
Interest Group in Pure and Applied Logis

Volume 9 Number 3 May 2001
LOGIC JOURNALofthe

Editor-in-Chief:DOV M. GABBAYExeutive Editors:RUY de QUEIROZandHANS J�URGEN OHLBACHEditorial Board:Jon Barwise (deeased)Wilfrid HodgesHans KampRobert KowalskiGrigori MintsEwa OrlowskaAmir PnueliVaughan PrattSaharon ShelahJohan van Benthem
OXFORDUNIVERSITYPRESSISSN 1367-0751

354

Subsription InformationVolume 9, 2001 (bimonthly) Full: Europe pounds sterling 275; Rest of World US$450. Personal: pounds sterling 138 (US$ 225). Please note that personal rates applyonly when opies are sent to a private address and payment is made by a personalheque or redit ard.Order informationSubsriptions an be aepted for omplete volumes only. Pries inlude air-speededdelivery to Australia, Canada, India, Japan, New Zealand, and the USA. Deliveryelsewhere is by surfae post. Payment is required with all orders and may be madein the following ways:Cheque (made payable to Oxford University Press)National Girobank (aount 500 1056)Credit ard (Aess, Visa, Amerian Express, Diners Club)UNESCO CouponsBankers: Barlays Bank pl, PO Box 333, Oxford, UK. Code 20-65-18, Aount00715654.Requests for sample opies, subsription enquiries, orders and hanges of addressshould be sent to the Journals Subsriptions Department, Oxford University Press,Great Clarendon Street, Oxford OX2 6DP, UK. Tel: 01865 267907. Fax: 01865267485.AdvertisementsAdvertising enquiries should be addressed to Peter Carpenter, PRC Assoiates, TheAnnexe, Fitznells Manor, Chessington Road, Ewell Village, Surrey KT17 1TF, UK.Tel: 0181 786 7376. Fax: 0181 786 7262.CopyrightOxford University Press 2001. All rights reserved: no part of this publiationmay be reprodued, stored in a retrieval system, or transmitted in any form or byany means, eletroni, mehanial, photoopying, reording, or otherwise, withouteither the prior written permission of the Publishers, or a liene permitting restritedopying issued in the UK by the Copyright Liensing Ageny Ltd, 90 TottenhamCourt Road, London W1P 9HE, or in the USA by the Copyright Clearane Center,222 Rosewood Drive, Danvers, MA 01923.Logi Journal of the IGPL (ISSN 1367-0751) is published bimonthly in January,Marh, May, July, September and November by Oxford University Press, Oxford,UK. Annual subsription prie is US$ 450.00. Logi Journal of the IGPL is dis-tributed by M.A.I.L. Ameria, 2323 Randolph Avenue, Avenel, NJ 07001. Periodialpostage paid at Rahway, New Jersey, USA and at additional entry points.US Postmasters: Send address hanges to Logi Journal of the IGPL, /o MeruryInternational, 365 Blair Road, Avenel, NJ 07001, USA.

356Bak IssuesThe urrent plus two bak volumes are available from Oxford University Press. Pre-vious volumes an be obtained from Dawsons Bak Issues, Cannon House, Park FarmRoad, Folkestone, Kent CT19 5EE, UK. Tel: +44 (0) 1303 203612. Fax: +44 (0)1303 203617.

Logi Journal of the IGPLVolume 9, Number 3, May 2001Contents
359EditorialF. KamareddineOriginal Artiles 363The rewriting alulus | Part IH. Cirstea and C. Kirhner 401The rewriting alulus | Part IIH. Cirstea and C. Kirhner 435Tableau Reasoning and Programming with Dynami FirstOrder LogiJ. van Eijk, J. Heguiabehere and B. �O Nuall�ain 471Theorem Proving in In�nitesimal GeometryJ. D. Fleuriot 499A Simple Formalization and Proof for the Mutilated ChessBoardL. C. Paulson

Please visit the journal's World Wide Web site athttp://www.jigpal.oupjournals.org357

Logi Journal of the Interest Group inPure and Applied LogisEditor-in-Chief:Dov GabbayDepartment of Computer SieneKing's CollegeStrandLondon WC2R 2LS, UKdg�ds.kl.a.ukTel +44 20 7848 2930Fax +44 20 7240 1071Exeutive Editors:Ruy de QueirozDepartamento de Inform�atiaUFPE em ReifeCaixa Postal 7851Reife, PE 50732-970, Brazilruy�di.ufpe.brHans J�urgen OhlbahInst. f�ur InformatikLudwig-Maximilians-Universit�at�Ottingenstr. 67D-80538 M�unhenohlbah�informatik.uni-muenhen.deTel +49 2178 2200Fax +49 2178 2211Editorial Board:Jon Barwise (deeased)Wilfrid Hodges, QMW, UKHans Kamp, Stuttgart, GermanyRobert Kowalski, ICSTM, UKGrigori Mints, Stanford, USAEwa Orlowska, Warsaw, PolandAmir Pnueli, Weizmann, IsraelVaughan Pratt, Stanford, USASaharon Shelah, JerusalemJohan van Benthem,ILLC, Amsterdam

Sope of the JournalThe Journal is the oÆial publiation of the International In-terest Group in Pure and Applied Logis (IGPL), whih issponsored by The European Foundation for Logi, Languageand Information (FoLLI), and urrently has a membership ofover a thousand researhers in various aspets of logi (sym-boli, omputational, mathematial, philosophial, et.) fromall over the world.The Journal is published in hardopy and in eletroni formsix times per year. Publiation is fully eletroni: submission,refereeing, revising, typesetting, heking proofs, and publish-ing, all is done via eletroni mailing and eletroni publishing.Papers are invited in all areas of pure and applied logi, in-luding: pure logial systems, proof theory, model theory, re-ursion theory, type theory, nonlassial logis, nonmonotonilogi, numerial and unertainty reasoning, logi and AI, foun-dations of logi programming, logi and omputation, logiand language, and logi engineering.The Journal is an attempt to solve a problem in the logi (inpartiular, IGPL) ommunity:Æ Long delays and large baklogs in publiation of papers inurrent journals.Æ Very tight time and page number limits on submission.Papers in the �nal form should be in LATEX. The review pro-ess is quik, and is made mainly by other IGPL members.SubmissionsSubmissions are made by sending a submission letter to thee-mail address: jigpl�ds.kl.a.uk, giving the title and theabstrat of the paper, and informing:(i) of how to obtain the �le eletronially, if you have the .dvior .ps �le; or(ii) that you have put the �le (.dvi, .ps or .tex) inthe publi area ftp.ds.kl.a.uk (137.73.8.10), diretory,pub/jigpl/submissionsor, by sending 5 (�ve) hardopies of the paper to the Editor-in-Chief.URL: http://www.jigpal.oupjournals.org

EditorialThe 20th entury gave birth to a omputer tehnology that has dominated our lives.Suh tehnology may be expensive to build and/or human lives may depend on it.We have overwhelming evidene from just under a entury's work that the right logiand the right notion of symboli manipulation (rewriting) an guarantee the safetyand orretness of this tehnology saving money, and human lives and e�orts. Forthis reason, we have seen and will ontinue to see new di�erent logis and rewritingsystems, extensions of old systems and the study of their theory and appliations willbe as thrive as it was in the last entury. This is not surprising beause the twentiethentury was indeed a entury of omplexity and this omplexity will be arried to thisentury. This omplexity of information, the inreasing interdependeny of systems,the faster and more automati travel of information, and the disastrous onsequenesof failure, lead to the need for establishing Corretness. Moreover, modern teh-nologial systems are just too ompliated for humans to reason about unaided, soautomation is needed. Furthermore, beause modern systems have so many possiblestates, testing is often impratial. It seems that proofs are needed to over in�nitelymany situations. The last entury is evidene that formalisms needed to aid in designand to ensure safety must aommodate some rewriting and automati searh for andheking of proofs. These ideas were present long before the 20th entury. In fat,Leibniz (1646{1717) oneived of automated dedution, when he wanted to �nd:� a language L in whih arbitrary onepts ould be formulated, and� a mahine to determine the orretness of statements in L.Suh a mahine an not work for every statement aording to G�odel and Turing.Nevertheless, the need for automation has been overwhelming and its explorationin both the safe grounds and the dangerous borderlines ontinues to be hallenging.The relevane of rewriting and automation is witnessed by the number of internationalonferenes and events devoted to the subjet. We annot mention all these eventsand refer to the usual referenes. This volume however, is a seletion of various papersthat were presented at a olletion of events on rewriting, automation and theoremproving that took plae in year 2000 and were funded by di�erent soures inluding:the European Union's IHP High Level Sienti� Conferenes support, the EuropeanEduational Forum, the UK Engineering and Physial Researh Counil EPSRC, theRoyal Soiety and the Duth researh ounil NWO. The support of all these souresis greatly appreiated. These events are as follows:�Winter Workshop in Logis, Types and Rewriting '00 on 2 February 2000.See http://www.ee.hw.a.uk/~fairouz/inaugural-workshop2000/� The EEF Foundations Shool in Dedution and Theorem Proving'00 on 6-16 April2000.See http://www.ee.hw.a.uk/~fairouz/ukiishool2000/ukiishool.html� Festival Workshop in Foundations and Computing, FC'00 on 17-18 July 2000.See http://www.ee.hw.a.uk/~fairouz/festival/workshop1/Due to the sues of the above events, it was deided that a speial issue should bepublished on the above themes. Some of the leturers and speakers agreed to write359

360 Editorialtheir material as artiles for this volume. Of the submitted artiles, �ve were seletedfor this volume.The artile of Cirstea and Kirhner is in two parts and is onerned with a newalulus alled the �-alulus. The harateristi feature of the �-alulus is that it hasan operator ! used to build abstrations as in the �-alulus as for instane x ! xfor the identity. Abstrations an also ontain patterns as in �rst-order rewriting.For instane the rewrite rule a! b is in the �-alulus represented by the abstrationa! b. The appliation of an abstration to an argument is as in the �-alulus, butnow denoted by for instane [x ! x℄(y) for the identity applied to a variable y. Ifthe pattern of the left-hand side of the abstration is not present in its argument,the appliation is rewritten to ;, representing failure. For instane [a ! b℄(b) �! ;.If the pattern of the left-hand side is present in the argument, then the appliationis rewritten to the set onsisting of the orresponding right-hand side. For instane,we have [x ! x℄(y) �! fyg and [a ! b℄(a) �! fbg. Also sets onsisting of moreelements are used to represent non-determinism.In the �rst part, the alulus is introdued and motivated and its syntax andevaluation rules for any theory are presented. Then, the enoding of the �-alulusis presented and a disussion of onuene is given. In the seond part, onditionalrewriting is enoded and the alulus is extended with a �rst operator whose purposeis to detet rule appliation failure. This extension enables the enoding of strategybased rewriting proesses and is used to give an operational semantis to ELAN whihis an environment for speifying and prototyping dedution systems in a languagebased on labelled onditional rules and strategies to ontrol rule appliation.The artile of Jan van Eijk and Juan Heguiabehere and Breannd�an �O Nuall�ainpresents a tableau system for dynami �rst-order logi (DFOL for short), a formalismoriginally introdued by Groenendijk and Stokhof to aount for ertain aspets ofnatural language semantis and anaphora. The language presented in this paperontains expliit substitutions and the hoie operator [. The language is furtherextended with the �nite iteration *-operator (DFOL*). Soundness and ompletenessof the tableau method for DFOL and then DFOL* is proved. The authors illustratethrough signi�ant examples the usefulness of DFOL and DFOL* and of the relatedtableau method to represent program exeution and to derive pre/post onditions inthe style of Hoare logi. They also show the potential bene�t of their tableau methodas a tool in omputational semantis of natural language.The artile of Jaques Fleuriot, reports the formalisation in the theorem proverIsabelle of a theory of non-standard geometry based on in�nitely small and large reals.The theory is based on so-alled hyperreal vetors whih are sequenes of real vetorswith two suh sequenes being equal if they oinide on an element in an ultra�lter(an abstrat way to express that they are equal almost everywhere). The paper usesthe full power of the Isabelle-HOL formalism in order to get a smooth development. Itan be seen as a referene paper on the basis of in�nitesimal geometry. As mentionedby the author, extending usual operations to in�nitely small or large objets is verysubtle and an easily be done the wrong way. The fat that the theory is ompletelydeveloped in Isabelle-HOL is onsequently really useful.The artile of Paulson presents a short and natural mehanisation of the proof of themutilated hessboard problem in Isabelle. This exerise is used to demonstrate someimportant priniples in the manipulation of systems of this kind. Partiular emphasis

Editorial 361is put on the use of indutive de�nitions. These are of interest both beause they allowthe user to give intuitive de�nitions of e.g. what is a domino and what is a tiling,and beause they inherently apture the essene of the onepts being formalised(therefore, for example, no erroneous tiling an be generated in the development of aproof). Moreover, Isabelle's tatis tehnology, together with the oniseness o�eredby indutive de�nitions, makes it possible to derive a formalisation that is muhshorter than in similar works based on other provers. Fairouz Kamareddine

362

The rewriting alulus | Part IHORATIU CIRSTEA, LORIA and INRIA, Campus Sienti�que,BP 239, 54506 Vandoeuvre-l�es-Nany, Frane.E-mail: Horatiu.Cirstea�loria.fr.CLAUDE KIRCHNER, LORIA and INRIA, Campus Sienti�que,BP 239, 54506 Vandoeuvre-l�es-Nany, Frane.E-mail: Claude.Kirhner�loria.fr.AbstratThe �-alulus integrates in a uniform and simple setting �rst-order rewriting, �-alulus and non-deterministi omputations. Its abstration mehanism is based on the rewrite rule formation andits main evaluation rule is based on mathing modulo a theory T .In this �rst part, the alulus is motivated and its syntax and evaluation rules for any theory T arepresented. In the syntati ase, i.e. when T is the empty theory, we study its basi properties forthe untyped ase. We �rst show how it uniformly enodes �-alulus as well as �rst-order rewritingderivations. Then we provide suÆient onditions for ensuring onuene of the alulus.Keywords: rewriting, strategy, non-determinism, mathing, rewriting-alulus, lambda-alulus, rulebased language.1 Introdution1.1 Rewriting, omputer siene and logiIt is a ommon laim that rewriting is ubiquitous in omputer siene and mathe-matial logi. And indeed the rewriting onept appears from the very theoretialsettings to the very pratial implementations. Some extreme examples are the mailsystem under Unix that uses rules in order to rewrite mail addresses in anonialforms (see the /et/sendmail.f �le in the on�guration of the mail system) andthe transition rules desribing the behaviors of tree automata. Rewriting is used insemantis in order to desribe the meaning of programming languages [31℄ as well asin program transformations like, for example, re-engineering of Cobol programs [54℄.It is used in order to ompute [12℄, impliitly or expliitly as in Mathematia [59℄,MuPAD [42℄ or OBJ [22℄, but also to perform dedution when desribing by inferenerules a logi [23℄, a theorem prover [28℄ or a onstraint solver [29℄. It is of ourse en-tral in systems making the notion of rule an expliit and �rst lass objet, like expertsystems, programming languages based on equational logi [45℄, algebrai spei�a-tions (e.g. OBJ [22℄), funtional programming (e.g. ML [40℄) and transition systems(e.g. Murphi [11℄).It is hopeless to try to be exhaustive and the ases we have just mentioned showpart of the huge diversity of the rewriting onept. When one wants to fous on theunderlying notions, it beomes quikly lear that several tehnial points should besettled. For example, what kind of objets are rewritten? Terms, graphs, strings, sets,363L. J. of the IGPL, Vol. 9 No. 3, pp. 363{399 2001 Oxford University Press

multisets, others? One we have established this, what is a rewrite rule? What is aleft-hand side, a right-hand side, a ondition, a ontext? And then, what is the e�etof a rule appliation? This leads immediately to de�ning more tehnial oneptslike variables in bound or free situations, substitutions and substitution appliation,mathing, replaement; all notions being spei� to the kind of objets that have to berewritten. One this is solved one has to understand the meaning of the appliationof a set of rules on (lasses of) objets. And last but not least, depending on theintended use of rewriting, one would like to de�ne an indued relation, or a logi, ora alulus.In this very general piture, we introdue a alulus whose main design oneptis to make all the basi ingredients of rewriting expliit objets, in partiular thenotions of rule appliation and result. We onentrate on term rewriting, we introduea very general notion of rewrite rule and we make the rule appliation and resultexpliit onepts. These are the basi ingredients of the rewriting- or �-alulus whoseoriginality omes from the fat that terms, rules, rule appliation and therefore ruleappliation strategies are all treated at the objet level.1.2 How does the rewriting alulus work?In �-alulus we an expliitly represent the appliation of a rewrite rule, as forexample 2 ! s(s(0)), to a term, e.g. the onstant 2, as the objet [2 ! s(s(0))℄(2)whih evaluates to the singleton fs(s(0))g. This means that the rule appliationbinary symbol \[℄()" is part of the alulus syntax.As we have seen a rule appliation an be redued to a singleton, but it may alsofail as in [2! s(s(0))℄(3) that evaluates to the empty set ;, or it an be redued to aset with more than one element as exempli�ed later in this setion and explained inSetion 2.4. Of ourse, variables may be used in rewrite rules as in [x+0! x℄(4+0).In this last ase the evaluation mehanism of the alulus will redue the appliationto f4g. In fat, when evaluating this expression, the variable x is bound to 4 via amehanism lassially alled mathing, and the result of the evaluation is obtained byinstantiating aordingly the variable x from the right hand side of the rewrite rule.We reover, thus, the lassial way term rewriting is ating.Where this game beomes even more interesting is that \ ! ", the rewrite binaryoperator, is integrally part of the alulus syntax. This is a powerful abstrationoperator whose relationship with �-abstration [7℄ ould provide a useful intuition:A �-expression �x:t an be represented in the �-alulus as the rewrite rule x ! t.Indeed, the �-redex (�x:t u) is nothing else than [x ! t℄(u) (i.e. the appliation ofthe rewrite rule x! t to the term u) whih redues to ffx=ugtg (i.e. the appliationof the substitution fx=ug to the term t).We are aware of other ways to abstrat on terms or patterns in lambda-aluluse.g. the works of Colson, Kesner, van Oostrom [10, 57, 32℄ or Peyton-Jones [50℄. Forexample, the �-alulus with patterns presented in [50℄ an be given a diret represen-tation in the �-alulus. Let us onsider, for example, the �-term �(PAIR x y):x thatselets the �rst element of a pair and the appliation �(PAIR x y):x (PAIR a b)that evaluates to a. The representation in the �-alulus of the �rst �-term isPAIR(x; y) ! x and the orresponding appliation [PAIR(x; y) ! x℄(PAIR(a; b))�-evaluates to ffx=a; y=bgxg, that is to fag.364

Of ourse we have to make lear what a substitution fx=ug is and how it applies toa term. But there is no surprise here and we onsider a substitution mehanism thatpreserves the orret variable bindings via the appropriate �-onversion. In orderto make this point lear in the paper, as in [13℄, we will make a strong distintionbetween substitution (whih takes are of variable binding) and grafting (that performsreplaement diretly).When building abstrations, i.e. rewrite rules, there is a priori no restrition. Arewrite rule may introdue new variables as in the rule f(x) ! g(x; y) that whenapplied to the term f(a) evaluates to fg(a; y)g, leaving the variable y free. It may alsorewrite an objet into a rewrite rule as in the appliation [x ! (f(y) ! g(x; y))℄(a)that evaluates to the singleton ff(y)! g(a; y)g. In this ase the variable x is free inthe rewrite rule f(y) ! g(x; y) but is bound in the rule x ! (f(y)! g(x; y)). Moregenerally, the objet formation in �-alulus is unonstrained. Thus, the appliationof the rule b ! after the rule a ! b to the term a is written [b ! ℄([a ! b℄(a))and as expeted the evaluation mehanism will produe �rst [b ! ℄(fbg) and thenfg. It also allows us to make use in an expliit and diret way of non-terminating ornon-onuent (equational) rewrite systems. For example the appliation of the rulea ! a to the term a ([a ! a℄(a)) terminates, sine it is applied only one and doesnot represent the repeated appliation of the rewrite rule a! a.So, basi �-alulus objets are built from a signature, a set of variables, the ab-stration operator \!", the appliation operator \[℄()", and we onsider sets ofsuh objets. This gives to the �-alulus the ability to handle non-determinism inthe sense of sets of results. This is ahieved via the expliit handling of redutionresult sets, inluding the empty set that reords the fundamental information of ruleappliation failure. For example, if the symbol + is assumed to be ommutativethen x + y is equivalent modulo ommutativity to y + x and thus applying the rulex+y ! x to the term a+b results in fa; bg. Sine there are two di�erent ways to apply(math) this rewrite rule modulo ommutativity the result is a set that ontains twodi�erent elements orresponding to two possibilities. This ability to integrate spei�omputations in the mathing proess allows us for example to use the �-alulus fordedution modulo purposes as proposed in [14℄.To summarize, in �-alulus abstration is handled via the arrow binary operator,mathing is used as the parameter passing mehanism, substitution takes are ofvariable bindings and results sets are handled expliitly.1.3 Rewriting relation versus rewriting alulusA �-alulus term ontains all the (rewrite rule) information needed for its evaluation.This is also the ase for �-alulus but it is quite di�erent from the usual way termrewrite relations are de�ned.The rewrite relation generated by a rewrite system R = fl1 ! r1; : : : ; ln ! rngis de�ned as the smallest transitive relation stable by ontext and substitution andontaining (l1; r1); : : : ; (ln; rn). For example if R = fa ! f(a)g, then the rewriterelation ontains (a; f(a)), (a; f(f(a))), (f(a); f(f(a))); : : : and one says that thederivation a! f(a)! f(f(a))! : : : is generated by R.In �-alulus the situation is di�erent sine �-evaluation will redue a given �-term inwhih all the rewriting information is expliit. It is ustomary to say that the rewrite365

system a! a is not terminating beause it generates the derivation a! a! a! : : : .In �-alulus the same in�nite derivation should be expliitly built (for example usingan iterator) and all the evaluation information should be present in the starting termas in [a ! a℄([a ! a℄([a ! a℄(a))) whose evaluation orresponds to the three stepsderivation a! a! a! a.There is thus a big di�erene between the way one an de�ne rewrite derivationsgenerated by a rewrite system and their representation in �-alulus: in the �rst asethe derivation onstrution is impliit and left at the meta-level, in the later ase, allrewrite steps should be expliitly built.1.4 Integration of �rst-order rewriting and higher-order logiWe are introduing a new alulus in a heavily-harged landsape. Why one more?There are several omplementary answers that we will make expliit in this work.One of them is the unifying priniple of the alulus with respet to algebrai andhigher-order theories.The integration of �rst-order and higher-order paradigms has been one of the mainproblems raised sine the beginning of the study of programming language semantisand of proof environments. The �-alulus emerged in the thirties and had a deepinuene on the development of theoretial omputer-siene as a simple but powerfultool for desribing programming language semantis as well as proof developmentsystems. Term rewriting for its part emerged as an identi�ed onept in the latesixties and it had a deep inuene in the development of algebrai spei�ations aswell as in theorem proving.Beause the two paradigms have a lot in ommon but have extremely useful om-plementary properties, many works address the integration of term rewriting with�-alulus. This has been handled either by enrihing �rst-order rewriting withhigher-order apabilities or by adding to �-alulus algebrai features allowing one,in partiular, to deal with equality in an eÆient way. In the �rst ase, we �nd theworks on CRS [38℄, XRS [49℄ and other higher-order rewriting systems [58, 44℄, in theseond ase the works on ombination of �-alulus with term rewriting [46, 5, 21, 30℄to mention only a few.Our previous works on the ontrol of term rewriting [35, 56, 3℄ led us to introdue the�-alulus. Indeed we realized that the tool that is needed in order to ontrol rewritingshould be made expliit and ould be itself naturally desribed using rewriting. Byviewing the arrow rewrite symbol as an abstration operator, we stritly generalizethe abstration mehanism of �-alulus, by making the rule appliation expliit, weget full ontrol of the rewrite mehanism and as a onsequene we obtain with the�-alulus a uniform integration of algebrai omputation and �-alulus.1.5 Basi properties and uses of the �-alulusOne of the main properties of the alulus we are onentrating on is onuene. Wewill see that the �-alulus is not onuent in the general ase. The use of sets forrepresenting the redution results is the main ause of non-onuene. This omesfrom the fat that in the de�nition of a standard rewrite step, a rule is applied onlywhen a suessful math is found and in this ase the redued term exists and is unique366

(even if several mathes exist). In �-alulus we are in a very di�erent situation sinea rule appliation always yields a unique result onsisting either of a non-empty setrepresenting all the possible redued terms (one per di�erent math) or of an emptyset representing the impossibility to apply a standard rewrite step.The onuene an be reovered if the evaluation rules of �-alulus are guidedby an appropriate strategy. This strategy should �rst handle properly the problemsrelated to the propagation of failure over the operators of the alulus. It should alsotake are of the orret handling of sets with more than one element in non-linearontexts. We are presenting this strategy whose full details are given in [8℄.We will see that the �-alulus an be used for representing some simpler aluli as�-alulus and rewriting even in the onditional ase. This is ahieved by restritingthe syntax and the evaluation rules of the �-alulus in order to represent the termsof the two aluli. We then show that for any redution in the �-alulus or termrewriting, a orresponding natural redution in the �-alulus an be found.1.6 Struture of this work and paperThe presentation of this work is divided in two parts, the seond one being alledhereafter Part II.The purpose of this �rst part is to introdue the �-alulus, its syntax and evaluationrules and to show how it an be used in order to naturally enode �-alulus andstandard term rewriting. We also show in Part II, and indeed this was our �rstmotivation, that it an be used to enode onditional rewriting and that it providesa semantis for the rewrite based language ELAN.In the next setion, we introdue the general �T -alulus, where T is a theoryused to internalize spei� knowledge like assoiativity and ommutativity of ertainoperators. We present the syntax of the alulus, its evaluation rules together withexamples. We emphasize in partiular the important role of the mathing theoryT . We show in Setion 3 how �-alulus an be used to enode in a uniform wayterm rewriting and �-alulus. Then, in Setion 4, we restrit to the �;-alulus (alsoshortly denoted �-alulus), the alulus where only syntati mathing is allowed(i.e. the theory T is assumed to be the trivial one), and we present the onueneproperties of this alulus. We assume the reader familiar with the standard notionsof term rewriting [16, 36, 4, 33℄ and with the basi notions of �-alulus [2℄. For thebasi onepts about rule based onstraint solving and dedution modulo, we referrespetively to [29, 37℄ and [14℄.2 De�nition of the �T -alulusWe assume given in this setion a theory T de�ned equationally or by any othermeans.A alulus is de�ned by the following �ve omponents:1. First its syntax that makes preise the formation of the objets manipulated by thealulus as well as the formation of substitutions that are used by the evaluationmehanism. In the ase of �T -alulus, the ore of the objet formation relies ona �rst-order signature together with rewrite rules formation, rule appliation and367

sets of results.2. The desription of the substitution appliation to terms. This desription is oftengiven at the meta-level, exept for expliit substitution frameworks. For the de-sription of the �T -alulus that we give here, we use (higher-order) substitutionsand not grafting, i.e. the appliation takes are of variable bindings and thereforeuses �-onversion.3. The mathing algorithm used to bind variables to their atual values. In the aseof �T -alulus, this is mathing modulo the theory T . In pratial ases it willbe higher-order-pattern mathing, or equational mathing, or simply syntatimathing or ombination of any of these. The mathing theory is spei�ed as aparameter (the theory T) of the alulus and when it is lear from the ontextthis parameter is omitted.4. The evaluation rules desribing the way the alulus operates. It is the gluebetween the previous omponents. The simpliity and larity of these rules arefundamental for its usability.5. The strategy guiding the appliation of the evaluation rules. Depending on thestrategy employed we obtain di�erent versions and therefore di�erent propertiesfor the alulus.This setion makes expliit all these omponents for the �T -alulus and ommentsour main hoies.2.1 Syntax of the �T -alulusDe�nition 2.1We onsider X a set of variables and F = SmFm a set of rankedfuntion symbols, where for allm, Fm is the subset of funtion symbols of aritym. Weassume that eah symbol has a unique arity i.e. that the Fm are disjoint. We denoteby T (F ;X) the set of �rst-order terms built on F using the variables in X . The setof basi �-terms, denoted %(F ;X), is the smallest set of objets formed aording tothe following rules:� the variables in X are �-terms,� if t1; : : : ; tn are �-terms and f 2 Fn then f(t1; : : : ; tn) is a �-term,� if t1; : : : ; tn are �-terms then ft1; : : : ; tng is a �-term (the empty set is denoted ;),� if t and u are �-terms then [t℄(u) is a �-term (appliation),� if t and u are �-terms then t! u is a �-term (abstration or rewrite rule).The set of basi �-terms an thus be indutively de�ned by the following grammar:�-terms t ::= x j f(t; : : : ; t) j ft; : : : ; tg j [t℄(t) j t! twhere x 2 X and f 2 F . Notie that this syntax does not make use of the theory T .A term may be viewed as a �nite labeled ordered tree, the leaves of whih are labeledwith variables or onstants and the internal nodes of whih are labeled with symbolsof positive arity.De�nition 2.2 A position (also alled ourrene) of a term (seen as a tree) is rep-resented as a sequene ! of positive integers desribing the path from the root of t to368

the root of the sub-term at that position. We denote by tdsep the term t ontainingthe sub-term s at the position p. The symbol at the position p of a term t is denotedby t(p).We all funtional position of a �-term t, any ourrene p of the term whose symbolbelongs to F , i.e. t(p) 2 F . The set of all positions of a term t is denoted by Pos(t).The set of all funtional positions of a term t is denoted by FPos(t).The position of a sub-term in a set �-term is obtained by onsidering one of thepossible tree representations of the respetive �-term.We adopt a very general disipline for the rewrite rule formation, and we do notenfore any of the standard restritions often used in the term rewriting ommunitylike non-variable left-hand sides or ourrene of the right-hand side variables in theleft-hand side. We also onsider rewrite rules ontaining rewrite rules as well asrewrite rule appliation. For onveniene, we onsider that the symbols fg and ;both represent the empty set. We usually use the notation f instead of f() for afuntion symbol of arity 0 (i.e. a onstant). For the terms of the form ft1; : : : ; tng weassume, as usually, that the omma is an assoiative, ommutative and idempotentfuntion symbol.The main intuition behind this syntax is that a rewrite rule is an abstration, theleft-hand side of whih determines the bound variables and some ontextual infor-mation. Having new variables in the right-hand side is just the ability to have freevariables in the alulus. We will ome bak to this later but to support the intuitionlet us mention that the �-terms [2℄ and standard �rst-order rewrite rules [16, 4℄ arelearly objets of this alulus. For example, the �-term �x:(y x) orresponds to the�-term x! [y℄(x) and a rewrite rule in �rst-order rewriting orresponds to the samerewrite rule in the rewriting-alulus.We have hosen sets as the data struture for handling the potential non-determi-nism. A set of terms an be seen as the set of distint results obtained by applyinga rewrite rule to a term. Other hoies ould be made depending on the intendeduse of the alulus. For example, if we want to provide all the results of an appli-ation, inluding the idential ones, a multi-set ould be used. When the order ofthe omputation of the results is important, lists ould be employed. Sine in thispresentation of the alulus we fous on the possible results of a omputation andnot on their number or order, sets are used. The onuene properties presented inSetion 4 are preserved in a multi-set approah. It is lear that for the list approahonly a onuene modulo permutation of lists an be obtained.The following examples show the very expressive syntax that is allowed for �-terms.Example 2.3 If we onsider F0 = fa; b; g, F1 = ffg, F2 = fgg, F = F0 [F1 [F2and x; y variables in X , some �-terms from %(F ;X) are:� [a ! b℄(a); this denotes the appliation of the rewrite rule a ! b to the term a.We will see that evaluating this appliation results in fbg.� [g(x; y)! f(x)℄(g(a; b)); a lassial rewrite rule appliation.� [x ! x + y℄(a); a rewrite rule with a free variable y. We will see later why theresult of this appliation is fa+ yg where the variable y remains free.� [y ! [x ! x + y℄(b)℄([x ! x℄(a)); a �-term that orresponds to the �-term(�y:((�x:x+ y) b)) ((�x:x) a). In the rewrite rule x! x+ y the variable y is freebut in the rewrite rule y ! [x! x+ y℄(b) this variable is bound.369

� [x ! [x℄(x)℄(x ! [x℄(x)); the well-known (!!) �-term. We will see that theevaluation of this term is not terminating.� [[(x ! x + 1) ! (1 ! x)℄(a ! a + 1)℄(1); a more ompliated �-term withoutorresponding standard rewrite rule or �-term.2.2 Grafting versus substitutionSine we are dealing with ! as a binder, like for any alulus involving binders(as the �-alulus), �-onversion should be used to obtain a orret substitutionalulus and the �rst-order substitution (alled here grafting) is not diretly suitablefor the �-alulus. We onsider the usual notions of �-onversion and higher-ordersubstitution as de�ned for example in [13℄.This is the reason for introduing an appropriate notion of bound variables renamingin De�nition 2.5. It omputes a variant of a �-term whih is equivalent modulo�-onversion to the initial term.De�nition 2.4 The set of free variables of a �-term t is denoted by FV (t) and isde�ned by:1. if t = x then FV (t) = fxg,2. if t = f(u1; : : : ; un) then FV (t) = Si=1;::: ;n FV (ui),3. if t = fu1; : : : ; ung then FV (t) = Si=1;::: ;n FV (ui),4. if t = [u℄(v) then FV (t) = FV (u) [FV (v),5. if t = u! v then FV (t) = FV (v) n FV (u).De�nition 2.5 Given a set Y of variables, the appliation �Y (alled �-onversion)is de�ned by:� �Y (x) = x,� �Y (f(u1; : : : ; un)) = f(�Y (u1); : : : ; �Y (un)),� �Y (ftg) = f�Y(t)g,� �Y ([t℄(u)) = [�Y (t)℄(�Y (u)),� �Y (u! v) = �Y (u)! �Y(v), if FV (u) \ Y = ;,� �Y (u! v) = (fxi 7! yigxi2FV (u) �Y (u))! (fxi 7! yigxi2FV (u) �Y (v)),if xi 2 FV (u) \ Y and yi are \fresh" variables and where fx 7! yg denotes thereplaement of the variable x by the variable y in the term on whih it is applied.This allows us to de�ne the usual substitution and grafting operations:De�nition 2.6 A valuation � is a �nite binding of the variables x1; : : : ; xn to theterms t1; : : : ; tn, i.e. a �nite set of ouples f(x1; t1); : : : ; (xn; tn)g.From a given valuation � we an de�ne the following two notions of substitutionand grafting:� the substitution extending � is denoted � = fx1=t1; : : : ; xn=tng,� the grafting extending � is denoted �� = fx1 7! t1; : : : ; xn 7! tng.370

� and �� are struturally de�ned by:{ �(x) = u, if (x; u) 2 � { ��(x) = u, if (x; u) 2 �{ �(f(t1 : : : tn)) = f(�(t1) : : :�(tn)) { ��(f(t1 : : : tn)) = f(��(t1) : : : ��(tn)){ �(ft1; : : : ; tng) = f�(t1); : : : ;�(tn)g { ��(ft1; : : : ; tng) = f��(t1); : : : ; ��(tn)g{ �([t℄(u)) = [�(t)℄(�(u)) { ��([t℄(u)) = [��(t)℄(��(u)){ �(u! v) = �(u0)! �(v0) { ��(u! v) = ��(u)! ��(v)where we onsider that zi are fresh variables (i.e. �zi = zi), the zi do not our in uand v and for any y 2 FV (u), zi 62 FV (�y), and u0, v0 are de�ned by:u0 = fyi 7! zigyi2FV (u) �FV (u)[Var(�)(u),v0 = fyi 7! zigyi2FV (u) �FV (u)[Var(�)(v).using the following notations: The set of variables fx1; : : : ; xng is alled the domainof the substitution � or of the grafting �� and is denoted by Dom(�) or Dom(��)respetively. The set of all the variables from � is Var(�) = [x2Dom(�)�(x) [Dom(�).Reall that fx1=t1; : : : ; xn=tng is the simultaneous substitution of the variablesx1; : : : ; xn by the terms t1; : : : ; tn and not the omposition fx1=t1g : : : fxn=tng.There is nothing new in the de�nition of substitution and grafting exept that theabstration works here on terms and not only on variables. The burden of variablehandling ould be avoided by using an expliit substitution mehanism in the spiritof [6℄. We skethed suh an approah in [9℄ and this is detailed in [8℄.2.3 MathingComputing the mathing substitutions from a �-term t to a �-term t0 is an importantparameter of the �T -alulus. We �rst de�ne mathing problems in a general setting:De�nition 2.7 For a given theory T over �-terms, a T -math-equation is a formulaof the form t�?T t0, where t and t0 are �-terms. A substitution � is a solution of theT -math-equation t �?T t0 if T j= �(t) = t0. A T -mathing system is a onjuntionof T -math-equations. A substitution is a solution of a T -mathing system P if it isa solution of all the T -math-equations in P . We denote by F a T -mathing systemwithout solution. A T -mathing system is alled trivial when all substitutions aresolution of it.We de�ne the funtion Solution on a T -mathing system S as returning the set of allT -mathes of S when S is not trivial and fID g, where ID is the identity substitution,when S is trivial.Notie that when the mathing system has no solution the funtion Solution returnsthe empty set.Sine in general we ould onsider arbitrary theories over �-terms, T -mathing isin general undeidable, even when restrited to �rst-order equational theories [29℄. Inorder to overome this undeidability problem, one an think of using onstraints asin onstrained higher-order resolution [26℄ or onstrained dedution [34℄. But we areinterested here in the deidable ases. Among them we an mention higher-order-pattern mathing that is deidable and unitary as a onsequene of the deidabilityof pattern uni�ation [41, 15℄, higher-order mathing whih is known to be deidable371

up to the fourth order [47, 48, 17, 24℄ (the deidability of the general ase being stillopen), many �rst-order equational theories inluding assoiativity, ommutativity,distributivity and most of their ombinations [43, 52℄.For example when T is empty, the syntati mathing substitution from t to t0,when it exists, is unique and an be omputed by a simple reursive algorithm givenfor example by G. Huet [27℄. It an also be omputed by the following set of rulesSyntatiMathing where f; g 2 F and the symbol ^ is assumed to be assoiativeand ommutative.Deomposition (f(t1; : : : ; tn)�?; f(t01; : : : ; t0n)) ^ P 7!7! Vi=1:::nti �?; t0i ^ PSymbolClash (f(t1; : : : ; tn)�?; g(t01; : : : ; t0m)) ^ P 7!7! Fif f 6= gMergingClash (x�?; t) ^ (x�?; t0) ^ P 7!7! Fif t 6= t0V ariableClash (f(t1; : : : ; tn)�?; x) ^ P 7!7! Fif x 2 XFig. 1. SyntatiMathing - Rules for syntati mathingProposition 2.8 The normal form by the rules in SyntatiMathing of any math-ing problem t�?; t0 exists and is unique. After removing from the normal form anydupliated math-equation and the trivial math-equations of the form x �?; x forany variable x, if the resulting system is:1. F, then there is no math from t to t0 and Solution(t�?; t0) = Solution(F) = ;,2. of the form Vi2I xi �?; ti with I 6= ;, then the substitution � = fxi=tigi2I is theunique math from t to t0 and Solution(t�?; t0) = Solution(Vi2I xi �?; ti) = f�g,3. empty, then t and t0 are idential and Solution(t�?; t) = fID g.Proof. See [33℄. 2Example 2.9 If we onsider the mathing problem (h(x; g(x; y)) �?; h(a; g(a; b)),�rst we apply the mathing rule Deomposition and we obtain the system with thetwo math-equations (x �?; a) and (g(x; y) �?; g(a; b)). When we apply the samerule one again for the seond equation we obtain (x �?; a) and (y �?; b) and thus,the initial math-equation is redued to the system (x�?; a) ^ (x�?; a) ^ (y �?; b)and Solution(h(x; g(x; y))�?; h(a; g(a; b)) = ffx=a; y=bgg.For the mathing problem (g(x; x) �?; g(a; b)) we apply, as before, Deompositionand we obtain the system (x�?; a) ^ (x�?; b). This latter system is redued by themathing rule MergingClash to F and thus, Solution(g(x; x)�?; g(a; b)) = ;.This syntati mathing algorithm has an easy and natural extension when a symbol+ is assumed to be ommutative. In this ase, the previous set of rules should be372

ompleted withCommDe (t1 + t2)�?C(+) (t01 + t02) ^ P 7!7!((t1 �?C(+) t01 ^ t2 �?C(+) t02) _ (t1 �?C(+) t02 ^ t2 �?C(+) t01)) ^ Pwhere disjuntion should be handled in the usual way. In this ase of ourse thenumber of mathes ould be exponential in the size of the initial left-hand sides.Example 2.10When mathing modulo ommutativity the term x+y, with + de�nedas ommutative, against the term a+ b, the rule CommDe leads to((x�?C(+) a ^ y �?C(+) b) _ (x�?C(+) b ^ y �?C(+) a))and thus, we obtain two substitutions as solution for the initial mathing problem,i.e. Solution(x+ y �?C(+) a+ b) = ffx=a; y=bg; fx=b; y=agg.Mathing modulo assoiativity-ommutativity (AC) is often used. It ould be de-�ned either in a rule based way as in [1, 37℄ or in a semanti way as in [18℄. Arestrited form of assoiative mathing alled list mathing is used in the ASF+SDFsystem [53℄. In the Maude system any ombination of the assoiative, ommutativeand idempoteny properties is available [19℄.2.4 Evaluation rules of the �T -alulusAssume we are given a theory T over �-terms having a deidable mathing problem.The use of onstraints would allow us to drop this last restrition, but we have hosenhere to stik to this simpler situation.As mentioned above, in the general ase, the mathing is not unitary and thuswe should deal with (empty, �nite or in�nite) sets of substitutions. We onsider asubstitution appliation at the meta-level of the alulus represented by the operator\ hh ii" whose behavior is desribed by the meta-rule Propagate:Propagate rhhf�1; : : : ; �n; : : : gii ; f�1r; : : : ; �nr; : : : gNotie that sine this rule operates at the meta-level of the alulus, it is di�erentfrom the evaluation rules like Fire and its arrow is denoted di�erently. A version ofthe alulus an also be given using expliit substitution [8℄.The result of the appliation of a set of substitutions f�1; : : : ; �n; : : : g to a term ris the set of terms �ir, where �ir represents the result of the (meta-)appliation ofthe substitution �i to the term r as detailed in De�nition 2.6. Notie that when n is0, i.e. the set of substitutions is empty, the resulting set of instantiated terms is alsoempty.The evaluation rules of the �T -alulus desribe the appliation of a �-term onanother one and speify the behavior of the di�erent operators of the alulus whensome arguments are sets. Following their spei�ations they are desribed in Figure 2to 5. 373

2.4.1 Applying rewrite rulesThe appliation of a rewrite rule at the root position of a term is aomplished bymathing the left-hand side of the rewrite rule on the term and returning the appro-priately instantiated right-hand side. It is desribed by the evaluation rule Fire inFigure 2. The rule Fire, like all the evaluation rules of the alulus, an be appliedat any position of a �-term.Fire [l! r℄(t) =) rhhSolution(l �?T t)iiFig. 2. The evaluation rule Fire of the �T -alulusThe entral idea is that applying a rewrite rule l ! r at the root (also alledtop) ourrene of a term t, written as [l ! r℄(t), onsists in replaing the termr by rhh�ii where � is the set of substitutions obtained by T -mathing l on t (i.e.Solution(l �?T t)). Therefore, when the mathing yields a failure represented by anempty set of substitutions, the result of the appliation of the rule Propagate andthus of the rule Fire is the empty set.One an notie that the rule Fire an be expressed without using the meta-rulePropagate:Fire [l! r℄(t) ; f�1r; : : : ; �nr; : : : gwhere f�1; : : : ; �n; : : : g = Solution(l�?T t)but we preferred the previous version for a smoother transition to the expliit versionof the alulus.We should point out that, as in �-alulus, an appliation an always be evaluated.But, unlike in �-alulus, the set of results an be empty. More generally, whenmathing modulo a theory T , the set of resulting mathes may be empty, a singleton(as in the empty theory), a �nite set (as for assoiativity-ommutativity) or in�nite(see [20℄). We have thus hosen to represent the result of a rewrite rule appliationto a term as a set. An empty set means that the rewrite rule l ! r fails to apply tot in the sense of a mathing failure between l and t.We denote by �!Fire the relation indued by the evaluation rule Fire.Example 2.11 Some examples of the appliation of the evaluation rule Fire are:� [a! b℄(a) �!Fire fbg� g(x; [x! ℄(a)) �!Fire g(x; fg)� [a! b℄() �!Fire ;2.4.2 Applying operatorsIn order to push rewrite rule appliation deeper into terms, we introdue the twoCongruene evaluation rules of Figure 3. They deal with the appliation of a term ofthe form f(u1; : : : ; un) (where f 2 Fn) to another term of a similar form. When we374

have the same head symbol for the two terms of the appliation [u℄(v) the argumentsof the term u are applied on those of the term v argument-wise. If the head symbolsare not the same, an empty set is obtained.Cong [f(u1; : : : ; un)℄(f(v1; : : : ; vn)) =) ff([u1℄(v1); : : : ; [un℄(vn))gCongFail [f(u1; : : : ; un)℄(g(v1; : : : ; vm)) =) ;Fig. 3. The evaluation rules Congruene of the �T -alulusRemark 2.12 The Congruene rules are redundant with respet to the evaluationrule Fire modulo an appropriate transformation of the initial term. Indeed, one ouldnotie that the appliation of a term f(u1; : : : ; un) to another �-term t (i.e. the �-term [f(u1; : : : ; un)℄(t)) evaluates, using the rules Cong and CongFail, to the sameterm as the appliation of the �-term f(x1; : : : ; xn) ! f([u1℄(x1); : : : ; [un℄(xn)) onthe same term t (i.e. the �-term [f(x1; : : : ; xn)! f([u1℄(x1); : : : ; [un℄(xn))℄(t)) usingthe evaluation rule Fire. Although we an express the same omputations by usingonly the evaluation rule Fire, we prefer to keep the evaluation rules Congruene inthe alulus for an expliit use of these rules and thus, a more onise representationof terms.2.4.3 Handling sets in the �T -alulusThe redutions desribing the behavior of terms ontaining sets are desribed by theevaluation rules in Figure 4:� The rules Distrib and Bath desribe the interation between the appliation andthe set operators,� The rules SwithL and SwithR desribe the interation between the abstrationand the set operators,� The rule OpOnSet desribe the interation between the symbols of the signatureand the set operators.� The rule desribing the interation between set operators will be desribed in thenext setion.The set representation for the results of the rewrite rule appliation has importantonsequenes onerning the behavior of the alulus. We an notie, in partiular,that the number of set symbols is unhanged by the evaluation rules Distrib, Bath,SwithL, SwithR and OpOnSet. This way, for a derivation involving only terms thatdo not ontain empty sets, the number of set symbols in a term ounts the numberof rules Fire and Congruene that have been applied for its evaluation.The appliation of the set of rewrite rules fa ! b; a ! g to the term a (i.e.the �-term [fa ! b; a ! g℄(a)) is redued, by using the evaluation rule Distrib,to the set ontaining the appliation of eah rule to the term a (i.e. the �-termf[a ! b℄(a); [a ! ℄(a)g). It is in partiular useful when simulating ordinary termrewriting by a set of rewrite rules. Moreover, we an fator a set of rewrite rules375

