
Interest
G
roup

in
P
ure

and
A
pplied

L
ogics

Volume 10 Number 5 September 2002

LOGIC JOURNAL
of
the

Editor-in-Chief:

DOV M. GABBAY

Executive Editors:

RUY de QUEIROZ

and

HANS J�URGEN OHLBACH

Editorial Board:

Wilfrid Hodges

Hans Kamp

Robert Kowalski

Grigori Mints

Ewa Orlowska

Amir Pnueli

Vaughan Pratt

Saharon Shelah

Johan van Benthem

OXFORD

UNIVERSITY

PRESS

ISSN 1367-0751
www.oup.co.uk/igpl
Printed in Great Britain by
Watkiss Studio Ltd.

Subscription Information
Volume 10, 2002 (bimonthly) Full: Europe pounds sterling 275; Rest of World US$
450. Personal: pounds sterling 138 (US$ 225). Please note that personal rates apply
only when copies are sent to a private address and payment is made by a personal
cheque or credit card.

Order Information

Subscriptions can be accepted for complete volumes only. Prices include air-speeded
delivery to Australia, Canada, India, Japan, New Zealand, and the USA. Delivery
elsewhere is by surface post. Payment is required with all orders and may be made
in the following ways:

Cheque (made payable to Oxford University Press)
National Girobank (account 500 1056)
Credit card (Access, Visa, American Express)
UNESCO Coupons
Bankers: Barclays Bank plc, PO Box 333, Oxford, UK. Code 20-65-18, Account
00715654.

Requests for sample copies, subscription enquiries, orders and changes of address
should be sent to the Journals Subscriptions Department, Oxford University Press,
Great Clarendon Street, Oxford OX2 6DP, UK. Tel: +44 (0) 1865 267907. Fax: +44
(0) 1865 267485. Email: jnl.orders@oup.co.uk

Advertisements

Advertising enquiries should be addressed to Peter Carpenter, PRC Associates, The
Annexe, Fitznells Manor, Chessington Road, Ewell Village, Surrey KT17 1TF, UK.
Tel: +44 (0) 181 786 7376. Fax: +44 (0) 181 786 7262.

Copyright

c©Oxford University Press 2002. All rights reserved: no part of this publication
may be reproduced, stored in a retrieval system, or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording, or otherwise, without
either the prior written permission of the Publishers, or a licence permitting restricted
copying issued in the UK by the Copyright Licensing Agency Ltd, 90 Tottenham
Court Road, London W1P 9HE, or in the USA by the Copyright Clearance Center,
222 Rosewood Drive, Danvers, MA 01923.
Logic Journal of the IGPL (ISSN 1367-0751) is published bimonthly in January,
March, May, July, September and November by Oxford University Press, Oxford,
UK. Annual subscription price is US$ 450.00. Logic Journal of the IGPL is dis-
tributed by M.A.I.L. America, 2323 Randolph Avenue, Avenel, NJ 07001. Periodical
postage paid at Rahway, New Jersey, USA and at additional entry points.
US Postmasters: Send address changes to Logic Journal of the IGPL, c/o Mercury
International, 365 Blair Road, Avenel, NJ 07001, USA.

Back Issues

The current plus two back volumes are available from Oxford University Press. Previ-
ous volumes can be obtained from the Periodicals Service Company, 11 Main Street,
Germantown, NY 12526 USA. Tel: +1 (518) 537 4700, Fax: +1 (518) 537 5899.

http://www.oup.co.uk/
http://www.oup.co.uk/igpl

Logic Journal of the IGPL
Volume 10, Number 5, September 2002

Contents

Original Articles

461Formalizing Belief Revision in Type Theory
T. Borghuis and F. Kamareddine and R. Nederpelt

501A Simple CPS Transformation of Control-Flow Information
D. Damian and O. Danvy

517Polymodal Logics of Commuting Functions
A. G. Kravtsov

535PSpace Reasoning with the Description Logic ALCF(D)
C. Lutz

Please visit the journal’s World Wide Web site at
http://www.oup.co.uk/igpl

http://www.oup.co.uk/igpl

Logic Journal of the Interest Group in
Pure and Applied Logics

Editor-in-Chief:

Dov Gabbay

Department of Computer Science
King’s College
Strand
London WC2R 2LS, UK
dg@dcs.kcl.ac.uk
Tel +44 20 7848 2930
Fax +44 20 7240 1071

Executive Editors:

Ruy de Queiroz
Departamento de Informática
UFPE em Recife
Caixa Postal 7851
Recife, PE 50732-970, Brazil
ruy@di.ufpe.br

Hans Jürgen Ohlbach
Inst. für Informatik
Ludwig-Maximilians-Universität
Öttingenstr. 67
D-80538 München
ohlbach@informatik.uni-
muenchen.de
Tel +49 89 2180 9300
Fax +49 89 2180 9311

Editorial Board:

Wilfrid Hodges, QMW, UK
Hans Kamp, Stuttgart, Germany
Robert Kowalski, ICSTM, UK
Grigori Mints, Stanford, USA
Ewa Orlowska, Warsaw, Poland
Amir Pnueli, Weizmann, Israel
Vaughan Pratt, Stanford, USA
Saharon Shelah, Jerusalem
Johan van Benthem,

ILLC, Amsterdam

Scope of the Journal
The Journal is the official publication of the International In-
terest Group in Pure and Applied Logics (IGPL), which is
sponsored by The European Foundation for Logic, Language
and Information (FoLLI), and currently has a membership of
over a thousand researchers in various aspects of logic (sym-
bolic, computational, mathematical, philosophical, etc.) from
all over the world.

The Journal is published in hardcopy and in electronic form
six times per year. Publication is fully electronic: submission,
refereeing, revising, typesetting, checking proofs, and publish-
ing, all is done via electronic mailing and electronic publishing.

Papers are invited in all areas of pure and applied logic, in-
cluding: pure logical systems, proof theory, model theory, re-
cursion theory, type theory, nonclassical logics, nonmonotonic
logic, numerical and uncertainty reasoning, logic and AI, foun-
dations of logic programming, logic and computation, logic
and language, and logic engineering.

The Journal is an attempt to solve a problem in the logic (in
particular, IGPL) community:

◦ Long delays and large backlogs in publication of papers in
current journals.

◦ Very tight time and page number limits on submission.

Papers in the final form should be in LATEX. The review pro-
cess is quick, and is made mainly by other IGPL members.

Submissions
Submissions are made by sending a submission letter to the
e-mail address: jigpl@dcs.kcl.ac.uk, giving the title and the
abstract of the paper, and informing: of how to obtain the file
electronically or, by sending 5 (five) hardcopies of the paper
to the Editor-in-Chief.

URL: www.oup.co.uk/igpl

http://www.oup.co.uk/igpl

Formalizing Belief Revision in Type
Theory

Tijn Borghuis, Mathematics and Computing Science, Technische
Universiteit Eindhoven, P.O.Box 513, 5600 MB Eindhoven, the
Netherlands, v.a.j.borghuis@win.tue.nl

Fairouz Kamareddine, Mathematical and Computer Sciences,
Heriot-Watt Univ., Riccarton, Edinburgh EH14 4AS, Scotland. E-mail:
fairouz@macs.hw.ac.uk

Rob Nederpelt, Same address as Borghuis. E-mail: r.p.nederpelt@tue.nl

Abstract

This paper formalizes belief revision for belief states in type theory. Type theory has been influential
in logic and computer science but as far as we know, this is the first account at using type theory in
belief revision. The use of type theory allows an agent’s beliefs as well as his justifications for these
beliefs to be explicitly represented and hence to act as first-class citizens. Treating justifications as
first-class citizens allows for a deductive perspective on belief revision. We propose a procedure for
identifying and removing ”suspect” beliefs, and beliefs depending on them. The procedure may be
applied iteratively, and terminates in a consistent belief state. The procedure is based on introducing
explicit justification of beliefs. We study the belief change operations emerging from this perspective
in the setting of typed λ-calculus, and situate these operations with respect to standard approaches.

Keywords: Belief Revision, Type Theory, Explicit Justifications, Propositions as Types.

1 Introduction

An agent who keeps expanding his belief state with new information may reach a stage
where his beliefs have become inconsistent, and his belief state has to be adapted
to regain consistency. Usually, in studying this problem of “belief revision”, the
justifications an agent has for his beliefs are not considered to be first-class citizens.

The two main approaches in the belief revision literature regarding justifications [17]
are:

1. “Foundations theory”, in which one needs to keep track of justifications for one’s
beliefs; propositions that have no justification should not be accepted as beliefs.

2. “Coherence theory”, in which one needs not consider justifications; what matters
is how a belief coheres with the other beliefs that are accepted in the present state.

In foundations theory, beliefs are held to be justified by one or several other beliefs
(and some beliefs are justified by themselves). However, in this view, justifications are
only implicitly present as relations between beliefs, rather than as objects in their own
right which are explicitly represented in the formalisation of belief states and belief
change operations. Hence, justifications are not first-class citizens in foundations

461L. J. of the IGPL, Vol. 10 No. 5, pp. 461–500 2002 c©Oxford University Press

462 Formalizing Belief Revision in Type Theory

theory, and not considered at all in coherence theory.
However, experience in the past decades shows that when building automated sys-

tems and theorem provers, explicit representation is absolutely necessary. This is the
case for example in the theorem prover Automath (for automating mathematics, [31])
where definitions (the heart of mathematics) are made explicit. This is also the case
in the implementation of programming languages where contexts and environments
are made explicit. It turns out also that treating justifications explicitly (hence as
first-class citizens), allows for a deductive perspective of belief revision which can be
automated.

In this paper, we explore belief revision for belief states in which justifications
are first-class citizens represented explicitly. Our motivation for investigating belief
revision along these lines stems from working on knowledge representation in Pure
Type Systems [4] in the DenK-project [9]. Type theory was chosen due to its excellent
success in the field of theorem proving (Automath [31] and Coq [5]) and programming
languages (ML [30]). See also [6] where type theory has been shown to be useful
for knowledge representation. In the DenK-project a formal model was made of a
specific communication situation, and used to implement a human-computer interface.
Both in the model and in the system, belief states of agents were formalised as type
theoretical contexts. This means that an agent’s beliefs are represented in a binary
format, where one part is the proposition believed by the agent and the other the
justification the agent has for this belief. Both parts are syntactic objects in their
own right, and can be calculated upon by means of the rules of the type theory. This
way of representing beliefs turns justifications into first-class citizens, and proved to
be very fruitful for the purposes of the project.

At that time mechanisms for belief revision were not investigated or implemented,
but it became clear that given this formalisation of belief states there is a straight-
forward deductive approach to the problem: since every belief is accompanied by its
justification (and the rules of the calculus operate on both), every inconsistency that
surfaces in the agent’s belief state has its own (complex) justification containing the
justifications of the beliefs that together cause the inconsistency. This makes it easy
to identify and remove the “suspects” among the beliefs in the agent’s belief state.
Although, technically speaking, this is a direct consequence of the so-called Propo-
sitions As Types-principle (cf. sections 3 and 4), this simple idea seems not to have
been explored before. We feel that this is of a more general interest for two reasons:

1. Our type theoretical case study shows that explicitly represented justifications
have clear advantages: a number of drawbacks traditionally associated with foun-
dational approaches disappear. As such, it may serve as a precursor to a more
general account in the setting of Labelled Deductive Systems [15], of which typed
λ-calculi are a simple case.1

2. It may contribute to a more computational account of belief revision, one which
is applicable to agents that have finite information and finite reasoning powers.

In developing the idea, we will come across other well-known issues in this field of
research. For instance the question whether belief states should be taken to be log-

1Note that in the conclusion, [16] discusses the possibility of a general theory of inconsistency where an account of

belief revision would fall out as a special case. However, as far as we know, this general theory of inconsistency in

LDS has not yet been materialized.

2. TYPE THEORY 463

ically closed sets or rather a base set of beliefs which is not closed under logical
consequence [19], and the question whether an agent should always accept new in-
formation (prioritized versus non-prioritized revision [21]). In addition, we question
a number of assumptions that are traditionally made such as the assumption that
an agent has infinite reasoning powers, and that an agent has to solve the revision
problem “in splendid isolation”, i.e. without going back to his sources of information
via observation and communication.

The paper is structured as follows: in Section 2 we review type theory and its
untyped basis (the type-free λ-calculus), the propositions-as-types principle and in-
troduce the extension of type theory with definitions that will be used for belief
revision. In Section 3, we explain how belief states can be captured in type theory.
Section 4 shows how type theoretical belief states develop as new information becomes
available, and gives an informal statement of the problem of revision in type theory.
This account of type theoretical revision is formalised in Section 5. In Sections 6 and
7 we situate our approach with respect to standard approaches from the literature,
and make a comparison on the level of belief change operations. As it turns out, our
revision procedure is particularly close to the so-called consolidation operations. This
is shown in Appendix A. We conclude in Section 8.

2 Type theory

2.1 Informal introduction

Judgements
The basic relation in type theory is the judgement

Γ ` a : T

which can be read as ‘term a has type T in context Γ’. Here ‘a’ and ‘T ’ are both
formulas written according to a well-defined syntax (on the basis of λ-calculus). The
expression a : T is called a statement , term a is the subject of the statement. One
also says that term a is an inhabitant of type T .

The context Γ is a list of statements with variables as subjects, e.g. x1 : T1, . . . , xn :
Tn. The above judgement can then be read as follows: “If x1 has type T1, . . ., and
xn has type Tn, then term a has type T ”. Note that a may contain x1, . . ., xn, so a
depends on x1 to xn. The set {x1, . . . , xn} is called the domain of Γ, or dom(Γ).

Statements

The intuitive notion ‘has type’ has a direct counterpart in naive set theory, viz. ‘is
element of’. For example, consider the statement ‘a : N’ (’term a has type N’).
Assuming that N is a symbol representing the set of natural numbers, this statement
can be interpreted as ‘a ∈ N’ (’the object represented by a is element of the naturals’).

The notion of having a type, however, is more general than the notion of set-
theoretical elementhood. This is because a type T can represent not only some kind
of set, but also a proposition. In the latter representation, the statement a : T
expresses: ‘a is (a term representing) a proof of the proposition T ’. One speaks of
‘propositions as types and proofs as terms’ (together abbreviated as PAT) in order

464 Formalizing Belief Revision in Type Theory

to emphasize this special usage of types. Section 2.2 below gives more details.
The advantage of PAT is that proofs belong to the object language, not the meta-

language. That is, proofs are ‘first class citizens’ in the syntactical world of type
theory. This, combined with the strength of the standard λ-calculus operations,
makes type theory a powerful mechanism.

Contexts
The context Γ in a judgement Γ ` a : T contains the ‘prerequisites’ necessary for
establishing the statement a : T . A context Γ is a list of statements with distinct
variables as subjects, like x1 : T1, . . . , xn : Tn. A context statement xi : Ti can
express several kinds of prerequisites, the simplest being:

1. xi is an element of the set Ti,
2. Ti is an assumption (a proposition) and xi is its atomic justification.

However, in type theory there are different ‘levels’ of typing: a type can have a
type itself. Statements expressing the typing of types are concerned with the well-
formedness of these types. For the Ti occurring in 1. and 2. above, such statements
have the form:

1. Ti : set, to express that Ti is a well-formed formula representing a set,
2. Ti : prop, to express that Ti is a well-formed formula representing a proposition.

The last-mentioned statements can also be part of a context in the special case that T1

and T2 are variables. So a context could look like: T1 : prop, T2 : set, x1 : T1, x2 : T2

(to be read as: “let T1 be a proposition, T2 a set, x1 a justification for T1 and x2 for
T2”). The terms set and prop are examples of so-called sorts , predefined constants
on which the type system is based. Every type system has a specific set of sorts,
which we denote by S.

Note that the statements in the context are ordered : first arbitrary set T1 and
proposition T2 are proposed, before their inhabitants x1 and x2 are introduced. This
is a general principle in contexts: every variable (except the sorts) used in a type must
be introduced as the subject of a preceding statement. As a matter of fact, a similar
consideration applies to judgements : in Γ ` a : T all variables and (free) constants
used in a and T must be introduced as subjects in Γ.

2.2 PAT: Propositions As Types

The idea of pat originates in the formulation of intuitionistic logic where frequently
occurring constructions in intuitionistic mathematics have a logical counterpart. One
of these constructions is the proof of an implication. Heyting [24] describes the proof
of an implication a ⇒ b as: Deriving a solution for the problem b from the problem
a. Kolmogorov [28] is even more explicit, and describes a proof of a ⇒ b as the
construction of a method that transforms each proof of a into a proof of b. This
means that a proof of a⇒ b can be seen as a (constructive) function from the proofs
of a to the proofs of b. In other words, the proofs of the proposition a ⇒ b form
exactly the set of functions from the set of proofs of a to the set of proofs of b. This
suggests to identify a proposition with the set of its proofs. Now types are used to

2. TYPE THEORY 465

represent these sets of proofs. An element of such a set of proofs is represented as
a term of the corresponding type. This means that propositions are interpreted as
types , and proofs of a proposition a as terms of type a.

PAT was, independently from Heyting and Kolmogorov, discovered by Curry and
Feys [13]. Howard [25] follows the argument of Curry and Feys [13] and combines it
with Tait’s discovery of the correspondence between cut elimination and β-reduction
of λ-terms [32]. Howard’s discovery dates from 1969, but was not published until 1980.
Independently of Curry and Feys and Howard, we find a variant of PAT in AUT-68, the
first Automath system of De Bruijn [31]. Though De Bruijn was probably influenced
by Heyting, his ideas arose independently from Curry, Feys and Howard. This can
be clearly seen in Section 2.4 of [8], where propositions as types (or better: Proofs as
terms) was implemented in a different way to that of Curry and Howard.

The Propositions as Types and Proofs as Terms (PAT) principle has opened the
possibility to use Type Theory not only as a restrictive method (to prevent paradoxes)
but also as a constructive method. Many proof checkers and theorem provers, like
Automath [31], Coq [5] and LF [23], use the PAT principle (see [29] for more details).

“Proofs as terms” already suggests an important advantage of using type theory as
a logical system: In this method proofs are first-class citizens of the logical system,
whilst for many other logical systems, proofs are rather complex objects outside the
logic (for example: derivation trees), and therefore cannot be easily manipulated.

The fact that PAT was discovered independently by many different people, and its
use in various logical frameworks and theorem provers, is an evidence to the usefulness
of such notion in logic and compoutation. For our purpose of belief revision, PAT
allows to store the developmental history of the justifications of a belief and hence,
to retrace back this histoy and to restore inconsistent belief states.

2.3 Theories

A ‘proof’ is generally considered to be a mathematical notion, but in the PAT-style
a proof is anything justifying a proposition. This can be a proof in the mathematical
sense, but also any other acceptable justification. Let T represent a proposition and
let a : T . Then:

• If a is an atomic term (think of a constant or a variable), then a encodes a
justification which cannot be further analysed:
– It can stand for an axiomatic justification of a proposition: T is an axiom and
a expresses that the axiom ‘holds’.

– The validity of proposition T can also come from a reliable source. In this
case the proof a itself cannot be inspected, but the reliability of the source is
enough guarantee to accept the proof. The origin of the knowledge can be any
source, either virtual: e.g. a knowledge base, or real: a reliable (community of)
person(s).

– Proposition T can also be justified by observational evidence. For example, the
proposition that a certain body is yellow can be justified by an atomic term
representing the observation that this is the case.

– Finally, proposition T can be an assumption. This case is dealt with in type
theory by introducing a variable (say x) as an arbitrary (but fresh) inhabitant
for the proposition: the statement x : T then expresses: ‘Let x be a proof of T ’.

466 Formalizing Belief Revision in Type Theory

Since x is an unspecified variable, this amounts to: ‘Assume T ’ (albeit that the
proof x can be called upon later).

• If a is a composite term, composed according to the (type-theoretical) syntax, it
embodies a complex justification. In this case the precize structure of a expresses
how the evidence for T is constructed. For example, under the PAT-interpretation
a complete mathematical proof (of a theorem) is coded in one, possibly large,
composite term. But also a justification that combines knowledge obtained from
observing a certain object with general rules about its behaviour, will lead to a
composite term.

The PAT-interpretation enables a well-established connection between mathemat-
ics and type theory, as has been shown already in the Automath project [31], in which
large parts of mathematics have been formalized in type theory: an entire mathemat-
ical theory was rendered as a list of judgements. The great importance of such a
type-theoretical formalization is that it makes it possible to check whether a given
proof of a certain theorem does indeed prove the theorem. In fact, it turns out that
syntactical correctness of the list of judgements is enough to establish the mathemat-
ical correctness of the mathematical theory. And the check on syntactical correctness
is relatively easy, since the question whether a certain term is of a certain type in a
certain context is decidable. This check on syntactical correctness can be performed
by man, but also by a straightforward computer program. In the Automath project,
this has already been done with the computer technology of the seventies.

A second advantage is the long-standing connection between logic and type theory.
The ‘reasoning power’ of logic finds a natural counterpart in the operations of λ-
calculus underlying type theory. A well-known result is that logics of arbitrarily high
order can be expressed in type theory. In the PAT-interpretation of logic, terms
capture the full proof process : from a proof term one can reconstruct not only the
premisses used in the proof, but also the order in which they were used and the logical
rules used to combine them.

2.4 The type free λ-calculus

Modern type theory is based on the λ-calculus. This section intrtoduces the type free
λ-calculus.

Definition 2.1 (Syntax of λ-terms) The set of classical λ-terms or λ-expressions
M is given by: M ::= V | (λV .M) | (MM) where V = {x, y, z, . . .} is an infinite set
of term variables. We let v, v′, v′′, · · · range over V and A,B,C · · · range over M.

Example 2.2 (λx.x), (λx.(xx)), (λx.(λy.x)), (λx.(λy.(xy))), and ((λx.x)(λx.x)) are
all classical λ-expressions.

This simple language is surprisingly rich. Its richness comes from the freedom to create
and apply functions, especially higher order functions to other functions (and even
to themselves). To explain the intuitive meaning of these three sorts of expressions,
let us imagine a model where every λ-expression denotes an element of that model
(which is a function). In particular, the variables denote a function in the model
via an interpretation function or an environment which maps every variable into a
specific element of the model. Such a model by the way was not obvious for more

2. TYPE THEORY 467

than forty years. In fact, for a domain D to be a model of λ-calculus, it requires
that the set of functions from D to D be included in D. Moreover, as the λ-calculus
represents precisely the recursive functions, we know from Cantor’s theorem that the
domain D is much smaller than the set of functions from D to D. Dana Scott was
armed by this theorem in his attempt to show the non-existence of the models of the
λ-calculus. To his surprise, he proved the opposite of what he set out to show. He
found in 1969 a model which has opened the door to an extensive area of research in
computer science. We will not go into the details of these models in this paper.

Definition 2.3 (Meaning of Terms) Here is now the intuitive meaning of each of
the three λ-expressions given in the syntax:

Variables Functions denoted by variables are determined by what the variables are
bound to in the environment. Binding is done by λ-abstraction.

Function application If A and B are λ-expressions, then so is (AB). This expres-
sion denotes the result of applying the function denoted by A to the function
denoted by B.

Abstraction If v is a variable and A is an expression which may or may not contain
occurrences of v, then λv.A denotes the function that maps the input value B
to the output value A[v := B], that is: the expression A in which B has been
substituted for v.

Example 2.4 (λx.x) denotes the identity function. (λx.(λy.x)) denotes the function
which takes two arguments and returns the first.

As parentheses are cumbersome, we will use the following notational convention:

Definition 2.5 (Notational convention) We use these notational conventions:

1. Functional application associates to the left. So ABC denotes ((AB)C).
2. The body of a λ is anything that comes after it. So, instead of (λv.(A1A2 . . . An)),

we write λv.A1A2 . . . An.
3. A sequence of λ’s is compressed to one, so λxyz.t denotes λx.(λy.(λz.t)).

As a consequence of these notational conventions we get:

1. Parentheses may be dropped: (AB) and (λv.A) are written AB and λv.A.
2. Application has priority over abstraction: λx.yz means λx.(yz) and not (λx.y)z.

2.4.1 Variables and Substitution

We need to manipulate λ-expressions in order to get values. For example, we need to
apply (λx.x) to y to obtain y. To do so, we use the β-rule which says that (λv.A)B
evaluates to the body A where v is substituted by B, written A[v := B]. However, one
has to be careful. Look at the following example:

Example 2.6 Evaluating (λfx.fx)g to λx.gx is perfectly acceptable but evaluating
(λfx.fx)x to λx.xx is not. By Definition 2.3, λfx.fx and λfy.fy have the same
meaning and hence (λfx.fx)x and (λfy.fy)x must also have the same meaning.

468 Formalizing Belief Revision in Type Theory

Moreover, their values must have the same meaning. However, if (λfx.fx)x eval-
uates to λx.xx and (λfy.fy)x evaluates to λy.xy, then we easily see, according to
Definition 2.3, that λx.xx and λy.xy have two different meanings. The first takes a
function and applies it to itself, the second takes a function y and applies x (whatever
its value) to y.

We define the notions of free and bound variables which will play an important role
in avoiding the problem above. In fact, the λ is a variable binder, just like ∀ in logic:

Definition 2.7 (Free and Bound variables) For a λ-term C, the set of free vari-
ables FV (C), and the set of bound variablesBV (C), are defined inductively as follows:

FV (v) =def {v} BV (v) =def ∅
FV (λv.A) =def FV (A)− {v} BV (λv.A) =def BV (A) ∪ {v}
FV (AB) =def FV (A) ∪ FV (B) BV (AB) =def BV (A) ∪BV (B)

An occurrence of a variable v in a λ-expression is free if it is not within the scope of
a λv.2, otherwise it is bound. For example, in (λx.yx)(λy.xy), the first occurrence of
y is free whereas the second is bound. Moreover, the first occurrence of x is bound
whereas the second is free. In λy.x(λx.yx) the first occurrence of x is free whereas
the second is bound. A closed term is a λ-term in which all variables are bound.

Here is now the definition of substitution:

Definition 2.8 (Substitution) For any A,B, v, we define A[v := B] to be the result
of substituting B for every free occurrence of v in A, as follows:

v[v := B] ≡ B
v′[v := B] ≡ v if v 6≡ v′

(AC)[v := B] ≡ A[v := B]C[v := B]
(λv.A)[v := B] ≡ λv.A
(λv′.A)[v := B] ≡ λv′.A[v := B]

if v′ 6≡ v and (v′ 6∈ FV (B) or v 6∈ FV (A))
(λv′.A)[v := B] ≡ λv′′.A[v′ := v′′][v := B]

if v′ 6≡ v and (v′ ∈ FV (B) and v ∈ FV (A))

In the last clause, v′′ is chosen to be the first variable 6∈ FV (AB). In the case when
terms are identified modulo the names of their bound variables, then in the last clause
of the above definition, any v′′ 6∈ FV (AB) can be taken. In implementation however,
this identification is useless and a particular choice of v′′ has to be made.

Example 2.9 Check that (λy.yx)[x := z] ≡ λy.yz, that (λy.yx)[x := y] ≡ λz.zy, and
that (λy.yz)[x := λz.z] ≡ λy.yz.

Lemma 2.10 (Substitution for variable names) Let A,B,C ∈ M, x, y, ∈ V .
For x 6= y and x 6∈ FV(C), we have that: A[x := B][y := C] ≡ A[y := C][x := B[y := C]].

2.4.2 Reduction

The two important notions of reduction are α-reduction which identifies terms up to
variable renaming and β-reduction which evaluates λ-terms.

2Notice that the v in λv is not an occurrence of v.

2. TYPE THEORY 469

Definition 2.11 (Compatibility for the type free λ-calculus) We say that a bi-
nary relation → on the type free λ-calculus is compatible iff for all terms A,B of the
λ-calculus and variable v, the following holds:

A→ B

AC → BC

A→ B

CA→ CB

A→ B

λv.A→ λv.B

Definition 2.12 (Alpha reduction) →α is defined to be the least compatible rela-
tion closed under the axiom:

(α) λv.A→α λv
′.A[v := v′] where v′ 6∈ FV (A)

Example 2.13 λx.x→αλy.y but it is not the case that λx.xy→αλy.yy.
Moreover, λz.(λx.x)x→→αλz.(λy.y)x.

Recall that λx.x 6≡ λy.y even though they represent the same function. They are
actually identical modulo α-conversion. I.e. λx.x =α λy.y.

Definition 2.14 (Beta reduction) →β is defined to be the least compatible rela-
tion closed under the axiom:

(β) (λv.A)B→βA[v := B]

We use →→β to denote the reflexive transitive closure of →β . We say that a term A is
a β-normal form if there is no B such that A→βB.

Example 2.15 Check that (λx.x)(λz.z)→βλz.z, that (λy.(λx.x)(λz.z))xy→→βy, and
that both λz.z and y are β-normal forms.

Here is a lemma about the interaction of β-reduction and substitution:

Lemma 2.16 Let A,B,C,D ∈ M.

1. If C →β D then A[x := C] →→β A[x := D] .
2. If A→β B then A[x := C] →β B[x := C] .

Proof. By induction on the structure of A for 1, on the derivation A→β B for 2.

2.5 The syntax and rules of Pure Type Systems

Now we are ready to introduce the syntax and rules of Pure Type Systems (PTSs)
which will be the basis of our theory of belief revision. There are two type disciplines:
the implicit and the explicit. The implicit style, also known as typing à la Curry, does
not annotate variables with types. For example, the identity function is written as
in the type-free case, as λx.x. The type of terms however is found using the typing
rules of the system in use. The explicit style, also known as typing à la Church,
does annotate variables and the identity function may be written as λx : Bool.x to
represent identity over booleans. In this paper, we consider typing à la Church.
We present what is known as Pure Type Systems or PTSs. Important type systems
that are PTSs include Church’s simply typed λ-calculus [11] and the calculus of
constructions [12] which are also systems of the Barendregt cube [4]. Berardi [7] and

470 Formalizing Belief Revision in Type Theory

Terlouw [33] have independently generalised the method of generating type systems
into the pure type systems framework. This generalisation has many advantages.
First, it enables one to introduce eight logical systems that are in close correspondence
with the systems of the Barendregt cube. Those eight logical systems can each be
described as a PTS in such a way that the propositions-as-types interpretation obtains
a canonical system form [4]. Second, the general setting of the PTSs makes it easier
to write various proofs about the systems of the cube.

In PTSs, we have in addition to the usual λ-abstraction, a type forming operator
Π. Briefly, if A is a type, and B is a type possibly containing the variable x, then
Πx:A.B is the type of functions that, given a term a : A, output a value of type
B[x := a]. Here, again, a : A expresses that a is of type A. If x does not occur
in B, then Πx:A.B is the type of functions from A to B, written A → B. To the
Π-abstraction at the level of types corresponds λ-abstraction at the level of objects.
Roughly speaking, if M is a term of type B (M and B possibly containing x), then
λx:A.M is a term of type Πx:A.B. All PTSs have the same typing rules but are
distinguished from one another by the set R of triples of sorts (s1, s2, s3) allowed in
the so-called type-formation or Π-formation rule, (product). Each PTS has its own
set R. A Π-type can only be formed in a specific PTS if the (product) rule is satisfied
for some (s1, s2, s3) in the set R of that system. (see Figure 1).

Definition 2.17 The set of pseudo-terms T , is generated by the grammar:
T ::= V | C | (T T) | (λV : T .T) | (ΠV : T .T), where V is the infinite set of variables
{x, y, z, . . .} and C a set of constants over which, c, c1, . . . range. We use A,B, . . . to
range over T and v, v′, v′′, . . . to range over V . Throughout, we take π ∈ {λ,Π}.

Note that in the type free lambda calculus, there were only three possibilities for terms
(given in Definition 2.1): variables, applications or abstractions, and that abstractions
contained no typings for the variables abstracted over. The above Definition 2.17 on
the other hand, gives the typing of the abstracted variable, and also defines types as
well as terms. C is a set of constants which contains a subset S called the sorts. The
set sorts contains amongst other things, four special elements: set, prop, ∗ and �,
with the relations to be defined later that: set: ∗, prop: ∗ and ∗ : �. If A : ∗ (resp.
A : �) we say that A is a type (resp. a kind). If A : set (resp. A : prop), then we
consider A as a set (resp. a proposition).

Definition 2.18 (Free and Bound variables) The free and bound variables in terms
are defined similarly to those of Definition 2.7 with the exception that FV (c) =def

BV (c) =def ∅ and in the case of abstraction, FV (πv : A.B) =def (FV (B) \ {v}) ∪
FV (A) and BV (πv : A.B) =def BV (A) ∪BV (B) ∪ {v}.

We write A[x := B] to denote the term where all the free occurrences of x in A
have been replaced by B. Furthermore, we take terms to be equivalent up to variable
renaming. We assume moreover, the Barendregt variable convention which is formally
stated as follows:

Convention 2.19 (V C: Barendregt’s Convention) Names of bound variables will
always be chosen such that they differ from the free ones in a term. Moreover,
different λ’s have different variables as subscript. Hence, we will not have (λx : A.x)x,
but (λy : A.y)x instead.

2. TYPE THEORY 471

The definition of compatibility of a reduction relation for PTSs is that of the type-free
calculus (given in Definition 2.11) but where the case of abstraction is replaced by:

A1 → A2

πx : A1.B → πx : A2.B

B1 → B2

πx : A.B1 → πx : A.B2

Definition 2.20 β-reduction is the least compatible relation on T generated by

(β) (λx : A.B)C → B[x := C]

Note that (λx : A.B)C is reduced and not (Πx : A.B)C. The latter needs special
attention as is shown in [26, 27].

Now, we define some machinery needed for typing:

Definition 2.21
1. A statement is of the form A : B with A,B ∈ T . We call A the subject and B the

predicate of A : B.
2. A declaration is of the form x : A with A ∈ T and x ∈ V . When d is x : A, we

define var(d) and type(d) to be x and A respectively.
3. A pseudo-context is a finite ordered sequence of declarations, all with distinct

subjects. We use Γ,∆,Γ′,Γ1,Γ2, . . . to range over pseudo-contexts. The empty
context is denoted by either <> or nothing at all.

4. If Γ = x1 : A1.xn : An then Γ, x : B = x1 : A1, . . . , xn : An, x : B and dom(Γ) =
{x1, . . . , xn}.

5. We define substitutions on contexts by: ∅[x := A] ≡ ∅, and (Γ, y : B)[x := A] ≡
Γ[x := A], y : B[x := A].

Definition 2.22 A type assignment relation is a relation between a pseudo-context
and two pseudo-terms written as Γ ` A : B. The rules of type assignment establish
which judgments Γ ` A : B can be derived. A judgement Γ ` A : B states that A : B
can be derived from the pseudo-context Γ.

Definition 2.23 Let Γ be a pseudo-context, A be a pseudo-term and ` be a type
assignment relation.

1. Γ is called legal if ∃A,B ∈ T such that Γ ` A : B.
2. A ∈ T is called a Γ-term if ∃B ∈ T such that Γ ` A : B or Γ ` B : A.

We take Γ-terms = {A ∈ T such that ∃B ∈ T and Γ ` A : B ∨ Γ ` B : A}.
3. A ∈ T is called legal if ∃Γ such that A ∈ Γ-terms.

Definition 2.24 The specification of a PTS is a triple S = (S,A,R), where S is a
subset of C, called the sorts. A is a set of axioms of the form c : s with c ∈ C and
s ∈ S and R is a set of rules of the form (s1, s2, s3) with s1, s2, s3 ∈ S.

Definition 2.25 The notion of type derivation, denoted Γ `λS A : B (or simply
Γ ` A : B), in a PTS whose specification is S = (S,A,R), is axiomatised by the
axioms and rules of Figure 1.

Remark 2.26 Note that in Figure 1, we insist in the (start) and (weakening) rules
that x 6∈ Γ, but we do not insist that x 6∈ A. The condition that x 6∈ A can be derived
from from the fact that x 6∈ Γ, that Γ ` A : s and the properties of PTSs.

472 Formalizing Belief Revision in Type Theory

(axioms) ` c : s if c : s ∈ A

(start)
Γ ` A : s

Γ, x : A ` x : A
if x 6∈ Γ

(weakening)
Γ ` B : C Γ ` A : s

Γ, x : A ` B : C
if x 6∈ Γ

(product)
Γ ` A : s1 Γ, x : A ` B : s2

Γ ` (Πx : A.B) : s3
if (s1, s2, s3) ∈ R

(application)
Γ ` F : (Πx : A.B) Γ ` C : A

Γ ` F C : B[x := C]

(abstraction)
Γ, x : A ` C : B Γ ` (Πx : A.B) : s

Γ ` (λx : A.C) : (Πx : A.B)

(conversion)
Γ ` A : B Γ ` B′ : s B =β B

′

Γ ` A : B′

Fig. 1. PTSs with variables names

λ→ (∗, ∗)
λ2 (∗, ∗) (�, ∗)
λP (∗, ∗) (∗,�)
λP2 (∗, ∗) (�, ∗) (∗,�)
λω (∗, ∗) (�,�)
λω (∗, ∗) (�, ∗) (�,�)
λPω (∗, ∗) (∗,�) (�,�)
λPω = λC (∗, ∗) (�, ∗) (∗,�) (�,�)

Fig. 2. Different type formation condition

Each of the eight systems of the cube is obtained by taking S = {∗,�}, A = {∗,�},
and R to be a set of rules of the form (s1, s2, s2) for s1, s2 ∈ {∗,�}. We de-
note rules of the form (s1, s2, s2) by (s1, s2). This means that the only possible
(s1, s2) rules in the set R (in the case of the cube) are elements of the following set:
{(∗, ∗), (∗,�), (�, ∗), (�,�)}. The basic system is the one where (s1, s2) = (∗, ∗) is
the only possible choice. All other systems have this version of the formation rules,
plus one or more other combinations of (∗,�), (�, ∗) and (�,�) for (s1, s2). See
Figures 2 and 3.

