p C. C \ a = {p} ! p 62 t" 1);by (Asm_simp_ta
 1);by (Blast_ta
 1);qed "tiling_domino_0_1";Material dis
ussed in Se
t. 5.3(*Final argument is surprisingly
omplex*)Goal "[[t 2 tiling domino;(i+j) mod #2 = 0; (m+n) mod #2 = 0;{(i,j),(m,n)} � t ℄℄=) (t - {(i,j)} - {(m,n)}) 62 tiling domino";by (rta
 notI 1);by (subgoal_ta
 "
ard (
oloured 0 \ (t - {(i,j)} - {(m,n)})) <
ard (
oloured 1 \ (t - {(i,j)} - {(m,n)}))" 1);by (for
e_ta
 (
laset(), HOL_ss addsimps [tiling_domino_0_1℄) 1);by (asm_simp_ta
 (simpset() addsimps [tiling_domino_0_1 RS sym℄) 1);by (asm_full_simp_ta
(simpset() addsimps [
oloured_def,
ard_Diff2_less℄) 1);qed "gen_mutil_not_tiling";(*Apply the general theorem to the well-known
ase*)Goal "t = lessThan(#2 * Su
 m) � lessThan(#2 * Su
 n)=) t - {(0,0)} - {(Su
(#2*m), Su
(#2*n))} 62 tiling domino";by (rta
 gen_mutil_not_tiling 1);by (blast_ta
 (
laset() addSIs [dominoes_tile_matrix℄) 1);by Auto_ta
;qed "mutil_not_tiling";Re
eived 11 September 2000. Revised: November 8, 2000, January 15, 2001

510

A
knowledgementsThe Editor-in-Chief and the editor of this spe
ial issue would like to thank the fol-lowing
olleagues who have helped maintain the standards set for a s
ienti�
 journal,through their refereeing of the papers that have been submitted.1Roel BlooCarsten ButzTh�er�ese HardinDaniel Hirs
hko�Patrik HoltMi
hael KohlhaseTobias NipkowNi
ola OlivettiVin
ent van OostromChristine Paulin-MohringRandy Polla
kFemke van RaamsdonkNi
k Taylor.

1The list in
ludes the referees for the papers in this issue, plus the referees of papers reje
ted meanwhile.511

Interest Group in Pure and AppliedLogi
s (IGPL)The Interest Group in Pure and Applied Logi
s (IGPL) is sponsored by The Euro-pean Asso
iation for Logi
, Language and Information (FoLLI), and
urrently hasa membership of over a thousand resear
hers in various aspe
ts of logi
 (symboli
,mathemati
al,
omputational, philosophi
al, et
.) from all over the world (
urrently,more than 50
ountries). Our main a
tivity is that of a resear
h and information
learing house.Our a
tivities in
lude:� Ex
hanging information about resear
h problems, referen
es and
ommon interestamong group members, and among di�erent
ommunities in pure and appliedlogi
.� Helping to obtain photo
opies of papers to
olleagues (under the appropriate
opy-right restri
tions), espe
ially where there may be diÆ
ulties of a

ess.� Supplying review
opies of books through the journals on whi
h some of us areeditors.� Helping to organise ex
hange visits and workshops among members.� Advising on papers for publi
ation.� Editing and distributing a Newsletter and a Journal (the �rst s
ienti�
 journalon logi
 whi
h is FULLY ele
troni
: submission, refereeing, revising, typesetting,publishing, distribution; �rst issue: July 1993): the Logi
 Journal of the InterestGroup on Pure and Applied Logi
s. (For more information on the Logi
 Journalof the IGPL, see the Web homepage: http://www.jigpal.oupjournals.org)� Keeping a publi
 ar
hive of papers, abstra
ts, et
., a

essible via ftp.�Wherever possible, obtaining redu
tions on group (6 or more) pur
hases of logi
books from publishers.If you are interested, please send your details (name, postal address, phone, fax, e-mailaddress, resear
h interests) to:IGPL Headquarters
/o Prof. Dov GabbayKing's College, Dept of Computer S
ien
eStrandLondon WC2R 2LSUnited Kingdome-mail: dg�d
s.k
l.a
.ukFor the organisation, Dov Gabbay, Ruy de Queiroz and Hans J�urgen Ohlba
h512