Distrib [fu1; : : : ; ung℄(v) =) f[u1℄(v); : : : ; [un℄(v)gBath [v℄(fu1; : : : ; ung) =) f[v℄(u1); : : : ; [v℄(un)gSwithL fu1; : : : ; ung ! v =) fu1 ! v; : : : ; un ! vgSwithR u! fv1; : : : ; vng =) fu! v1; : : : ; u! vngOpOnSet f(v1; : : : ; fu1; : : : ; umg; : : : ; vn) =)ff(v1; : : : ; u1; : : : ; vn); : : : ; f(v1; : : : ; um; : : : ; vn)gFig. 4. The evaluation rules Set of the �T -alulushaving the same left-hand side and use the �-term a ! fb; g whih is redued, byapplying the evaluation rule SwithR, to fa! b; a! g. Thus, we an say that the�-term [a! fb; g℄(a) desribes the non-deterministi hoie between the appliationof the rule a! b to the term a and the appliation of the rule a! to the same termand this appliation is redued to the set ontaining the results of the two appliations,i.e. ffbg; fgg.Let us onsider the �-term [f(a ! b)℄(f(a)) whih is redued, by using the rulesCong and Fire, to ff(fbg)g and then, by using the rule OpOnSet to fff(b)gg. Thetwo set symbols orresponding to the two appliations of the evaluation rules Fireand Cong are thus preserved by the appliation of the rule OpOnSet.A result of the form fg (i.e. ;) represents the failure of a rule appliation and suhfailures are stritly propagated in �-terms by the Set rules. For instane, the �-termg([a ! b℄(); fag) is redued to g(;; fag) and then, by using the rule OpOnSet, to;. One should notie that in this ase, the information on the number of Fire andCongruene rules used in the redution of the sub-term fag is lost.The rewrite relation generated by the evaluation rules Fire, Congruene and theSet rules is �ner (i.e. ontains more elements) than the standard one (without sets)and is obviously non-onuent. A reason for the non-onuene is the lak of a similarevaluation rule for the propagation of sets on sets.2.4.4 Flattening sets in the �T -alulusWe usually are about the set of results obtained by reduing the redexes and notabout the exat trae of the redution leading to these results. In what follows wepresent the way this behavior is desribed in the �-alulus.We use the evaluation rule F lat in Figure 5 that attens the sets and eliminates the(nested) set symbols. In this ase, the information on the number of redution stepsis lost. Notie that this implies that failure (the empty set) is not stritly propagatedon sets.The same behavior an be desribed by two distint evaluation rules: one thatwould just atten the sets and thus preserve the number of set braes, and another376

F lat fu1; : : : ; fv1; : : : ; vng; : : : ; umg =) fu1; : : : ; v1; : : : ; vn; : : : ; umgFig. 5. The evaluation rules F lat of the �T -alulusone that would eliminate the nested set symbols.This behavior of the alulus ould be summarized by stating that failure prop-agation by the Set rules is strit on all operators but sets. We will see later thatFire may indue non-strit propagations in some partiular ases (see Example 4.4on page 388).The design deision to use sets for representing redution results has another impor-tant onsequene onerning the handling of sets with respet to mathing. Indeed,sets are just used to store results and we do not wish to make them part of the theory.We are thus assuming that the mathing operation used in the Fire evaluation rule isnot performed modulo the set axioms. As a onsequene, this requires in some asesto use a strategy that pushes set braes outside the terms whenever possible.Every time a �-term is redued using the rules Fire and Congruene of the�T -alulus, a set is generated. These evaluation rules are the ones that desribethe appliation of a rewrite rule at the top level or deeper in a term. The set obtainedwhen applying one of the above evaluation rules an trigger the appliation of theother evaluation rules of the alulus. These evaluation rules deal with the (propa-gation of) sets and ompute a \set-normal form" for the �-terms by pushing out theset braes and attening the sets.Therefore, we onsider that the evaluation rules of the �T -alulus onsist of a setof dedution rules (Fire, Cong, CongFail) and a set of omputation rules (Distrib,Bath, SwithL, SwithR, OpOnSet, F lat) and that the redution behaves as indedution modulo [14℄. This means that we an onsider the omputation rules asdesribing a ongruene modulo whih the dedution rules are applied. In suh anapproah we say that [f(a ! b)℄(f(a)) redues to ff(fbg)g whih is equivalent toff(b)g.2.4.5 Using the �T -alulusThe aim of this setion is to make onrete the onepts we have just introdued bygiving a few examples of �-terms and �-redutions. Many other examples ould befound on the ELAN web page [51℄.The �T -alulus using syntati mathing (i.e. an empty mathing theory) is de-noted �;-alulus or simply �-alulus when there is no ambiguity. We denote by�C-alulus, �A-alulus and �AC-alulus the �T -alulus with a mathing theoryommutative, assoiative and assoiative-ommutative respetively.Simple funtional programming Let us start with the funtional part of the al-ulus and give the �-terms representing some �-terms. For example, the �-abstration�x:(y x), where y is a variable, is represented as the �-rule x ! [y℄(x). The applia-tion of the above term to a onstant a, (�x:(y x) a) is represented in the �-alulusby the appliation [x! [y℄(x)℄(a). This appliation redues, in the �-alulus, to the377

term (y a) while in the �-alulus the result of the redution is the singleton f[y℄(a)g.When a funtional representation f(x) is hosen, the �-term �x:f(x) is represented bythe �-term x ! f(x) and a similar result is obtained for its appliation. One shouldnotie that for �-terms of this form (i.e. that have a variable as a left-hand side) thesyntati mathing performed in the �-alulus is trivial, i.e. it never fails and givesonly one result.There is no diÆulty to represent more elaborate �-terms in the �-alulus. Let usonsider the term �x:f(x) (�y:y a) with the following �-derivation: �x:f(x) (�y:y a)�!� �x:f(x) a �!� f(a). The same derivation an be reovered in the �-alulusfor the orresponding �-term: [x ! f(x)℄([y ! y℄(a)) �!Fire [x ! f(x)℄(fag)�!Bath f[x ! f(x)℄(a)g �!Fire fff(a)gg �!Flat ff(a)g. Of ourse, several re-dution strategies an be used in the �-alulus and reprodued aordingly in the�-alulus. Indeed, we will see in Setion 3.1 that the �-alulus stritly embeds the�-alulus.Rewriting Now, if we introdue ontextual information in the left-hand sidesof the �-rules we obtain lassial rewrite rules as f(a) ! f(b) or f(x) ! g(x; x).When we apply suh a rewrite rule, the mathing an fail and onsequently, theappliation of the rewrite rule an fail. As we have already insisted in the previoussetions, the failure of a rewrite rule is not a meta-property in the �-alulus but isrepresented by an empty set (of results). For example, in standard term rewriting wesay that the appliation of the rule f(a) ! f(b) to the term f() fails and thereforethe term is unhanged. On the ontrary, in the �-alulus the orresponding term[f(a)! f(b)℄(f()) evaluates to ;.Sine, in the �-alulus, there is no restrition on the rewrite rules onstrution, arewrite rule may use a variable as left-hand side, as in x! x+1, or it may introduenew variables, as in f(x) ! g(x; y). The free variables of the rewrite rules fromthe �-alulus allow us to dynamially build lassial rewrite rules. For example, inthe appliation [y ! (f(x) ! g(x; y))℄(a), the variable y is free in the rewrite rulef(x)! g(x; y) but bound in the rule y ! (f(x)! g(x; y)). The above appliation isredued to the set ff(x)! g(x; a)g ontaining a lassial rewrite rule.By using free variables in the right-hand side of a rewrite rule we an also \param-eterize" the rules by \strategies", as in the term y ! [f(x)! [y℄(x)℄(f(a)) where theterm to be applied to x is not expliit in the rule f(x) ! [y℄(x). When reduing theappliation [y ! [f(x) ! [y℄(x)℄(f(a))℄(a ! b), the variable y from the rewrite ruleis instantiated to a! b and thus, the result of the redution is fbg.Non-determinism When the mathing is done modulo an equational theory weobtain interesting behaviors.An assoiative mathing theory allows us, for example, to express the fat thatan expression an be parenthesized in di�erent ways. Take, for example, the listoperator Æ that appends two lists with elements of a given sort Elem. Any objet ofsort Elem represents a list onsisting of this only objet. If we de�ne the operator Æas assoiative, the rewrite rule desribing the deomposition of a list an be written inthe assoiative �A-alulus l Æ l0 ! l. When applying this rule to the list aÆ bÆ Æd weobtain as result the �-term fa; a Æ b; a Æ b Æ g. If the operator Æ had not been de�nedas assoiative, we would have obtained as the result of the same rule appliation oneof the singletons fag or fa Æ bg or fa Æ (b Æ)g or f(a Æ b) Æ g, depending on the waythe term a Æ b Æ Æ d is parenthesized. 378

A ommutative mathing theory allows us, for example, to express the fat thatthe order of the arguments is not signi�ant. Let us onsider a ommutative operator� and the rewrite rule x� y ! x that selets one of the elements of the tuple x� y.In the ommutative �C-alulus, the appliation [x � y ! x℄(a � b) evaluates to theset fa; bg that represents the set of non-deterministi hoies between the two results.In standard rewriting, the result is not well de�ned; should it be a or b?We an also use an assoiative-ommutative theory like, for example, when anoperator desribes multi-set formation. Let us go bak to the Æ operator, but thistime we de�ne it as assoiative-ommutative and we use the rewrite rule x Æ x Æ L! Lthat eliminates doubleton from lists of sort Elem. Sine the mathing is done moduloassoiativity-ommutativity, this rule eliminates the doubleton no matter what is theirposition in the struture built using the Æ operator. For instane, in the �AC-alulusthe appliation [x Æ x ÆL! L℄(a Æ b Æ Æ a Æ d) evaluates to fb Æ Æ dg: the searh forthe two equal elements is done thanks to assoiativity and ommutativity.Another faility is due to the use of sets for handling non-determinism. This allowsus to easily express the non-deterministi appliation of a set of rewrite rules to aterm. Let us onsider, for example, the operator
 as a syntati operator. If wewant the same behavior as before for the seletion of eah element of the ouple x
y,two rewrite rules should be non-deterministially applied as in the following redution:[fx
 y ! x; x
 y ! yg℄(a
 b) �!Distrib f[x
 y ! x℄(a
 b); [x
 y ! y℄(a
 b)g�!Fire ffag; fbgg �!Flat fa; bg.2.5 Evaluation strategies for the �T -alulusThe last omponent of a alulus, i.e. the strategy S guiding the appliation of itsevaluation rules, is ruial for obtaining good properties for the �-alulus. For exam-ple, the main property analyzed for the �-alulus is onuene and we will see thatif the rule Fire is applied under no onditions at any position of a �-term, onuenedoes not hold.Let us now de�ne formally the notion of strategy. We speialize here to the�-alulus, and the general de�nition an be found in [35℄.De�nition 2.13 An evaluation strategy in the �-alulus is a subset of the set of allpossible derivations.For example, the ALL strategy is the set of all derivations, i.e. it imposes norestritions. The empty strategy does not allow any redution. Standard strategiesare all by value or by name, leftmost innermost or outermost, lazy, needed.The reasons for the non-onuene of the alulus are explained in Setion 4 anda solution is proposed for obtaining a onuent alulus. The onuent strategy anbe given expliitly or as a ondition on the appliation of the rule Fire.2.6 SummaryStarting from the notions introdued in the previous setions we give the de�nitionof the �T -alulus.De�nition 2.14 Given a set F of funtion symbols, a set X of variables, a theory379

T on %(F ;X) terms having a deidable mathing problem, we all �T -alulus (orgenerially rewriting alulus) a alulus de�ned by:1. a non-empty subset %�(F ;X) of the %(F ;X) terms,2. the (higher-order) substitution appliation to terms as de�ned in Setion 2.2,3. the theory T ,4. the set of evaluation rules E : Fire, Cong, CongFail, Distrib, Bath, SwithL,SwithR, OpOnSet, F lat,5. an evaluation strategy S that ontrols the appliation of the evaluation rules. Theset %�(F ;X) should be stable under the strategy ontrolled appliation of theevaluation rules.We use the notation �T = (%�(F ;X); T;S) to make apparent the main omponentsof the rewriting alulus under onsideration.When the parameters of the general alulus are replaed with some spei� values,di�erent variants of the alulus are obtained. The remainder of this paper will bedevoted, mainly, to the study of a spei� instane of the �T -alulus: the �-alulus.2.7 De�nition of the �-alulusWe de�ne the �-alulus as the �T -alulus where the mathing theory T is restritedto �rst-order syntati mathing. As an instane of De�nition 2.14 we get:De�nition 2.15 The �-alulus is the alulus de�ned by:� the subset %;(F ;X) of %(F ;X) whose rewrite rules are restrited to be of the formu ! v where u 2 T (F ;X), i.e. u is a �rst-order term and thus does not ontainany set, appliation or abstration symbol,� the higher-order substitution appliation to terms,� the mathing theory T = ;, i.e. �rst-order syntati mathing,� the set of evaluation rulesR presented in Figure 6 (i.e. all the rules of the �-alulusbut SwithL),� the evaluation strategy ALL that imposes no onditions on the appliation of theevaluation rules.The �-alulus is therefore de�ned as the alulus �; = (%;(F ;X); ;;ALL).Example 2.16With the exeption of the last term, all the �-terms from Example 2.3are �;-terms.The following remarks should be made with respet to the restritions introduedin the �-alulus:� Sine �rst-order syntati mathing is unitary (i.e. the math, when it exists, isunique) the meta-rule Propagate from Setion 2.4 gives always as result either thesingleton f�rg or the empty set. Hene, the evaluation rule Fire an be replaedby the following simpler two rules:Fire0 [l ! r℄(�l) =) f�rgFire00 [l ! r℄(t) =) ;if there exists no � s.t. �l = t380

Fire [l! r℄(t) =) f�rgwhere f�g = Solution(l�?T t)Cong [f(u1; : : : ; un)℄(f(v1; : : : ; vn)) =) ff([u1℄(v1); : : : ; [un℄(vn))gCongFail [f(u1; : : : ; un)℄(g(v1; : : : ; vm)) =) ;Distrib [fu1; : : : ; ung℄(v) =) f[u1℄(v); : : : ; [un℄(v)gBath [v℄(fu1; : : : ; ung) =) f[v℄(u1); : : : ; [v℄(un)gSwithR u! fv1; : : : ; vng =) fu! v1; : : : ; u! vngOpOnSet f(v1; : : : ; fu1; : : : ; umg; : : : ; vn) =)ff(v1; : : : ; u1; : : : ; vn); : : : ; f(v1; : : : ; um; : : : ; vn)gF lat fu1; : : : ; fv1; : : : ; vng; : : : ; umg =) fu1; : : : ; v1; : : : ; vn; : : : ; umgFig. 6. The evaluation rules of the �-alulus� The evaluation rule SwithL an never be used in the �-alulus due to the re-strited syntax imposed on �;-terms.� For a spei� instane of the �T -alulus, there is a strong relationship between theterms allowed on the left-hand side of the rule and the theory T . Intuitively, thetheory T should be powerful enough to �re rule appliations in a way onsistentwith the intended rewriting. For instane, it seems more interesting to use higher-order mathing instead of syntati or equational mathing when the left-handsides of rules ontain abstrations and appliations. This explains the restritionimposed in the �-alulus for the formation of left-hand sides of rules.� The term restritions are made only on the left-hand sides of rewrite rules andnot on the right-hand side and this learly leads to more terms than in �-alulusor in term rewriting.� The �-alulus is not terminating as [!℄(!) is a �-term (see Example 2.3).The ase of deidable �nitary equational theories will indue more tehnialitiesbut is oneptually similar to the ase of the empty theory. The ase of theorieswith in�nitary or undeidable mathing problems ould be treated using onstraint�-terms in the spirit of [34℄, and will be studied in forthoming works.3 Enoding �-alulus and term rewriting in the �-alulusThe aim of this setion is to show in detail how the �-alulus an be used to give anatural enoding of the �-alulus and term rewriting.381

3.1 Enoding the �-alulusWe briey present some of the notions used in the �-alulus, suh as �-redex and�-redution, that will be used in this part of the paper. The reader should refer to [25℄and [2℄ for a detailed presentation.Let X be a set of variables, written x, y, et. The terms of the �-alulus areindutively de�ned by: a ::= x j (a a) j �x:aDe�nition 3.1 The �-redution is de�ned by the rule:Beta (�x:M N) ; fx=NgMAny term of the form (�x:M)N is alled a �-redex, and the term fx=NgM is tra-ditionally alled its ontratum. If a term P ontains a redex, P an be �-ontratedinto P 0 whih is denoted: P �!� P 0:If Q is obtained from P by a �nite (possibly empty) number of �-ontrations we saythat P �-redues to Q and we denote:P ��!� Q:Let us onsider a restrition of the set of �-terms, denoted F�, and indutivelyde�ned as follows:��-terms t ::= x j ftg j [t℄(t) j x! twhere x 2 X .De�nition 3.2 The ��-alulus is the �-alulus de�ned by:� the F� terms,� the higher-order substitution appliation to terms,� the (mathing) theory T = ;,� the set of evaluation rules of the �-alulus,� the evaluation strategy ALL that imposes no onditions on the appliation of theevaluation rules.Compared to the syntax of the general �-alulus, the rewrite rules allowed inthe ��-alulus an only have a variable as left-hand side. Additionally, all the setsare singletons, hene one ould onsider an enoding not using sets. For uniformitypurposes, we hose to stik to the same enoding approah.Beause of the syntati restritions we have just imposed, the evaluation rules ofthe �-alulus speialize to the ones desribed in Figure 7.The evaluation rule Fire� initiates in the �-alulus (as the �-rule in the �-alulus)the appliation of a substitution to a term. The rules Congruene are not used andthe rules Set and F lat an be speialized to singletons and desribe how to push outthe set braes. 382

Fire� [x! r℄(t) =) ffx=tgr gDistrib� [fug℄(v) =) f[u℄(v)gBath� [v℄(fug) =) f[v℄(u)gSwith� x! fvg =) fx! vgF lat� ffvgg =) fvgFig. 7. The evaluation rules of the ��-alulusAn immediate onsequene of the restrited syntax of the ��-alulus is that themathing performed in the evaluation rule Fire� always sueeds and the solution ofthe mathing equation that is neessarily of the form x �?; t is always the singletonffx=tgg.At this moment we an notie that any �-term an be represented by a �-term.The funtion ' that transforms terms in the syntax of the �-alulus into the syntaxof the ��-alulus is de�ned by the following transformation rules:'(x) = x; if x is a variable'(�x:t) = x! '(t)'(t u) = ['(t)℄('(u))A similar translation funtion an be used in order to transform terms in the syntaxof the ��-alulus into the syntax of the �-alulus:Æ(x) = x; if x is a variableÆ(ftg) = Æ(t)Æ([t℄(u)) = (Æ(t) Æ(u))Æ(x! t) = �x:Æ(t)The redutions in the �-alulus and in the ��-alulus are equivalent modulo thenotations for the appliation and the abstration and the handling of sets:Proposition 3.3 Given two �-terms t and t0, if t �!� t0 then '(t) ��!�� f'(t0)g.Given two ��-terms u and u0, if u �!�� u0 then Æ(u) ��!� Æ(u0).Proof. We use an indution on �!� and �!�� respetively:� If t is a variable x, then t0 = x and '(t) = '(t0) = x.� If t = �x:u then t0 = �x:u0 with u �!� u0 and we have '(t) = x ! '(u). Byindution, we have '(u) ��!�� f'(u0)g, and thus'(t) = x! '(u) ��!�� x! f'(u0)g �!Swith� fx! '(u0)g = f'(t0)g� If t = (u v) then we have either t0 = (u0 v) with u �!� u0, or t0 = (u v0) withv �!� v0, or t = �x:u v and t0 = fx=vgu.In the �rst ase, we apply indution and we obtain'(t) = ['(u)℄('(v)) ��!�� [f'(u0)g℄('(v)) �!Distrib� f['(u0)℄('(v))g = f'(t0)g:383

The seond ase is similar,'(t) = ['(u)℄('(v)) ��!�� [f'(u)g℄('(v0)) �!Distrib� f['(u)℄('(v0))g = f'(t0)g:In the third ase '(t) = [x! '(u)℄('(v)) and'(t) = [x! '(u)℄('(v)) �!Fire� ffx='(v)g'(u)g = '(fx=vgu) = '(t0):Sine the appliation of a substitution is the same in the �-alulus and the�-alulus, we have, due to the de�nition of ', '(fx=vgu) = fx='(v)g'(u) andthus, the property is veri�ed.Sine in the ��-alulus we an have only singletons and the Æ transformation stripso� the set symbols, the appliation of the evaluation rules Distrib�, Bath�, Swith�and F lat� orresponds to the identity in the �-alulus.� If t = [fug℄(v) then we have t �!Distrib� f[u℄(v)g. Sine Æ([fug℄(v)) = Æ(u) Æ(v)and Æ(f[u℄(v)g) = Æ(u) Æ(v), the property is veri�ed.� If t = [x! u℄(v) then t �!Fire� ffx=vgug. We haveÆ(t) = �x:Æ(u) Æ(v) �!� fx=Æ(v)gÆ(u)g = Æ(fx=vgu) = Æ(t0):The other ases are very similar to the �rst one and to their orrespondents fromthe �rst part. 2Example 3.4We onsider the three ombinators I = �x:x, K = �xy:x and S =�xyz:xz(yz) and their representation in the �-alulus:� I = x! x,� K = x! (y ! x),� S = x! (y ! (z ! [[x℄(z)℄([y℄(z)))).and, as expeted, to a redution SKK ��!� I in the �-alulus it orresponds the��-redution [[S℄(K)℄(K) ��!�� fIg.[[S℄(K)℄(K) = [[x! (y ! (z ! [[x℄(z)℄([y℄(z))))℄(x ! (y ! x))℄(x ! (y ! x)) �!��[fy ! (z ! [[x! (y ! x)℄(z)℄([y℄(z)))g℄(x ! (y ! x)) �!��f[y ! (z ! [[x! (y ! x)℄(z)℄([y℄(z)))℄(x ! (y ! x))g �!��f[y ! (z ! [fy ! zg℄([y℄(z)))℄(x! (y ! x))g �!��ff[y ! (z ! [y ! z℄([y℄(z)))℄(x! (y ! x))gg �!��ff[y ! (z ! fzg)℄(x! (y ! x))gg �!��fff[y ! (z ! z)℄(x! (y ! x))ggg �!��ffffz ! zgggg �!��fz ! zg = fIgThe need for adding a set symbol omes from the fat that in the �-alulus we aremainly interested in the appliation of terms to some other terms. From this point ofview, the appliation of a term t to another term u redues to the same thing as theappliation of the term ftg to the same term u.384

In the ��-alulus, we ould have introdued an evaluation rule eliminating all setsymbols. But as soon as failure, represented by the empty set, and non-determinism,represented by sets with more than one element, are introdued suh an evaluationrule will not be meaningful anymore.The onuene of the �-alulus holds for any omplete redution strategy (i.e. astrategy that does not leave any redex un-redued) and we would expet the sameresult for its �-representation. As we have already notied, sine in the ��-alulus allthe rewrite rules are left-linear and all the sets are singletons, the onuene onditionsthat will be presented in Setion 4.2 are always satis�ed. Therefore, the evaluationrule Fire� an be used on any ��-appliation without losing the onuene of the��-alulus.Proposition 3.5 The ��-alulus is onuent.Notie �nally that using the same tehnique, the �-alulus with patterns of [50℄an be enoded as a sub-alulus of the �-alulus.3.2 Enoding �nite rewrite sequenesAs far as it onerns term rewriting, we just reall the basi notions that are onsistentwith [16, 4℄ to whih the reader is referred for a more detailed presentation.A rewrite theory is a 4-tuple R = (X ;F ; E;R) where X is a given ountably in�niteset of variables, F a set of ranked funtion symbols, E a set of T (F ;X)-equalities,and R a set of rewrite rules of the form l ! r where l; r 2 T (F ;X) satisfyingVar(r) � Var(l).In what follows we onsider E = ; but we onjeture that all the results onerningthe enoding of rewriting in �-alulus an be smoothly extended to any equationaltheory E.Sine the rewrite rules are trivially �-terms, the representation of rewrite sequenesin the �-alulus is quite simple. We onsider a restrition of the �-alulus where theright-hand sides of rewrite rules are terms of T (F ;X). The rewrite rules are triviallytranslated in the �-alulus and the appliation of a rewrite rule at the top positionof a term is represented using the �-operator [℄().We want to show that for any derivation in a rewriting theory, a orrespondingredution an be found in the �-alulus. If we onsider that a sub-term w of a termt is redued to w0 by applying some rewrite rule (l! r) and thus,tdwep �!R tdw0epthen, we an build immediately the �-term td[l!r℄(w)ep with the redution:td[l!r℄(w)ep �!� tdfw0gep ��!� ftdw0epg:The above onstrution method for the �-term with a �-redution similar to thatof the term t aording to the rule l ! r is very easy but allows us to �nd the orre-spondene for only one rewrite step. It is not easy to extend this representation foran unspei�ed number of redution steps w.r.t. a set of rewrite rules and a systematimethod for the onstrution of the orresponding �-term is desirable.385

Proposition 3.6 Given a rewriting theory TR and two �rst order ground terms t; t0 2T (F) suh that t ��!R t0. Then, there exist the �-terms u1; : : : ; un built using therewrite rules in R and the intermediate steps in the derivation t ��!R t0 suh that wehave [un℄(: : : [u1℄(t) : : :) ��!�; ft0g.Proof. We use indution on the length of the derivation t ��!R t0.The base ase: t 0�!R t (derivation in 0 steps)We have immediately [x! x℄(t) 0�!�; ftg.Indution: t n�!R t0 (derivation in n steps)We onsider that the rewrite rule l ! r is applied at position p of the term t0dwepobtained after n� 1 redution steps,t n�1�!R t0dwep �!l!r;p t0d�repwhere � is the grafting suh that �l = w.By indution, there exist the �-terms u1; : : : ; un�1 suh that we have the redution[un�1℄(: : : [u1℄(t) : : :) ��!�; ft0dwepg. We onsider the �-term un = t0dl!rep and weobtain the redution[un℄(: : : [u1℄(t) : : :) ��!�; [t0dl!rep ℄(ft0dwepg) �!Bath f[t0dl!rep ℄(t0dwep)g��!Congruene fft0d[l!r℄(w)epgg �!Fire fft0df�0rgepgg ��!OpOnSet ffft0d�0repggg��!Flat ft0d�0repgwhere the substitution �0 is suh that f�0g = Solution(l�?; w).Sine � = �0 and in this ase substitution and grafting are idential, we obtaint0d�0rep = t0d�rep . 2Until now we have used the evaluation rule Cong for onstruting the redution[tndln!rnepn ℄(: : : [t2dl2!r2ep2 ℄([t1dl1!r1ep1 ℄(t)) : : :) ��!� ft0gthat orresponds, in the �-alulus, to the redution, in the rewrite theory,t = t1dw1ep1 �!l1!r1;p1 t2dw2ep2 �!l2!r2;p2 : : : �!ln!rn;pn tndwnepn = t0As explained in Setion 2.4, to any redution performed using the rule Cong or-responds a redution that is done using the rule Fire. Starting from the term uorresponding to a redution in n (Cong) steps we build the term u0 that redues tothe same term as u but using Fire redutions:[tndlnepn ! tndrnepn ℄(: : : ([t1dl1ep1 ! t1dr1ep1 ℄(t)) : : :) ��!� ft0gRemark 3.7 One an notie that the terms ui used in the proof above are similar tothe proof terms used in labeled rewriting logi [39℄. Indeed we an see the �-termsas a generalization of suh proof terms where the \;" is used as a notation for theomposition of terms, i.e. [u℄([v℄(t)) is denoted [v;u℄(t).4 The onuene of �-alulusIt is easy to see, and we provide typial examples just below, that the �-alulus is non-onuent. The main reason for the onuene failure omes from the introdution in386

the syntax of the new funtion symbols for denoting sets, abstration and appliation.It results in a onit between the use of syntati mathing and the set representationfor the redutions results. This leads, on one hand, to undesirable mathing failuresdue to terms that are not ompletely evaluated or not instantiated. On the otherhand, we an have sets with more than one element that an lead to undesirableresults in a non-linear ontext or empty sets that are not stritly propagated. In thissetion, we summarize the results of [8℄ to whih the reader is referred for full details.In partiular we show on typial examples the onuene problems and we give asuÆient ondition on the evaluation strategy of the �-alulus that allows to restoreonuene.4.1 The raw �-alulus is not onuentLet us begin to show typial examples of onuene failure. A �rst suh situationours when reduing a (sub-)term of the form u = [l ! r℄(t) by mathing l and tand when either t ontains a redex, or u is redex.In Example 4.1.a the non-onuene is obtained when a mathing failure resultsfrom a non-redued sub-term of t but sueeds when the sub-term is redued. Asimilar situation is obtained when the evaluation rule Fire gives the ; result due toa mathing failure but the appliation of another evaluation rule before the rule Fireleads to a non-empty set as in Example 4.1.b.Example 4.1a. [a! b℄([a! a℄(a))Fire(internal)
��

Fire(external)
&&NNNNNNNNNNNNN[a! b℄(fag)Bath

��

;f[a! b℄(a)gFire
��ffbgg

b. [a! a℄(fag)Bath
��

Fire
$$JJJ

JJJJ
JJJJf[a! a℄(a)gFire

��

;ffagg
In Example 4.2 one an notie that a term an be redued to an empty set beauseof a mathing failure implying its bound variables. The result an be di�erent fromthe empty set if the redutions of the sub-terms ontaining the respetive variablesare arried out only after the instantiation of these variables.Example 4.2 [x! [a! b℄(x)℄(a)Fire(external)

uulllllllllllll Fire(internal)
((QQQQQQQQQQQQQf[a! b℄(a)gFire

��

[x! ;℄(a)SwithR
��ffbgg ;387

In order to avoid this kind of situation we should prevent the redution of anappliation [l ! r℄(t) if the mathing between the terms l and t fails due to themathing rules V ariableClash (Example 4.2) or SymbolClash (Example 4.1.a, 4.1.b)and either some variables are not instantiated or some of the terms are not redued,or the term t is a set.The mathing rules V ariableClash and SymbolClash would be never applied if theset of funtional positions of the term l was a subset of the set of funtional positionsof the term t. This is not the ase in Example 4.2 where, in the term [a! b℄(x), a is afuntional position and the orresponding position in the argument of the rewrite ruleappliation is the variable position x. In Example 4.1.a and Example 4.1.b a funtionalposition in the left-hand side of the rewrite rule orresponds to an abstration andset position respetively and thus, the ondition is not satis�ed.Therefore, we ould onsider that the evaluation rule Fire is applied only when theondition on the funtional positions is satis�ed. Unfortunately, suh a ondition willnot suÆe for avoiding a non-appropriate mathing failure due to the appliation ofthe rule MergingClash. As shown in Example 4.3, suh a situation an be obtainedif the left-hand side of the rewrite rule to be applied is not linear.Example 4.3 [g(x; x)! x℄(g(a; [a! a℄(a)))Fire(internal)
sshhhhhhhhhhhhhhhhhhh Fire(external)

((RRRRRRRRRRRRRRRR[g(x; x)! x℄(g(a; fag))OpOnSet&Bath
��

Fire(external)
++VVVVVVVVVVVVVVVVVVVVVVVV

;f[g(x; x)! x℄(g(a; a))gFire
��

;ffaggAnother pathologial ase arises when the term t ontains an empty set or a sub-term that an be redued to the empty set. Indeed, the appliation of the rule Firean lead to the non-propagation of the failure and thus, to non-onuene as in thenext example:Example 4.4 [x! b℄(;)Fire
zzuu

uu
uu

uu
uu Bath

##HH
HHH

HH
HHHfbg ;We mention that a rewrite rule is quasi-regular if the set of variables of the left-handside is inluded in the set of variables of the right-hand side. In Setion 4.2 we givea formal de�nition for the notion of quasi-regular rewrite rule that takes into onsid-eration all the operators of the �-alulus. We have already seen in Example 4.4 thatthe non-propagation of the failure is obtained when non-quasi-regular rewrite rulesare applied to a term ontaining ;. When a quasi-regular rewrite rule is applied to aterm ontaining ;, the empty set is present in the term resulting from the appliation388

of a substitution of the form fx=;g to the right-hand side of the rewrite rule (unlikein Example 4.4) and thus, the appropriate propagation of the ; is guaranteed.Another nasty situation, well known, in partiular in graph rewriting, is obtaineddue to unontrolled opies of terms. When applying a non-right-linear rewrite rule toa term that ontains sets with more than one element, or terms that an be reduedto suh sets, we obtain undesirable results as in Example 4.5.Example 4.5[x! g(x; x)℄(fa; bg)Fire
��

Bath
,,XXXXXXXXXXXXXXXXXXXXXXXfg(fa; bg; fa; bg)gOpOnSet

��

f[x! g(x; x)℄(a); [x ! g(x; x)℄(b)gFire
��ffg(a; fa; bg); g(b; fa; bg)ggOpOnSet

��

ffg(a; a)g; fg(b; b)ggFlat
��fffg(a; a); g(a; b)g; fg(b; a); g(b; b)gggFlat

��

fg(a; a); g(b; b)gfg(a; a); g(a; b); g(b; a); g(b; b)gTo sum-up, the non-onuene is due to the appliation of the evaluation rule Firetoo early in a derivation and the typial situations that we want to avoid onsist inusing the rule Fire for reduing an appliation:� ontaining non-instantiated variables,� ontaining non-redued terms,� ontaining a non-left-linear rewrite rule,� of a non-right-linear rewrite rule to a term ontaining sets with more than oneelement,� of a non-quasi-regular rewrite rule to a term ontaining empty sets.We an notie that if we assume the omputation rules (see Setion 2.4) to beapplied eagerly, then some, but unfortunately not all of the above onuene problemsvanish. In partiular, non-onuene examples involving sets, as Example 4.4 andExample 4.5, are overome by an eager appliation of the omputation rules.4.2 Enforing onuene using strategiesAs we have just seen in the previous setion, the possibility of having empty setsor sets with more than one element leads immediately to non-onuent redutionsimplying the evaluation rules Fire and Congruene. But the onuene ould berestored under an appropriate evaluation strategy and, in partiular, this strategyshould guarantee a strit failure propagation and an appropriate handling of the setswith more than one element. 389

A �rst possible approah onsists in reduing a �-term by initially applying all therules handling the sets (Distrib, Bath, SwithL, SwithR, OpOnSet, F lat), i.e. theomputation rules, and only when none of these rules an be applied, apply one ofthe rules Fire, Cong, CongFail, i.e. the dedution rules, to the terms ontaining nosets.But an appliation an be redued, by using the rule Fire, to an empty set or toa set ontaining several elements and thus, this strategy an still lead, as previously,to non-onuent redutions. Another disadvantage of this approah is that for norestrition of the �-alulus the proposed strategy is redued to the trivial strategyALL.Sine the sets (empty or having more than one element) are the main ause of thenon-onuene of the alulus, a natural strategy onsists in reduing the appliationof a rewrite rule by respeting the following steps: instantiate and redue the argumentof the appliation, push out the resulting set braes by distributing them in the termsand only when none of the previous redutions is possible, use the evaluation ruleFire. We an easily express this strategy by imposing a simple ondition for theappliation of the evaluation rule Fire.De�nition 4.6We all ConfStratStrit the strategy whih onsists in applying theevaluation rule Fire to a redex [l ! r℄(t) only if the term t is a �rst order groundterm.Proposition 4.7When using the evaluation strategy ConfStratStrit, the �-alulusis onuent.Proof. We onsider the parallelization of the relation indued by the evaluation rulesFire and Congruene on one hand and the relation indued by the other rules of thealulus on the other hand. We show the onuene of the two relations and thenuse Yokouhi's Lemma [60℄ to prove the strong onuene of the relation obtained byombining the former relations. This latter relation is the transitive losure of therelation indued by the evaluation rules Fire and Congruene, and the evaluationrules handling sets.The Yokouhi Lemma an be easily proved due to the strit onditions on the appli-ation of the rule Fire and thus to the absene of interation between the evaluationrules of the alulus. 2The strategyConfStratStrit is quite restritive and we would like to de�ne a generalstrategy that beomes trivial (i.e. imposes no restrition) when restrited to somesimpler aluli, as the �-alulus.A onuent strategy emerges from the above ounterexamples and allows the appli-ation of the evaluation rule Fire only if a possible failure in the mathing is preservedby the subsequent �-redutions and if the argument of the appliation annot be re-dued to an empty set or to a set having more than one element. Suh a generistrategy onsists in applying the evaluation rule Fire to a redex [l! r℄(t) only if:� t 2 T (F) is a �rst order ground termor� the term t is suh that if the mathing l �?; t fails then, for all term t0 obtainedby instantiating or reduing t, the mathing l�?; t0 fails, and390

� the term t annot be redued to an empty set or to a set having more than oneelement.If we onsider an instane of the �-alulus suh that all the sets are singletonsand all the appliations are of the form [x! u℄(v) then, all the above onditions arealways satis�ed. Hene, we an say that in this ase the previous strategy is equivalentto the strategy ALL, i.e. it imposes no restrition on the redutions. One an notiethat the ��-terms satisfy the previous onditions and thus, suh a strategy imposesno restritions on the redutions of this instane of the �-alulus.The onditions imposed for the generi strategy when the term t is not a �rst orderground term are learly not appropriate for an implementation of the �-alulus andthus, we must de�ne operational strategies guaranteeing the onuene of the alulus.These strategies will impose some deidable onditions that orrespond to (and imply)the ones proposed above.We introdue in what follows a more operational and more restritive strategyde�nition guaranteeing the mathing \oherene" by imposing strutural onditionson the terms l and t involved in a mathing problem l �?; t. In order to ensurethe mathing failure preservation by the �-redutions, the failure must be generatedonly by di�erent �rst order symbols in the orresponding positions of the two termsl and t. This property is always veri�ed if the two terms are �rst order terms butan additional ondition must be imposed if the term t ontains �-alulus spei�operators, as the abstration or the appliation.De�nition 4.8 A �-term l weakly subsumes a �-term t if8p 2 FPos(l) \ Pos(t)) t(p) 2 FThus, a �-term l weakly subsumes a �-term t if for any funtional position of theterm l, either this position is not a position of the term t, or it is a funtional positionof the term t.Remark 4.9 If l 2 T (F ;X) weakly subsumes t then, for any non-funtional position(i.e. the position of a variable, an appliation, an abstration or a set) in t, theorresponding position in l, if it exists, is a variable position. Thus, if the top positionof t is not a funtional position, then l is a variable.One an notie that if a �rst order term l subsumes t, then l weakly subsumes t.Example 4.10 The term h(a; y;) weakly subsumes the term g(b; [x ! x℄()) andthe term f(a) weakly subsumes the term g(b; [x ! x℄()). The term g(a; y) weaklysubsumes the term g(b; [x ! x℄()) while the term f(a) does not weakly subsumesf([x! x℄()).De�nition 4.11We all ConfStrat the strategy whih onsists in applying the eval-uation rule Fire to a redex [l ! r℄(t) only if:� t 2 T (F) is a �rst order ground termor� the term l 2 T (F ;X) is linear and l weakly subsumes t, and� the term t ontains no set with more than one element and no empty set, and391

� for all sub-term [u! w℄(v) of t, u subsumes v, and� the term t ontains no sub-term of the form [u℄(v) where u is not an abstration.One should notie that the onditions imposed by the strategy ConfStrat are de-idable even if the term t is not a �rst order ground term. One an learly deideif a term is of the form [u℄(v) or [u ! w℄(v) as well as the number of elements ofa �nite set. The ondition that l weakly subsumes t is simply a ondition on thesymbols on the same positions of the two terms and sine mathing is syntati, thenthe subsumption ondition is also deidable. Consequently, all the onditions used inthe strategy ConfStrat are deidable.The ondition forbidding sub-terms of t of the form [u℄(v) if u is not a rewriterule is imposed in order to prevent the appliation of the evaluation rule CongFailleading to an empty set result. If one onsiders a version of the �-alulus withoutthe evaluation rules Congruene then, this last ondition is no longer neessary inthe strategy ConfStrat. Hene, all the terms of the representation of the �-alulusin the �-alulus trivially satisfy the above onditions and in this ase the strategyConfStrat is equivalent to the strategy ALL.Proposition 4.12When using the evaluation strategy ConfStrat, the �-alulus isonuent.Proof. Starting from the evaluation rule Fire expressed as a onditional rule guardedby the onditions de�ned in the strategy ConfStrat we de�ne the relation FireCongindued by this latter rule and the Congruene rules. The other evaluation rules ofthe alulus indue a seond relation alled Set.We denote by �!F and �!S respetively, the ompatible (ontext) losures ofthese two relations, and by ��!S the reexive and transitive losure of �!S .We prove the onuene of the relation ��!S�!F ��!S and we use an approahsimilar to the one followed in [6℄ for proving the onuene of �*.Thus, we have to prove the strong onuene of the relation �!F , the onu-ene and termination of �!S and the ompatibility between the two relations (i.e.Yokouhi's Lemma.Using a polynomial interpretation we show that �!S terminates and by analyz-ing the indued ritial pairs we obtain the loal onuene and onsequently, theonuene of this relation.The relation �!F is not strongly onuent but we de�ne the parallel version ofthis relation in the style of Tait & Martin-L�of. We denote this relation by �!Fk andwe show that is strongly onuent.The Yokouhi Lemma is proved using the onditions imposed on the appliation ofthe rule Fire. We obtain thus the strong onuene of the relation ��!S�!Fk ��!Sand sine this latter relation is the transitive losure of the relation ��!S�!F ��!Swe dedue the onuene of the alulus.The proof is presented in full detail in [8℄. 2The relatively restritive onditions imposed in strategy ConfStrat an be relaxedat the prie of the simpliity of the strategy. The onditions that we want to weakenonern on one hand, the number of elements of the sets and on the other hand, theform of the rewrite rules.First, the absene of sets having more than one element is neessary in order toguarantee a good behavior for the non-right-linear rewrite rules. The right-linearity392

of a rewrite rule is de�ned as the linearity of the right-hand side w.r.t. the variablesof the left-hand side. For example, x ! g(x; y) is right-linear, but x ! g(x; x) isnot right-linear. Moreover, the right-linearity an be imposed only to the operatorsdi�erent from the set symbols (f g) and thus, the rewrite rule x! ff(x); f(x)g an beonsidered right-linear. Intuitively, we do not need to impose right-linearity for setssine, due to the evaluation rule F lat, they do not lead to non-onvergent redutionsas in Example 4.5.De�nition 4.13 The rewrite rule l ! r is hereditary right-linear if any sub-term ofr that is not a set is linear w.r.t. the free variables of l and any rewrite rule of r ishereditary right-linear.The appliation of a rewrite rule whih is not hereditary right-linear to a set withmore than one element an lead to non-onvergent redutions, as shown in Exam-ple 4.5, but this is not the ase if the applied rewrite rule is hereditary right-linear:Example 4.14[x! fx; f(x)g℄(fa; bg)Fire
��

Bath
++WWWWWWWWWWWWWWWWWWWWWffa; bg; f(fa; bg)gOpOnSet

��

f[x! fx; f(x)g℄(a); [x! fx; f(x)g℄(b)gFire
��ffa; bg; ff(a); f(b)gg Flat

++WWWWWWWWWWWWWWWWWWWWW
fffa; f(a)gg; ffb; f(b)gggFlat

��fa; b; f(a); f(b)gOn another hand, in order to guarantee the strit propagation of the failure, weimpose that the evaluation rule Fire is applied only if the argument of the appliationis not an empty set and it annot lead to an empty set. In Example 4.4 we an notiethat the free variables of the left-hand side of the rewrite rule are not preserved inthe right-hand side of the rule. If the rewrite rule l ! r of the appliation preservesthe variables of the left-hand side in the right-hand side (e.g. x! x), the appliationof a substitution replaing one of these variables with an empty set (e.g. fx=;g) to rleads to a term ontaining ; and thus, whih is possibly redued to ;.We de�ne thereafter more formally the rewrite rules preserving the variables andwe present a new strategy de�ned using this property. First, we introdue a oneptsimilar to that of free variable but, by onsidering this time the not-deterministinature of the sets.De�nition 4.15 The set of present variables of a �-term t is denoted by PV (t) andis de�ned by:1. if t = x then PV (t) = fxg,2. if t = fu1; : : : ; ung then PV (t) = Ti=1:::n PV (ui), (PV (;) = X),3. if t = f(u1; : : : ; un) then PV (t) = Si=1:::n PV (ui), (PV () = ; if 2 T (F)),4. if t = [u℄(v) then PV (t) = PV (u) [PV (v),393