3. TYPE THEORY FOR KNOWLEDGE REPRESENTATION 473

t t

t t

-

-
6 6

t t

t t

-

-
6 6

�
�

���

�
�

���

�
�

���

�
�

���

λ→

λ2

λP

λP2

λω λPω

λω λC

t t

t t

-

-
6 6

t t

t t

-

-
6 6

�
�

���

�
�

���

�
�

���

�
�

���

λPROP

λPROP2

λPRED

λPRED2

λPROPω λPREDω

λPROPω λPREDω

Fig. 3. The λ-cube and its corresponding logic cube

3 Type theory for knowledge representation

This section sets the stage for our account of belief revision with explicit justifica-
tions. We give our definition of knowledge and knowledge state, and explain how such
knowledge states can be formalized in type theory.

3.1 Knowledge and type theory

PAT is suitable to express the proof as an object embodying its developmental history.
As a consequence, type theory embodies an excellent machinery for storing (various
kinds of) information, including knowledge. The connection between type theory and
knowledge is the subject of this section.

We do not intend to present a philosophical or psychological theory of knowledge,
but simply identify three characteristics of knowledge which we believe should be
taken into account when formalizing knowledge:

• Subjectivity: Knowledge is formulated in terms of concepts . We assume these
concepts are subjective in the sense that one person may judge something to be
an instance of a certain concept, while another person would not recognize it as
such. Another aspect of subjectivity is that a person’s knowledge is partial : no
one knows everything, and people differ in what they do and don’t know.

• Justification: Knowledge is justified: persons not only know things, but they have
reasons for knowing them. Generally, parts of knowledge are justified in terms of
more basic parts; a person’s body of knowledge is structured. And even atomic
justifications are supports for the knowledge, since they point at an origin (an
axiom, an observation, etc.).

• Incrementality: The knowledge of a person can be extended as new information
becomes available. Whether this information can be incorporated by the person
depends on the possibility to tie it to the knowledge already present. This may
lead to simply adding the new information, to dismissing it (e.g., because it is
incomprehensible) or even to a reorganization of the existing knowledge.

Under an account of knowledge satisfying these requirements, the traditionally
made distinction between knowledge and belief disappears: there can be no knowl-
edge which is true in any absolute sense, since an agent’s knowledge depends on his

474 Type theory for knowledge representation

subjective conceptualisation of the world. At best some pieces of knowledge turn out
to be more reliable than others and some things can be agreed upon by more agents
than others. There is a natural way to capture these characteristics in type theory:

• Subjectivity is captured by types: Each concept is formalized as a type, each in-
stance of the concept is a term inhabiting this type. A person’s subjective ability
to recognize something as an instance of a concept, is mirrored in the ability to
judge that the corresponding term inhabits the corresponding type.
Note that ‘having a concept’ is also subjective in the sense that different people
may have formed different concepts in the course of time. This means that one
person can have a concept, whereas another person has no comparable concept.
And in case persons do have comparable concepts, they may differ in what they
recognise as belonging to this concept. In case the type formalizing the concept
is a ‘set-type’, this means that they may differ in what they regard as elements
of the set (a rhododendron may be a tree for the one, but a shrub for the other).
In case this type is a ‘proposition-type’, they may differ in what they accept as a
justification for that proposition.

• Justification is captured by terms: By the PAT-principle, justifications are first-
class citizens, formalized in the type-theoretical syntax as terms. The fact that
term a justifies proposition T , is expressed as the statement a : T . The rules of
type theory allow these terms to be combined into complex terms, which reflects
that parts of knowledge may be a structured combination of more basic parts.

• Incrementality is captured by contexts: As we will explain below, a person’s knowl-
edge state can be formalized as a type-theoretical context. Addition of new in-
formation to the knowledge state can be formalized by adding statements to the
context, dismissing information amounts to reducing the context. Information
may only be added if it ‘matches’ a person’s knowledge state. Type theory has
an innate notion of ‘matching’: a statement can only extend a context if it obeys
certain well-formedness restrictions.

3.2 Formalization of the knowledge state

The knowledge state of a person consists of ‘everything he knows’ at a certain instant.
This knowledge state will be represented as a context Γ in our type system. Every
statement in Γ represents a piece of knowledge the person has.

Given our characterization of knowledge, this means that everything in a knowledge
state is formulated in terms of the person’s concepts. This has several aspects:

• Meaningfulness: A person has formed his own, private concepts, and only things
which are formulated by means of these concepts can be meaningful to him.
Whether or not information coming from outside (by observation or communi-
cation) makes sense, depends on the concepts that are already available. (In this
paper we will assume that the entirety of concepts of a person is fixed.)

• Inhabitation: Whatever a person knows about the world around him is recorded
in a knowledge state in the form of meaningful expressions that he accepts. This
includes expressions about which objects ‘inhabit’ the concepts in the world, and
which propositions hold in the world, according to the person.

Type theory for knowledge representation 475

If we take the following (very simple) context as representing a person’s knowledge
states: T1 : prop, T2 : set, x1 : T1, x2 : T2, we can see:

• Meaningfulness is captured by statements of the form T : prop or T : set. That is
to say, in this example the person has two concepts, viz. T1, which is a proposition
to him, and T2, which is a set. (Note that the statements T1 : prop by itself does
not imply that the proposition T1 holds according to the person, nor does T2 : set
imply that the set T2 is non-empty.) At this stage, there are no other concepts,
i.e. all sets and propositions which are not constructed out of T1 and/or T2 are
not meaningful to him.

• Inhabitation is captured by statements of the form x : T , where T is meaningful . In
the example context, the inhabitant x1 of T1 represents the person’s justification
for the holding of T1, and the inhabitant x2 of T2 is an element of the set T2 which
is recognized as such by the person3.

’Everything a person knows’ at a certain instant can be divided into two categories:

• Explicit knowledge is expressed by the statements in the context Γ . These are
explicitly represented pieces of knowledge directly available to the person.

• Implicit knowledge is expressed by statements derivable on the context Γ. These
are consequences of a person’s explicit knowledge which he can get by inference.

Hence, in a judgement of the form Γ ` a : T , the explicit knowledge can be found to
the left of the symbol `, and the implicit knowledge to the right of `.

Note that the knowledge state is not deductively closed, i.e. deriving consequences
requires ‘work’, which is reflected in the construction of a compound justification a
for T . Such a construction is a derivation using the rules of type theory; it consists of
a sequence of judgements of which the just-mentioned compound justification is the
final one. We come back to this in the next section.

Assumption 3.1 In order to derive all consequences of his explicit knowledge, a
person would have to be able to perform possibly infinite derivations. Since this is
not feasible, we assume a ‘bound’ on the derivation depth.

As the above discussion meant that statements of the form A : B (where A may be
complex) must be in the knowledge state (which is a context in type theory), and as
formulations of type theory only allow statements of the form x : B in the context,
we will present here an extension of type theory where contexts not only contain
statements of the form x;B, but also statements of the form x := A : B (which also
states that A : B), and are known as definitions.

3.3 PTSs with definitions

In this section we introduce the extension of PTSs given in section 2.5 with definitions.
Terms and types remain unchanged, but contexts are now a list of declarations of

the form x : A or of definitions of the form x = B : A. These latter definitions define x
to be B and to have the type A. We extend Definition 2.21 to deal with definitions as

3Syntactically, x1 and x2 are variables. However, as we see later, each of these ‘variables’ may in fact be a defined

constant, abbreviating a term which codes all details of the justification.

476 Type theory for knowledge representation

well as declarations, taking var(d), type(d) and def(d) to be x, A, and B respectively
when d is x = B : A. We define FV (x = B : A) ≡ FV (A) ∪ FV (B). We extend dom
to be dom(Γ) = {x | x : A ∈ Γ or x := B : A ∈ Γ}. Finally, we extend substitutions
on contexts by (Γ, y := B : C)[x := A] ≡ Γ[x := A], y := B[x := A] : C[x := A]. Note
that Definitions 2.22, 2.23, 2.24 and 2.25 are unchanged.

Definition 3.2 The new typing relation ` is obtained by adding four new rules to
the typing rules of Definition 2.25: (start-def), (weak-def), and (def) below, and by
replacing the (conversion) by (new-conv) as follows:

(start-def)
Γ ` A : s Γ ` B : A

Γ, x := B:A ` x : A
x 6∈ dom(Γ)

(weak-def)
Γ ` A : B Γ ` C : s Γ ` D : C

Γ, x := D:C ` A : B
x 6∈ dom(Γ)

(def)
Γ, x := B:A ` C : D

Γ ` (πx : A.C)B : D[x := B]
for π ∈ {λ,Π}

(new-conv)
Γ ` A : B Γ ` B′ : s Γ ` B =def B

′

Γ ` A : B′

In (new-conv), Γ ` B =def B′ is defined as the smallest equivalence relation closed
under:

• If B =β B
′ then Γ ` B =def B

′

• If x := D : C ∈ Γ and B′ arises from B by substituting one particular free
occurrence of x in B by D then Γ ` B =def B

′.

In Definition 3.2, (start-def) and (weak-def) are the start and weakening rules that
deal with definitions in the context. The (def) rule types λ- and Π-redexes using
definitions in the context.

Now, here are some lemmas that show that the above system is suitable for rep-
resenting beliefs. The first lemma establishes that different beliefs have different
justifications and that all justifications have their evidence in knowledge state Γ.

Lemma 3.3 (Free variable Lemma for `) 1. If d and d′ are two different ele-
ments in a legal context Γ, then var(d) 6≡ var(d′).

2. If Γ ≡ Γ1, d,Γ2 and Γ ` B : C then FV (d) ⊆ dom(Γ1) and FV (B), FV (C) ⊆
dom(Γ).

Proof. 1. If Γ is legal then for some B,C, Γ ` B : C. Now use induction on the
derivation of Γ ` B : C. 2. is by induction on the derivation of Γ ` B : C.

Lemma 3.4 (Substitution Lemma for `) If Γ, x := D : C,∆ ` A : B or (Γ, x :
C,∆ ` A : B and Γ ` D : C) then Γ,∆[x := D] ` A[x := D] : B[x := D].

Proof. Induction on the derivation rules, using Lemma 3.3.

The following corollary means that the person can track down those statements re-
sponsible for him entertaining a particular belief.

4. DEVELOPMENT OF THE KNOWLEDGE STATE 477

Corollary 3.5 (Strengthening Lemma for `) For Γ1, y := E : T,Γ2 a legal con-
text and M and B terms: if Γ1, y := E : T,Γ2 ` M : B and y 6∈ FV (Γ2) ∪ FV (M) ∪
FV (B), then Γ1,Γ2 `M : B.

The next lemma shows that all statements in a knowledge state are meaningful in the
sense that if Γ1, x : A,Γ2 is legal then Γ1 ` x : A; and if Γ1, x := B : A,Γ2 is legal
then Γ1 ` x : A and Γ1 ` B : A

Lemma 3.6 (Context Lemma for `) Let Γ1, d,Γ2 be a legal context. Then we
have: Γ1 ` type(d) : s for some sort s,
Γ1, d ` var(d) : type(d) and if d is a definition then Γ1 ` def(d) : type(d).

Proof. If Γ is legal then for some terms B,C: Γ ` B : C; now use induction on the
derivation of Γ ` B : C.

Lemma 3.7 (Thinning Lemma for `) Let d be either a declaration or a definition
and let Γ1, d,Γ2 be a legal context.

1. If Γ1,Γ2 ` A : B, then Γ1, d,Γ2 ` A : B.
2. If d is x := D : C and Γ1, x : C,Γ2 ` A : B, then Γ1, d,Γ2 ` A : B.

Lemma 3.8 (Swap Lemma for `) Assume each of d1 and d2 is either a declaration
or a definition such that var(d1) 6∈ FV (type(d2)) and if d2 is a definition then also
var(d1) 6∈ FV (def(d2)).
If Γ1, d1, d2,Γ2 ` A : B, then Γ1, d2, d1,Γ2 ` A : B.

Proof. By induction on the derivation Γ1, d1, d2,Γ2 ` A : B.

4 Development of the knowledge state

The knowledge state of a person is not static. As time goes by, new information comes
to the person’s attention and has to be dealt with. With the conception of knowledge
states as type-theoretical contexts in mind, as explained in the previous section, we
distinguish several stages in the treatment of new information by a person, marked
by decisions which the person has to make. We describe these stages below.
Meaningfulness In the first stage, the meaningfulness of the new information is at
stake. New information may or may not be meaningful to a person depending on his
current knowledge state. Type-theoretically, new information manifests itself in the
form of a (sequence of) statement(s). Whether these statements are meaningful with
respect to a knowledge state, can be syntactically decided. In section 3.2 we noted
that type theory has an intrinsic notion of meaningfulness. Below we explain how this
notion can be extended to statements of the form x : T , expressing the inhabitation
of a proposition or set T .

We presuppose that a person only processes new information that is meaningful
(makes sense) to him, i.e. meaningful with respect to his current knowledge state, and
that he decides to dismiss this information otherwise. (In a communication setting,
we expect the person to search for clarification, either by questioning his dialogue
partner, or by (re-)inspecting his environment.)
Expanding the knowledge state If the information is meaningful, the person adds
it provisionally to the knowledge state: Γ is extended to e.g. Γ1 ≡ Γ, y1 : T1, y2 : T2.

478 Development of the knowledge state

The resulting knowledge state can turn out to be consistent, that is to say, the
person cannot construct a term M such that Γ1 ` M : ⊥, where ⊥ is falsum (the
logical constant ‘falsity’). Recall assumption 3.1 where we assume that the person
has a limited deductive power, so he can only construct terms by derivations up to a
certain length. Intuitively this means that the person has a ‘horizon’ behind which
he cannot see the consequences of his knowledge state. Hence, the person’s notion of
‘consistency’ is bound by his horizon. (Hence, a knowledge state can be inconsistent
without the person being able to find this out at the current point in time.)

If the obtained knowledge state does not give contradictions within the horizon,
then Γ1 is accepted as the new context.

Revising the knowledge state There is, however, also the possibility that the
person has found an inconsistency, i.e. he has constructed in his newly expanded
knowledge state some term M such that Γ1 ` M : ⊥. In that case, he can decide to
reject the new information and return to the previous knowledge state. But he can
also decide to revise his new knowledge state in order to restore consistency. (The
person may actually be able to construct more than one inhabitant of falsum; we
assume that he concentrates on one of these.) The most natural thing to do, is to
find one or more statements in the context representing his knowledge state, which
enabled the construction of M . These statement can be located in the ‘old’ context,
but also in the newly added piece of context, or in both. By removing one or more of
these statements from his context, consistency may be regained, since this particular
proof of falsum, M , cannot be constructed any more. Below we propose a syntactical
iterative procedure which restores consistency. (In general, there is more than one
way to regain consistency by removing statements from the knowledge state.)

The stages and decisions we distinguished above, are not intended to capture actual
cognitive processes, but merely to state as clearly as possible which aspects of belief
revision we do and do not consider in our formalization. For instance, the fact that
the person decides which statements to remove, means that this is not decided by the
formalism, in other words, we do not postulate so-called epistemic entrenchement .
(For a comparison with standard theories of belief revision, see section 6.)

In sections 4.1 and 7.3 we discuss the various stages of dealing with information as
explained just now, in more detail. We give special attention to the representation in
type theory.

4.1 Adding information

The knowledge state of a person changes as new information becomes available to
him. Since knowledge states are modeled by type-theoretical contexts, this means
that contexts should change accordingly. In this subsection we demonstrate that type
theory has the possibility to accommodate such a change in the knowledge state, viz.
the addition of new information to the knowledge state.

Adding information to a type-theoretical context amounts to adding statements to
this context. This does not mean that arbitrary information may be added, addition of
information is subject to syntactical restrictions. We discuss this below, distinguishing
between the addition of information originating from inside and from outside the
knowledge state of the person.

Development of the knowledge state 479

Adding information from inside
A person is able to reason with his knowledge. For example, let us assume that the
statements A → B : prop and A : prop are meaningful to the person. I.e., from
his knowledge state Γ, the person can derive Γ ` A → B : prop and Γ ` A : prop.
Moreover, let us assume that the person has justifications for both propositions, since
A → B and A are inhabited (e.g. x : A → B and y : A occur in the context Γ
representing his knowledge state). Then the person can infer that B holds, as well,
expressed by the statement xy : B. This is the case since we have the following
instance of the application rule (cf. Figure 1):

Γ ` x : A→ B Γ ` y : A
Γ ` xy : B

This inference allows the person to combine his justification x for A → B with his
justification y for A into a complex justification xy (pronounced as ‘x applied to y’)
for the proposition B.

Note that there are no more than a small number of typing rules, which are all
like the above rule in that they enable to derive a new judgement from one or more
judgements which are given or derived earlier.

The judgement Γ ` xy : B resulting from the person’s inference as explained above,
shows that the person is able to construct a justification for B on his knowledge
state Γ. However, the statement xy : B is not yet part of his knowledge state. To
incorporate this statement, it would simply be sufficient to append it to Γ. However,
for technical reasons only statements with variables as subject are allowed in the
context. In order to circumvent this (technical) problem, in Section 3.3, we expanded
our notion of ‘context’ given in Section 2.5, by allowing also a new kind of statements,
called definitions , in the context. A definition is a statement of the form z := E : T ,
expressing that z is a name for the term E of type T . The new name z is the subject
of the definition z := E : T . Formally, z is a variable. (This is in contrast with
the good habit of calling such a defined name a constant .) By means of definitions,
complex justifications can be abbreviated and recorded in the context. This definition
mechanism is essential in the practical use of type theory for the formalization of
‘bodies of knowledge’, as has been shown e.g. in the Automath project [31].

A definition z := E : T may be added to a context ∆ whenever z is fresh with
respect to ∆ and E : T is derivable on ∆. In the example above, this enables the
person to record the inferred xy : B in his knowledge state by adding the definition
u := xy : B, using some fresh variable u. Hence, the context Γ has evolved into the
context Γ, u := xy : B, reflecting the development of the person’s knowledge state
brought about by his reasoning. The proposition B (and its justification), which was
implicit knowledge of the person (since it occurred at the right hand side of the `),
has now become explicit knowledge.

From a purely logical point of view, it may seem that adding a derived proposition
to the knowledge state (making it explicit) does not contribute to the person’s implicit
knowledge. However, this is not the case since we assume a bound on the depth of
derivations a person can perform. Under this assumption, the implicit knowledge is
limited: it consists of everything a person can derive on his context within a certain
number of derivation steps . As soon as the explicit knowledge has grown, in general
there is more that can be derived by the person in the same number of steps, so the

480 Development of the knowledge state

implicit knowledge has grown as well: the person’s ‘deductive horizon’ has broadened.

Adding information from outside

The knowledge state of a person can change by reasoning (which he does himself,
from the inside), or by information originating from the outside. For the latter there
are two important knowledge sources: observational and communicational.

• Observation: A person can recognize an object (visually, or by any other sensory
perception) in his world as belonging to a certain set . For example, he sees an
object which he characterizes as being a ball. But he can also obtain evidence for
propositions by looking at the outside world. For example, he sees that the ball
is yellow.
In both cases, the new information can be added to the context of the person by
the addition of a new statement with a fresh atomic subject, acting as the justifi-
cation. The atomic character of this justification is caused by the impossibility to
decompose the observation into smaller parts.
The two observations in the example above could e.g. be combined into the context
extension b : ball , o : yellow b.

• Communication: Another manner in which a person can change his knowledge
state is by information passed to him by another person. Again, this information
can involve (the existence of) objects as well as (the holding of) propositions.
For this communication it is necessary that both persons share a language in
which they communicate. We assume that each person speaking this language
has a mapping between the words of the language and the subjective concepts
present in his knowledge state, and vice versa. In [1] a type theoretical model of
communication is developed based on this assumption. In this model, the types in
a person’s knowledge state are communicable via the (mappings to) the common
language, but the inhabitants of these types (justifications) are not. Hence the
contents of a communication take the form of a (sequence of) statement(s) of
which the subjects are atomic, since the original justifications of the ‘sender’ are
not communicable to the ‘receiver’.
Example: in a situation after the observation of the previous example, the utter-
ance ‘The yellow ball is hollow’ can lead to the following extension of the person’s
context: c : hollow b, provided that ‘hollow’ is a concept known to the person,
and he is able to correctly match the definite description to the objects b and o in
his context.

Hence, be it either observation or communication, the information to be added to a
person’s context has the form of a sequence of statements with atomic subjects, hence
of the form x : T , where x is a variable; note that definitions do not play a role if we
consider adding information from the outside.

However, as we said earlier, the types of the statements in the context give rise to
a notion of meaningfulness. Only types ‘constructable’ from the statements already
present in the context of a person are meaningful to him. This restricts the addition
of statements originating from the outside.

Technically, this has the following form. Let Γ be the original context of the person
and assume that the sequence x1 : T1, . . . , xn : Tn is the information from the outside

Development of the knowledge state 481

(with fresh subjects x1, . . . , xn). Then these statements are added one by one, thus
changing the knowledge state incrementally. That is to say, for each 1 ≤ i ≤ n, the
statement xi : Ti may only be added if

Γ, x1 : T1, . . . , xi−1 : Ti−1 ` Ti : s

with s ≡ set or s ≡ prop. In other words, a statement may only be added if its type
is well-formed with respect to the current knowledge state. This shows, as we said
before, that new information (a sequence of statements) can only be absorbed in a
step-by-step fashion (statement by statement), where the possibility to append a new
statement depends on the information available in the context at that stage, i.e. the
original context plus the already appended statements.

This embodies precisely the notion of incrementality, discussed in subsection 3.1,
which not only applies to the case of only one ‘chunk’ of information from the outside
(i.e. one sequence of statements) as above, but also to subsequent additions of such
chunks of information. For instance, if a person is in a dialogue with another person,
each new utterance he receives will be added only if it is meaningful against the
background of the utterances accepted before.

Remark 4.1 In treating observation and communication, we extended the use of type
theory as it is traditionally described in the literature: one usually does not take into
account that information can come from outside the context. When type theory is
applied to knowledge representation, one usually models (the progress of) a solitary
reasoning person, who can only extend his knowledge from the inside. However, since
we adopted the same well-formedness criteria as usual to adding information from the
outside, the resulting context in our extension will always be syntactically correct with
respect to the original type-theoretical standards. Hence, this extension of the use
of type theory does not lead to an extension of the formalism. (Even the complete
process of adding information from the outside can be justified in type-theoretical
sense. We will not go into that here.)

4.2 The problem of revision

As we saw in the previous section, a situation in which a person has to revise his
knowledge state can be characterized as follows. The person is confronted with new
information (which is meaningful to him), and decides to accept it. When it turns out
that the incorporation of this new information leads to inconsistency of the resulting
knowledge state, the person has to remove information from this new knowledge
state to restore consistency. Below we describe how this can be done by means of
type theory.
Revision from a type-theoretical perspective The need for revision can originate
both from the inside and from the outside. We begin by describing the situation where
new information is added from outside.

Suppose that the context Γ represents the person’s current knowledge state (which is
consistent within his horizon) and the sequence x1 : T1, . . . , xn : Tn represents the new
information from the outside resulting in the context Γ1 ≡ Γ, x1 : T1, . . . , xn : Tn. The
inconsistency of Γ1 manifests itself in the existence of an inhabitant of falsity which
the person can construct within his horizon: there is an M such that Γ1 ` M : ⊥.

482 Development of the knowledge state

There may be more than one such an inhabitant, but we assume that the person has
chosen one of these. (We come back to this in section 5.)

The fact that all justifications are explicitly present enables the person to identify all
‘suspects’: the beliefs in Γ1 that together cause the inconsistency. Since M embodies
a derivation of falsity in the sense explained earlier, we find in M the justifications of
all beliefs that are part of this derivation (M contains the full developmental history
of the derivation). The suspect justifications occur as free variables in M , since
these free variables point exactly at the premisses of the derivation of falsity: such
a premiss x : T gives rise to a free x in M . This is a property of the proposition as
types interpretation of type theory. Moreover, the rules of type theory ensure that
all free variables of M occur as subjects in Γ1.

Example 4.2 Let A : prop and B : prop be statements belonging to the knowledge
state (the context) and assume that the person has proofs of A, of A→ B and of ¬B
(abbreviating B → ⊥, to be read as “B implies contradiction”). This is represented
in the knowledge state by statements say x : A, y : A → B and z : ¬B. The rules
of Type Theory enable the derivations of Γ ` yx : B and Γ ` z(yx) : ⊥. The free
variables x, y and z in the ‘proof object’ z(yx) point precisely at the propositions A,
A→ B and ¬B, which together enable the construction of the inconsistency.

Note that, given the consistency of Γ, there have to be free variables in M which
occur as subjects in the new information x1 : T1, . . . , xn : Tn. (Otherwise, M : ⊥
could already be constructed on Γ itself; this is a consequence of the Stengthening
Corollary 3.5.)

New information can also originate from the inside, when a person adds a derived
consequence to his knowledge state by means of a definition. This broadens his horizon
and hence contradictions which were previously out of sight can now come into view
(cf. section 4.1).

Example 4.3 Suppose Γ is consistent and Γ ` N : P within the horizon. The result
of adding N : P to Γ by means of a definition is Γ′ ≡ Γ, u := N : P . Now it is possible
that there exists an M such that Γ′ ` M : ⊥ within the new horizon. As above, this
M contains inhabitants of all ‘suspects’ as its free variables.

This shows that there is, technically speaking, no difference between revision due to
information from outside and from inside. Intuitively it may seem strange that a
person can be forced to revise his knowledge state by only adding a consequence of
what he already knows to his knowledge state, without any external reason. However,
if we take the idea of limited deductive power seriously, this is inevitable.

Restoring consistency by removing information In the above situation, when
there is an M such that Γ1 ` M : ⊥, the person can try to regain consistency by
removing one or more of the ‘suspects’ from Γ1, being some of the statements xi : Ti

occurring in Γ1 where xi occurs free in M . As we pointed out before, we assume that
the person decides which statements he chooses to remove. Before making this choice,
the person probably reconsiders the suspects, with the help of new observations or
communications with others.

However, it is generally not sufficient to simply erase the chosen suspects from the
knowledge state, since there may be beliefs depending on the ‘suspect’ beliefs. Such

5. BELIEF REVISION 483

a dependent belief should be removed as well, since it is no longer meaningful on the
knowledge state from which the suspect(s) have been erased.

A belief can depend upon another belief in two ways:

1. A belief B may contain a free variable x which is the subject variable of a statement
x : A preceding y : B in the context.

2. If x : A precedes a definition statement z := E : C, both E and C may contain
such a free variable x.

In these cases, y : B and z := E : C depend on x for their well-formedness. Hence,
removal of x : A from the context has consequences for these statements as well. The
most natural solution is to remove them.

There is a relatively simple, syntactical procedure for removing suspect beliefs and
the beliefs depending on them, which we describe in section 5.1 The result of this
procedure is a new knowledge state, Γ2. It is, however, not necessarily the case that
this Γ2 is consistent within the person’s horizon. Although the justification M of
falsity is no longer constructable on Γ2, there may have been more than one justifica-
tion for falsity on Γ1. Some of these justifications of falsity may still be constructible
on Γ2. In that case, the person chooses one of these justifications and selects a new
set of suspects on which the procedure described above is repeated. Iteration leads
to a sequence of knowledge states Γ1, . . . which is finite, since in every iteration step
at least one of the (finite number of) justifications of falsity is removed. So there
is a final knowledge state Γn, on which no justifications of falsity are constructable.
Hence, Γn is consistent within the person’s horizon. This Γn is then the resulting
revised knowledge state.

5 Belief revision

In this section we give a formal description of the process of belief revision in type
theory, as described above. First we define the syntactical procedure for removing
‘suspect’ beliefs and the beliefs depending on them (section 5.1) stating some proper-
ties of this removal procedure. Finally, we discuss the full revision procedure, which
may involve iterative removal of suspect beliefs, and we investigate the properties of
the procedure.

5.1 The removal operation

We start with a knowledge state represented by a context Γ and new information
represented by the sequence x1 : T1, . . . , xn : Tn. We add the new knowledge to the
original knowledge state, obtaining Γ1 ≡ Γ, x1 : T1, . . . , xn : Tn. We assume that
this ‘new’ context Γ1 turns out to be inconsistent and we assume that the person
has chosen one or more suspect beliefs in Γ1 which he wants to remove. Note the
assumption that the suspect beliefs can be found in the entire Γ1, so also among the
new information: contrary to standard accounts of belief revision we do not award a
special priority to the new information (cf. section 7.3).

The removal operation that we describe below results in the transformation of Γ1

into a new context Γ2. However, as we discuss below, regaining consistency may
involve more than one such transformation, hence in our definition we define the

484 Belief revision

transformation as leading from Γi to Γi+1.
In order to give a general definition of removal, we write a context as if all statements

in the context were definitions: y1 := E1 : T1, . . . , ym := Em : Tm, with the convention
that yl := El : Tl must be read as yl : Tl if it is not a definition and we take FV (El) = ∅
in the last mentioned case. (FV (M) is the set of all variables occurring free in M .)

We assume that V is the set of variables which are the subjects of suspect beliefs
yk := Ek : Tk in Γi which the person has chosen to remove. As we explained at
the end of section 4, also beliefs yl := El : Tl depending on the variables in V must
be removed. Below we characterize the set depΓ(V) consisting of V plus all subject
variables of statements depending on V .

We start with the definition of the notion ‘subcontext’.

Definition 5.1 Let Γ ≡ ∆1, y := E : T,∆2 and Γ′ ≡ ∆1,∆2 or Γ′ ≡ ∆1, y : T,∆2.
Then Γ′ ⊂ Γ. The relation ⊆ is the reflexive and transitive closure of ⊂. If Γ1 ⊆ Γ2

we say that Γ1 is a subcontext of Γ2.

Next we define the dependency relation ≤, a partial order between subject variables
of a context Γ.

Definition 5.2 Let Γ ≡ ∆1, y := E : T,∆2. Then defΓ(y) = E, typeΓ(y) = T
and statΓ(y) = (y := E : T). For y and z ∈ dom(Γ) we say that y < z if y ∈
FV(defΓ(z) ∪ typeΓ(z)).(For convenience, we write ‘<’ instead of <Γ.) The relation
≤ is the reflexive and transitive closure of <. The set depΓ(y) is {z ∈ dom(Γ)|y ≤ z}.
Moreover, depΓ(V) is

⋃
y∈V depΓ(y), for V ⊆ dom(Γ).

Note that the set of variables depending on a set of variables V , includes V itself.
Next, we define a deletion operator del, erasing statements from a context, and

the removal operator ‘\’.

Definition 5.3 For domain variable y of Γ ≡ ∆1, y := E : T,∆2, we define Γ −
statΓ(y) as ∆1,∆2. For a set W of domain variables of Γ, we define delΓ(W) as
Γ −

⋃
y∈W statΓ(y). For a context Γ and a set V ⊆ dom(Γ), the removal operation

‘ \ ’ is defined by Γ\V = delΓ(depΓ(V)).

So, Γ\V is the context resulting from removing all statements depending on the set
V of chosen subject variables, from Γ.

As explained in section 4.1, knowledge states are incremental, in the sense that the
type of each statement should be meaningful given the statements preceding it. In
type theory this is expressed by legality given in Definition 2.23 and which satisfies the
important Context Lemmma 3.6. The removal operator applied to a legal context,
results in a new, legal subcontext:

Lemma 5.4 Let Γ be a context and V ⊆ dom(Γ). Then Γ\V ⊆ Γ. Moreover, if Γ is
legal, then Γ\V is legal.

Proof. For the second part: Subsequently delete all stat(y) for y ∈ depΓ(V) from
Γ, from right to left, using Strengthening Corollary 3.5.

The removal operator has the nice property that the result of subsequent applica-
tions to V and W is the same as applying it in the reverse order, or by applying it to
the union of V and W :

Belief revision 485

Lemma 5.5 If Γ is legal and V and W are subsets of dom(Γ), then (Γ\V)\W =
(Γ\W)\V = Γ\(V ∪W).

Proof. By the definition of \ and basic set theory.

5.2 The revision procedure

In this section we show how the removal operator can be used to regain consistency.
We assume that a person has originally a legal and consistent knowledge state Γ.
He extends his context Γ with new information x1 : T1, . . . , xn : Tn, obtaining Γ1 ≡
Γ, x1 : T1, . . . , xn : Tn. Let’s assume that Γ1 is legal again, but that it has become
inconsistent: he can now construct an M such that Γ1 ` M : ⊥. (Note: in this
subsection we forget about the ‘horizon’ of a person, i.e. the limited deduction power
of a human being; we consider this horizon in the following subsection.) We consider
two cases in both of which the proofM of falsity is no longer derivable on the resulting
context Γ2:

• The person chooses to remove a single subject variable z occurring freely in M ,
plus all statements depending on this z. Hence, he obtains Γ2 ≡ Γ1\{z} as his new
context. Note that the chosen variable z may be the inhabitant of a statement in
the original context Γ or of a statement xi := Ei : Ti which is part of the extension.
In the latter case, depΓ1

(z) contains only variables occurring as subjects in the
extension. In the former case, however, depΓ1

(z) may contain subject variables of
Γ as well as subject variables of the extension. Hence, the removal operation may
change the new information in both cases.

• The person chooses a non-empty set V of variables occurring freely in M and
obtains Γ2 ≡ Γ1\V as his new context. Note that by lemma 5.5, the removal of
V has the same effect as removing the separate elements of V , one by one, in any
order. (This also holds if V is the set of all free variables in M .)

The above does not guarantee that Γ2 is consistent: it may be the case that the
person can still construct a proof of falsity, say M ′, on Γ2. Then the person can
repeat the removal operation with one or more free variables occurring in M ′, and so
on obtaining a sequence of contexts Γ1,Γ2, . . ., where each Γi+1 is a legal subcontext
of Γ being properly ‘smaller’ (i.e. contains fewer statements) than Γi. It follows that
the sequence Γ1,Γ2, . . . is finite, so that a context Γn which is consistent is finally
obtained. (In the extreme case Γn = ε, but there is no proof of falsity on the empty
context ε by the consistency of type theory.) This implies:

Lemma 5.6 Iterated application of the removal operation terminates resulting in a
consistent knowledge state.

In other words, it is a revision procedure. It is interesting to note that this iteration
can be summarized in a single application of the removal operation: Let’s call the
non-empty set of variables that the person chooses to remove in the transition from
Γi to Γi+1, Vi (which can be a singleton set). Then Γi+1 = Γi\Vi. However:

Lemma 5.7 Successively removing Vi from Γi for i = 1, . . . , n− 1, leads to the same
result as removing the union of all Vis from Γ1: I.e. Γn = Γ1\

⋃n−1
i=1 Vi.

486 Belief revision

Proof. This is again a consequence of lemma 2.

In this section we assumed that it is the person who makes the decision about which
statements to remove, and not the formalism. We gave arguments for this point of
view in section 4. However, in comparing our system with others in the literature we
will in section 7.4 discuss formal heuristics for making these decisions.

5.3 Revision with horizon

In the previous subsection we assumed that the person is ‘omniscient’ in the sense
that he is able to provide a proof of falsity at any time, if there exists one. This, of
course, is not realistic. For this reason we introduced in the beginning of section 4 the
notion of ‘horizon’ for the person. If we look at the revision procedure, the presence
of a horizon has important consequences.

Firstly, a knowledge state Γ has only a limited number of consequences within a
given horizon. We formulate this as a theorem, provable by combinatorial arguments:

Theorem 5.8 Given a context Γ and a number h limiting the derivation depth of
derivations on Γ (‘the distance to the horizon’), there is a finite number of statements
derivable on Γ (modulo α-conversion).

Note that we do not consider the full deductive closure of Γ, which possibly cor-
responds with an ‘infinite horizon’, which is no horizon at all. For convenience, we
denote the finite set of derivable statements from context Γ (the set of consequences
of Γ) within horizon distance h by Conseqh(Γ).

Corollary 5.9 Given a context Γ that is inconsistent within horizon distance h, there
is a finite number of inhabitants of falsity (‘proofs of falsity’) (modulo α-conversion).
I.e., there are finitely many terms M such that M : ⊥ ∈ Conseqh(Γ).

By application of the revision procedure, statements are removed from the context Γ.
This will eliminate a (number of) proof(s) of falsity, but the question arises whether
there are new proofs of falsity on the revised (smaller) context. This is not the case:

Theorem 5.10 If Γ\V is the result of revising Γ with respect to V , then there is no
statement derivable within horizon distance h on Γ\V which was not already derivable
within horizon distance h on Γ. I.e., Conseqh(Γ\V) ⊆ Conseqh(Γ).

