
Formalising Strong Normalisation proofs ofExpliit Substitution Caluli in ALFyFairouz Kamareddine (fairouz�mas.hw.a.uk)Mathematial and Computer Sienes, Heriot-Watt University, Edinburgh, UKHaiyan Qiao (qiao�s.halmers.se)Computing Siene, Chalmers University of Tehnology, G�oteborg, SwedenAbstrat. The past deade has given rise to a number of expliit substitution (ES)aluli. An important question of expliit substitution aluli is that of the termina-tion of the underlying alulus of substitution. Proofs of termination of substitutionsfall under two ategories. Those that are easy beause a dereasing measure an beestablished and those that are diÆult beause suh a dereasing measure is not easyto establish. This paper onsiders two styles of expliit substitution: � and s, forwhih di�erent termination proof methods apply. The termination of s is guaranteedby a dereasing weight, while a dereasing weight for showing the termination of �has not yet been found. These termination methods for � and s are formalised inthe proof heker ALF. During our proess of formally heking the termination of� and s we omment on what is needed to make a proof formally hekable.1. IntrodutionWhat is expliit substitution? The lassial �-alulus deals withsubstitution in an impliit way. This means that the omputations toperform substitution are usually desribed with operators whih donot belong to the language of the �-alulus. There has however beenan interest in formalising substitution expliitly in order to providea theoretial framework for the implementation of programming lan-guages and theorem provers. Several aluli inluding new operators todenote substitution and new rules to handle these operators have beenproposed (e.g., [10, 2, 17, 30, 4, 5, 21, 22, 28, 13℄). Amongst these al-uli we mention C��� (f. [14℄); the aluli of ategorial ombinators(f. [10℄); ��, ��*, ��SP (f. [2, 11, 30℄) referred to as the ��-family;'�BLT (f. [20℄); �� (f. [4℄) and �� (f. [28℄) whih are desendantsof the ��-family; �s (f. [21℄) and �se (f. [22℄). Most of these aluliare desribed in de Bruijn notation and an roughly be lassi�ed undertwo styles: the �� [2, 17℄ and the �s styles [21, 22℄. The new symbolsadded by expliit substitution aluli to represent operations related tosubstitutions, and the new rules explaining how these operations worky We are grafetful for the useful omments we reeived from Martin Ho�mann,Claude Kirhner, Joe Wells and the anonymous referees. 2002 Kluwer Aademi Publishers. Printed in the Netherlands.
final.tex; 16/09/2002; 17:43; p.1

2ompliate the rewriting system behind the �-alulus and the questionwhether these new rules terminate arises. This paper onentrates onthe proofs of termination of these extra rules in both the �� and �saluli. �� and �s are hosen beause they di�er in style, and beausetheir proofs of termination are di�erent: the set s of new rules of �sis shown to terminate via a dereasing weight whereas no dereasingweight has yet been found for the set � of new rules of ��.Why expliit substitutions? Expliit substitutions allow more exi-bility in ordering work. Propagating substitutions through a partiularsubterm an wait until the subterm is the fous of omputation. Thisallows all of these substitutions to be done at one, thus improvingloality of referene. This exibility also allows postponing unneededwork inde�nitely (i.e., avoiding it ompletely). This an yield pro�ts,sine impliit substitution an be an ineÆient, maybe even explod-ing, proess by the many repetitions it auses. Another bene�t is thatexpliit substitution allows formal modelling of the tehniques used inreal implementations, e.g., environments [18℄. Furthermore, as the im-plementation of substitution in many theorem provers is not based on aformal system, it is not lear what properties their underlying substitu-tion has. Thus, it helps to have a hoie of expliit substitution systemswhose properties have already been established. This is witnessed bythe theorem prover ALF, whih is based on Martin-L�of's type theorywith expliit substitutions [24℄. Another justi�ation for expliit sub-stitution in theorem proving is the belief that \tatis" an be replaedby inomplete proofs, whih need expliit substitutions [28, 24℄.Why formalise proofs in a proof heker? The past thirty yearshave seen muh work on formalising proofs from paper into a proofheker (e.g., [9, 27, 31, 3℄). Pioneering work on this started in 1967with de Bruijn's inuential proof heker Automath. Sine, many proofhekers have been built [7, 15, 24, 29, 8℄ into whih many proofs havebeen formalised. Formalisation in a proof heker is useful even if theproof on paper is fully trusted and orret. Reasons for this inlude:� Some omplex proofs may be unonvining unless they are hekedby a proof heker.1� Formalisation in a proof heker enables the building of a libraryof readily available proofs that an be used in di�erent situationsand an relieve us from repeating the same proofs over and over.� Formalisation helps one to atually �nd the proof of ertain diÆ-ult theorems that would have been hard to solve just on paper.This paper, adds one further ase study to formalisations in proofhekers. We formalise in ALF [24℄ the termination of the expliitsubstitutions aluli s and �. Our reasons for doing this inlude:1 We stress that all the proofs that we formalise in this paper are fully trusted.
final.tex; 16/09/2002; 17:43; p.2