5. if t = u! v then PV (t) = PV (v) n FV (u).The set of free variables of a set of �-terms is the union of the sets of free variablesof eah �-term while the set of present variables of a set of �-terms is the intersetionof the sets of free variables of eah �-term. We an say that a variable is present in aset only if it is present in all the elements of the set. For example, PV (fx; y; xg) = ;and PV (fx; g(x; y)g) = fxg.De�nition 4.16We say that the �-rewrite rule l ! r is quasi-regular if FV (l) �PV (r) and any rewrite rule of r is quasi-regular.Intuitively, to eah free variable of the left-hand side of a quasi-regular rewrite ruleorresponds, in a deterministi way, a free variable in the right-hand side of the rule.For any set �-term in the right-hand side, the orrespondene with the free variablesof the left-hand side should be veri�ed for eah element of the set.Example 4.17 The rewrite rule x ! g(x; y) is quasi-regular while the rewrite rulex! fx; yg is non-quasi-regular.The rewrite rule ff(x); g(x; x)g ! x is quasi-regular while ff(x); g(x; y)g ! x isnon-quasi-regular. If the de�nition of quasi-regular rewrite rules had asked for theondition PV (l) � PV (t) instead, then the seond rewrite rule would have beomequasi-regular as well. This is not desirable sine the rewrite rule ff(x); g(x; y)g ! xredues to ff(x)! x; g(x; y)! xg and only the �rst one is quasi-regular.In the partiular ase of the �-alulus, sine the left-hand side of a rewrite rulel! r must be a �rst-order term (i.e. l 2 T (F ;X)), we have FV (l) = PV (l) = Var(l)and thus the ondition from De�nition 4.16 an be hanged to Var(l) � PV (t).Let us onsider the appliation a quasi-regular rewrite rule l! r to a term t givingas result the term f�rg, where � is the mathing substitution between l and t. If ;is a sub-term of t and if l weakly subsumes r, then ; is in �. Sine the rewrite rule isquasi-regular, we have Dom(�) � PV (r) and thus, we are sure that ; is a sub-termof �r. Furthermore, if ; instantiated a variable of a set in �r then it is present inall the elements of the set and thus, we avoid non-onuent results as the ones inExample 4.4.Example 4.18 A quasi-regular rule applied to ; gives only one result:[x! fx; g(x; a)g℄(;)SwithL
tthhhhhhhhhhhhhhhhhh Bath

��

Fire
((RRRRRRRRRRRRR[fx! x; x! g(x; a)g℄(;)Distrib

��

f;; g(;; a)gOpOnSet
��f[x! x℄(;); [x! g(x; a)℄(;)g Fire&OpOnSet&Flat // ; f;; ;gFlatoowhile a non-quasi-regular one yields two di�erent results as shown in Example 4.4.One should notie that if a rewrite rule l ! r is redued by the evaluation ruleSwith R to a set of rewrite rules, eah of these rules is quasi-regular and thus thestrit propagation of the empty set is ensured on all the right-hand sides of theobtained rewrite rules. 394

De�nition 4.19We all ConfStratLin the strategy whih onsists in applying theevaluation rule Fire to a redex [l ! r℄(t) only if t 2 T (F) is a �rst order ground termor :� the term l 2 T (F ;X) is linear and l weakly subsumes t,and� either{ l! r is quasi-regularor{ the term t ontains no empty set, and{ for all sub-term [u! w℄(v) of t, u subsumes v, and{ the term t ontains no sub-term of the form [u℄(v) where u is not an abstration.and� either{ l! r is hereditary right-linearor{ the term t ontains no set with more than one element.Compared to the strategy ConfStrat we added the possibility to test either thequasi-regular ondition on the rewrite rule l! r or the onditions on the reduibilityof the term t to an empty set. Moreover, if the rewrite rule is hereditary right-linearwe allow arguments ontaining sets having more than one element. Sine one anlearly deide if a rule is quasi-regular or hereditary right-linear, all the onditionsused in the strategy ConfStratLin are deidable.Proposition 4.20When using the evaluation strategy ConfStratLin, the �-alulusis onuent.Proof. The same approah as for the strategy ConfStrat is used but some additionaldiagrams orresponding to the redutions that where not possible before are onsid-ered. These new ases are mainly introdued in the proof of Yokouhis's Lemma. Theproof is detailled in [8℄. 2When using a alulus integrating redution modulo an equational theory (e.g.assoiativity and ommutativity), as explained in Setion 2.4, the overall onueneproof is di�erent but uses lemmas similar to the ones of the former ase. Therefore,we onjeture that Proposition 4.12 and Proposition 4.20 an be extended to a �E-alulus modulo a spei� deidable and �nitary equational mathing theory E.5 ConlusionWe have presented the �T -alulus together with some of its variants obtained asinstanes of the general framework. By making expliit the notion of rule, rule appli-ation and appliation result, the �T -alulus allows us to desribe in a simple yet verypowerful and uniform manner algebrai and higher-order apabilities. This providestherefore a simple and natural framework for their ombination.In the �T -alulus the non-determinism is handled by using sets of results and therule appliation failure is represented by the empty set. Handling sets is a deliateproblem and we have seen that the raw �-alulus, where the evaluation rules are395

not guided by a strategy, is not onuent. When an appropriate but rather naturalgeneralized all-by-value evaluation strategy is used, the alulus is onuent.The �-alulus is both oneptually simple as well as quite expressive. This allowsus to represent the terms and redutions from �-alulus and rewriting. We onjeturethat, following the lines of [55℄, it is also simple to enode other aluli of interest likethe �-alulus.Part II, is devoted to the use of an extension of the alulus powerful enough toenode rewriting strategies, onditional rewriting and to give a semantis to the ELANlanguage. We refer to the onlusion of Part II for a presentation of the ongoing andfuture works on the �-alulus.AknowledgmentsWe would like to thank H�el�ene Kirhner, Pierre-Etienne Moreau and ChristopheRingeissen from the Protheo Team for the useful interations we had on the top-is of this paper, Vinent van Oostrom for suggestions and pointers to the literature,Roberto Bruni and David Wolfram for their detailed and very useful omments ona preliminary version of this work and Delia Kesner for fruitful disussions. We aregrateful to Luigi Liquori for many omments and exiting disussions on the �-alulusand its appliations. Many thanks also to Th�er�ese Hardin and Nahum Dershowitzfor their interest, enouragements and helpful suggestions for improvement. Finallyspeial thanks are due to the referees for the very omplete and areful reading of thepaper as well as onstrutive and useful remarks.Referenes[1℄ M. Adi and C. Kirhner. Assoiative ommutative mathing based on the syntatiity of theAC theory. In F. Baader, J. Siekmann, and W. Snyder, editors, Proeedings 6th InternationalWorkshop on Uni�ation, Dagstuhl (Germany). Dagstuhl seminar, 1992.[2℄ H. P. Barendregt. The Lambda-Calulus, its syntax and semantis. Studies in Logi and theFoundation of Mathematis. Elsevier Siene Publishers B. V. (North-Holland), Amsterdam,1984. Seond edition.[3℄ P. Borovansk�y, C. Kirhner, H. Kirhner, and C. Ringeissen. Rewriting with strategies in ELAN:a funtional semantis. International Journal of Foundations of Computer Siene, 2001.[4℄ F. Baader and T. Nipkow. Term Rewriting and all That . Cambridge University Press, 1998.[5℄ V. Breazu-Tannen. Combining algebra and higher-order types. In Proeedings 3rd IEEE Sym-posium on Logi in Computer Siene, Edinburgh (UK), pages 82{90, 1988.[6℄ P.-L. Curien, T. Hardin, and J.-J. L�evy. Conuene properties of weak and strong aluli ofexpliit substitutions. Journal of the ACM, 43(2):362{397, 1996.[7℄ A. Churh. A formulation of the simple theory of types. Journal of Symboli Logi, 5:56{68,1940.[8℄ H. Cirstea. Calul de r�e�eriture : fondements et appliations. Th�ese de Dotorat d'Universit�e,Universit�e Henri Poinar�e - Nany I, 2000.[9℄ H. Cirstea and C. Kirhner. Combining higher-order and �rst-order omputation using �-alulus: Towards a semantis of ELAN. In D. Gabbay and M. de Rijke, editors, Frontiersof Combining Systems 2, Researh Studies, ISBN 0863802524, pages 95{120. Wiley, 1999.[10℄ L. Colson. Une struture de donn�ees pour le �-alul typ�e. Private Communiation, 1988.[11℄ D. Dill, A. Drexler, A. Hu, and C. Yang. Protool veri�ation as a hardware design aid. In IEEEInternational Conferene on Computer Design: VLSI in Computers and Proessors, pages 522{525. IEEE omputer soiety, 1992. 396

[12℄ N. Dershowitz. Computing with rewrite systems. Information and Control, 65(2/3):122{157,1985.[13℄ G. Dowek, T. Hardin, and C. Kirhner. Higher-order uni�ation via expliit substitutions,extended abstrat. In D. Kozen, editor, Proeedings of LICS'95, pages 366{374, San Diego,June 1995.[14℄ G. Dowek, T. Hardin, and C. Kirhner. Theorem proving modulo. Rapport de Reherhe3400, Institut National de Reherhe en Informatique et en Automatique, April 1998.ftp://ftp.inria.fr/INRIA/publiation/RR/RR-3400.ps.gz.[15℄ G. Dowek, T. Hardin, C. Kirhner, and F. Pfenning. Uni�ation via expliit substitutions: Thease of higher-order patterns. In M. Maher, editor, Proeedings of JICSLP'96, Bonn (Germany),September 1996. The MIT press.[16℄ N. Dershowitz and J.-P. Jouannaud. Rewrite Systems. In J. van Leeuwen, editor, Handbookof Theoretial Computer Siene, hapter 6, pages 244{320. Elsevier Siene Publishers B. V.(North-Holland), 1990.[17℄ G. Dowek. Third order mathing is deidable. Annals of Pure and Applied Logi, 69:135{155,1994.[18℄ S. Eker. Assoiative-ommutative mathing via bipartite graph mathing. Computer Journal,38(5):381{399, 1995.[19℄ S. Eker. Fast mathing in ombinations of regular equational theories. In J. Meseguer, editor,Proeedings of the �rst international workshop on rewriting logi, volume 4, Asilomar (Califor-nia), September 1996. Eletroni Notes in Theoretial Computer Siene.[20℄ F. Fages and G. Huet. Uni�ation and mathing in equational theories. In Proeedings FifthColloquium on Automata, Algebra and Programming, L'Aquila (Italy), volume 159 of LetureNotes in Computer Siene, pages 205{220. Springer-Verlag, 1983.[21℄ J. Gallier and V. Breazu-Tannen. Polymorphi rewriting onserves algebrai strong normaliza-tion and onuene. In 16th Colloquium Automata, Languages and Programming, volume 372of Leture Notes in Computer Siene, pages 137{150. Springer-Verlag, 1989.[22℄ J. A. Goguen, C. Kirhner, H. Kirhner, A. M�egrelis, J. Meseguer, and T. Winkler. An intro-dution to OBJ-3. In J.-P. Jouannaud and S. Kaplan, editors, Proeedings 1st InternationalWorkshop on Conditional Term Rewriting Systems, Orsay (Frane), volume 308 of LetureNotes in Computer Siene, pages 258{263. Springer-Verlag, July 1987. Also as internal reportCRIN: 88-R-001.[23℄ J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types, volume 7 of Cambridge Trats inTheoretial Computer Siene. Cambridge University Press, 1989.[24℄ G. Huet and B. Lang. Proving and applying program transformations expressed with seond-order patterns. Ata Informatia, 11:31{55, 1978.[25℄ J. R. Hindley and J. P. Seldin. Introdution to Combinators and Lambda-alulus. CambridgeUniversity, 1986.[26℄ G. Huet. A mehanization of type theory. In Proeeding of the third international joint onfer-ene on arti�ial intelligene, pages 139{146, 1973.[27℄ G. Huet. R�esolution d'equations dans les langages d'ordre 1,2, ...,!. Th�ese de Dotorat d'Etat,Universit�e de Paris 7 (Frane), 1976.[28℄ J.-P. Jouannaud and H. Kirhner. Completion of a set of rules modulo a set of equations. SIAMJournal of Computing, 15(4):1155{1194, 1986. Preliminary version in Proeedings 11th ACMSymposium on Priniples of Programming Languages, Salt Lake City (USA), 1984.[29℄ J.-P. Jouannaud and C. Kirhner. Solving equations in abstrat algebras: a rule-based surveyof uni�ation. In J.-L. Lassez and G. Plotkin, editors, Computational Logi. Essays in honor ofAlan Robinson, hapter 8, pages 257{321. The MIT press, Cambridge (MA, USA), 1991.[30℄ J.-P. Jouannaud and M. Okada. Abstrat data type systems. Theoretial Computer Siene,173(2):349{391, 28 February 1997.[31℄ G. Kahn. Natural semantis. Tehnial Report 601, INRIA Sophia-Antipolis, February 1987.[32℄ D. Kesner. La d�e�nition de fontions par as �a l'aide de motifs dans des langages appliatifs.PhD thesis, Universit�e de Paris XI, Deember 1993.[33℄ C. Kirhner and H. Kirhner. Rewriting, solving, proving. A preliminary version of a bookavailable at www.loria.fr/~kirhne/rsp.ps.gz, 1999.397

[34℄ C. Kirhner, H. Kirhner, and M. Rusinowith. Dedution with symboli onstraints. Revued'Intelligene Arti�ielle, 4(3):9{52, 1990. Speial issue on Automati Dedution.[35℄ C. Kirhner, H. Kirhner, and M. Vittek. Designing onstraint logi programming languagesusing omputational systems. In P. Van Hentenryk and V. Saraswat, editors, Priniples andPratie of Constraint Programming. The Newport Papers., hapter 8, pages 131{158. The MITpress, 1995.[36℄ J. W. Klop. Term Rewriting Systems. In S. Abramsky, D. Gabbay, and T. Maibaum, editors,Handbook of Logi in Computer Siene, volume 1, hapter 6. Oxford University Press, 1990.[37℄ C. Kirhner and C. Ringeissen. Rule-Based Constraint Programming. Fundamenta Informatiae,34(3):225{262, September 1998.[38℄ J. Klop, V. van Oostrom, and F. van Raamsdonk. Combinatory redution systems: introdutionand survey. Theoretial Computer Siene, 121:279{308, 1993.[39℄ J. Meseguer. Conditional rewriting logi as a uni�ed model of onurreny. Theoretial ComputerSiene, 96(1):73{155, 1992.[40℄ R. Milner. A proposal for standard ML. In Proeedings ACM Conferene on LISP and Fun-tional Programming, 1984.[41℄ D. Miller. A logi programming language with lambda-abstration, funtion variables, and simpleuni�ation. In P. Shroeder-Heister, editor, Extensions of Logi Programming: InternationalWorkshop, T�ubingen, Germany, Deember 1989, volume 475 of Leture Notes in ComputerSiene, pages 253{281. Springer-Verlag, 1991.[42℄ MuPAD Group, Benno Fuhssteiner et al. MuPAD User's Manual - MuPAD Version 1.2.2.John Wiley and sons, Chihester, New York, �rst edition, marh 1996. inludes a CD for AppleMaintosh and UNIX.[43℄ T. Nipkow. Combining mathing algorithms: The regular ase. In N. Dershowitz, editor, Pro-eedings 3rd Conferene on Rewriting Tehniques and Appliations, Chapel Hill (N.C., USA),volume 355 of Leture Notes in Computer Siene, pages 343{358. Springer-Verlag, April 1989.[44℄ T. Nipkow and C. Prehofer. Higher-order rewriting and equational reasoning. In W. Bibel andP. Shmitt, editors, Automated Dedution | A Basis for Appliations. Volume I: Foundations.Kluwer, 1998.[45℄ M. J. O'Donnell. Computing in Systems Desribed by Equations, volume 58 of Leture Notes inComputer Siene. Springer-Verlag, 1977.[46℄ M. Okada. Strong normalizability for the ombined system of the typed � alulus and anarbitrary onvergent term rewrite system. In G. H. Gonnet, editor, Proeedings of the ACM-SIGSAM 1989 International Symposium on Symboli and Algebrai Computation: ISSAC '89/ July 17{19, 1989, Portland, Oregon, pages 357{363, New York, NY 10036, USA, 1989. ACMPress.[47℄ V. Padovani. Filtrage d'ordre sup�erieur. Th�ese de Dotorat d'Universit�e, Universit�e Paris VII,1996.[48℄ V. Padovani. Deidability of fourth-order mathing. Mathematial Strutures in ComputerSiene, 3(10):361{372, June 2000.[49℄ B. Pagano. X.R.S : Expliit Redution Systems - A First-Order Calulus for Higher-OrderCaluli. In C. Kirhner and H. Kirhner, editors, 15th International Conferene on AutomatedDedution, LNAI 1421, pages 72{87, Lindau, Germany, July 5{July 10, 1998. Springer-Verlag.[50℄ S. Peyton-Jones. The implementation of funtional programming languages. Prentie Hall, In.,1987.[51℄ Protheo Team. The ELAN home page. WWW Page, 2001. http://elan.loria.fr.[52℄ C. Ringeissen. Combining Deision Algorithms for Mathing in the Union of Disjoint EquationalTheories. Information and Computation, 126(2):144{160, May 1996.[53℄ A. van Deursen. An Overview of ASF+SDF. In Language Prototyping, pages 1{31. WorldSienti�, 1996. ISBN 981-02-2732-9.[54℄ M. van den Brand, A. van Deursen, P. Klint, S. Klusener, and E. A. van der Meulen. Industrialappliations of ASF+SDF. In M. Wirsing and M. Nivat, editors, AMAST '96, volume 1101 ofLeture Notes in Computer Siene, pages 9{18. Springer-Verlag, 1996.[55℄ P. Viry. Input/Output for ELAN. In J. Meseguer, editor, Proeedings of the �rst interna-tional workshop on rewriting logi, volume 4 of Eletroni Notes in TCS, Asilomar (California),September 1996. 398

[56℄ M. Vittek. ELAN: Un adre logique pour le prototypage de langages de programmation aveontraintes. Th�ese de Dotorat d'Universit�e, Universit�e Henri Poinar�e { Nany 1, Otober1994.[57℄ V. van Oostrom. Lambda alulus with patterns. Tehnial report, Vrije Universiteit, Amster-dam, November 1990.[58℄ D. A. Wolfram. The Clausal Theory of Types, volume 21 of Cambridge Trats in TheoretialComputer Siene. Cambridge University Press, 1993.[59℄ S. Wolfram. The Mathematia Book, hapter Patterns, Transformation Rules and De�nitions.Cambridge University Press, 1999. ISBN 0-521-64314-7.[60℄ H. Yokouhi and T. Hikita. A rewriting system for ategorial ombinators with multiple argu-ments. SIAM Journal of Computing, 19(1), February 1990.Reeived Otober 1, 2000. Revised: January 26, 2001, February 9, 2001

399

400

The rewriting alulus | Part IIHORATIU CIRSTEA, LORIA and INRIA, Campus Sienti�que,BP 239, 54506 Vandoeuvre-l�es-Nany, Frane,E-mail: Horatiu.Cirstea�loria.fr.CLAUDE KIRCHNER, LORIA and INRIA, Campus Sienti�que,BP 239, 54506 Vandoeuvre-l�es-Nany, Frane,E-mail: Claude.Kirhner�loria.fr.AbstratThe �-alulus integrates in a uniform and simple setting �rst-order rewriting, �-alulus and non-deterministi omputations. Its abstration mehanism is based on the rewrite rule formation andits main evaluation rule is based on mathing modulo a theory T .We have seen in the �rst part of this work the motivations, de�nitions and basi properties of the�-alulus. This seond part is �rst devoted to the use of an extension of the �-alulus for enodinga (onditional) rewrite relation. This extension is based on the �rst operator whose purpose is todetet rule appliation failure. It allows us to express reursively rule appliation and therefore toenode strategy based rewriting proesses. We then use this extended alulus to give an operationalsemantis to ELAN programs.We onlude with an overview of ongoing and future works on �-alulus.Keywords: rewriting, strategy, non-determinism, mathing, rewriting-alulus, lambda-alulus, rulebased language.1 IntrodutionThis is the seond part of the rewriting alulus desription, study and appliations.In all the paper, we refer to the �rst part of this work as Part I.As we have seen in Part I, we an enode in �-alulus the representation of a�nite derivation. But we need more sine we want to be able the represent also inthe alulus the generi searh for normalization derivations, when they exist. Moregenerally, we want to have a formal representation of rewriting strategies like the onesused in ELAN [25℄.To this end we extend the alulus with a �rst operator whose purpose is to detetrule appliation failure. This extension allows us to express reursively rule applia-tion and therefore to enode strategy based rewriting proesses.We then extend the �-enoding of onditional rewriting to more ompliated ruleslike the onditional rewrite rules with loal assignments from the ELAN language. Thenon-determinism that in ELAN is handled mainly by two basi strategy operators isrepresented in the �-alulus by means of sets. We show �nally how the �-alulusprovides a semantis to ELAN programs.This paper is strutured as follows. In Setion 2 we extend the basi �-aluluswith a new operator and de�ne term traversal and �xed-point operators using theexisting �-operators. 401L. J. of the IGPL, Vol. 9 No. 3, pp. 401{434 2001 Oxford University Press

The enoding of non-onditional and onditional term rewriting by using the �-operators de�ned in Setion 2 is presented in Setion 3. The alulus is �nally usedin Setion 4 in order to give an operational semantis to the rules used in the ELANlanguage.We onlude by providing some of the researh diretions that are of main interestin the development of this formalism and in the ontext of ELAN, and more generallyof rewrite based languages as ASF+SDF [20℄, ML [23℄, Maude [7℄, Stratego [28℄ orCafeOBJ [17℄.2 Reursion and term traversal operatorsIn Part I we have shown that for any redution in a rewrite theory there exists aorresponding redution in the �-alulus: if the term u redues to the term v in arewrite theory R we an build a �-term �R(u) that redues to the term fvg. Themethod used for onstruting the term �R(u) depends on all the redution steps fromu to v in the theory R: �R(u) is a representation in the �-alulus of the derivationtrae. We want to go further on and to give a method for onstruting a term �R(u)without knowing a priori the derivation from u to v. Hene we want to answer to thefollowing question:Given a rewrite theory R does there exist a �-term �R suh that for any term u, if uredues to the term v in the rewrite theory R then [�R℄(u) �-redues to a set ontain-ing the term v?This means that we wish to desribe in the �-alulus redution strategies and,mainly, normalization strategies. This will allow us to get, in partiular, a naturalenoding of normal onditional term rewriting. Therefore, we want to answer themore spei� question:Given a rewrite theory R does there exist a �-term �R suh that for any term u ifu normalizes to the term v in the rewrite theory R then [�R℄(u) �-redues to a setontaining the term v?The de�nition of normalization strategies is in general done at the meta-level whilethe �-alulus allows us to represent suh derivations at the objet level. We haveshown in Part I that the �;-alulus ontains the �-alulus and thus, any omputablefuntion as the normalization one is expressible in the formalism. What we bring here,beause of the mathing power and of the use of non-determinism, is an inreasedease in the expression of suh funtions together with their expression in a uniformformalism ombining standard rewrite tehniques and higher-order behaviors.When omputing the normal form of a term u w.r.t. a rewrite system R, therewrite rules are applied repeatedly at any position of a term u until no rule from Ris appliable. Hene, the ingredients needed for de�ning suh a strategy are:� an iteration operator that applies repeatedly a set of rewrite rules,� a term traversal operator that applies a rewrite rule at any position of a term,� an operator testing if a set of rewrite rules is appliable to a term.402

In what follows we desribe how the operators with the above funtionalities anbe de�ned in the �-alulus. We start with some auxiliary operators and afterwards,we introdue the �-operators that orrespond to the funtionalities listed above.2.1 Some auxiliary operatorsFirst, we de�ne three auxiliary operators that will be used in the next setions. Theseoperators are just aliases used to de�ne more omplex �-terms and are used for givingmore ompat and lear de�nitions for the reursion operators.The �rst of these operators is the identity (denoted id) that applied to any �-termt evaluates to the singleton ontaining this term, that is [id℄(t) �!� ftg. The �-termid is nothing else but the rewrite rule x! x:id 4= x! x:In a similar way we an de�ne the strategy fail whih always fails, (i.e. applied toany term, leads to ;): fail 4= x! ;:The third one is the binary operator \;" that represents the sequential appliationof two �-terms. A �-term of the form [u; v℄(t) represents the appliation of the termv to the result of the appliation of u to t. Therefore, we de�ne the operator \;" by:u; v 4= x! [v℄([u℄(x)):In the following setions we generally employ the abbreviations of these operatorsand not their expanded form but we sometimes show the orresponding redutions.2.2 The first operatorWe introdue now a new operator, similar to the then operator for ombining tatisand already present in LCF [18℄. Its role is to selet between its arguments the �rstone that applied to a given �-term does not evaluate to ;. If all the arguments evaluateto ; then the �nal result of the evaluation is ;. The evaluation rules desribing thefirst operator and the auxiliary operator h ; : : : ; i are presented in Figure 1. Wedo not know urrently how to express these operators in the basi �-alulus and weonjeture that this is not possible.For simpliity, we onsidered that the operators first and hi are of variable aritybut similar binary operators an be used instead.The appliation of a �-term first(s1; : : : ; sn) to a term t returns the result ofthe �rst \suessful" appliation of one of its arguments to the term t. Hene, if[si℄(t) evaluates to ; for i = 1; : : : ; k � 1, and [sk℄(t) does not evaluate to ;, then[first(s1; : : : ; sn)℄(t) evaluates to the same term as the term [sk℄(t).If the evaluation of the terms [si℄(t), i = 1; : : : ; k� 1, leads to ; and the evaluationof [sk℄(t) does not terminate then the evaluation of the term [first(s1; : : : ; sn)℄(t)does not terminate.De�nition 2.1 The set of �1st-terms extends the set %(F ;X) of basi �-terms, withthe following two rules: 403

First [first(s1; : : : ; sn)℄(t) =) h[s1℄(t); : : : ; [sn℄(t)iFirstFail h;; t1; : : : ; tni =) ht1; : : : ; tniFirstSuess ht; t1; : : : ; tni =) ftgif t ontains no redexes, no freevariables and is not ;FirstSingle hi =) ;Fig. 1. The first operator� if t1; : : : ; tn are �-terms then first(t1; : : : ; tn) is a �-term,� if t1; : : : ; tn are �-terms then ht1; : : : ; tni is a �-term.This set of terms is denoted by %1st(F ;X).We de�ne now the �1stT -alulus by onsidering the new operators and the orre-sponding evaluation rules presented in Figure 1:De�nition 2.2 Given a set F of funtion symbols, a set X of variables, a theoryT on %1st(F ;X) terms having a deidable mathing problem, we all �1stT -alulus aalulus de�ned by:� a non-empty subset %1st� (F ;X) of the %1st(F ;X) terms,� the (higher-order) substitution appliation to terms as de�ned in Part I,� a theory T ,� the set of evaluation rules E�1st : Fire, Cong, CongFail, Distrib, Bath, SwithL,SwithR, OpOnSet, F lat, First, FirstFail, FirstSuess, FirstSingle,� an evaluation strategy S that guides the appliation of the evaluation rules.In what follows we onsider the �1st-alulus, i.e. the �1stT -alulus with a syntatimathing and whose rewrite rules are restrited to be of the form u! v where u is a�rst-order term.The following examples present the evaluation of some �1st-terms ontaining theoperators of the extended alulus.Example 2.3 The non-deterministi appliation of one of the rules a ! b, a ! ,a! d to the term a is represented in the �-alulus by the appliation [fa! b; a!; a ! dg℄(a). This last �-term is redued to the term fb; ; dg whih represents anon-deterministi hoie among the three terms. If we want to apply the above rulesin a deterministi way and in the spei�ed order, we use the �-term [first(a! b; a!; a! d)℄(a) with, for example, the redution:[first(a! b; a! ; a! d)℄(a)�!First h[a! b℄(a); [a! ℄(a); [a! d℄(a)i�!Fire hfbg; [a! ℄(a); [a! d℄(a)i�!FirstSuess ffbgg�!Flat fbg 404

We an notie that even if all the rewrite rules an be applied suessfully (i.e. noempty set) to the term a, the �nal result is given by the �rst tried rewrite rule.Example 2.4We onsider now the ase where some of the rules given in argumentto first lead to an empty set result:[first(a! b; b! ; a! d)℄(b)�!First h[a! b℄(b); [b! ℄(b); [a! d℄(b)i�!Fire h;; [b! ℄(b); [a! d℄(b)i�!FirstFail h[b! ℄(b); [a! d℄(b)i�!Fire hfg; [a! d℄(b)i�!FirstSuess ffgg�!Flat fgExample 2.5 If none of the rules given in argument to first is applied suessfully,the result is obviously the empty set:[first(a! b; a! ; a! d)℄(b)�!First h[a! b℄(b); [a! ℄(b); [a! d℄(b)i��!Fire h;; ;; ;i��!FirstFail hi�!FirstSingle ;The operator first does not test expliitly the appliability of a term (rule) toanother term but allows us to reover from a failure and ontinue the evaluation. Forexample, we an de�ne a term try(s) 4= first(s; id)that applied to the term t evaluates to the result of [s℄(t), if [s℄(t) does not evaluateto ; and to ftg, if [s℄(t) evaluates to ;.2.3 Term traversal operatorsLet us now de�ne operators that apply a �-term at some position of another �-term.The �rst step is the de�nition of two operators that push the appliation of a �-termone level deeper on another �-term. This is already possible in the �-alulus due tothe rule Cong but we want to de�ne a generi operator that applies a �-term r to thesub-terms ui, i = 1 : : : n, of a term of the form F (u1; : : : ; un) independently on thehead symbol F .To this end, we de�ne two term traversal operators, �(r) and 	(r), whose behavioris desribed by the rules in Figure 2. These operators are inspired by the operatorsof the System S desribed in [27℄.The appliation of the �-term �(r) to a term t = f(u1; : : : ; un) results in thesuessful appliation of the term r to one of the terms ui. More preisely, r isapplied to the �rst ui, i = 1; : : : ; n suh that [r℄(ui) does not evaluate to the emptyset. If there exists no suh ui and in partiular, if t is a funtion with no arguments(t is a onstant), then the term [�(r)℄(t) redues to the empty set:[�(r)℄() �!TraverseSeq hfgi �!FirstFail hi �!FirstSingle ;405

TraverseSeq [�(r)℄(f(u1; : : : ; un)) =)hff([r℄(u1); : : : ; un)g; : : : ; ff(u1; : : : ; [r℄(un))giTraversePar [(r)℄(f(u1; : : : ; un)) =) ff([r℄(u1); : : : ; [r℄(un))gFig. 2. The term traversal operators of the �T -alulusWhen the �-term 	(r) is applied to a term t = f(u1; : : : ; un) the term r is appliedto all the arguments ui, i = 1; : : : ; n if for all i, [r℄(ui) does not evaluate to ;. If thereexists an ui suh that [r℄(ui) redues to ;, then the result is the empty set. If weapply 	(r) to a onstant , sine there are no sub-terms the term [(r)℄() reduesto fg: [(r)℄() �!TraversePar fgIf we onsider a �-alulus with a �nite signature F and if we denote by F0 =f1; : : : ; ng the set of onstant funtion symbols and by F+ = ff1; : : : ; fmg the setof funtion symbols with arity at least one, the two term traversal operators an beexpressed in the �-alulus by some appropriate �-terms.If the following two de�nitions are onsidered�0(r) 4= first(f1(r; id; : : : ; id); : : : ; f1(id; : : : ; id; r); : : : ;fm(r; id; : : : ; id); : : : ; fm(id; : : : ; id; r))	(r) 4= f1; : : : ; n; f1(r; : : : ; r); : : : ; fm(r; : : : ; r)gwith i 2 F0, i = 1; : : : ; n, and fj 2 F+, j = 1; : : : ;m, we obtain the following tworedutions, [�0(r)℄(fk(u1; : : : ; up))4= [first(f1(r; id; : : : ; id); : : : ; fm(id; : : : ; id; r))℄(fk(u1; : : : ; up))�!First h[f1(r; id; : : : ; id)℄(fk(u1; : : : ; up)); : : : ; [fm(id; : : : ; id; r)℄(fk(u1; : : : ; up))i��!Cong h;; : : : ; ;; ffk([r℄(u1); : : : ; up)g; : : : ; ffk(u1; : : : ; [r℄(up))g; ;; : : : ; ;i��!FirstFail hffk([r℄(u1); : : : ; up)g; : : : ; ffk(u1; : : : ; [r℄(up))g; ;; : : : ; ;iand [(r)℄(fk(u1; : : : ; up))4= [f1; : : : ; n; f1(r; : : : ; r); : : : ; fm(r; : : : ; r)g℄(fk(u1; : : : ; up))�!Distrib f[1℄(fk(u1; : : : ; up)); : : : : : : ; [fm(r; : : : ; r)℄(fk(u1; : : : ; up))g��!Cong f;; : : : ; ;; ffk([r℄(u1); : : : ; [r℄(up))g; ;; : : : ; ;g��!Flat ffk([r℄(u1); : : : ; [r℄(up))gThe operator �0 does not orrespond exatly to the de�nition from the Figure 2but, as we have just seen above, a similar result is obtained when applying the terms�(r) and �0(r) to a term fk(u1; : : : ; up).Lemma 2.6 The term traversal operators � and 	 an be expressed in the �1st-alulus.406

Proof. If we onsider t = fk(u1; : : : ; up) and if for all i = 1; : : : ; p we have the re-dutions [r℄(ui) ��!� ; then, aording to the evaluation rules desribing the behaviorof �(r), we obtain:[�(r)℄(fk(u1; : : : ; up))�!TraverseSeq hffk([r℄(u1); : : : ; up)g; : : : ; ffk(u1; : : : ; [r℄(up))gi��!� hffk(;; : : : ; up)g; : : : ; ffk(u1; : : : ; ;)gi��!OpOnSet hf;g; : : : ; f;gi��!Flat h;; : : : ; ;i��!FirstFail hi�!FirstSingle ;Otherwise, if there exists an l suh that [r℄(ui) ��!� ;, i = 1; : : : ; l � 1 and[r℄(ul) ��!� vl #, with vl # a ground term ontaining no redex, the following re-dution is obtained:[�(r)℄(fk(u1; : : : ; up))�!TraverseSeq hffk([r℄(u1); : : : ; up)g; : : : ; ffk(u1; : : : ; [r℄(up))gi��!� hffk(;; : : : ; up)g; : : : ; ffk(u1; : : : ; vl #; : : : ; up)g; : : : ; ffk(u1; : : : ; ;)gi��!OpOnSet h;; : : : ; ;; ffk(u1; : : : ; vl #; : : : ; up)g; ;; : : : ; ;i��!FirstFail hffk(u1; : : : ; vl #; : : : ; up)g; ;; : : : ; ;iDepending on the evaluation strategy, the terms following fk(u1; : : : ; vl #; : : : ; up)an be redued or not to the empty set and we have hosen here the former alternativefor a more ompat representation.Now, if we onsider the de�nition of �0(r) and if for all i = 1; : : : ; p we have[r℄(ui) ��!� ; then, we obtain:[�0(r)℄(fk(u1; : : : ; up))��!� hffk([r℄(u1); : : : ; up)g; : : : ; ffk(u1; : : : ; [r℄(up))g; ;; : : : ; ;i��!� hffk(;; : : : ; up)g; : : : ; ffk(u1; : : : ; ;)g; ;; : : : ; ;i��!OpOnSet hf;g; : : : ; f;g; ;; : : : ; ;i��!Flat h;; : : : ; ;; : : : ; ;i��!FirstFail hi�!FirstSingle ;For the same term [�0(r)℄(fk(u1; : : : ; up)), if it exists an l suh that [r℄(ui) ��!� ;,i = 1; : : : ; l � 1 and [r℄(ul) ��!� vl #, with vl # a ground term ontaining no redex,the following redution is obtained:[�0(r)℄(fk(u1; : : : ; up))��!� hffk([r℄(u1); : : : ; up)g; : : : ; ffk(u1; : : : ; [r℄(up))g; ;; : : : ; ;i��!� hffk(;; : : : ; up)g; : : : ; ffk(u1; : : : ; vl #; : : : ; up)g; ;; : : : ; ;i��!OpOnSet hf;g; : : : ; f;g; ffk(u1; : : : ; vl #; : : : ; up)g; ;; : : : ; ;i��!Flat h;; : : : ; ;; ffk(u1; : : : ; vl #; : : : ; up)g; ;; : : : ; ;i��!FirstFail hffk(u1; : : : ; vl #; : : : ; up)g; ;; : : : ; ;i407

We an notie that the results of the redutions for the appliation of a term r to thearguments of a term fk(u1; : : : ; up) by using the two operators, � and �0, are idential.If the terms ui, i = 1 : : : p, are ground terms ontaining no redex then, the �nal resultof the two redutions in the ase without failure is ffk(u1; : : : ; vl #; : : : ; up)g.When the operators are applied to a onstant k 2 F0 we obtain:[�0(r)℄(k) ��!� hi �!� ;;[(r)℄(k) ��!� fkg: 22.4 IteratorsThe de�nition of the evaluation (normalization) strategies as, for example, top-downor bottom-up, is based on the appliation of one term to the top position or to thedeepest positions of another term.For the moment, we have the possibility of applying a �-term r either to one orall the arguments ui of a �-term t = f(u1; : : : ; un), or to the sub-terms of t at anexpliitly spei�ed depth. But the depth of a term is not known a priori and thus,we annot apply a term r to the deepest positions of a term t. If we want to applythe term r to the sub-terms at the maximum depth of a term t we must de�ne areursive operator whih reiterates the appliation of the �(r) and 	(r) terms andthus, pushes the appliation deeper into terms.We start by presenting the �-term used for desribing reursive appliations in the�-alulus. Starting from the �xed-point ombinators of the �-alulus, we de�nea �-term whih reursively applies a given �-term. We use the lassial �xed-pointombinator of the �-alulus ([2℄), �� = (A� A�) whereA� = �xy:y(xxy)and �� is alled the Turing �xed-point ombinator ([26℄).This term orresponds in the �-alulus to the �-term � = [A℄(A) withA = x! (y ! [y℄([[x℄(x)℄(y))):In �-alulus, for any �-term G we have the redution�� G ��!� G(�� G):In �-alulus, we have a similar redution[�℄(G) ��!� f[G℄([�℄(G))g (Fixed Point)as this an be heked as follows:[�℄(G) 4= [[A℄(A)℄(G) 4= [[x! (y ! [y℄([[x℄(x)℄(y)))℄(A)℄(G)�!Fire [fy ! [y℄([[A℄(A)℄(y))g℄(G)�!Distrib f[y ! [y℄([[A℄(A)℄(y))℄(G)g�!Fire ff[G℄([[A℄(A)℄(G))gg�!Flat f[G℄([[A℄(A)℄(G))g4= f[G℄([�℄(G))g 408

We have obtained the desired result but the last appliation of the rule Fire inthe above redution an be replaed by a redution in the sub-term [[A℄(A)℄(y). Wean thus redue [[A℄(A)℄(y) 4= [[x0 ! (y0 ! [y0℄([[x0℄(x0)℄(y0)))℄(A)℄(y) to the termf[y℄([[A℄(A)℄(y))g 4= f[y℄([�℄(y))g. We therefore obtain the following derivation:[�℄(G)��!� f[y ! [y℄([[A℄(A)℄(y))℄(G)g 4= f[y ! [y℄([�℄(y))℄(G)g��!� f[y ! [y℄(f[y℄([�℄(y))g)℄(G)g��!� f[y ! [y℄([y℄([�℄(y)))℄(G)g��!� : : :whih does not terminate if the same redex [�℄(y) is always seleted for redution.In an operational approah we do not want the new onstrutions to lead to non-terminating redutions. Sine the �-term [�℄(G) an obviously lead to in�nite redu-tions, a strategy should be used in order to obtain termination and thus the desiredbehavior.We should thus use a strategy whih applies the evaluation rules to a sub-term ofthe form [�℄(G) only when no other redution is possible. From an operational pointof view, this strategy is rather diÆult to implement and obviously not very eÆientin a alulus where the � term is represented by its extended form and thus, morediÆult to identify. If � is onsidered as an independent �-term with the behaviordesribed by an evaluation rule orresponding to the redution (Fixed Point), thestrategy suggested previously ould be easily implemented.A strategy satisfying the termination ondition and easier to implement ould ini-tially apply the evaluation rules at the top positions of the terms and only when noevaluation rule an be applied at the top position, redue the sub-terms at deeperpositions. In what follows we will generally use this outermost strategy. It is learthat suh a strategy prevents only the in�nite redutions due to the operator �, butit annot ensure the termination of the untyped �-alulus.As we mentioned previously, the main goal of this setion is the representation ofnormalization strategies by �-terms and thus, we want to desribe the appliationof a term r to all the positions of another term t. Therefore, we must de�ne theappropriate term G that propagates the appliation of a �-term in the sub-terms ofanother �-term.2.4.1 Multiple appliationsFirst, we want to de�ne the operators BottomUp and TopDown desribing the appli-ation of a term r to all the sub-terms of a term t starting with the deepest positionsof t and respetively with the top position of t. We want thus to �nd a term whihreursively applies the term r to all the sub-terms of t and afterwards at the topposition of the result term and another term whih initially applies the term r at thetop position of the term t and then to the sub-terms of the result term. The term rmust be applied to the sub-terms only if this appliation does not lead to a failure.We propose �rst two \naive" de�nitions for the former operator and we omment theenountered problems. We analyze the obtained redutions and we de�ne afterwardsthe operators desribing the desired behavior.409

The �rst natural possibility is to de�ne the �-termGsds(r) 4= f ! (x! [(f); r℄(x))Let us onsider the �-term SDS (for SpreadDownSimple),SDS(r) 4= [�℄(Gsds(r))and its appliation to the term t = f(t1; : : : ; tn). Then, the following derivation isobtained: [SDS(r)℄(t) 4= [[�℄(Gsds(r))℄(t)��!� f[[Gsds(r)℄([�℄(Gsds(r)))℄(t)g4= f[[Gsds(r)℄(SDS(r))℄(t)g4= f[[f ! (x! [(f); r℄(x))℄(SDS(r))℄(t)g��!� f[fx! [(SDS(r)); r℄(x)g℄(t)g��!� f[(SDS(r)); r℄(f(t1; : : : ; tn))g��!� f[r℄([(SDS(r))℄(f(t1; : : : ; tn)))g��!� f[r℄(f([SDS(r)℄(t1); : : : ; [SDS(r)℄(tn)))gAs we an see from this derivation, the term SDS(r) is reursively applied to thesub-terms of the initial term and the term r is applied at the top position of theresult. If one of the appliations of the term r leads to a failure, then this failure ispropagated and the empty set is obtained as the result of the derivation.When using a onuent strategy, as the ones presented in Part I, the derivationpresented above is possible only if the term Gsds(r) annot be redued to a set withmore than one element. This ondition is obviously not respeted if r is a set withmore than one element sine, for example, Gsds(fa; bg) ��!� fGsds(a); Gsds(b)g. Wewant to prevent the evaluation of the term Gsds(r) to a set with more than oneelement even when r does not satisfy this ondition and therefore, we de�ne the termGsd(r) 4= f ! (x! h[(f); r℄(x)i)and respetively SD (for SpreadDown),SD(r) 4= [�℄(Gsd(r)):If r = fa; bg then, the term Gsd(r) = Gsd(fa; bg) is not redued to the termfGsd(a); Gsd(b)g as it was the ase for Gsds(r) butGsd(r) 4= f ! (x! h[(f); fa; bg℄(x)i)��!� f ! (x! h[fa; bg℄([(f)℄(x))i)��!Distrib f ! (x! hf[a℄([(f)℄(x)); [b℄([(f)℄(x))gi)In this last term, the �rst argument of the operator hi ontains the free variable xand thus, it annot be redued by using the evaluation rule FirstSuess.Sine this last term is not a set, the propagation of the set symbols is not per-formed in the ase of the operator Gsd and we an redue the term [�℄(Gsd(r)) tof[Gsd(r)℄([�℄(Gsd(r)))g. Consequently, we obtain the redution:410