Proof. Note that Γ\V ⊆ Γ by lemma 5.4. For any two PTS-contexts ∆ and ∆′ the
so-called Thinning Lemma holds: if ∆′ ⊆ ∆ and ∆′ ` A : B, then ∆ ` A : B. Hence
if Γ\V ` A : B then Γ ` A : B. However, if we regard the horizon distance, it might
still be possible that there exists a statement A : B which is derivable on Γ\V in at
most h steps, and on Γ in more than h steps (due to extra steps needed to ’retrieve’
the premisses on the larger context). We assume, however, that the axiomatization
of Type Theory is such that the Start-rule allows any number of Weakenings. In that
case, a derivation of Γ\V ` A : B can always be ‘copied’ into a derivation of Γ ` A : B
with the same number of derivation steps.

Corollary 5.11 The removal procedure does not allow the introduction of new proofs
of falsity.

6. SITUATING OUR APPROACH 487

Corollaries 5.9 and 5.11 imply the following theorem, which says that we can always
reach a consistent context in one revision step:

Theorem 5.12 Given an inconsistent context Γ and a horizon distance h, there exists
a set of variables V such that Γ\V is consistent within the same horizon distance.

Proof. Take V to be the set of all free variables occurring in all proofs of falsity
which can be derived on Γ within horizon distance h. By Corollary 5.9, this set is
finite and by the definition of the revision procedure, none of these proofs of falsity
are constructable on Γ\V . By Corollary 5.11, there are no new proofs of falsity on
Γ\V , hence Γ\V is consistent within horizon distance h.

6 Situating our approach

In this paper, we presented an approach to belief revision based on type theory. As
far as we know, this approach is new. In the setting of type theory, justifications
of beliefs are ‘first class citizens’, which is not the case in current approaches to
belief revisions. In this section we discuss the relations between our approach and
well-known approaches from the literature. We take [18] as our guideline.

6.1 Belief bases with justifications

By the methodological taxonomy of [18], our approach has these characteristics:

• Beliefs are represented as statements in type theory, a person’s belief state as a
type-theoretical context (section 4). The result of a belief change operation is
again a type-theoretical context (section 5.2).

• The statements that are elements of the context representing a person’s belief
state, represent his explicit beliefs. Beliefs derivable from these statements are his
implicit beliefs (section 3.2). Contrary to standard practice, we assume the deduc-
tive powers of the person are limited by a deductive horizon and only statements
that are derivable within this horizon count as his implicit beliefs.

• Our theory does not prescribe how choices are made concerning what beliefs to
retract. It gives a set of candidates for retraction, but leaves the actual choice to
the person (Section 5.2). One can give heuristics for this choice (Section 7.4).

Gärdenfors and Rott mention four integrity constraints guiding the construction of
belief revision formalism:

• The beliefs in the data base should be kept consistent whenever possible. We adhere
to this constraint taking ‘consistent’ to mean: ‘consistent with respect to the
limited deductive powers of the person’.

• If the beliefs in the data base logically entail a sentence, then this sentence should
be included in the data base (‘deductive closure’). It will be clear from our earlier
comments (sections 4 and 5.3) that we do not subscribe to this point of view.
However, it is possible to explicitly include a derived belief (to be precise: de-
rived within the person’s horizon) in the knowledge state by means of a definition
(section 4.1).

488 Situating our approach

• The amount of information lost in a belief change should be kept minimal. In
accordance with the fact that our theory says nothing about extra-logical factors
governing the choice of beliefs-to-be-retracted, there is no notion of minimality
inherent in our theory.

• In so far as some beliefs are considered more important or entrenched than others
one should retract the least important ones. In line with our previous comment, a
notion of extra-logical preference like entrenchment should in our opinion not be
part of a theory as it belongs to the realm of heuristics.

The choices we made above imply that we work with the so-called belief bases: the
knowledge state of a person is represented by a finite set of sentences, a context Γ.
The belief set of the person consists of his explicit beliefs (statements in Γ) and his
implicit beliefs (statements derivable on Γ within the horizon, i.e. Conseqh(Γ)). Note
that Γ ⊆ Conseqh(Γ): every explicit belief in the context Γ is derivable on Γ, and is
hence also implicit. Therefore we can represent a person’s belief set by Conseqh(Γ).

Since we choose to represent justifications for beliefs explicitly, as inhabitants, in
the knowledge state, our approach is closely related to what is called Foundations
Theory in the literature, see e.g. [17].

6.2 The relation with Foundations Theory

Foundations Theory is based on the principle that belief revision should consist in
giving up all beliefs that no longer have a satisfactory justification, and in adding new
beliefs that have become justified. This principle has a number of consequences:

• Disbelief propagation If in revising a knowledge state a certain belief is retracted,
not only this belief should be given up, but also all beliefs depending on this
belief for their justification. Since our theory has an explicit representation of
justifications, this propagation can be captured syntactically, as was shown in
definition 5.2, by means of the relation ≤. Hence, our approach does not have
the drawbacks that are often associated with disbelief propagation, viz. ‘chain
reactions’ and ‘severe bookkeeping problems’.

• Non-circularity. Since beliefs can depend on other beliefs for their justification,
we should be careful that the dependency graph is well-founded, i.e. does not
contain circularities. In our approach such circularities cannot occur, since they
are ruled out by the well-formedness requirements for the type-theoretical contexts
(section 4).

• Multiple justifications. A belief may be supported by several independent beliefs.
The removal of one of those justifications does not automatically lead to giving
up the belief. This characteristic is reflected in our approach, where a belief may
have more than one inhabitant. Suppose that a person has two justifications for
the belief that A holds on his knowledge state Γ, for example: Γ ` M : A and
Γ ` N : A. Since the free variable sets of M and N may be disjoint, it may be
possible to retract the justification M of A, while retaining N and hence the belief
that A (see section 5.2).

There is a well-known problem in Foundations Theory, following from the hypothesis
that all beliefs must have a justification. This induces a distinction between beliefs:

7. COMPARING OPERATIONS FOR BELIEF CHANGE 489

some beliefs are justified by one or more other beliefs, but there must also exist beliefs
which are justified ‘by themselves’. These so-called foundational beliefs are considered
to be ‘self-evident’, they need no further justification.

In Foundations Theory, justification is a relation on the level of the beliefs. In
type theory, however, justifications are explicitly represented by terms inhabiting the
beliefs they justify. The distinction between foundational and other beliefs is reflected
in type theory in the structure of the term inhabiting the belief:

• Atomic justifications. If the term inhabiting the belief is a constant or a variable,
the justification cannot be further analyzed. This corresponds to the foundational
beliefs, but only to a certain extent: it does not imply that these beliefs are neces-
sarily self-evident. The atomic justification simply reflects the person’s decision to
adopt the belief in its own right, e.g. on the basis of an observation, communication
or an act of will. (See also section 2.)

• Composite justifications. If the term inhabiting the belief is a composite term, the
justification can be analyzed according to the structure of the term. These terms
occur in the context in definitions , e.g. in the statement y := E : T , where E is
a composite justification for T . One can find the inhabitants of the other beliefs
supporting the belief that T , as the free variables occurring in E.

Thus the justification relation from Foundations Theory becomes a relation between
inhabitants of beliefs in type theory. This relation is captured by the dependency
relation ≤ of definition 5.2.

7 Comparing operations for belief change

Before we can compare the formal properties of our revision procedure with those of
the literature, we must formulate our equivalents of the three standard belief change
operations: expansion, contraction and revision.

• Expansion: Adding a new sentence A to the belief base K, regardless of the con-
sistency of the resulting belief base. The result is usually denoted by K +A.
In our type-theoretical setting, expansion is just addition of either a statement
or a definition to the context: Γ changes into Γ, x : A (with x fresh), or into
Γ, x := M : A. In the first case new information originating from outside is added,
in the second case a consequence of the belief base is made explicit by adding it
to the context.
Note that, in both cases, the type A must already be well-formed with respect
to Γ, i.e. Γ ` A : s with s a sort in the set of sorts S of the type system (cf.
sections 3.2 and 4.1). In the second case, x := M : A may only be added when
Γ `M : A is derivable. This again gives a well-formedness guarantee.
Notation: The type-theoretical analogue of Expansion will be denoted by
Expx:=M :A(Γ; Γ′) if the expansion of Γ with the statement or definition x := M : A
yields Γ′. Hence, Γ′ ≡ Γ, x := M : A.

• Contraction: Retracting some sentence A from the belief base K, as well as sen-
tences depending on A (without adding new beliefs). This is denoted by K−◦ A.
In type theory, retracting has to be done with statements instead of formulas.
Moreover, given a context Γ and a horizon depth h, there can be several terms

490 Comparing operations for belief change

inhabiting a belief A that is to be retracted. There is a set of terms t such that
t : A ∈ Conseqh(Γ). If we take retraction to mean that no statement M : A
should be derivable any more, we need a retraction procedure similar to the one
described in section 5.2. That is, the person iteratively chooses variables occurring
free in such terms t inhabiting A and removes them from Γ, in order to eliminate
evidence for A.
Formally, we can say that there is a set VA := FV {t|t : A ∈ Conseqh(Γ)}. The
variables chosen by the person together constitute a subset V of VA (cf. Lemma
4). Retraction of A with respect to Γ then amounts to a removal Γ\V with V
chosen such that ¬∃t(t : A ∈ Conseqh(Γ\V)).
Note: In its generality, this procedure always gives the desired result. There is,
however, a slight complication: there are sentences which we never want to be
contracted, for example tautologies. How we can prevent in type theory that this
kind of sentences can be retracted, is discussed in section 7.2.
Notation: The type-theoretical analogue of Contraction is denoted byCtrA(Γ; Γ′),
if Γ′ is the result of contracting Γ with respect to A. In case A 6∈ Conseqh(Γ), we
take Γ′ to be Γ.

• Revision: Adding a new sentence A to the belief base K while maintaining con-
sistency, by (possibly) deleting a number of sentences in K. This is denoted by
K ∗A.
In the standard account, revision is related to contraction and expansion by means
of the Levi-identity: K ∗ A = (K−◦ ¬A) + A. This implies, that for belief bases,
revision can be defined as a two step procedure:

1. Contract by ¬A 2. Expand by A
We can match this so-called internal revision [21] via the two type-theoretical
operations defined above:

1. Ctr¬A(Γ; Γ′) 2. Expx:=M :A(Γ′; Γ′′)
Note that this procedure will always lead to a context (Γ′′) containing the new
information (x := M : A), whereas the procedure described in sections 5.2 and
5.3 did not, since there it was possible that (parts of) the new information were
removed as well, if this information contributed to the inconsistency. In litera-
ture, this alternative approach is known as ‘semi-revision’. In section 7.3 we will
show that the type-theoretical version of revision developed in this paper closely
resembles the semi-revision operation consolidation of [21]. Anticipating on this,
we introduce the following.
Notation: The type-theoretical analogue of Revision (i.e., Contraction by ¬A
and Expansion by A) is denoted by Revx:=M :A(Γ; Γ′), if Γ′ is the result of revising
Γ with respect to x := M : A.

Finally we note that the operations of expansion and contraction, and hence re-
vision, described above can also be executed with new information consisting of a
sequence of statements (x1 := M1 : A1, . . . , xi := Mi : Ai), rather than a single
statement (x := M : A). From a type-theoretical point of view, this is a natu-
ral generalization. Moreover, experiences obtained in formalizing the addition of
outside-information (as described in section 4.1) to type-theoretical knowledge states,
suggests that such information generally takes the form of a sequence of statements.

Comparing operations for belief change 491

Now we have given our equivalents of the standard belief change operations, ex-
pansion, contraction and revision, we give a more detailed comparison between the
two approaches in order to position our approach with respect to the literature. We
concentrate on the results of Gärdenfors [18] and Hansson [21].

7.1 Expansion

In the standard approach, expansion is the set-theoretical addition of a sentence to set
of propostions representing a person’s belief base. In the type theoretical approach
it is the addition of a statement to the context representing a person’s belief base.
As explained above, the type theoretical addition requires that the new statement
is well-formed with respect to the existing context, which ensures that the added
information is meaningfull to the person. Assuming that this the case, as is usually
done, expansion behaves the same in both approaches.

7.2 Contraction

We now look at the rationality postulates for contraction as they are reformulated
for belief bases in [18]. As already remarked earlier, our approach is more fine-
grained than that of Gärdenfors, because we deal with specific proofs of propositions,
whereas the standard approach does only considers (sets of) propositions. Hence,
when Gärdenfors contracts with respect to a proposition A, from our perspective,
he implicitly quantifies over all proofs of A. This difference also plays a role in the
formulation of the postulates themselves.

In some of the Gärdenfors postulates, conditions occur of the form ` A and 6` A.
Type-theoretically, we take these to state that there exists respectively doesn’t exist
a proof object for the type A within the horizon. Moreover, the fact that A is or
isn’t a tautology, suggests that this proof object can (or cannot) be constructed on
the empty context ε. However, in type theory the type A itself must be well-defined
before we can think about the construction of inhabitants of A. Hence, we need some
initial context Γinit which ensures the well-definedness of all propositions: ` A is
translated into ∃M (Γinit `M : A) and 6` A into ¬∃M (Γinit `M : A).

Of course, statements in the initial context should not be contracted in a revision
process, since this initial context acts as a kind of ‘axiom base’ for the well-definedness
of the propositions. The above contraction procedure CtrA(Γ; Γ′), will not consider
variables inside Γinit, since the statements of Γinit are at the wrong level of typing to
have their subjects appear in terms inhabiting propositions (cf. section 2).

Note that if A is a tautology, there exists a proof object in which no free variables
occur: ∃M (Γinit ` M : A) where VA = ∅. Since M cannot be blocked by removing
variables in VA from the context, we cannot contract over tautologies. On the one
hand this is a good thing: one does not want to lose tautologies. On the other hand,
this has as a consequence that Contraction becomes a partial operation, which may
be unsuccessful!

Below we present the Gärdenfors postulates for belief bases as given in [18], followed
by their type-theoretical translation and a discussion of their validity. The original
postulates quantify over all sentences A and belief sets H , their translations over all

492 Comparing operations for belief change

types A and contexts Γ (where Γ ⊇ Γinit). In addition, the postulates are stated using
Cn(H), the deductively closed set of consequences of H (i.e. with infinite horizon). In
the translation of e.g. Gärdenfors’s (H−◦3)-postulate we take A 6∈ Cn(H) to mean that
there exists no proof object of type A (within the horizon) on the person’s context,
¬∃N (N : A ∈ Conseqh(Γ)).

(H−◦ 1) H−◦ A is a belief set.
Its translation is:
If CtrA(Γ; Γ′), then Γ′ is a well-formed context.
This holds: Assume CtrA(Γ; Γ′), then there exists some set V ⊆ VA, possibly
empty, such that Γ\V ≡ Γ′. By Lemma 1, Γ′ is a well-formed context.

(H−◦ 2) H−◦ A ⊆ H .
Its translation is:
If CtrA(Γ; Γ′), then Γ′ ⊆ Γ.
This follows from the definition of the removal-operation (definition 5.2).

(H−◦ 3) If A 6∈ Cn(H), then H−◦ A = H .
Its translation is:
If ¬∃N (N : A ∈ Conseqh(Γ)) and CtrA(Γ; Γ′), then Γ ≡ Γ′.
This holds: Assume ¬∃N (N : A ∈ Conseqh(Γ)) and CtrA(Γ; Γ′) and suppose
Γ 6≡ Γ′. Then (see H−◦ 2) Γ′ is a proper subcontext of Γ. Hence there is some
variable z occurring in Γ as a subject, such that z ∈ V , where V is the set
of variables chosen to be removed and z ∈ V not in Γ′. Hence z must have
occurred free in some term N such that Γ ` N : A within the horizon, but then
∃N (N : A ∈ Conseqh(Γ)). Contradiction.

(H−◦ 4) If 6` A, then A 6∈ Cn(H−◦ A).
Its translation is:
If CtrA(Γ; Γ′), then ¬∃M (M : A ∈ Conseqh(Γ′)).
This postulate holds by our definition of contraction.
Note that the condition 6` A (’A’ is not a tautology) is implicitly present in our
translation, because this is implied by the condition CtrA(Γ; Γ′). In fact, if A is a
tautology, then A has a proof object, but this proof object has no free variables.
Therefore the set VA is empty and hence Contraction of A as described before is
not possible (there is no Γ′ such that CtrA(Γ; Γ′)).

(H−◦ 5) H ⊆ (H−◦ A) +A.
Its translation is:
If CtrA(Γ; Γ′), then Γ ⊆ Γ′, z : A.
Note that we have to add a proof object z for A. We could not use a definition
z := M : A, since this implies that Γ′ ` M : A for some M , which contradicts
CtrA(Γ; Γ′).
This postulate, which has a controversial status in the literature (in fact: base
contractions generally violate it), does not hold here. A simple counterexample is
the following: Take Γ ≡ Γinit, x : B → A, y : B ` xy : A, then CtrA(Γ,Γ′), where
Γ′ ≡ Γinit, but Γ 6⊆ Γinit, z : A.

(H−◦ 6) If ` A⇔ B, then H−◦ A = H−◦ B.
Its translation is:

Comparing operations for belief change 493

If ∃N (Γinit ` N : A⇔ B) and CtrA(Γ; Γ′) and CtrB(Γ; Γ′′), then Γ′ ≡ Γ′′.
This postulate does not hold in general, but there is a case in which it holds, as
we explain below.
First, observe that in type theory we have to do work to transform proofs of A
into proofs of B (and vice versa) by means of the proof N of the equivalence of
A and B which contains subproofs N1 for A → B and N2 for B → A. Then for
example: If Γ `M : A for some M , then Γ ` N1M : B (and vice versa).
We call M a direct proof of A and N1M an indirect proof of B. Note that
transforming a direct proof of A into an indirect proof of B involves one extra
proof step. Hence, this can lead to a situation in which the direct proof is within
the horizon, whereas the indirect proof is not.
Disregarding this horizon problem, the postulate still does not hold in general: in
order to block all proofs of B, all proofs of A also have to be blocked. Hence, a set
V will have to be chosen which is a subset of the union of the variables occurring
free in all proofs of A and all proofs of B, i.e., V ⊆ (VA ∪ VB). However, it might
still be possible to find different subsets V1 and V2 which both block all proofs of
A and B.
Example: Γ ≡ Γinit, x : C → A, y : C, z : D → B, u : D, and Γ ` N : A ⇔ B.
Then VA = VB = {x, y, z, u}. Now take V1 = {x, z} and V2 = {y, u}. It is easy to
check that both V1 and V2 block all proofs of A and B. If we take Γ′ ≡ Γ\V1 and
Γ′′ ≡ Γ\V2, then CtrA(Γ; Γ′) and CtrB(Γ; Γ′′), but Γ′ 6≡ Γ′′.
However, the postulate does hold if we use the ‘safe contraction’ described in
section 7.4, i.e. take V1 = V2 = VA = VB, then Γ′ ≡ Γ′′.

Here we end our discussion of the basic postulates H−◦ 1 to H−◦ 6 for base contraction.
There exist two more (non-basic) postulates, H−◦ 7 and H−◦ 8, concerning conjunctive
formulas A ∧ B. We do not discuss those here for two reasons: as remarked above,
the type-theoretical notion of contraction can easily be generalized to a sequence of
statements, so that there is no need to give a special status to the ∧-connective;
moreover, it would require us to go into the technical details of coding conjunction in
type theory, which does not serve the purpose of this paper.

Concluding, as in most approaches to base revision in the literature, postulates
H−◦ 1 through H−◦ 4 are satisfied in the type-theoretical translation, but H−◦ 5 does not
hold. In addition, the type-theoretical equivalent of ‘safe contraction’ satisfies H−◦ 6.
This exactly reflects Theorem 5.4.1 of [18].

7.3 Revision

In the standard account of revising a belief base K with new information A, the new
information is always accepted and beliefs in K are abandoned to maintain consis-
tency. Objections have been raised to this account, on the grounds that too much
priority is given to new information [21]: at each stage, new information is completely
trusted. However, this complete trust is only temporary: once the new information
is incorporated in the belief base, it is itself susceptible to abandonment when in the
next stage even newer information becomes available. This seems awkward.

We agree with these objections. Moreover, this emphasis on ‘new information’ has
a number of additional undesired consequences from our point of view. Firstly, the

494 Comparing operations for belief change

new information always has to be accepted as a whole, whereas in our approach it is a
possible outcome of revision that the person accepts only part of the new information.
The standard account is also too absolute in another respect: because of the unlimited
deductive power assumed in this approach, the person can detect beforehand whether
a piece of new information is inconsistent with his current belief base, and hence
whether revision should be carried out. Under the more realistic assumption of the
deductive horizon, it is not possible to do this consistency check once and for all:
inconsistencies, and hence the need for revision, may arise as proofs of falsity turn
up inside the horizon. Finally, thinking of standard belief revision in the setting of
communication, a person would be forced to accept every utterance by his dialogue
partner(s), even if accommodating this information requires a major reconstruction
of his own belief base. Therefore, new information and information in the belief base
should be treated equally by the revision operation.

Revision procedures which do not necessarily accept the new information are known
in literature as non-prioritized revision procedures. Hansson was one of the first to
consider this kind of belief revision [20], and in recent years a number of differ-
ent non-prioritized approaches have been developed, see [22]. For belief bases, a
non-prioritized form of revision called semi-revision can be specified as a two-stage
procedure [21]:

1. Expand by A
2. Make the belief base consistent by deleting either A or some original belief(s)

Compared to the revision procedure formulated at the beginning of section 7, the
order of the steps is reversed4 and the second step has been modified. The operation
performed in the second stage is called consolidation, [21], and can be carried out by
contracting over falsehood. In our approach, the procedure looks like:

1. Expx:=M :A(Γ; Γ′) 2. Ctr⊥(Γ′; Γ′′)
In other words, revision and contraction are related by the following identity:

Revx:=M :A(Γ; Γ′) = Ctr⊥(Γ, x := M : A; Γ′)

This is exactly the revision procedure described earlier in sections 5.2 and 5.3. First
the new information, one or more statements, is added to the context Γ, then a
number of statements from the expanded context is removed to block the construction
of inhabitants of falsity.

There is a close resemblance between our revision procedure and that of [21], called
kernel consolidation. This correspondence is given in Appendix A of this paper.

7.4 Heuristics

What we have done so far does not add up to a theory of belief revision in the tradi-
tional sense. We have shown how a person can find the suspect beliefs when his belief
state has become inconsistent, and how he can remove a number of the suspects to
regain consistency, but our revision procedure does not tell the person which suspects
to remove. Standard approaches have a parametric selection mechanism which em-
bodies some notion of “rational choice” between the various possibilities for revision
in any given situation. Given a value for their parameters they select one “optimal”

4Reversing the order alone yields external revision, [21]

Comparing operations for belief change 495

revision outcome. They usually introduce extra-logical structure in the belief state,
and are computationally unwieldy. The underlying view is that of a solitary reasoner
who has to solve the inconsistency in splendid isolation, using his infinite reasoning
powers and looking only at the beliefs in his (infinite) belief state. Only recently,
papers have started to appear that question some of these idealizations, and in which
belief change operations are defined for resource-bounded agents, see e.g. [10]. Our
concern is with agents who have finite belief states (including justifications), finite
computational resources, and who have access to the world by means of observation
and communication. Such agents have possibilities to (re)evaluate the various sus-
pects, by performing observations/tests or by communicating with other agents, and a
theory of belief revision cannot and should not prescribe how they make their choices.
Strategies used by an agent to make these choices are not part of the theory, if they
can be captured formally they could be used as heuristics on top of the theory. In this
section, we briefly discuss how some selection mechanisms from standard approaches
mentioned in [18] fit into our account as heuristic principles.

In so-called (partial) meet contraction, the idea is that the optimal contraction or
revision is the one that requires the smallest number of insertions and/or deletions in
the belief state. These contraction operations were originally defined for deductively
closed belief sets, rather than belief bases. They start from the maximal subsets of a
belief set that do not imply the proposition that is to be removed. In general, there
can be quite a few of these. Picking an arbitrary maximal non-implying set as the
result of the operation (choice contraction), will often yield a new belief set that is
too large. In meet contraction, an intersection of maximal non-implying sets is taken,
to obtain a new belief set based on the beliefs the non-implying sets have in common.
Taking the intersection of all maximal non-implying sets (full meet contraction) can
result in an empty set. Alchourrón, Gärdenfors, and Makinson introduced partial
meet contraction [2] in which a selection function picks out a class of “best” or “most
interesting” maximal non-implying subsets. These selected sets are then intersected
to obtain the new belief set. (For a fresh look at (full) meet contraction for belief
bases, see [14]).

The minimality criterion can be applied in the type theoretical approach. Given
one particular proof of inconsistency, Γ `M : ⊥, removing any one of the statements
of which the subjects occur free in M is sufficient to block this particular proof.
However, these statements may have different numbers of statements depending on
them in Γ, and so one could prefer to remove the statement with the least number
of dependents to minimise the deletions from the belief state. In cases where more
than one proof of falsity has to be blocked, a “blocking” subset has to be chosen from
the set of all variables occurring free in these proofs. When there is more than one
subset that does the job, one could again prefer the subset with the smallest number
of statements (possibly taking the number of dependent statements into account).

As in the standard approach, this criterion will not always yield a single optimal
solution. It is possible to end up with two or more minimal sets of statements whose
removal will restore consistency. To overcome this indeterminism, additional struc-
ture is introduced in the belief state. The central idea in this construction is known
as epistemic entrenchement: “not all sentences that are believed to be true are equal
value for planning of problem-solving purposes, but certain pieces of knowledge and
beliefs about world are more important than others when planning future actions

496 Concluding remarks

conducting scientific investigations or reasoning in general” [17]. In performing con-
traction or revision, the beliefs that are given up should be the ones with the lowest
degree of epistemic entrenchement. Although in our opinion such an ordering of epis-
temic entrenchement of the beliefs in the belief state cannot be given once and forall
independent of the current goals and activities of the agent performing the contraction
or revision, such an ordering could in principle be added to the context representing
the agent’s belief state. Note that the imposed entrenchment ordering has to respect
the dependency relations between the beliefs in the context: if a belief y := N : B
depends on a belief x := M : A, then y := N : B should not be epistemically more
entrenched than x := M : A since removing x := M : A without removing y := N : B
will result in a context which is not well-formed.

Another idea that can be applied, at least in spirit, in the type theoretical setting
is that of safe contraction: a proposition B is safe with respect to a proposition A
if it cannot be blamed for the derivability of A. To contract over A, all propositions
that are not safe with respect to A have to be removed. This approach, introduced
by Alchourrón and Makinson [3], starts from the so-called “entailment sets”: minimal
subsets of the belief state that entail the proposition to be removed. An element B
of the belief state is said to be safe with respect to the proposition A if B is not
a minimal element of any entailment set of A. The minimality is determined with
respect to an acyclic ordering of the beliefs in the belief state, expressed by means
of a relation ‘<’. This ordering can be seen as a form of the epistemic entrenchment
described above, with A < B meaning that A is “less secure, plausible or reliable”
than B.

There is an obvious way to translate this idea to our approach to revision: a belief
x := M : A is safe if it cannot be blamed for the fact that a proof object for ⊥ can
be constructed on the belief state Γ. The simplest interpretation of “being to blame”
for a statement in context would be “to have its subject appear as a free variable in a
proof object for ⊥”. Hence the simplest form of safe contraction would be to remove
all statements of which the subjects appear free in a proof object for ⊥ and their
dependents from the context. However, this does not suffice if all statements that are
removed themselves depend upon earlier statements in context, since the proof object
for ⊥ could be rebuilt from these “ancestors”. One way around this problem, is to
use the construction of a so-called kernel set described in the Appendix. For a given
derivation horizon and a given context, this construction inductively builds the set of
minimal falsity implying subsets of statements in Γ. This kernel set can reasonably be
said to contain all statements that are “to blame” for the inconsistency of the context
(within the horizon), hence we can define safe contraction as the removal of all these
statements and their dependents. Although this will yield a unique solution, it will
usually not be minimal in terms of the number of statements that are removed.

8 Concluding remarks

Since its birth in 1903, type theory has proved to be a useful medium for the de-
sign and implementation of deductive systems, programming languages and theorem
provers. This paper explored the use of type theory to provide a deductive approach to
belief revision which can be easily implemented. The starting idea is that type theory
enables explicit representations of justifications in belief revision. With the represen-

Concluding remarks 497

tation of beliefs as type theoretical statements and belief states as type theoretical
contexts, we showed that the presence of justifications makes it easy to identify the
beliefs that cause inconsistency of the belief state (section 4.2). Their presence also
greatly simplifies the handling of dependencies between beliefs (section 5.1). With
respect to literature, our initial assumptions put us in the area of foundations theory
for belief bases. However, our account does not suffer from the drawbacks usually as-
sociated with foundations theory such as problems with disbelief propagation, circular
justifications, and multiple justifications for the same belief (section 6.2). The opera-
tion of belief revision that naturally arises from our approach is one of non-prioritized
revision: new information is not automatically completely trusted (section 7.3).

The fact that our approach is deductive, and that we do not require that our theory
of belief revision itself selects which beliefs have to be removed, makes its applicable
to agents with limited computational resources (see appendix). This holds indepen-
dently of the strength of the logic in which the belief change operations are cast:
the mechanisms that were used to represent justifications and dependency relations
between beliefs are at the heart of type theory, making our approach applicable to
a large family of type systems. Given the well established connections between type
theory and logic, this means it is applicable in a wide range of logics. For instance, it
can be applied in each of the Pure Type Systems from the well-known Logic Cube [4],
which corresponds to logics ranging from minimal propositional logic to higher order
predicate logic. Our immediate goal is to use the extensive research in implementa-
tions of logics based on type theory in order to provide a working automated system
of belief revision based on the approach of this paper.

References

[1] Ahn, R., Borghuis, T., Communication Modelling and Context-Dependent Interpretation: an
Integrated Approach. In: Types for Proofs and Programs: International Workshop, TYPES’98.
Selected Papers, Altenkirch, T., Naraschewski, W., Reus, B. (eds.), LNCS 1657, Springer Verlag
(1999), pp. 19 – 32.

[2] Alchourrón, C.E. Gärdenfors, P., and Makinson, D., On the logic of theory change: partial
meet contraction and revision functions, Journal of Symbolic Logic 50 (1985), pp. 510-530.

[3] Alchourrón, and Makinson, D., On the logic of theory change: safe contraction, Studia Logica
XLIV (1985), pp. 405-422.

[4] Barendregt, H., Lambda calculi with types. In Handbook of Logic in Computer Science, Abram-
sky, Gabbay and Maibaum (eds.), Oxford University Press, Oxford (1992), pp. 117 – 309.

[5] Barras, B., et al., The Coq Proof Assistant Reference Manual – Version V6.1, Technical report
0203, INRIA, 1997.

[6] J. van Benthem, Reflections on epistemic logic, Logique & Analyse 133-134 (1991), pp. 5-14.

[7] Berardi, S., Towards a mathematical analysis of the Coquand-Huet calculus of constructions
and the other systems in Barendregt’s cube. Technical report, Dept. of Computer Science,

Carnegie-Mellon University and Dipartimento Matematica, Universita di Torino, 1988.

[8] Bruijn, N.G. de, AUTOMATH, a language for mathematics, Technical report 68-WSK-05, Tech-
nische Universiteit Eindhoven, 1968.

[9] Bunt, H., Ahn, R., Beun, R-J., Borghuis, T., and Van Overveld, K., Multimodal Cooperation
with the DenK System. In: Multimodal Human-Computer Interaction, Bunt, H., Beun, R-J.,
Borghuis, T. (eds.), Lecture Notes in Artificial Intelligence 1374, Springer Verlag (1998), pp. 39
– 67.

[10] Chopra, S., Parikh, R. and Wasserman, R., Approximate belief revision, Logic Journal of the
IGPL, Vol. 9 No. 6 (2001), pp. 755-768.

498 Concluding remarks

[11] Church, A., A formulation of the simple theory of types. The Journal of Symbolic Logic, 5:56–68,
1940.

[12] Coquand, T., and Huet, G., The calculus of constructions. Information and Computation 76,

95-120, 1988.

[13] Curry, H.B. and Feys, R., Combinatory Logic I, Studies in Logic and the Foundations of

Mathematics, North-Holland, Amsterdam, 1958.

[14] Freund, M., Full meet revision on stratified bases, Theoria 67 (2001) nr. 3, pp. 189-213.

[15] Gabbay, D., Labelled Deductive Systems. Oxford University Press.

[16] Gabbay, D., Hunter, A., Making inconsistency respectable 1: a logical framework for inconsis-
tency in reasoning. In: Foundations of AI Research, Ph. Jarrand and J. Keteman (Eds.) LNCS
535, pp. 19-32 (1991).

[17] Gärdenfors, P., The dynamics of belief systems: Foundations versus coherence theories, Revue
Internationale de Philosophie, 44 (1990), pp. 24 – 46.

[18] Gärdenfors, P., Roth, H., Belief Revision. In: Handbook of Logic in Artificial Intelligence and
Logic Programming, Volume 4: Epistemic and Temporal Reasoning, Gabbay, D., Hogger, C.,
Robinson, J. (eds.), Clarendon Press (1995), pp. 36 – 119.

[19] Hansson, S., In defense of base contraction, Synthese 91 (1992), pp. 239 – 245.

[20] Hansson, S., Taking belief bases seriously. In: Logic and the Philosophy of Science in Uppsala,
Prawitz, D. and Westerstȧhl, D. (eds.), Kluwer Academic Publishers (1994), pp. 13 – 28.

[21] Hansson, S., Semi-revision, Journal of Applied Non-Classical Logics, Volume 7, nr. 1-2 (1997),
pp. 151 – 175.

[22] Hansson, S.O. (Ed.), Special issue on non-prioritized belief revision, Theoria 53 (1997) Part 1-2,
pp. 1-134.

[23] Harper, R. and Honsell, F. and Plotkin, G., A framework for defining logics, IEEE Proceedings
Second Symposium on Logic in Computer Science, pages 194–204, 1987.

[24] Heyting, A., Mathematische Grundlagenforschung. Intuitionismus. Beweistheorie. Springer Ver-
lag, Berlin, 1934.

[25] Howard, W.A., The formulas-as-types notion of construction, In To H.B. Curry: Essays on
Combinatory Logic, Lambda Calculus and Formalism, editors Seldin, J.P. and Hindley, J.R.,
Pages 479–490, 1980. Academic Press, New York.

[26] Kamareddine, F., Bloo, R., and Nederpelt, R.P., On π-conversion in the λ-cube and the combi-
nation with abbreviations. Annals of Pure and Applied Logics, 97:27–45, 1999.

[27] F. Kamareddine and R.P. Nederpelt. Canonical typing and Π-conversion in the Barendregt
Cube. Journal of Functional Programming, 6(2):245–267, 1996.

[28] Kolmogorov, A.N., Zur Deutung der Intuitionistischen Logik, Mathematisches Zeitschrift, Volme
35, Pages 58–65, 1932.

[29] Laan, T., The Evolution of Type Theory in Logic and Mathematics, PhD thesis, Technische
Universiteit Eindhoven, 1997.

[30] Milner, M., Tofte, M., and Harper, R., The Definition of Standard ML. MIT Press, 1991,
Cambridge, MA.

[31] Nederpelt, R.P., Geuvers, J.H., De Vrijer, R.C. (Eds.), Selected Papers on Automath, Studies
in Logic and the Foundations of Mathematics 133, North-Holland, Amsterdam (1994).

[32] Tait, W.W., Infinitely long terms of transfinite type, In Formal Systems and Recursive Func-
tions, Crossley, J.N. and Dummett, M.A.E., (editors), North-Holland, Amsterdam, 1965.

[33] J. Terlouw. Een nadere bewijstheoretische analyse van GSTT’s. Technical report, Department
of Computer Science, University of Nijmegen, 1989.

Appendix

A Kernel consolidation

Our revision procedure is particularly close to what Hansson calls kernel consolidation. This form of
consolidation is based on the idea that a subset of sentences in the knowledge base K implies falsity
if and only if this subset contains some minimal falsity-implying subset of K. Hence the consistency

A. KERNEL CONSOLIDATION 499

of K can be restored by removing at least one element of each minimal falsity-implying subset of K.
Minimal falsity-implying subsets are called kernels, they are defined as follows.

Definition A.1 A subset X of sentences from a belief base K is a kernel if:
1. X ⊆ K

2. ⊥ ∈ Cn(X), and

3. If Y ⊂ X, then ⊥ 6∈ Cn(Y)
The set of all kernels of K is called the kernel set, denoted by K

`⊥.