[SD(r)℄(t) 4= [[�℄(Gsd(r))℄(t)��!� f[[Gsd(r)℄([�℄(Gsd(r)))℄(t)g4= f[[Gsd(r)℄(SD(r))℄(t)g4= f[[f ! (x! h[(f); r℄(x)i)℄(SD(r))℄(t)g��!� f[fx! h[(SD(r)); r℄(x)ig℄(t)g��!� fh[(SD(r)); r℄(f(t1 ; : : : ; tn))ig��!� fh[r℄(f([SD(r)℄(t1); : : : ; [SD(r)℄(tn)))igExample 2.7 If we use a strategy whih initially applies the evaluation rules at thetop positions of terms then, the following derivation is obtained:[SD(fa! b; idg)℄(g(a; f(a)))��!� fh[fa! b; idg℄(g([SD(fa! b; idg)℄(a); [SD(fa! b; idg)℄(f(a))))ig�!Distrib fhf[a! b℄(g([SD(fa! b; idg)℄(a); [SD(fa! b; idg)℄(f(a))));[id℄(g([SD(fa! b; idg)℄(a); [SD(fa! b; idg)℄(f(a))))gig�!Fire fhf;; [id℄(g([SD(fa! b; idg)℄(a); [SD(fa! b; idg)℄(f(a))))gig�!Flat fhfg([SD(fa! b; idg)℄(a); [SD(fa! b; idg)℄(f(a)))gig��!� fhfg(fh[fa! b; idg℄(a)ig; [SD(fa! b; idg)℄(f(a)))gig��!� fhfg(ffb; ag; [SD(fa! b; idg)℄(f(a)))gig��!� fhfg(fb; ag; h[fa! b; idg℄(f([SD(fa! b; idg)℄(a))))gig��!� fhfg(fb; ag; f(fb; ag))gig��!� fg(b; f(b)); g(a; f(b)); g(b; f(a)); g(a; f(a))gWe an notie that the appliation [SD(r)℄(t) does not guarantee that the appli-ations of the term r to the deepest sub-terms of t are the �rst ones to be redued.For example, sine we try to apply the evaluation rules at the top position, in thederivation of Example 2.7 we obtain, by applying the evaluation rule Fire,[a! b℄(g([SD(fa! b; idg)℄(a); [SD(fa! b; idg)℄(f(a)))) �!Fire ;and not [a! b℄(g([SD(fa! b; idg)℄(a); [SD(fa! b; idg)℄(f(a))))��!� [a! b℄(g(fb; ag; ff(fb; ag)g)) ��!� ;as in an innermost redution.The disadvantage of the non-onuene in the ase of the operator SDS was elim-inated by using the operator hi in the de�nition of the operator SD, but we have notobtained yet the desired behavior for this type of iterator. In the evaluation of theterm [SD(r)℄(t), if one of the appliations of the term r to a sub-term of t is evaluatedto ; then, this failure is propagated and the empty set is obtained as the result of theredution.If we want to keep unhanged the sub-terms of t on whih the appliation of theterm r evaluates to ;, we an use the term id either in the same way as in Example 2.7,or by de�ning the operator Gbu:Gbu(r) 4= f ! (x! [first((f); id); first(r; id)℄(x))In the same manner as for the previous ases we obtain the operator BottomUp:BottomUp(r) 4= [�℄(Gbu(r))411

orresponding to the desription presented at the beginning of this setion.Lemma 2.8 The BottomUp operator desribing the appliation of a term to all thesub-terms of another term in a bottom-up manner an be expressed in the �1st-alulus.Proof. We analyze the redutions of the appliation of a term BottomUp(r) to aonstant and to a funtional term with several arguments. A omplete proof is givenin [9℄. 2A top-down like redution is immediately obtained if we take the termGtd(r) 4= f ! (x! h[first(r; id); first((f); id)℄(x)i)and we de�ne the term TopDown(r) 4= [�℄(Gtd(r)):Lemma 2.9 The TopDown operator desribing the appliation of a term to all thesub-terms of another term in a top-down manner an be expressed in the �1st-alulus.2.4.2 Singular appliationsUsing the term traversal operator � we an de�ne similar �-terms that apply a spei�term only at one position of a �-term in a bottom-up or top-down way. We will seethat the operators built using the � operator are onvenient for the onstrution ofnormalization operators.The �-term used in the bottom-up ase isHbu(r) 4= f ! (x! [first(�(f); r)℄(x))and we de�ne an operator that applies only one a �-term in a bottom-up way,Onebu(r) 4= [�℄(Hbu(r)):As for the previous operators, the term [Onebu(r)℄(t) 4= [[�℄(Hbu(r))℄(t) an leadto an in�nite redution if an appropriate strategy is not employed. As for theSpreadDown operator it is enough to apply the evaluation rules �rst to the topposition and only if this is not possible, to deeper positions. We an state:Lemma 2.10 The Onebu operator desribing the appliation of a term to a sub-termof another term in a bottom-up manner an be expressed in the �1st-alulus.Example 2.11 The appliation [Onebu(a ! b)℄(a) is redued to fh[(a ! b)℄(a)igand thus, to the term fbg.The appliation of the rule a ! b to the leftmost-innermost position of a termg(a; f(a)) is represented by the term [Onebu(a! b)℄(g(a; f(a))) and the orrespond-ing evaluation is presented below:[Onebu(a! b)℄(g(a; f(a)))��!� fhhg([Onebu(a! b)℄(a); f(a)); g(a; [Onebu(a! b)℄(f(a)))i; [a! b℄(g(a; f(a)))ig��!� fhhg(fbg; f(a)); g(a; [Onebu(a! b)℄(f(a)))i; [a! b℄(g(a; f(a)))ig��!� fhfg(b; f(a))g; [a! b℄(g(a; f(a)))ig��!� fg(b; f(a))g 412

If we want to de�ne an operator that applies a spei� term only at one positionof a �-term in a top-down way we should use the �-termHtd(r) 4= f ! (x! [first(r;�(f))℄(x))and we obtain immediately the operator Onetd,Onetd(r) 4= [�℄(Htd(r)):In the ase of an appliation [Onetd(r)℄(t), the appliation of the term r is �rsttried at the top position of t and in the ase of a failure, r is applied deeper in theterm t. As previously, we an state:Lemma 2.12 The Onetd operator desribing the appliation of a term to a sub-termof another term in a top-down manner an be expressed in the �1st-alulus.2.5 Repetition and normalization operatorsIn the previous setions we have de�ned operators that desribe the appliation of aterm at some position of another term (e.g. Onebu) and operators that allow us toreover from failing evaluations (first).Now we want to de�ne an operator that applies repeatedly a given strategy r toa �-term t. We all it repeat and its behavior an be desribed by the followingevaluation rule: Repeat [repeat(r)℄(t) =) [repeat(r)℄([r℄(t))We use one again the �xed-point operator presented in the previous setion andwe de�ne the �-term I(r) 4= f ! (x! [r; f ℄(x))that is used for desribing a repeat operator,repeat(r) 4= [�℄(I(r)):This approah has two obvious drawbaks. First, the termination of the evaluationis not guaranteed even when the strategy used for the previous operators is used.When the strategy applies the evaluation rules �rst to the top position of an appli-ation [u℄(v) and only afterwards to the right sub-term v and then to the left sub-termu, we do not obtain the desired result. When using this rightmost-outermost strategy,the following non-terminating derivation is obtained:[repeat(r)℄(t) ��!� f[repeat(r)℄([r℄(t))g ��!� : : :��!� f[repeat(r)℄([r℄([r℄(: : : [r℄(t) : : :)))g ��!� : : :Seond, when the evaluation terminates the result is always the empty set. If atsome point in the evaluation the appliation of the term r is redued to the emptyset, then ; is stritly propagated and thus the term [repeat(r)℄(t) is redued to theempty set. 413

Repeat�0 [repeat�(r)℄(t) =) [repeat�(r)℄([r℄(t))if [r℄(t) is not redued to ;Repeat�00 [repeat�(r)℄(t) =) tif [r℄(t) is redued to ;Fig. 3. The operator repeat�In order to overome these two problems, we an de�ne an operator alled repeat�with a behavior de�ned by the evaluation rules presented in Figure 3.Hene, we need an operator similar to the repeat one, that stores the last non-failingresult and when no further appliation is possible returns this result. We modify theterm I(r) that beomesJ(r) 4= f ! (x! [first(r; f; id)℄(x))and we de�ne, as before, the termrepeat�(r) 4= [�℄(J(r))We should not forget that we assume here that an appliation [u℄(v) is redued byapplying the evaluation rules at the top position, then to its argument v and onlyafterwards to the term u. One again, we get:Lemma 2.13 The operator repeat� desribing the repeated appliation of a termwhile the result is not ; an be expressed in the �1st-alulus.Example 2.14 The repeated appliation of the rewrite rules a ! b and b ! onthe term a is represented by the term [repeat�(fa! b; b! g)℄(a) that evaluates asfollows:[repeat�(fa! b; b! g)℄(a)��!� fh[repeat�(fa! b; b! g)℄([fa! b; b! g℄(a)); [id℄(a)ig��!� fh[repeat�(fa! b; b! g)℄(fbg); [id℄(a)ig��!� fhfh[repeat�(fa! b; b! g)℄([fa! b; b! g℄(b)); [id℄(b)ig; [id℄(a)ig��!� fhfh[repeat�(fa! b; b! g)℄(fg); [id℄(b)ig; [id℄(a)ig��!� fhfhfh[repeat�(fa! b; b! g)℄([fa! b; b! g℄()); [id℄()ig; [id℄(b)ig; [id℄(a)ig��!� fhfhfh[repeat�(fa! b; b! g)℄(;); fgig; [id℄(b)ig; [id℄(a)ig��!� fhfhfh;; fgig; [id℄(b)ig; [id℄(a)ig��!� fhfhfg; [id℄(b)ig; [id℄(a)ig��!� fhffgg; [id℄(a)ig��!� fgUsing the above operators it is easy to de�ne some spei� normalization strategies.For example, the innermost strategy is de�ned byim(r) 4= repeat�(Onebu(r))414

and an outermost strategy is de�ned byom(r) 4= repeat�(Onetd(r)):Corollary 2.15 The operators im et om desribing the innermost and outermostnormalization an be expressed in the �1st-alulus.We have now all the ingredients needed for desribing the normalization of a termt in a rewrite theory R. The term �R(u) desribed at the beginning of this setionan be de�ned using the im(R) or om(R) operators and thus, we an represent thenormalization of a term u w.r.t. a rewriting theory R by the �-terms�R(u) 4= [im(R)℄(u)or �R(u) 4= [om(R)℄(u):Example 2.16 If we denote by R the set of rewrite rules fa ! b; g(x; f(x)) ! xg,we represent by [im(R)℄(g(a; f(a))) the leftmost-innermost normalization of the termg(a; f(a)) aording to the set of rules R and the following derivation is obtained:[im(R)℄(g(a; f(a)))4= [repeat�(Onebu(R))℄(g(a; f(a)))��!� fh[repeat�(Onebu(R))℄([Onebu(R)℄(g(a; f(a)))); [id℄(g(a; f(a)))ig��!� fh[repeat�(Onebu(R))℄(fg(b; f(a))g); [id℄(g(a; f(a)))ig��!� fhf[repeat�(Onebu(R))℄(g(b; f(a)))g; [id℄(g(a; f(a)))ig��!� fhffh[repeat�(Onebu(R))℄([Onebu(R)℄(g(b; f(a))));[id℄(g(b; f(a)))igg; [id℄(g(a; f(a)))ig��!� fhfh[repeat�(Onebu(R))℄(fg(b; f(b))g);[id℄(g(b; f(a)))ig; [id℄(g(a; f(a)))ig��!� fhfhfhf[repeat�(Onebu(R))℄([Onebu(R)℄(g(b; f(b))))g;[id℄(g(b; f(b)))ig; [id℄(g(b; f(a)))ig; [id℄(g(a; f(a)))ig��!� fhfhfhf[repeat�(Onebu(R))℄(fbg)g;[id℄(g(b; f(b)))ig; [id℄(g(b; f(a)))ig; [id℄(g(a; f(a)))ig��!� fhfhfhfh[repeat�(Onebu(R))℄([Onebu(R)℄(b)); [id℄(b)i;[id℄(g(b; f(b)))ig; [id℄(g(b; f(a)))ig; [id℄(g(a; f(a)))ig��!� fhfhfhfh[repeat�(Onebu(R))℄(;); [id℄(b)i;[id℄(g(b; f(b)))ig; [id℄(g(b; f(a)))ig; [id℄(g(a; f(a)))ig��!� fhfhfhfh;; [id℄(b)i;[id℄(g(b; f(b)))ig; [id℄(g(b; f(a)))ig; [id℄(g(a; f(a)))ig��!� fhfhfhfffbggg; [id℄(g(b; f(b)))ig; [id℄(g(b; f(a)))ig; [id℄(g(a; f(a)))ig��!� fhfhffbgg; [id℄(g(b; f(a)))ig; [id℄(g(a; f(a)))ig��!� fhffbgg; [id℄(g(a; f(a)))ig��!� fhfbg; [id℄(g(a; f(a)))ig��!� fbgGiven a term u, if the rewriting theory R is not onuent then, the result of theredution of the term [im(R)℄(u) is a set representing all the possible results of the415

redution of the term u in the rewriting theory R. Eah of the elements of theresult set represents the result of a redution in the rewriting theory R for a givenappliation order of the rewrite rules in R.Example 2.17 Let us onsider the set R = fa ! b; a ! ; g(x; x) ! xg of non-onuent rewrite rules. The term [im(R)℄(g(a; a)) representing the innermost nor-malization of the term g(a; a) aording to the set of rewrite rules R is redued tofb; g(; b); g(b;); g. The term [om(R)℄(g(a; a)) representing the outermost normal-ization is redued to fb; g.We have now all the ingredients neessary to desribe in a onise way the nor-malization proess indued by a rewrite theory. Of ourse, the standard properties oftermination and onuene of the rewrite system will allow us to get uniqueness ofthe result. Our approah di�ers from this and we de�ne this normalization even inthe ase where there is no unique normal form or where termination is not warranted.This is why in general we do not get termination or uniqueness of the normal form.3 Using the �1st-alulusWe have shown in Part I that a �nite derivation in term rewriting an be mimikedas an appropriate �-term that indeed represents the trae of the redution. It is oftenmore interesting to �nd suh a derivation.3.1 Enoding rewriting in the �1st-alulusWe are interested to build a �-term desribing the redution, in term rewriting, ofterm t w.r.t. a set of rewrite rules, but without knowing a priori the intermediatesteps of the derivation of t. For this, we an use the �1stT -alulus and the operatorsde�ning innermost and outermost normalization strategies.Proposition 3.1 Given a rewriting theory TR and two �rst order ground terms t; t#2T (F) suh that t is normalized to t# w.r.t. the set of rewrite rulesR. Then, [im(R)℄(t)is �-redued to a set ontaining the term t#.Proof. By indution on the number of redution steps for the term t. 2Example 3.2 Let us onsider a rewrite system R ontaining the rewrite rules (x =x) ! True and b ! a. Then, the term a = b redues to True in this rewritesystem and a �-term reduing to fTrueg an be built as shown in Part I or using the�xed-point operators.In the former ase the orresponding �-term is[(x = x)! True℄([a = (b! a)℄(a = b)):For the latter approah we build the term[im(f(x = x)! True; b! ag)℄(a = b):Sine in this ase we an obtain empty sets and additionally, sets with more than oneelement are obtained when equational mathing is not unitary, a redution strategy416

as presented in Part I should be used in order to ensure onuene. If no redutionstrategy is used then undesired results an be obtained.3.2 Enoding onditional rewritingAs shown before, any term rewriting redution an be desribed by a redution inthe �-alulus. In this setion we give a representation in the �-alulus of the ondi-tional rewriting redutions. We will propose thus, methods for de�ning a �-term thatontains all the information needed for redution inluding the ondition evaluationthat is normally performed on the meta-level.The main diÆulty here resides in the fat that for onditional rewriting, the re-dution relation is reursively applied in order to evaluate the ondition when �ringa onditional rule. We an use the same approah as our expliit desription ofnon-onditional rewriting (see Part I) but the �-terms used in order to desribe theonditional rewriting redution beome very ompliated in this ase. Instead, a de-tailed desription by a onise �-term of the normalization proess of the onditionsan be obtained by using the normalization operators presented in the Setion 2.5.3.2.1 De�nition of onditional rewritingMany onditional rewriting relations have been designed and mainly di�er in the waythe onditions are understood [15℄. We onsider here the normal onditional rewritingde�ned as follows.De�nition 3.3 A normal rewrite system R is omposed of onditional rewrite rulesof the form (l ! r if) where l; r; are elements of T (F ;X) with variables satisfyingthe ondition Var(r) [Var() � Var(l), and suh that for eah ground substitution� satisfying Var() � Dom(�), the normal form under R of � is either the booleanTrue or False. Given a onditional rewrite system R omposed of suh rules, theappliation of the rewrite rule (l ! r if) of R on a term t at ourrene m onsistsin:(i) mathing, using the substitution �, the left-hand side of the rule against the termtjm(ii) normalizing the instantiated ondition � using R and, provided the resultingterm is True,(iii) replae tjm by �r in t.This is denoted t �!l!r if [m℄ td�rem .3.2.2 EnodingAs we have mentioned, the main diÆulty in the enoding of onditional rewritingis to make preise the evaluation proess of the ondition. In the ase of normalrewriting, this means omputing the normal form of the ondition.We denote by � the �-term that, when instantiated by the proper substitution (i.e.��), normalizes to the term fug if the term , instantiated aordingly (i.e. �), isnormalized into u in the rewrite theory R. When the term is a boolean ondition417

and when the rewrite system is ompletely de�ned over the booleans [5℄, the term ushould be one of the two onstants True or False.If the redution in a rewrite theory R is known, we an de�ne, as in Part I, the�-term � 4= [un℄(: : : [u1℄() : : :) that evaluates to fug, i.e. to fTrueg or fFalseg. If� is the �-term desribing the redution of the term then, the onditional rewriterule l! r if is represented by the �-terml! [fTrue! r; False! ;g℄(�)or even the simpler, but maybe less suggestive one,l! [True! r℄(�):In the ase when � redues to fFalseg, in the latter representation the mathingfails and the result of the appliation is, as in the former one, the empty set. When� redues to fTrueg, the result of the redution is obviously the same in the twoases, i.e. the same as the appliation of l! r.By using the above representation, we an extend the Proposition given in Part Iand show that any derivation in a onditional rewriting theory is representable by anappropriate �-term.Proposition 3.4 Given a onditional rewriting theory TR and two �rst order groundterms t; t0 2 T (F) suh that t ��!R t0. Then, there exist the �-terms u1; : : : ; un builtusing the rewrite rules in R and the intermediate steps in the derivation t ��!R t0suh that we have [un℄(: : : [u1℄(t) : : :) ��!�; ft0g.The onstrution approah used in Part I for unonditional rewriting is obviouslynot onvenient and we need a method that allows us to build the �-term orrespondingto a rewrite redution without knowing a priori the redution steps. In order tobuild the �-term � using only the term and the rewrite rules of R, we an use thenormalization operators de�ned in Setion 2. For example, we an de�ne� 4= [im(R)℄():Example 3.5 Let us assume that the set of rules desribing the order on integers isdenoted by R<. We onsider the rewrite rule (f(x) ! g(x) if x � 1) that applied tothe term f(2) redues to g(2) sine x is instantiated by 2 and the ondition (2 � 1)redues to True by using the rewrite rule (2 � 1)! True.If we onsider that the ondition is normalized aording to R<, then the orre-sponding redution in the �-alulus is the following:[f(x)! [True! g(x)℄([im(R<)℄(x � 1))℄(f(2))�!Fire f[True! g(2)℄([im(R<)℄(2 � 1))g��!� f[True! g(2)℄(fTrueg)g�!Bath ff[True! g(2)℄(True)gg�!Fire fffg(2)ggg��!Flat fg(2)gThe onditions of the rewrite rules an be normalized aording to a set of ondi-tional rewrite rules, inluding the urrent rule, and thus the de�nition of the �-rewrite418

rules representing this normalization is intrinsially reursive and annot be realizedonly by using the operator im.We use the �xed-point operator � desribed in Setion 2.4 to represent the appli-ation of the same set of rewrite rules for the normalization of all the onditions.Given a set of rewrite rules R = Rn [R where Rn and R represent the subset ofnon-onditional rewrite rules and respetively the subset of onditional rewrite rulesof the form (l ! r if). We de�ne the termR 4= f ! (y ! [im(fli ! [True! ri℄([f ℄(i)) j i = 1 : : :mg [Rn)℄(y))where R = fli ! ri if i j i = 1 : : :mg, Rn = fl0i ! r0i j i = 1 : : : ng and respetivelyIM(R) 4= [�℄(R):Thus, for desribing the normalization of the term t w.r.t. the rewrite rules of Rwe use the �-term [IM(R)℄(t).The normalization strategy for the onditions is now abstrated by the variable fand sine IM(R) 4= [�℄(R) is redued to[R℄([�℄(R)) then this variable is instantiatedat the beginning by [�℄(R) (i.e. IM(R)). Thus, not only the initial term but alsothe onditions are redued aording to IM(R). This instantiation an be possiblyreiterated if some onditional rules suppose the appliation of other onditional rules.We obtain thus a result similar to Proposition 3.4 but with a method of onstrutionfor the orresponding �-term based only on the initial term and on the set of rewriterules.Proposition 3.6 Given a onditional rewriting theory TR and two �rst order groundterms t; t#2 T (F) suh that t is normalized to t# w.r.t. the set of rewrite rules R.Then, [IM(R)℄(t) is �-redued to a set ontaining the term t#.Example 3.7We onsider the set of rewrite rules R ontaining the rewrite rule(x = x) ! True and the onditional rewrite rules (f(x) ! g(x) if h(x) = b) and(h(x) ! b if x = a). The term f(a) redues to g(a) using the rewrite rules of R andwe show below the orresponding redution in �-alulus.Using the method presented above we obtain the �-term:R 4= f ! (y ! [im(ff(x)! [True! g(x)℄([f ℄(h(x) = b));h(x)! [True! b℄([f ℄(x = a));(x = x)! Trueg)℄(y))We show the main steps in the redution of the term [IM(R)℄(f(a)). We obtainimmediately the redution[IM(R)℄(f(a)) 4= [[�℄(R)℄(f(a)) ��!� [[R℄([�℄(R))℄(f(a)) 4= [[R℄(IM(R))℄(f(a))and the �nal result is the same as the one obtained for the term[im(ff(x)! [True! g(x)℄([IM(R)℄(h(x) = b));h(x)! [True! b℄([IM(R)℄(x = a));(x = x)! Trueg)℄(f(a))) 419

and thus for[f(x)! [True! g(x)℄([IM(R)℄(h(x) = b))℄(f(a))��!� f[True! g(a)℄([IM(R)℄(h(a) = b))gFor the term [IM(R)℄(h(a) = b) we proeed as previously and thus, we have toredue the term[im(ff(x)! [True! g(x)℄([IM(R)℄(h(x) = b));h(x)! [True! b℄([IM(R)℄(x = a));(x = x)! Trueg)℄(h(a) = b)with the intermediate redution[h(x)! [True! b℄([IM(R)℄(x = a))℄(h(a)) ��!� f[True! b℄([IM(R)℄(a = a))gSine we easily obtain [IM(R)℄(a = a) ��!� fTrueg then, the previous term isredued to f[True! b℄(fTrueg)g ��!� fbg and we have[IM(R)℄(h(a) = b) ��!� [im(: : :)℄(fbg = b) ��!� fTruegWe ome bak to the redution of the initial term and we getf[True! g(a)℄([IM(R)℄(h(a) = b))g ��!� f[True! g(a)℄(fTrueg)g ��!� fg(a)gWe have thus obtained the same result as in onditional term rewriting.Starting from the results presented in this setion we will give in the next setion arepresentation of the more elaborated rewrite rules used in ELAN, a language basedon onditional rewrite rules with loal assignments.4 The rewriting alulus as a semantis of ELAN4.1 ELAN's rewrite rulesELAN (a name that expresses the dynamism of the arrow), is an environment for spe-ifying and prototyping dedution systems in a language based on labeled onditionalrewrite rules and strategies to ontrol rule appliation. The ELAN system o�ers aompiler and an interpreter of the language. The ELAN language allows us to de-sribe in a natural and elegant way various dedution systems [29, 19, 3℄. It has beenexperimented on several non-trivial appliations ranging from deision proedures,onstraint solvers [6℄, logi programming [21℄ and automated theorem proving [10℄but also spei�ation and exhaustive veri�ation of authentiation protools [8℄.ELAN's rewrite rules are onditional rewrite rules with loal assignments. Theloal assignments are let-like onstrutions that allow appliations of strategies tosome terms. The general syntax of an ELAN rule is:[`℄ l) r [if ond j where y := (S)u ℄� endwhere ond is an ELAN expression that an be redued to a boolean value. If all theonditions are redued to the true value and all loal variables (e.g. y) are assigned420

with suess (i.e. the appliation of the strategy from the right-hand side of the loalassignment does not fail) then the rewrite rule an be applied.We should notie that the square brakets ([℄) in ELAN are used to indiate thelabel of the rule and should be distinguished from the square brakets of the �-alulusthat represent the appliation of a rewrite rule (�-term).A partial semantis ould be given to an ELAN program using rewriting logi [22,4℄, but more onveniently all ELAN's rules (and not only the onditional ones) andstrategies an be expressed using the �-alulus and thus an ELAN program is just aa �-term. The results of the evaluation of this �-term orrespond to all the possibleresults of the exeution of the initial ELAN program.Example 4.1 An example of a labeled ELAN rule desribing a possible naive way tosearh the minimal element of a list by sorting the list and taking the �rst element isthe following:[min-rule℄ min(l) => mif l != nilwhere sl := (sort) lwhere m := () head(sl) endThe strategy sort an be any sorting strategy. The operator head is supposed tobe desribed by a onuent and terminating set of unlabeled rewrite rules. Thus,sl is assigned the result of the appliation of a given set of labeled rules guidedby the strategy (sort), while m is assigned the result of the appliation of a givenset of unlabeled rules guided by the strategy () (i.e. the impliit built-in innermoststrategy).The evaluation strategy used for evaluating the onditions is a leftmost innermoststandard rewriting strategy.The non-determinism is handled mainly by two basi strategy operators: dontare hoose (denoted d(s1; : : : ; sn)) that returns the results of at most one non-deterministily hosen unfailing strategy from its arguments and dont know hoose(denoted dk(s1; : : : ; sn)) that returns all the possible results. A variant of the dontare hoose operator is the first hoose operator (denoted first(s1; : : : ; sn))that returns the results of the �rst unfailing strategy from its arguments.Several strategy operators implemented in ELAN allow us a simple and onise de-sription of user de�ned strategies. For example, the onatenation operator denoted\;" builds the sequential omposition of two strategies s1 and s2. The strategy s1; s2fails if s1 fails, otherwise it returns all results (maybe none) of s2 applied to the resultsof s1. Using the operator repeat* we an desribe the repeated appliation of a givenstrategy. Thus, repeat*(s) iterates the strategy s until it fails and then returns thelast obtained result.Any rule in ELAN is onsidered as a basi strategy and several other strategyoperators are available for desribing the omputations. Here is a simple exampleillustrating the way the first and dk strategies work.Example 4.2 If the strategy dk(x=>x+1,x=>x+2) is applied to the term a, ELANprovides two results: a+1 and a+2. When the strategy first(x=>x+1,x=>x+2) is ap-plied to the same term only the a+1 result is obtained. The strategy first(b=>b+1,a=>a+2) applied to the term a yields the result a+ 2.421

Using non-deterministi strategies, we an explore exhaustively the searh spae ofa given problem and �nd paths desribed by some spei� properties.For example, for proving the orretness of the Needham-Shroeder authentiationprotool [24℄ we look for possible attaks among all the behaviors during a session. InExample 4.3 we present just one of the rules of the protool and we give the strategylooking for all the possible attaks, a more detailed desription of the implementationis given in [8℄.Example 4.3We onsider the rewrite rules desribing the Needham-Shroeder au-thentiation protool that aims to establish a mutual authentiation between an ini-tiator and a responder that ommuniate via an inseure network (i.e. in presene ofintruders).The strategy looking for possible attaks applies repeatedly and non-deterministilyall the rewrite rules desribing the behavior of the protool (e.g. initiate) and of theintruder (e.g. intruder) and selets only those results representing an attak.[℄attStrat => repeat*(dk(initiate, ..., intruder));attakFound endThe non-deterministi appliation is desribed with the operator dk. The result ofthe strategy repeat*(...) is the set of all possible behaviors in a protool sessionwhere messages an be interepted or faked by an intruder. The strategy attakFoundjust heks if the term reeived as input represents an attak (by trying to apply therewrite rules orresponding to the negation of the desired invariants) and thereforeselets from the previous set of results only those representing an attak.4.2 The �-alulus representation of ELAN rulesThe rules of the system ELAN an be expressed using the �-alulus. A rule with noonditions and no loal assignments l) r is represented by l ! r and a onditionalrule is expressed as in Setion 3.2.4.2.1 Rules with loal assignmentsThe ELAN rewrite rules with loal assignments but without onditions of the form[`℄ l(x)) r(x; y)where y := (S)uan be represented by the �-terml(x)! r(x; [S�℄(u))or the �-term l(x)! [y ! r(x; y)℄([S�℄(u))with S�, the �-term orresponding to the strategy S in the �-alulus.The �rst representation syntatially replaes all variables of the right-hand sideof the rewrite rule de�ned in a loal assignment with the term whih instantiates422

the respetive variable. In the seond representation, eah variable de�ned in a loalassignment is bound in a �-rewrite rule whih is applied to the orresponding term.Example 4.4 The ELAN rule[deriveSum℄ p_1 + p_2 => p_1' + p_2'where p_1' := (derive)p_1where p_2' := (derive)p_2 endan be represented by one of the following two �-termsp1 + p2 ! [derive℄(p1) + [derive℄(p2);p1 + p2 ! [p01 ! [p02 ! p01 + p02℄([derive℄(p2))℄([derive℄(p1)):At this moment one an notie the usefulness of free variables in the rewrite rules.The latter representation of an ELAN rule with loal assignments would not be possibleif the variable p01 was not allowed to be free in the �-rule p02 ! p01 + p02. The freevariables in the right-hand side of a �-rewrite-rule also enables the parameterizationof rewrite rules by strategies as in y ! [f(x) ! [y℄(x)℄(f(a)) where the strategy tobe applied on x is not known in the rule f(x)! [y℄(x).Example 4.5We onsider the ELAN rule[deriveSum℄ x => y + ywhere y := (derive)x endLet us onsider that the strategy derive is dk(a=>b,a=>). Then, the appliationof the strategy derive to the term a gives the two results b and . Thus, the appli-ation of the rule deriveSum to the term a provides non-deterministially one of thefour results b+ b, b+ , + b, + .The �-representation of this rule isx! [fa! b; a! g℄(x) + [fa! b; a! g℄(x)that applied to a redues as follows[x! [fa! b; a! g℄(x) + [fa! b; a! g℄(x)℄(a)�!Fire f[fa! b; a! g℄(a) + [fa! b; a! g℄(a)g��!Distrib ff[a! b℄(a); [a! ℄(a)g+ f[a! b℄(a); [a! ℄(a)gg��!Fire fffbg; fgg+ ffbg; fggg�!Flat ffb; g+ fb; gg�!OpOnSet ffb+ fb; g; + fb; ggg�!OpOnSet fffb+ b; b+ g; f+ b; + ggg�!OpOnSet fffb+ b; b+ g; f+ b; + ggg��!Flat fb+ b; b+ ; + b; + gThis set represents exatly the four results obtained in ELAN.If we onsider more general ELAN rules ontaining loal assignments as well asonditions on the loal variables, the ombination of the methods used for onditionalrules and rules with loal assignments should be done arefully. If we had used arepresentation losed to the �rst one from Example 4.4 we would have obtained someinorret results as in Example 4.6. 423

Example 4.6We onsider the desription of an automaton by a set of rewrite rules,eah one desribing the transition from a state to another. The potential exeutionof a double transition from an initial state in a �nal state passing by a non-�nalintermediate state, an be desribed by the following ELAN rule:[double℄ x => next(y)where y := (dk(s1 => s2,s1 => s3)) xif nf(y)endThe term next(y) represents the state obtained by arrying out a transition fromy and this behavior an be easily represented in ELAN by a set of unlabeled rulesdesribing the operator nf. We note by Rf the set of rewrite rules desribing the�nal states and we suppose that s2 is a �nal state but s3 is not.By using the �rst representation approah of a rule with loal assignments and theoding method for onditional rules presented in Setion 3.2, we obtain the �-termorresponding to the previous ELAN rule:x! [True! next([fs1! s2; s1! s3g℄(x))℄([im(Rf)℄(nf([fs1! s2; s1! s3g℄(x))))This term applied to s1 leads to the following redution[x! [True! next([fs1! s2; s1! s3g℄(x))℄([im(Rf)℄(nf([fs1! s2; s1! s3g℄(x))))℄(s1)�!� f[True! next([fs1! s2; s1! s3g℄(s1))℄([im(Rf)℄(nf([fs1! s2; s1! s3g℄(s1))))g��!� f[True! next(fs2; s3g)℄([im(Rf)℄(nf(fs2; s3g)))g��!� f[True! fnext(s2); next(s3)g℄([im(Rf)℄(fnf(s2); nf(s3)g))g��!� f[True! fnext(s2); next(s3)g℄(fFalse; T rueg)g��!� ff[True! fnext(s2); next(s3)g℄(False); [True! fnext(s2); next(s3)g℄(True)gg��!� f;; [True! fnext(s2); next(s3)g℄(True)g��!� f;; fnext(s2); next(s3)gg��!� fnext(s2); next(s3)gwhile in ELAN we obtain the only result next(s3) that would be represented by the�-term fnext(s3)g.The problem in the Example 4.6 is the double evaluation of the term[fs1 ! s2; s1 ! s3g℄(s1) replaing the loal variable y: one in the ondition andone in the right-hand side of the rule. If this term is evaluated to a set with morethan one element and one of its elements satis�es the ondition, then this set replaesthe orresponding variables in the right-hand side of the rule, while only the sub-set of elements satisfying the ondition should be onsidered. Therefore, we need amehanism that evaluates only one eah of the loal assignments of a rule.We use an approah ombining the seond representation approah of a rule withloal assignments and the �-representation of onditional rules. Without losing gen-erality, we onsider that an ELAN rule that has the following form:424

[label℄ l =) rdxeq where x := (s)tif CdxependThen, the ELAN rule presented above is expressed as the �-terml! [x! [fTrue! rdxeq ; False! ;g℄([im(R)℄(Cdxep))℄([s℄(t))or the simpler onel ! [x! [True! rdxeq ℄([im(R)℄(Cdxep))℄([s℄(t))where R represents the set of rewrite rules modulo whih we normalize the onditions.In order to simplify the presentation we supposed that the rules of the set R arerewrite rules of the form l ! r and thus, the operator im is suÆient to de�nenormalization w.r.t. suh a set. If we onsider onditional unlabeled rules, then theoperator IM must be employed.The way the transformation is applied to an ELAN rewrite rule and the orrespond-ing redution are illustrated by taking again the Example 4.6 and onsidering the newrepresentation.Example 4.7 The ELAN rewrite rule from Example 4.6 is represented by the �-termx! [y ! [True! next(y)℄([im(Rf)℄(nf(y)))℄([fs1! s2; s1! s3g℄(x))that, applied to the term s1 leads to the following redution[x! [y ! [True! next(y)℄([im(Rf)℄(nf(y)))℄([fs1! s2; s1! s3g℄(x))℄(s1)�!Firef[y ! [True! next(y)℄([im(Rf)℄(nf(y)))℄([fs1! s2; s1! s3g℄(s1))g��!� f[y ! [True! next(y)℄([im(Rf)℄(nf(y)))℄(fs2; s3g)g��!� f[y ! [True! next(y)℄([im(Rf)℄(nf(y)))℄(s2);[y ! [True! next(y)℄([im(Rf)℄(nf(y)))℄(s3)g��!Fireff[True! next(s2)℄([im(Rf)℄(nf(s2)))g;f[True! next(s3)℄([im(Rf)℄(nf(s3)))gg��!� f[True! next(s2)℄(False); [True! next(s3)℄(True)g��!� f;; fnext(s3)gg��!� fnext(s3)gthat is the representation of the result obtained in ELAN.The same result as in Example 4.6 is obtained if the evaluation rule Fire is appliedbefore the distribution of the set fs2; s3g. But the onuent strategies presented inPart I forbid suh a redution and thus, the orret result is obtained.This latter representation not only allows a orret transformation of ELAN re-dutions in �-redutions but gives also a hint on the implementation details of suhrewrite rules. On one hand the implementation should ensure the orretness of theresult and on the other hand it should take into aount the eÆieny problems. Forinstane, the representation used in Example 4.5 is orret but obviously less eÆient425

than a representation as in Example 4.7 and this is due to the double evaluation ofthe same appliation.The ELAN evaluation mehanism is more omplex than presented above sine itdistinguishes between labeled rewrite rules and unlabeled rewrite rules. The unlabeledrewrite rules are used to normalize the result of all the appliations of a labeled rewriterule to a term. When evaluating a loal assignment where v:=(S) t of an ELANrewrite rule, the term t is �rst normalized aording to the spei�ed set of unlabeledrewrite rules and then the strategy S is applied to its normal form. Moreover, eahtime a labeled rewrite rule is applied to a term, the ELAN evaluation mehanismnormalizes the result of its appliation with respet to the set of unlabeled rewriterules.Hene, the ELAN rewrite rule from Example 4.6 should be represented in the�-alulus by the termx! [im(Rf)℄([y ! [True! next(y)℄([im(Rf)℄(nf(y)))℄([fs1! s2; s1! s3g℄([im(Rf)℄(x))))where Rf represents the set of (unlabeled) rewrite rules modulo whih we normalizethe loal assignments.4.2.2 General strategies in the loal assignmentsUntil now we have onsidered in the loal assignments of a rule only strategies thatdo not use the respetive rewrite rule. The representation of an ELAN rule with loalalls to strategies de�ned by using this rule must be parameterized by the de�nitionof the respetive strategies. For example, a rule with loal assignments of the form[label℄ l =) r where x := (s)tis represented by the �-termlabel(f) 4= l ! [x! r℄([[f ℄(s)℄(t))where the free variable f will be instantiated by the set of strategies of the programontaining the rule labeled by label.4.2.3 ELAN strategies and programsThe elementary ELAN strategies has, in most of the ases, a diret representation inthe �-alulus. The identity (id) and the failure (fail) as well as the onatenation(;) are diretly represented in the �-alulus by the �-operators id, fail and \;"respetively, de�ned in Setion 2.1. The strategy dk(S1; : : : ; Sn) is represented in the�-alulus by the set fS1; : : : ; Sng and the strategy first(S1; : : : ; Sn) by the �-termfirst(S1; : : : ; Sn) de�ned in Setion 2.2. The iteration strategy operator repeat� iseasily represented by using the �-operator repeat� .Strategies an be used in the evaluation of the loal assignments and these strategiesare expressed using rewrite rules. Therefore, the ELAN strategies an be representedby �-terms in the same way as the ELAN rewrite rules.426

Example 4.8 The ELAN strategy attStrat used in Example 4.3 is immediately rep-resented by the �-termattStrat� ! repeat�(finitiate�; : : : ; intruder�g); attakFound�where we suppose that initiate�, intruder�, attakFound� are the representations in�-alulus of the orresponding ELAN strategies.For the representation of the user-de�ned strategies in an ELAN program we usean approah based on the �xed-point operator and similar to that used in the aseof onditional rules in Setion 3.2. If we onsider an ELAN program ontaining thestrategies S1; : : : ; Sn and a set of labeled rules, then the �-term representing theprogram is P 4= [�℄(S)where S 4= f ! (y ! [fSi ! Bodyi j i = 1 : : : ng℄(y))and Bodyi represent the right-hand sides of the strategies with eah strategy Si re-plaed by [f ℄(Si), eah rule label replaed by the �-representation of the rule and eahELAN strategy operator replaed by its orrespondent in the �-alulus.To sum-up, we present the transformation of an ELAN program in a �-term.De�nition 4.9We onsider an ELAN without importations.1. The signature of the orresponding �-alulus is obtained from the operator de-larations of the ELAN program.2. Starting from unlabeled rules of the form[℄ li(x) =) ri(x; y) where (sort) ui(y) := ()ti(x)if i(x; y)endwe build the termRnn 4= f ! (z ! [im(fli(x)! [ui(y)! [True! ri(x; y)℄([f ℄(i(x; y)))℄(ti(x))j i = 1 : : : ng)℄(z))The innermost normalization w.r.t. the set of unlabeled rules is represented bythe term IMnn 4= [�℄(Rnn)The enoding is extended in an inremental way to rules ontaining several ondi-tions and loal assignments. The enoding an be simpli�ed if the program doesnot ontain unlabeled onditional rules; in this ase the term IMnn beomesIMnn 4= im(fli(x)! [ui(y)! ri(x; y)℄(ti(x)) j i = 1 : : : ng)where the rules with loal assignments an be simpli�ed to elementary rules.427

3. For eah labeled rule of the form[label℄ l(x) =) r(x; y) where (sort) u(y) := (s)t(x)if (x; y)endwe build the termlabel(f) 4= f ! (l(x)! [IMnn℄([u(y)! [True! r(x; y)℄([IMnn℄((x; y)))℄([[f ℄(s)℄([IMnn℄(t(x))))))4. For eah strategy of the form[℄ S =) Bodyendwe build the termS ! BodyRho(f)where BodyRho represents the right-hand side Body of the strategy with eahstrategy symbol Si replaed by [f ℄(Si), eah rule label label replaed by the�-representation label(f) of the rule and eah ELAN strategy operator replaedby its orrespondent in the �-alulus.The ELAN program de�ning the strategies S1; : : : ; Sn is represented by the �-termP 4= [�℄(S)where S 4= f ! (z ! [fSi ! BodyRhoi(f) j i = 1 : : : ng℄(z))and BodyRhoi(f) represents the enoding of the strategy Si.The appliation of a strategy S of an ELAN program P to a term t is representedby the �-term [[P ℄(s)℄(t) where P is the �-term representing the program P and sis the name of the strategy S. If the exeution of the program P for evaluating theterm t aording to the strategy S leads to the results u1; : : : ; un, then the �-term[[P ℄(s)℄(t) is redued to the set term fu1; : : : ; ung.In Example 4.10 we present an ELAN module and the �-interpretations of all therules and strategies and thus, of the ELAN program.Example 4.10 The module automaton desribes an automaton with the states s1,s2,s3,s4,s5 and with the non-deterministi transitions desribed by a set of rules on-taining the rules labeled with r12,r13,r25,r32,r34,r41. The operator next de�nesthe next state in a deterministi manner and its behavior is desribed by a set of un-labeled rules. The states an be \�nal" (final) or \losed" (losed). The doubletransitions with an intermediate non-�nal and non-losed state are desribed by therules double f and respetively double .428

module automatonimport global bool;endsort state ;endoperators globals1,s2,s3,s4,s5 : state;next(�) : (state) state;final(�) : (state) bool;losed(�) : (state) bool;endstratop globalfollow : <state -> state> bs;gen_double : <state -> state> bs;ond_double : <state -> state> bs;endrules for boolglobal[℄ final(s_1) => false end [℄ losed(s_1) => false end[℄ final(s_2) => true end [℄ losed(s_2) => false end[℄ final(s_3) => false end [℄ losed(s_3) => true end[℄ final(s_4) => false end [℄ losed(s_4) => true end[℄ final(s_5) => true end [℄ losed(s_5) => true endendrules for statex,y : state;global[r12℄ s1 => s2 end [℄ next(s1) => s3 end[r13℄ s1 => s3 end [℄ next(s2) => s5 end[r25℄ s2 => s5 end [℄ next(s3) => s2 end[r32℄ s3 => s2 end [℄ next(s4) => s1 end[r34℄ s3 => s4 end [℄ next(s5) => s5 end[r41℄ s4 => s1 end[double_f℄ x => next(y)where y := (follow) xif not final(y) end[double_℄ x => next(y)where y := (follow) xif not losed(y) endendstrategies for stateimpliit[℄follow => dk(r12,r13,r25,r32,r34,r41) end[℄gen_double => follow;follow end[℄ond_double => dk(double_f,double_) endendend 429

We denote by B the set of unlabeled rules de�ned in the imported modules booland desribing operations on booleans.The set of unlabeled rules from the module automaton are represented by the�-termR 4= fnext(s1)! s3; : : : ; next(s5)! s5;final(s1)! false; : : : ; final(s5)! true;losed(s1)! false; : : : ; losed(s5)! truegand we note RC = R [B.The rules labeled with double f and double are represented by the �-rulesdouble f(f) 4= x! [im(RC)℄([y ! [True! next(y)℄([im(RC)℄(not final(y)))℄([[f ℄(follow)℄([im(RC)℄(x))))and respetivelydouble (f) 4= x! [im(RC)℄([y ! [True! next(y)℄([im(RC)℄(not losed(y)))℄([[f ℄(follow)℄([im(RC)℄(x))))The strategies from the module automaton are represented by the �-termsfollow 4= follow ! fs1! s2; s1! s3; s2! s5; s3! s2; s3! s4; s4! s1ggen double(f) 4= gen double! [f ℄(follow); [f ℄(follow)ond double(f) 4= ond double! fdouble f(f); double (f)gand we obtain the term representing the ELAN program automatonautomaton 4= [�℄(S)whereS 4= f ! (y ! [ffollow; gen double(f); ond double(f)g℄(y))The exeution of the program automaton for evaluating the term s1 with the strat-egy ond double orresponds to the redution of the term[[automaton℄(ond double)℄(s1)In ELAN, we obtain for suh an exeution the results 2 and 5 and the redution ofthe orresponding �-term leads to the set f2; 5g.In Example 4.10 we presented a relatively simple ELAN module but, representativefor the main features of the ELAN language. Following the same methodology, moreompliated rules and strategies an be handled.Notie that this provides, in partiular, a very preise desription of all the rewritingprimitives, inluding the semantis of the onditional rewriting used by the language.To the best of our knowledge, this is the �rst expliit and full desription of a rewritebased programming language. 430

5 ConlusionUsing the �1st-alulus, an extension of the �-alulus, appropriate de�nitions of termtraversal operators and of a �xed-point operator an be given. This enables us to applyrepeatedly a (set of) rewrite rule(s) and onsequently to de�ne a �-term representingthe normalization aording to a set of rewrite rules. Starting from this representationwe showed how the �1st-alulus an be used to de�ne onditional rewriting and togive a semantis to ELAN modules. Of ourse, this ould be applied to many otherframeworks, inluding rewrite based languages like ASF+SDF, ML, Maude, Strategoor CafeOBJ but also prodution systems and non-deterministi transition systems.Starting from these �rst results on the rewriting alulus, we have already explored,in subsequent papers, two di�erent diretions: the �-alulus with expliit substitu-tions and typed rewriting aluli. In [9℄ we have proposed a version of the aluluswhere the substitution appliation is desribed at the same level as the other evalua-tion rules. Starting from the �-alulus with expliit substitutions, and in partiularthe ��*-alulus, we developed the �-alulus with expliit substitutions, alled the��-alulus and we showed that the ��-alulus is onuent under the same onditionsas the �;-alulus. Indeed, what makes the expliit substitution setting even moreinteresting than in the ase of �-alulus is that not only the substitution and there-fore renaming mehanism is handled expliitly, but the substitution itself is expliitlyrepresented. This is extremely useful sine omputing a substitution ould be veryexpensive like for assoiativity-ommutativity where the mathing algorithm is expo-nential in the size of terms. Moreover, sine a derivation may fail (like when searhingfor the right instane of a onditional), memorizing the substitution is mandatory.This allows us in partiular to use the �-alulus with expliit substitutions as thelanguage to desribe proof terms of ELAN omputations.The �-alulus is not terminating in the untyped ase. In order to reover thisproperty we have imposed in [11℄ a more strit disipline on the �-term formationby introduing a type for eah term. We presented a type system for the �;-alulusand we showed that it has the subjet redution and strong normalization properties,i.e. that the redution of any well-typed term is terminating and preserves the typeof the initial term. Additionally, we have given a new presentation �a la Churh tothe �-alulus [13℄, together with nine (8+1) type systems whih an be plaed in a�-ube that extends the �-ube of Barendregt. Quite interestingly, this typed alulususes only one abstrator, namely the rule arrow. It provides therefore a solution tothe identi�ation of the � and � abstrators.We used the sets to represent the non-determinism and we mentioned that otherstrutures an be used. For example, if we want to represent all the results of anappliation and not only the di�erent results, then multisets must be used and if theorder of the results is signi�ant, then a list struture is more suitable. We have thusstarted the study of another desription of the �-alulus having as parameter not onlythe mathing theory but also the struture used for the results and we have alreadyshown its expressive power [12℄. More preisely, we analyzed the orrespondenebetween the �-alulus and two objet oriented aluli: the \Objet Calulus" ofAbadi and Cardelli [1℄ and the \Lambda Calulus of Objets" of Fisher, Honsell andMithell [16℄. The approah that we proposed allows the representation of objetsin the style of the two mentioned aluli but also of more elaborate objets whose431

behavior is desribed by using the mathing power.As a new emergent framework, the �T -alulus o�ers an original view point onrewriting and higher-order logi and it opens new hallenges to further understandrelated topis. First, to go further in the study and the use of the �T -alulus forthe ombination of �rst-order and higher-order paradigms, the investigation of therelationship of this alulus with higher-order rewrite onepts like CRS and HOR [30℄should be deepened. Seond, several diretions should be investigated, amongst them,we an mention the following:- The analysis of the properties of the �T -alulus with a mathing theory T moreelaborate than syntati mathing.- A generi desription of the onditions whih must be imposed for the mathingtheory T in order to obtain the onuene and the termination of the �T -alulusshould be de�ned and then, show that these onditions are satis�ed for partiulartheories suh as assoiativity and ommutativity.- The models of the rewriting alulus should be de�ned, studied and omparedwith the ones of the algebrai as well as higher-order strutures.- As mentioned previously, we onjeture that the �1st-alulus an not be expressedin the �-alulus beause of the semantis of the empty set as rule appliationfailure.Finally, from the pratial point of view, the various instanes of the �-alulusmust be further implemented and used as rewriting tools. We have already realizedan implementation in ELAN of the �;-alulus and we experimented with variousevaluation strategies. This implementation ould be further used in order to de�neobjet oriented paradigms. Dually, an objet oriented version of the ELAN languagehas been realized [14℄, with a semantis given by the rewriting alulus.This shows that this new alulus is very attrative in terms of semantis as well asunifying apabilities and we believe that it an serve as a basi tool for the integrationof semanti and logial frameworks.AknowledgmentsWe would like to thank H�el�ene Kirhner, Pierre-Etienne Moreau and ChristopheRingeissen from the Protheo Team for the useful interations we had on the top-is of this paper, Vinent van Oostrom for suggestions and pointers to the literature,Roberto Bruni and David Wolfram for their detailed and very useful omments ona preliminary version of this work and Delia Kesner for fruitful disussions. We aregrateful to Luigi Liquori for many omments and exiting disussions on the �-alulusand its appliations. Many thanks also to Th�er�ese Hardin and Nahum Dershowitzfor their interest, enouragements and helpful suggestions for improvement. Finallyspeial thanks are due to the referees for the very omplete and areful reading of thepaper as well as onstrutive and useful remarks.
432

Referenes[1℄ M. Abadi and L. Cardelli. A Theory of Objets. Springer Verlag, 1996.[2℄ H. P. Barendregt. The Lambda-Calulus, its syntax and semantis. Studies in Logi and theFoundation of Mathematis. Elsevier Siene Publishers B. V. (North-Holland), Amsterdam,1984. Seond edition.[3℄ P. Borovansk�y, C. Kirhner, H. Kirhner, P.-E. Moreau, and M. Vittek. ELAN: A logial frame-work based on omputational systems. In J. Meseguer, editor, Proeedings of the �rst interna-tional workshop on rewriting logi, volume 4 of Eletroni Notes in TCS, Asilomar (California),September 1996.[4℄ P. Borovansk�y, C. Kirhner, H. Kirhner, and P.-E. Moreau. ELAN from the rewriting logipoint of view. Researh report, LORIA, November 1999.[5℄ A. Bouhoula and M. Rusinowith. Impliit indution in onditional theories. Journal of Auto-mated Reasoning, 14(2):189{235, 1995.[6℄ C. Castro. Une approhe d�edutive de la r�esolution de probl�emes de satisfation de ontraintes.Th�ese de Dotorat d'Universit�e, Universit�e Henri Poinar�e { Nany 1, Frane, 1998.[7℄ M. Clavel, S. Eker, P. Linoln, and J. Meseguer. Priniples of Maude. In J. Meseguer, editor,Proeedings of the �rst international workshop on rewriting logi, volume 4, Asilomar (Califor-nia), September 1996. Eletroni Notes in Theoretial Computer Siene.[8℄ H. Cirstea. Speifying Authentiation Protools Using ELAN. In Workshop on Modelling andVeri�ation, Besanon, Frane, Deember 1999.[9℄ H. Cirstea. Calul de r�e�eriture : fondements et appliations. Th�ese de Dotorat d'Universit�e,Universit�e Henri Poinar�e - Nany I, 2000.[10℄ H. Cirstea and C. Kirhner. Theorem Proving Using Computational Systems: The Case of theB Prediate Prover. In Workshop CCL'97, Shlo� Dagstuhl, Germany, September 1997.[11℄ H. Cirstea and C. Kirhner. The Simply Typed Rewriting Calulus. In 3rd International Work-shop on Rewriting Logi and its Appliations, Kanazawa, Japan, September 2000. EletroniNotes in Theoretial Computer Siene.[12℄ H. Cirstea, C. Kirhner, and L. Liquori. Mathing Power. In A. Middeldorp, editor, Proeed-ings of RTA'2001, Leture Notes in Computer Siene, Utreht (The Netherlands), May 2001.Springer-Verlag.[13℄ H. Cirstea, C. Kirhner, and L. Liquori. The Rho Cube. In F. Honsell, editor, Foundationsof Software Siene and Computation Strutures, Leture Notes in Computer Siene, Genova,Italy, April 2001.[14℄ H. Dubois and H. Kirhner. Objets, rules and strategies in ELAN. In Proeedings of the seondAMAST workshop on Algebrai Methods in Language Proessing, Iowa City, Iowa, USA, May2000.[15℄ N. Dershowitz and M. Okada. A rationale for onditional equational programming. TheoretialComputer Siene, 75:111{138, 1990.[16℄ K. Fisher, F. Honsell, and J. C. Mithell. A Lambda Calulus of Objets and Method Speial-izatio n. Nordi Journal of Computing, 1(1):3{37, 1994.[17℄ K. Futatsugi and A. Nakagawa. An overview of CAFE spei�ation environment { an alge-brai approah for reating, verifying, and maintaining formal spei�ations over networks. InProeedings of the 1st IEEE Int. Conferene on Formal Engineering Methods, 1997.[18℄ M. Gordon, A. Milner, and C. Wadsworth. Edinburgh LCF: A Mehanized Logi of Computation,volume 78 of Leture Notes in Computer Siene. Springer-Verlag, New York (NY, USA), 1979.[19℄ C. Kirhner, H. Kirhner, and M. Vittek. Designing onstraint logi programming languagesusing omputational systems. In P. Van Hentenryk and V. Saraswat, editors, Priniples andPratie of Constraint Programming. The Newport Papers., hapter 8, pages 131{158. The MITpress, 1995.[20℄ P. Klint. The ASF+SDF Meta-environment User's Guide. Tehnial report, CWI, 1993.[21℄ C. Kirhner and C. Ringeissen. Rule-Based Constraint Programming. Fundamenta Informatiae,34(3):225{262, September 1998.[22℄ J. Meseguer. Conditional rewriting logi as a uni�ed model of onurreny. Theoretial ComputerSiene, 96(1):73{155, 1992. 433

[23℄ R. Milner. A proposal for standard ML. In Proeedings ACM Conferene on LISP and Fun-tional Programming, 1984.[24℄ R. Needham and M. Shroeder. Using enryption for authentiation in large networks of om-puters. Communiations of the ACM, 21(12):993{999, 1978.[25℄ Protheo Team. The ELAN home page. WWW Page, 2001. http://elan.loria.fr.[26℄ A. M. Turing. The }-funtions in �-K-onversion. The Journal of Symboli Logi, 2:164, 1937.[27℄ E. Visser and Z. el Abidine Benaissa. A ore language for rewriting. In C. Kirhner andH. Kirhner, editors, Proeedings of the seond International Workshop on Rewriting Logiand Appliations, volume 15, http://www.elsevier.nl/loate/ents/volume16.html, Pont-�a-Mousson (Frane), September 1998. Eletroni Notes in Theoretial Computer Siene.[28℄ E. Visser. Strategi pattern mathing. In P. Narendran and M. Rusinowith, editors, RewritingTehniques and Appliations (RTA'99), volume 1631 of Leture Notes in Computer Siene,pages 30{44, Trento, Italy, July 1999. Springer-Verlag.[29℄ M. Vittek. ELAN: Un adre logique pour le prototypage de langages de programmation aveontraintes. Th�ese de Dotorat d'Universit�e, Universit�e Henri Poinar�e { Nany 1, Otober1994.[30℄ V. van Oostrom and F. van Raamsdonk. Comparing ombinatory redution systems and higher-order rewrite systems. In HOA'93, volume 816 of Leture Notes in Computer Siene, pages276{304. Springer-Verlag, 1993.Reeived Otober 1, 2000. Revised: January 26, 2001, February 9, 2001

434

Tableau Reasoning andProgramming with Dynami FirstOrder LogiJan van Eijk, CWI and ILLC, Amsterdam, E-mail: jve�wi.nl.Juan Heguiabehere, ILLC, Amsterdam, E-mail: juanh�wins.uva.nl.Breannd�an �O Nuall�ain, ILLC, Amsterdam, E-mail: bon�ill.uva.nl.AbstratDynami First Order Logi (DFOL) results from interpreting quanti�ation over a variable v ashange of valuation over the v position, onjuntion as sequential omposition, disjuntion as non-deterministi hoie, and negation as (negated) test for ontinuation. We present a tableau stylealulus for DFOL with expliit (simultaneous) binding, prove its soundness and ompleteness, andpoint out its relevane for programming with DFOL, for automated program analysis inluding loopinvariant detetion, and for semantis of natural language. We also extend this to an in�nitaryalulus for DFOL with iteration and onnet up with other work in dynami logi.Keywords: Dynami Logi, First Order Logi, Assertion Calulus, Tableau Reasoning1 IntrodutionThe language we use and analyze in this paper onsists of formulas that an be usedboth for programming and for making assertions about programs. The only di�erenebetween a program and an assertion is that an assertion is a program with its furtheromputational e�et bloked o�. In the notation we will introdue below: if � is aprogram, then ((�)) is the assertion that the program � an be exeuted. Exeutionof � will in general lead to a set of omputed answer bindings, exeution of ((�)) to ayes/no answer indiating suess or failure of �.Sine the formulas of our language, DFOL, an be used for desription and om-putation alike, our alulus is both an exeution mehanism for DFOL and a tool fortheorem proving in DFOL. One of the bene�ts of mixing alulation and assertion isthat the alulus an be put to use to automatially derive assertions about programsfor purposes of veri�ation. And sine DFOL has its roots in Natural Language pro-essing (just as Prolog does), we also see a future for our tool-set in a omputationalsemantis of natural language.We start our enterprise by developing a theory of binding for DFOL that we thenput to use in a alulus for DFOL with expliit binding. The expliit bindings repre-sent the intermediate results of alulation that get arried along in the omputationproess. We illustrate with examples from standard �rst order reasoning, naturallanguage proessing, imperative programming, and derivation of postonditions forimperative programs. 435L. J. of the IGPL, Vol. 9 No. 3, pp. 435{469 2001 Oxford University Press

436 Tableau Reasoning and Programming with Dynami First Order LogiFinally, we develop an in�nitary alulus for DFOL plus iteration, with a omplete-ness proof. Details of the relationships with existing aluli are given below. The twoaluli that are the subjet of this paper form the omputation and inferene en-gine of a toy programming language for theorem proving and omputing with DFOL,Dynamo.2 Dynami First Order LogiDynami First Order Logi results from interpreting quanti�ation over v as hangeof valuation over the v position, onjuntion as sequential omposition, disjuntion asnondeterministi hoie, and negation as (negated) test for ontinuation. See Groe-nendijk and Stokhof [16℄ for a presentation and Visser [31℄ for an in-depth analysis. Asound and omplete sequent style alulus for DFOL (without hoie) was presentedin Van Eijk [12℄. In this paper we present a alulus that also overs the hoie op-erator, and that is muh loser to standard analyti tableau style reasoning for FOL(see Smullyan [29℄ for a lassial presentation, Fitting [13℄ for a textbook treatmentand onnetions with automated theorem proving, [17℄ for an exellent overview, and[8℄ for an enylopedi aount).For appliations of DFOL to programming, the presene of the hoie operation [inthe language is ruial: hoie is the basis of `if then else', and of all nondeterministiprogramming onstruts for exploring various avenues towards a solution. It an (andhas been) argued that the full expressive power of [is not neessary for appliations ofDFOL to natural language semantis. In fat, the presentation of dynami prediatelogi (DPL) in [16℄ does not over [: in DPL, hoie is handled in terms of negationand onjuntion, with the argument that natural language `or' is externally stati.This means that an `or' onstrution behaves like a test. The present alulus dealswith DFOL inluding hoie.A very onvenient extension that we immediately add to DFOL is representationof simultaneous binding. It is well known that bindings or substitutions are de�nablein DFOL. Still we will onsider them as operators in their own right, in the spirit ofVenema [30℄, where substitutions are studied as modal operators. Simultaneous bind-ings an in general not be expressed in terms of single bindings without introduingauxiliary variables. E.g., the swap of variables x and y in the simultaneous binding[y=x; x=y℄ an only be expressed as a sequene of single bindings at the expense ofavailing ourselves of an extra variable z, as z := x;x := y; y := z. The dynamie�et of this sequene of single bindings is not quite the same as that of [y=x; x=y℄,for z := x;x := y; y := z hanges the value of z, while [y=x; x=y℄ does not, and thesemantis of DFOL is sensitive to suh subtle di�erenes.A �rst order signature � is a pair hP�; F�i, with P� a set of prediate onstantsand F� a set of funtion onstants. Let V be an in�nite set of variables, and leta : (P� [F�) ! N be a funtion that assigns to every prediate or funtion symbolits arity. The funtion symbols with arity 0 are the individual onstants. The set T�of terms over the signature is given in the familiar way, by t ::= v j ft1 � � � tn, wherev ranges over V and f over F�, with a(f) = n. The sub-terms of a term are given asusual. We will write sequenes of terms t1; : : : ; tn as �t.A binding � is a funtion V ! T� that makes only a �nite number of hanges,i.e., � has the property that dom(�) = fv 2 V j �(v) 6= vg is �nite. See Apt [1℄ and

2. DYNAMIC FIRST ORDER LOGIC 437Doets [10℄ for luid introdutions to the subjet of binding in the ontext of logiprogramming. We will use rng(�) for f�(v) 2 T� j �(v) 6= vg, and var(rng(�)) for[fvar(�(v)) j v 2 dom(�)g, where var(t) is the set of variables ourring as a subtermin t. An expliit form (or: a representation) for binding � is a sequene[�(v1)=v1; : : : ; �(vn)=vn℄;where fv1; : : : ; vng = dom(�), (i.e., �(vi) 6= vi, for only the hanges are listed), andi 6= j implies vi 6= vj (i.e., eah variable in the domain is mentioned only one).We will use [℄ for the binding that hanges nothing, i.e, [℄ is the only binding �with dom(�) = ;. We use �; �, possibly with indies, as meta-variables ranging overbindings. Representations for bindings are given, as usual, by:� ::= [℄ j [t1=v1; : : : ; tn=vn℄ provided ti 6= vi; and vi = vj implies i = j:We let Æ denote the syntati operation of omposition of binding representations:Let � = [t1=v1; : : : ; tn=vn℄ and � = [r1=w1; : : : ; rm=wm℄ be binding representa-tions. Then � Æ � is the result of removing from the sequene[�(r1)=w1; : : : ; �(rm)=wm; t1=v1; : : : ; tn=vn℄the binding pairs �(ri)=wi for whih �(ri) = wi, and the binding pairs tj=vjfor whih vj 2 fw1; : : : ; wmg.For example, [x=y℄ Æ [y=z℄ = [x=z; x=y℄, [x=z; y=x℄ Æ [z=x℄ = [x=z℄.We are now in a position to de�ne the DFOL language L� over signature �. Wedistinguish between DFOL units and DFOL formulas (or sequenes).De�nition 2.1 (The DFOL language L� over signature �)t ::= v j f�tU ::= � j 9v j P �t j t1 := t2 j :(�) j (�1 [�2)We will omit parentheses where it doesn't reate syntati ambiguity, and allow theusual abbreviations: we write ? for :([℄), :P �t for :(P �t), t1 6= t2 for :(t1 := t2),�1 [�2 for (�1 [�2). Similarly, (� !) abbreviates :(�;:()), 8v(�) abbreviates:(9v;:(�)). A formula � is a literal if � is of the form P �t or :P �t, or of the formt1 := t2 or t1 6= t2. The omplement � of a formula � is given by: � := if � has theform :() and � := :(�) otherwise. We abbreviate ::(�) as ((�)), and we will allformulas of the form ((�)) blok formulas.We an think of formula � as built up from units U by onatenation. For formulaindution arguments, it is sometimes onvenient to read a unit U as the formula U ; [℄(reall that [℄ is the empty binding), thus using [℄ for the empty list formula. In otherwords, we will silently add the [℄ at the end of a formula list when we need its presenein reursive de�nitions or indution arguments on formula struture.Given a �rst order model M = (D; I) for signature �, the semantis of DFOLlanguage L� is given as a binary relation on the set VD, the set of all variable maps(variable states, valuations) into the domain of the model. We impose the usual non-empty domain onstraint of FOL: any � modelM = (D; I) has D 6= ;. If s; u 2 VD,

438 Tableau Reasoning and Programming with Dynami First Order Logiwe use s �v u to indiate that s; u di�er at most in their value for v, and s �X u toindiate that s; u di�er at most in their values for the members of X . If s 2 VD andv; v0 2 V , we use s[v0=v℄ for the valuation u given by u(v) = s(v0), and u(w) = s(w)for all w 2 V with w 6= v. Also, if s and v are as before and d 2 D we use s[d=v℄ forthe valuation u given by u(v) = d, and u(w) = s(w) for all w 2 V with w 6= v.M j=s P �t indiates that s satis�es the prediate P �t inM aording to the standardtruth de�nition for lassial �rst order logi. [[t℄℄Ms gives the denotation of t in Munder s. If � is a binding and s a valuation (a member of VD), we will use s� for thevaluation u given by u(v) = [[�(v)℄℄Ms .De�nition 2.2 (Semantis of DFOL)s[[�℄℄Mu i� u = s�s[[9v℄℄Mu i� s �v us[[P �t℄℄Mu i� s = u and M j=s P �ts[[t1 := t2℄℄Mu i� s = u and [[t1℄℄Ms = [[t2℄℄Mss[[:(�)℄℄Mu i� s = u and there is no u0 with s[[�℄℄Mu0s[[�1 [�2℄℄Mu i� s[[�1℄℄Mu or s[[�2℄℄Mus[[U ;�℄℄Mu i� there is a u0 with s[[U ℄℄Mu0 and u0 [[�℄℄MuNote that it follows from this de�nition thats[[((�))℄℄Mu i� s = u and there is a u0 with s[[�℄℄Mu0 :Thus, blok formulas have their dynami e�ets bloked o�: double negation trans-forms the semanti transition relation into a test.We introdue a syntati bloking operation on formulas as follows (= is used forsyntati identity):De�nition 2.3 (Bloking Operation on Formulas)(�)� := ((�))(9v)� := ((9v))(P �t)� := P �t(t1 := t2)� := t1 := t2(:(�))� := :(�)(�1 [�2)� := � (�1 [�2) if �1� = �1; �2� = �2;((�1 [�2)) otherwise(U ;�)� := � U ;� if U� = U; �� = �;((U ;�)) otherwise.E.g., (9x;Px)� = ((9x;Px)), and (:(9x;Px))� = :(9x;Px). By indution on for-mula struture we get from De�nitions 2.2 and 2.3 that the bloking operation makesa formula into a test, in the following sense:

3. BINDING IN DFOL 439Proposition 2.4 For allM and all valuations s; u forM, all L� formulas �: s[[��℄℄Mui� s = u and there is a u0 with s[[�℄℄Mu0 .The key relation we want to get to grips with in this paper is the dynami entailmentrelation that is due to [16℄:De�nition 2.5 (Entailment in DFOL) � dynamially entails , notation � j= ,:, for all L� models M, all valuations s; u for M, if s[[�℄℄Mu then there is a variablestate u0 for whih u[[℄℄Mu0 .3 Binding in DFOLBindings � are lifted to (sequenes of) terms and (sets of) formulas in the familiarway:De�nition 3.1 (Binding in DFOL)�(ft1 � � � tn) := f�(t1) � � � �(tn)�(t1; : : : ; tn) := �(t1); : : : ; �(tn)�(�) := � Æ ��(�;�) := (� Æ �)��(9v;�) := 9v; �0� where �0 = �nft=v j t 2 Tg�(P �t;�) := P��t; ���(t1 := t2;�) := �t1 := �t2; ���((�1 [�2);�3) := �(�1;�3) [�(�2;�3)�(:(�1);�2) := :(��1); ��2�(f�1; : : : ; �ng) := f�(�1); : : : ; �(�n)gNote that it follows from this de�nition that�(((�1));�2) = ((��1)); ��2:Thus, binding distributes over blok: this aounts for how ((� � �)) insulates dynamibinding e�ets.1The omposition � � � of two bindings � and � has its usual meaning of `� after �',whih we get by means of � � �(v) := �(�(v)). It an be proved in the usual way, byindution on term struture, that the de�nition has the desired e�et, in the sensethat for all t 2 T , for all binding representations �, �: (� Æ �)(t) = �(�(t)) = (� � �)(t).Here is an example of how to apply a binding to a formula:[a=x℄Px; (Qx [9x;:Px);Sx = Pa; [a=x℄(Qx [9x;:Px);Sx= Pa; ([a=x℄Qx;Sx [[a=x℄9x;:Px;Sx) = Pa; (Qa;Sa; [a=x℄ [9x;:Px;Sx)The binding de�nition for DFOL eshes out what has been alled the `folklore idea indynami logi' (Van Benthem [6℄) that syntati binding [t=v℄ works semantially as1Our reasons, by the way, for preferring pre�x notation for appliation of bindings over the more usual post�xnotation have to do with the fat that in the rules of our alulus bindings have an e�et on formulas on their right.

440 Tableau Reasoning and Programming with Dynami First Order Logithe program instrution v := t (Goldblatt [15℄), with semantis given by s[[v := t℄℄Mui� u = s[[[t℄℄Ms =v℄. To see the onnetion, note that v := t an be viewed as DFOLshorthand for 9v; v = t, on the assumption that v =2 var(t).In standard �rst order logi, sometimes it is not safe to apply a binding to aformula, beause it leads to aidental apture of free variables. The same applieshere. Applying binding [x=y℄ to 9x;Rxy is not safe, as it would lead to aidentalapture of the free variable y. The following de�nition de�nes safety of binding.De�nition 3.2 (Binding � is safe for �)� is safe for � always� is safe for �;� :() � Æ � is safe for �� is safe for P �t;� :() � is safe for �� is safe for t1 := t2;� :() � is safe for �� is safe for 9v;� :() v =2 var(rng �0) and �0 is safe for �where �0 = �nf(v; t) j t 2 Tg� is safe for :(�1);�2 :() � is safe for �1 and � is safe for �2� is safe for (�1 [�2);�3 :() � is safe for �1;�3 and � is safe for �2;�3Note that there are � with [℄ not safe for �. E.g., [℄ is not safe for [y=x℄9y;Rxy,beause [y=x℄ is not safe for 9y;Rxy. The onnetion between syntati binding andsemanti assignment is formally spelled out in the following:Lemma 3.3 (Binding Lemma for DFOL) For all � models M, all M-valuationss; u, all L� formulas �, all bindings � that are safe for �:s[[��℄℄Mu i� s[[�;�℄℄Mu :Proof. Indution on the struture of �.Immediately from this we get the following:Proposition 3.4 DFOL has greater expressive power than DFOL with quanti�ationreplaed by de�nite assignment v := d.Proof. If � is an L� formula without quanti�ers, every binding � is safe for �. Bythe binding lemma for DFOL, � is equivalent to an L� formula without quanti�ersbut with trailing bindings. It is not diÆult to see that both satis�ability and validityof quanti�er free L� formulas with binding trails is deidable.In fat, the tableau system below onstitutes a deision algorithm for satis�abilityor validity of quanti�er free L� formulas, while the trailing bindings summarize the�nite hanges made to input valuations.A omparison of our de�nition of binding for DFOL with that of Visser [31℄ and[32℄ reveals that Visser's notion of binding follows a di�erent intuition, namely thatbinding in the empty formula yields the empty formula. We think our notion is moretruly dynami, as is witnessed by the fat that it allows us to prove a binding lemmain the presene of [, whih Visser's notion does not.In the alulus we will need input(�), the set of variables that have an input on-straining ourrene in � (with � 2 L�), Let var(�t) be the variables ourring in�t.

4. ADAPTATION OF TABLEAU REASONING TO A DYNAMIC SETTING 441De�nition 3.5 (Input onstrained variables of L� formulas)input(�) := var(rng(�))input(�;�) := var(rng(�)) [(input(�)ndom(�))input(9v;�) := input(�)nfvginput(P �t;�) := var(�t) [input(�)input(t1 := t2;�) := varft1; t2g [input(�)input(:(�1);�2) := input(�1) [input(�2)input((�1 [�2);�3) := input(�1;�3) [input(�2;�3):The following proposition (the DFOL ounterpart to the �niteness lemma fromlassial FOL) an be proved by indution on formula struture:Proposition 3.6 For all L� models M, all valuations s; s0; u; u0 for M, all L� for-mulas �: s[[�℄℄Mu and s �V ninput(�) s0 imply 9u0 with s0 [[�℄℄Mu0 :4 Adaptation of Tableau Reasoning to a Dynami SettingWe will use one-sided tableaux, with the rule for every operator o mathed by a :orule.In the dynami version of FOL, order matters: the sequening operator `;' is notommutative in general. Suppose � were to onsist of the two formulas 9x;Px and:Px. Then if we read � as 9x;Px;:Px, we get a ontradition, but if we read � as:Px; 9x;Px then the formula set has a model that ontains both P s and non-P s.Loal Bindings Versus Global SubstitutionsWe will only perform a binding � on � when needed; rather than ompute ��, thetableau rules will store �;�, and ompute the binding in single steps as the need arises.Tableau theorem proving an be viewed as a proess of gradually building a domain Dand working out requirements to be imposed on that domain. The tableau proedurethat investigates whether � dynamially implies will build a domain with positiveand negative fats. For this we employ an in�nite set Fsko of skolem funtions,with Fsko \ F� = ;, plus a set of fresh variables X, with V \ X = ;. Call theextended signature ��, and the extended language L�� . Let T�� be the terms of theextended language, and T V�� the terms of the extended language without ourrenesof members of X. Call these the frozen terms of L�� , and bear in mind that frozenterms, unlike ground terms, may ontain ourrenes of variables in V . Call an L��literal frozen if it ontains only frozen terms.The variables in X will funtion as universal tableau variables [13℄. While thebindings of the variables from V are loal to a tableau branh, the bindings of thevariables fromX are global to the whole tableau. Next to the (loal) bindings for thevariables V of L�, we introdue (global) substitutions � for the fresh variables X inL�� , and extend these to (sequenes of) terms and (sets of) formulas in the mannerof De�nition 3.1. A substitution � is a uni�er of a set of (sequenes of) terms T if �Tontains a single term (sequene of terms). It is a most general uni�er (MGU) of Tif � is a uni�er of T , and for all uni�ers � of T there is a � with � = � � �. Similarly

442 Tableau Reasoning and Programming with Dynami First Order Logifor formulas. Note that only uni�ers for global substitutions (the term maps for theglobal tableau variables from X) will ever be omputed.The de�nitions and results on binding extend to bindings with values in T�� , andto substitutions (domain � X, values in T��). Still, the global substitutions playan altogether di�erent rôle in the tableau onstrution proess, so we use a di�erentnotation for them, and write (representations for) global substitutions asfx1 7! t1; : : : ;xn 7! tng:5 Tableaux for DFOL Formula SetsIf � is a �rst order signature, a DFOL tableau over � is a �nitely branhing tree withnodes onsisting of (sets of) L�� formulas. A branh in a tableau T is a maximalpath in T . We will follow ustom in oasionally identifying a branh B with the setof its formulas.Let � be a set of L� formulas. A DFOL tableau for � is onstruted by a (possiblyin�nite) sequene of appliations of the following rules:Initialization The tree onsisting of a single node [℄ is a tableau for �.Binding Composition Suppose T is a tableau for � and B a branh in T . Let� 2 B [�, let �; � our in �, and let �0 be the result of replaing �; � in � by� Æ �. Then the tree T 0 onstruted from T by extending B by �0 is a tableau for�.Expansion Suppose T is a tableau for � and B a branh in T . Let � 2 B[�. Thenthe tree T 0 onstruted from T by extending B aording to one of the tableauexpansion rules, applied to �, is a tableau for �.Equality Replaement Suppose T is a tableau for � and B a branh in T . Lett1 := t2 2 B[� or t2 := t1 2 B[�, and L(t3) 2 B[�, where L is a literal. Supposet1; t3 are uni�able with MGU �. Then T 0 onstruted from T by applying � toall formulas in T , and extending branh �B with L(�t2) is a tableau for �.Closure Suppose T is a tableau for � and B a branh in T , and L;L0 are literals inB[�. If L;L0 are uni�able with MGU � then T 0 onstruted from T by applying� to all formulas in T is a tableau for �.Any tableau branh an be thought of as a database � of formulas true on thatbranh. Beause our databases may ontain (negated) identities, we need some pre-liminaries in order to de�ne losure of a tableau. When heking for losure, wemay onsider the parameters from V ourring in literals along a tableau branh asexistentially quanti�ed. Ourrene of Pv along branh B does not mean that ev-erything has property P , but rather that the thing referred to as v has P . Thus, theV -variables ourring in literals an be taken as names. We an freeze the parametersfrom X by mapping them to fresh parameters from V . Applying a freezing substi-tution to a tableau replaes referenes to `arbitrary objets' x, y, . . . , by `arbitrarynames.' What this means is that we an determine losure of a branh B in terms ofthe ongruene losure of the set of equalities ourring in a frozen image �B of thebranh. See [5℄, Chapter 4, for what follows about ongruene losure.If � is set of L�� formulas without parameters fromX, the ongruene losure of �,notation ��, is the smallest ongruene on T that ontains all the equalities in �. In

6. TABLEAU EXPANSION RULES 443general, �� will be in�nite: if a := b is an equality in �, and f is a one-plaed funtionsymbol in the language, then �� will ontain fa := fb; ffa := ffb; fffa := fffb; : : :.Therefore, one uses ongruene losure modulo some �nite set instead.Let S be the set of all sub-terms (not neessarily proper) of terms ourring in aliteral in �. Then the ongruene losure of � modulo S, notation CCS(�), is the�nite set of equalities �� \ (S � S). We an deide whether t := t0 in CCS(�); [5℄gives an algorithm for omputing CCS(G), for �nite sets of equalities G and terms S,in polynomial time.De�nition 5.1 t � t0 is suspended in frozen L�� formula set � if t := t0 2 CCS(�),where S is the set of all sub-terms of terms ourring in literals in �. We extend thisnotation to sequenes: �t � �t0 is suspended in � if t1 � t01; : : : ; tn � t0n are suspendedin �.A frozen L�� formula set � is losed if either :(�) 2 � (reall that ? is an abbre-viation for :([℄)), or for some �t � �t0 suspended in � we have P �t 2 �, :P �t0 2 �, orfor a pair of terms t1; t2 with t1 � t2 suspended in � we have t1 6= t2 2 �.A tableau T is losed if there is a freezing substitution � of T suh that eah of itsbranhes �B is losed.6 Tableau Expansion RulesNote that we an take the form of any L�� formula to be �;�, by pre�xing or suÆxing[℄ as the need arises. The tableau rules have the e�et that bindings get pushed fromleft to right in the tableaux, and appear as omputed results at the open end nodes.Conjuntive Type Here are the rules for formulas of onjuntive type (type � in theSmullyan taxonomy):�; Pt; �P�t�; � �; t1 := t2; ��t1 := �t2� Æ [�ti=v℄; �where �ti = v 2 V; i 2 f1; 2g �; t1 := t2; ��t1 := �t2�; �where �ti =2 V; i 2 f1; 2g:(�; (�1 [�2); �3):(�; �1; �3):(�; �2; �3) �; ((�1)); �2((�; �1))�; �2 �; :(�1); �2:(�; �1)�; �2Call the formula at the top node of a rule of this kind � and the formulas at theleaves �1; �2. To expand a tableau branh B by an � rule, extend B with both �1and �2.Disjuntive Type The rules for formulas of disjuntive type (Smullyan's type �):

444 Tableau Reasoning and Programming with Dynami First Order Logi:(�; Pt; �)bbb""":P�t :(�; �) :(�; t1 := t2; �)HHH����t1 6= �t2 :(�; �) �; (�1 [�2); �3HHH����;�1;�3 �;�2;�3:(�; :(�1); �2)HHH���((�; �1)) ((�; �2))Call the formula at the top node of a rule of this kind �, the formula at the leftleaf �1 and the formula at the right leaf �2. To expand a tableau branh B by an �rule, either extend B with �1 or with �2.Universal Type Rule for universal formulas (Smullyan's type)::(�; 9v; �):(� Æ [x=v℄; �)Here x is a universal variable taken from X that is new to the tableau. Call theformula at the top node of a rule of this kind (v), and the formula at the leaf 1. Toexpand a tableau branh B by an rule, extend B with 1.Existential Type Rule for existential formulas (Smullyan's type Æ):�; 9v; �� Æ [sk�;9v;�(x1; : : : ;xn)=v℄; �Here x1; : : : ;xn are the universal parameters upon whih interpretation of 9v;�depends, and sk�;9v;�(x1; : : : ;xn) is a skolem onstant that is new to the tableaubranh.2By Proposition 3.6, fx1; : : : ;xng is a subset of input(�; 9v;�), or, sine no membersof X our in � or in dom(�), a subset of X \ input(�) =X \ var(rng(�)). From thisset, we only need3fx1; : : : ;xng :=X \ var(rng(� � (input(�)nfvg))):Call the formula at the top node of a rule of this kind Æ(v), and the formula at theleaf Æ1. To expand a tableau branh B by an Æ rule, extend B with Æ1.2It is well-known that this an be optimized so that the hoie of skolem onstant only depends on �; 9v; �.3In an implementation, it may be more eÆient to not bother about omputing input(�), and instead work withfx1; : : : ;xng := X \ var(rng(�)).

7. SOUNDNESS OF THE TABLEAU CALCULUS 445Proteted Versions of the Rules All of the rules above have proteted versions, i.e.,versions with the formula � to whih the rule applies of the form �. The blokingoperator is inherited by all the daughter formulas. As an example, here are theproteted versions of one of the onjuntive and one of the disjuntive rules:(�;Pt;�)�(P�t)�(�;�)� (�; (�1 [�2);�3)�aaaa!!!!(�;�1;�3)� (�;�2;�3)�Applying De�nition 2.3, we see that this boils down to the following:((�;Pt;�))P�t((�;�)) ((�; (�1 [�2);�3))aaa!!!((�;�1;�3)) ((�;�2;�3))The tableau alulus spei�es guidelines for extending a tableau tree with new leafnodes. If one starts out from a single formula, at eah stage only a �nite numberof rules an be applied. Breadth �rst searh will get us all the possible tableaudevelopments for a given initial formula, but this proedure is not an algorithm fortableau proof onstrution: as in the tableau systems for lassial FOL, there is noguarantee of termination.7 Soundness of the Tableau CalulusValuations for �� modelsM = (D; I) are funtions in V [X ! D. Any suh funtiong an be viewed as a union s[h of a funtion s 2 V ! D and a funtion h 2X ! D(take s = g � V and h = g � X). For satisfation in �� models we use the notations[h[[�℄℄Mu , to be understood in the obvious way. In terms of this we de�ne the notionthat we need to aount for the universal nature of the X variables.De�nition 7.1 Let � 2 L�� , M = (D; I) a �� model, s; u 2 V ! D.Then 8s [[�℄℄M i� for every h :X ! D there is a u : V [X ! D with s[h[[�℄℄Mu . Wesay: s universally satis�es � in M.For any tableau T we say that C(T) if there is an �� model M, a branh B of Tand a V valuation s for M suh that every formula � of B is universally satis�ed bys in M.Lemma 7.2 If s universally satis�es � in M, and � is a substitution on X that issafe for �, then s universally satis�es �� in M.Proof. If 8s [[�℄℄M then for every X valuation h in M there is a V [X valuation u inM with s[h[[�℄℄Mu . Thus for every h in M there is a V [X valuation u in M withs[h� [[�℄℄Mu ;and therefore for every h in M there is a V [X valuation u in M withs[h[[�;�℄℄Mu :Sine � is safe for � we have by the binding lemma that [[��℄℄M = [[�;�℄℄M, and itfollows that s universally satis�es �� in M.