The sentences of K that have to be discarded to restore consistency, are selected by an incision
function:

Definition A.2 An incision function σ for K is a function such that:
1. σ(K

`⊥) ⊆ ∪(K
`⊥)

2. If X ∈ (K
`⊥), then X ∩ σ(K

`⊥) 6= ∅

Definition A.3 Let σ be an incision function for K. The kernel consolidation ≈σ for K is defined
as follows:

K ≈σ ⊥ = K\σ(K
a

⊥)

In the typetheoretical approach, falsity-implying subsets of the context Γ are sets of statements
of which the subjects occur free in a proof object inhabiting ⊥, i.e. {statΓ(y)|y ∈ FV (M)}, where
M is a term such that Γ ` M : ⊥. If we call this set of statements for a given proof object M
‘SM ’ (‘suspects’ in M), we can see that this set fulfils the first two criteria for kernels given in
Definition A.1:
1. SM ⊆ Γ

2. Γinit, S
M ` M : ⊥, that is: ⊥ is a consequence of SM (where Γinit contains the well-typedness

information needed for the derivation)
However, such a falsity-implying subset SM is not necessarily minimal in the sense required for

kernels (the third criterion): there may exist another proof object N such that Γ ` N : ⊥ and
SN ⊂ SM . This is due to the fact that proof objects code an entire proof for the proposition
represented by their type, including proofs that contain ‘detours’, sequences of steps that could have
been omitted in the proof. Such detours can invoke premises that are not really needed to prove
the proposition, resulting in non-minimal subsets. A very simple example of this is the following:
take Γ ≡ Γinit, x : A, z : A → A, y : A → ⊥, then there are at least two proof objects inhabiting
falsity, Γ ` y(zx) : ⊥ and Γ ` yx : ⊥. Clearly, the falsity-implying subset for the first proof object
is not minimal, the second proof object is constructed without using z : A → A. Although in typed
λ-calculus some detours can be eliminated by performing reductions on proof objects5, we cannot
in general prevent a person from having a belief state on which non-minimal proofs of falsity can be
derived.

Moreover, in discussing the minimality of falsity-implying subsets, the limited deductive powers
have to be taken into account. Since the person can only construct proofs of ≤ h steps, where h
is the horizon distance, we can at best talk about falsity-implying subsets which are minimal with
respect to these proofs. Given a subset SM for some inhabitant M of falsity, there may exist a
set SN such that SN ⊂ SM where the proof object N for falsity cannot be constructed within the
horizon h. Hence, this smaller set SN should not be considered by the selection procedure.

The assumption of horizon enables an inductive procedure for the constructing the kernel set
Γ
`h⊥, the set of all minimal falsity-implying subsets within the horizon. For a given context Γ,

one systematically generates all derivations of length zero,then all derivations of length 1, then all
derivations of length 2, . . . , up to all derivations of length h. Among each layer of derivations,
one picks out all derivations of an inhabitant of falsity. By comparing the sets of free variables of
these inhabitants, the minimal falsity-implying subsets for that layer can be found, i.e. for the i-th

layer (1 ≤ i ≤ h) all FV (M) such that Γ `i M : ⊥, and there is no N such that Γ `i N : ⊥ and

5Sometimes a term representing a non-minimal proof can be β-reduced to a minimal one, since β- reduction corre-

sponds to cut elimination: take Γ ≡ Γinit, x : A, y : B, z : A → ⊥, and M ≡ (((λu : A.(λv : B.u))x)y)z : ⊥, then

the ⊥-implying subset SM is {x : A, y : B, z : A → ⊥}. After performing β-reduction twice, we find the normal

form of M which is xz. Now {x : A, z : A → ⊥} is a minimal ⊥-implying subset.

500 Concluding remarks

FV (N) ⊂ FV (M). The sets SM that are minimal for a layer are then added to the kernel set Γ
`i ⊥

if there is no SN already in Γ
`i⊥ such that SN ⊂ SM . In other words, before adding the sets

that are minimal in a layer it is a checked whether they are also minimal with respect to sets from
previous layers.

Given the inductively constructed kernel set Γ
`h⊥, the type theoretical analogons of incision

function and kernel consolidation can be defined exctly as given in Definitions A.2 and A.3, but
for the replacement of K

`⊥ by Γ
`h⊥. Note that in the newly attained definition the slash in

Γ\σ(Γ
`h⊥) stands for the type theoretical removal operation defined in section 5.1, rather than

the standard set theoretical operation in definition A.2, i.e. not only the statements selected by
the incision function (σ(Γ

`h⊥)) are removed from Γ but also all statements depending on them
(depΓ(σ(Γ

`h⊥))). Since dependencies are not considered in the setting of Hansson, we need to be
able to distinguish between those two kinds of statements. The notion of ’independence’ can easily
be defined as follows:

Definition A.4 A statement x := M : A is an independent member of the set of statements ∆ iff
there is no statement z := N : B ∈ ∆ such that x ∈ dep∆(z).

In [21], kernel consolation is characterised by a theorem linking its construction to a number of
postulates. We restate this theorem for type theoretical knowledge states:

Theorem A.5 An operation > defined on type-theoretical knowledge states is an operation of kernel
consolation iff for all contexts Γ:
1. (Γ >) is consistent (consistency)

2. (Γ >) ⊆ Γ (inclusion)

3. If x := M : A is an independent member of Γ − (Γ >), then there is Γ′ such that Γ′ ⊆ Γ, Γ′ is
consistent and Γ′, x := M : A is inconsistent (core-retainment).

Proof. As x is independent, the proof is analogous to that of Hansson. There are two cases in
the proof where the independence is needed to ensure that a statement is an element of σ(Γ

`h⊥)
rather than merely an element of depΓ(σ(Γ

`h⊥)): in proving core-retainment in the direction
from construction to postulates, and in proving that σ is an incision function in the direction from
postulates to construction.

Received 10 February 2002

A Simple CPS Transformation
of Control-Flow Information

Daniel Damian, LION Bioscience Ltd. Compass House, 80-82
Newmarket Road, Cambridge CB5 8DZ, United Kingdom.
E-mail: Daniel.Damian@uk.lionbioscience.com

Olivier Danvy, BRICS1, Department of Computer Science, University
of Aarhus, Ny Munkegade, Building 540, DK-8000 Aarhus C, Denmark.
E-mail: danvy@brics.dk

Abstract

We build on Danvy and Nielsen’s first-order program transformation into continuation-passing style
(CPS) to design a new CPS transformation of flow information that is simpler and more efficient
than what has been presented in previous work. The key to simplicity and efficiency is that our CPS
transformation constructs the flow information in one go, instead of first computing an intermediate
result and then exploiting it to construct the flow information.

More precisely, we show how to compute control-flow information for CPS-transformed programs
from control-flow information for direct-style programs and vice-versa. As a corollary, we confirm
that CPS transformation has no effect on the control-flow information obtained by constraint-based
control-flow analysis. The transformation has immediate applications in assessing the effect of the
CPS transformation over other analyses such as, for instance, binding-time analysis.

Keywords: Program analysis. Control-flow analysis. Constraints. Continuations. Continuation-

passing style (CPS). CPS transformation. Administrative reductions. One-pass CPS transformation.

1 Introduction

The continuation-passing-style (CPS) transformation is a source-to-source program
transformation of λ-terms that makes explicit the continuation of each λ-expression [36,
44]. Continuations have been discovered in many contexts [37] and form an active area
of research [10, 39] with many applications, e.g., in compiler construction [1, 24, 43],
program transformation [46], partial evaluation [19, 25], multi-processing [2, 15, 49],
and, recently, goal-directed evaluation [12] and program security [50].

The call-by-value and call-by-name CPS transformations are due to Plotkin [36]
and yield λ-terms that are independent on the order of evaluation. The CPS trans-
formation has been extended to types [26, 47], which has led to the discovery of its
logical content [17, 28]. Over the last two years, both Palsberg and Wand [35] and
Damian and Danvy [6, 7, 9] have developed a CPS transformation of control-flow
information. They have used it to show that a CPS transformation does not affect
the control-flow information collected by a monovariant constraint-based control-flow
analysis.

1Basic Research in Computer Science (www.brics.dk),

funded by the Danish National Research Foundation.

501L. J. of the IGPL, Vol. 10 No. 5, pp. 501–515 2002 c©Oxford University Press

502 A Simple CPS Transformation of Control-Flow Information

Graphically:

control-flow
information

CPS transformation
of flow information

// control-flow
information

direct-style
program

CPS transformation
of terms

//

control-flow
analysis

OO

CPS
program

control-flow
analysis

OO

The canonical motivation for transferring the result of a program analysis across a
program transformation is that the transfer is likely to be cheaper than analyzing the
transformed program. In the present case, (1) the time complexity of control-flow
analysis is cubic in the size of the analyzed program and (2) the time complexity
of CPS-transforming control-flow information is linear in the size of the control-flow
information, which is again linear in the size of the analyzed program.

CPS transformations of flow information are based on CPS transformations of
terms.

1.1 CPS transformation of terms

The CPS transformation has motivated a long line of research. Plotkin [36] and
Steele [43] observed that it gives rise to large residual terms, due to so-called ad-
ministrative redexes. Both theoretically and practically, these administrative redexes
are in the way. For example, in his proof, Plotkin needs to interleave administrative
and essential reductions. Yet a practically useful CPS-transformed program need not
contain these redexes, and indeed, in his compiler, Steele performs all administrative
reductions immediately after the CPS transformation. As an alternative to adminis-
trative post-reduction, compact CPS programs can also be obtained by first bringing
the source program into monadic normal form and then introducing continuations [18].

Administrative redexes may be avoided altogether by using a one-pass CPS trans-
formation. Existing one-pass CPS transformations use a higher-order accumula-
tor [1, 11, 48] or are based on evaluation contexts [40, 42].

Graphically:

CPS with
administrative redexes

administrative
reductions

))RRRRRRRRRRRRR

direct style
one-pass

CPS transformation
//

CPS
transformation

77nnnnnnnnnnnnn

naming and
sequentialization ''PPPPPPPPPPPPP

CPS without
administrative redexes

monadic
normal form

introduction
of continuations

55llllllllllllll

1. INTRODUCTION 503

A one-pass CPS transformation makes it possible to reason directly over CPS-
transformed terms. Unfortunately, existing one-pass CPS transformations are not
immediate to use, either because they are higher-order or because they are not
compositional. A higher-order accumulator requires a logical relation [13]. A non-
compositional transformation requires well-founded induction rather than ordinary
structural induction [40]. Fortunately, Danvy and Nielsen have recently discovered a
one-pass CPS transformation that is both first-order and compositional [14, 30].

1.2 CPS transformation of flow information

In our initial work [7], we considered only one step of the CPS transformation, namely
the introduction of continuations on terms in monadic normal form. We then turned
to transforming source terms into monadic normal form [6, 9].

In a related work [35], Palsberg and Wand considered the first phase of the CPS
transformation. In a followup work [6, 8], we addressed administrative reductions.

Therefore, the existing CPS transformations of flow information operate in two
passes. The first pass computes an intermediate result and the second pass exploits
it to construct the flow information.

In this article, we build on Danvy and Nielsen’s new one-pass CPS transforma-
tion [14, 30] and we present a new and simpler CPS transformation of control-flow
information that does not construct any intermediate result and thus is more efficient
to use. It is also simpler to prove correct. Indeed, proving predicates defined by struc-
tural induction on a CPS-transformed program is simplest done with a first-order and
compositionally-defined one-pass CPS transformation.

1.3 This work

We show how to directly construct control-flow information for a CPS program after
administrative reductions, without the need for an intermediate form. Our construc-
tion confirms that the CPS transformation does not affect the result of a monovariant
constraint-based control-flow analysis [6, 7, 9, 35]. It also opens the way to directly
investigating the effect of the CPS transformation on other analyses, as for instance,
binding-time analysis.

Graphically:

CPS with
administrative redexes Damian & Danvy

[6, 8]
))RRRRRRRRRRRRR

direct style this work //

Palsberg & Wand
[35]

77nnnnnnnnnnnnn

Damian & Danvy
[6, 9] ''PPPPPPPPPPPPP

CPS without
administrative redexes

monadic
normal form

Damian & Danvy
[6, 7]

55llllllllllllll

504 A Simple CPS Transformation of Control-Flow Information

e ∈ Expr (terms) e ::= s | t
s ∈ Comp (serious terms, i.e., computations) s ::= e`0

0 e`1
1

t,K ∈ Triv (trivial terms, i.e., values) t ::= x | λπx.e`

x ∈ Ide (identifiers)
` ∈ Lab (term labels)
π ∈ Lam (λ-abstraction labels)

Fig. 1. The language of labeled λ-terms

Our CPS transformation of control flow is simpler than previous versions and ad-
dresses the λ-calculus without the need for an intermediate form or administrative
reductions. The proofs of correctness are similar to the ones in our earlier work, but
here source terms need not be in monadic normal form. They are also slightly simpler
than Palsberg and Wand’s since programs contain no administrative redexes.

2 Control-flow analysis for λ-terms

2.1 The language of λ-terms

We consider the language of labeled λ-terms defined in Figure 1. Following Reynolds [38]
and Moggi [27], we distinguish among trivial terms t that denote values and serious
terms s that may denote computations. Expressions are annotated with distinct la-
bels ` from a countable set Lab. Each λ-abstraction has a unique associated label π.
A program p is a closed labeled expression e` .

2.2 Control-flow analysis

We consider a standard constraint-based control-flow analysis (CFA) on λ-terms [5,
16, 20, 21, 22, 32, 33, 34].

Specifically, we consider the CFA specified in Nielson, Nielson, and Hankin’s text-
book [33]. Given an input program p, the functionality of the syntax-directed control-
flow analysis relation �p is defined in Figure 2. The analysis relation is defined in-
ductively in Figure 3.

The relation is defined on a pair of a tuple (Ĉ, ρ̂) and a labeled expression e` . In the
relation, Ĉ is a cache mapping each expression label to a set of λ-abstractions that
the expression might evaluate to, while ρ̂ is an environment mapping each program
variable to a set of λ-abstractions that the variable might denote. It is known [33,
Chapter 3] that a pair (Ĉ, ρ̂) satisfying the relation (Ĉ, ρ̂) �p p is a safe analysis of
the program p.

Given a source program p, solutions of the analysis of p always exist. The set of
solutions of the analysis of p is closed under intersection: the pointwise intersection of
two solutions always exists. Therefore, there exists a least solution of the analysis of
p. The least solution can be computed with a standard work-list based algorithm [33,
Chapter 3]. Through the rest of this article we use “the result of the analysis of p”
to refer to the least result of the analysis.

2. CONTROL-FLOW ANALYSIS FOR λ-TERMS 505

Lamp The set of λ-abstraction labels in p
Varp The set of identifiers in p
Labp The set of term labels in p

Trivp = P(Lamp) Abstract values
Ĉ ∈ Cachep = Labp → Trivp Abstract cache
ρ̂ ∈ Envp = Varp → Trivp Abstract environment

�
p ⊆ (Cachep × Envp)× Labp

Fig. 2. Control-flow analysis relation for a program p

(Ĉ, ρ̂) �p x` ⇐⇒ ρ̂(x) ⊆ Ĉ(`)
(Ĉ, ρ̂) �p (λπx.e`)`1 ⇐⇒ (Ĉ, ρ̂) �p e` ∧ π ∈ Ĉ(`1)
(Ĉ, ρ̂) �p (e`0

0 e`1
1)`2 ⇐⇒ (Ĉ, ρ̂) �p e`0

0 ∧ (Ĉ, ρ̂) �p e`1
1 ∧

∀λπx.e` ∈ Ĉ(`0).Ĉ(`1) ⊆ ρ̂(x) ∧
Ĉ(`) ⊆ Ĉ(`2)

Fig. 3. Control-flow analysis

2.3 Control-flow analysis: an example

An example of CFA analysis is presented in Figure 4. The (labeled) λ-term T applies
the identity function to itself. The control-flow analysis from Figure 3 on the term T
results in the cache/environment pair also presented in Figure 4.

T = ((λπ1y.(y`1 y`2)`3)`4 (λπ2x.x`5)`6)`7

Ĉ
`1 → {π2} `5 → {π2}
`2 → {π2} `6 → {π2}
`3 → {π2} `7 → {π2}
`4 → {π1}

ρ̂
y → {π2}
x → {π2}

Fig. 4. CFA example

We can see that the λ-abstraction π2 is detected to flow into the variable y and from
there into the variable x and as a result of the application. In the following section
we illustrate the CPS transformation of the term T and how the flow information for
the resulting CPS term can be computed from the flow information for T displayed
in Figure 4.

506 A Simple CPS Transformation of Control-Flow Information

E : Expr × Ide → Comp
E [[t]]k = k T [[t]]
E [[s]]k = S[[s]](λx.k x)

S : Comp × Triv → Comp
S[[t0 t1]]K = T [[t0]] T [[t1]] K
S[[t0 s1]]K = S[[s1]](λx1.T [[t0]] x1 K)
S[[s0 t1]]K = S[[s0]](λx0.x0 T [[t1]] K)
S[[s0 s1]]K = S[[s0]](λx0.S[[s1]](λx1.x0 x1 K))

T : Triv → Triv
T [[x]] = x

T [[λx.e]] = λx.λk.E [[e]]k

Fig. 5. First-order one-pass CPS transformation (labels omitted)

3 CPS transformation and control-flow analysis

We show that the CPS transformation preserves the result of the control-flow analy-
sis defined in Section 2.2. To this end, we define a transformation from control-flow
information for a direct-style program into control-flow information for the CPS coun-
terpart of this program. We also define a transformation of control-flow information
for a CPS-transformed program into control-flow information for the direct-style coun-
terpart of the program. Using the monotonicity of the two transformations, we show
that the least analysis of a direct-style program is equivalent to the least analysis of
its CPS counterpart and vice-versa.

Graphically:

(Ĉ, ρ̂)
CPS transformation of flow //

(Ĉ′, ρ̂′)
direct-style transformation of flow

oo

p CPS transformation of terms //

CFA

OO

p′

CFA

OO

3.1 CPS transformation of terms

In this article, CPS programs are obtained using Danvy and Nielsen’s first-order CPS
transformation [14, 30]. The CPS transformation for (unlabeled) λ-terms is defined in
Figure 5. As in our earlier work [7, 9], we consider a transformation with η-expanded
tail calls: the continuation passed at a function call is always a syntactic λ-abstraction.

The CPS transformation of a program preserves all the original variables of the

3. CPS TRANSFORMATION AND CONTROL-FLOW ANALYSIS 507

program. In turn, as in our earlier work [7, 9], we design the CPS transformation of
labeled terms to preserve the labels of all trivial terms.

Danvy and Nielsen’s one-pass CPS transformation yields CPS terms without ad-
ministrative redexes. In Section 3.2, using this CPS transformation as a syntactic sup-
port, we define the CPS transformation of control-flow information for CPS programs
without administrative redexes. In Section 3.3, we define the direct-style transforma-
tion of control-flow information from CPS programs without administrative redexes.
In Section 3.4, with the same technique described in the first author’s PhD thesis [6,
Section 2.3], the variables and labels common to the original program and to its CPS
counterpart are used to establish the preservation of flow information across CPS
transformation.

3.2 CPS transformation of control flow

We define a CPS transformation of control-flow information following the CPS trans-
formation of Figure 5. Let us show how control-flow information for a direct-style term
can be used to compute control-flow information for the CPS transformed program.

To transformation relies on two auxiliary functions:

• γ extracts the labels of partially applied CPS λ-abstractions. Formally, considering
A to be a set of CPS λ-abstractions {λπixi.λ

π′iki.ei|1 ≤ i ≤ n}, for some n, then
γ(A) = {π′i|1 ≤ i ≤ n}.

• ξ assigns flow information to each continuation identifier k introduced by the CPS
transformation of a λ-abstraction from p. This information can be obtained from
the direct-style flow information, since we can syntactically identify the continua-
tion of the CPS counterpart of any direct-style application.
Given p, Ĉ, ρ̂, and a continuation identifier k introduced by the transformation of
a λ-abstraction from p:

T [[λπx.e`]] = λπx.λk.E [[e]]k

we define ξ(k) as the union of all sets Ĉ′(`) such that in the CPS transformation
of p into p′ there exists a transformation step

S[[e`0
0 e`1

1]]K` = . . .

such that π ∈ Ĉ(`0).

We construct the CPS control-flow information in two steps. First, in a recursive
descent on the tree of the transformation, we compute Ĉ′(`) for each label ` attached
on the newly introduced λ-abstractions (continuations) and we construct the function
ξ.

The second step consists of another recursive descent on the tree of the trans-
formation. We assign control-flow information recursively, as defined for each step
in Figure 6. At each transformation step, on the right-hand side, we construct the
labeled CPS term corresponding to the left-hand side. We then assign flow informa-
tion for each fresh label or variable. Trivial terms preserve their label and their flow
information. Flow information for serious terms is transferred through calls to con-
tinuations. Fresh continuation identifiers are assigned flow information as computed
by the ξ function.

508 A Simple CPS Transformation of Control-Flow Information

E : Expr × Lab × Ide → Comp × Lab
E [[t`]]k = (k`0 (T [[t]])`)`1 Ĉ′(`0) = ρ̂′(k)

Ĉ′(`) = Ĉ′(`) Ĉ′(`1) = ∅
E [[s`]]k = (S[[s]](λπx.(k`0 x`)`1)`2)`3

Ĉ′(`0) = ρ̂′(k) Ĉ′(`) = ρ̂′(x) = Ĉ(`)
Ĉ′(`2) = {π} Ĉ′(`3) = Ĉ′(`1) = ∅

S : Comp × Triv × Lab → Comp
S[[t`00 t`11]]K` = ((T [[t0]])`0 (T [[t1]])`1)`2 K`

Ĉ′(`0) = Ĉ(`0) Ĉ′(`1) = Ĉ(`1)
Ĉ′(`2) = γ(Ĉ(`0))

S[[t`00 s`1
1]]K` = S[[s1]](λπx1.(((T [[t0]])`0 x`1

1)`2 K`)`3)`4

Ĉ′(`0) = Ĉ(`0) Ĉ′(`1) = ρ̂′(x1) = Ĉ(`1)
Ĉ′(`2) = γ(Ĉ(`0))

Ĉ′(`3) = ∅ Ĉ′(`4) = {π}
S[[s`0

0 t`11]]K` = S[[s0]](λπx0.((x`0
0 (T [[t1]])`1)`2 K`)`3)`4

Ĉ′(`0) = ρ̂′(x0) = Ĉ(`0) Ĉ′(`1) = Ĉ(`1)
Ĉ′(`2) = γ(Ĉ(`0))

Ĉ′(`3) = ∅ Ĉ′(`4) = {π}
S[[s`0

0 s`1
1]]K` = S[[s0]](λπx0.(S[[s1]](λπ1x1.((x`0

0 x`1
1)`2 K`)`3)`4)`5)`6

Ĉ′(`0) = ρ̂′(x0) = Ĉ(`0)
Ĉ′(`1) = ρ̂′(x1) = Ĉ(`1) Ĉ′(`2) = γ(Ĉ(`0))

Ĉ′(`3) = ∅ Ĉ′(`4) = {π1}
Ĉ′(`5) = ∅ Ĉ′(`6) = {π}

T : Triv → Triv
T [[x]] = x

T [[λπx.e`]] = λπx.(λπ1k.E [[e`]]k)`0 Ĉ′(`0) = {π1} ρ̂′(k) = ξ(k)

Fig. 6. Transformation of control flow from direct style to CPS

Note that in contrast to the CPS transformation of unlabeled terms of Figure 5,
the transformation of labeled serious terms takes an extra argument, namely the label
of the syntactic continuation being passed as an argument. At each case in Figure 6,
we do not make the label explicit: we rather place it directly over the constructed
continuation. Similarly, the CPS transformation of a labeled expression returns a
serious term and its enclosing label.

The CPS transformation of control flow is therefore defined as a monotone function:

ΦCPS
cf : (Cachep × Envp) → (Cachep′ × Envp′).

Theorem 3.1 Let p = e` be a uniquely labeled program. If (Ĉ, ρ̂) �p e` then
(ΦCPS

cf (Ĉ, ρ̂)) �p′ λπk.E [[e`]]k.

Proof. By structural induction on the resulting CPS program. The proof is similar

3. CPS TRANSFORMATION AND CONTROL-FLOW ANALYSIS 509

with the proof of Theorem 6.1 of our previous work [9] which addressed terms in
monadic normal form. In this proof, however, the main induction predicate states
that a CPS-transformed serious term satisfies the relation when the term passed as a
continuation is also satisfying the relation. The main induction predicate relies on:

a) an auxiliary predicate stating that the translation of a trivial term together with
its associated label satisfies the flow constraints in CPS if the associated label is
preserved;

b) an auxiliary predicate stating that the translation of an expression with its syn-
tactic continuation satisfies the flow constraints in CPS.

At each iteration step we make use of an auxiliary Lemma (similar to Lemma 6.4
of the same previous work [9]) stating that the flow information extracted at an
application point is passed into each possible continuation for the CPS equivalent of
the application.

The proof is also slightly simpler than Palsberg and Wand’s proof [35] since programs
contain no administrative redexes.

3.3 Direct-style transformation of control flow

The CPS transformation of flow from Figure 6 shows that the analysis of a CPS-
transformed term can be at least as good as the analysis of the direct-style original
term. The resulting CPS solution is the equivalent of the direct-style one, but may
not be the best. We show that the direct-style and CPS analysis results are equivalent
by exhibiting a direct-style transformation of flow.

We thus define a direct-style transformation of control-flow information. In other
words, we transform control-flow information for the CPS-transformed term into
control-flow information for the original direct-style term. The transformation is
defined recursively in Figure 7. At each transformation step, on the right-hand side
we construct flow information (Ĉ, ρ̂) for the direct-style program from the flow infor-
mation (Ĉ′, ρ̂′) for the CPS program.

Since at each function call the continuation is an explicit syntactic continuation,
we are able to determine the control-flow information returned by each expression.
In particular, at a transformation step

E [[s`]]k = (S[[s]](λπx.(k`0 x`)`1)`2)`3

we are able to assign control-flow information for the return label ` from the control-
flow information collected by the continuation λπx.(k`0 x`)`1 .

Control-flow information can therefore be constructed bottom-up. The direct-style
transformation of control flow is thus defined as a monotone function:

ΨCPS
cf : (Cachep′ × Envp′) → (Cachep × Envp)

Theorem 3.2 Let p = e` be a uniquely labeled program.

If (Ĉ′, ρ̂′) �p λπk.E [[e`]]k and ρ̂′(k) = ∅, then ΨCPS
cf (Ĉ′, ρ̂′) �p′ e` .

Proof. By structural induction on the direct-style source program. Again, the proof
is similar to the proof of Theorem 6.5 of our earlier work [9]. In this proof the main

510 A Simple CPS Transformation of Control-Flow Information

E : Expr × Ide → Comp × Lab
E [[t`]]k = (k`0 (T [[t]])`)`1 Ĉ(`) = Ĉ′(`) Ĉ(`1) = ∅
E [[s`]]k = (S[[s]](λπx.(k`0 x`)`1)`2)`3 Ĉ(`) = Ĉ′(`)

S : Comp × Triv × Lab → Comp
S[[t`00 t`11]]K` = ((T [[t0]])`0 (T [[t1]])`1)`2 K`

Ĉ(`0) = Ĉ′(`0) Ĉ(`1) = Ĉ′(`1)
S[[t`00 s`1

1]]K` = S[[s1]](λπx1.(((T [[t0]])`0 x`1
1)`2 K`)`3)`4

Ĉ(`0) = Ĉ′(`0) Ĉ(`1) = ρ̂′(x1)
S[[s`0

0 t`11]]K` = S[[s0]](λπx0.((x`0
0 (T [[t1]])`1)`2 K`)`3)`4

Ĉ(`0) = ρ̂′(x0) Ĉ(`1) = Ĉ′(`1)
S[[s`0

0 s`1
1]]K` = S[[s0]](λπx0.(S[[s1]](λπ1x1.((x`0

0 x`1
1)`2 K`)`3)`4)`5)`6

Ĉ(`0) = ρ̂′(x0) Ĉ(`1) = ρ̂′(x1)

T : Triv → Triv
T [[x]] = x

T [[λπx.e`]] = λπx.(λπ1k.E [[e`]]k)`0

Fig. 7. Transformation of control flow from CPS into direct style

induction predicate states that the constructed solution satisfies the flow constraints
for any serious sub-term considered together with its enclosing label. The proof relies
on:

a) an auxiliary predicate stating that a trivial term together with its associated la-
bel satisfies the flow constraints if it satisfies the constraints in CPS, considered
together with its associated label;

b) an auxiliary predicate stating that an expression satisfies the flow constraints if
the translation satisfies the flow constraints in CPS (considered together with its
syntactic continuation).

At each iteration step we make use of an auxiliary Lemma (similar to Lemma 6.8 of the
same previous work [9]) stating that the flow information extracted at an application
point includes the flow information collected by each possible continuation for the
CPS equivalent of the application.

3.4 Preservation of flow

Following the construction of the CPS control-flow information in Figure 6, it is im-
mediate to see that the flow information assigned to the program’s original variables
in CPS is identical to the one extracted from the direct-style original program. The
same is valid for the reverse transformation of Figure 7: the control-flow informa-
tion assigned to direct-style variables is identical to the one extracted from the CPS
program.

3. CPS TRANSFORMATION AND CONTROL-FLOW ANALYSIS 511

T ′ = (((λπ1y.(λπ4k2.((y`1 y`2)`16 (λπ5v2.(k`12
2 v`13

2)`14)`15)`17)`18)`4

(λπ2x.(λπ6k3.(k`19
3 x`5)`20)`21)`6)`22

(λπ3v1.(k`8
1 v`9

1)`10)`11)`23

ξ
k2 → {π3}
k3 → {π5}

Ĉ
`1 → {π2} `10 → {} `17 → {}
`2 → {π2} `11 → {π3} `18 → {π4}
`4 → {π1} `12 → {π3} `19 → {π5}
`5 → {π2} `13 → {π2} `20 → {}
`6 → {π2} `14 → {} `21 → {π6}
`8 → {} `15 → {π5} `22 → {π4}
`9 → {π2} `16 → {π6} `23 → {}

ρ̂
k1 → {}
k2 → {π3}
k3 → {π5}
x → {π2}
y → {π2}
v1 → {π2}
v2 → {π2}

Fig. 8. CPS transformation and analysis result

Theorem 3.3 follows from the monotonicity of the two transformations of control
flow.

Theorem 3.3 Let p be a direct-style program and p′ its CPS counterpart.

i) Let (Ĉ, ρ̂) be the solution of the control-flow analysis of p. Then
ΨCPS

cf (ΦCPS
cf (Ĉ, ρ̂)) = (Ĉ, ρ̂).

ii) Let (Ĉ′, ρ̂′) be the solution of the control-flow analysis of p′. Then
ΦCPS

cf (ΨCPS
cf (Ĉ′, ρ̂′)) = (Ĉ′, ρ̂′).

3.5 CPS transformation of flow: an example

Let us now consider the CPS transformation of the term T in the example of Sec-
tion 2.3. The CPS equivalent T ′ of the term T is illustrated in Figure 8. Even if the
term T ′ is administratively reduced, the number of labels becomes difficult to manage
without an automated calculation. The generated example illustrates the equivalence
of flow information obtained by the CFA analysis of the original term T and of the
CPS term T ′.

As specified in Section 1.1, the CPS term T ′ maintains all the λ-abstraction labels
and trivial-term labels of the original term T ′. As specified by Theorem 3.3, the
flow information associated to the labels of the trivial terms (i.e., `1, `2, `4, `5 and `6)
are identical. Similarly, the variables of the original term (x and y) are preserved
and their associated flow information is identical. We can observe that the labels `3
and `7 have disappeared, their associated flow information being transferred into the
variables abstracted by continuations v2 and v1 respectively. The remainder of the
labels are either final answer labels, and their associated flow information is empty,
either labels surrounding a continuation in which case the associated flow information
is a singleton containing the label of the continuation.

Therefore, given the flow information from Figure 4 we can avoid re-analyzing
the CPS term T ′ by computing the flow information of Figure 8 according to the

512 A Simple CPS Transformation of Control-Flow Information

transformation function ΦCPS
cf , with a provably lower complexity. Similarly, given the

flow information of Figure 8, we can avoid re-analyzing the CPS term T ′ by computing
the flow information of Figure 4 according to the transformation function ΦCPS

cf , again
with a provably lower complexity.

4 Conclusions and future work

We have presented a one-pass CPS transformation of control-flow information. Our
transformation improves both on our earlier CPS transformation and on Palsberg
and Wand’s which operate in two passes. This line of work aims at transferring
the results of program analyses across program transformations as an alternative to
analyzing transformed programs from scratch. The interaction between CPS and
program analysis has been explored by a number of authors [3, 4, 19, 23, 25, 29, 31],
sometimes leading to mixed results [41].

The complete CPS transformation of control flow can be used to assess the impact of
the CPS transformation on the result of other program analyses, e.g., binding-times
analysis. In a previous work [7, 9], we have shown that introducing continuations
(1) does not worsen and (2) can improve the results of the standard binding-time
analysis for traditional partial evaluation [23]. Transforming programs into monadic
normal form can also lead to further binding-time improvements [6, 19]. Our initial
investigations show that the current transformation of control flow can be used to
characterize in one single theorem the binding-time improvements obtained by the
CPS transformation [6].

Let us finish on the relation between tail-call optimization and control-flow anal-
ysis. In the CPS transformation of Figure 5, the η-expanded tail calls provide an
explicit continuation for each function call for which we can extract control-flow in-
formation. More precisely, the CPS transformation of an expression introduces an
explicit continuation:

E [[s]]k = S[[s]](λx.k x)

The presence of such an explicit continuation facilitates the definition of the CPS
transformation of control flow. We are currently investigating whether η-reducing
these tail-calls (i.e., defining E [[s]]k as S[[s]]k) also preserves control-flow information.

4.1 Acknowledgments:

This work was carried out while the first author was at BRICS.

References

[1] Andrew W. Appel. Compiling with Continuations. Cambridge University Press, New York,
1992.

[2] Edoardo Biagioni, Ken Cline, Peter Lee, Chris Okasaki, and Chris Stone. Safe-for-space threads
in Standard ML. Higher-Order and Symbolic Computation, 11(2):209–225, 1998.

[3] Anders Bondorf. Improving binding times without explicit cps-conversion. In William Clinger,
editor, Proceedings of the 1992 ACM Conference on Lisp and Functional Programming, LISP
Pointers, Vol. V, No. 1, pages 1–10, San Francisco, California, June 1992. ACM Press.

[4] Charles Consel and Olivier Danvy. For a better support of static data flow. In John Hughes,
editor, Proceedings of the Fifth ACM Conference on Functional Programming and Computer

4. CONCLUSIONS AND FUTURE WORK 513

Architecture, number 523 in Lecture Notes in Computer Science, pages 496–519, Cambridge,
Massachusetts, August 1991. Springer-Verlag.

[5] Patrick Cousot and Radhia Cousot. Formal language, grammar and set-constraint-based pro-
gram analysis by abstract interpretation. In Simon Peyton Jones, editor, Proceedings of the
Seventh ACM Conference on Functional Programming and Computer Architecture, pages 170–
181, La Jolla, California, June 1995. ACM Press.

[6] Daniel Damian. On Static and Dynamic Control-Flow Information in Program Analysis and
Transformation. PhD thesis, BRICS PhD School, University of Aarhus, Aarhus, Denmark, July
2001. BRICS DS-01-5.

[7] Daniel Damian and Olivier Danvy. Syntactic accidents in program analysis: On the impact of
the CPS transformation. In Philip Wadler, editor, Proceedings of the 2000 ACM SIGPLAN
International Conference on Functional Programming, SIGPLAN Notices, Vol. 35, No. 9, pages
209–220, Montréal, Canada, September 2000. ACM Press. Extended version to appear in the
Journal of Functional Programming.

[8] Daniel Damian and Olivier Danvy. CPS transformation of flow information, part II: Administra-
tive reductions. Technical Report BRICS RS-01-40, DAIMI, Department of Computer Science,
University of Aarhus, Aarhus, Denmark, October 2001. Accepted at the Journal of Functional
Programming.

[9] Daniel Damian and Olivier Danvy. Syntactic accidents in program analysis: On the impact
of the CPS transformation. Journal of Functional Programming, 2002. To appear. Extended
version available as the technical report BRICS-RS-01-54.

[10] Olivier Danvy, editor. Proceedings of the Second ACM SIGPLAN Workshop on Continuations,
Technical report BRICS-NS-96-13, University of Aarhus, Paris, France, January 1997.

[11] Olivier Danvy and Andrzej Filinski. Representing control, a study of the CPS transformation.
Mathematical Structures in Computer Science, 2(4):361–391, 1992.

[12] Olivier Danvy, Bernd Grobauer, and Morten Rhiger. A unifying approach to goal-directed
evaluation. New Generation Computing, 20(1):53–73, 2002. Preliminary version available in
the proceedings of SAIG 2001 (LNCS 2196). Extended version available as the technical report
BRICS RS-01-29.

[13] Olivier Danvy and Lasse R. Nielsen. A higher-order colon translation. In Herbert Kuchen and
Kazunori Ueda, editors, Fifth International Symposium on Functional and Logic Programming,
number 2024 in Lecture Notes in Computer Science, pages 78–91, Tokyo, Japan, March 2001.
Springer-Verlag. Extended version available as the technical report BRICS RS-00-33.

[14] Olivier Danvy and Lasse R. Nielsen. A first-order one-pass CPS transformation. In Mogens
Nielsen and Uffe Engberg, editors, Foundations of Software Science and Computation Struc-
tures, 5th International Conference, FOSSACS 2002, number 2303 in Lecture Notes in Com-
puter Science, pages 98–113, Grenoble, France, April 2002. Springer-Verlag. Extended version
available as the technical report BRICS RS-01-49.

[15] Richard P. Draves, Brian N. Bershad, Richard F. Rashid, and Randall W. Dean. Using contin-
uations to implement thread management and communication in operating systems. Technical

Report CMU-CS-91-115, School of Computer Science, Carnegie Mellon University, Pittsburgh,
Pennsylvania, October 1991. Also appears in the proceedings of the Thirteenth Symposium on
Operating Systems Principles (SOSP), Asilomar, California, October 1991.

[16] Kirsten L. Solberg Gasser, Flemming Nielson, and Hanne Riis Nielson. Systematic realisation
of control flow analyses for CML. In Mads Tofte, editor, Proceedings of the 1997 ACM SIG-
PLAN International Conference on Functional Programming, pages 38–51, Amsterdam, The
Netherlands, June 1997. ACM Press.

[17] Timothy G. Griffin. A formulae-as-types notion of control. In Paul Hudak, editor, Proceedings
of the Seventeenth Annual ACM Symposium on Principles of Programming Languages, pages
47–58, San Francisco, California, January 1990. ACM Press.

[18] John Hatcliff and Olivier Danvy. A generic account of continuation-passing styles. In Hans-
J. Boehm, editor, Proceedings of the Twenty-First Annual ACM Symposium on Principles of
Programming Languages, pages 458–471, Portland, Oregon, January 1994. ACM Press.

[19] John Hatcliff and Olivier Danvy. A computational formalization for partial evaluation. Math-
ematical Structures in Computer Science, pages 507–541, 1997. Extended version available as
the technical report BRICS RS-96-34.

514 A Simple CPS Transformation of Control-Flow Information

[20] Nevin Heintze. Set-based program analysis of ML programs. In Talcott [45], pages 306–317.

[21] Fritz Henglein. Simple closure analysis. Technical Report Semantics Report D-193, DIKU,
Computer Science Department, University of Copenhagen, 1992.

[22] Suresh Jagannathan and Stephen Weeks. A unified treatment of flow analysis in higher-order
languages. In Peter Lee, editor, Proceedings of the Twenty-Second Annual ACM Symposium on
Principles of Programming Languages, pages 393–407, San Francisco, California, January 1995.
ACM Press.

[23] Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial Evaluation and Automatic
Program Generation. Prentice-Hall International, London, UK, 1993. Available online at
http://www.dina.kvl.dk/~sestoft/pebook/.

[24] David Kranz, Richard Kesley, Jonathan Rees, Paul Hudak, Jonathan Philbin, and Norman
Adams. Orbit: An optimizing compiler for Scheme. In Stuart I. Feldman, editor, Proceedings
of the 1986 Symposium on Compiler Construction, SIGPLAN Notices, Vol. 21, No 7, pages
219–233, Palo Alto, California, June 1986. ACM Press.

[25] Julia L. Lawall and Olivier Danvy. Continuation-based partial evaluation. In Talcott [45].

[26] Albert R. Meyer and Mitchell Wand. Continuation semantics in typed lambda-calculi (sum-
mary). In Rohit Parikh, editor, Logics of Programs – Proceedings, number 193 in Lecture Notes
in Computer Science, pages 219–224, Brooklyn, June 1985. Springer-Verlag.

[27] Eugenio Moggi. Notions of computation and monads. Information and Computation, 93:55–92,
1991.

[28] Chetan R. Murthy. Extracting Constructive Content from Classical Proofs. PhD thesis, De-
partment of Computer Science, Cornell University, Ithaca, New York, 1990.

[29] Juarez A. Muylaert-Filho and Geoffrey L. Burn. Continuation passing transformation and ab-
stract interpretation. In G. L. Burn, S. J. Gay, and M. D. Ryan, editors, Theory and Formal
Methods 1993: Proceedings of the First Imperial College Department of Computing Workshop
on Theory and Formal Methods, Workshops in Computing Series, pages 247–259, Isle of Thorns,
Sussex, 1993. Springer-Verlag.

[30] Lasse R. Nielsen. A study of defunctionalization and continuation-passing style. PhD thesis,
BRICS PhD School, University of Aarhus, Aarhus, Denmark, July 2001. BRICS DS-01-7.

[31] Flemming Nielson. A denotational framework for data flow analysis. Acta Informatica, 18:265–
287, 1982.

[32] Flemming Nielson and Hanne Riis Nielson. Infinitary control flow analysis: a collecting semantics
for closure analysis. In Neil D. Jones, editor, Proceedings of the Twenty-Fourth Annual ACM
Symposium on Principles of Programming Languages, pages 332–345, Paris, France, January
1997. ACM Press.

[33] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of Program Analysis.
Springer Verlag, 1999.

[34] Jens Palsberg and Michael I. Schwartzbach. Object-oriented type inference. In Proceedings of
OOPSLA’91, the ACM SIGPLAN Sixth Annual Conference on Object-Oriented Programming
Systems, Languages and Applications, pages 146–161, Phoenix, Arizona, October 1991.

[35] Jens Palsberg and Mitchell Wand. CPS transformation of flow information. Journal of Func-
tional Programming, 2002. To appear.

[36] Gordon D. Plotkin. Call-by-name, call-by-value and the λ-calculus. Theoretical Computer
Science, 1:125–159, 1975.

[37] John C. Reynolds. The discoveries of continuations. Lisp and Symbolic Computation,
6(3/4):233–247, 1993.

[38] John C. Reynolds. Definitional interpreters for higher-order programming languages. Higher-
Order and Symbolic Computation, 11(4):363–397, 1998. Reprinted from the proceedings of the
25th ACM National Conference (1972).

[39] Amr Sabry, editor. Proceedings of the Third ACM SIGPLAN Workshop on Continuations,
Technical report 545, Computer Science Department, Indiana University, London, England,
January 2001.

[40] Amr Sabry and Matthias Felleisen. Reasoning about programs in continuation-passing style.
Lisp and Symbolic Computation, 6(3/4):289–360, 1993.

4. CONCLUSIONS AND FUTURE WORK 515

[41] Amr Sabry and Matthias Felleisen. Is continuation-passing useful for data flow analysis? In Vivek
Sarkar, editor, Proceedings of the ACM SIGPLAN’94 Conference on Programming Languages
Design and Implementation, SIGPLAN Notices, Vol. 29, No 6, pages 1–12, Orlando, Florida,
June 1994. ACM Press.

[42] Amr Sabry and Philip Wadler. A reflection on call-by-value. ACM Transactions on Programming
Languages and Systems, 19(6):916–941, 1997.

[43] Guy L. Steele Jr. Rabbit: A compiler for Scheme. Technical Report AI-TR-474, Artificial
Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, May
1978.

[44] Christopher Strachey and Christopher P. Wadsworth. Continuations: A mathematical seman-
tics for handling full jumps. Higher-Order and Symbolic Computation, 13(1/2):135–152, 2000.
Reprint of the technical monograph PRG-11, Oxford University Computing Laboratory (1974).

[45] Carolyn L. Talcott, editor. Proceedings of the 1994 ACM Conference on Lisp and Functional
Programming, LISP Pointers, Vol. VII, No. 3, Orlando, Florida, June 1994. ACM Press.

[46] Mitchell Wand. Continuation-based program transformation strategies. Journal of the ACM,
27(1):164–180, January 1980.

[47] Mitchell Wand. Embedding type structure in semantics. In Mary S. Van Deusen and Zvi Galil,
editors, Proceedings of the Twelfth Annual ACM Symposium on Principles of Programming
Languages, pages 1–6, New Orleans, Louisiana, January 1985. ACM Press.

[48] Mitchell Wand. Correctness of procedure representations in higher-order assembly language. In
Stephen Brookes, Michael Main, Austin Melton, Michael Mislove, and David Schmidt, editors,
Proceedings of the 7th International Conference on Mathematical Foundations of Programming
Semantics, number 598 in Lecture Notes in Computer Science, pages 294–311, Pittsburgh, Penn-
sylvania, March 1991. Springer-Verlag.

[49] Mitchell Wand. Continuation-based multiprocessing. Higher-Order and Symbolic Computation,
12(3):285–299, 1999. Reprinted from the proceedings of the 1980 Lisp Conference.

[50] Steve Zdancewic and Andrew Myers. Secure information flow and CPS. In David Sands, editor,
Proceedings of the Tenth European Symposium on Programming, number 2028 in Lecture Notes
in Computer Science, pages 46–61, Genova, Italy, April 2001. Springer-Verlag.

Received March 17, 2002

Polymodal Logics of Commuting
Functions

Aleksey G. Kravtsov, Department of Mechanics and Mathematics,
Moscow State University, Moscow, 117234.
E-mail: kravtsov@lpcs.math.msn.ru

Abstract

Polymodal logics with functional modalities are natural generalisations of the well-known Segerberg’s
Tomorrow (or Successor) Logic SL [8] and Tomorrow-Yesterday Logic SL.t [7]. Extensions of these
two logics were later studied by A.A. Muchnik [3]. But systematic investigation of logics with
functional modalities was started in Segerberg’s paper [9] and continued by F. Bellissima [1] and
M. Kracht [6]. Logics of this kind can be interpreted as fragments of propositional dynamic logics
of deterministic computations. They are also applied in mathematical linguistics [5]. This family is
very large; one can easily construct undecidable modal logics of this type, moreover, there is no hope
to obtain a reasonable classification here [6, Section 9.4].

Nevertheless, we can try to describe explicitly some of its subfamilies. A natural class are the
logics, in which all modalities commute. The minimal logics with commuting modalities are the

products SLn described in [4, Section 14]. The semantics of SLn is given by the set Nn with the
relations represented by n correspondent coordinate shift functions.

We consider arbitrary extensions of SLn and especially of SL.tn. We show that all extensions of
SL.tn have the finite model property and thus finitely axiomatisable of them are decidable. Moreover,
we give a complete description of finitely axiomatisable extensions of SL.tn: they can be presented
as finite intersections of logics of n-generated Abelian groups. By the same method we also give new
proofs of Muchnik’s theorems on pretabularity of the logics SL and SL.t [3]. 1

Keywords: Functional Modalities, Commuting Modalities, SLn, SL.tn

1 Modal Logic Background.

We consider propositional formulas in a standard language containing propositional
connectives (>, ⊥, ¬, ∧, ∨, ⊃, ≡) and unary modal operators : 21, . . . , 2n. 3i

denotes ¬2i¬ as usual. Formulas in this language are called n-modal. If n = 1, we
write 2, 3 rather than 21, 31.

Recall that a set Λ of n-modal formulas is a (normal) n-modal logic if it contains
all classical tautologies, the axioms

2i(p⊃ q)⊃ (2ip⊃2iq)

and is closed under Substitution, Modus Ponens, and the rules
A

2iA
.

Kn denotes the minimal n-modal logic; K is K1.
Λ + S denotes the smallest n-modal logic containing an n-modal logic Λ and a set

of n-modal formulas S. We say that a set S axiomatises a logic Λ if Λ = Kn + S.

1The work on this paper was partly supported by ESPRC project on many-dimensional modal logic.

The author is grateful to professor V.B. Shehtman for constant attention to this work and also to the anonymous

referee for many useful comments.

517L. J. of the IGPL, Vol. 10 No. 5, pp. 517–533 2002 c©Oxford University Press

518 Polymodal Logics of Commuting Functions

⊗
denotes the fusion of logics; it is obtained by unifying all axioms of these logics,

with every 2-operator endowed by a subscript, depending on the logic. The fusion of
logics is the smallest logic containing the logics with the modalities subscripted.

[. . .] denotes the commutator of logics, i. e., the fusion of the logics plus the com-
mutation axioms 2i2jp ≡ 2j2ip and the axioms of the form 3i2jp ⊃ 2j3ip (the
Church-Rosser or confluence properties) for all the modalities.

Let us recall the definitions of some particular logics:

Alt1 = K + 3p⊃2p,

(Alt1)n =
⊗n

i=1 Alt1,

SL = K + 3p≡2p,

SLn = [SL, . . . ,SL︸ ︷︷ ︸
n

],

SL.t = SL2 + 2122p≡ p,

SL.tn = [SL.t, . . . ,SL.t︸ ︷︷ ︸
n

].

SL is called Tomorrow Logic or Successor Logic, SL.t is called Tomorrow-Yesterday
Logic.

For the case of SLn and SL.tn, the Church-Rosser properties follows from the
commutation axioms.

One can easily see that (Alt1)n ⊆ SLn and SL2n ⊆ SL.tn.
Recall that an (n-modal Kripke) frame is an (n+ 1)-tuple

(W,R1, . . . , Rn),

where W is a non-empty set, Ri are binary relations on W .
A frame F = (W,R1, . . . , Rn) is said to be a rooted (or generated) frame with root

u if
W = {u} ∪R(u) ∪R2(u) ∪ · · · ,

where2 R � R1 ∪ · · · ∪ Rn, Rn � R ◦ · · · ◦R︸ ︷︷ ︸
n

, R(u)� {v | (u, v) ∈ R}. In this case,

the pair (F, u) is called a cone (with root u).
A generated subframe with root u of a Kripke frame F is a cone (Fu, u) where

Fu � (W ′, R′1, . . . , R
′
n),

W ′
� {u} ∪R(u) ∪R2(u) ∪ · · ·

for the same R as in the definition of a generated frame, and R′i � Ri ∩W ′2.
A Kripke model is a Kripke frame with a valuation of propositional variables. For a

formula A, (F,w, θ) � A denotes that the formula A is true in a world w in a Kripke
model (F, θ); the corresponding definition is well-known.
A is valid in F (notation: F � A) if (F,w) � A for any w. L(F) denotes the set

of all (n-modal) formulas valid in an (n-modal) frame F ; this is the modal logic of F .
Logics of this kind are called Kripke-complete.

2
� denotes equality by definition; ◦ denotes the composition of relations

1. MODAL LOGIC BACKGROUND. 519

A frame F is said to be a Λ-frame (for an n-modal logic Λ) if Λ ⊆ L(F). A cone
C = (F, u) is a Λ-cone if Λ ⊆ L(F). Let us recall the characterisations of Λ-frames
for Λ = (Alt1)n,SLn,SL.tn:

Lemma 1.1

1. F is an (Alt1)n-frame iff all its accessibility relations are functional (i. e., every
Ri(x) is either empty or one-element);

2. F is an SLn-frame iff all its relations are functions (i. e., every Ri(x) is a singleton)
and they pairwise commute;

3. F is an SL.tn-frame iff it is an SL2n-frame and R2i−1 = R−1
2i for i = 1, . . . , n.

Let Nn be the monoid with the underlying set Nn and the operation of standard
vector addition. Similarly, let Zn be the group with the underlying set Zn and the
standard vector addition.

Let ei, 1 ≤ i ≤ n, be the standard base vectors of Nn, i.e. e1 = (1, 0, 0, . . .),
e2 = (0, 1, 0, . . .), etc.

The following completeness result for SLn, SL.tn can be proved easily [4]:

Proposition 1.2

1. SLn = L(Nn , R1, . . . , Rn), where Ri is the i-th coordinate shift function:

Ri(x) � {x + ei} .

2. SL.tn = L(Zn, R1, . . . , R2n), where R2i−1, R2i are the coordinate shift functions:

R2i−1(x) � {x + ei} ,
R2i(x) � {x− ei} .

Here + and − denote the operations in Nn and Zn.

The following theorem was proved in [6, Theorem 3.2.12].

Theorem 1.3 All extensions of (Alt1)n are Kripke-complete.

Hence we readily obtain the following

Corollary 1.4 All extensions of SLn and SL.tn are Kripke-complete.

Let f be a function defined on a set X . Then f(X ′) denotes the image of a subset
X ′ ⊆ X under f .

We will use the following definition of a p-morphism:

Definition 1.5 A surjective map f : W ′ →W ′′ such that

f(R′i(x)) = R′′i (f(x)) for all x ∈W ′,

is said to be a p-morphism from F ′ onto F ′′; notation: f : F ′ � F ′′.

Recall that a formula φ(p1, . . . , pk) not containing modalities is said to be a perfect
disjunctive normal form if

φ(p1, . . . , pk) =
∨

α∈S

pα1
1 ∧ · · · ∧ pαk

k ,

where S is a (probably, empty) set of boolean sequences of length k, p1 � p, p0 � ¬p.
The well-known fact is that every formula without modalities is equivalent to some
perfect disjunctive normal form.

520 Polymodal Logics of Commuting Functions

2 Monoid Actions and Congruences.

This section contains some standard algebraic facts; they are very well-known for
the case of groups and are easily extended for monoids. For the sake of generality,
here we consider the non-commutative case, but later in this paper only commutative
monoids will be used.

Definition 2.1 A (left) action of a monoid G on a set W is a map α : G×W → W
such that for any g, h ∈ G, x ∈W

α(g ∗ h, x) = α(g, α(h, x))

and
α(1, x) = x,

where ∗ is the multiplication, 1 is the unit in G. The triple

W = (G,W,α)

is then called a G-set. We will also use the standard notation g ∗x instead of α(g, x).

Definition 2.2 A G-set W = (G,W,α) is said to be rooted (with root u) if

∀x ∈W ∃g ∈ G x = g ∗ u.

In this case, the pair (W , u) is called a conic G-set (with root u).

Recall also the standard definitions of morphisms.

Definition 2.3 A morphism from a G-set W1 = (G,W1, α1) to a G-set
W2 = (G,W2, α2) is a map f : W1 → W2 such that for any g, x

f(α1(g, x)) = α2(g, f(x)).

A morphism of conic G-sets f : (W1, u1) → (W2, u2) is a morphism of the correspond-
ing G-sets f : W1 →W2 such that f(u1) = u2.

As usual, an isomorphism is a morphism having a converse, or equivalently, a
bijective morphism.

Definition 2.4 Recall that a left congruence on a semigroup (G, ∗) is an equivalence
relation ∼ on G such that (for any a, b, c) a ∼ b implies c ∗ a ∼ c ∗ b.

Definition 2.5 For a conicG-set (W , u) define a relation∼(W,u) on G in the following
way:

a ∼(W,u) b iff a ∗ u = b ∗ u,

where ∗ is the action in W .

Lemma 2.6 For a conic G-set (W , u) the relation ∼(W,u) is a left congruence on G.
This defines a functor from G-SETC to G-CON.

3. SLN -CONES AND CONGRUENCES ON NN . 521

Proof. One can easily check that ∼(W,u) is a left congruence. Now

f : (W1, u1) → (W2, u2)

implies ∼(W1,u1) ⊆ ∼(W2,u2). In fact, if a ∗ u1 = b ∗ u1 in W1, then

a ∗ u2 = a ∗ f(u1) = f(a ∗ u1) = f(b ∗ u1) = b ∗ f(u1) = b ∗ u2.

Definition 2.7 For a left congruence ∼ on a semigroup G define a tuple

X (∼)� ((G,G/∼, ∗), [1])3,

where G/∼ is the set of equivalence classes modulo ∼, ∗ is a function from G×G/∼
to G/∼ defined as follows:

g ∗ [a]� [g ∗ a] .

Lemma 2.8 For every left congruence ∼ on G X (∼) is a conic G-set. Furthermore,
if ∼1 ⊆ ∼2, then the map f : G/∼1 → G/∼2 such that f([a]1) = [a]2 (where [b]i
is the class of b modulo ∼i) is a surjective (conic) G-set morphism. This defines a
functor from G-CON to G-SETC.

Proof. It is easily checked that ∗ is an action with root [1]. We check that f is a
morphism:

f(b ∗ [a]1) = f([b ∗ a]1) = [b ∗ a]2 = b ∗ [a]2 .

Lemmas 2.6 and 2.8 mean that the following two categories (for a discussion of
categories see [2]) are equivalent:

• the category G-SETC of conic G-sets and surjective morphisms;
• the category G-CON of left congruences on G and inclusions.

3 SLn-cones and Congruences on N n.

Let us consider actions of the additive monoid Nn.

Proposition 3.1 The following defines a correspondence between Nn-actions and
SLn-frames on a set W :

1. an Nn-action α : Nn ×W →W corresponds to the frame (W,R1, . . . , Rn), where
for every i, x

Ri(x)� {α(ei, x)} ;

2. an SLn-frame (W,R1, . . . , Rn) corresponds to the Nn-action α : Nn ×W → W
such that for every x ∈ W , m ∈ Nn

{α(m, x)} = Rm(x),

where
R(m1,...,mn)

� Rm1

1 ◦ · · · ◦Rmn

n .

3Here [a] is the equivalence class of a

522 Polymodal Logics of Commuting Functions

Proof. Almost obvious. In the frame defined by (1) we have

Ri ◦Rj = Rj ◦Ri

since Nn is commutative.
If α is defined by (2) then {α(ei, x)} = Ri(x) as required in (1).
Conversely, if R1, . . . , Rn are defined by (1), then

{
α(m1e1 + · · ·+mnen, x)

}
= (Rm1

1 ◦ · · · ◦Rmn

n)(x).

So every SLn-frame corresponds to an Nn-set. Also it follows that p-morphisms
correspond to morphisms of Nn-sets:

Proposition 3.2 Let F ′, F ′′ be SLn-frames. A surjection f : F ′ → F ′′ is a p-
morphism iff for all i, x

f(ei + x) = ei + f(x).

Proof. Follows from the definition of a p-morphism, since

R′i(x) = {ei + x} ,
R′′i (f(x)) = {ei + f(x)}

by the definition of Ri in Proposition 3.1(1).

Now we obtain that SLn-cones correspond to congruences on Nn:

Proposition 3.3 The following defines a correspondence between SLn-cones and
congruences on Nn:

1. a cone C with root u corresponds to the congruence ∼C such that

a ∼C b iff Ra(u) = Rb(u) in C;

2. a congruence ∼ corresponds to the cone C with the set of worlds W � N
n/∼, the

relations
[x]Ri [y] iff [y] = [ei + x] ,

and root [0].

Proof. Follows from 2.6–3.2.

4 SLn-normal Forms.

Notation 4.1 For m = (m1, . . . ,mn) ∈ Nn let

2m
� 2m1

1 . . .2mn

n .

Definition 4.2 Let A be an n-modal formula. Let us define the degrees of A in the
following way:

di(⊥) � 0,
di(p) � 0,
di(A1 ⊃A2) � max(di(A1), di(A2)),
di(2jA) � di(A), if i 6= j,
di(2iA) � di(A) + 1.

5. PROPERTIES OF FINITELY AXIOMATISABLE EXTENSIONS OF SLN . 523

Lemma 4.3 Let A(p1, . . . , pk) be an n-modal formula,
d = (d1, . . . , dn) ∈ Nn , and di(A) ≤ di. Then

SLn ` A≡ φ(p1, . . . , pk, . . . ,2
dp1, . . . ,2

dpk)

for some formula φ not containing modalities (here the formula φ contains
k(d1 + 1) · · · (dn + 1) variables; the (i, a1, . . . , an)-th variable is substituted by
2(a1,...,an)pi).

Proof. By induction on the construction of A. Only the case A = 2iB is not trivial.
By the inductive hypothesis

B = ψ(p1, . . . , pk, . . . ,2
cp1, . . . ,2

cpk),

in this case, cj ≤ dj for i 6= j and ci + 1 ≤ di.
Then we apply induction on the construction of ψ. Obviously,

2i⊥ ≡ ⊥,
2i(ψ1 ⊃ ψ2) ≡ 2iψ1 ⊃2iψ2.

Hence
2iB ≡ ψ(2ip1, . . . ,2ipk, . . . ,2

c+eip1, . . . ,2
c+eipk),

what completes the proof.

5 Properties of Finitely Axiomatisable Extensions of SLn.

Lemma 5.1 Let C be an SLn-cone with root u, A a formula. Then C � A iff
(C, u) � A.

Proof. The “only if” case is obvious. To show “if”, assume (C, u) � A.
We need to show that (C, x) � A for every point x = m + u.
Let us construct the map f as follows: f(y)�m+y. Obviously, f is a p-morphism

of C onto Cx. Hence (Cx, x) � A and thus (C, x) � A.

Let us introduce the following notation: for a,b ∈ Zn, [a,b] denotes the set of all
c ∈ Zn such that ai ≤ ci ≤ bi.

For a relation R on a set X , Y ⊆ X , let R|Y � R ∩ Y 2.

Proposition 5.2 Let ∼1, ∼2 be congruences on Nn, A a formula,
d = (d1, . . . , dn) ∈ Nn , di(A) ≤ di, D � [0,d], and

∼1|D = ∼2|D.

Let Ci be the cone corresponding to ∼i, ui the root of Ci. Then C1 � A iff C2 � A.

Proof. By Lemma 5.1, it is sufficient to construct for every valuation θ1 in C1 a
valuation θ2 in C2 such that u1 ∈ θ1(A) iff u2 ∈ θ2(A).

Let us construct θ2 as follows:

m + u2 ∈ θ2(p) iff m + u1 ∈ θ1(p) whenever mi ≤ di(A),

in other points let us define θ2 arbitrarily. θ2 is well-defined due to the assumption.
By Lemma 4.3, u1 ∈ θ1(A) iff u2 ∈ θ2(A).

524 Polymodal Logics of Commuting Functions

Theorem 5.3 If the logic SLn+A is consistent, then there exist SLn-conesC1, . . . , Ck

such that
SLn +A = L({C1, . . . , Ck}).

Proof. Let di
� di(A) be the corresponding degrees of the formula A,

d� (d1, . . . , dn), D � [0,d] ⊆ N
n .

Let E be the set of all equivalence relations onD. E is finite thanks to the finiteness
of D.

For e ∈ E let
Ce � {C | C � SLn +A & ∼C |D = e} .

Consider an equivalence e such that Ce 6= ?.
Define the relation ∼e as follows:

a ∼e b iff ∀C ∈ Ce a ∼C b.

Obviously, ∼e is a congruence. Let C(e) be the cone corresponding to ∼e.
Since ∼C |D = e for all C ∈ Ce, it follows that ∼e|D = e. Because Ce is not empty,

there exists C ∈ Ce such that ∼C |D = e = ∼e|D, so C(e) � A by Proposition 5.2, and
thus C(e) ∈ Ce.

Since ∼e ⊆ ∼C , it follows that L(C(e)) ⊆ L(C) for all C ∈ Ce.
Therefore L(Ce) = L(C(e)).
By completeness of SLn +A:

SLn +A = L({C | C � SLn +A}) = L(
⋂
{Ce | e ∈ E & Ce 6= ?}) =⋂

{L(Ce) | e ∈ E & Ce 6= ?} =
⋂
{L(Ce) | e ∈ E & Ce 6= ?}

The theorem follows from the finiteness of the set {e ∈ E | Ce 6= ?}.

Notation 5.4 Let A(p1, . . . , pk) and B(p1, . . . , pk) be n-modal formulas. Then let
A t B � A(q′1, . . . , q

′
k) ∨ B(q′′1 , . . . , q

′′
k) (q′i and q′′i are new distinct propositional

variables).

Proposition 5.5 Let C be an SLn-cone, A1, . . . , Ak formulas. Then

C � A1 t · · · tAk ⇔ ∃i C � Ai.

Proof. Due to Lemma 5.1, is sufficient to prove the proposition for validity of for-
mulas at the root of C. Then the claim (⇐) is obvious, the claim (⇒) follows because
we can assume that the variables in all Ai are distinct.

Lemma 5.6 Let Λi = SLn +Ai, 1 ≤ i ≤ k. Then
⋂
i

Λi = SLn +A1 t · · · tAk.

Proof. The inclusion (⊇) is obvious.
If A /∈ SLn + A1 t · · · t Ak, then there exists an SLn-cone C such that

C � A1 t · · · t Ak and C 2 A. And so there exists i such that C � Ai, thus
Λi 2 A.

6. EXTENSIONS OF THE LOGIC SL. 525

6 Extensions of the Logic SL.

Definition 6.1

1. Define the relation ∼m,n for m ≥ 0, n > 0 in the following way:

a ∼m,n b iff a = b ∨ (a ≥ m & b ≥ m & n divides a− b).

2. Define the following SL-cones:
• C0 is the cone corresponding to the relation =,
• Cm,n is the cone corresponding to the relation ∼m,n.

3. For m ≥ 0, n > 0 let Am,n � 2mp≡2m+np.

Proposition 6.2 Ck,l � Am,n iff l divides n and k ≤ m.

Proof.
(⇐) Note that Cm,n � Am,n.

Consider the map f : Cm,n → Ck,l such that f([x]∼m,n
) = [x]∼k,l

. f is well-
defined since l divides n and k ≤ m. It is obvious that f is a p-morphism of Cm,n

onto Ck,l, hence Ck,l � Am,n.

(⇒) Let us define the valuation θ in Ck,l as follows: θ(p)� { [m]∼k,l
}.

Note that (Ck,l, [0] , θ) � 2mp.
If k > m or l does not divide n, then [m+ n] 6= [m], so (Ck,l, [0] , θ) 2 2m+np,

therefore Ck,l 2 Am,n.

Lemma 6.3

1. All Cm,n, C0 are pairwise non-isomorphic.
2. If C is an SL-cone, then C is isomorphic either to C0 or to Ck,l for some k, l.

Proof. It is obvious that C0 is not isomorphic to any of Cm,n.
Let C be an SL-cone with root u.
If all n+ u, n ∈ N, are different, then obviously C is isomorphic to C0.
Otherwise let us choose the minimal m such that m + u = m + n + u for some

n > 0, and the minimal such n. Then C is isomorphic to Cm,n (since ∼C = ∼m,n).

Lemma 6.4 The logics of the cones of SL are the following:

1. L(C0) = SL,
2. L(Cm,n) = SL + Am,n.

Proof.
1. Follows from 1.2.

2. The inclusion (⊇) is obvious.
If A /∈ SL + Am,n, then there exists an SL-cone C such that C � Am,n and

C 2 A. By Lemma 6.3, C = Ck,l for some k and l since C0 2 Am,n. By Propo-
sition 6.2, l divides n and k ≤ m. Hence the map f : Cm,n → Ck,l defined as
f([a]∼m,n

)� [a]∼k,l
is a p-morphism, and so Cm,n 2 A.

526 Polymodal Logics of Commuting Functions

Remark 6.5 If A(p1, . . . , pk) is a 1-modal formula, d1(A) ≤ d, then

SL ` A≡ φ(p1, . . . , pk, . . . ,2
dp1, . . . ,2

dpk)

for some formula φ not containing modalities.

The following theorem was proved first (using another method) by A. A. Muchnik [3,
Theorem 1].

Theorem 6.6 Every consistent proper extension of SL is tabular.

Proof. Consider an extension Λ ⊇ SL. Since every extension of a tabular logic is
tabular, we can consider only the case when Λ = SL +A, where SL 0 A.

Let d be the degree of A, then

SL ` A≡ φ(p1, . . . , pk, . . . ,2
dp1, . . . ,2

dpk).

Let us write φ in the perfect disjunctive normal form:

SL ` φ(p1, . . . , pk, . . . ,2
dp1, . . . ,2

dpk)≡∨
α∈S

p
α0

1
1 ∧ · · · ∧ pα0

k

k ∧ · · · ∧2dp
αd

1
1 ∧ · · · ∧2dp

αd
k

k .

Here S is a set of binary matrices (αi
j), where 0 ≤ i ≤ d, 1 ≤ j ≤ k.

Note that S does not contain all such matrices, for otherwise

SL ` φ(q01 , . . . , q
0
k, . . . , q

d
1 , . . . , q

d
k)≡>,

what contradicts to SL 0 A.
Then there exists a matrix α̃ such that α̃ /∈ S.
Let us prove that every cone validating A contains no more than d elements.
In fact, suppose there exists a cone C with root u such that C � A and C contains

more than d elements. Let us evaluate pi at j + u as α̃j
i for 0 ≤ j ≤ d. The valuation

of pi is well-defined since all j + u, 0 ≤ j ≤ d are different. But under this valuation
the disjunction turns out to be false, which contradicts to C � A.

There exist finitely many non-isomorphic cones with no more than d elements. By
completeness Λ is the logic of cones of this kind and so it is tabular.

Theorem 6.7 If Λ is an extension of SL, then Λ = SL + AΛ where AΛ = > or
AΛ = Am1,n1 t · · · tAmk,nk

, k ≥ 0.

Proof. This follows from Lemma 5.6 and the fact that every consistent proper ex-
tension of SL is a logic of a finite number of cones of the form Cm,n.

7 SL.tn-cones and Congruences in Zn.

Let us consider actions of the additive group Zn.

Proposition 7.1 The following is a correspondence between Zn-actions and SL.tn-
frames on a set W :

8. SL.TN -CONES AND SUBGROUPS OF ZN . 527

1. a Zn-action α : Zn×W → W corresponds to the frame (W,R1, . . . , R2n), where
for every i, x

R2i−1(x) � {α(ei, x)} ,
R2i(x) � {α(−ei, x)} ;

2. an SL.tn-frame (W,R1, . . . , R2n) corresponds to the Zn-action α : Zn×W → W
such that for every x ∈ W , m ∈ Zn

{α(m, x)} = Rm(x),

where
R(m1,...,mn)

� R̃m1

1 ◦ · · · ◦ R̃mn

n ,

R̃k
i = Rk

2i−1 if k ≥ 0, R̃k
i = R−k

2i if k < 0.

Proof. Almost the same as for the case of SLn.

So every SL.tn-frame corresponds to a Zn-set. Also it follows that p-morphisms
correspond to morphisms of Zn-sets:

Proposition 7.2 Let F ′ and F ′′ be SL.tn-frames. A surjection f : F ′ → F ′′ is a
p-morphism iff for all i, x

f(ei + x) = ei + f(x).

Proof. Almost the same as for the case of SLn.

Now let us show that SL.tn-cones correspond to congruences on Zn.

Proposition 7.3 The following is a correspondence between SL.tn-cones and con-
gruences on Zn:

1. a cone C with root u corresponds to the congruence ∼t
C such that

a ∼t
C b iff Ra(u) = Rb(u) in C;

2. a congruence ∼ corresponds to the cone C with the set of worlds W � Zn/∼, the
relations

[x]R2i−1 [y] iff [y] = [ei + x] ,
[x]R2i [y] iff [y] = [− ei + x] ,

and root [0].

Proof. Almost the same as for the case of SLn.

8 SL.tn-cones and Subgroups of Zn.

Proposition 8.1 The following is a correspondence between subgroups of Zn and
congruences on Zn:

1. a subgroup of Zn M corresponds to the congruence ∼t
M , where for every a,b

a ∼t
M b ⇔ a− b ∈M ;

528 Polymodal Logics of Commuting Functions

2. a congruence on Zn ∼ corresponds to the subgroup of Zn M � [0]∼.

Proof. This fact is well-known.

Proposition 8.2 Let M1, M2 be subgroups of Zn, ∼i the congruence corresponding
to Mi. Then

M1 ⊆M2 ⇔ ∼1 ⊆ ∼2.

Proof. Straightforward.

Now let us show that SL.tn-cones correspond to subgroups of Zn.

Corollary 8.3 The following is a correspondence between SL.tn-cones and subgroups
of Zn:

1. a cone C with root u corresponds to the group

M = {x ∈ Zn | x + u = u} ;

2. a group M corresponds to the cone C with the set of worlds W � Zn/M , the
relations

[x]R2i−1 [y] � [y] = [ei + x] ,
[x]R2i [y] � [y] = [− ei + x] ,

and root [0].

Corollary 8.4 Let M1, M2 be subgroups of Zn such that M1 ⊆ M2, Ci the cone
corresponding to Mi. Then the map f : C1 → C2 sending a + M1 to a + M2 is a
p-morphism.

9 Description of Finitely Axiomatisable Extensions of SL.tn.

Proposition 9.1 Every subgroup of Zn is generated by some linearly independent
vectors l1, . . . , lk, where 0 ≤ k ≤ n.

Proof. This follows from the fact that Zn is a finitely generated free Abelian group.

Notation 9.2 For m = (m1, . . . ,mn) ∈ Zn let

2m
� �

m1

1 . . .�mn

n ,

where �k
i = 2k

2i−1 if k ≥ 0, �k
i = 2−k

2i if k < 0.

Definition 9.3 Let M be the subgroup generated by l1, . . . , lk. Let us define the
formula AtM :

AtM � p≡2l1p ∧ · · · ∧ p≡2lkp.

This definition produces equivalent formulas AtM for different bases of M due to
the following lemma.

Lemma 9.4 Let M be generated by l1, . . . , lk; l ∈M . Then

SL.tn ` AtM ⊃ p≡2lp.

10. SL.TN -NORMAL FORMS. 529

Proof. Since l ∈M , it follows that

l =
k∑

i=1

tili.

for some ti ∈ Z. To complete the proof it is sufficient to note that

SL.tn ` AtM ⊃ p≡2tilip.

Lemma 9.5 Let C be the SL.tn-cone corresponding to a group M ⊆ Z
n. Then:

L(C) = SL.tn + AtM .

Proof. The inclusion (⊇) is obvious.
Let M be the subgroup of Zn generated by l1, . . . , lk.
Consider A /∈ SL.tn +AtM . Then by completeness there exists a cone C′ such that

C ′ � AtM and C′ 2 A. Let N be the group corresponding to C′.
Note that due to C′ � AtM we have li + N = N (otherwise we can evaluate p in

li +N and in N in different ways). Thus M ⊆ N .
Let us construct the map f : C → C′ as f(a+M)� a+N . f is well-defined since

M ⊆ N .
Obviously, f is a p-morphism, hence C 2 A.

So it is possible to axiomatise every logic of a finite number of cones:

Corollary 9.6 Let M1, . . . , Mk be the groups corresponding to SL.tn-cones C1, . . . ,
Ck. Then

L({C1, . . . , Ck}) = SL.tn + AtM1 t · · · tAtMk
.