446 Tableau Reasoning and Programming with Dynami First Order LogiWith this, we an show that the tableau building rules preserve the C(T) relation.Lemma 7.3 (Tableau Expansion Lemma) 1. If tableau T for � yields tableauT 0 by an appliation of binding omposition, then C(T) implies C(T 0).2. If tableau T for � yields tableau T 0 by an appliation of a tableau expansion rule,then C(T) implies C(T 0).3. If tableau T for � yields tableau T 0 by an appliation of equality replaement, thenC(T) implies C(T 0).4. If tableau T for � yields tableau T 0 by an appliation of losure, then C(T) impliesC(T 0).Proof. 1. Immediate from the fat that �; � and � Æ � have the same interpretation.2. All of the � and � rules are straightforward, exept perhaps for the � equalityrules. The hange of � to � Æ [�ti=v℄, where �tj = v (i; j 2 f1; 2g; i 6= j;) reets thefat that �t1 := �t2 gives us the information to instantiate v.The rule. Assume :(�; 9v;�) is universally satis�ed by s in M. We may assumethat � is safe for 9v;�. If x 2 X, x fresh to the tableau, then � Æ [x=v℄ will be safefor �, and :(� Æ [x=v℄;�) will be universally satis�ed by s in M.The Æ rule. Assume s universally satis�es �; 9v;� in M. By indution on tableaustruture, dom(�) � V . De�ne a new model M0 where sk�;9v;� is interpreted as thefuntion f : Dn ! D given by f(d1; : : : ; dn) := some d for whih � sueeds inM forinput state s�[d1=x1; : : : ; dn=xn; d=v℄. By the fat that s universally satis�es �; 9v;�in M and by the way we have piked x1; : : : ;xn, suh a d must exist. Then s willuniversally satisfy � Æ [sk�;9v;�(x1; : : : ;xn)=v℄;� in M0, while universal satisfation ofother formulas on the branh is not a�eted by the swith from M to M0.3 and 4 follow immediately from Lemma 7.2.Theorem 7.4 (Soundness) If �; 2 L�, and the tableau for �;:() loses, then� j= .Proof. If the tableau for �;:() loses, then by the Tableau Expansion Lemma,there are no M; s suh that 8s [[�;:()℄℄M. Sine �; 2 L�, there are no M; s; u withs[[�;:()℄℄Mu . In other words, for every � model M and every pair of variable statess; u forM with s[[�℄℄Mu there has to be a variable state u0 with u[[℄℄Mu0 . Thus, we have� j= in the sense of De�nition 2.5.8 Derived PriniplesUniversal Quanti�ation Immediately from the de�nition of 8v(�) we get:�;8v(�1);�2((� Æ [x=v℄;�1))�;�2where x 2X new to the tableauBloks Detahment A sequene of bloks �(�1); : : : ;�(�n), where �(�i) is either((�i)) or :(�i), yields the set of its omponents, by a series of appliations of distribu-tion of the empty substitution over blok or negation. This is useful, as the formulas�(�1); : : : ;�(�n) an be proessed in any order. In a shema:

9. EXAMPLES 447�(�1); : : : ;�(�n)�(�1)...�(�n)Negation Splitting The following rules are admissible in the alulus::(�;:();�)bbb"""((�;)) :(�;�) :(�; (());�)HHH���((�;:())) :(�;�)Negation splitting an be viewed as the DFOL guise of a well known priniple frommodal logi: 2(A_B)! (3A_2B). To see the onnetion, note that :(�;:();�)is semantially equivalent to :(�;:([:(�))), where :(�;: � � �) behaves as a 2modality.9 ExamplesIn the examples we will use v0; v1; : : : as 0-ary skolem terms for v, etetera.Syllogisti Reasoning Consider the syllogism:8x(Ax! Bx);8x(Bx! Cx) j= 8x(Ax! Cx):This is an abbreviation of (9.1).:(9x;Ax;:Bx);:(9x;Bx;:Cx) j= :(9x;Ax;:Cx) (9.1)The DFOL tableau for this example, a tableau refutation of:(9x;Ax;:Bx);:(9x;Bx;:Cx); ((9x;Ax;:Cx))is in Figure 1.Dynami Donkey Reasoning The hakneyed example for dynami binding in naturallanguage, If a farmer owns a donkey, he beats it, has the following DFOL shape:(9x; 9y;Fx;Dy;Oxy ! Bxy);whih is shorthand for: :(9x; 9y;Fx;Dy;Oxy;:Bxy):Consider the natural language text in (9.2).If a farmer owns a donkey, he beats it. A. is a farmer and owns a donkey: (9.2)Figure 2 shows how to draw onlusions from the DFOL version of this text in aDFOL tableau alulation.The open tableau branh in Figure 2 yields the fat Baz1, plus the following furtherinformation about z1: Dz1; Oaz1. This further information is useful to identify z1 as

448 Tableau Reasoning and Programming with Dynami First Order Logi
:(9x;Ax;:Bx);:(9x;Bx;:Cx); ((9x;Ax;:Cx)):(9x;Ax;:Bx):(9x;Bx;:Cx)((9x;Ax;:Cx))(([x1=x℄;Ax;:Cx))Ax1(([x1=x℄;:Cx)):Cx1(([x1=x℄)):([x=x℄;Ax;:Bx)`````````̀ :Axfx 7! x1g� :([x=x℄;:Bx)Bx:([y=x℄;Bx;:Cx)PPPPPPP�������:Byfx 7! x1;y 7! x1g� :([y=x℄;:Cx)Cyfx 7! x1;y 7! x1g�Fig. 1. DFOL Tableau for Syllogisti Reasoning (9.1)

9. EXAMPLES 449:(9x; 9y;Fx;Dy;Oxy;:Bxy);Fa; 9z;Dz;Oaz:(9x; 9y;Fx;Dy;Oxy;:Bxy)Fa9z;Dz;Oaz[z1=z℄;Dz;OazDz1Oaz1[z1=z℄:([x=x;y=y℄;Fx;Dy;Oxy;:Bxy)XXXXXXXXX���������:Fxfx 7! ag� :([x=x;y=y℄;Dy;Oxy;:Bxy)XXXXXXXX��������:Dyfx 7! a;y 7! z1g� :([x=x;y=y℄;Oxy;:Bxy)aaaaaa!!!!!!:Oxyfx 7! a;y 7! z1g� :([x=x;y=y℄;:Bxy)Bxyfx 7! a;y 7! z1gFig. 2. Tableau for Dynami Donkey Reasoning (9.2)the donkey that Alfonso owns (or perhaps a donkey that Alfonso owns) that wasintrodued in the text.Open Tableau Branhes, Partial Models, Referene Resolution An open tableaubranh for a DFOL formula � may be viewed as a partial model for �, with justenough information to verify the formula. For instane, the open branh in theprevious example does not speify whether donkey z1 also beats Alfonso or not: Bz1ais neither among the fats (true atoms) nor among the negated fats (false atoms) ofthe branh.In tableau branhes involving equality there is also another kind of partiality in-volved: the terms are proto-objets rather than genuine objets, in sense that theyhave not yet `made up their minds' about whih individual they are: two terms t1; t2on a tableau that does not ontain t1 6= t2 may be interpreted as a single individ-ual. This is beause the information about equality that the branh provides is also

450 Tableau Reasoning and Programming with Dynami First Order Logipartial. Also, variables from X (free tableau variables) an be resolved to any objetwhatsoever.The level of tableau style generation of partial models for disourse may be just theright level for pronoun referene resolution (f. the suggestion in [7℄). Sine refereneresolution is a proessing step that links a pronoun to a suitable anteedent, whatabout equating the suitable anteedents with the available terms of the branhes ina tableau? After all, referene resolution for pronouns is part of semanti proessing,so it has a more natural habitat at the level of proessing NL representations than atthe level of mere representation of NL meaning.Building on this idea, we (tentatively) introdue the following rule for pronounresolution: PproPtt ours on the branh :Ppro:Ptt ours on the branhOf ourse, for a full aount one would need rules to determine the salient terms forpronoun resolution along a branh, but here we will just demonstrate the rule with atableau for the following piee of disourse.Every farmer owns a donkey. Some farmer beats it. (9.3)See Figure 3. Intuitively, in this tableau, the following happens. First, a term z1 in-trodued for Some farmer. This leads to an unresolved fat `B(z1; it)' in the databaseof the partial model under onstrution. Later, the pronoun it is resolved to `thedonkey that z1 owns' generated from every farmer owns a donkey, and representedin the database of the partial model as sk1(z1).Here is another well-known example from the literature that is hard to rak ina purely representational setting (a piee of evidene against the laim, by the way,that `or' in natural language is externally stati):John owns a motorbike or a ar. It is in the garage. (9.4)Again, in the tableau setting there is no problem: the tableau for (9.4) will have twobranhes, and both of the branhes will ontain a suitable anteedent for it.Reasoning about `<' Consider example (9.5).y < x;:(9x; 9y;x < y): (9.5)This is ontraditory, for �rst two objets of di�erent size are introdued, and next weare told that all objets have the same size. The ontradition is derived as follows:

9. EXAMPLES 451
8x(Fx! 9y;Dy;Oxy); 9z;Fz;B(z; it)8x(Fx! 9y;Dy;Oxy)9z;Fz;B(z; it)[z1=z℄;Fz;B(z; it)Fz1[z1=z℄;B(z; it)B(z; it):(9x;Fx;:(9y;Dy;Oxy)):([x=x℄;Fx;:(9y;Dy;Oxy))PPPPPPP�������:Fxfx 7! z1g� (([x=x℄; 9y;Dy;Oxy))(([x=x; sk1(x)=y℄;Dy;Oxy))Dsk1(x)(([x=x; sk1(x)=y℄;Oxy))O(x; sk1(x))B(z1; sk1(x))fx 7! z1gFig. 3. Tableau for Donkey Reasoning with Pronoun Resolution (9.3)

452 Tableau Reasoning and Programming with Dynami First Order Logiy < x;:(9x; 9y;x < y)y < x:(9x; 9y;x < y):([x1=x;x2=y℄;x < y):x1 < x2fx1 7! y;x2 7! xg�More Reasoning about < Assume that 1; 2; 3; : : : are shorthand for s0; ss0; sss0; : : :.We derive a ontradition from the assumption that 4 < 2 together with two axiomsfor <. See Figure 4, with arrows onneting the literals that e�et losure.Computation of Answer Substitutions, with Variable Reuse Figure 5 demonstrateshow the omputed answer substitution stores the �nal value for x, under the renamingx1. Beause of the renaming, the database information for x1 does not onit withthat for x.Closure by Equality Replaement This example illustrates losure by means ofequality replaement, in reasoning about 9x; 9y;x 6= y; 9x;:(9y;x 6= y). Note thatx1; y1; x2 serve as names for objets in the domain under onstrution. What theargument boils down to is: if the name x2 applies to everything, then it annot bethe ase that there are two di�erent objets x1; y1. See Figure 6.The �rst appliation of equality replaement in Figure 6 uni�es x with x1 andonludes from x2 := x; x1 6= y1 that x2 6= y1. The seond appliation of equalityreplaement uni�es y with y1 and onludes from x2 := y; x2 6= y1 that x2 6= x2.Loop Invariant Cheking To hek that x = y! is a loop invariant for y := y+1;x :=x�y, assume it is not, and use the alulus to derive a ontradition with the de�nitionof !. Note that y := y+1;x := x�y appears in our notation as [y+1=y℄; [x�y=x℄. SeeFigure 7. A more detailed aount would of ourse have to use the DFOL de�nitionsof +, � and !.Loop Invariant Detetion This time, we inspet the ode [x � (y + 1)=x℄; [y + 1=y℄starting from srath. Sine y is the variable that gets inremented, we may assumethat x depends on y via an unknown funtion f . Thus, we start in a situation wherefy = x. We hek what has happened to this dependeny after exeution of theode [x � (y + 1)=x℄; [y + 1=y℄, by means of a tableau alulation for fy := x; [x � (y +1)=x℄; [y+1=y℄; fy := x. See Figure 7. The tableau shows that [x� (y+1)=x℄; [y+1=y℄is a loop for the fatorial funtion.Postondition Reasoning for `If Then Else' For another example of this, onsider aloop through the following programming ode:i := i+ 1; if x < a[i℄ then x := a[i℄ else skip: (9.6)Assume we know that before the loop x is the maximum of array elements a[0℄ througha[i℄. Then our alulus allows us to derive a haraterization of the value of x at theend of the loop. Note that the loop ode appears in DFOL under the following guise:[i+ 1=i℄; (x < a[i℄; [a[i℄=x℄ [:x < a[i℄):

10. COMPLETENESS 453:(9x;x < 0); 4 < 2;:(9x; 9y; sx < sy;:x < y):(9x;x < 0)4 < 2:(9x; 9y; sx < sy;:x < y):([x=x℄;x < 0):x < 0:([y=x; z=y℄; sx < sy;:x < y)hhhhhhhhhh((((((((((:sy < szfy 7! 3; z 7! 1g� (([y=x; z=y℄;x < y))y < zfy 7! 3; z 7! 1g3 < 1:([y1=x; z1=y℄; sx < sy;:x < y)hhhhhhh(((((((:sy1 < sz1fy1 7! 2; z1 7! 0g� (([y1=x; z1=y℄;x < y))y1 < z1fy1 7! 2; z1 7! 0g2 < 0fx 7! 2g�Fig. 4. More Reasoning about <.The situation of x at the start of the loop an be given by an identity x = m0i , wherem is a two-plaed funtion. To get a haraterization of x at the end, we just putX = x (X a onstant) at the end, and see what we get (Figure 8). What the leaf nodestell us is that in any ase, X is the maximum of a[0℄; ::; a[i+ 1℄, and this maximumgets omputed in x.10 CompletenessCompleteness for this alulus an be proved by a variation on ompleteness proofs fortableau aluli in lassial FOL. First we de�ne trae sets for DFOL as an analogueto Hintikka sets for FOL. A trae set is a set of DFOL formulas satisfying the losure

454 Tableau Reasoning and Programming with Dynami First Order Logix := 0;x := y [y := 2; 9x;x := 2x := 0[0=x℄;x := y [y := 2; 9x;x := 2PPPPPPP�������[0=x℄;x := y; 9x;x := 20 := y[0=x; 0=y℄; 9x;x := 2[x1=x; 0=y℄;x := 2x1 := 2[x1=x; 0=y; 2=x1℄
[0=x℄; y := 2; 9x;x := 22 := y[0=x; 2=y℄; 9x;x := 2[x1=x; 2=y℄;x := 2x1 := 2[x1=x; 2=y; 2=x1℄Fig. 5. Computation of Answer Substitutions, with Variable Reuseonditions that an be read o� from the tableau rules. Trae sets an be viewed asblow-by-blow aounts of partiular onsistent DFOL omputation paths (i.e., pathsthat do not lose).De�nition 10.1 A set 	 of L�� formulas is a trae set if the following hold:1. :(�) =2 	.2. If � 2 	, then � =2 	.3. If �;� 2 	, then �� 2 	.4. If � 2 	 then all �i 2 	.5. If � 2 	 then at least one �i 2 	.6. If (v) 2 	, then 1(t) 2 	 for all t 2 T V�� (all terms that do not ontain variablesfrom X).7. If Æ(v) 2 	, then Æ1(t) 2 	 for some t 2 T V�� (some term t that does not ontainvariables from X).This de�nition is motivated by the Trae Lemma:Lemma 10.2 (Trae Lemma) The elements of every trae set 	 are simultaneouslysatis�able.Proof. De�ne a anonial model M0 in the standard fashion, using ongruene lo-sure on the trae set 	 over the set of terms ourring in �, to get a suitable ongru-ene � on terms. Next, de�ne a anonial valuation s0 by means of s0(v) := [v℄� formembers of V and s0(sk0i) = [sk0i ℄� for 0-ary skolem terms. Verify that so satis�esevery member of � in M0.

10. COMPLETENESS 4559x; 9y;x 6= y; 9x;:9y;x 6= y[x1=x; y1=y℄;x 6= y; 9x;:9y;x 6= yx1 6= y1[x2=x; y1=y℄;:9y;x 6= y:[x2=x;x=y℄;x 6= yx2 := xfx 7! x1gx2 6= y1:[x2=x;y=y℄;x 6= yx2 := yfy 7! y1gx2 6= x2�Fig. 6. Reasoning With Equalityx = y!; [y + 1=y℄; [x � y=x℄;x 6= y![y!=x℄; [y + 1=y℄; [x � y=x℄;x 6= y![y!=x; y + 1=y℄; [x � y=x℄;x 6= y![y + 1=y; y! � (y + 1)=x℄;x 6= y!y! � (y + 1) 6= (y + 1)!
fy := x; [x � (y + 1)=x℄; [y + 1=y℄; fy := xfy := x[fy=x℄; [x � (y + 1)=x℄; [y + 1=y℄; fy := x[fy � (y + 1)=x℄; [y + 1=y℄; fy := x[fy � (y + 1)=x; y + 1=y℄; fy := xf(y + 1) := fy � (y + 1)[fy � (y + 1)=x; y + 1=y℄Fig. 7. Loop Invariant Cheking and Loop Invariant Detetion.

456 Tableau Reasoning and Programming with Dynami First Order Logix = m0i ; [i+ 1=i℄;x < a[i℄; [a[i℄=x℄ [:x < a[i℄;X = x[m0i =x℄; [i+ 1=i℄;x < a[i℄; [a[i℄=x℄ [:x < a[i℄;X = x[m0i =x; i+ 1=i℄;x < a[i℄; [a[i℄=x℄ [:x < a[i℄;X = x[m0i =x; i+ 1=i℄;x < a[i℄; [a[i℄=x℄;X = x [[m0i =x; i+ 1=i℄;:x < a[i℄;X = x``````````̀ [m0i =x; i+ 1=i℄;x < a[i℄; [a[i℄=x℄;X = xm0i < a[i+ 1℄[m0i =x; i+ 1=i℄; [a[i℄=x℄;X = x[i+ 1=i; a[i+ 1℄=x℄;X = xX = a[i+ 1℄[i+ 1=i; a[i+ 1℄=x℄
[m0i =x; i+ 1=i℄;:x < a[i℄;X = x:m0i < a[i+ 1℄; [m0i =x; i+ 1=i℄;X = x:m0i < a[i+ 1℄X = m0i[m0i =x; i+ 1=i℄

Fig. 8. Postondition Reasoning for (9.6)To employ the lemma, we need the standard notion of a fair omputation rule. Aomputation rule is a funtion F that for any set of formulas � and any tableau T ,omputes the next rule to be applied on T . This de�nes a partial order on the set oftableaux for �, with the suessor of T given by F . Then there is a (possibly in�nite)sequene of tableaux for � starting from the initial tableau, and with supremum T1.A omputation rule F is fair if the following holds for all branhes B in T1:1. All formulas of type �; �; Æ ourring on B or in � were used to expand B,2. All formulas of type ourring on B or in � were used in�nitely often to expandB.Theorem 10.3 (Completeness) For all �; 2 L�: if � j= then there is a tableaurefutation of �;:().Proof. Let T 0; : : : be a sequene of tableaux for �;:() onstruted with a fairomputation rule, without losure rule appliations, and with supremum T1. De�nea freezing map �1 on T1 as follows (see, e.g., [17℄). Let (Bk)k�0 be an enumerationof the branhes of T1, let (�i)i�0 be an enumeration of the type formulas of T1,and let xijk be the variable introdued for the j-th appliation of formula �i alongbranh Bk. If (tj)j�0 is an enumeration of all the frozen terms of T1, we an set�1(xijk) := tj for all i; j; k � 0. Note that �1 is not, stritly speaking, a substitutionsine dom(�1) is not �nite.

11. ADDING ITERATION 457Suppose �1T1 ontains an open branh. Then from this branh we get a trae set,whih in turn would give a anonial model and a anonial valuation for �;:(), andontradition with the assumption that � j= . Therefore, �1T1 must be losed.Sine the tree T1 is �nitely branhing and all formulas having an e�et on losureare at �nite distane from the root, there is a �nite T n with �1T n losed. Finally,onstrut an MGU � for T n on the basis of the part of �1 that is atually used inthe losure of T n, and we are done.Theorem 10.4 (Computation Theorem) If � is satis�able, then all bindings �produed by open tableau branhes B satisfy s[[�℄℄Ms� , where M is the anonial modelonstruted from B, and s the anonial valuation.Proof. Let T 0; : : : be a sequene of tableaux for � onstruted with a fair ompu-tation rule, without losure rule appliations, and with supremum T1. Consider�1T1, where �1 is the anonial freezing substitution. Then sine � is satis�able,�1T1 will have open branhes (Bk)k�0 (the number need not be �nite). It followsfrom the format of the tableau expansion rules that every open branh will developone binding.We say that a binding � ours non-proteted in a formula � if � has the form �; .Chek that the tableau expansion rules on formulas of the forms (()) or :() neveryield non-proteted bindings � 6= [℄. Chek that eah appliation of an �; �; or Ærule to a formula with a non-proteted binding extends a branh with exatly onenon-proteted binding. It follows that every tableau branh Bk has a highest nodewhere a formula of the form � appears. This � an be thought of as the result ofpulling the initial binding [℄ through the initial formula �. For every suh Bk and �there is a �nite T n with a branh Bk0 that already ontains (a generalization of) �.It an be proved by indution on the length of Bk0 that s[[�℄℄Ms� , forM the anonialmodel and s the anonial valuation for that branh.Note that the omputation theorem gives no reipe for generating all orret bind-ings for a given �. Speifying appropriate omputation rules for generating thesebindings for spei� sets of DFOL formulas remains a topi for future researh.Variation: Using the Calulus with a Fixed Model Computing with respet to a�xed model is but a slight variation on the general sheme. The tehnique of usingtableau rules for model heking is well known. Assume that a model M = (D; I) isgiven. Then instead of storing ground prediates P��t (ground equalities �t1 := �t2),we hek the model for M j= P��t (for [[�t1℄℄M = [[�t2℄℄M), and lose the branh ifthe test fails, ontinue otherwise. Similarly, instead of storing ground prediates P��t(ground equalities �t1 := �t2) under negation, we hek the model for M 6j= P��t (for[[�t1℄℄M 6= [[�t2℄℄M), and lose the branh if the test fails, ontinue otherwise.11 Adding IterationLet L�� be the language that results from extending L� with formulas of the form ��.The intended relational meaning of �� is that � gets exeuted a �nite (� 0) numberof times. This extension makes L�� into a full-edged programming language, withits assertion language built in for good measure.

458 Tableau Reasoning and Programming with Dynami First Order LogiThe semanti lause for �� runs as follows:s[[��℄℄Mu i� either s = uor 9s1; : : : ; sn(n � 1) with s[[�℄℄Ms1 ; : : : ; sn [[�℄℄Mu :It is easy to see that it follows from this de�nition that:s[[��℄℄Mu i� either s = u or 9s1 with s[[�℄℄Ms1 and s1 [[��℄℄Mu : (11.1)Note, however, that (11.1) is not equivalent to the de�nition of s[[��℄℄Mu , for (11.1)does not rule out in�nite � paths.Let �n be given by: �0 := [℄ and �n+1 := �;�n. Now �� is equivalent to `for somen 2 N : �n'.What we will do in our alulus for DFOL� is take (11.1) as the ue to the starrules. This will allow star omputations to loop, whih does not pose any problem,given that we extend our notion of losure to `losure in the limit' (see below).The alulus for DFOL� has all expansion rules of the DFOL alulus, plus thefollowing �� and �� rules.�� expansion rule Call � the star formula of the rule.:(�; �;�):(�;�):(�; ; �;�)�� expansion rule Call � the star formula of the rule. The �� rule also has aproteted version. �; �;�PPPP�����;� �; ; �;�To see that the �� rule is sound, assume that s universally satis�es :(�; �;�) inM = (D; I). By (11.1), this means that there is at least one h : X ! D for whihthere is no u with s[h[[�;�℄℄Mu and no u with s[h[[�; ; �;�℄℄Mu . Thus, s universallysatis�es :(�;�) and :(�; ; �;�) in M.For the �� rule, assume that s universally satis�es �; �;� in M. Then for everyh : X ! D there are u; u0 with s[h[[�℄℄Mu and u[[�;�℄℄Mu0 . Then, by (11.1), eitheru[[�℄℄Mu0 or there is a u1 with u[[℄℄Mu1 and u1 [[��1;�℄℄Mu0 . Thus, s universally satis�eseither �;� or �; ; �;� in M.Closure in the Limit To deal with the inationary nature of the �� and �� rules(the star formula of the rule reappears at a leaf node), we need a modi�ation of ournotion of tableau losure. We allow losure in the limit, as follows.

11. ADDING ITERATION 459De�nition 11.1 An in�nite tableau branh loses in the limit if it ontains an in�nitestar development, i.e., an in�nite number of �� or �� appliations to the same starformula.Example of Closure in the Limit We will give an example of an in�nite star devel-opment. Consider formula (11.2)::9w:(9v; v = 0; (v 6= w; [v + 1=v℄)�; v = w): (11.2)What (11.2) says is that there is no objet w that annot be reahed in a �nite numberof steps from v = 0, or in other words that the suessor relation v 7! v+1, onsideredas a graph, is well-founded. This is the Peano indution axiom: it haraterizes thenatural numbers up to isomorphism. What it says is that any set A that ontains 0and is losed under suessor ontains all the natural numbers. The fat that Peanoindution is expressible as an L�� formula is evidene that L�� has greater expressivepower than FOL. In FOL no single formula an express Peano indution: no formulaan distinguish the standard model (N; s) from the non-standard models. In a non-standard model of the natural numbers it may take an in�nite number of s-steps toget from one natural number n to a larger number m.The expressive power of L�� is the same as that of quanti�ed dynami logi ([25,15℄). Arithmetial truth is undeidable, so there an be no �nitary refutation systemfor L��. The �nitary tableau system for L� is evidene for the fat that DFOL validityis reursively enumerable: all non-validities are deteted by a �nite tableau refutation.This property is lost in the ase of L��: the language is just too expressive to admitof �nitary tableau refutations.Therefore, some tableau refutations must be in�nitary, and the tableau developmentfor the negation of (11.2) is a ase in point. Let us see what happens if we attempt torefute the negation of (11.2). A suessful refutation will identify the natural numbersup to isomorphism. See Figure 9. This is indeed a suessful refutation, for the treeloses in the limit. But the refutation tree is in�nite: it takes an in�nite amount oftime to do all the heks.Theorem 11.2 (Soundness Theorem for L��) The alulus for DFOL� is sound:For all �; 2 L��: if the tableau for �;:() loses then � j= .The modi�ed tableau method does not always give �nite refutations. Still, it is avery useful reasoning tool, more powerful than Hoare reasoning, and more pratialthan the in�nitary alulus for quanti�ed dynami logi developed in [14, 15℄. Dy-nami logi itself has been put to pratial use, e.g. in KIV, a system for interativesoftware veri�ation [26℄. It is our hope that the present alulus an be used tofurther automate the software veri�ation proess.Preondition/postondition Reasoning For a further example of reasoning with thealulus, onsider formula (11.3). This gives an L�� version of Eulid's GCD algorithm.(x 6= y; (x > y; [x� y=x℄ [y > x; [y � x=y℄))�;x := y: (11.3)To do automated preondition-postondition reasoning on this, we must �nd a trivialorretness statement. Even if we don't know what gd(x; y) is, we know that itsvalue should not hange during the program. So putting gd(x; y) equal to some

460 Tableau Reasoning and Programming with Dynami First Order Logi9w:(9v; v := 0; (v 6= w; [v + 1=v℄)�; v := w)[w1=w℄:(9v; v := 0; (v 6= w; [v + 1=v℄)�; v := w):([w1=w; 0=v℄; (v 6= w; [v + 1=v℄)�; v := w):([w1=w; 0=v℄; v := w):([w1=w; 0=v℄; v 6= w; [v + 1=v℄; (v 6= w; [v + 1=v℄)�; v := w)0 6= w1:([w1=w; 1=v℄; (v 6= w; [v + 1=v℄)�; v := w):([w1=w; 1=v℄; v := w):([w1=w; 1=v℄; v 6= w; [v + 1=v℄; (v 6= w; [v + 1=v℄)�; v := w)1 6= w1:([w1=w; 2=v℄; (v 6= w; [v + 1=v℄)�; v := w):([w1=w; 2=v℄; v := w):([w1=w; 2=v℄; v 6= w; [v + 1=v℄; (v 6= w; [v + 1=v℄)�; v := w)2 6= w1:([w1=w; 3=v℄; (v 6= w; [v + 1=v℄)�; v := w):([w1=w; 3=v℄; v := w):([w1=w; 3=v℄; v 6= w; [v + 1=v℄; (v 6= w; [v + 1=v℄)�; v := w)3 6= w1:([w1=w; 4=v℄; (v 6= w; [v + 1=v℄)�; v := w):([w1=w; 4=v℄; v := w):([w1=w; 4=v℄; v 6= w; [v + 1=v℄; (v 6= w; [v + 1=v℄)�; v := w)4 6= w1:([w1=w; 5=v℄; (v 6= w; [v + 1=v℄)�; v := w)...�Fig. 9. `In�nite Proof' of the Peano Indution Axiom.

12. COMPLETENESS FOR DFOL� 461arbitrary value and see what happens would seem to be a good start. We will use theorretness statement z := gd(x; y). The statement that the result gets omputed inx an then take the form z := x. The program with these trivial orretness statementsinluded beomes:z := gd(x; y);(x 6= y; (x > y; [x� y=x℄; z := gd(x; y) [y > x; [y � x=y℄; z := gd(x; y)))�;x := y; z := x: (11.4)We an now put the alulus to work. Abbreviating(x 6= y; (x > y; [x� y=x℄; z := gd(x; y) [y > x; [y � x=y℄; z := gd(x; y)))�as A�, we get: z := gd(x; y);A�;x := y; z := xhhhhhhhhhh(((((((((([gd(x; y)=z℄;x := y; z := xx := y; gd(x; y) := x [gd(x; y)=z℄;A;A�;x := y; z := xhhhhhhh(((((((x > ygd(x; y) := gd(x� y; y)[gd(x; y)=z; x� y=x℄;A�;x := y; z := x y > xgd(x; y) := gd(x; y � x)[gd(x; y)=z; y � x=y℄;A�;x := y; z := xThe seond split is aused by an appliation of the rule for [. By the soundnessof the alulus any model satisfying the annotated program (11.4) will satisfy one ofthe branhes. This shows that if the program sueeds (omputes an answer), thefollowing disjuntion will be true:(x := y ^ gd(x; y) := x)_ (x > y ^ gd(x; y) := gd(x� y; y) ^ �)_ (y > x ^ gd(x; y) := gd(x; y � x) ^); (11.5)where � and abbreviate, respetively, [gd(x; y)=z; x � y=x℄;A�;x := y; z := x and[gd(x; y)=z; y�x=y℄;A�;x := y; z := x. From this it follows that the following weakerdisjuntion is also true:(x := y ^ gd(x; y) := x)_ (x > y ^ gd(x; y) := gd(x� y; y))_ (y > x ^ gd(x; y) := gd(x; y � x)) (11.6)Note that (11.6) looks remarkably like a funtional program for GCD.12 Completeness for DFOL�The method of trae sets for proving ompleteness from Setion 10 still applies. Traesets for DFOL� will have to satisfy the obvious extra onditions. In order to preservethe orrespondene between trae sets and open tableau branhes, we must adapt thede�nition of a fair omputation rule. A omputation rule F for L�� is fair if it is fairfor L�, and in addition, the following holds for all branhes B in T1:

462 Tableau Reasoning and Programming with Dynami First Order Logi� All formulas of type ��; �� ourring on B or in � were used to expand B.We an again prove a trae lemma for DFOL�, in the same manner as before: Again,open branhes in the supremum of a fair tableau sequene will orrespond to traesets, and we an satisfy these trae sets in anonial models. The de�nition of traesets is extended as follows:De�nition 12.1 A set 	 of L��� formulas is a �-trae set if the following hold:� 	 is a trae set,� If �� 2 	 then at least one ��i 2 	.� If �; �;� 2 	, then there is some n � 0 with �; m;� =2 	 for all m > n.Similarly for ((�; �;�)).� For all �; ; � it holds that :(�; �;�) =2 	.Note that the �nal two requirements are met thanks to our stipulation about losurein the limit. In the same manner as before, we get:Theorem 12.2 (Completeness for L�) For all �; 2 L�: if � j= then thetableau for �;:() loses.So we have a omplete logi for DFOL�, but of ourse it omes at a prie: we mayoasionally get in a refutation loop. However, as our tableau onstrution examplesillustrate, this does hardly a�et the usefulness of the alulus.13 Related WorkComparison with tableau reasoning for (fragments of) FOL The present alulus forDFOL an be viewed as a more dynami version of tableau style reasoning for FOLand for modal fragments of FOL. Instead of just heking for valid onsequene andonstruting ounterexamples from open tableau branhes, our open tableau branhesyield omputed answer bindings as an extra. The onnetion with tableau reasoningfor FOL is also evident in the proof method of our ompleteness theorems. Ouralulus an be used for FOL reasoning via the following translation of FOL intoDFOL: (P �t)� := P �t(:�)� := :��(� ^)� := ��; �(� _)� := �� [�(9x�)� := ((9x;��))(8x�)� := :(9x;:��)It is easy to hek that for every FOL formula � it holds that �� = ���, i.e., all FOLtranslations are DFOL tests. Moreover, the translation is adequate in the sense thatfor every FOL formula � over signature �, every �-model M, every valuation s forM it holds that M j=s � i� s[[��℄℄Ms .

13. RELATED WORK 463Connetion with Logi Programming The lose onnetion between tableau reason-ing for DFOL and Logi Programming an be seen by developing a DFOL tableaufor the following formula set:8xA([℄; x; x);8x8y8z8i(A(x; y; z)! A([ijx℄; y; [ijz℄));:9xA([aj[bj[℄℄; [j[℄℄; x):This will give a tableau for the append relation, with a MGU substitution fx 7![aj[bjj[℄℄℄g that loses the tableau, where x is the universal tableau variable used in theappliation of the rule to :9xA([aj[bj[℄℄; [j[℄℄; x). The example may serve as a hint tothe unifying perspetive on logi programming and imperative programming providedby tableau reasoning for DFOL. In future work, we hope to elaborate the furtheronnetions between our delayed substitution rules and onstraint logi programming,and between our omputational handling of equality and equational reasoning in logiprograms.Comparison with other Caluli for DFOL and for DRT The alulus developed in[12℄ uses swap rules for moving quanti�ers to the front of formulas. The key idea of thepresent alulus is entirely di�erent: enode dynami binding in expliit bindings andprotet outside environments from dynami side e�ets by means of blok operations.In a sense, the present alulus o�ers a full aount of the phenomenon of loal variableuse in DFOL.Kohlhase [22℄ gives a tableau alulus for DRT (Disourse Representation Theory,see [21℄) that has essentially the same sope as the [12℄ alulus for DPL: the versionof DRT disjuntion that is treated is externally stati, and the DRT analogue of [isnot treated.The Kohlhase alulus follows an old DRT tradition in relying on an impliit trans-lation to standard FOL: see [27℄ for an earlier example of this. Kohlhase motivateshis alulus with the need for (minimal) model generation in dynami NL seman-tis. In order to make his alulus generate minimal models, he replaes the rulefor existential quanti�ation by a `srathpaper' version (well-known from textbooktreatments of tableau reasoning; see [20℄ for further bakground, and for disussionof non-monotoni onsequene based on minimal models generated with this rule):�rst try out if you an avoid losure with a term already available at the node. If allthese attempts result in losure, it does not follow from this that the information atthe node is inonsistent, for it may just be that we have `overburdened' the availableterms with demands. So in this ase, and only in this ase, introdue a new individual.This `exhaustion of existing terms' approah has the virtue that it generates `small'models when they exist, whereas the more general proedure `always introdue a freshvariable and postpone instantiation' may generate in�nite models where �nite modelsexist. Note, however, that the strategy only makes sense for a signature withoutfuntion symbols, and for a tableau alulus without free tableau variables.Kohlhase disusses appliations in NL proessing, where it often makes sense toonstrut a minimal model for a text, and where the assumption of minimality anbe used to failitate issues of anaphora resolution and presupposition handling.Comparison with Apt and Bezem's Exeutable FOL Apt and Bezem present whatan be viewed as an exiting new mix of tableau style reasoning and model hekingfor FOL. Our treatment of equality uses a generalization of a stratagem from their[3℄: in the ontext of a partial variable map �, they all v := t a � assignment ifv =2 dom(�), and all variables ourring in t are in dom(�). We generalize this on two

464 Tableau Reasoning and Programming with Dynami First Order Logiounts:� Beause our omputation results are bindings (term maps) rather than maps toobjets in the domain of some model, we allow omputation of non-ground termsas values.� Beause our bindings are total, in our alulus exeution of t1 := t2 atoms nevergives rise to an error ondition.It should be noted for the reord that the �rst of these points is addressed in [2℄. Aptand Bezem present their work as an underpinning for Alma-0, a language that infusesModula style imperative programming with features from logi programming (see [4℄).In a similar way, the present alulus provides logial underpinnings for Dynamo, alanguage for programming with an extension of DFOL. For a detailed omparison ofAlma-0 and Dynamo we refer the reader to [11℄.Connetion with WHILE, GCL It is easy to give an expliit binding semantis forWHILE, the favorite toy language of imperative programming from the textbooks (seee.g., [23℄), or for GCL, the non-deterministi variation on this proposed by Dijkstra(see, e.g. [9℄). DFOL is in fat quite losely related to these, and it is not hard to seethat DFOL� has the same expressive power as GCL. Our tableau alulus for DFOL�an therefore be regarded as an exeution engine um reasoning engine for WHILEor GCL.Connetion with PDL, QDL There is also a lose onnetion between DFOL� on onehand and propositional dynami logi (PDL) and quanti�ed dynami logi (QDL) onthe other. QDL is a language proposed in [25℄ to analyze imperative programming,and PDL is its propositional version. See [28, 24℄ for omplete axiomatizations ofPDL, [15℄ for an exposition of both PDL and QDL, and for a omplete (but in�nitary)axiomatization of QDL, [19℄ for an overview, and [18℄ for a a study of QDL and variousextensions. In PDL/QDL, programs are treated as modalities and assertions aboutprograms are formulas in whih the programs our as modal operators. Thus, ifA is a program, hAi� asserts that A has a suessful termination ending in a statesatisfying �. As is well-known, this annot be expressed without further ado in Hoarelogi.The main di�erene between DFOL� and PDL/QDL is that in DFOL� the dis-tintion between formulas and programs is abolished. Everything is a program, andassertions about programs are test programs that are exeuted along the way, butwith their dynami e�ets bloked. To express that A has a suessful terminationending in a � state, we an just say ((A;�)). To hek whether A has a suessfultermination ending in a � state, try to refute the statement by onstruting a tableaufor :(A;�).To illustrate the onnetion with QDL and PDL, onsider MIX, the �rst of the twoPDL axioms for �: [A�℄�! � ^ [A℄[A�℄�: (13.1)Writing this with hAi;:;^;_, and replaing :� by �, we get::(:hA�i� ^ (� _ hAihA�i�)): (13.2)This has the following DFOL� ounterpart::(:(A�;�); (� [(A;A�;�))): (13.3)

13. RELATED WORK 465For a refutation proof of (13.3), we leave out the outermost negation.:(A�;�); (� [(A;A�;�)):(A�;�)(� [(A;A�;�)):�:(A;A�;�)XXXX������ (A;A�;�)�The tableau loses, so we have proved that (13.3) is a DFOL� theorem (and thus,a DFOL� validity).We will also derive the validity of the DFOL� ounterpart to IND, the other PDLaxiom for �: (� ^ [A�℄(�! [A℄�)) ! [A�℄�: (13.4)Equivalently, this an be written with only hAi;:;^;_, as follows::(� ^ :hA�i(� ^ hAi:�) ^ hA�i:�): (13.5)The DFOL� ounterpart of (13.5) is::(�;:(A�;�;A;:�);A�;:�): (13.6)We will give a refutation proof of (13.6) in two stages. First, we show that (13.7) anbe refuted for any n � 0, and next, we use this for the proof of (13.6).�;:(A�;�;A;:�);An;:�: (13.7)Here is the ase of (13.7) with n = 0:�;:(A�;�;A;:�);:��:(A�;�;A;:�):��Bearing in mind that A is a dynami ation and � is a test, we an apply the rule ofNegation Splitting to formulas of the form :(An;�;A;:�), as follows::(An;�;A;:�)aaaa!!!!((An;:�)) :(An+1;:�)Note that :(An;�;A;:�) an be derived from :(A�;�;A;:�) by n appliations ofthe �� rule. Using this, we get the following refutation tableau for the ase of (13.7)with n = k + 1:

466 Tableau Reasoning and Programming with Dynami First Order Logi�;:(A�;�;A;:�);Ak+1 ;:��:(A�;�;A;:�)Ak+1;:�...:(Ak ;�;A;:�)PPPP����((Ak ;:�))� :(Ak+1;:�)�The left-hand branh loses beause of the refutation of �;:(A�;�;A;:�);Ak ;:�,whih is given by the indution hypothesis.Next, use these refutations of :�; A;:�; A2;:�, . . . , to prove (13.6) by meansof a refutation in the limit, as follows:�;:(A�;�;A;:�);A�;:��:(A�;�;A;:�)A�;:�PPPPP�����:�� A;A�;:�PPPPP�����A;:�� A2;A�;:�PPPP����A2;:�� A3;A�;:�bbb"""A3;:� . . .This losed tableau establishes (13.6) as a DFOL� theorem. That losure in thelimit is needed to establish the DFOL� indution priniple is not surprising. TheDFOL � rules express that � omputes a �x-point, while the fat that this �x-pointis a least �x-point is aptured by the stipulation about losure in the limit. Theindution priniple (13.6) hinges on the fat that � omputes a least �x-point.Goldblatt [14, 15℄ develops an in�nitary proof system for QDL with the followingkey rule of inferene:If �! [A1;An2 ℄ is a theorem for every n 2 N, then �! [A1;A�2℄ is a theorem.(13.8)To see how this is related to the present alulus, assume that one attempts to refute�! [A1;A�2℄ , or rather, its DFOL� ounterpart :(�;A1;A�2;:), on the assumptionthat for any n 2 N there exists a refutation of �;A1;An2 ;: .

14. CONCLUSION 467�;A1;A�2;: hhhhhhhh((((((((�;A1;: � �;A1;A2;A�2;: hhhhhhhh((((((((�;A1;A2;: � �;A1;A2;A2;A�2;: hhhhhhh(((((((�;A1;A2;A2;: � �;A1;A2;A2;A2;A�2;: PPPP�����;A1;A2;A2;A2;: � . . .We an lose o� the �;A1;An2 ;: branhes by the assumption that there existrefutations for these, for every n 2 N. The whole tableau gives an in�nite �� de-velopment, and the in�nite branh loses in the limit, so the tableau loses, thusestablishing that in the DFOL� alulus validity of :(�;A1;A�2;:) follows from thefat that :(�;A1;An2 ;:) is valid for every n 2 N.14 ConlusionStarting out from an analysis of binding in dynami FOL, we have given a tableaualulus for reasoning with DFOL. The format for the alulus and the role of expliitbindings for omputing answers to queries were motivated by our searh for logialunderpinnings for programming with (extensions of) DFOL. The DFOL tableau al-ulus presented here onstitutes the theoretial basis for Dynamo, a toy programminglanguage based on DFOL. The versions of Dynamo implemented so far implementtableau reasoning for DFOL with respet to a �xed model: see [11℄.To �nd the answer to a query, given a formula � onsidered as Dynamo programdata, Dynamo essentially puts the tableau alulus to work on a formula �, all thewhile heking prediates with respet to the �xed model of the natural numbers,and storing values for variables from the inspetion of equality statements. If thetableau loses, this means that � is inonsistent (with the information obtained fromtesting on the natural numbers), and Dynamo reports `false'. If the tableau remainsopen, Dynamo reports that � is onsistent (again with the information obtained frominspeting prediates on the natural numbers), and lists the omputed bindings forthe output variables at the end of the open branhes. But the Dynamo engine alsoworks for general tableau reasoning, and for general queries. The literals olletedalong the open branhes together with the expliit bindings at the trail ends onstitutethe omputed answers.Dynamo an be viewed as a ombined engine for program exeution and reasoning.We are urrently working on an new implementation of Dynamo that takes the insightsreported above into aount. The advantages of the ombination of exeution andreasoning embodied in Dynamo should be evident from our examples of strongestpostondition generation in Setion 9. To our knowledge, this use of dynami �rstorder logi for analyzing imperative programming by means of alulating trae sets isnew. We laim that our alulus opens the road to a more intuitive way of reasoningabout imperative programs, and we hope to develop automated reasoning tools for

468 Tableau Reasoning and Programming with Dynami First Order Logiprogram analysis based on it.Finally, sine natural language semantis is a key appliation area of dynami varia-tions on �rst order logi, we expet that both the alulus itself and its implementationin the form of an improved exeution mehanism for Dynamo also have a role to playin a truly omputational semantis for natural language.AknowledgmentsThe researh for this paper was sponsored by Spinoza Logi In Ation. Thanks toJohan van Benthem, Balder ten Cate, Anne Kaldewaij, Fairouz Kamareddine, MihaelKohlhase, Maarten Marx, Joahim Niehren, Kees Vermeulen, Albert Visser and JoeWells for stimulating disussion and helpful ritiism. Two anonymous reviewers ofthis journal made suggestions that prompted a omplete overhaul of the presentation.Proposition (3.4) was triggered by a question from Krzysztof Apt.Referenes[1℄ K.R. Apt. From Logi Programming to Prolog. Prentie Hall, 1997.[2℄ K.R. Apt. A denotational semantis for �rst-order logi. In Pro. of the Computational LogiConferene (CL2000), Notes in Arti�ial Intelligene 1861, pages 53{69. Springer, 2000.[3℄ K.R. Apt and M. Bezem. Formulas as programs. In K.R. Apt, V. Marek, M. Truszzyski, andD.S. Warren, editors, The Logi Programming Paradigm: a 25 Years Perspetive, pages 75{107.Springer Verlag, 1999. Paper available as http://xxx.lanl.gov/abs/s.LO/9811017.[4℄ K.R. Apt, J. Brunekreef, V. Partington, and A. Shaerf. Alma-0: An imperative language thatsupports delarative programming. ACM Toplas, 20:1014{1066, 1998.[5℄ F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press, 1998.[6℄ J. van Benthem. Exploring Logial Dynamis. CSLI & Folli, 1996.[7℄ J. van Benthem and J. van Eijk. The dynamis of interpretation. Journal of Semantis,1(1):3{20, 1982.[8℄ M. D'Agostino, D.M. Gabbay, R. H�ahnle, and J. Posegga, editors. Handbook of Tableau Methods.Kluwer, Dordreht, 1999.[9℄ E.W Dijkstra and C.S. Sholten. Prediate Calulus and Program Semantis. Texts and Mono-graphs in Computer Siene. Springer-Verlag, 1990.[10℄ H.C. Doets. From Logi to Logi Programming. MIT Press, Cambridge, Massahusetts, 1994.[11℄ J. van Eijk. Programming with dynami prediate logi. Tehnial Report CT-1998-06, ILLC,1998. Available from www.wi.nl/~jve/dynamo.[12℄ J. van Eijk. Axiomatising dynami logis for anaphora. Journal of Language and Computation,1:103{126, 1999.[13℄ M. Fitting. First-order Logi and Automated Theorem Proving; Seond Edition. Springer Verlag,Berlin, 1996.[14℄ R. Goldblatt. Axiomatising the Logi of Computer Programming. Springer, 1982.[15℄ R. Goldblatt. Logis of Time and Computation, Seond Edition, Revised and Expanded, vol-ume 7 of CSLI Leture Notes. CSLI, Stanford, 1992 (�rst edition 1987). Distributed by Universityof Chiago Press.[16℄ J. Groenendijk and M. Stokhof. Dynami prediate logi. Linguistis and Philosophy, 14:39{100,1991.[17℄ R. H�ahnle. Tableaux and related methods. In Alan Robinson and Andrei Voronkov, editors,Handbook of Automated Reasoning. Elsevier Siene Publishers, to appear, 2001.[18℄ D. Harel. First-Order Dynami Logi. Number 68 in Leture Notes in Computer Siene.Springer, 1979.[19℄ D. Harel. Dynami logi. In D. Gabbay and F. Guenthner, editors, Handbook of PhilosophialLogi, pages 497{604. Reidel, Dordreht, 1984. Volume II.

14. CONCLUSION 469[20℄ J. Hintikka. Model minimization | an alternative to irumsription. Journal of AutomatedReasoning, 4:1{13, 1988.[21℄ H. Kamp. A theory of truth and semanti representation. In J. Groenendijk et al., editors,Formal Methods in the Study of Language. Mathematish Centrum, Amsterdam, 1981.[22℄ M. Kohlhase. Model generation for Disoure Representation Theory. In ECAI Proeedings,2000. Available from http://www.ags.uni-sb.de/~kohlhase/.[23℄ H.R. Nielson and F. Nielson. Semantis with Appliations. John Wiley and Sons, 1992.[24℄ R. Parikh. The ompleteness of propositional dynami logi. In Mathematial Foundations ofComputer Siene 1978, pages 403{415. Springer, 1978.[25℄ V. Pratt. Semantial onsiderations on Floyd{Hoare logi. Proeedings 17th IEEE Symposiumon Foundations of Computer Siene, pages 109{121, 1976.[26℄ W. Reif. The KIV-approah to software veri�ation. In M. Broy and S. J�ahnihen, editors,KORSO: Methods, Languages, and Tools for the Constrution of Corret Software, SpringerLNCS 1009, pages 339{368, 1995.[27℄ C. Sedogbo and M. Eytan. A tableau alulus for DRT. Logique et Analyse, 31:379{402, 1988.[28℄ K. Segerberg. A ompleteness theorem in the modal logi of programs. In T. Trazyk, editor,Universal Algebra and Appliations, pages 36{46. Polish Siene Publiations, 1982.[29℄ R. Smullyan. First-order logi. Springer, Berlin, 1968.[30℄ Y. Venema. A modal logi of quanti�ation and substitution. In L. Czirmaz, D.M. Gabbay, andM. de Rijke, editors, Logi Colloquium '92, Studies in Logi, Language and Computation, pages293{309. CSLI and FOLLI, 1995.[31℄ A. Visser. Contexts in dynami prediate logi. Journal of Logi, Language and Information,7(1):21{52, 1998.[32℄ A. Visser. A note on substitution in dynami semantis. Unpublished draft, Utreht University,2000.Reeived September 8, 2000. Revised: Deember 9, 2000, January 30, 2001

470

Theorem Proving in In�nitesimalGeometryJACQUES D. FLEURIOT, Division of Informatis, University ofEdinburgh, 80 South Bridge, Edinburgh EH1 1HN, UK.Email: jdf�dai.ed.a.ukAbstratThis paper desribes some of the work done in our formal investigation of onepts and propertiesthat arise when in�nitely small and in�nite notions are introdued in a geometry theory. An algebraigeometry theory is developed in the theorem prover Isabelle using real and hyperreal vetors. We usethis to investigate some new geometri relations as well as ways of rigorously mehanizing geometriproofs that involve in�nitesimal and in�nite arguments. We follow a stritly de�nitional approahand build our theory of vetors within the nonstandard analysis framework developed in Isabelle.Keywords: nonstandard analysis, geometry, hyperreals, theorem proving, higher order logi, Isabelle1 IntrodutionIn our previous work on the mehanization of Newton's Prinipia, we introdued,through a ombination of tehniques from geometry theorem proving (GTP) andnonstandard analysis (NSA), the notion of an in�nitesimal geometry in whih quan-tities an be in�nitely small [11, 12℄. The main aim was to apture and mehanizethe limit or ultimate notions used by Newton in his proofs, while respeting as muhas possible his original geometri arguments.Our formalization task, within the interative framework of Isabelle, was made pos-sible through the use of onepts from powerful| yet geometrially intuitive| GTPtehniques known as the signed area and full-angle methods [3, 4℄. These methodswere highly adequate to our goals as they provided us with lemmas powerful enoughto prove the results we wanted but also used geometri notions suh as areas andratios of segments that were diretly relevant to Newton's proofs.In the urrent work, however, we depart to some extent from the framework al-ready established in Isabelle for geometry. Our aim, now, is to formally explore theproperties of the in�nitesimal geometry theory developed in Isabelle. To this end,we formulate an alternative treatment of geometry based on the notions of hyperrealvetors. We want to provide a rigorous yet powerful theory that an apture formallythe properties of our geometry, as well as provide a seure foundations for our previouswork [11, 12, 10℄.Moreover, the approah we desribe in this paper also di�ers from that previouslyadopted in that it is fully de�nitional. In other words, we now formally de�ne andderive all mathematial notions rather than postulate any of them. This approahguarantees onsisteny, whih annot be ensured when axioms are introdued (seeSetion 3.3 for a brief overview of this methodology).As a further motivation for the urrent work, our rigorous development within471L. J. of the IGPL, Vol. 9 No. 3, pp. 471{498 2001 Oxford University Press

472 Theorem Proving in In�nitesimal GeometryIsabelle an be viewed as providing formal justi�ations for the basi rules and lemmasused in the automati GTP methods of Chou et al. [3, 4, 2℄. Indeed, as outlined laterin this paper, we formally derive in our de�nitional theory many of the rules usedin their geometry theorem provers. In addition, sine the nonstandard approahpresented in this work an be used to prove standard geometry theorems, it shouldbe of interest to the mehanial geometry theorem proving ommunity. Our approahmight provide ways of extending urrent automati methods to produe proofs thatinorporate in�nitely small notions without resulting in degeneray.In what follows, we �rst present some (historial) motivation for the existene of ageometry involving in�nitesimal notions (Setion 2). We then give a brief overview ofIsabelle in whih this work is arried out (Setion 3). We also introdue some of thebasi (mehanized) notions from nonstandard analysis that will prove useful to ourdisussion(Setion 4). In partiular, we look briey at the onstrution of the hyper-real numbers and how operations like addition are de�ned and also at the nonstandardextension of funtions. Next, we give an overview of the vetor theory developed inIsabelle (Setion 5) by reviewing the vetor algebra, the vetorial de�nitions used forfamiliar geometri properties, and some of the in�nitesimal geometry theorems thatfollow. We then desribe some of the novel in�nitesimal geometri onepts formalizedin the work so far (Setion 6). We then desribe a new approah, based on nonstan-dard methods, that an be used for proving standard geometry theorems (Setion 7).Finally, we outline some of the further work urrently in the pipeline (Setion 8) andshare some of the onlusions we have reahed so far (Setion 9).In the next setion, we present some motivation for our geometry by briey exam-ining the related notion of non-Arhimedean geometry.2 Non-Arhimedean GeometryThe Axiom of Arhimedes or Axiom of Continuity from Hilbert's Foundations ofGeometry [16℄ may be stated as follows:Let A, B, C, and D be four distint points. Then on the ray AB there is a�nite set of distint points, A1, A2,: : : , An suh that eah segment AiAi+1 isongruent to the segment CD and suh that B is between A and An.This means that given any line segment of length l and any measurem, there exists aninteger n suh that n units of measure yield a line segment greater than the given linesegment i.e. l < n �m. Geometrially speaking, this means that the length of a line hasno limit, whih is a tait assumption of Eulid. This axiom of Hilbert an thereforebe viewed as stating that the points on the line are in one-to-one orrespondene withthe real numbers IR.After introduing the various groups of axioms, Hilbert proeeds to show theironsisteny and mutual independene. This is done by interpreting every geometrionept arithmetially and making sure that all the axioms are satis�ed in the inter-pretation. For example, a point is identi�ed with the ordered pair of real numbers (a,b)and a line with the ratio (u:v:w) in whih u and v are both non-zero. A point lies ona line if ua+ vb+w = 0. Properties suh as onvergene are interpreted algebraiallyby means of the expressions for translation and rotation of analyti geometry. Thus,a model is onstruted for the axioms of geometry and any ontradition dedued

2. NON-ARCHIMEDEAN GEOMETRY 473from these would mean that the axioms of arithmeti are inonsistent.The possibility of a non-Arhimedean geometry is exposed when proving the mutualindependene of Hilbert's sets of axioms. Indeed, it is possible to onstrut a modelthat satis�es all the various axioms exept the Axiom of Arhimedes. In suh ageometry, our measure m an be laid o� suessively upon our line segment of lengthl an arbitrary number of times without ever reahing the end point of the line. Thisgeometry might be seen, intuitively, as one in whih in�nitesimal notions are allowed.Of ourse, the most famous example of an axiom being denied in geometry is that ofthe parallel axiom, whih leads to non-Eulidean geometry.It is worth noting that one of the �rst to attempt a systemati investigation of non-Arhimedean geometry was the Italian mathematiian Veronese in his Fundamentidi Geometria. As observed by Fisher [9℄, his work was often unaknowledged byontemporary mathematiians suh as Hilbert and Poinar�e and only reently havehistorians given its inuene due reognition. Veronese's poor and tortuous expositionhas been blamed to some extent for this.In his review of Hilbert's Foundations of Geometry, Henri Poinar�e makes thefollowing important observation about non-Arhimedean geometry [21℄:: : : the oordinates of a point would be measured not by ordinary numbersbut by non-Arhimedean numbers, while the usual operations of the straightlines and the plane would hold, as well as the analyti expressions for anglesand lengths. It is lear that in this spae all the axioms would remain trueexept that of Arhimedes.And moreover, he notesOn every straight line new points would be interpolated between ordinarypoints.This mathes our approah in whih we e�etively replae the real number line witha hyperreal one. The hyperreal numbers of NSA (whih we review in Setion 4) thusorrespond to Poinar�e's non-Arhimedean numbers. Poinar�e also gives a geometriexample where an ordinary line is ompared with a non-Arhimedean one:If, for example, D0 is an ordinary straight line, and D1 the orresponding non-Arhimedean straight line; if P is any ordinary point of D0, and if this pointdivides D0 into two half rays S and S0 (I add, for preision, that I onsider Pas not belonging to either S or S0) then there will be on D1 an in�nity of newpoints as well between P and S as between P and S0. Then there will be on D1an in�nity of new points whih will lie to the right of all the ordinary points ofD0. In short, our ordinary spae is only a part of the non-Arhimedean spae.This geometrial representation means that points an be in�nitely lose to eah otheron line D1. Indeed, the �rst in�nity of new points mentioned by Poinar�e orrespondsto those in�nitely lose to P . And then, we also have the new points on D1 that liebeyond those ofD0. These points to the right of all of the points ofD0 thus orrespondto the in�nite hyperreals. These observations motivate the establishment of a one-to-one orrespondene f between the hyperreals and a line L instead of the usualorrespondene with the reals. A oordinate system, f , for L is then suh that eahpoint P on it has a unique hyperreal oordinate given by x = f(P).

474 Theorem Proving in In�nitesimal GeometryWe next give a brief introdution to Isabelle and to the HOL objet logi in whihthis work was arried out.3 Isabelle/HOLIsabelle [19℄ is a generi theorem prover, written in ML, into whih the user an enodetheir own objet-level logis. Examples of suh objet logis are higher order logi(HOL), Zermelo-Fraenkel set theory (ZF), and �rst order logi (FOL). Terms fromthe objet logis are represented and manipulated in Isabelle's intuitionisti higherorder meta-logi, whih supports polymorphi typing.3.1 Theories in IsabelleIsabelle's theories provide a hierarhial organization for the syntax, delarations andaxioms of a mathematial development and an be developed using theory de�nition�les [19℄. A typial theory �le will organize the de�nitions of types and funtions. Itmay also ontain the primitive axioms that are asserted (without proofs) by the user.A partiular theory will usually ollet (in a separate �le) the proven named theoremsand make them available to all its hildren theories.The meta-level onnetives are impliation (=)), universal quanti�er and equality.Throughout the presentation, we will be using mostly onventional mathematialnotations when desribing our development. However, there are ases where we mightuse the ASCII notations atually used to express terms and rules in Isabelle as expliitexamples.An inferene rule with n premises or anteedents has the following form in Isabelle:[j�1; : : : ;�nj℄ =) This abbreviates the nested impliation �1 =) (: : : �n =) : : :). Suh a rule analso be viewed as the proof state with subgoals �1; : : : ; �n and main goal [19℄.Alternatively, this an be viewed as meaning \if �1 ^ � � � ^ �n then ".3.2 Higher Order Logi in IsabelleOne of Isabelle's logis is HOL, a higher order logi that supports polymorphismand type onstrutors. Isabelle/HOL is based on Gordon's HOL theorem prover [15℄whih itself originates from Churh's paper [5℄. Isabelle/HOL is well developed andwidely used. It has a wide library of theories de�ned in it inluding the naturals,integers and real numbers, set theory, well-founded reursion, indutive de�nitions,and equivalene relations.Though Isabelle is mainly used interatively as a proof assistant, it also providessubstantial support for automation. It has a generi simpli�ation pakage, whih isset up for many of the logis inluding HOL. Isabelle's simpli�er performs onditionaland unonditional rewritings and makes use of ontext information [19℄. The useris free to add new rules to the simpli�ation set (the simpset) either permanentlyor temporarily. Isabelle also provides a number of generi automati tatis thatan exeute proof proedures in the various logis. The automati tatis providedby Isabelle's lassial reasoner inlude a fast tableau prover alled Blast ta oded

4. A FEW CONCEPTS FROM NONSTANDARD ANALYSIS 475diretly in ML and Auto ta whih attempts to prove all subgoals by a ombination ofsimpli�ation and lassial reasoning. Other powerful theorem proving tatis inludethose whih, unlike Blast ta, onstrut proofs diretly in Isabelle: for example,Fast ta implements a depth-�rst searh automati tati. In addition to thesevarious tools, Isabelle/HOL now also provides deision proedures for linear arithmetithat greatly simplify many proofs over the real numbers.3.3 The HOL MethodologyThe HOL methodology, whih derives from work done by Gordon in the HOL theoremprover [15℄, admits only onservative extensions to a theory. This means, as we al-ready mentioned in the introdution, de�ning and deriving the required mathematialnotions rather than postulating them. The de�nitional approah of HOL requires thatassertions are proved about some model instead of being postulated. Suh a rigorousde�nitional extension guarantees onsisteny, whih annot be ensured when axiomsare introdued. With regards to the foundations of in�nitesimals and of our geome-try, the de�nitional approah is ertainly advisable when one onsiders the numerousinonsistent axiomatizations that have been proposed in the past [6℄.4 A Few Conepts from Nonstandard AnalysisAn immediate onsequene of our deision to formalize nonstandard rather than stan-dard analysis is the extra amount of work spent on number onstrutions. The ul-trapower onstrution of the hyperreals, for example, �rst required proving Zorn'sLemma and developing a theory of �lters and ultra�lters for Isabelle/HOL. We havedesribed details of the onstrution elsewhere [10, 13℄, and so will only outline a fewof the aspets relevant to this paper in what follows.4.1 On the ConstrutionThe onstrution of the hyperreals (denoted by IR�) resembles to some extent that ofthe reals from the rationals using equivalene lasses indued by Cauhy sequenes. Inthis ase, however, a free ultra�lter UIN over the natural numbers is used to partitionthe set of all sequenes of real numbers into equivalene lasses. The free ultra�lterUIN, whose existene is proved using Zorn's Lemma, is a olletion of subsets of INwith the following properties (amongst others)[13, 10℄:; 62 UIN and IN 2 UIN X 2 UIN =) : finite XX 2 UIN ^ Y 2 UIN =) X \ Y 2 UIN X 2 UIN () �X 62 UINX 2 UIN ^X � Y =) Y 2 UINIn Isabelle, the following equivalene relation on sequenes of real numbers is thende�ned:1 hyprel :: ((nat) real) � (nat) real)) sethyprel � fp: 9rs: p = (r; s) ^ fn: r(n) = s(n)g 2 UINg1The Isabelle notation a::� denotes that a is of type �

476 Theorem Proving in In�nitesimal GeometryThe set of equivalene lasses, that is the quotient set, arising from hyprel is used tode�ne the new type hypreal denoting the hyperreals:hypreal � fx::(nat) real):Trueg=hyprelThus, it follows from the de�nition of hyprel that for two hyperreals to be equal,the orresponding entries in their equivalene lass representatives must be equal atan in�nite number of positions. This is beause UIN annot ontain any �nite set.One the new type has been introdued, Isabelle provides oerion funtions | theabstration and representation funtions | that enable the basi operations to bede�ned. In this partiular ase, the funtionsAbs hypreal :: (nat) real) set) hyprealRep hypreal :: hypreal) (nat) real) setare added to the theory suh that hypreal and fx:: nat) real: Trueg=hyprel areisomorphi by Rep hypreal and its inverse Abs hypreal.The familiar operations (addition, subtration, multipliation, inverse) and the or-dering relation on the new type hypreal are then de�ned in terms of pointwise op-erations on the underlying sequenes. For example, let [hXni℄ denote the equivalenelass (i.e. hyperreal) ontaining hXni then multipliation is de�ned by[hXni℄ � [hYni℄ � [hXn � Yni℄ (4.1)or, more spei�ally, in Isabelle as:P � Q � Abs hypreal (SX 2 Rep hypreal(P):SY 2 Rep hypreal(Q): hyprel^̂ f�n:X n � Y ng)where [x 2 A:B[x℄ � fy: 9x 2 A: y 2 Bg (union of family of sets).r̂ ŝ � fy: 9x 2 s: (x; y) 2 rg (image of set s under relation r).Equation (4.1) above is in fat proved as a theorem. All the expeted �eld properties ofthe hyperreals are easily established sine they follow niely from the orrespondingproperties of the reals. We de�ne an embedding of the reals in the hyperreals byhaving the following map in Isabelle:hypreal of real :: real) hyprealhypreal of real r � Abs hypreal (hyprel^̂ f�n::nat: rg)In other words, we represent eah real number r in IR� by the equivalene lass[hr; r; r; : : :i℄. The properties of the embedding funtion, with respet to multipliation,addition and so on, follow trivially sine they are just speial ases of the operationson the hyperreals. In what follows, we will denote an embedded real r by r unless weuse the Isabelle embedding funtion expliitly.The ordering relation on the hyperreals, for its part, is de�ned as follows:P < Q � 9X 2 Rep hypreal P:9Y 2 Rep hypreal Q: fn:X n < Y ng 2 UIN

4. A FEW CONCEPTS FROM NONSTANDARD ANALYSIS 477We prove the orresponding simpli�ation theorem expressing the order relation interms of equivalene lasses of sequenes of real numbers:Abs hypreal (hyprel^̂ fX ng) < Abs hypreal (hyprel^̂ fY ng)() fn:X n < Y ng 2 UINWith this done, it is straightforward to show that < is total [10, 13℄. This means thatIR� is a total ordered �eld.This setion has provided a brief summary of the onstrution of the nonstan-dard numbers. Our main intention was to illustrate some of the key onepts of ourde�nitional approah. However, this overview will also be useful to our subsequentexposition as the onstrution of hyperreal vetors is almost idential to that of thehyperreals: one simply onsiders equivalene lasses of sequenes of real vetors ratherthan sequenes of real numbers (see Setion 5).4.2 Nonstandard NumbersThe embedding funtion enables us to de�ne the set of embedded reals SReal expli-itly, and prove that it is a proper sub�eld of IR�. The proof shows that the well-de�nedhyperreal [h1; 2; 3; : : :i℄ (denoted by !) annot be equal to any of the embedded realsas no singleton set is allowed in UIN. One the embedding is de�ned and various ofits properties proved, we formalize the de�nitions haraterizing the various types ofnumbers that make up the new extended �eld:Infinitesimal� fx: 8r 2 SReal: 0 < r ! abs x < rgFinite � fx: 9r 2 SReal: abs x < rgInfinite � �FiniteWith this done, a number of theorems are proved, inluding:x 2 In�nitesimal y 2 In�nitesimalx op y 2 In�nitesimal x 2 Finite y 2 Finitex op y 2 Finitewhere op is +, �, or � (i.e. both sets are subrings of IR�). Other Isabelle theoremsproved inlude amongst many others:x 2 In�nitesimal y 2 Finitex � y 2 In�nitesimal z 2 In�nitesimal x < yx+ z < yA substantial number of theorems are proved about the properties of the hyperrealsand their inter-relationships. In addition, we use our free ultra�lter to extend thenatural numbers and onstrut the hypernatural numbers, IN�. This additional typeof nonstandard numbers provides us with in�nitely large numbers greater than allthe members of IN. The set of in�nite hypernaturals is denoted by HNatInfinite inIsabelle. We also de�ne the funtion hypnat of nat, an embedding of the naturalnumbers into the hypernaturals [10℄.4.3 In�nitely Close Relation and Standard Part TheoremIn addition to the nonstandard numbers, we need to mehanize a few more importantonepts for us to have with an adequate framework for our proofs. Firstly, we de�ne

478 Theorem Proving in In�nitesimal Geometrythe ruial in�nitely lose relation �:x � y � x� y 2 InfinitesimalThis is an equivalene relation about whih we prove a number of properties suh as:2[ja � b; � dj℄ =) a+ � b+ d[js 2 SReal; b 2 SRealj℄ =) (a � b) = (a = b) (4.2)s 2 Finite =) 9!r: r 2 SReal^ s � r (4.3)[ja � b; 2 Finitej℄ =) a � � b � (4.4)Theorem (4.3)above is known as the Standard Part Theorem and is espeially impor-tant as it enables us to formalize the notion of standard part. The standard part ofa �nite nonstandard number is de�ned as the unique real number in�nitely lose toit. The atual de�nition in Isabelle uses the Hilbert hoie operator � and returns anumber of type real rather than an embedded real:str :: hypreal) realstr x � (�r:x 2 Finite^ hypreal of real r � x)All the important properties of the standard part operator are proved. These inlude,for example: str x = x x 2 Finitestr x � x x 2 Finite y 2 Finite(x � y) = (str x = str y)In Setion 5.3, we present an extension of the in�nitely lose relation to hyperrealvetors and use it to investigate the various notions formalized by this work.4.4 Nonstandard ExtensionsNonstandard extensions provide systemati ways through whih sets and funtionsde�ned on the reals are extended to the hyperreals (a proess sometimes known asthe �-transform [17℄).In partiular, if f is a funtion from IR to IR, then it an be extended to a funtionf� from IR� to IR� by the following rule: x = [hXni℄ 2 IR� maps into y = [hYni℄ =f�(x) 2 IR� if and only if fn 2 IN: f(Xn) = Yng = UIN. In Isabelle, this is renderedas: �f� :: (real) real)) hypreal) hypreal�f� f x � Abs hypreal (SX 2 Rep hypreal(x): hyprel^̂ f�n: f(Xn)g)Thus, the nonstandard extension operator provides a generi way through whih,given a funtion taking standard arguments, we an de�ne an analogous one thataepts nonstandard arguments. In what follows, we will denote the nonstandard29!x: P stands for the unique existene quanti�er, and the \if and only if"onnetive is denoted by = in Is-abelle/HOL.

5. A MECHANIZED THEORY OF HYPERREAL VECTORS 479extension of a given real funtion f either by f� or by its equivalent Isabelle notation(�f�f). We prove this important simpli�ation theorem:(�f� f) (Abs hypreal (hyprel^̂ f�n: Xng)) =(Abs hypreal (hyprel^̂ f�n: f(Xn)g))In other words, we have that f�[hXni℄ = [hf(Xn)i℄. This is useful as it allows usto formalize de�nitions and prove properties of nonstandard funtions by ouhingthem in terms of the orresponding real funtions and our free ultra�lter. We easilyprove a number of theorems about nonstandard extensions suh as f�(r) = f(r) andf�(x) + g�(x) = (�u: f(u) + g(u))�(x). We will ome aross others as we furtheroutline our formalization of analysis.We also extend funtions from IN to IR: given suh a funtion s, its �-transformis the funtion s� : IN� ! IR� where s�([hXni℄) = [hs(Xn)i℄ for any [hXni℄ 2 IN�.In Isabelle, the nonstandard extension is denoted by (�fNat� s) and is useful in theformalization of sequenes, for example [10, 13℄.We now have enough the basi notions to desribe the hyperreal vetor and thein�nitesimal geometri theories.5 A Mehanized Theory of Hyperreal VetorsApart from using an interative (hene slower) approah to GTP, the urrent workalso di�ers from the traditional automated approah by residing within the higher-order logi framework of Isabelle/HOL [20℄. One of the main reasons for hoosingIsabelle/HOL is that it provides a rigorous framework for the formalization of thein�nitesimal| a notoriously diÆult task. The suitability of Isabelle/HOL for ourdevelopment stems mostly from the bene�ts gained by adopting the HOL methodology(f. Setion 3.3).The way to proeed in developing our geometry theory is very muh in the spiritof Hilbert's Grundlagen: we show that there is a number system, say a �eld suh asthe hyperreals, assoiated with the geometry and redue onsisteny of Isabelle's geo-metri theory to that of hyperreal arithmeti. This is readily ahieved, when workingwithin the ontext of Isabelle/HOL, by developing the geometry theory aordingto the HOL-methodology i.e. stritly through de�nitions that apture the notions(points, lines, signed areas, et.) that are being dealt with and then proving that thevarious properties follow.To arry out this task, the hyperreal theories of Isabelle are extended with thenotions of hyperreal vetors. In essene, this is an algebrai approah whih developsgeometri objets and relations between these objets in the Cartesian produt IR�nof the �eld of hyperreals, where n = 2. We have also developed a theory of vetorsin three dimensions (and de�ned operations suh as ross-produts) but sine thispaper addresses geometry theorem proving in the plane, we shall only onsider twodimensional vetors. The hyperreals are hosen rather than the reals sine we an thenexpress in�nitesimal geometri notions as well. The de�nitions that are mehanizedare given next| we start with a real vetor theory whih we then extend to get thehyperreal vetors and their algebrai operations.

480 Theorem Proving in In�nitesimal Geometry5.1 Real Vetor SpaeIn general, the simplest de�nition for a real vetor in n dimensions is as an n-tupleof real numbers, (r1; : : : ; rn). However, a more geometri de�nition an be providedthat suits our purpose well.De�nition 5.1 Given two points P = (x1; y1) and Q = (x2; y2) in IR2, the vetorQ�P is alled the direted line segment from P to Q. The omponents of the diretedline segment are the terms in the pair (x2 � x1; y2 � y1).In this de�nition, we impliitly assume that the origin is given by the real oordinates(0; 0) and hene that a partiular point is spei�ed by the vetor whose omponentsorrespond to its Cartesian oordinates. In Isabelle, we formulate a theory of two-dimensional vetors by �rst introduing vetors as a new type orresponding to a pairof real numbers: realv � fp :: (real � real): TruegAs for the hyperreals, Isabelle automatially provides oerion funtions | Rep realvand its inverse Abs realv in this ase| that enable us to de�ne basi operations onthe new type. On a more intuitive level, one may simply read Abs realv as:Abs realv (x; y) � �xy�in what follows.We an then de�ne the various operations on the new type. For example, the innerprodut or dot produt of two vetors P and Q is de�ned, using tuples as patterns inabstrations [20℄, by:3P �Q � (�((x1; y1); (x2; y2)): x1x2 + y1y2) (Rep realv P; Rep realv Q)This de�nition is slightly more ompliated than the usual textbook one sine ituses an expliit �-abstration and the representation funtion. However, we provetheorems that apture the more familiar de�nitions and whih an then be fed toIsabelle's simpli�er for rewriting. So, for the dot produt, we have:Abs realv (x1; y1) � Abs realv (x2; y2) = x1x2 + y1y2Similarly, we also de�ne other important operations, suh as outer produt (�) andsalar multipliation (�s). For larity, we give their de�nitions as the simpli�ationtheorems proved in Isabelle rather than the atual de�nitions in terms of Rep realvand �-abstrations. The Isabelle de�nitions unfortunately tend to be slightly lutteredand beome somewhat hard to read. So, for outer and salar produts we prove thefollowing rules:Abs realv (x1; y1)� Abs realv (x2; y2) = x1y2 � y1x2a �s Abs realv (x; y) = Abs realv (ax; ay)3In what follows, the multipliation sign (�) between real variables is omitted whenever no ambiguity is likely toresult.

5. A MECHANIZED THEORY OF HYPERREAL VECTORS 481For any two vetors P and Q, the outer produt an be viewed as de�ning the orientedarea of a parallelogram, with the vetors as two of the sides of the parallelogram. Withthis nie geometri interpretation in mind, the next step involves proving variousproperties of the outer produt. The following theorem, whih shows that the outerprodut is not ommutative, is thus proved:P �Q = (�Q)� PGeometrially, this means a hange in the orientation of the area while its magnituderemains una�eted. The negation of a vetor P , for its part, is de�ned by negatingits various omponents. In Isabelle:�P � (�(x1; x2): Abs realv (�x1;�x2))(Rep realv P)In the next setion, the de�nition of signed area of a triangle follows diretly from thegeometri interpretation and algebrai behaviour assoiated with the outer produt.Various other algebrai properties of the operations introdued so far are proved inIsabelle. A few straightforward ones that are useful to the development are as follows:u � v = v � u u � (v + w) = u � v + u � wu� u = 0 (a �s u) � (b �s v) = ab �s (u � v)u � (u� v) = 0 (a �s u)� (b �s v) = ab �s (u� v)In these theorems, the zero vetor is de�ned, as expeted, by0 � Abs realv (0; 0)Another important onept that has not yet been introdued is that of the lengthor norm of a vetor. For a vetor P , this is de�ned by taking the square root of thedot produt P � P . In Isabelle,rvlen P � sqrt (P � P)The above de�nition is formalized diretly but does rely on the square root operationand theorems about its properties being available in Isabelle. For instane, to provethat4 rvlen (k �s u) = abs k � rvlen uthe following theorem (with x; y 2 IR) needs to be available in the theorem prover:[j0 � x; 0 � yj℄ =) sqrt (x � y) = sqrt x � sqrt yThe existene of operations suh as square root is often taken for granted in textbookswhen new de�nitions depending on them are introdued. However, in a de�nitionalmehanization suh as ours, formalizing suh onepts and their properties an some-times result in a fair amount of work. In this partiular ase though, we bene�t fromour work on the mehanization of nonstandard real analysis [10, 14, 13℄: this providesus with the square root operator and various theorems about it. Other importanttheorems proved in the theory inlude:4In Isabelle, abs x denotes jxj.

482 Theorem Proving in In�nitesimal Geometry� Cauhy-Shwarz inequality: abs (u � v) � rvlen u � rvlen v� Minkowski inequality: rvlen (u+ v) � rvlen u+ rvlen vAfter proving some further results of vetor algebra, we develop a simple geometrytheory based on the geometri interpretation of vetors and their operations. In thenext setions, the de�nitions and results of the vetor geometry development, as iturrently stands, are outlined.5.2 Real Vetor GeometryChou, Gao, and Zhang have also used vetor alulations in automated geometrytheorem proving [2℄. They assert a set of basi rules about the operations that anbe arried out on vetors. Theorems are then derived using these basi axioms ofthe theory. The algorithm used by Chou et al. is nie and relatively simple: given aonstrution sequene for a geometri on�guration, the points (i.e. vetor variables)are eliminated one at a time from the vetor expression standing for the onlusion,until only independent vetor variables are left. The onlusion that results is thentested to see if it is identially zero.In ontrast to the above approah, we proeed by means of de�nitions only andhaving introdued real vetors and de�ned the operations on them, there is enoughalgebrai power for the theories to express geometri onepts: orthogonality and par-allelism, signed (or oriented) areas, ongruene of angles and muh more. Moreover,we proeed mostly through simpli�ation and substitution steps that are be appliedto both the onlusion and premises of the urrent goal. That is, the proof steps inIsabelle are not limited to point elimination only.We �rst introdue as basi geometri objets the notions of points and lines byde�ning the following types in Isabelle:pt � fp :: hypve: Truegline � fl :: (pt � pt): TruegFrom these de�nitions, a point is therefore spei�ed by a position vetor and a (di-reted) line given by a pair of vetors representing its end-points. These de�nitionsgive the theory a separate, nier geometri interpretation in whih geometri objets(points and lines) are dealt with rather than vetors of hyperreal numbers. The ab-stration and representation funtions of Isabelle enable us to deal with the underlyingvetor theory to prove basi properties of parallelism, perpendiularity, ollinearityet. One this is done, we an hope to work at a higher abstrat level whih dealswith geometri relations and interat rather minimally with the underlying vetoronstrutions. This is similar in spirit with our onstrution of numbers, say the realsby Dedekind uts, where initially for eah operation we have to prove ut propertiesbut as more theorems are proved, we deal less and less with the atual uts and morewith the algebra of the reals.However, in the subsequent exposition we shall regard position vetors and pointsas being interhangeable when giving the de�nitions and desribing properties proved.This abuse of notation is simply to make the de�nitions more readable on paper sineit avoids the use of the oerion funtions. We will show the de�nitions or theorems asatually formulated if the need ever arises. We also note that the notationA��B, used

5. A MECHANIZED THEORY OF HYPERREAL VECTORS 483in Isabelle for a line from point A to point B, is syntati sugar for Abs line(A;B).Therefore, for eah geometri ondition, we have the orresponding vetor de�nition:1. That A, B, and C are ollinear:oll C AB � (C �A)� (B �A) = 02. That AB is parallel to CD:A��B k C ��D � (B �A)� (D � C) = 03. That AB is perpendiular to CD:A��B ? C ��D � (B �A) � (D � C) = 04. The length of a line AB:len (A��B) � rvlen (B �A)5. The signed area of triangle ABC:area A B C � 1=2 �s (B �A)� (C �A)6. The angle between AB and CD:hA��B;B ��Ci � aros (unitv (A�B) � unitv (C �B))where unitv P = (1=rvlen P) �s PThe de�nition of the angle relies on the theory of transendental funtions devel-oped in Isabelle. In our work on the formalization of analysis, the various trigono-metri funtions are de�ned over the reals through their power series expansions,and then extended to the hyperreals [14℄.With these de�nitions set up, we verify that the basi properties of signed areasatually hold and justify the statements of geometri relations that were made byChou et al. in terms of them [3℄. The theorems about the sign of the area dependingon the ordering of the verties of the triangle are all proved automatially withoutany problems sine our de�nition makes them diret onsequenes of the algebraiproperties of the outer produt. Consider, for example:�area a b = �1=2 �s (� a)� (b� a)= �1=2 �s (�(b� a))� (� a)= �� 1=2 �s (b� a)� (� a)= area a b Many similar rules are proved with the help of Isabelle's automati tati and addedto the simpli�er. The de�nition of parallelism in terms of signed areas, as given byChou et al. [3℄, is also easily veri�ed:a�� b k �� d() (area a b = area a b d)

484 Theorem Proving in In�nitesimal Geometryand the following theorem de�ning inidene (or ollinearity) in terms of signed area:oll a b () (area a b = 0) (5.1)We also extend the de�nition of inidene to that of a set of points inident on aline, thereby enabling us to prove some more theorems. We an deal with the ratiosof oriented lines by proving theorems suh as these:� A��B k C ��D (C 6= D):len (A��B)len (C ��D) = (B �A) � (D � C)(D � C) � (D � C)� if R is the foot of the perpendiular from point A to line PQ (P 6= Q):len (P ��R)len (P ��Q) = (A� P) � (Q� P)len (P ��Q)2� if two non-parallel lines interset at a point R:len (P ��R) � (Q� P)� (V � U) = len (P ��Q) � (U � P)� (V � U)Some of the results above are unproved, high level lemmas stated by Chou et al. asbeing used in their automated GTP method based on vetors [2℄. We verify all ofthem in Isabelle and store them as lemmas that beome valuable when proving om-pliated geometry theorems. This veri�ation of lemmas used in various establishedGTP methods is not a mere exerise as it supports the axiomati geometry that wepreviously used in Isabelle for our mehanization of theorems from Newton's Prin-ipia[11, 10℄. From a more general standpoint, it an also be viewed as provided arigorous foundations for several automati methods used in geometry theorem prov-ing. Finally, sine we are able to prove the expeted geometri properties in theformalization, this gives us a relatively high degree of assurane that we are using theright de�nitions for various onepts.5.3 Introduing the In�nitesimal GeometryWe start by de�ning the new type of hyperreal vetors using sequenes of real vetors(i.e. essentially sequenes of pairs of real numbers) and our free ultra�lter UIN. Asmentioned previously, the de�nitions are analogous to those used for de�ning thehyperreals. One again, the various operations (e.g. dot produt, outer produt,addition, et.) are de�ned in terms of pointwise operations on the underlying sequene(Fig. 1). Various properties, analogous to those of real vetors (see Setion 5.1), areproved for the hyperreal vetors and their assoiated operations. All the mehanizedproofs are straightforward as the properties follow diretly from their real vetorounterparts.In addition, we distinguish between various types of vetors by means of theirlengths. This haraterization is analogous and losely related to that of the hyperrealnumbers:

5. A MECHANIZED THEORY OF HYPERREAL VECTORS 485HyperVetor = Trans +onstdefs(* equivalene relation *)hvrel "((nat) realv) * (nat) realv)) set""hvrel � {p. 9 r s. p = (r,s) ^ {n. r n = s n}2UIN}"typedefhrealv � "{x::(nat) realv). True}/hvrel" (Equiv.quotient_def)instanehrealv :: {zero, plus, minus}defshrealv_zero_def "0 � Abs_hrealv(hvrel^^{�n::nat. 0})"onstdefs(* norm an use nonstandard extension of square root operation *)hvlen :: hrealv) hypreal"hvlen u � (*f* sqrt) (u � u)"hrealv_minus :: hrealv) hrealv"- P � Abs_hrealv(SX2Rep_hrealv(P). hyvrel^^{�n::nat. - (X n)})"(* embedding for the real vetors: use onstant sequene *)hrealv_of_realv :: realv) hrealv"hrealv_of_realv u � Abs_hrealv(hvrel^^{�n::nat. u})"(* hyperreal unit vetor *)hunitv :: hrealv) hrealv"hunitv u � inv(hvlen u) �s u"defshrealv_add_def"P + Q � Abs_hrealv(SX2Rep_hrealv(P).SY2Rep_hrealv(Q).hvrel^^{�n::nat. X n + Y n})"hrealv_dot_def"P � Q � Abs_hrealv(SX2Rep_hrealv(P).SY2Rep_hrealv(Q).hvrel^^{�n::nat. X n � Y n})": : :hrealv_oprod_def"P � Q � Abs_hrealv(SX2Rep_hrealv(P).SY2Rep_hrealv(Q).hvrel^^{�n::nat. X n � Y n})"Fig. 1. Isabelle/HOL theory for hyperreal vetors

486 Theorem Proving in In�nitesimal GeometryDe�nition 5.2 A hyperreal vetor P is said to be in�nitesimal, �nite, or in�nite ifits length (hvlen P) is in�nitesimal, �nite, or in�nite respetively. Moreover, P isin�nitely lose to Q (P �v Q) if and only if Q� P is in�nitesimal.With this de�nition formalized in Isabelle, the following equivalene theorem aboutin�nitely lose vetors is proved:[hXni℄ �v [hYni℄() [hfst((Xn))i℄ � [hfst((Yn))i℄^ [hsnd((Xn))i℄ � [hsnd((Yn))i℄ (5.2)where [hXni℄ denotes the equivalene lass of sequenes of real vetors ontaininghXni, and fst and snd are the �rst and seond projetion funtions respetivelyprovided by Isabelle for reasoning about pairs. The atual Isabelle theorem, thoughslightly overwhelming maybe, shows the relation between the various onepts expli-itly and an be instrutive:Abs hrealv (hvrel^̂ fXg) �v Abs hrealv (hvrel^̂ fY g)() Abs hypreal (hyprel^̂ f�n: fst(Xn)g) �Abs hypreal (hyprel^̂ f�n: fst(Yn)g) ^Abs hypreal (hyprel^̂ f�n: snd(Xn)g) �Abs hypreal (hyprel^̂ f�n: snd(Yn)g)In other words, two hyperreal vetors are in�nitely lose if and only if their omponentsin orresponding positions are in�nitely lose to one another. This is a useful theoremthat an be used in many ases to redue in�nitesimal reasoning involving hyperrealvetors to similar reasoning over the real vetors or even over the reals. We also provethe following important theorems about the di�erent types of vetors:1. P is in�nitesimal if and only if all its omponents are in�nitesimal.2. P is �nite if and only if all its omponents are �nite.3. P is in�nite if and only if at least one of its omponents is in�nite.and many other interesting nonstandard theorems about the algebra of the operationsand relations on them, suh as:a 2 Finite� Infinitesimal=) (a �s w �v a �s z) = (w �v z) (5.3) 2 Finite� Infinitesimal=) (�s w �v b �s z) = (w �v (b=) �s z) (5.4)[ja � 0;u 2 VFinitej℄ =) a �s u �v 0 (5.5)x �v y =) hvlen x � hvlen y (5.6)u 2 VFinite� VInfinitesimal=) u � u 2 Finite� Infinitesimal (5.7)u 2 VFinite� VInfinitesimal=) (u� v � 0) = (9k: v �v k �s u) (5.8)where VInfinitesimal and VFinite denote the sets of in�nitesimal and �nite vetorsrespetively. Most of these theorems are relatively straightforward to prove althoughsome like (5.6) and (5.8)are more hallenging. We highlight some of the issues involvedin their mehanization by examining part of the proof of theorem (5.8) more losely.At �rst sight, one might expet the proof of the theorem to be similar to that of:u 6= 0 =) (u� v = 0) = (9k: v = k �s u) (5.9)

5. A MECHANIZED THEORY OF HYPERREAL VECTORS 487whih is easily proved in Isabelle by unfolding the de�nitions of the various vetoroperations and then reduing the reasoning to equation solving. However, a similarapproah in whih we unfold �v using (5.2)and then try to prove the theorem by rea-soning over the hyperreals is muh harder. This is beause the in�nitely lose relation(�), unlike equality, is not losed under multipliation and goals involving multipli-ation and � require a lot of work (ase-splits) to be established. Our mehanization,therefore goes for a diret approah involving reasoning over hyperreal vetors andtheir operations. We will only onsider the (trikier) �rst part of the proof whihinvolves showing that:[ju 2 VFinite� VInfinitesimal;u� v � 0j℄ =) 9k: v �v k �s u (5.10)For the mehanization of this goal, after some experimentation, we deide to de�nethe following operation on real vetors:ortho (Abs realv (x1; y1)) = Abs realv (�y1; x1)with the following nonstandard extension to hyperreal vetors:hortho [hXni℄ � [hortho Xni℄Geometrially, the operation an be viewed as de�ning a new vetor orthogonal (per-pendiular) to the given one. Using these de�nitions, we then easily prove by simpli-�ation the following theorems:(v � w) �s hortho u = (u � v) �s w � (u � w) �s v (5.11)u 2 VFinite =) hortho u 2 VFinite (5.12)As a brief remark, we note that theorem (5.11)an be viewed as a lower dimensional(planar) analogy of the spatial triple vetor produt u � (v � w) (in whih vetorv � w, for example, then denotes the so-alled ross produt). Now, using theorems(5.5)and (5.12)with the assumptions of onjeture (5.10),we derive:(u� v) �s hortho u �v 0whih, using theorem (5.11),rewrites to:(u � u) �s v �v (u � v) �s u (5.13)From the �rst assumption of goal (5.10)and theorem (5.7), we have:u � u =) Finite� InfinitesimalUsing this and theorem (5.4),we derive thatv �v ((u � v)=(u � u)) �s ufrom whih the onlusion of (5.10)follows immediately. This overview demonstrates,we hope, the somewhat intriate nature of proofs involving nonstandard onepts.Although the statement of the theorem (5.10)is very similar to that of theorem (5.9),the atual proofs are very di�erent. The in�nitely lose relation introdues numerous

488 Theorem Proving in In�nitesimal Geometrysubtleties that one might overlook were it not for the strit de�nitional framework ofIsabelle/HOL. In partiular, the are that must be exerised when multiplying twoin�nitely lose quantities (e.g. a �v b) with some other quantity (say) to ensurethat the results are also in�nitely lose (�s a � �s b) is never allowed to lapse.The proof that we have just outlined, though relatively easy to understand, is not animmediately obvious one; its mehanization required a fair amount of thought andsubsequent experimentation in Isabelle.As a �nal note on this proof, we remark that the operator ortho (and henehortho) is not a onept that we onsidered when developing the initial vetortheory. It was de�ned during the mehanization of theorem (5.10)to simplify theproof. Subsequently, however, we realised that it had many nie properties, suh asu� v = ortho u � v, ortho (u+ v) = ortho u+ ortho v, and u � ortho u = 0 amongstothers. This highlights how the mehanization of a partiular theorem an lead tothe de�nition of new onepts whih further enrih the theory.The nonstandard vetor theorems, we believe, have lear geometri readings andformalize the intuitive behaviour one would expet. Theorem (5.6),for example, an
b

c

a

Fig. 2. A \shrinking" trianglebe used diretly to prove an intuitive theorem about a shrinking triangle in whih oneof the sides is in�nitesimal. In Fig. 2, for example, one an intuitively see that as thelength of b beomes smaller, the lengths of ab and a approah eah other, until theyare in�nitely lose when b is in�nitesimal. This is aptured by the following Isabelletheorem: len (b��) � 0 =) len (a�� b) � len (a��)Interestingly, if the lengths of the sides ab and b are real valued, then they have tobe equal (i.e. triangle ab is an isoseles) when b is in�nitesimal:[jlen (a�� b) 2 IR; len (b��) 2 IR; len (a��) � 0j℄=) len (a�� b) = len (b��)This is beause of theorem (4.2) stating that two real numbers that are in�nitely loseto one another are e�etively equal. We also formally derive, for example, theorems

6. SOME INFINITESIMAL GEOMETRIC NOTIONS 489suh as:[jlen (a�� b) 2 Finite; len (b��) 2 Infinitesimalj℄ =) area a b � 0and [joll a b ; area p b � 0j℄ =) area p a � area p a b (5.14)The latter (see Fig. 3) is proved using the anellation theorem (5.3),as well as var-ious others involving assoiativity and ommutativity of vetor addition to performAC-rewriting. These are just a few of the in�nitesimal geometry theorems involving
p

b
caFig. 3. In�nitely lose areasfamiliar geometri onepts. We next introdue a number of basi onepts system-atially de�ned using the various notions from our nonstandard vetor theory.6 Some In�nitesimal Geometri NotionsEah of the new de�nitions an be viewed as weakening of the more familiar ones.We start with a nonstandard formulation of parallelism and orthogonality.Almost parallel and almost perpendiularJust as the onept of two lines being parallel was introdued, using hyperreal vetorsthe weaker notion of two lines being almost parallel is de�ned (with A 6= B andC 6= D): A��B ka C ��D � hunitv (B �A) �v hunitv (D � C) _hunitv (B �A) �v �hunitv (D � C)We trivially prove that this is an equivalene relation. More importantly, the relationbetween this de�nition and that of parallel lines, given in Setion 5.2, is highlightedby the following theorem, also proved in Isabelle:D � C 2 VFinite� VInfinitesimal=) A��B ka C ��D() (B �A)� (D � C) � 0 (6.1)The theorem expresses the almost parallel property in a form similar to that of or-dinary parallelism, with equality replaed by the in�nitely lose relation. However,there is a notable di�erene whih is shown as an additional ondition on one of the

490 Theorem Proving in In�nitesimal Geometrytwo lines (CD in this partiular ase, although it ould have been on AB sine ka issymmetri). Without the ondition, (6.1) above is not a theorem as the outer produtof an in�nitesimal and in�nite vetor is not neessarily in�nitely lose to zero. Also,in terms of area, justifying a more geometrially intuitive de�nition based on signedareas, we have: len (C ��D) 2 Finite� Infinitesimal=)A��B ka C ��D() (area a d � area b d)We also de�ne the notion of two lines being almost perpendiular. One again, wemake use of the notion of unit vetor to get a suitable de�nition. LinesA��B ?a C ��D � hunitv (B �A) � hunitv (D � C) � 0We note that sine the dot produt produes a hyperreal, we use the in�nitely loserelation � over these numbers rather than �v whih is de�ned over hyperreal vetors.Almost ollinearWe next introdue the notion of three points being almost ollinear. Intuitively, onemight expet three points a, b, and to be almost ollinear (denoted by aoll a b in Isabelle) if and only if the signed area area a b is in�nitely lose to zero. Suha de�nition would be very similar in spirit to the equivalene theorem (5.1).However,sine our geometry allows both in�nitesimal and in�nite quantities, this de�nition isinadequate: it does not hold in the ase where two of the points onerned, say b and, are in�nitely far apart and the third one, say a, is in�nitely lose to the line b.This is beause the outer produt (� b) � (a � b) is not neessarily in�nitely loseto zero in this ase as well. Instead, we de�ne the property as follows:aoll a b � (b� a) ka (b�)and prove a number of theorems involving it suh as the variant of (5.14),shown inFig. 4: [jlen (b�� a) 2 Finite� Infinitesimal; aoll a b ; area p b � 0j℄=) area p a � area p a bIn�nitesimal anglesOur NSA theory is powerful enough to prove theorems involving the trigonometrifuntions and in�nitesimal angles. For example, we an formally formulate and proveassertions suh assin(�) = � and os(�) = 1 where � is in�nitely smallthat one often sees in textbooks. These are rarely given any further justi�ation: thereader needs to rely on her knowledge of trigonometri funtions and on her intuitionabout what in�nitely small means to see that the statements are indeed plausible.