Proof. Follows from Lemma 5.6 and Lemma 9.5.

Therefore it is possible to describe finitely axiomatisable extensions of SL.tn:

Corollary 9.7 Λ ⊇ SL.tn is finitely axiomatisable iff

Λ = L({C1, . . . , Ck}).
Corollary 9.8 If Λ ⊇ SL.tn is finitely axiomatisable, then

Λ = SL.tn + AtΛ,

where AtΛ = > or AtΛ = AtM1 t · · · tAtMk
, k ≥ 0.

10 SL.tn-normal Forms.

Definition 10.1 Let A be a 2n-modal formula. Let us define the degrees of A in the
following way:

dti(⊥) � 0,
dti(p) � 0,
dti(A1 ⊃A2) � max(dti(A1), dti(A2)),
dti(22j−1A) � dti(A), if i 6= j,
dti(22i−1A) � dti(A) + 1,
dti(22jA) � dti(A), if i 6= j,
dti(22iA) � dti(A) + 1.

530 Polymodal Logics of Commuting Functions

Lemma 10.2 Let A(p1, . . . , pk) be a 2n-modal formula,
d = (d1, . . . , dn) ∈ Nn , and dti(A) ≤ di. Then

SL.tn ` A≡ φ(2−dp1, . . . ,2
−dpk, . . . , p1, . . . , pk, . . . ,2

dp1, . . . ,2
dpk)

for some formula φ not containing modalities (here the formula φ contains
k(2d1 + 1) · · · (2dn + 1) variables; the (i, a1, . . . , an)-th variable is substituted by
2(a1,...,an)pi).

Proof. The claim is proved similarly to the case of SLn.

Proposition 10.3 Let ∼1, ∼2 be congruences on Zn, A a formula,
d = (d1, . . . , dn) ∈ Zn, dti(A) ≤ di, D � [−d,d], and

∼1|D = ∼2|D.

If Ci is an SL.tn-cone corresponding to ∼i, then C1 � A iff C2 � A.

Proof. The claim is proved similarly to the case of SLn.

11 The Finite Model Property for Extensions of SL.tn.

Proposition 11.1 If M is a subgroup of Zn of rank n, then Zn/M is finite.

Proof. Let M be the subgroup of Zn generated by l1, . . . , ln. Let us construct
D ⊆ Zn:

D � {a ∈ Zn | a = v1l1 + · · ·+ vnln, vi ∈ R, 0 ≤ vi < 1} .
Let us show that for all b ∈ Zn there exists a ∈ D such that b ∼t

M a:

∃t1, . . . , tn ∈ R b = t1l1 + · · ·+ tnln ⇒
b ∼t

M t1l1 + · · ·+ tnln ∼t
M s1l1 + · · ·+ snln

where si is the fractal part of ti; such ti exist since the rank of M is n. Therefore it
is sufficient to take a� s1l1 + · · ·+ snln ∈ D.

Then |Zn/M | ≤ |D| <∞, D is finite by construction.

Lemma 11.2 Given a formula A and an SL.tn-cone C such that C 2 A, there exists
a finite cone C′ such that C � C′ and C′ 2 A.

Proof. Let di � dti(A) be the degrees of the formula A, M the group corresponding
to C. Let M be generated by linearly independent vectors l1, . . . , lk.

Let d� (d1, . . . , dn), D � [−d,d] ⊆ Zn.
Then there exist lk+1, . . . , ln ∈ Zn such that l1, . . . , ln are linearly independent and

D ⊆ {a ∈ Zn | a = v1l1 + · · ·+ vnln, vi ∈ R, ∀i > k |vi| < 1/2}

(for the inclusion, we can choose the vectors lk+1, . . . , ln to be sufficiently long).
Let M ′ be the group generated by l1, . . . , ln, C′ the SL.tn-cone corresponding to

M ′, u′ the root of C′.
Let us check that ∀a,b ∈ D a ∼t

C′ b ⇔ a ∼t
C b:

12. EXTENSIONS OF THE LOGIC SL.T. 531

(⇐) a ∼t
C b ⇒ a ∼t

C′ b is obvious since M ⊆M ′.

(⇒) a ∼t
C′ b implies ∃t1, . . . , tn ∈ Z a− b = t1l1 + · · ·+ tnln

∃v1, . . . , vn ∈ R a−b = v1l1 + · · ·+vnln where |vi| < 1 for i > k since a,b ∈ D.
ti = vi since l1, . . . , ln are linearly independent, hence |ti| < 1 for i > k, so

ti = 0 for i > k.
Hence a− b = t1l1 + · · ·+ tklk, so a ∼C b.

Therefore C′ 2 A.
Let u be the root of C, let us construct the map f : C → C′ as f(a+ u)� a+M ′,

f is well-defined:

a + u = b + u⇒ a ∼t
C b ⇒ a ∼t

C′ b ⇔ a + u′ = b + u′.

Obviously, f is a surjection.
f is a p-morphism due to the inclusion M ⊆M ′.
It remains to notice that C′ is finite since l1, . . . , ln are linearly independent.

Theorem 11.3 Every extension of SL.tn has the finite model property.

Proof. The theorem readily follows from Lemma 11.2 taking into account the com-
pleteness of every extension of SL.tn.

This theorem gives us a way to obtain the decidability of finitely axiomatisable
extensions of SL.tn:

Corollary 11.4 Every finitely axiomatisable extension of SL.tn is decidable.

12 Extensions of the Logic SL.t.

Definition 12.1

1. Define the following SL.t-cones:
• Ct0 is the cone corresponding to the relation =,
• Ctn, n > 0, is the cone corresponding to the equivalence modulo n relation.

2. For n > 0 let Atn � p≡2np.

The cone Ctn can be pictured as a cycle containing the points 0, 1, . . . , n−1. Every
point i is related to the next (i+1) point (and n− 1 is related to 0). We assume that
the root of Ctn is 0.

Proposition 12.2 Ctl � Atn iff l divides n.

Proof.
(⇐) Note that Ctn � Atn.

Consider the map f : Ctn → Ctl such that f(x+nZ)� x+ lZ. f is well-defined
since l divides n. Obviously, f is a p-morphism of Ctn onto Ctl, hence Ctl � Atn.

(⇒) Let us define the valuation θ in Ctl as θ(p)� {nZ}.
Note that (Ctl, lZ, θ) � p.
If l does not divide n, then n + lZ 6= lZ, hence (Ctl, lZ, θ) 2 2np, that is,

Ctl 2 Atn.

532 Polymodal Logics of Commuting Functions

Lemma 12.3

1. All Ctn, Ct0 are pairwise non-isomorphic.
2. If C is an SL.t-cone, then C is isomorphic either to Ct0 or to Ctl for some l.

Proof. Obviously, Ct0 is not isomorphic to any of Ctn.
Let C be an SL.t-cone with root u.
If all n+ u, n ∈ Z, are different, then obviously C is isomorphic to Ct0.
Otherwise let us choose the minimal n > 0 such that n + u = u. Then C is

isomorphic to Ctn (since ∼C is the equivalence modulo n relation).

Lemma 12.4 The logics of the cones of SL.t are the following:

1. L(Ct0) = SL.t,
2. L(Ctn) = SL.t + Atn.

Proof.
1. Follows from 1.2.

2. The inclusion (⊇) is obvious.
If A /∈ SL.t + Atn, then there exists an SL.t-cone C such that C � Atn and

C 2 A. By Lemma 12.3, C = Ctl for some l since Ct0 2 Atn. By Proposition 12.2,
l divides n. Hence the map f : Ctn → Ctl defined as f(a + nZ) � a + lZ is a
p-morphism, and so Ctn 2 A.

Remark 12.5 If A(p1, . . . , pk) is a 2-modal formula, dt1(A) ≤ d, then

SL.t ` A≡ φ(2−dp1, . . . ,2
−dpk, . . . , p1, . . . , pk, . . . ,2

dp1, . . . ,2
dpk),

for some formula φ not containing modalities.

The following theorem was obtained first (using another method) by A. A. Much-
nik [3].

Theorem 12.6 Every consistent proper extension of SL.t is tabular.

Proof. Consider an extension Λ ⊇ SL.t. Since every extension of a tabular logic is
tabular, we can consider only the case when Λ = SL.t +A, where SL.t 0 A.

Let d be the degree of A, then

SL.t ` A≡ φ(2−dp1, . . . ,2
−dpk, . . . ,2

dp1, . . . ,2
dpk).

Let us write φ in the perfect disjunctive normal form:

SL.t ` φ(2−dp1, . . . ,2
−dpk, . . . ,2

dp1, . . . ,2
dpk)≡∨

α∈S

p
α−d

1
1 ∧ · · · ∧ pα−d

k

k ∧ · · · ∧2dp
αd

1
1 ∧ · · · ∧2dp

αd
k

k .

Here S is a set of binary matrices (αi
j), where 1 ≤ j ≤ k, −d ≤ i ≤ d.

12. EXTENSIONS OF THE LOGIC SL.T. 533

Note that S does not contain all such matrices, for otherwise

SL.t ` φ(q−d
1 , . . . , q−d

k , . . . , qd
1 , . . . , q

d
k)≡>,

what contradicts to SL.t 0 A.
Hence there exists a matrix α̃ such that α̃ /∈ S.
Let us prove that every cone validating A contains no more than 2d elements.
In fact, suppose there exists a cone C with root u such that C � A and C contains

more than 2d elements. We can evaluate pi at j + u as α̃j
i for −d ≤ j ≤ d. The

valuation of pi is well-defined since all j + u, −d ≤ j ≤ d, are different. But under
this valuation the disjunction turns out to be false, which contradicts to C � A.

There exist finitely many non-isomorphic cones with no more than 2d elements. By
completeness it follows that Λ is the logic of cones of this kind and thus it is tabular.

Theorem 12.7 If Λ is an extension of SL.t, then Λ = SL.t + AtΛ where AtΛ = >
or AtΛ = Atn1 t · · · tAtnk

, k ≥ 0.

Proof. This follows from Lemma 5.6 and the fact that every consistent proper ex-
tension of SL.t is a logic of a finite number of cones of the form Ctn.

References

[1] F. Bellissima. On the lattice of extensions of the modal logics K.Altn. Arch. Math. Logic,
27(2):107–114, 1988.

[2] P. M. Cohn. Universal Algebra. D. Reidel, 1981.

[3] N. M. Ermolaeva and A. A. Muchnik. Pretabular temporal logic (in russian). In Investigations
in non-classical logics, pages 288–297. Moscow, Nauka, 1979.

[4] D. Gabbay and V. Shehtman. Products of modal logics, part 1. Logic Journal of the IGPL,
6(1):73–146, 1998.

[5] M. Kracht. Highway to the danger zone. Journal of Logic and Computation, 5:93–109, 1995.

[6] M. Kracht. Tools and techniques in modal logic. Studies in Logic and Found. Math., 142, 1999.

[7] A. Prior. Past, present, and future. Oxford, 1967.

[8] K. Segerberg. On the logic of tomorrow. Theoria, 33:45–52, 1967.

[9] K. Segerberg. Modal logics with functional alternative relations. Notre Dame Journal of Formal
Logic, 27:504–522, 1986.

Received June 2002

PSpace Reasoning with the
Description Logic ALCF(D)

CARSTEN LUTZ, Institute for Theoretical Computer Science,
Technical University Dresden, 01062 Dresden, Germany.
E-mail: lutz@tcs.inf.tu-dresden.de

Abstract

Description Logics (DLs), a family of formalisms for reasoning about conceptual knowledge, can
be extended with concrete domains to allow an adequate representation of “concrete qualities” of
real-worlds entities such as their height, temperature, duration, and size. In this paper, we study
the complexity of reasoning with the basic DL with concrete domains ALC(D) and its extension
with so-called feature agreements and disagreements ALCF(D). We show that, for both logics,
the standard reasoning tasks concept satisfiability, concept subsumption, and ABox consistency are
PSpace-complete if the concrete domain D satisfies some natural conditions.

Keywords: Description Logics, Concrete Domains, Feature (Dis)Agreements, Computational Com-

plexity

1 Motivation

Description Logics (DLs) are a popular family of logical formalisms for the representa-
tion of and reasoning about conceptual knowledge [8]. The basic entity for knowledge
representation with DLs are so-called concepts which can be understood as logical
formulas and are constructed from concept names (unary predicates), role names
(binary relations), and concept constructors. For example, the following concept is
formulated in the basic propositionally closed DL ALC [39] and describes processes
that are supervised by a human operator and involve only workpieces that are not
radioactive:

Process u ∃operator.Human u ∀workpiece.¬Radioactive.

In this concept, Process, Human, and Radioactive are concept names while operator
and workpiece are role names.

A major limitation of knowledge representation with Description Logics such as
ALC is that “concrete qualities” of real world entities, such as their weight, temper-
ature, and spatial extension, cannot be adequately represented. For example, ALC
does not offer suitable means of expressivity for extending the above description of
a process with information about its cost and duration, or about the relationship
between the process’ cost and the hourly wage of its operator. To allow an adequate
representation of concrete qualities of real-world entities, Description Logics are fre-
quently extended by so-called concrete domains, which have first been proposed by
Baader and Hanschke in [4] and then further developed in several directions, c.f. the
survey article [32]. A concrete domain consists of a set such as the natural numbers
and a set of predicates such as the unary “=60” and the binary “>” with the obvious,

535L. J. of the IGPL, Vol. 10 No. 5, pp. 535–568 2002 c©Oxford University Press

536 PSpace Reasoning with the Description Logic ALCF(D)

fixed extension. The integration of concrete domains into the Description Logic ALC
is achieved by adding

1. so-called abstract features, which are functional relations;
2. so-called concrete features, which are (partial) functions associating values from

the concrete domain (e.g., natural numbers) to logical objects;
3. a concrete domain-based concept constructor.

The DL that is obtained by extending ALC in this way is called ALC(D), where
D denotes a concrete domain that can be viewed as a parameter to the logic. For
example, when using a suitable concrete domain D, we can extend the above process
description as desired: the ALC(D)-concept

Process u ∃duration.=60 u ∃cost, operator wage.>

describes a process whose duration is 60 minutes and which costs more than the
(hourly) wage of its operator. Here, the second and third conjunct are instances of
the concrete domain concept constructor, operator is an abstract feature, and duration,
cost, and wage are concrete features.

The representation of concrete qualities has been identified as a crucial task for a
vast number of applications such as mechanical engineering [6], temporal and spatial
reasoning [16, 27], the semantic web [23, 24], and reasoning about entity relationship
(ER) diagrams [31]. Consequently, apart fromALC(D) many other Description Logics
with concrete domains have been proposed [16, 18, 20, 24, 27, 30, 29] and several
implemented Description Logic reasoners such as classic [11] and RACER [17] provide
for some kind of concrete domain. However, despite the considerable interest in DLs
with concrete domains and the fact that complexity analysis plays an important role in
the area of Description Logics, only very recently researchers have begun to investigate
the computational complexity of reasoning with such logics [30]. The current paper
is devoted to establishing tight complexity bounds for reasoning with the fundamental
Description Logic with concrete domains ALC(D). More precisely, we do not only
consider the DL ALC(D), but also its extension with so-called feature agreements
and feature disagreements, two concept constructors that are quite closely related
to concrete domains. Using feature (dis)agreements, one can for example describe
processes that have two subprocesses, one of which works on the same workpiece as
the mother process, and the other on a different one:

Process u (workpiece ↓ subprocess1 workpiece) u (workpiece ↑ subprocess2 workpiece).

In this concept, the second conjunct uses the feature agreement constructor, the third
conjunct uses the feature disagreement constructor, and all lowercase names denote
abstract features.

There are several motivations for combining concrete domains and feature (dis)agree-
ments in a single DL. First, there exists an obvious syntactic similarity between feature
(dis)agreements and the concrete domain concept constructor: both take sequences of
features as arguments. As we shall see in this paper, the similarity between concrete
domains and feature (dis)agreements is not only syntactical: they are also amenable
to similar algorithmic techniques. Second, the Description Logic ALCF(D) resulting

1. MOTIVATION 537

from the extension of ALC(D) with feature (dis)agreements has already found appli-
cations in knowledge representation [25]. And third, the PSpace-completeness result
for reasoning withALCF(D) proved in Section 3 allows to show PSpace-completeness
of a well-known temporal Description Logic [3].

Let us now outline the organization of this paper and describe the obtained results in
more detail.
In Section 2, we formally introduce concrete domains and the Description Logics
ALC(D) and ALCF(D). Some example concrete domains are defined.
In Section 3, tight PSpace complexity bounds for the satisfiability of ALC(D)-
concepts and ALCF(D)-concepts are established. More precisely, we devise a tableau
algorithm for deciding satisfiability of ALCF(D)-concepts which uses the so-called
tracing technique. This algorithm yields a PSpace upper bound for ALCF(D)-
concept satisfiability if the following conditions are satisfied:

• deciding the satisfiability of finite conjunctions of predicates from the concrete
domain D (this task is called “D-satisfiability” in what follows) is in PSpace;

• the concrete domain is “admissible”, i.e., it satisfies some weak closure conditions
which, in this paper, we will generally assume to hold.

The corresponding PSpace lower bound is easily obtained since ALC-concept satis-
fiability is already PSpace-hard [39]. Hence, both ALC(D)-concept satisfiability and
ALCF(D)-concept satisfiability are PSpace-complete if D-satisfiability is in PSpace.
Since concept subsumption, another important reasoning task for Description Log-
ics, can easily be reduced to concept (un)satisfiability and vice versa, we also obtain
thatALC(D)-concept subsumption andALCF(D)-concept subsumption are PSpace-
complete if D-satisfiability is in PSpace. Note that adding concrete domains and
feature (dis)agreements to ALC does thus not increase the complexity of reasoning.
This is particularly interesting since there exist several seemingly “harmless” means
of expressivity like acyclic TBoxes and inverse roles, whose addition to ALC(D) makes
reasoning significantly more difficult—namely NExpTime-complete [28, 30, 1]. Thus,
the logic ALCF(D) is situated on the boundary of polynomial space complexity.
Section 4 is devoted to extending the results from Section 3 to another standard rea-
soning task called ABox consistency. ABoxes are commonly used to describe snap-
shots of the real world [7, 12, 17, 38, 41]. For example, the following ALC(D)-ABox
describes a process a and its subprocess b:

a : Process b : Process (a, b) : subprocess (a, x) : duration x : =60

We use the precompletion technique from [13, 21] to show that ALCF(D)-ABox con-
sistency is PSpace-complete if D-satisfiability is in PSpace. As in the case of concept
satisfiability, this implies that the same holds for ALC(D)-ABox consistency.
In Section 5, we demonstrate the relevance of the results obtained in Sections 3 and 4
by considering two example concrete domains: the concrete domain A based on the
rational numbers with predicates such as <27, ≥, and +; and the concrete domain S
based on the set of regions in two-dimensional space with a binary predicate for each
of the well-known RCC8 topological relations [10]. We show that both A-satisfiability
and S-satisfiability is in NP and thus obtain that, for D ∈ {A, S}, ALCF(D)-concept

538 PSpace Reasoning with the Description Logic ALCF(D)

satisfiability, ALCF(D)-concept subsumption, and ALCF(D)-ABox consistency are
PSpace-complete.

The paper ends with a conclusion in Section 6.

2 Preliminaries

We start this section with introducing concrete domains formally, then define some
example concrete domains, and finally describe the Description Logic ALCF(D) in
detail.

Definition 2.1 (Concrete Domain) A concrete domain D is a pair (∆D,ΦD), where
∆D is a set and ΦD a set of predicate names. Each predicate name P ∈ ΦD is asso-
ciated with an arity n and an n-ary predicate PD ⊆ ∆n

D. Let V be a set of variables.
A predicate conjunction of the form

c =
∧
i<k

(x(i)
0 , . . . , x(i)

ni
) : Pi,

where Pi is an ni-ary predicate for i < k and the x(i)
j are variables from V, is called

satisfiable iff there exists a function δ mapping the variables in c to elements of ∆D
such that (δ(x(i)

0), . . . , δ(x(i)
ni)) ∈ PDi for each i < k. Such a function is called a

solution for c. A concrete domain D is called admissible if the following conditions
are satisfied:

1. ΦD contains a name >D for ∆D;
2. ΦD is closed under negation, i.e., for each n-ary predicate P ∈ ΦD, we find another

predicate P ∈ ΦD of arity n such that P
D

= ∆n
D \ PD;

3. the satisfiability problem for finite conjunctions of predicates is decidable.

When devising algorithms for reasoning with Description Logics that are equipped
with a concrete domain D, one important subtask usually is to decide the satisfiabil-
ity of finite conjunctions of predicates from ΦD as described in Definition 2.1 [4, 30].
For brevity, we refer to this task as D-satisfiability. It is obvious that D-satisfiability
should be decidable if the concrete domain D is to be used in a DL reasoning algo-
rithm. However, usually the slightly stronger requirement that D should be admissible
is adopted. In this article, we follow this tradition and generally assume concrete do-
mains to be admissible.

Before we proceed to defining the Description Logic ALCF(D) itself, let us in-
troduce two example concrete domains, an arithmetic one and a spatial one. The
arithmetic concrete domain A is defined by setting ∆A := Q (i.e., the set of rational
numbers), and defining ΦA as the (smallest) set containing the following predicates:

• a unary predicate >A with (>A)A = Q and a unary predicate ⊥A with (⊥A)A = ∅;
• unary predicates int and int with (int)A = Z (where Z denotes the integers) and

(int)A = Q \ Z;
• unary predicates Pq for each P ∈ {<,≤,=, 6=,≥, >} and each q ∈ Q with (Pq)A =
{q′ ∈ Q | q′ P q};

2. PRELIMINARIES 539

a DC b a EC b a PO b a TPP b a NTPP b

ba
a

b

a

b
a b a b

Fig. 1. The RCC8 relations in two-dimensional space.

• binary predicates <,≤,=, 6=,≥, > with the obvious extension;
• ternary predicates + and + with (+)A = {(q, q′, q′′) ∈ Q3 | q + q′ = q′′} and

(+)A = Q3 \ (+)A.

As an example for an (unsatisfiable) conjunction of A-predicates, consider the follow-
ing one:

=3(x) ∧>1(y) ∧ int(y) ∧+(x, y, z) ∧ ∗(x, y, z′) ∧ ≥(z, z′).

It is easily checked that the concrete domain A satisfies Conditions 1 and 2 of ad-
missibility (Condition 3 will be treated in Section 5). The other concrete domain
considered in this paper is related to the RCC-8 calculus and is called S. RCC-8
provides a set of eight jointly exhaustive and pairwise disjoint relations that describe
the possible relationships between any two regular closed regions1 in a topological
space [34, 10, 36]. For 2D space, these relations are illustrated in Figure 1, where
the equality relation EQ, the inverse TPPI of TPP, and the inverse NTPPI of NTPP
have been omitted. The concrete domain S is defined by setting ∆S to the set RCR2

of all regular closed subsets of R2 and defining ΦS as the (smallest) set containing the
following predicates:

• a unary predicate>S with (>S)S = RCR2 and a unary predicate⊥S with (⊥S)S = ∅;
• binary predicates rel and rel for each of the topological relations rel such that

(rel)S = {(r1, r2) ∈ RCR2 ×RCR2 | r1 rel r2}.

An example (unsatisfiable) S-conjunction is

>S(x) ∧DC(x, y) ∧ EC(y, z) ∧NTPP (z, x) ∧ PO(y, y).

It is easily checked that S satisfies Conditions 1 and 2 of admissibility. For Property 3,
we again refer to Section 5.

Based on concrete domains, we can now define ALCF(D)-concepts.

Definition 2.2 (ALCF(D) syntax) Let NC, NR, and NcF be pairwise disjoint and
countably infinite sets of concept names, role names, and concrete features. Further-
more, let NaF be a countably infinite subset of NR. The elements of NaF are called
abstract features. An abstract path p is a composition f1 · · · fn of n abstract fea-
tures (n ≥ 1). A concrete path u is a composition f1 · · · fng of n abstract features
f1, . . . , fn (n ≥ 0) and a concrete feature g. Let D be a concrete domain. The set of
ALCF(D)-concepts is the smallest set such that

1A region r is regular closed if it satisfies ICr = r, where C is the topological closure operator and I is the

topological interior operator.

540 PSpace Reasoning with the Description Logic ALCF(D)

1. every concept name is a concept
2. if C and D are concepts, R is a role name, g is a concrete feature, p1 and p2 are

abstract paths, u1, . . . , un are concrete paths, and P ∈ ΦD is a predicate of arity
n, then the following expressions are also concepts:

¬C, C uD, C tD, ∃R.C, ∀R.C, p1↑p2, p1↓p2, ∃u1, . . . , un.P, and g↑.

We use > to abbreviate A t ¬A, where A is an arbitrary concept name, and ⊥ to
abbreviate ¬>. Moreover, we write ∀p.C for ∀f1. · · · ∀fk.C if p = f1 · · · fk and u↑
for ∀f1. · · · ∀fk.g↑ if u = f1 · · · fkg. An ALCF(D)-concept that does not contain
subconcepts p1↑p2 and p1↓p2 is called ALC(D)-concept. An ALC(D)-concept that
does not use any abstract or concrete features is called ALC-concept.

Throughout this paper, we use the letter A to denote concept names, C, D, and E
to denote (possibly complex) concepts, R to denote role names, f to denote abstract
features, g to denote concrete features, p to denote abstract paths, u to denote concrete
paths, and P to denote predicate names from the concrete domain.

The Description Logic ALCF(D) is equipped with a Tarski-style set-theoretic se-
mantics that incorporates the concrete domain D.

Definition 2.3 (ALCF(D) semantics) An interpretation I is a pair (∆I , ·I), where
∆I is a set called the domain and ·I the interpretation function. The interpretation
function maps

• each concept name C to a subset CI of ∆I ,
• each role name R to a subset RI of ∆I ×∆I ,
• each abstract feature f to a partial function fI from ∆I to ∆I , and
• each concrete feature g to a partial function gI from ∆I to ∆D.

If u = f1 · · · fng is a concrete path, then uI(d) is defined as gI(fIn · · · (fI1 (d)) · · ·),
and similarly for abstract paths. The interpretation function is extended to arbitrary
concepts as follows:

(¬C)I := ∆I \ CI

(C uD)I := CI ∩DI

(C tD)I := CI ∪DI

(∃R.C)I := {d ∈ ∆I | {e | (d, e) ∈ RI} ∩ CI 6= ∅}
(∀R.C)I := {d ∈ ∆I | {e | (d, e) ∈ RI} ⊆ CI}
(p1↑p2)I := {d ∈ ∆I | ∃e1, e2 ∈ ∆I : pI1 (d) = e1, p

I
2 (d) = e2, and e1 6= e2}

(p1↓p2)I := {d ∈ ∆I | ∃e ∈ ∆I : pI1 (d) = pI2 (d) = e}
(∃u1, . . . , un.P)I := {d ∈ ∆I | ∃x1, . . . , xn ∈ ∆D : uIi (d) = xi for 1 ≤ i ≤ n

and (x1, . . . , xn) ∈ PD}
(g↑)I := {d ∈ ∆I | gI(d) undefined}

An interpretation I is a model of a concept C iff CI 6= ∅. A concept C is satisfiable
iff it has a model. C is subsumed by a concept D (written C v D) iff CI ⊆ DI for
all interpretations I.

3. CONCEPT SATISFIABILITY 541

It is well-known that, in Description Logics providing for full negation such asALCF(D),
subsumption can be reduced to (un)satisfiability and vice versa: C v D iff C u¬D is
unsatisfiable and C is satisfiable iff C 6v ⊥. This allows us to concentrate on concept
satisfiability in the remainder of this paper.

Note that feature (dis)agreements p1↑p2 and p1↓p2 take abstract paths as arguments
and are thus not concerned with elements from the concrete domain. However, if the
concrete domain provides for equality and inequality predicates (as both A and S do),
it is obvious that we can express (dis)agreement of concrete paths using the concrete
domain constructor. Also note that a ∈ (p1↑p2)I implies that pI1 (a) and pI1 (a) are
defined. Thus, p1↑p2 is not the negation of p1↓p2 (also see Section 3.2 and Figure 3).

We should like to comment on a minor difference between our variant of ALCF(D)
and the original version of ALC(D) as defined by Baader and Hanschke [4]: instead of
separating concrete and abstract features, Baader and Hanschke define only one type
of feature which is interpreted as a partial function from ∆I to ∆I ∪∆D. We prefer
the “typed” approach since, in our opinion, it improves the readability of concepts.
Moreover, it is not hard to see that the combined features can be “simulated” using
pairs of concrete and abstract features.

3 Concept Satisfiability

In the following, we devise a tableau algorithm for deciding satisfiability of ALCF(D)-
concepts that needs at most polynomial space if D is admissible and D-satisfiability
is in PSpace. The algorithm also yields tight complexity bounds if D-satisfiability is
NExpTime-complete or ExpSpace-complete.

3.1 Overview

Since there exist rather different variants of tableau algorithms in Modal Logic and
First Order Logic, we call the family of tableau algorithms commonly used for De-
scription Logics completion algorithms . The reader is referred to [9] for an overview
over such algorithms. Completion algorithms are characterized by an underlying data
structure, a set of completion rules operating on this data structure, and a (possibly
trivial) strategy for applying the rules. In principle, a completion algorithm starts
with an initial data structure induced by the concept D whose satisfiability is to
be decided and repeatedly applies completion rules according to the strategy. Re-
peated rule application can be thought of as making implicit knowledge explicit or
as constructing a canonical model for the input concept (represented in terms of the
underlying data structure). The algorithm stops if it encounters a contradiction or if
no more completion rules are applicable. It returns satisfiable iff the latter is the case
and no obvious contradiction was found, i.e., if the algorithm succeeds in constructing
a (witness for a) model of the input concept. Otherwise, it returns unsatisfiable.

If a PSpace upper bound is to be proved using a completion algorithm, some
additional efforts have to be made. To simplify discussion, let us consider the logic
ALC for the moment [39]. A naive completion algorithm for ALC does not yield a
PSpace upper bound since there exist satisfiable ALC-concepts all of whose models
are of size exponential in the concept length [19, 39]. Thus, an algorithm keeping

542 PSpace Reasoning with the Description Logic ALCF(D)

f

f↓ff

f

Fig. 2. A model of the ALCF(D)-concept f↓ff .

the entire (representation of a) model in memory needs exponential space in the
worst case. However, there exists a well-known way to overcome this problem: the
key observation is that canonical models I constructed by completion algorithms
are tree models, i.e., they have the form of a tree if viewed as a graph with ∆I
the set of vertexes and

⋃
R∈NR

RI the set of edges. It is sufficient to consider only
such tree models since ALC has the tree model property, which means that each
satisfiable concept has a tree model [19]. To check for the existence of tree models for
a given concept, we may try to construct one by performing depth-first search over
role successors keeping only paths of the tree model in memory. Since, in the case of
ALC, the length of paths is at most polynomial in the length of the input concept
[19], this technique—which is known as tracing [39]—yields an algorithm that needs
at most polynomial space in the worst case. Completion algorithms for ALC-concept
satisfiability that use tracing are very similar to the well-known K-world algorithm
from Modal Logic [26].

The tracing technique has to be modified to deal with ALCF(D)-concepts for two
reasons:

(1) Due to the presence of feature (dis)agreements, ALCF(D) does not enjoy the
tree model property. For example, the concept f↓ff is satisfiable but, due to the
functionality of the abstract feature f , has only non-tree models such as the one
depicted in Figure 2.

(2) Due to the presence of the concrete domain constructor, even in tree models the
paths of the tree cannot be considered in isolation. For example, the canonical tree
model for the concept ∃(f1f2g), (f ′1f ′2g′).P is comprised of two paths with edge labels
f1, f2, g and f ′1, f

′
2, g

′, respectively. However, since the final node of the first path and
the final node of the second path are elements of the concrete domain that must be
related via the predicate P , we have to consider both paths together.

Since only abstract features (but no role names from NR \ NaF) are admitted in fea-
ture (dis)agreements and the concrete domain constructor, it is not hard to see that
the described problems are due to substructures of models whose elements are con-
nected by abstract features, only. Based on this observation, we define generalized
tree models.

Definition 3.1 (Generalized Tree Model) Let I be a model of an ALCF(D)-

3. CONCEPT SATISFIABILITY 543

concept C and define a relation ∼ on ∆I as follows:

d ∼ e iff d = e or there exists an abstract path f1 · · · fk and domain elements
d0, . . . , dk ∈ ∆I such that d0 = d, dk = e, and di+1 = fIi+1(di) or
di = fIi+1(di+1) for i < k.

It is easy to see that ∼ is an equivalence relation. By [d]∼, we denote the equivalence
class of d ∈ ∆I w.r.t. ∼. The model I is a generalized tree model of C iff I is a model
of C and the graph (VI , EI) defined as

VI := {[d]∼ | d ∈ ∆I}
EI := {([d]∼, [e]∼) | ∃d′ ∈ [d]∼, e′ ∈ [e]∼ such that

(d′, e′) ∈ RI for some R ∈ NR \ NaF}

is a tree.

It will be a byproduct of the results obtained in this section that ALCF(D) has the
generalized tree model property, i.e., that every satisfiable ALCF(D)-concept C has
a generalized tree model. Note that the identification of some kind of tree model
property is usually very helpful for devising decision procedures [42, 15]. Our com-
pletion algorithm for ALCF(D) uses tracing on generalized tree models: it keeps
only fragments of models I in memory that induce paths in the abstraction (VI , EI).
Intuitively, such a fragment consists of a sequence of “clusters” of domain elements,
where each cluster is an equivalence class w.r.t. the relation ∼, i.e., a set of elements
connected by abstract features. Succeeding clusters in the sequence are connected
by roles from NR \ NaF. Fortunately, as we shall see later, there always exists a gen-
eralized tree model I in which the cardinality of clusters and the depth of the tree
(VI , EI) is at most polynomial in the length of the input concept. We use these
facts to devise a completion algorithm for ALCF(D)-concept satisfiability running in
polynomial space.

The polynomial size of object clusters is also exploited for dealing with the con-
crete domain. Along with constructing the “logical part” of the model for the input
concept, our completion algorithm will build up a predicate conjunction describing
its “concrete part”. This predicate conjunction is required to be satisfiable in order
for the constructed data structure to represent a model (see the general description
of completion algorithms above). However, if this is done in a straightforward way,
the number of conjuncts in the predicate conjunction may become exponential in the
length of the input concept—see e.g. the algorithm for ALC(D) concept satisfiability
presented in [4]. In our algorithm, we address this problem as follows: domain ele-
ments that are in different clusters of the generalized tree model are not connected
through abstract paths. Therefore, it cannot be enforced that concrete successors of
domain elements from different clusters are related by a concrete predicate. This, in
turn, means that it is sufficient to separately check the satisfiability of predicate con-
junctions associated with clusters. Since the size of predicate conjunctions associated
with a cluster is at most polynomial in the length of the input concept, this separate
checking allows to devise a PSpace algorithm (if D-satisfiability is in PSpace).

544 PSpace Reasoning with the Description Logic ALCF(D)

¬(C uD) ¬C t ¬D ¬(C tD) ¬C u ¬D
¬(∃R.C) ∀R.¬C ¬(∀R.C) ∃R.¬C
¬(p1↑p2) p1↓p2 t ∀p1.⊥ t ∀p2.⊥ ¬(p1↓p2) p1↑p2 t ∀p1.⊥ t ∀p2.⊥

¬¬C C
¬(∃u1, . . . , un.P) ∃u1, . . . , un.P t u1↑ t · · · t un↑

¬(g↑) ∃g.>D

Fig. 3. The NNF rewrite rules.

3.2 The Completion Algorithm

In the following, we assume that concepts are in negation normal form (NNF), i.e.,
that negation occurs only in front of concept names. Every ALCF(D)-concept C can
be transformed into an equivalent one in NNF by exhaustively applying the rewrite
rules displayed in Figure 3 (recall that P denotes the negation of the predicate P).
Let us start the presentation of the completion algorithm by introducing ABoxes as
the underlying data structure.

Definition 3.2 (ABox Syntax) Let Oa and Oc be countably infinite and mutually
disjoint sets of abstract objects and concrete objects. If C is an ALCF(D)-concept,
R ∈ NR a role name, g a concrete feature, a, b ∈ Oa, x, x1, . . . , xn ∈ Oc, and P ∈ ΦD
with arity n, then

a : C, (a, b) : R, (a, x) : g, (x1, . . . , xn) : P, and a 6∼ b

are ABox assertions. An ABox is a finite set of such assertions.

Let A be an ABox, a, b ∈ Oa and x ∈ Oc. We write A(a) to denote the set of concepts
{C | a : C ∈ A}. The abstract object b is called R-successor of a in A iff (a, b) : R
is in A. The notions g-successor (for concrete features g), p-successor (for abstract
paths p), and u-successor (for concrete paths u) are defined analogously. In what
follows, we used a and b to denote abstract objects and x to denote concrete objects.