6. SOME INFINITESIMAL GEOMETRIC NOTIONS 491
a

b

p

cFig. 4. In�nitely lose areasSuh assertions an be formalized in NSA, however, by making � an in�nitesimal andreplaing equality by the in�nitely lose relation �. The proofs are intuitive, yetrigorous, and relatively easy to mehanize. We give, as an example, a brief proof ofthe statement sin�(�) � �.In the NSA theory [13℄ of Isabelle/HOL, the formal nonstandard de�nition of thederivative of a funtion f at x (DERIV) is given by:DERIV(x) f :> d � 8h 2 In�nitesimal� f0g: f�(x+ h)� f(x)h � dThis is simply saying that the derivative of f at x is d if �f�x is in�nitely lose to d.With this, and assuming the standard results (proved in Isabelle) thatos(0) = 1; sin(0) = 0;and DERIV(x) (�x: sin(x)) :> os (x);we an easily prove that sin�(�) � � for all in�nitesimal �.Proof:if � = 0: This is trivial sine � is reexive.else if � 6= 0: Sine DERIV(x) �x: sin(x) :> os(x), for all x, we have thatDERIV(0) �x: sin(x) :> os(0)) 8h 2 Infinitesimal� f0g: sin�(0 + h)� sin(0)h � 1) sin�(0 + �)� sin(0)� � 1) sin�(�)� � 1) sin�(�) � �As a remark, we note that we have used theorem (4.4) and a theorem stating thatInfinitesimal � Finite to reah the �nal step. Through a similar reasoning, wealso prove that os�(�) � 1 and, interestingly, that tan�(�=2 + �) 2 Infinite, for

492 Theorem Proving in In�nitesimal Geometryall in�nitesimal �. We expet suh results involving angles and trigonometry will toprove useful in the further development of the geometry.In addition, we also prove that the angle between two lines whih are almost per-pendiular is in�nitely lose to �=2, i.e.,a�� b ?a �� d() ha�� b; �� di � �=2Almost similar trianglesThis is basially the notion of ultimately similar triangles that we have desribed andused a number of times before [11, 12℄. We briey reall its de�nition here:USIM a b a0 b0 0 � hb�� a; a�� i � hb0 �� a0; a0 �� 0i ^ha�� ; �� bi � ha0 �� 0; 0 �� b0i ^h�� b; b�� ai � h0 �� b0; b0 �� a0iWe are still formally investigating the properties of this onept. We have alreadyreprodued in our new setting most of the theorems desribed in previous work [12℄.Similarly, we have de�ned the notion of two triangles being almost ongruent.7 Nonstandard Proofs of Standard Geometry TheoremsOur nonstandard tehnique is strong enough to produe nie proofs of traditionalgeometry theorems. We onsider, as a short ase study, a nonstandard proof thatthe area of a irle of radius r is �r2. The area of the irle will be shown to bein�nitely lose to the area of an enlosed (insribed) polygon with in�nitely manysides. The exat real value area an then be obtained by taking the standard part ofthis polygonal area.
A4

An

A1

A2

A3

o

Fig. 5. A losed polygonIn Fig. 5, the area of the losed polygon A1 : : : An is de�ned by the formula:area A1 : : : An � OA1A2 +OA2A3 + : : :+OAn�1An +OAnA1

7. NONSTANDARD PROOFS OF STANDARD GEOMETRY THEOREMS 493where OA1A2, for example, represents the area of triangle OA1A2 whih was de�nedin Setion 5.2 in terms of the vetor outer-produt in the plane. The value of thepolygonal area is independent of O but depends on OAi, the radius vetor to theith point. The de�nition of polygonal area looks reursive exept for the last areaterm (OAnA1) and so, in Isabelle, motivates the following formalization with the zerovetor as the origin O:polyArea :: (nat) real) realv)) nat) real) realpolyArea P n r � pArea P n+ area 0 (P n r) (P 0 r)and the following primitive reursive de�nition for the area from A0 to An�1:pArea :: (nat) real) realv)) nat) real) realprimrepArea P 0 r = 0pArea P (Su n) r = pArea P n r + area 0 (P n r) (P (Su n) r)Thus, aording to our de�nition, the polygon is de�ned as a sequene of funtionsfrom reals to real vetors. The real value r ats as a parameter whih an be usedto determine the ith point. This is needed as often the radius vetors OAi doesnot depend on just i but also on some other quantity suh as an angle. The twoparameters (e.g. multiplied) together enable us to progress along the urve beingapproximated. An alternative way of looking at the polygon is to onsider eahradius vetor as being given by Ar(i). This means that we ould probably speify thede�nitions above without the �xed parameter r being given expliitly| it would bepart of the de�nition of the polygon. However, one possible advantage of our hosenformalization is that we an have a general de�nition for the insribed polygon (see(7.1), for example) whih spei�es the angle as a argument to be supplied.Now, if C is a irle of radius 1, for example, we an insribe a polygon A1 � � �Anby hoosing points A1, A2,..., An in order along it. If n is an in�nite hypernaturalnumber then the points Ai rowd one another, and we expet to arrive at the formulafor the area enlosed by C. We all suh a polygon an hyper�nite polygon.Our de�nition polyArea, however, is purely standard and an only onsider thearea of polygons with inreasingly large but still �nite (natural) number of points.We therefore extend the de�nition to deal with polygons with a hypernatural i.e.nonstandard number of points. This is de�ned as follows:hpolyArea :: (nat) real) realv)) hypnat) hypreal) hyprealhpolyArea PNR �Abs hypreal(SX 2 Rep hypnatN:SY 2 Rep hyprealR:hyprel^̂ f�n: polyArea P (Xn) (Y n)g)or, equivalently, without the oerion funtions:hpolyArea P [hXni℄ [hYni℄ � [hpolyArea P Xn Yni℄With this de�ned, we an now see how to determine the area of the irle using ourin�nite polygonal approximation tehnique.

494 Theorem Proving in In�nitesimal Geometry
π/n

/nπsin(2)r

π/ncos(2)�r

B

C A

r

Fig. 6. Insribing a polygon of n sides in a semi-irleIn our mehanized proof, we �rst onsider the unit semi-irle ABC (see Fig. 6).Using the angle � between suessive radius vetors as parameter, the polygon an bede�ned by the following sequene of real vetors:�k �: Abs realv (os k�; sin k�) (7.1)where k denotes the k-th point of the polygon. Hene, given that n 2 IN points areinsribed in the semi-irle, the angle between the radius vetors is �=n and so thepolygonal area is denoted by:polyArea (�k �: Abs realv (os k�; sin k�)) n (�=n)We then easily prove by indution and with the help of the mehanized lemma:sin(x� y) = os y sinx� sin y osxsupplied to Isabelle's simpli�er that the following theorem holds:polyArea (�k �: Abs realv (os k�; sin k�)) n (�=n) = 1=2n sin(�=n) (7.2)We also prove the following property of polygonal areas:polyArea (�nr: �s P n r) N R = 2 � polyArea P N Rwhih means that for a semi-irle of radius r 2 IR, we have:polyArea (�k �: Abs realv (r os k�; r sin k�)) n (�=n) = 1=2r2n sin(�=n) (7.3)Now, if n = [hXmi℄, the number of insribed points, is an in�nite hypernatural num-ber, we have that �=n is in�nitesimal. But, from the result in the previous setionabout in�nitesimal angles, we know that:5sin�(�=n)(�=n) � 15For larity, we omit to show the embedding funtions hypreal of hypnat and hypreal of real used to embed thehypernatural number n and � respetively in the hyperreals.

8. FURTHER WORK 495and hene that n sin�(�=n) � �This result, with (7.3) above, allows us to prove that:hpolyArea (�k �: Abs realv (r os k�; r sin k�)) n (�=n) � 1=2�r2sine hpolyArea (�k �: Abs realv (r os k�; r sin k�)) n (�=n)= hpolyArea (�k �: Abs realv (r os k�; r sin k�)) [hXmi℄ (�=[hXmi℄)= [hpolyArea (�k �: Abs realv (r os k�; r sin k�)) Xm (�=Xm)i℄= [h1=2r2(Xm) sin(�=Xm)i℄= 1=2r2[hXmi℄ sin�(�=[hXmi℄) = 1=2r2n sin�(�=n)From this result, we dedue that for a irle, with the angle between suessive radiusvetors given by 2�=n, the following holds:hpolyArea (�k �: Abs realv (r os k�; r sin k�)) n (2�=n) � �r2Hene, by \exhausting" the irle with an insribed polygon of in�nite number ofsides, we have formalized a nie, geometrially intuitive, proof that the area of theirle of radius r, is in�nitely lose to �r2. In fat, if we assume that the area of theirle is real, then by the standard part theorem, it is equal to �r2. We may get thisbehaviour diretly by de�ning the polygonal area that we want (all it PolyArea)as the real quantity equal to the standard part of the hyper�nite polygonal areahpolyArea i.e., PolyArea P n r = str (hpolyArea P n r)This means that our in�nite approximation an, in e�et, provide an exat real quan-tity for the area that we are exhausting. As a �nal note, we remark that most ofthe theorems just desribed are proved with a high degree of automation. Theorem(7.2), for example, is proved in two steps: indution on n followed by a all to one ofIsabelle's automati tati.8 Further WorkThis paper has desribed some of our urrent work on the formalization and inves-tigation of a geometry that rigorously admits both in�nitesimal and in�nite notions.We still have muh of the geometry to explore though: one urrently unproved on-jeture, for example, is that two (o-planar) lines whih are almost parallel do meetat a point in�nitely far away i.e., we expet to have a well-de�ned, non-degeneratesolution to the problem.As a by-produt of this work, we now have a relatively well developed vetor theoryin Isabelle. This ontains many of the familiar theorems about vetor operations aswell as the new theorems involving the in�nitely lose relation, in�nitesimal andin�nite vetors, and other nonstandard onepts. As the work proeeds, we expetto add more theorems to provide a theory that an be useful for other purposes (e.g.proofs in mehanis that often involve vetors and as well as in�nitesimals).

496 Theorem Proving in In�nitesimal GeometryWe will be introduing and investigating other, perhaps less obvious, almost rela-tions. For example, we have reently mehanized notions of approximate geometriobjets in whih an ellipse with in�nitely lose foi, for instane, an be regarded asbeing almost (but not quite) a irle. Other notions inlude \almost betweenness",approximate point inlusion in a triangle, and \almost a tangent" to a irle, forexample.We will pursue our mehanization of geometri proofs that use in�nitesimal andin�nite quantities to reah in�nitely aurate approximation results. We have in-trodued the indutive notion of area for a losed polygon whih an be used toapproximate any losed �gure (urve). Our example showed how this an be usedto derive a relatively simple proof about the area of the irle using in�nite numbersand in�nitesimals. Our approah rigorously mehanizes the informal argument thatone might give for suh an proof. A standard proof of the same result, however,would have required us to introdue sequential limit arguments and then deal withthe alternating quanti�ers [10, 13℄.Our geometri tehniques apture well the ideas embodied in proofs that use the\Method of Exhaustion" of Arhimedes. In these, one �gure is usually approximatedmore and more aurately by another one in order to ompute geometri quantitiessuh as boundaries, areas, and volumes. This sort of reasoning, however, annot bedealt with by existing (standard) mehanial geometry theorem proving methods.The work of Baron [1℄, for example, provides a wealth of suh proofs throughout theenturies for us to work with and mehanize.9 Conluding RemarksIn this paper, we have formally introdued the notion of an in�nitesimal geometrybased on hyperreal vetors. We have briey skethed some aspets relating this hy-perreal geometry to non-Arhimedean geometry. Various theorems have been provedthat have no diret ounterparts in Eulidean geometry sine the latter only dealswith real numbers.Vetor algebra o�ers an attrative approah to mehanial geometry theorem prov-ing. There is muh ative researh going on using the related �eld of Cli�ord algebra,whih is generally regarded as being more expressive [22, 8℄. In our ase, sine weare doing interative rather than automati theorem proving, vetors provide a simpleand adequate approah to analyti geometry. Also, as was shown by Dieudonn�e, inner(dot) and outer produts of vetors are suÆient to develop elementary geometry [7℄.As far as we are aware, this is the �rst mehanization of a theory of hyperrealvetors. Moreover, Keisler's textbook is, to our knowledge, the only work to give abrief exposition of a vetor theory [18℄. As a result, most of the theorems mehanizedin Isabelle have been proved independently of any previous work or textbooks. Wehave shown that these vetors obey the usual algebrai rules for vetors sine theyform an inner produt spae over the �eld IR�. By using the extended vetors insteadof real vetors, it is possible to desribe, in addition to ordinary geometri onepts,the novel notions of in�nitesimal geometry presented in this paper.The analyti geometry development was arried out to provide a rigorous de�ni-tional approah in whih to investigate our in�nitesimal geometry. By following theHOL methodology, we have the guarantee that our formalization is onsistent and

9. CONCLUDING REMARKS 497that all results proved are atual theorems about the geometry we have developed.We also remark on an important realisation emphasized by the urrent work: theinlusion of in�nitesimals and other nonstandard onepts in geometry introdues sub-tle issues that an easily lead to inadequate de�nitions. Indeed, it an be problematito formulate onepts that rely on some form of produt (outer, dot, multipliationet.) as the operation an be ill-de�ned whenever it involves both an in�nitesimal andan in�nite quantity. We beame espeially aware of the subtlety involved when ourinitial de�nition for almost parallel lines (we used the equivalene theorem (6.1)with-out the assoiated ondition) proved inadequate. We ould not prove some of theproperties we felt should hold sine we were impliitly ruling out an in�nitesimal lineand an in�nite line being almost parallel.The realisation ame after some experimentation with the framework and did foreus to exerise muh more are. However, the fat that we enountered suh a problemis probably unsurprising. After all, the aw that we found in one of the famous proofsof the great Newton was also of this nature [12℄; it involved taking the ill-de�nedprodut of an in�nitesimal and an in�nite quantity. This is a useful experiene thatwill help us as we explore more hallenging onepts in this geometry.AknowledgementThis researh was funded by ESPRC grant GR/M45030 `Computational Modellingof Mathematial Reasoning'. I would like to thank the anonymous referees for theirinsightful omments.Referenes[1℄ M. E. Baron. The Origins of the In�nitesimal Calulus. Pergammon Press, 1969.[2℄ S. C. Chou, X. S. Gao, and J. Z. Zhang. Automated geometry theorem proving by vetoralulation. In ACM-ISSAC, pages 284{291, Kiev Ukraine, July 1993.[3℄ S. C. Chou, X. S. Gao, and J. Z. Zhang. Automated generation of readable proofs with geometriinvariants, I. multiple and shortest proof generation. Journal of Automated Reasoning, 17:325{347, 1996.[4℄ S. C. Chou, X. S. Gao, and J. Z. Zhang. Automated generation of readable proofs with geometriinvariants, II. theorem proving with full-angles. Journal of Automated Reasoning, 17:349{370,1996.[5℄ A. Churh. A formulation of the simple theory of type. Journal of Symboli Logi, 5:56{68,1940.[6℄ P. J. Davis and R. Hersh. The Mathematial Experiene. Harmondsworth, Penguin, 1983.[7℄ J. Dieudonn�e. Linear Algebra and Geometry. Hermann, 1969. Translated from the originalFrenh text Alg�ebre lin�eaire et g�eom�etrie �el�ementaire.[8℄ S. Fevre and D. Wang. Proving geometri theorems using li�ord algebra and rewrite rules. InC Kirhner and H. Kirhner, editors, Automated Dedution { CADE-15, volume 1421 of LetureNotes in Arti�ial Intelligene, pages 17{32. Springer-Verlag, July 1998.[9℄ G. Fisher. Veronese's non-Arhimedean linear ontinuum. In P. Ehrlih, editor, Real Numbers,Generalizations of the Reals, and Theories of Continua, volume 242 of Synthese Library. KluwerAademi Publisher, 1994.[10℄ J. D. Fleuriot. A ombination of geometry theorem proving and nonstandard analysis, withappliation to Newton's Prinipia. PhD thesis, Computer Laboratory, University of Cambridge,1999. Available as Computer Laboratory Tehnial Report 469.[11℄ J. D. Fleuriot and L. C. Paulson. A ombination of geometry theorem proving and nonstandardanalysis, with appliation to Newton's Prinipia. In C Kirhner and H. Kirhner, editors,

498 Theorem Proving in In�nitesimal GeometryAutomated Dedution { CADE-15, volume 1421 of Leture Notes in Arti�ial Intelligene, pages3{16. Springer-Verlag, July 1998.[12℄ J. D. Fleuriot and L. C. Paulson. Proving Newton's Propositio Kepleriana using geometryand nonstandard analysis in Isabelle. In X.-S. Gao, D. Wang, and L. Yang, editors, AutomatedDedution in Geometry, volume 1669 of Leture Notes in Arti�ial Intelligene. Springer-Verlag,1999.[13℄ J. D. Fleuriot and L. C. Paulson. Mehanizing nonstandard real analysis. LMS Journal ofComputation and Mathematis, 3:140{190, 2000.[14℄ Jaques D. Fleuriot. On the mehanization of real analysis in Isabelle/HOL. In J. Harrison andM. Aagaard, editors, Theorem Proving in Higher Order Logis: 13th International Conferene,TPHOLs 2000, volume 1869 of Leture Notes in Computer Siene, pages 146{162. Springer-Verlag, 2000.[15℄ M. Gordon and T. Melham. Introdution to HOL: A theorem proving environment for HigherOrder Logi. Cambridge University Press, 1993.[16℄ D. Hilbert. The Foundations of Geometry. The Open Court Company, 1901. Translation by E.J. Townsend.[17℄ A. E. Hurd and P. A. Loeb. An Introdution to Nonstandard Real Analysis, volume 118 of Pureand Applied Mathematis. Aademi Press In., 1985.[18℄ H. J. Keisler. Foundations of In�nitesimal Calulus. Prindle, Weber & Shmidt, 1976.[19℄ L. C. Paulson. Isabelle: A Generi Theorem Prover, volume 828 of Leture Notes in ComputerSiene. Springer, 1994.[20℄ L. C. Paulson. Isabelle's objet-logis. Tehnial Report 286, Computer Laboratory, Universityof Cambridge, February 1998.[21℄ H. Poinar�e. Review of Hilbert's foundations of geometry (1902). In P. Ehrlih, editor, RealNumbers, Generalizations of the Reals, and Theories of Continua, volume 242 of SyntheseLibrary. Kluwer Aademi Publisher, 1994.[22℄ D. Wang. Cli�ord algebrai alulus for geometri reasoning, with appliation to omputervision. In D. Wang, R. Caferra, L. Fari~nas del Cerro, and H. Shi, editors, Automated Dedutionin Geometry, ADG'96, volume 1360 of Leture Notes in Arti�ial Intelligene, pages 115{140.Springer, 1997.Reeived September 1, 2000. Revised: Deember 1, 2000, January 19, 2001

A Simple Formalization and Prooffor the Mutilated Chess BoardLAWRENCE C. PAULSON, Computer Laboratory, University ofCambridge, England, E-mail: lp�l.am.a.uk.AbstratThe impossibility of tiling the mutilated hess board has been formalized and veri�ed using Isabelle.The formalization is onise beause it is expressed using indutive de�nitions. The proofs arestraightforward exept for some lemmas onerning �nite ardinalities. This exerise is an objetlesson in hoosing a good formalization: one at the right level of abstration.Keywords: mutilated hess board, indutive de�nitions, Isabelle1 IntrodutionA hess board an be tiled by 32 dominoes, eah overing two squares. If two di-agonally opposite squares are removed, an the remaining 62 squares be tiled bydominoes? No. Eah domino overs a white square and a blak square, so a tiledarea must have equal numbers of both olours. The mutilated board annot be tiledbeause the two removed squares have the same olour (Fig. 1).The mutilated hess board problem has stood as a hallenge to the automatedreasoning ommunity sine MCarthy [8℄ posed it in 1964. Robinson [15℄ outlines thehistory of the problem, iting Max Blak as its originator.Anybody an grasp the argument instantly, but even formalizing the problem seemshard, let alone proving it. MCarthy has reently renewed his hallenge, publishinga formalization that he laims is suitable for any `heavy duty set theory' prover [9℄.Formalizations like this destroy the simpliity of the original problem. They typ-ially de�ne ompliated prediates to reognize objets. To reognize dominoes, aprediate heks whether its argument ontains two adjaent squares. Subramaniande�nes adjaent by omparing o-ordinates [17, 18℄:(defn adjp (s1 s2)(or (and (equal (ar s1) (ar s2))(equal (plus 1 (dr s1)) (dr s2)))(and (equal (dr s1) (dr s2))(equal (plus 1 (ar s1)) (ar s2)))))Subramanian makes other de�nitions whose ombined e�et is to reognize a list ofnon-overlapping dominoes and to ompute the region overed. MCarthy's formal-ization has a similar avour, though posed in the language of sets. It is onise butformidable.An alternative is to express the notion of tiling by an indutive de�nition. Itis onise and nearly as lear as the informal problem statement. It provides anindution priniple that is well-suited to proving the desired theorem.499L. J. of the IGPL, Vol. 9 No. 3, pp. 499{509 2001 Oxford University Press

500 A Simple Formalization and Proof for the Mutilated Chess Board

Fig. 1. The Mutilated Chess Board2 Mathematial developmentFirst we must make the intuitive argument rigorous. A tile is a set, regarded as a setof positions. A tiling (using a given set A of tiles) is de�ned indutively to be eitherthe empty set or the union of a tiling with a tile a 2 A disjoint from it. Thus, a tilingis a �nite union of disjoint tiles drawn from A.This view is abstrat and general. None of the sets have to be �nite; we need notspeify what positions are allowed. Now let us fous on hess boards.A square is a pair (i; j) of natural numbers: an even (or white) square if i + j iseven and otherwise an odd (or blak) square.Let lessThan(n) = fi j i < ng. (In set theory n = fi j i < ng by de�nition, butsome people �nd that onfusing.) The Cartesian produt lessThan(8) � lessThan(8)expresses a 64-square hess board; it is the union of 8 disjoint rows of the formfig � lessThan(8) for i = 0, : : :, 7.A domino is a tile of the form f(i; j); (i; j + 1)g or f(i; j); (i+ 1; j)g. Sine tilingsare �nite, we an use indution to prove that every tiling using dominoes has equallymany even squares as odd squares.Every row of the form fig � lessThan(2n) an be tiled using dominoes. As theunion of two disjoint tilings is itself a tiling, every matrix of the form lessThan(2m)�lessThan(2n) an be tiled using dominoes. So every 2m�2n matrix has as many evensquares as odd squares. (Informal treatments never bother to prove that a hess boardhas equal numbers of blak and white squares.) The diagonally opposite squares (0; 0)and (2m�1; 2n�1) are both even; removing them results in a set that has fewer evensquares than odd squares. No suh set, inluding the mutilated hess board, an betiled using dominoes.3 The formal de�nitionsIsabelle [12℄ is a generi proof assistant, supporting many logis inluding zf set the-ory and higher-order logi. I have done this exerise using both Isabelle/zf and Isa-

3. THE FORMAL DEFINITIONS 501Mutil = Main +onsts tiling :: "('a set) set) ('a set) set"indutive "tiling A"intrsempty "{} 2 tiling A"Un "[[a 2 A; t 2 tiling A; a \ t = {}℄℄=) a [t 2 tiling A"onsts domino :: "(nat*nat)set set"indutive "domino"intrshoriz "{(i, j), (i, Su j)} 2 domino"vertl "{(i, j), (Su i, j)} 2 domino"onstdefsoloured :: "nat) (nat*nat)set""oloured b == {(i,j). (i+j) mod #2 = b}"end Fig. 2. Isabelle/hol De�nitions of Dominoes and Tilingsbelle/hol. The de�nitions and proofs are similar in both systems. My formalizationshould be easy to mehanize in theorem provers that support indutive de�nitions,suh as Coq [4℄ and HOL [5℄. Higher-order logi simpli�es the presentation slightly;type heking eliminates premises suh as i 2 nat.Figure 2 presents the theory �le for the Isabelle/hol version. It makes all the de�-nitions needed for the hess board problem: tilings, dominoes and square olourings.Note that Su is the suessor funtion (mapping n to n+1) and that #2 denotes thenumber two. Keywords of the theory �le syntax are underlined for larity.An indutive de�nition spei�es the desired introdution rules. An Isabelle pakagede�nes the appropriate least �xedpoint and proves the introdution and indutionrules [11℄. The set of tilings using a set A of tiles is de�ned indutively. The Isabellesyntax appearing in Fig 2 expresses these two rules:; 2 tiling(A) a 2 A t 2 tiling(A) a \ t = ;a [t 2 tiling(A)Why does tiling have type ('a set)set) ('a set)set? The symbol 'a is a typevariable. Isabelle/hol is polymorphi: the type-heker automatially replaes eahtype variable by the type required by the ontext. In e�et, 'a is the type of squares.Eah tile is a set of squares, so it has type 'a set. The set A of tiles therefore hastype ('a set)set, as does the set of tilings generated by A.The set of dominoes is indutively de�ned too. The Isabelle syntax expresses twointrodution rules:f(i; j); (i; j + 1)g 2 domino f(i; j); (i+ 1; j)g 2 dominoThe `indution' here is trivial, but no matter, this de�nition is easy to use. It isdelarative. Contrast it with the version appearing in Set. 1, whih is a piee of Lisp

502 A Simple Formalization and Proof for the Mutilated Chess Boardode. The onstant domino has type (nat*nat)set set beause it is a set of sets ofpairs of natural numbers.Figure 2 de�nes oloured b as set of squares having olour b. Formally, it is theset of even squares if b = 0 and the odd squares if b = 1. The set lessThan(n) isprede�ned in Isabelle/hol to be fi j i < ng.4 A primer on rule indutionYou are probably familiar with `mathematial indution' and with strutural indu-tion over lists and similar datatypes. An indutive de�nition gives rise to a priniplesometimes known as rule indution. Given the de�nition of tiling, Isabelle generatesthe orresponding indution rule, shown here using mathematial notation:z 2 tiling(A) P (;) [a 2 A t 2 tiling(A) P (t) a \ t = ;℄....P (a [t)P (z)In English, a property P that is losed under the introdution rules for tiling(A) holdsfor all elements of tiling(A). Indution is sound beause tiling(A) is the least set losedunder those rules. (This is why it is alled rule indution.) In the indutive step, weare given an arbitrary tile a 2 A and tiling t 2 tiling(A) that are disjoint (a \ t = ;)and satisfy the indution hypothesis P (t).A trivial rule indution proves that if eah a 2 A is a �nite set then so is tiling(A).Here P (z) is the property �nite(z). By indution, it suÆes to show� �nite(;), whih is trivial,� and that a 2 A and �nite(t) imply �nite(a[t). This holds beause we have assumed�nite(a) for all a 2 A.The indution rule for dominoes has no indution hypothesis. A property holdsfor all dominoes provided it holds for the two possibilities given in the indutivede�nition. In the last two premises, i and j are arbitrary natural numbers.z 2 domino P (f(i; j); (i; j + 1)g) P (f(i; j); (i+ 1; j)g)P (z)It is time for a harder example of indution. Let us prove that the union of twodisjoint tilings is itself a tiling:t 2 tiling(A) u 2 tiling(A) t \ u = ;t [u 2 tiling(A)This indution must be set up with are. Here P (z) is the formulau 2 tiling(A)! (t \ u = ; ! t [u 2 tiling(A)) (4.1)The indution formula must be an impliation beause the indution variable, t, alsoours in t \ u = ;.By indution on t there are two ases.

5. THE MECHANICAL PROOFS 503Goal "t 2 tiling A =)u 2 tiling A ! t \ u = {} ! t [u 2 tiling A";by (eta tiling.indut 1);by (simp_ta (simpset() addsimps [Un_asso℄) 2);by Auto_ta;Fig. 3. Isabelle/hol Proof: the Union of Disjoint Tilings is a Tiling� Base ase. Putting t = ; in the formula (4.1), we must showu 2 tiling(A)! (; \ u = ; ! ; [u 2 tiling(A))This is trivial beause ; [u = u 2 tiling(A).� Indutive step. We assume disjoint sets a 2 A and t 2 tiling(A), as usual. Theindution hypothesis is simply (4.1). We must showu 2 tiling(A)! ((a [t) \ u = ; ! (a [t) [u 2 tiling(A))To prove this impliation, we assume u 2 tiling(A) and (a [t) \ u = ;, whihyields a \ u = ; and t \ u = ;. From the indution hypothesis (4.1) we havet[u 2 tiling(A). Sine a is disjoint from both t and u, we may add it to the tilingt [u to obtain a [(t [u) 2 tiling(A).5 The mehanial proofsThe Isabelle proofs o�er few surprises. Finite ardinalities are triky to reason about,as I have noted in previous work [14℄. I needed a ouple of hours to �nd a mahineproof that a domino onsists of one even square and one odd square. Another troublespot was to prove that removing elements from a �nite set redues its ardinality:jA � fxgj < jAj if A is �nite and x 2 A. One outome of this exerise is a olle-tion of general theorems about remainders and ardinality, whih I have installed inIsabelle/hol.Apart from these trouble spots, the mehanized proof was straightforward. Devel-oping the original zf version took under 24 working hours. Exluding fats addedto libraries, the (hol) de�nitions and proof sript oupy about 4400 bytes. Theyexeute in 8.5 seonds on a 600MHz Pentium. Both �gures are tiny, as suits this toyproblem.Figure 3 presents part of the sript: the indutive proof outlined in the previoussetion. The sript may be diÆult to understand, but we see that proving thistheorem requires little detail from the user. The Goal ommand supplies the theoremto be proved. The next line applies rule indution. Then the simpli�er (simp ta) isalled with an assoiativity theorem in order to replae (a[t)[u by a[(t[u). Therest of the proof is done by the automati proof tati, Auto ta.The full proof sript, omprising 13 theorems, is Appendix A. Isabelle an displayformulas using the fonts of X-symbol pakage [19℄, making formulas muh more read-able on-sreen than they are in raw asii; I have edited the sript to use similarsymbols. Let us review the proofs informally.

504 A Simple Formalization and Proof for the Mutilated Chess Board5.1 On tiling hess boardsThe �rst theorem has already been disussed in Set. 4 and Fig. 3. We now develop ageometry of hess boards. The next two theorems (eah proved by Auto ta) relatelessThan(Su n) and Cartesian produts.lessThan(Su n) � B = ({n} � B) [((lessThan n) � B)A � lessThan(Su n) = (A � {n}) [(A � (lessThan n))Next omes a lemma, proved by Auto ta, onerning singleton sets and Cartesianproduts. It makes a useful rewrite rule.({i} � {n}) [({i} � {m}) = {(i,m), (i,n)}The next two results state that a row or matrix with an even number of olumns anbe tiled with dominoes.{i} � lessThan(#2*n) 2 tiling domino(lessThan m) � lessThan(#2*n) 2 tiling dominoThese theorems apply to a standard 8 � 8 hess board, but not to a 9 � 9 one.The �rst theorem has a four-step proof, by indution on n. The simpli�er massageslessThan(#2 * Su n) into the union of a domino with the tiling given in the in-dution hypothesis. Then a tiling rule is applied expliitly. Finally, the automatitati (given the lemma proved above) �nishes o�. The seond theorem has a trivialproof: indution over m followed by Auto ta.5.2 On olours and dominoesHere is a simple fat about the squares in a tiling of a spei�ed olour.oloured b \ (insert (i,j) t) =(if (i+j) mod #2 = b then insert (i,j) (oloured b \ t)else oloured b \ t)Here insertxA denotes fxg [A. The b-oloured squares of f(i; j)g [t omprise theb-oloured squares of t along with (i; j), if this square is oloured b. Although obvious,this fat is useful for rewriting. The proof is a one-liner: Auto ta.This fat is used to prove that a domino overs one square of eah olour:d 2 domino =)(9i j. oloured 0 \ d = {(i,j)}) ^(9m n. oloured 1 \ d = {(m,n)})The proof is again simple. The �rst step is indution (really ase analysis) on thedomino. The automati tati �nishes the proof, given a rewrite rule that redues(m+ 1) mod n to m mod n.5.3 On the ardinalities of some �nite setsFor us, a domino is a two-element set of squares. Clearly all dominoes are �nite, anda region tiled by dominoes is �nite. Both proofs use indution followed by Auto ta.

6. RELATED WORK AND CONCLUSIONS 505d 2 domino =) finite dt 2 tiling domino =) finite tMost of the papers desribing the hess board proof omit to mention that the boardhas �nitely many squares. However, �niteness is ruial to the ounting argument.(In�nite tiling problems are very di�erent from �nite ones. An in�nite hess boardan be tiled with dominoes even after one blak square has been removed.)Every set tiled by dominoes (suh as an 8� 8 hess board) ontains equally manyblak squares as white ones. Here ard is the ardinality funtion.t 2 tiling domino =) ard(oloured 0 \ t) = ard(oloured 1 \ t)This fat is also usually omitted from informal aounts, presumably beause it isobvious. But its proof, six steps long, is not trivial. After applying indution, we usea fat proved above, namely that a domino overs one square of eah olour. We areleft having to showard(insert sq0 (oloured 0 \ t)) = ard(insert sq1 (oloured 1 \ t))where sq0 and sq1 are the newly overed squares. The indution hypothesis isard(oloured 0 \ t) = ard(oloured 1 \ t).Two proof steps show that the uses of insert add a square that was not already inthe set. The result follows beause both ardinalities inrease by one.5.4 Towards the main resultThe main result presents some diÆulties. Take the general ase of removing any twowhite (even) squares, not neessarily in the orners.[[t 2 tiling domino;(i+j) mod #2 = 0; (m+n) mod #2 = 0;{(i,j),(m,n)} � t ℄℄=) (t - {(i,j)} - {(m,n)}) 62 tiling dominoIn English, removing two white squares from a region tiled with dominoes leaves aregion that annot be tiled. The proof onsists of �ve steps. The �rst simply assumesthat the region an be tiled, for ontradition. Next we laim that there are fewerwhite squares than blak, from whih (step 3) we immediately obtain a ontradition.The last two steps prove the laim. It is surprisingly hard to prove that removing twoelements from the set of white squares redues its ardinality.The main result is proved for any board with positive even dimensions. The muti-lated board (less the two orners) annot be tiled with dominoes.t = lessThan(#2 * Su m) � lessThan(#2 * Su n)=) t - {(0,0)} - {(Su(#2*m), Su(#2*n))} 62 tiling dominoThe proof applies the general theorem just disussed and disharges the �rst subgoalusing a tiling lemma proved in Set. 5.1. The rest falls to Auto ta.6 Related work and onlusionsIn this note there is no spae for a full literature review. Several e�orts [2, 16, 18℄ arein the same spirit as the present work: the hess board is formalized and impossibility

506 A Simple Formalization and Proof for the Mutilated Chess Boardof tiling proved following the intuitive argument about olours. Other work has usedexhaustive searh or radial reformulations of the problem.The Isabelle formalization ompares favourably with the others. The de�nitions(Fig. 2) are onise, and in my view, easy to understand. The sript is short: under120 lines ompared with over 500 for Subramanian [17℄. (In terms of haraters, whihis more aurate, the ratio drops to 1:3.) Aording to MCarthy [9℄, Banerek'smehanization [2℄ in Mizar requires 400 lines. Rudniki's version [16℄ (also in Mizar)requires 300 lines. Andrews [1℄ reports a omplex proof; it is not lear how muhe�ort is needed to generate it.When are indutive de�nitions appropriate? The hoie is partly a matter of taste;published formalizations of the mutilated hess board show great diversity. Indutivede�nitions are ideal for �nite onstrutions that allow non-determinism; the layingdown of tiles �ts that desription preisely. The indutive de�nition plays the samerole as Subramanian's �nite state mahine [18℄. The initial state is the empty board;next states are obtained by adding disjoint tiles; properties that hold of all reahablestates are proved by indution. Giving an illegal input to the state mahine sends itto an error state | a onept usually avoided with indutive de�nitions, sine theydesribe only the legal onstrutions.The �nite state mahine approah that Subramanian desribes has been applied tosubstantial system veri�ations [10℄. The indutive approah desribed above is ane�etive means of verifying ryptographi protools [13℄. Indutive de�nitions saleup to serious problems.Aknowledgements. I learned of the expressiveness of indutive de�nitions throughpartiipation in the ESPRIT projet 6453 TYPES, and espeially through the workof G�erard Huet [6, 7℄. John Harrison and anonymous referees ommented on thispaper.Referenes[1℄ Peter B. Andrews and Matthew Bishop. On sets, types, �xed points, and hekerboards. InPierangelo Miglioli, Ugo Mosato, Daniele Mundii, and Mario Ornaghi, editors, TheoremProving with Analyti Tableaux and Related Methods: 5th international workshop,TABLEAUX '96, LNAI 1071, pages 1{15. Springer, 1996.[2℄ Grzegorz Banerek. The mutilated hessboard problem | heked by Mizar. In Boyer andTrybule [3℄.[3℄ Robert Boyer and Andrzej Trybule, editors. QED Workshop II. On the World Wide Web athttp://www.ms.anl.gov/qed/, 1995.[4℄ The Coq proof assistant. http://oq.inria.fr/, 2000.[5℄ M. J. C. Gordon and T. F. Melham. Introdution to HOL: A Theorem Proving Environmentfor Higher Order Logi. Cambridge University Press, 1993.[6℄ G�erard Huet. The Gallina spei�ation language : A ase study. In Proeedings of 12thFST/TCS Conferene, New Delhi, LNCS 652. Springer, 1992.[7℄ G�erard Huet. Residual theory in �-alulus: A formal development. Journal of FuntionalProgramming, 4(3):371{394, 1994.[8℄ John MCarthy. A tough nut for proof proedures. Memo 16, Stanford Arti�ial IntelligeneProjet, July 1964.[9℄ John MCarthy. The mutilated hekerboard in set theory. In Boyer and Trybule [3℄.[10℄ J Strother Moore. Piton: A Mehanially Veri�ed Assembly-Level Language. KluwerAademi Publishers, 1996.

A. FULL PROOF SCRIPT 507[11℄ Lawrene C. Paulson. A �xedpoint approah to implementing (o)indutive de�nitions. InAlan Bundy, editor, Automated Dedution | CADE-12 International Conferene, LNAI 814,pages 148{161. Springer, 1994.[12℄ Lawrene C. Paulson. Isabelle: A Generi Theorem Prover. Springer, 1994. LNCS 828.[13℄ Lawrene C. Paulson. The indutive approah to verifying ryptographi protools. Journal ofComputer Seurity, 6:85{128, 1998.[14℄ Lawrene C. Paulson and Krzysztof Gr�abzewski. Mehanizing set theory: Cardinal arithmetiand the axiom of hoie. Journal of Automated Reasoning, 17(3):291{323, Deember 1996.[15℄ J. A. Robinson. Formal and informal proofs. In Robert S. Boyer, editor, Automated Reasoning:Essays in Honor of Woody Bledsoe, pages 267{281. Kluwer Aademi Publishers, 1991.[16℄ Piotr Rudniki. The mutilated hekerboard problem in the lightweight set theory of Mizar.http://web.s.ualberta.a/~piotr/Mizar/Muthek, November 1995.[17℄ Sakthi Subramanian. A mehanially heked proof of the mutilated hekerboard theorem.ftp://ftp.s.utexas.edu/pub/boyer/nqthm/nqthm-1992/examples/subramanian/, 1994.[18℄ Sakthi Subramanian. An interative solution to the n� n mutilated hekerboard problem.Journal of Logi and Computation, 6(4):573{598, 1996.[19℄ Christoph Wedler. Emas pakage \x-symbol": Overview.http://www.fmi.uni-passau.de/~wedler/x-symbol/, 2000.A Full proof sript(*The Mutilated Chess Board Problem, formalized indutively*)Addsimps (tiling.intrs � domino.intrs);AddIs tiling.intrs;Material disussed in Set. 5.1(** The union of two disjoint tilings is a tiling **)Goal "t2 tiling A =) u2 tiling A ! t \ u = {} ! t [u 2 tiling A";by (eta tiling.indut 1);by (simp_ta (simpset() addsimps [Un_asso℄) 2);by Auto_ta;qed_spe_mp "tiling_UnI";AddIs [tiling_UnI℄;(*** Chess boards ***)Goalw [lessThan_def℄"lessThan(Su n) � B = ({n} � B) [((lessThan n) � B)";by Auto_ta;qed "Sigma_Su1";Goalw [lessThan_def℄"A � lessThan(Su n) = (A � {n}) [(A � (lessThan n))";by Auto_ta;qed "Sigma_Su2";Addsimps [Sigma_Su1, Sigma_Su2℄;Goal "({i} � {n}) [({i} � {m}) = {(i,m), (i,n)}";

508 A Simple Formalization and Proof for the Mutilated Chess Boardby Auto_ta;qed "sing_Times_lemma";Goal "{i} � lessThan(#2*n) 2 tiling domino";by (indut_ta "n" 1);by (ALLGOALS (asm_simp_ta (simpset() addsimps [Un_asso RS sym℄)));by (rta tiling.Un 1);by (auto_ta (laset(), simpset() addsimps [sing_Times_lemma℄));qed "dominoes_tile_row";AddSIs [dominoes_tile_row℄;Goal "(lessThan m) � lessThan(#2*n) 2 tiling domino";by (indut_ta "m" 1);by Auto_ta;qed "dominoes_tile_matrix";Material disussed in Set. 5.2(*** "oloured" and Dominoes ***)Goalw [oloured_def℄"oloured b \ (insert (i,j) t) =(if (i+j) mod #2 = b then insert (i,j) (oloured b \ t)else oloured b \ t)";by Auto_ta;qed "oloured_insert";Addsimps [oloured_insert℄;Goal "d 2 domino =) (9i j. oloured 0 \ d = {(i,j)}) &(9m n. oloured 1 \ d = {(m,n)})";by (eta domino.elim 1);by (auto_ta (laset(), simpset() addsimps [mod_Su℄));qed "domino_singletons";Material disussed in Set. 5.4Goal "d 2 domino =) finite d";by (eta domino.elim 1);by Auto_ta;qed "domino_finite";Addsimps [domino_finite℄;(*** Tilings of dominoes ***)Goal "t 2 tiling domino =) finite t";by (eta tiling.indut 1);by Auto_ta;qed "tiling_domino_finite";Addsimps [tiling_domino_finite, Int_Un_distrib, Diff_Int_distrib℄;Goal "t 2 tiling domino =) ard(oloured 0 \ t) = ard(oloured 1 \ t)";by (eta tiling.indut 1);by (dta domino_singletons 2);

A. FULL PROOF SCRIPT 509by Auto_ta;(*this lemma tells us that both "inserts" are non-trivial*)by (subgoal_ta "8p C. C \ a = {p} ! p 62 t" 1);by (Asm_simp_ta 1);by (Blast_ta 1);qed "tiling_domino_0_1";Material disussed in Set. 5.3(*Final argument is surprisingly omplex*)Goal "[[t 2 tiling domino;(i+j) mod #2 = 0; (m+n) mod #2 = 0;{(i,j),(m,n)} � t ℄℄=) (t - {(i,j)} - {(m,n)}) 62 tiling domino";by (rta notI 1);by (subgoal_ta "ard (oloured 0 \ (t - {(i,j)} - {(m,n)})) <ard (oloured 1 \ (t - {(i,j)} - {(m,n)}))" 1);by (fore_ta (laset(), HOL_ss addsimps [tiling_domino_0_1℄) 1);by (asm_simp_ta (simpset() addsimps [tiling_domino_0_1 RS sym℄) 1);by (asm_full_simp_ta(simpset() addsimps [oloured_def, ard_Diff2_less℄) 1);qed "gen_mutil_not_tiling";(*Apply the general theorem to the well-known ase*)Goal "t = lessThan(#2 * Su m) � lessThan(#2 * Su n)=) t - {(0,0)} - {(Su(#2*m), Su(#2*n))} 62 tiling domino";by (rta gen_mutil_not_tiling 1);by (blast_ta (laset() addSIs [dominoes_tile_matrix℄) 1);by Auto_ta;qed "mutil_not_tiling";Reeived 11 September 2000. Revised: November 8, 2000, January 15, 2001

510

AknowledgementsThe Editor-in-Chief and the editor of this speial issue would like to thank the fol-lowing olleagues who have helped maintain the standards set for a sienti� journal,through their refereeing of the papers that have been submitted.1Roel BlooCarsten ButzTh�er�ese HardinDaniel Hirshko�Patrik HoltMihael KohlhaseTobias NipkowNiola OlivettiVinent van OostromChristine Paulin-MohringRandy PollakFemke van RaamsdonkNik Taylor.

1The list inludes the referees for the papers in this issue, plus the referees of papers rejeted meanwhile.511

Interest Group in Pure and AppliedLogis (IGPL)The Interest Group in Pure and Applied Logis (IGPL) is sponsored by The Euro-pean Assoiation for Logi, Language and Information (FoLLI), and urrently hasa membership of over a thousand researhers in various aspets of logi (symboli,mathematial, omputational, philosophial, et.) from all over the world (urrently,more than 50 ountries). Our main ativity is that of a researh and informationlearing house.Our ativities inlude:� Exhanging information about researh problems, referenes and ommon interestamong group members, and among di�erent ommunities in pure and appliedlogi.� Helping to obtain photoopies of papers to olleagues (under the appropriate opy-right restritions), espeially where there may be diÆulties of aess.� Supplying review opies of books through the journals on whih some of us areeditors.� Helping to organise exhange visits and workshops among members.� Advising on papers for publiation.� Editing and distributing a Newsletter and a Journal (the �rst sienti� journalon logi whih is FULLY eletroni: submission, refereeing, revising, typesetting,publishing, distribution; �rst issue: July 1993): the Logi Journal of the InterestGroup on Pure and Applied Logis. (For more information on the Logi Journalof the IGPL, see the Web homepage: http://www.jigpal.oupjournals.org)� Keeping a publi arhive of papers, abstrats, et., aessible via ftp.�Wherever possible, obtaining redutions on group (6 or more) purhases of logibooks from publishers.If you are interested, please send your details (name, postal address, phone, fax, e-mailaddress, researh interests) to:IGPL Headquarters/o Prof. Dov GabbayKing's College, Dept of Computer SieneStrandLondon WC2R 2LSUnited Kingdome-mail: dg�ds.kl.a.ukFor the organisation, Dov Gabbay, Ruy de Queiroz and Hans J�urgen Ohlbah512