For proving the soundness and completeness of the completion algorithm to be
devised, it is convenient to equip ABoxes with a semantics:

Definition 3.3 (ABox Semantics) In interpretations I, the interpretation func-
tion ·I maps, additionally, abstract objects a to elements aI ∈ ∆I and concrete
objects x to elements xI ∈ ∆D. An interpretation I satisfies an assertion

a : C iff aI ∈ CI ;
(a, b) : R iff (aI , bI) ∈ RI ;
(a, x) : g iff gI(aI) = xI ;

(x1, . . . , xn) : P iff (xI1 , . . . , x
I
n) ∈ PD;

a 6∼ b iff aI 6= bI .

An interpretation I is called a model of an ABox A iff it satisfies every assertion in A.
An ABox is called consistent iff it has a model.

3. CONCEPT SATISFIABILITY 545

It should be obvious how ABoxes can be used to represent models. If the satis-
fiability of a concept D is to be decided, the completion algorithm is started with
the initial ABox for D defined as AD = {a : D}. To keep the presentation of the
completion rules succinct, we introduce an operation that allows to introduce new
objects on paths and concrete paths.

Definition 3.4 (“+” operation) An abstract or concrete object is called fresh w.r.t.
an ABox A if it does not appear in A. Let p = f1 · · · fn be an abstract path (resp.
u = f1 · · · fng be a concrete path). By A+ apb (resp. A+ aux), where a ∈ Oa is used
in A and b ∈ Oa (resp. x ∈ Oc), we denote the ABox A′ which can be obtained from
A by choosing distinct objects b1, . . . , bn ∈ Oa which are fresh in A and setting

A′ := A∪ {(a, b1) : f1, . . . , (bn−1, b) : fn}
(resp. A′ := A∪ {(a, b1) : f1, . . . , (bn−1, bn) : fn, (bn, x) : g}.

When nesting the + operation, we omit brackets writing, e.g., A + ap1b + bp2c for
(A+ ap1b) + bp2c.

The completion rules can be found in Figure 4. Note that the Rt rule is nondeter-
ministic, i.e., it has more than one possible outcome. Thus, the described completion
algorithm is a nondeterministic decision procedure. Such an algorithm accepts its
input (i.e. returns satisfiable) iff there is some way to make the nondeterministic
decisions such that a positive result is obtained. A convenient way to think of nonde-
terministic rules is that they “guess” the correct outcome, i.e., if there is an outcome
which, if chosen, leads to a positive result, then this outcome is in fact considered.

Most completion rules are standard and known from, e.g., [5] and [22]. The R∃f and
R∀f rules are special in that they only deal with concepts ∃f.C and ∀f.C where f is
an abstract feature. As we will see later, concepts ∃R.C and ∀R.C with R ∈ NR \NaF

are not treated by completion rules but through recursion calls of the algorithm. The
Rfe rule also deserves some attention: it ensures that, for any object a ∈ Oa, there
exists at most a single f -successor for each f ∈ NaF and at most a single g-successor
for each g ∈ NcF. Redundant successors are eliminated by identification. This process
is often referred to as fork elimination (hence the name of the rule). In many cases,
fork elimination is not explicitly formulated as a completion rule but viewed as an
integral part of the other completion rules. In the presence of feature (dis)agreements,
this latter approach seems to be less transparent. Consider for example the ABox

{a : ∃f1.>, a : ∃f2.>, a : f1↓f2}.

Assume the R∃f rule is applied twice adding the assertions (a, b) : f1 and (a, c) : f2.
Now, the R↓ rule is applied adding (a, b′) : f1 and (a, b′) : f2. Clearly, we may now
apply the Rfe rule to the assertions (a, b) : f1 and (a, b′) : f1. Say the rule application
replaces b′ by b, and we obtain the ABox

{a : ∃f1.>, a : ∃f2.>, a : f1↓f2, (a, b) : f1, (a, c) : f2, (a, b) : f2}.

Obviously, we may now apply Rfe to (a, c) : f2 and (a, b) : f2 replacing b by c.
Observe that this latter fork elimination does not involve any objects generated by

546 PSpace Reasoning with the Description Logic ALCF(D)

Ru if C1 u C2 ∈ A(a) and {C1, C2} 6⊆ A(a)
then A := A ∪ {a : C1, a : C2}

Rt if C1 t C2 ∈ A(a) and {C1, C2} ∩ A(a) = ∅
then A := A ∪ {a : C} for some C ∈ {C1, C2}

R∃f if ∃f.C ∈ A(a) and there is no f -successor b of a with C ∈ A(b)
then set A := A∪ {(a, b) : f, b : C} for a b ∈ Oa fresh in A

R∀f if ∀f.C ∈ A(a), b is an f -successor of a, and C /∈ A(b)
then set A := A∪ {b : C}

Rc if ∃u1, . . . , un.P ∈ A(a) and there exist no x1, . . . , xn ∈ Oc such that
xi is ui-successor of a for 1 ≤ i ≤ n and (x1, . . . , xn) : P ∈ A

then set A := (A+ au1x1 + · · ·+ aunxn) ∪ {(x1, . . . , xn) : P}
with x1, . . . , xn ∈ Oc fresh in A

R↓ if p1↓p2 ∈ A(a) and there is no b that is both
a p1-successor of a and a p2-successor of a

then set A := A+ ap1b+ ap2b for a b ∈ Oa fresh in A
R↑ if p1↑p2 ∈ A(a) and there are no b1, b2 with

b1 p1-successor of a, b2 p2-successor of a, and (b1 6∼ b2) ∈ A
then set A := (A+ ap1b1 + ap2b2) ∪ {(b1 6∼ b2)}

for b1, b2 ∈ Oa fresh in A
Rfe if {(a, b) : f, (a, c) : f} ⊆ A and b 6= c

(resp. {(a, x) : g, (a, y) : g} ⊆ A and x 6= y)
then replace b by c in A (resp. x by y)

Fig. 4. Completion rules for ALCF(D).

the last “non-Rfe” rule application. To make such effects more transparent, we chose
to formulate fork elimination as a separate rule.

Let us now formalize what it means for an ABox to be contradictory.

Definition 3.5 (Clash) With each ABox A, we associate a predicate conjunction

ζA =
∧

(x1,...,xn):P∈A
P (x1, . . . , xn).

The ABox A is called concrete domain satisfiable iff ζA is satisfiable. It is said to
contain a clash iff one of the following conditions applies:

1. {A,¬A} ⊆ A(a) for a concept name A and object a ∈ Oa,
2. (a 6∼ a) ∈ A for some object a ∈ Oa,
3. g↑ ∈ A(a) for some a ∈ Oa such that there exists a g-successor of a, or
4. A is not concrete domain satisfiable.

If A does not contain a clash, then A is called clash-free.

3. CONCEPT SATISFIABILITY 547

define procedure sat(A)
A := fcompl(A)
if A contains a clash then

return unsatisfiable
forall assertions ∃R.C ∈ A(a) with R ∈ NR \ NaF do

Fix b ∈ Oa

if sat({b : C} ∪ {b : E | ∀R.E ∈ A(a)}) = unsatisfiable then
return unsatisfiable

return satisfiable

define procedure fcompl(A)
while a rule from Figure 4 is applicable to A do

Choose an applicable rule R s.t. R = Rfe if Rfe is applicable
Apply R to A

return A

Fig. 5. The ALCF(D)-concept satisfiability algorithm.

f

f

f

b

a
∀f.∃f.>

c

Fig. 6. The “yo-yo” effect.

The completion algorithm itself can be found in Figure 5. We briefly summarize
the strategy followed by the algorithm. The argument to sat is an ABox containing
exactly one object a ∈ Oa and only assertions of the form a : C. The algorithm uses
the fcompl function to create all feature successors of a, all feature successors of these
feature successors and so on. However, fcompl does not generate any R-successors
for role names R ∈ NR \ NaF. In other words, fcompl generates a cluster of objects
as described in Section 3.1. After the call to the fcompl function, the algorithm
makes a recursion call for each role successor enforced via an ∃R.C assertion (with
R ∈ NR \ NaF). A single such recursion call corresponds to moving along a path in
a generalized tree model, i.e, to moving to a successor cluster of the cluster under
consideration. Each cluster of objects is checked separately for contradictions. Note
that, due to Definition 3.5, checking for a clash involves checking whether the predicate
conjunction ζA is satisfiable. This, in turn, is a decidable problem since we assume
D to be admissible.

548 PSpace Reasoning with the Description Logic ALCF(D)

R∃r if ∃R.C ∈ A(a) with R ∈ NR \ NaF and
there is no R-successor b of a with C ∈ A(b)

then set A := A ∪ {(a, b) : R b : C} for a b ∈ Oa fresh in A
R∀r if ∀R.C ∈ A(a) with R ∈ NR \ NaF, b is a R-successor of a, and C /∈ A(b)

then set A := A ∪ {b : C}

Fig. 7. Virtual completion rules for ALCF(D).

Observe that fcompl applies the Rfe rule with highest priority. Without this strat-
egy, the algorithm would not terminate: consider the ABox

A = {a : ∀f.∃f.>, (a, a) : f, (a, b) : f}.

This ABox, which is depicted in the upper part of Figure 6, is encountered if, for
example, the algorithm is started on the input concept f ′↓f ′f u∃f ′.(∀f.∃f.>u∃f.>).
Now assume that the completion rules are applied to A without giving Rfe the highest
priority. This means that we can apply the R∀f rule and obtain b : ∃f.>. We can
then apply R∃f generating (b, c) : f, c : >. Fork elimination may now identify a and b
and thus we are back at the initial situation (up to renaming). Clearly, this sequence
of rule applications may be repeated indefinitely—the algorithm does not terminate.
This “yo-yo” effect was also described, e.g., in [9].

3.3 Correctness and Complexity

In this section, we prove that the completion algorithm is sound, complete, and termi-
nating and can be executed using only polynomial space provided that D-satisfiability
is in PSpace. With D, we denote the input concept to the completion algorithm
whose satisfiability is to be decided.

We first prove termination of the algorithm. It is convenient to start with estab-
lishing an upper bound for the number of rule applications performed by the fcompl
function and, closely related, an upper bound for the size of ABoxes generated by the
fcompl function. Before we do this, let us introduce the two additional completion
rules displayed in Figure 7, which will play an important role in the termination and
correctness proofs. These rules are not applied explicitly by the algorithm, but rather
can the recursion calls of the sat function be viewed as a single application of the
R∃r rule together with multiple applications of the R∀r rule. Let us now return to
the upper bounds for the fcompl function. With foresight to the ABox consistency
algorithm to be devised in the next section, we consider the precompl function instead
of the fcompl function, where precompl is defined exactly as fcompl except that it also
applies the R∀r rule. A formal definition of the precompl function can be found in
Figure 9. It is not hard to see that upper bounds for the number of rule applications
performed by precompl or the size of ABoxes generated by precompl also apply to the
fcompl function: if the fcompl functions perform a computation on an input ABox
A, then precompl can perform precisely the same computation on the input ABox
A′ obtained from A by replacing all subconcept ∀R.C appearing in A with concept
names.

3. CONCEPT SATISFIABILITY 549

In what follows, we use sub(C) to denote the set of subconcepts of the concept C
and sub(A) to denote the union of the sets of subconcepts of all those concepts C that
appear in assertions a : C in the ABox A. Moreover, we use |C| to denote the length
of a concept C, i.e., the number of symbols used to write it down. The size |α| of an
ABox assertion α is defined as |C| if α = a : C and 1 otherwise. The size |A| of an
ABox A is defined as the sum of the sizes of its assertions.

Lemma 3.6 For any input A, the function precompl terminates after at most |A|4
rule applications and constructs an ABox A′ with |A′| ≤ |A|6.

Proof. In the following, we call assertions of the form a : C concept assertions,
assertions of the form (a, b) : f or (a, x) : g feature assertions, and assertions of the
form (a, b) : R with R ∈ NR \ NaF role assertions.

The main task is to show that

precompl terminates after at most |A|4 rule applications. (∗)

For suppose that (∗) has been shown. We can then prove the lemma by making the
following two observations, which clearly imply that the size of the ABox A′ generated
by precompl is bounded by |A|6.

(i) We have |α| < |A| for each new assertion α added by rule application: concept
assertions are the only kind of assertions that may have a size greater than one
and, if a concept assertion a : C is added by rule application, then C ∈ sub(A);

(ii) Each rule application adds at most |A| new assertions: each application adds
either no new assertions (the Rfe rule) or at most |C| new assertions, where a : C
is the concept assertion appearing in the (instantiated) rule premise. In the latter
case, we have |C| ≤ |A| since C is in sub(A).

Hence, let us prove (∗). Let A0,A1, . . . be the sequence of ABoxes computed by
precompl. More precisely, A0 = A and Ai+1 is obtained from Ai by the i-th rule
application performed by precompl.

We first introduce some notions. For i ≥ 0 and a ∈ Oa ∪ Oc, we use nmi(a) to
denote the set of names that a had “until Ai”. More precisely, nm0(a) = {a} for all
a ∈ Oa ∪Oc. If the Rfe rule is applied to an ABox Ai renaming an object a to b, then
nmi+1(b) = nmi(a) ∪ nmi(b) and nmi+1(c) = nmi(c) for all c 6= b. For all other rule
applications, we simply have nmi+1(a) = nmi(a) for all a ∈ Oa ∪ Oc. The following
properties, which we summarize under the notion persistence, are easily proved using
the fact that assertions are never deleted:

• If a : C ∈ Ai and a ∈ nmj(a′) for some j > i and a′ ∈ Oa, then a′ : C ∈ Aj .
• if (a, b) : R ∈ Ai, a ∈ nmj(a′), and b ∈ nmj(b′) for some j > i and a′, b′ ∈ Oa, then

(a′, b′) : R ∈ Aj .
• If (a, x) : g ∈ Ai, a ∈ nmj(a′), and x′ ∈ nmj(x) for some j > i, a′ ∈ Oa, and
x′ ∈ Oc, then (a′, x′) : g ∈ Aj .

• If (x1, . . . , xn) : P ∈ Ai and x′i ∈ nmj(xi) for 1 ≤ i ≤ n, then (x′1, . . . , x
′
n) : P ∈ Aj .

A concept assertion a : C is called touched in Ai if there exists an a′ ∈ nmi(a)
such that one of the first i rule applications involved a′ : C in the (instantiated)

550 PSpace Reasoning with the Description Logic ALCF(D)

rule premise and untouched otherwise. By]feat(A), we denote the number of feature
assertions in A. For role assertions (a, b) : R with R ∈ NR \ NaF, we use λAi(a, b : R)
to denote the number of concepts ∀R.C in sub(A) for which there exist no a′ ∈ nmi(a)
and b′ ∈ nmi(b) such that one of the first i rule applications involved both a′ : ∀R.C
and (a′, b′) : R in the (instantiated) rule premise.

For i ≥ 0, define

w(Ai) :=
∑

a:C is untouched in Ai

|a : C| +]feat(Ai) + |A| ·
∑

(a,b):R∈Ai

λAi (a, b : R).

We show that w(Ai+1) < w(Ai) for i ≥ 0, which implies that the length of the
sequence A0,A1, . . . is bounded by |A|4 since it is readily checked that w(A0) ≤ |A|4.
A case distinction is made according to the completion rule applied.

• Assume that Ai+1 is obtained from Ai by an application of the Ru rule. By
definition of this rule and due to persistence, it is applied to an untouched assertion
a : C1 u C2 in Ai: for suppose that a : C1 u C2 is touched in Ai. By definition
of “touched”, this implies that there exists an a′ ∈ nmi(a) such that Ru has been
applied to a′ : C1 u C2 in the j-th rule application for some j < i. By definition
of Ru, this implies {a′ : C1, a

′ : C2} ⊆ Aj . By persistence, we have {a : C1, a :
C2} ⊆ Ai and, thus, the Ru rule is not applicable to a : C1 u C2 in Ai which
is a contradiction. Hence, we have shown that a : C1 u C2 is untouched in Ai.
Moreover, this assertion is clearly touched in Ai+1. The rule application generates
new concept assertions a : C1 and a : C2 which may both be untouched in Ai+1.
Moreover, it generates no new feature and role assertions. By definition of the size
of assertions and the length of concepts, we have |a : C1 u C2| > |a : C1|+ |a : C2|.
Thus w(Ai+1) < w(Ai).

• The Rt case is analogous to the previous case.
• Assume that Ai+1 is obtained from Ai by an application of the R∀f rule. The rule

is applied to assertions a : ∀f.C and (a, b) : f . Suppose that a : ∀f.C is touched
in Ai, i.e., that the R∀f rule has been applied in a previous step to an assertion
a′ : ∀f.C with a′ ∈ nmi(a). It then added c : C for an f -successor c of a′. The
facts that (i) Rfe is applied with highest priority, (ii) b is an f -successor of a in
Ai+1, and (iii) the R∀f rule is applicable imply that we have c ∈ nmi(b). This,
in turn, implies b : C ∈ Ai by persistence and we have obtained a contradiction
to the assumption that R∀f is applicable. Hence, we have shown that a : ∀f.C is
untouched in Ai. The assertion is touched in Ai+1. Rule application generates a
new assertion b : C that is untouched in Ai+1. However, |a : ∀f.C| > |b : C|. No
new feature or role assertions are generated.

• Assume that Ai+1 is obtained from Ai by an application of the R∀r rule. The rule
is applied to assertions a : ∀R.C and (a, b) : R in Ai. Due to persistence, there do
not exist a′ ∈ nmi(a) and b′ ∈ nmi(b) such that the R∀r rule has previously been
applied to a′ : ∀R.C and (a′, b′) : R. Hence, λAi+1(a, b : R) = λAi(a, b : R)−1 and
the third summand of w(Ai) exceeds the third summand of w(Ai+1) by |A|. The
rule application adds no feature or role assertions and a single concept assertion
b : C. Since ∀R.C ∈ sub(A), we have |b : C| < |A| and hence w(Ai+1) < w(Ai).

• Assume that Ai+1 is obtained from Ai by an application of the R∃f rule. As in
the Ru case, it is easy to show that the rule is applied to an untouched assertion

3. CONCEPT SATISFIABILITY 551

a : ∃f.C. It generates new assertions (a, b) : f and b : C (and no new role
assertions). The assertion b : C is untouched in Ai+1 and a : ∃f.C is touched in
Ai+1. The new feature assertion (a, b) : f yields]feat(Ai+1) =]feat(Ai)+1. On the
other hand, no role assertion is added and we clearly have |a : ∃f.C| > |b : C|+ 1.

• The Rc, R↓, and R↑ rules touch a (due to persistence) previously untouched concept
assertion a : C appearing in the instantiated premise and do not add new concept
or role assertions. It is readily checked that the number of feature assertions added
by rule application is smaller than |a : C|.

• Assume that the Rfe rule is applied to an ABox Ai. This obviously implies
]feat(Ai+1) <]feat(Ai), i.e., the second summand of w(Ai+1) is strictly smaller
than the second summand of w(Ai). If the rule application renames a concrete
object, these are the only changes and we are done. If an abstract object is
renamed, some work is necessary to show that the first and third summand of
w(Ai+1) are not greater than the corresponding summands of w(Ai). Assume
that a ∈ Oa is renamed to b. We then have nmi+1(b) = nmi(a) ∪ nmi(b).
– First summand. Let us first consider concept assertions c : C ∈ Ai+1 ∩ Ai.

Such an assertion is untouched in Ai+1 only if it is untouched in Ai since
(i) nmi+1(c) = nmi(c) if c 6= b and (ii) nmi(b) ⊆ nmi+1(b) if c = b. More-
over, if there exists an assertion b : C ∈ Ai+1 \ Ai due to variable renaming,
then a : C ∈ Ai \ Ai+1, and b : C being untouched in Ai+1 implies a : C being
untouched in Ai since nmi(a) ⊆ nmi+1(b). Hence, the first summand does not
increase.

– Third summand. Let (c, d) : R ∈ Ai+1 ∩ Ai (implying c 6= a and d 6= a). We
distinguish several subcases:
1. c 6= b and d 6= b. Then, clearly, λi(c, d : R) = λi+1(c, d : R).
2. c = b and d 6= b. By definition of λi, nmi(b) ⊆ nmi+1(b) implies
λi(b, d : R) ≥ λi+1(b, d : R).

3. c 6= b and d = b. As previous case.
4. c = d = b. As previous case.
Now let (c, d) : R ∈ Ai+1 \Ai (implying c = b or d = b). We can distinguish the
cases (i) c = b, d 6= b, (ii) d = b, c 6= b, and (iii) c = d = b. Since all cases are
similar, we concentrate on (i). In this case, (a, d) : R ∈ Ai \ Ai+1. Moreover,
nmi(a) ⊆ nmi+1(b) implies λAi+1(b, d : R) ≤ λAi(a, d : R).
Summing up, the third summand may only decrease but not increase.

The role depth of concepts is defined inductively as follows, where |p| denotes the
length of the abstract path p and |u| denotes the length of the concrete path u
(including the trailing concrete feature):

• rd(A) = rd(g↑) = 0;
• rd(∃u1, . . . , un.P) = max(|u1|, . . . , |un|);
• rd(p1↓p2) = rd(p1↑p2) = max(|p1|, |p2|);
• rd(¬C) = rd(C);
• rd(C uD) = rd(C tD) = max(rd(C), rd(D));
• rd(∃R.C) = rd(∀R.C) = rd(C) + 1;

552 PSpace Reasoning with the Description Logic ALCF(D)

We now prove a technical lemma that, together with Lemma 3.6, immediately yields
termination.

Lemma 3.7 Assume that the completion algorithm was started with input D. Then

1. in each recursion call, the size |A| of the argument A passed to sat is bounded
by |D|2;

2. in each recursion step of sat, at most p(|D|) recursion calls are made, where p is a
polynomial; and

3. the recursion depth of sat is bounded by |D|.

Proof. Let us first prove Point 1. ABoxes passed to sat contain assertions of the
form a : C for a single object a. Since only concepts from sub(D) are generated
during rule application, the number of distinct assertions of this form is bounded by
|sub(D)| ≤ |D|. Obviously, the size of each such assertion is also bounded by |D|
which yields an upper bound of |D|2 for the size of arguments to sat.

For Point 2, note that in each recursion step, the number of recursion calls made is
bounded by the number of assertions a : ∃R.C in the ABox A obtained by application
of fcompl. By Point 1, the size of argument ABoxes to sat is bounded by |D|2. Hence,
by Lemma 3.6, the size of A is bounded by p(|D|) where p is a polynomial and the
same bound applies to the number of recursion calls made in each recursion step.

We now turn to Point 3. As a consequence of (i) the fact that rule application
performed by fcompl may not introduce concepts with a role depth greater than the
role depth of concepts that have already been in the ABox and (ii) the way in which
the argument ABoxes for recursion calls to sat are constructed, we have that the
role depth of concepts in the argument ABoxes passed to sat strictly decreases with
recursion depth. It follows that the role depth ofD is an upper bound for the recursion
depth, i.e., the recursion depth is bounded by |D|.

Proposition 3.8 The completion algorithm terminates on any input AD.

Proof. Immediate consequence of Lemma 3.6 and Points 2 and 3 from Lemma 3.7.

We now come to proving soundness and completeness of the completion algorithm.
Recall that, intuitively, the completion algorithm traverses a generalized tree model
in a depth-first manner without keeping the entire model in memory. For the proofs,
it is convenient to make the model traversed by the algorithm explicit—or more
precisely the ABox representing it. To do this, we define an extended version of
the completion algorithm. This extended algorithm is identical to the original one
but additionally constructs a sequence of ABoxes A0

∪,A1
∪, . . . collecting all assertions

that the algorithm generates. Hence, it returns satisfiable if and only if the original
algorithm does. We will show that, if the extended algorithm is started on an initial
ABox AD and terminates after n steps returning satisfiable, then the ABox An

∪ defines
a canonical model for AD. Since the extended algorithm returns satisfiable if the
original one does, this yields soundness. Completeness can also be shown using the
correspondence between the two algorithms. Note that the extended version of the
algorithm is defined just to prove soundness and completeness of the original version
and we do not claim that the extended version itself can be executed in polynomial
space.

3. CONCEPT SATISFIABILITY 553

* Initialization:
* rc := sc := 0
* A0

∪ := {a0 : D} if AD = {a : D}

define procedure sat(A)
A := fcompl(A)
if A contains a clash then

return unsatisfiable
forall assertions ∃R.C ∈ A(a) with R ∈ NR \ NaF do

* sc := sc+ 1
* rc := rc+ 1

Fix b ∈ Oa

* Arc
∪ := Arc−1

∪ ∪ {(asc−1, bsc) : R} ∪ {bsc : C} ∪
* {bsc : E | a : ∀R.E ∈ A(a)}

if sat({b : C} ∪ {b : E | ∀R.E ∈ A(a)}) = unsatisfiable then
return unsatisfiable

return satisfiable

define procedure fcompl(A)
* A0 := A

while a rule R from Figure 4 is applicable to A do
Choose an applicable rule R s.t. R = Rfe if Rfe is applicable
Apply R to A

* rc := rc+ 1
* N := A \ A0

* Replace each a ∈ Oa (resp. x ∈ Oc) in N with asc (resp. xsc)
* Arc

∪ := Arc−1
∪ ∪ N

return A

Fig. 8. The extended satisfiability algorithm.

The extended algorithm can be found in Figure 8. The extensions are marked
with asterisks. If the algorithm is started on the initial ABox AD = {a : D}, we set
A0∪ := {a0 : D}. The algorithm uses two global variables sc and rc, which are both
initialized with the value 0. The first one is a counter for the number of calls to the sat
function. The second one counts the number of ABoxes Ai

∪ that have already been
generated. The introduction of the global variable sc is necessary due to the following
technical problem: the object names created by the algorithm are unique only within
the ABox considered in a single recursion step. For the accumulating ABoxes Ai∪
that collect assertions from many recursion steps, we have to ensure that an object a
from one recursion step can be distinguished from a in a different step since these two
objects do clearly not represent the same domain element in the constructed model.
To achieve this, objects are renamed before new assertions are added to an ABox Ai

∪
by indexing with the value of the counter sc.

Observe that, for i > 0, the ABox Ai
∪ is obtained either

1. by multiple applications of completion rules from Figure 4 to the ABox Ai−1
∪ or

554 PSpace Reasoning with the Description Logic ALCF(D)

2. by a recursion call made while the counter rc has value i− 1.

Let us be a little bit more precise about the second point. W.r.t. the sequence of
ABoxes A0

∪,A1
∪, . . . , recursion calls can be viewed as applications of the completion

rules displayed in Figure 7: if Ai
∪ is obtained fromAi−1

∪ by a recursion call, then this is
equivalent to a single application of the R∃r rule together with exhaustive application
of the R∀r rule.

Non-applicability of all completion rules to an ABox will be an important property
in what follows.

Definition 3.9 (Complete ABox) An ABox A is complete iff no completion rule
from Figures 4 and 7 is applicable to A.

The following two lemmas are central for proving soundness and completeness.

Lemma 3.10 Let A be an ABox and R a completion rule from Figure 4 or Figure 7
such that R is applicable to A. Then A is consistent iff R can be applied such that
the resulting ABox A′ is consistent.

Proof. Let us first deal with the “if” direction. This is trivial if R 6= Rfe since this
implies A ⊆ A′ and, hence, every model of A′ is also a model of A. Assume that the
Rfe rule is applied to assertions {(a, b) : f, (a, c) : f} ∈ A and replaces c with b. Let
I be a model of A′. Construct an interpretation I′ from I by setting cI

′
:= bI . It

is straightforward to check that I ′ is a model of A. The case that Rfe is applied to
assertions {(a, x) : g, (a, y) : g} ∈ A is analogous.

Now for the “only if” direction. We make a case distinction according to the
completion rule R.

• The Ru rule is applied to an assertion a : C1 u C2 and A′ = A ∪ {a : C1, a : C2}.
Let I be a model of A. Since aI ∈ (C1 uC2)I , we have aI ∈ CI1 and aI ∈ CI2 by
the semantics of ALCF(D), which implies that I is also a model of A′.

• The Rt rule is applied to an assertion a : C1 t C2. The rule can be applied such
that either A′ = A ∪ {a : C1} or A′ = A ∪ {a : C2}. Let I be a model of A.
Since aI ∈ (C1 t C2)I , we have either aI ∈ CI1 or aI ∈ CI2 by the semantics of
ALCF(D). Hence, we can apply the rule such that I is a model of A′.

• The R∃f rule is applied to an assertion a : ∃f.C yielding the ABox A′. Then
A′ = A ∪ {(a, b) : f, b : C} where b is fresh in A. Let I be a model of A. Since
aI ∈ (∃f.C)I , there exists a d ∈ ∆I such that fI(aI) = d and d ∈ CI . Let I ′ be
the interpretation obtained from I by setting aI

′
:= d. It is easily checked that

I ′ is a model of A′.
• The R∃r rule is treated analogously to the previous case.
• The R∀f rule is applied to an assertion a : ∀f.C and A′ = A ∪ {b : C} where b is

an f -successor of a in A and A′. Let I be a model of A. Since aI ∈ (∀f.C)I and
fI(aI) = bI , we have b ∈ CI . Hence, I is also a model of A′.

• The R∀r rule is treated analogously to the previous case.

• The Rc rule is applied to an assertion a : ∃u1, . . . , un.P with ui = f
(i)
1 · · · f (i)

ki
gi

yielding the ABox A′. Then there exist abstract objects a(i)
j with 1 ≤ i ≤ n and

1 ≤ j ≤ ki which are fresh in A and concrete objects x1, . . . , xn which are fresh in
A such that, for 1 ≤ i ≤ n,

3. CONCEPT SATISFIABILITY 555

– a(i)
1 is f (i)

1 -successor of a,
– a(i)

j is f (i)
j -successor of a(i)

j−1 for 1 < j ≤ ki,

– xi is gi-successor of a(i)
ki

, and
– (x1, . . . , xn) : P ∈ A′.
Let I be a model of A. Since aI ∈ (∃u1, . . . , un.P)I , there exist domain elements
d
(i)
j ∈ ∆I with 1 ≤ i ≤ n and 1 ≤ j ≤ ki and z1, . . . , zn ∈ ∆D such that, for

1 ≤ i ≤ n, we have
– (aI , d(i)

1) ∈ (f (i)
1)I ,

– (d(i)
j−1, d

(i)
j) ∈ (f (i)

j)I for 1 < j ≤ ki,

– gIi (d(i)
ki

) = zi, and
– (z1, . . . , zn) ∈ PD.
Define I ′ as the interpretation obtained from I by setting

(a(i)
j)I

′
:= d

(i)
j for 1 ≤ i ≤ n and 1 < j ≤ ki

and
xI

′
i := zi for all i with 1 ≤ i ≤ n.

It is straightforward to check that I′ is a model of A′.
• Applications of the R↓ rule are treated similar to the previous case.
• Applications of the R↑ rule are also treated similar to the Rc case.
• The Rfe rule is applied to assertions {(a, b) : f, (a, c) : f} ∈ A and replaces c with b.

Let I be a model of A. Due to the presence of the above two assertions and since
features are interpreted as partial functions, we have bI = cI . It is readily checked
that this implies that I is a model of A′. The case that two concrete objects are
identified can be treated in the same way.

Lemma 3.11 LetA be an ABox. IfA is complete and clash-free, then it is consistent.

Proof. Based on A, a canonical interpretation I can be defined as follows. Fix a
solution δ for ζA which exists since A is clash-free.

1. ∆I consists of all abstract objects used in A,
2. AI := {a ∈ Oa | a : A ∈ A} for all A ∈ NC,
3. RI := {(a, b) ∈ Oa × Oa | (a, b) : R ∈ A} for all R ∈ NR,
4. gI := {(a, δ(x)) ∈ Oa ×∆D | (a, x) : g ∈ A} for all g ∈ NcF,
5. aI := a for all a ∈ Oa, and
6. xI := δ(x) for all x ∈ Oc.

Note that I is well-defined: Since the Rfe rule is not applicable, fI and gI are
functional for all f ∈ NaF and g ∈ NcF. We prove that I is a model of A, i.e.,
that all assertions in A are satisfied by I. It is an immediate consequence of the
definition of I that (a, b) : R ∈ A implies (aI , bI) ∈ RI and (a, x) : g ∈ A implies
gI(aI) = xI . Moreover, if (a¬ ∼ b) ∈ A, then a 6= b since A is clash-free. Hence,
(a¬ ∼ b) ∈ A implies aI 6= bI . Since δ is a solution for ζA, (x1, . . . , xn) : P ∈ A

556 PSpace Reasoning with the Description Logic ALCF(D)

implies (xI1 , . . . , x
I
n) ∈ PD. It thus remains to show that a : C ∈ A implies a ∈ CI .

This is done by induction on the structure of C. For the induction start, we make a
case distinction according to the form of C:

• If C ∈ NC, then the above claim is an immediate consequence of the definition
of C.

• C = ¬E. Since we assume all concepts to be in negation normal form, E is a
concept name. Since A is clash-free, a : E /∈ A and, by definition of I, a /∈ EI .
Hence, a ∈ (¬E)I .

• C = ∃u1, . . . , un.P . Since the Rc rule is not applicable toA, there exist x1, . . . , xn ∈
Oc such that xi is ui-successor of a in A for 1 < i ≤ n. By definition of I, we have
uIi (a) = δ(xi) for 1 < i ≤ n. Furthermore, we have (x1, . . . , xn) : P ∈ A and, since
δ is a solution for ζP , (δ(x1), . . . , δ(xn)) ∈ PD. Summing up, a ∈ (∃u1, . . . , un.P)I .

• C = p1↓p2. Since the R↓ rule is not applicable to A, there exists an object b ∈ Oa

which is both a p1-successor and a p2-successor of a in A. By definition of I, we
have pI1 (a) = pI2 (a) = b and, hence, a ∈ (p1↓p2)I .

• C = p1↑p2. Since the R↑ rule is not applicable to A, there exist b1, b2 ∈ Oa such
that b1 is a p1-successor of a in A, b2 is a p2-successor of a in A, and b1¬ ∼ b2 ∈ A.
Since A is clash-free, we have b1 6= b2. By definition of I, we have pI1 (a) = b1 and
pI2 (a) = b2 and, hence, a ∈ (p1↑p2)I .

• C = g↑. Since A is clash-free, a has no g-successor x in A. By definition of I,
gI(a) is undefined and hence a ∈ (g↑)I .

For the induction step, we make a case analysis according to the topmost constructor
in C.

• C = C1 uC2. Since the Ru rule is not applicable to A, we have {C1, C2} ⊆ A(a).
By induction, a ∈ CI1 and a ∈ CI2 , which implies a ∈ (C1 uC2)I .

• C = C1 t C2. Similar to the previous case.
• C = ∃R.E. Since neither the R∃f nor the R∃r rule is applicable to A, there exists

an object b ∈ Oa such that b is an R-successor of a in A and E ∈ A(b). By
definition of I, b being an R-successor of a implies (a, b) ∈ RI . By induction, we
have b ∈ EI and may hence conclude a ∈ (∃R.E)I .

• C = ∀R.E. Let b ∈ ∆I such that (a, b) ∈ RI . By definition of I, b is an R-
successor of a in A. Since neither the R∀f not the R∀r rule is applicable to A, we
have E ∈ A(b). By induction, it follows that b ∈ EI . Since this holds for all b, we
can conclude a ∈ (∀R.E)I .

In the following, the i-th recursion step denotes the recursion step of the extended
completion algorithm in which the counter sc has value i.

Proposition 3.12 (Soundness) If the completion algorithm returns satisfiable, then
the input concept is satisfiable.

Proof. Assume that the completion algorithm is started on an input concept D and
there exists a way to make the non-deterministic decisions such that the algorithm
returns satisfiable. Moreover assume that the extended algorithm constructs the ABox

3. CONCEPT SATISFIABILITY 557

An
∪ if the non-deterministic decisions are made in precisely the same way, i.e., the

counter rc has value n upon termination. We first establish the following claim:

Claim: An
∪ is complete and clash-free.

First for completeness. We distinguish several cases. First assume that a rule

R ∈ {Ru,Rt,R∃f,Rc,R↓,R↑,R∃r}

is applicable to An
∪. This is due to the presence of an assertion ai : C in An

∪. If, e.g.,
R = Ru, then C has the form C1 uC2. By construction of An

∪, this implies that a : C
is either part of the argument A to sat in the i-th recursion call or has been added to
A by the fcompl function during the i-th recursion step. In either case, if R 6= R∃r,
the rule R has been applied to a : C by the fcompl function during the i-th recursion
step, which, again by construction of An

∪, implies that R is not applicable to ai : C
in An

∪: contradiction. If R = R∃r, then C = ∃R.E. Clearly, (ai, bj) : R and bj : C
(for some j > i) is added to An∪ due to a subsequent recursion call and we obtain a
contradiction to the applicability of R∃r to ai : C in An

∪.
Now assume that the R∀f rule is applicable to An

∪. This is due to the presence
of assertions ai : ∀f.C and (ai, bj) : f in An∪. Since assertions (ai, bj) : f are only
added to An

∪ because of applications of the rules R∃f, Rc, R↓, and R↑ performed by
the fcompl function, we have i = j. It follows that a : ∀f.C and (a, b) : f are in A in
the i-th recursion step. Hence, the R∀f rule is applied by fcompl to these assertions.
This implies that b : C is in A in the i-th recursion step which allows us to conclude
bi : C ∈ An∪, a contradiction.

Assume that R∀r is applicable to An
∪ due to the presence of assertions ai : ∀R.C

and (ai, bj) : R. By construction of An
∪, ai : ∀R.C is in A in the i-th recursion step

and (ai, bj) : R has been added to An∪ due to a recursion call made during the i-th
recursion step. By definition of the annotated algorithm, these two facts imply that
bj : C has also been added to An

∪ in the i-th recursion step. Again a contradiction.
To finish the proof that An

∪ is complete, assume that Rfe is applicable to An
∪ due to

the presence of assertions (ai, bj) : f and (ai, c`) : f . Since assertions (ai, bj) : f are
only added to An∪ because of applications of the rules R∃f, Rc, R↓, and R↑ performed
by the fcompl function, we have i = j = `. It follows that (a, b) : f and (a, c) : f
are in A in the i-th recursion step. Hence, the Rfe rule is applied by fcompl. This,
however, implies that either (ai, bj) : f or (ai, c`) : f is not in An∪.

We now prove that An
∪(ai) is clash-free. Assume {A,¬A} ⊆ An

∪(ai). Then {A,¬A}
⊆ A(a) in the i-th recursion step. Since A is clash-free in every recursion step (the al-
gorithm returned satisfiable), we obtain a contradiction. Clashes of the form ai¬ ∼ ai

∈ An
∪ are treated analogously. Now assume ai : g↑ and (ai, xj) : g are in An

∪. Since
assertions (ai, xj) : g are only added due to applications of the Rc rule by fcompl, we
have i = j. It is again straightforward to derive a contradiction.

It remains to show that An
∪ is concrete domain satisfiable. For every i ≤ n, let

Ai be the ABox A in the i-th recursion step after the application of fcompl and let
δi be a solution for ζAi , which exists since Ai is clash-free. Define δ(xi) := δi(xi)
for all xi occurring in An

∪. It is readily checked that δ is a solution for ζAn∪ : fix an
assertion ((x1)h1 , . . . , (xk)hk

) : P ∈ An∪. Since such assertions are only added due to
applications of the Rc rule by fcompl, there exists an i ≤ n such that hj = i for all
j with 1 ≤ j ≤ k. Hence, (x1, . . . , xk) : P ∈ Ai and (δi(x1), . . . , δi(xk)) ∈ PD. By

558 PSpace Reasoning with the Description Logic ALCF(D)

definition of δ, it follows that (δ((x1)i1), . . . , δ((xk)ik
)) ∈ PD, as was to be shown.

The proof of the claim is now finished and we return to the proof of soundness.
By Lemma 3.11, the claim implies that An

∪ is consistent. By construction, we have
a0 : D ∈ An∪. It immediately follows that D is satisfiable.

Proposition 3.13 (Completeness) If the completion algorithm is started on a sat-
isfiable input concept, then it returns satisfiable.

Proof. Since the completion algorithm returns satisfiable iff the extended algorithm
does, it suffices to concentrate on the extended algorithm. Let the extended comple-
tion algorithm be started on an input concept D that is satisfiable. Then, the initial
ABox AD = {a : D} is obviously consistent. By Lemma 3.10 and due to the fact that
performing a recursion step corresponds to the application of rules from Figure 7, we
can make the non-deterministic decisions of the extended algorithm such that every
ABox in the sequence A0

∪,A1
∪, . . . is consistent. By Proposition 3.8 and since the

extended algorithm terminates iff the original one does, this sequence is comprised
of a finite number n of ABoxes. Moreover, the extended algorithm does not detect
a clash: if a clash is detected in an ABox A, then we have A ⊆ An

∪ up to variable
renaming which clearly contradicts the consistency of An

∪. Because of this and again
due to Proposition 3.8, the algorithm terminates returning satisfiable.

It may be viewed as a byproduct of the soundness and completeness proof that
ALCF(D) has the generalized tree model property defined in Section 3.1: assume
that the extended algorithm is started with initial ABox AD = {a : D} and that
D is satisfiable. By Proposition 3.13 and the correspondence of the original and the
extended algorithm, the extended algorithm returns satisfiable. From the proof of
Proposition 3.12, we learn that in this case the ABox An

∪ (where n is the value of the
counter sc upon termination) is complete and clash-free. In the proof of Lemma 3.11,
a canonical model I of An∪ is constructed where ∆I is the set of abstract objects used
in An

∪. It is straightforward to check that this model is a generalized tree model for
D since

1. a0 : D is in An∪,

2. the sets Xi := {ai | ai ∈ ∆I} for 0 ≤ i ≤ n are equivalence classes w.r.t. I and ∼
as in Definition 3.1, and

3. due to the recursive nature of the completion algorithm, the graph (VI , EI) (see
Definition 3.1) is a tree.

3. CONCEPT SATISFIABILITY 559

We now analyze the time and space requirements of our algorithm.

Proposition 3.14 1. If D-satisfiability is in PSpace, then the completion algorithm
can be executed in polynomial space.

2. If D-satisfiability is in NExpTime, then the completion algorithm can be executed
in nondeterministic exponential time.

3. If D-satisfiability is in ExpSpace, then the completion algorithm can be executed
in exponential space.

Proof. By Point 1 of Lemma 3.7 and Lemma 3.6, the maximum size of ABoxes A
encountered in recursion steps is bounded by p(|D|), where p is a polynomial. Since,
by Point 3 of Lemma 3.7, the recursion depth is bounded by |D|, sat can be executed
in polynomial space if the check for concrete domain satisfiability is not taken into
account.

Assume that D-satisfiability is in PSpace. Since the maximum size of ABoxes A
encountered in recursion steps is bounded by p(|D|), the maximum number of con-
juncts in predicate conjunctions ζA checked for concrete domain satisfiability is also
bounded by p(|D|). Together with the fact that the complexity class PSpace is oblivi-
ous for polynomial blowups of the input, it follows that the completion algorithm can
be executed in polynomial space. Along the same lines, it can be shown that the
algorithm can be executed in exponential space if D-satisfiability is in ExpSpace.

Now assume that D-satisfiability is in NExpTime. From Lemma 3.6, we know that
fcompl terminates after at most |A|4 rule applications if started on input A. Since,
by Point 1 of Lemma 3.7, the size of its input is bounded by |D|2, it terminates after
at most |D|8 rule applications. Since the recursion depth is bounded by |D|, and, by
Point 2 of Lemma 3.7, at most q(|D|) recursion calls are made per recursion step for
some polynomial q, sat can be executed in nondeterministic exponential time if the
check for concrete domain satisfiability is not taken into account. By the bounds on
the recursion depth and the number of recursion calls per recursion steps, the number
of concrete domain satisfiability checks performed is at most exponential in |D|. Since
the size of predicate conjunctions passed in each step is bounded by p(D) and D-
satisfiability is in NExpTime, we can perform each check in (non-deterministic) time
exponential in |D|. Summing up, the sat algorithm an be executed in nondeterministic
exponential time.

Combining this result with the PSpace lower bound of ALC-concept satisfiability
[39] and using Savitch’s Theorem which implies that PSpace = NPSpace and
ExpSpace = NExpSpace [37], we obtain the following theorem.

Theorem 3.15 Let D be an admissible concrete domain.
1. IfD-satisfiability is in PSpace, thenALC(D)-concept satisfiability andALCF(D)-

concept satisfiability are PSpace-complete.
2. If D-satisfiability is in C ∈ {NExpTime,ExpSpace}, then ALC(D)-concept sat-

isfiability and ALCF(D)-concept satisfiability are also in C.

Since lower complexity bounds obviously transfer from D-satisfiability to ALCF(D)-
concept satisfiability, Point 2 of this theorem yields tight complexity bounds if D-
satisfiability is NExpTime-complete or ExpSpace-complete (instead of just in the
respective class). Moreover, since subsumption can be reduced to (un)satisfiability
and vice versa, we obtain corresponding complexity bounds for subsumption:

560 PSpace Reasoning with the Description Logic ALCF(D)

Corollary 3.16 Let D be an admissible concrete domain.
1. If D-satisfiability is in PSpace, then ALC(D)-concept subsumption and
ALCF(D)-concept subsumption are PSpace-complete.

2. If D-satisfiability is in NExpTime, then ALC(D)-concept subsumption and
ALCF(D)-concept subsumption are in co-NExpTime.

3. If D-satisfiability is in ExpSpace then ALC(D)-concept subsumption and
ALCF(D)-concept subsumption are in ExpSpace.

4 ABox Consistency

In the preceding section, we used ABoxes merely as a data structure. However,
ABoxes are interesting in their own right since they are frequently used to represent
assertional knowledge about the state of affairs in a particular “world”. In this sec-
tion, we extend the complexity results obtained in the previous section from concept
satisfiability to ABox consistency by devising a precompletion algorithm in the style of
[13, 21]. Most importantly, the extended algorithm yields a tight PSpace complexity
bound for ALCF(D)-ABox consistency if D-satisfiability is in PSpace.

4.1 The Algorithm

The algorithm works by reducing ABox consistency to concept satisfiability. First,
a set of precompletion rules is exhaustively applied to the input ABox A yielding a
precompletion of A. Intuitively, rule application makes all implicit knowledge in the
ABox explicit except that it does not generate new R-successors for rolesR ∈ NR\NaF.
Then, several reduction concepts are generated from the precompletion and passed to
the concept satisfiability algorithm devised in the previous section. The input ABox
is satisfiable iff the precompletion contains no obvious contradiction and all reduction
concepts are satisfiable.

The precise formulation of the algorithm can be found in Figure 9. We assume
all concepts in the input ABox to be in NNF. As already mentioned in Section 3.3,
the precompl function is identical to the fcompl function in Figure 5 except that it
additionally applies the R∀r rule. This is necessary since, in contrast to ABoxes
processed by the sat algorithm, the input ABox to cons may contain assertions of the
form (a, b) : R with R ∈ NR \NaF. Although not generating new R-successors for roles
R ∈ NR \ NaF, the precompletion algorithm does generate new f -successors and new
g-successors for features f ∈ NaF and g ∈ NcF. Intuitively, the input ABox induces a
set of clusters of objects as discussed in Section 3.1 and these clusters are constructed
by the precompl function.

Note that the construction of a reduction concept corresponds to a single application
of the R∃r rule together with exhaustive application of the R∀r rule very similar to
recursion calls of the sat functions in Figure 5.

4.2 Correctness and Complexity

Termination of the precompletion algorithm is easily obtained.

Proposition 4.1 The precompletion algorithm terminates on any input.

4. ABOX CONSISTENCY 561

define procedure cons(A)
A := precompl(A)
if A contains a clash then

return inconsistent
forall assertions ∃R.C ∈ A(a) with R ∈ NR \ NaF do

Fix b ∈ Oa

if sat({b : C u u
∀R.E∈A(a)

b : E) = unsatisfiable then

return inconsistent
return consistent

define procedure precompl(A)
while a rule from {Ru,Rt,R∀r,R∀f,R∃f,Rc,R↓,R↑,Rfe}

is applicable to A do
Choose an applicable rule R s.t. R = Rfe if Rfe is applicable
Apply R to A

return A

Fig. 9. The ALCF(D)-ABox consistency algorithm.

Proof. By Lemma 3.6, the precompl function terminates, and, by Proposition 3.8,
the sat function also terminates.

We now prove soundness and completeness. In the following, an ABox A′ is called a
precompletion of an ABox A iff A′ can be obtained by applying the precompl function
to A. Note that precompl is non-deterministic (due to the use of the Rt rule) and
hence there may exist more than a single precompletion for a given ABox A.

Proposition 4.2 (Soundness) If the precompletion algorithm returns consistent,
then the input ABox is consistent.

Proof. If the algorithm is started on input ABox A returning consistent, then there
exists a precompletion Ap for A that does not contain a clash and all reduction
concepts C1, . . . , Cn of Ap that are passed as arguments to the sat algorithm are
satisfiable. We show that this implies that Ap has a model, which, by Lemma 3.10
and the definition of precompletion, proves the proposition.

Let I1, . . . , In be the models of the reduction concepts C1, . . . , Cn and ai : ∃Ri.Ei

be the assertion in Ap that triggered the construction of the reduction concept Ci.
W.l.o.g., we assume that

• ∆Ii ∩∆Ij = ∅ for 1 ≤ i < j ≤ n and
• ∆Ii ∩ Oa = ∅ for 1 ≤ i ≤ n.

For each i with 1 ≤ i ≤ n, we fix an element di ∈ ∆Ii with di ∈ CIi

i . Moreover, we
fix a solution δ for ζAp , which exists since Ap is clash-free. Define an interpretation
I as follows:

1. ∆I := Oa]∆I1] · · ·]∆In ,
2. AI := {a ∈ Oa | a : A ∈ Ap} ∪

⋃
1≤i≤n A

Ii for all A ∈ NC,

562 PSpace Reasoning with the Description Logic ALCF(D)

3. RI := {(a, b) ∈ Oa × Oa | (a, b) : R ∈ A} ∪ {(ai, di) | 1 ≤ i ≤ n and R = Ri}
∪

⋃
1≤i≤nR

Ii for all R ∈ NR,

4. gI := {(a, δ(x)) ∈ Oa ×∆D | (a, x) : g ∈ A} ∪
⋃

1≤i≤n g
Ii for all g ∈ NcF,

5. aI := a for all a ∈ Oa, and
6. xI := δ(x) for all x ∈ Oc.

I is well-defined: due to the non-applicability of the Rfe rule to Ap, fI and gI are
functional for all f ∈ NaF and g ∈ NcF. The following claim is an easy consequence of
the construction of I:

Claim: Let 1 ≤ i ≤ n. For all d ∈ ∆Ii and C ∈ sub(Ap), d ∈ CIi implies d ∈ CI .
It remains to show that I is a model of Ap, i.e., that all assertions in Ap are satisfied
by I. For assertions of the form (a, b) : R and (a, x) : g, this is an immediate
consequence of the definition of I. Assertions a¬ ∼ b are satisfied since Ap is clash-
free and assertions (x1, . . . , xn) : P are satisfied since δ is a solution for ζAp . It thus
remains to show that a : C ∈ Ap implies a ∈ CI . This is done by induction over
the structure of C as in the proof of Lemma 3.11. The only differences are in the
following cases of the induction step:

• a : ∃R.E ∈ Ap. Then there is an i with 1 ≤ i ≤ n such that a = ai, R = Ri, and
E = Ei appears as a conjunct in the reduction concept Ci. By definition of I, we
have (a, di) ∈ RI . By the above claim together with di ∈ CIi

i , we have di ∈ CIi .
Since E is a conjunct in Ci, this clearly implies di ∈ EI and thus a ∈ (∃R.E)I .

• a : ∀R.E ∈ Ap. Fix a b ∈ ∆I such that (a, b) ∈ RI . Then either b is an R-
successor of a in Ap or a = ai, R = Ri, and b = di for some 1 ≤ i ≤ n. The first
case was already treated in the proof of Lemma 3.11. Hence, let us stick to the
second case. By construction of Ci, E appears as a conjunct in Ci. By the claim,
we have di ∈ CIi and hence di ∈ EI .

Proposition 4.3 (Completeness) If the precompletion algorithm is started on a
consistent input ABox, then it returns consistent.

Proof. Suppose that the algorithm is started on a consistent ABoxA. By Lemma 3.10,
the precompl function can apply the completion rules such that only consistent ABoxes
are obtained. Hence, by Lemma 3.6, the precompl function generates a consistent pre-
completion Ap of A. Consistency of Ap clearly implies that the reduction concepts
constructed from Ap are satisfiable. Since, by Proposition 3.8, the sat function ter-
minates, the precompletion algorithm also terminates and returns consistent.

It remains to analyze the time and space requirements of our algorithm.

Proposition 4.4 1. If D-satisfiability is in PSpace, then the precompletion algo-
rithm can be executed in polynomial space.

2. If D-satisfiability is in NExpTime, then the precompletion algorithm can be exe-
cuted in nondeterministic exponential time.

3. If D-satisfiability is in ExpSpace, then the precompletion algorithm can be exe-
cuted in exponential space.

5. APPLYING THE RESULTS 563

Proof. LetA be the input ABox to the precompletion algorithm. By Lemma 3.6, the
precompl function terminates after at most |A|4 steps generating an ABox A′ of size
at most |A|6. Since all complexity classes mentioned in the proposition are oblivious
for polynomial blowups of the input, the concrete domain satisfiability check does not
spoil the upper bound on the time/space requirements. Concerning the calls to the
sat function, it suffices to refer to Proposition 3.14.

As in the previous section, we use the PSpace lower bound of ALC-concept satisfia-
bility and the fact that PSpace =NPSpace and ExpSpace =NExpSpace to obtain
the following theorem.

Theorem 4.5 Let D be an admissible concrete domain.
1. If D-satisfiability is in PSpace, then ALC(D)-ABox consistency and ALCF(D)-

ABox consistency are PSpace-complete.
2. If D-satisfiability is in C ∈ {NExpTime,ExpSpace}, then ALC(D)-ABox con-

sistency and ALCF(D)-ABox consistency are also in C.

5 Applying the Results

We give some example applications of the results just obtained by reconsidering the
concrete domains A and S introduced in Section 2. In order to apply Theorems 3.15
and 4.5, we need to determine the complexity of A-satisfiability and S-satisfiability.
More precisely, we show that both problems are in NP.

Let us start with the concrete domain A. The proof is by a reduction to mixed
integer programming (MIP), i.e., to linear programming where some of the variables
must take integer values. More precisely, a mixed integer programming problem has
the form Ax = b, where A is an m×n-matrix of rational numbers, x is an n-vector of
variables, each of them being either an integer variable or a rational variable, and b
is an m-vector of rational numbers (see, e.g. [40]). A solution of Ax = b is a mapping
δ that assigns an integer to each integer variable in x and a rational number to each
rational variable in x such that the equality Ax = b holds. Deciding the satisfiability
of a MIP problem means to decide whether such a problem has a solution.

Proposition 5.1 A-satisfiability is in NP.

Proof. We sketch a non-deterministic polynomial time algorithm for A-satisfiability.
The algorithm is based on several normalization steps, simple inconsistency checks,
and a final call to an algorithm which is capable of deciding the satisfiability of MIP
problems.

Let c be a finite conjunction of A predicates. The following steps are executed
sequentially to decide the satisfiability of c:

1. Return unsatisfiable if c contains the ⊥A predicate.
2. Eliminate all occurrences of the >A predicate from c and call the result c1.
3. Eliminate each occurrence of predicates int, Pq, and +:
• replace each conjunct int(x) with the conjuncts

>(x, f), int(f), =1(o), +(f, o, f ′), <(x, f ′),

where f, f ′, o are fresh (i.e. previously unused) variables.

564 PSpace Reasoning with the Description Logic ALCF(D)

• replace each conjunct Pq(x) (where P ∈ {<,≤, 6=,≥, >} and q ∈ Q) with the
two conjuncts =q(f) and P (x, f), where f is a fresh variable.

• replace each conjunct +(x, y, z) with +(x, y, f) and 6=(f, z), where f is a fresh
variable.

Call the result c2
4. Eliminate each occurrence of the predicates ≤, 6=, ≥, and > in c2: conjuncts
≤(x, y) are non deterministically replaced with either <(x, y) or =(x, y). The
other predicates can be treated similarly. Call the result c3. Note that c3 does
only contain the predicates int, =q, <, =, and +.

5. Transform c3 into a MIP problem in the obvious way:
• every variable x used in c3 such that int(x) is a conjunct of c3 becomes an

integer variable in the MIP problem. All other variables appearing in c3 become
rational variables;

• every conjunct =q(x) is translated into an equation x = q;
• every conjunct =(x, y) is translated into an equation x− y = 0;
• every conjunct <(x, y) is translated into an equation x + s− y = 0, where s is

a fresh rational variable (also known as slack variable);
• every conjunct +(x, y, z) is translated into an equation x+ y − z = 0.
Use a standard NP algorithm to decide the satisfiability of this problem and return
the result.

It is straightforward to prove the correctness of the sketched algorithm by showing that
(i) each of the normalization steps preserves (un)satisfiability, and (ii) the reduction
to MIP is correct. Moreover, it is not hard to see that the algorithm can be executed
in nondeterministic polynomial time: each of the normalization steps leads to at most
a polynomial blowup of the size of the predicate conjunction. Finally, deciding the
satisfiability of MIP problems can be done in NP [14].

An application of Theorems 3.15 and 4.5 immediately yields the complexity of rea-
soning with the Description Logic ALCF(A).

Corollary 5.2 ALCF(A)-concept satisfiability and ALCF(A)-ABox consistency are
PSpace-complete.

Now for the concrete domain S. It is straightforward to reduce S-satisfiability to the
satisfiability problem of so-called RCC8 networks [10, 36]. Such a network is simply
a finite set of assertions rd(X,Y), where rd is a disjunction rel0 ∨ · · · ∨ relk of RCC8
relations and X and Y are region variables from some fixed set of variables V . A triple
〈U, T, δ〉, where (U, T) is a topology and δ maps each region variable from V to an
element of T , is a model of an RCC8 network N iff, for each rel0∨· · ·∨relk(X,Y) ∈ N ,
there exists an i ≤ k such that δ(X) reli δ(Y). N is satisfiable iff it has a model.

Proposition 5.3 S-satisfiability is in NP.

Proof. It is easy to reduce S-satisfiability to the satisfiability of RCC8 networks:
given a finite conjunction c of predicates from ΦS, first eliminate any occurrences of
the >s predicate and return unsatisfiable if c contains the ⊥s predicate; then replace
all predicates rel by the disjunction of all elements of RCC8 \ {rel}, where RCC8 de-
notes the set of all eight RCC8 relations; finally, translate each conjunct in c into an

6. DISCUSSION AND RELATED WORK 565

RCC8 assertion rd(X,Y) in the obvious way. As shown by Renz and Nebel in [36],
the satisfiability of the resulting RCC8 network can be decided in nondeterministic
polynomial time. Moreover, every satisfiable RCC8 network has a model in the topo-
logical space RCR2 [35].

Again, we obtain the desired corollary by applying Theorems 3.15 and 4.5.

Corollary 5.4 ALCF(S)-concept satisfiability and ALCF(S)-ABox consistency are
PSpace-complete.

6 Discussion and Related Work

In this paper, we have established tight complexity bounds for concept- and ABox-
reasoning with the basic Description Logic with concrete domains ALC(D) and its
extensions with feature (dis)agreements ALCF(D). The upper bound for concept sat-
isfiability has been obtained by a completion algorithm that uses the tracing technique
while the upper bound for ABox consistency has been established by a precompletion-
style reduction to concept satisfiability. We have strictly separated the algorithms for
these two reasoning problems since this makes more explicit the additional means
necessary for dealing with ABoxes instead of with concepts. However, for the im-
plementation of DL reasoners that can decide ABox consistency, it may be more
appropriate to use a “direct” ABox consistency algorithm instead of reducing this
reasoning task to concept satisfiability. Considering the two algorithms developed in
this paper, it should be straightforward to devise such a direct algorithm.

Using an arithmetic concrete domain A and a spatial concrete domain S, we have
demonstrated the relevance of the obtained complexity results: since A-satisfiability
and S-satisfiability are in NP, it follows from the established complexity bounds
that concept- and ABox-reasoning with both ALCF(A) and ALCF(S) is PSpace-
complete. We have also established upper bounds for the case that D-satisfiability
is in NExpTime or ExpSpace. A rather expressive concrete domain R based on
Tarski algebra (also known as real closed fields), for which R-satisfiability is Ex-
pSpace-complete, can be found in [30, 5]. Using the results from this paper and the
obvious fact that D-satisfiability can be polynomially reduced to ALC(D)-concept
satisfiability, we immediately obtain ExpSpace-completeness of concept- and ABox-
reasoning with the Description Logic ALC(R). Other important concrete domains
that are captured by the presented results are the temporal ones that can be found
in [33, 30, 27].

The results presented in this paper have stimulated interesting further research.
For example, in [3] the PSpace upper bound for ALCF(D)-concept satisfiability
has been used to obtain a PSpace upper bound for reasoning with the interval-based
temporal Description Logic T L-ALCF , which was first described in [2]. Perhaps most
interesting, it has been found that the PSpace upper bounds established in this paper
are fragile in the following sense: there exist several standard means of expressivity
whose addition to ALC(D) leads to the complexity of reasoning leaping from PSpace-
completeness to NExpTime-completeness—at least for so-called arithmetic concrete
domains [28, 30, 1]. Examples for such means of expressivity include acyclic TBoxes,
inverse roles, nominals, and role conjunction. This is particularly surprising since
(i) the mentioned means of expressivity are usually considered “harmless” w.r.t. the

566 PSpace Reasoning with the Description Logic ALCF(D)

complexity of reasoning, i.e., for most standard DLs, their addition does not change
the complexity of reasoning; (ii) many concrete domains suggested in the literature
(such as the concrete domain A described in this paper) are arithmetic; and (iii) there
exist rather simple arithmetic concrete domains D—in particular some for which D-
satisfiability is in PTime.

References

[1] Carlos Areces and Carsten Lutz. Concrete domains and nominals united. In Carlos Areces,
Patrick Blackburn, Maarten Marx, and Ulrike Sattler, editors, Proceedings of the fourth Work-
shop on Hybrid Logics (HyLo’02), 2002.

[2] Alessandro Artale and Enrico Franconi. A temporal description logic for reasoning about actions
and plans. Journal of Artificial Intelligence Research (JAIR), 9:463–506, 1998.

[3] Alessandro Artale and Carsten Lutz. A correspondence between temporal description logics.
In Patrick Lambrix, Alex Borgida, Maurizio Lenzerini, Ralf Möller, and Peter Patel-Schneider,
editors, Proceedings of the International Workshop on Description Logics (DL’99), number 22
in CEUR-WS (http://ceur-ws.org/), pages 145–149, 1999.

[4] Franz Baader and Philipp Hanschke. A scheme for integrating concrete domains into concept
languages. In Proceedings of the Twelfth International Joint Conference on Artificial Intelligence
(IJCAI-91), pages 452–457, Sydney, Australia, 1991.

[5] Franz Baader and Philipp Hanschke. A scheme for integrating concrete domains into concept
languages. DFKI Research Report RR-91-10, German Research Center for Artificial Intelligence

(DFKI), 1991.

[6] Franz Baader and Philipp Hanschke. Extensions of concept languages for a mechanical engi-
neering application. In Proceedings of the 16th German AI-Conference (GWAI-92), volume 671
of Lecture Notes in Computer Science, pages 132–143. Springer-Verlag, 1992.

[7] Franz Baader and Bernhard Hollunder. A terminological knowledge representation system with
complete inference algorithm. In Proceedings of the Workshop on Processing Declarative Knowl-
edge (PDK-91), volume 567 of Lecture Notes in Artificial Intelligence, pages 67–86. Springer-
Verlag, 1991.

[8] Franz Baader, Deborah L. McGuiness, Daniele Nardi, and Peter Patel-Schneider. The Descrip-
tion Logic Handbook: Theory, implementation and applications. Cambridge University Press,
2002. To appear.

[9] Franz Baader and Ulrike Sattler. Tableau algorithms for description logics. In R. Dyckhoff,
editor, Proceedings of the International Conference on Automated Reasoning with Tableaux and
Related Methods (Tableaux 2000), volume 1847 of Lecture Notes in Artificial Intelligence, pages

1–18. Springer-Verlag, 2000.

[10] Brandon Bennett. Modal logics for qualitative spatial reasoning. Journal of the Interest Group
in Pure and Applied Logic, 4(1), 1997.

[11] Ronald J. Brachman, Deborah L. McGuinness, Peter F. Patel-Schneider, Lori Alperin Resnick,
and Alexander Borgida. Living with classic: When and how to use a KL-ONE-like language. In
John F. Sowa, editor, Principles of Semantic Networks – Explorations in the Representation of
Knowledge, chapter 14, pages 401–456. Morgan Kaufmann, 1991.

[12] Giuseppe De Giacomo and Maurizio Lenzerini. TBox and ABox reasoning in expressive descrip-
tion logics. In Proceedings of the Fifth International Conference on the Principles of Knowledge
Representation and Reasoning (KR’96), pages 316–327. Morgan Kaufmann Publishers, 1996.

[13] Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi, and Andrea Schaerf. Deduction in
concept languages: from subsumption to instance checking. Journal of Logic and Computation,
4(4):423–452, 1994.

[14] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, San Francisco, CA, USA, 1979.

[15] Erich Grädel. On the restraining power of guards. Journal of Symbolic Logic, 64:1719–1742,
1999.

6. DISCUSSION AND RELATED WORK 567

[16] Volker Haarslev, Carsten Lutz, and Ralf Möller. A description logic with concrete domains and
role-forming predicates. Journal of Logic and Computation, 9(3):351–384, 1999.

[17] Volker Haarslev and Ralf Möller. RACER system description. In Rajeev Goré, Alexander
Leitsch, and Tobias Nipkow, editors, Proceedings of the First International Joint Conference
on Automated Reasoning (IJCAR’01), number 2083 in Lecture Notes in Artifical Intelligence,
pages 701–705. Springer-Verlag, 2001.

[18] Volker Haarslev, Ralf Möller, and Michael Wessel. The description logic ALCNHR+ extended
with concrete domains: A practically motivated approach. In Rajeev Goré, Alexander Leitsch,
and Tobias Nipkow, editors, Proceedings of the First International Joint Conference on Au-
tomated Reasoning IJCAR’01, number 2083 in Lecture Notes in Artifical Intelligence, pages
29–44. Springer-Verlag, 2001.

[19] Joseph Y. Halpern and Yoram Moses. A guide to completeness and complexity for modal logics
of knowledge and belief. Artificial Intelligence, 54(3):319–380, 1992.

[20] Philipp Hanschke. Specifying role interaction in concept languages. In William Nebel, Bernhard;
Rich, Charles; Swartout, editor, Proceedings of the Third International Conference on Principles
of Knowledge Representation and Reasoning (KR’92), pages 318–329. Morgan Kaufmann, 1992.

[21] Bernhard Hollunder. Consistency checking reduced to satisfiability of concepts in terminological
systems. Annals of Mathematics and Artificial Intelligence, 18:133–157, 1996.

[22] Bernhard Hollunder and Werner Nutt. Subsumption algorithms for concept languages. DFKI
Research Report RR-90-04, German Research Center for Artificial Intelligence (DFKI), Kaiser-
slautern, Germany, 1990.

[23] Ian Horrocks and Peter Patel-Schneider. The generation of DAML+OIL. In Carole Goble,
Deborah L. McGuinness, Ralf Möller, and Peter F. Patel-Schneider, editors, Proceedings of
the International Workshop in Description Logics 2001 (DL2001), number 49 in CEUR-WS
(http://ceur-ws.org/), pages 30–35, 2001.

[24] Ian Horrocks and Ulrike Sattler. Ontology reasoning in the SHOQ(D) description logic. In Bern-
hard Nebel, editor, Proceedings of the Seventeenth International Joint Conference on Artificial
Intelligence (IJCAI’01), pages 199–204. Morgan-Kaufmann, 2001.

[25] Martina Kullmann, François de Bertrand de Beuvron, and François Rousselot. A description
logic model for reacting in a dynamic environment. In F. Baader and U. Sattler, editors, Pro-
ceedings of the 2000 International Workshop in Description Logics (DL2000), number 33 in
CEUR-WS (http://ceur-ws.org/), pages 203–212, 2000.

[26] Richard E. Ladner. The computational complexity of provability in systems of modal proposi-
tional logic. SIAM Journal on Computing, 6(3):467–480, 1977.

[27] Carsten Lutz. Interval-based temporal reasoning with general TBoxes. In Bernhard Nebel,
editor, Proceedings of the Seventeenth International Joint Conference on Artificial Intelligence
(IJCAI’01), pages 89–94. Morgan-Kaufmann, 2001.

[28] Carsten Lutz. NExpTime-complete description logics with concrete domains. In Rajeev Goré,
Alexander Leitsch, and Tobias Nipkow, editors, Proceedings of the First International Joint
Conference on Automated Reasoning (IJCAR’01), number 2083 in Lecture Notes in Artifical
Intelligence, pages 45–60. Springer-Verlag, 2001.

[29] Carsten Lutz. Adding numbers to the SHIQ description logic—First results. In Proceedings of
the Eighth International Conference on Principles of Knowledge Representation and Reasoning
(KR2002). Morgan Kaufman, 2002.

[30] Carsten Lutz. The Complexity of Reasoning with Concrete Domains. PhD thesis, LuFG Theo-
retical Computer Science, RWTH Aachen, Germany, 2002.

[31] Carsten Lutz. Reasoning about entity relationship diagrams with complex attribute dependen-
cies. In Ian Horrocks and Sergio Tessaris, editors, Proceedings of the International Workshop
in Description Logics 2002 (DL2002), number 53 in CEUR-WS (http://ceur-ws.org/), pages
185–194, 2002.

[32] Carsten Lutz. Description logics with concrete domains—a survey. In Advances in Modal Logics
(AiML) 2002, To appear.

[33] Carsten Lutz, Volker Haarslev, and Ralf Möller. A concept language with role-forming predicate
restrictions. Technical Report FBI-HH-M-276/97, University of Hamburg, Computer Science
Department, Hamburg, 1997.

568 PSpace Reasoning with the Description Logic ALCF(D)

[34] David A. Randell, Zhan Cui, and Anthony G. Cohn. A spatial logic based on regions and
connection. In Bernhard Nebel, Charles Rich, and William Swartout, editors, Proceedings of
the Third International Conference on Principles of Knowledge Representation and Reasoning
(KR’92), pages 165–176. Morgan Kaufman, 1992.

[35] Jochen Renz. A canonical model of the region connection calculus. In Anthony G. Cohn, Lenhart
Schubert, and Stuart C. Shapiro, editors, KR’98: Principles of Knowledge Representation and
Reasoning, pages 330–341. Morgan Kaufmann, San Francisco, California, 1998.

[36] Jochen Renz and Bernhard Nebel. On the complexity of qualitative spatial reasoning: A maximal
tractable fragment of the region connection calculus. Artificial Intelligence, 108(1–2):69–123,
1999.

[37] Walter J. Savitch. Relationsship between nondeterministic and deterministic tape complexities.
Journal of Computer and System Sciences, 4:177–192, 1970.

[38] Andrea Schaerf. On the complexity of the instance checking problem in concept languages with
existential quantification. Journal of Intelligent Information Systems, 2:265–278, 1993.

[39] Manfred Schmidt-Schauß and Gert Smolka. Attributive concept descriptions with complements.
Artificial Intelligence, 48(1):1–26, 1991.

[40] Alexander Schrijver. Theory of Linear and Integer Programming. Wiley, Chichester, UK, 1986.

[41] Sergio Tessaris, Ian Horrocks, and Graham Gough. Evaluating a modular abox algorithm. In
Proceedings of the Eighth International Conference on Principles of Knowledge Representation
and Reasoning (KR2002), pages 227–239. Morgan Kaufman, 2002.

[42] Moshe Y. Vardi. Why is modal logic so robustly decidable? In Neil Immerman and Phokion G.
Kolaitis, editors, Descriptive Complexity and Finite Models, volume 31 of DIMACS: Series
in Discrete Mathematics and Theoretical Computer Science. American Mathematical Society,
1997.

Received 4 June 2002. Revised 27 September 2002

Acknowledgements

The Editor-in-Chief would like to thank the following colleagues who have helped
maintain the standards set for a scientific journal, through their refereeing of the
papers that have been submitted.1

Francesco Donini
Chris Hankin
David Makinson
Amr Sabry
Sergio Tessaris

1The list includes the referees for the papers in this issue, plus the referees of papers rejected meanwhile.

569

Interest Group in Pure and Applied
Logics (IGPL)

The Interest Group in Pure and Applied Logics (IGPL) is sponsored by The Euro-
pean Association for Logic, Language and Information (FoLLI), and currently has
a membership of over a thousand researchers in various aspects of logic (symbolic,
mathematical, computational, philosophical, etc.) from all over the world (currently,
more than 50 countries). Our main activity is that of a research and information
clearing house.

Our activities include:

• Exchanging information about research problems, references and common interest
among group members, and among different communities in pure and applied
logic.

• Helping to obtain photocopies of papers to colleagues (under the appropriate copy-
right restrictions), especially where there may be difficulties of access.

• Supplying review copies of books through the journals on which some of us are
editors.

• Helping to organise exchange visits and workshops among members.
• Advising on papers for publication.
• Editing and distributing a Newsletter and a Journal (the first scientific journal

on logic which is FULLY electronic: submission, refereeing, revising, typesetting,
publishing, distribution; first issue: July 1993): the Logic Journal of the Interest
Group on Pure and Applied Logics. (For more information on the Logic Journal
of the IGPL, see the Web homepage: http://www.oup.co.uk/igpl)

• Keeping a public archive of papers, abstracts, etc., accessible via ftp.
• Wherever possible, obtaining reductions on group (6 or more) purchases of logic

books from publishers.

If you are interested, please send your details (name, postal address, phone, fax, e-mail
address, research interests) to:

IGPL Headquarters
c/o Prof. Dov Gabbay
King’s College, Dept of Computer Science
Strand
London WC2R 2LS
United Kingdom
e-mail: dg@dcs.kcl.ac.uk

For the organisation, Dov Gabbay, Ruy de Queiroz and Hans Jürgen Ohlbach

http://www.oup.co.uk/igpl
mailto:dg@dcs.kcl.ac.uk
http://www.pms.informatik.uni-muenchen.de/mitarbeiter/ohlbach