3� The development of so many aluli of expliit substitutions andthe intriaies involved in proving their properties all for methodsthat one an take of the shelf and use for newly developed aluli.� As most aluli with expliit substitutions have rules that are om-plex and properties whose proofs are intriate, it is neessary toformalise these aluli and hek the proofs in some proof heker.These reasons hold in partiular for the proofs of termination (a basiproperty) of expliit substitutions. There are various ways to show ter-mination of expliit substitutions, but the proofs an be very intriate.Termination proofs of expliit substitutions fall under the following:1. A dereasing weight an be found, i.e. when terms are redued,their weights derease. Examples of substitutions that have thisproperty inlude � [4℄, s [21℄, and �* [17℄.2. A strit (redution preserving) translation from the alulus wewish to show terminating to another alulus known to be termi-nating an be found. E.g. the termination of s an be obtained bya strit translation from s to � whih is known to be terminating.3. By �nding an indution argument when neither 1 nor 2 above apply,this is, for example, the way � is shown to be terminating in [12℄.In this paper we formalise in ALF, termination proofs for � and s thatfall under 1, 2 and 3 above. There has been previous work on formalisingproperties of expliit substitutions. For example, Lesanne formalised inCoq, the substitution lemma of �� of [4℄, and Sa��bi formalised ��* [17℄,whih is an extension of � with meta-variables, and proved onueneof ��* and strong normalisation of �* by �nding a dereasing weight,see [31℄. Our work onentrates on di�erent methods of termination ofexpliit substitutions and onsiders two di�erent aluli � and s.There has been a lot of work on termination of expliit substitutionsreently (e.g., [5, 13, 30, 16, 12, 34, 33℄). Our reasons for hoosing theproof of [12℄ and the proof heker ALF inlude:� The interesting proof of [12℄ does not obey a dereasing weight.Moreover, the proof of [12℄ is very intriate and as far as we know,this is the �rst formalisation of suh an intriate method.� The proof of [12℄ had interesting onepts suh as its formulationof a alulus of ontexts. That formalisation whih is basi to theproof of [12℄, leads to a alulus of ontexts that is in line with [6℄.It may also lead to ways of formalising other extensions as in [26℄.It should be noted that we did not hoose an easy proof to formalise.There are other proofs of termination of the same alulus (e.g., theproof of [34℄ is muh simpler to formalise than that of [12℄). But, a fullmehanial hek of a ompliated proof (whih we do in this paper)an be onsidered as a valuable ahievement in itself. We will formalise
final.tex; 16/09/2002; 17:43; p.3

4and implement the whole proof of [12℄ inluding the ontext alulus inALF. It would be interesting in the future to attempt and use this workfor proof heking other proofs of termination suh as that of CCL [16℄.That proof would be partiularly informative in this ontext as it wasobtained by onsidering a lot of weights in an unusual manner.The paper is organised as follows. In Setion 2 we reall �� andits termination proof. In Setion 3 we reall �s and present three dif-ferent termination proofs, two of whih are new. Setion 4 is a briefintrodution to ALF and to Martin-L�of type theory. In Setion 5 wegive formalisations of expliit substitution aluli, their termination andthe lexiographi order indution priniple. In Setion 6 we formaliseall termination proofs of s presented in this paper. In Setion 7 weformalise a ontext alulus whih is the main part of the terminationproof of �. In Setion 8 the termination proof of � is formalised.2. The alulus of �� and the termination proof of ��� provides a setting for expliit substitutions, with pleasant proper-ties. It is strongly onneted with the ategorial understanding of the�-alulus, where a substitution is interpreted as a omposition [10℄. Inthis setion we present the ��-alulus and some of its properties.2.1. Definition of the alulus ��In expliit substitution aluli, substitutions are delayed and expli-itly reorded; the appliation of substitutions is independent, and notoupled with the �-rule. If a is a term and s is a substitution then theterm a[s℄, whih is alled a losure, represents a with the substitution s.When substitutions are made expliit, the �-rule with delayed substi-tutions, alled Betav an be expressed by: (�x:a)b !Betav a[(b=x) � id℄where (b=x) � id is the substitution that replaes x with b and a�etsno other variables (id is the identity substitution).We assume familiarity with de Bruijn indies and use substitutionaluli with these indies (as mostly done in expliit substitution).DEFINITION 1 (The ��-alulus). The ��-alulus is a two-sortedalulus where the set of terms ��t is given by the abstrat syntaxa; b ::= 1 j ab j �a j a[s℄ and the set of substitutions ��s is given by theabstrat syntax s; t ::= id j " j s � t j s Æ t.The set � of the rules whih propagate the substitutions is given inFigure 2.1. �� is the union of the � rules and (Beta): (�a)b! a[b�id℄.22 Beta eliminates �'s reating substitutions; the � rules eliminate substitutions.
final.tex; 16/09/2002; 17:43; p.4

5(VrId) 1[id℄! 1 (App) (ab)[s℄! (a[s℄)(b[s℄)(VrCons) 1[a � s℄! a (Abs) (�a)[s℄! �(a[1 � (sÆ ")℄)(IdL) id Æ s! s (Clos) (a[s℄)[t℄! a[s Æ t℄(ShId) " Æid!" (Map) (a � s) Æ t! a[t℄ � (s Æ t)(ShCons) " Æ(a � s)! s (Ass) (s1 Æ s2) Æ s3 ! s1 Æ (s2 Æ s3)Figure 1. The �-RulesIf s represents the in�nite substitution fa1=1; a2=2; a3=3; � � �g, thenthe syntax of substitutions an be desribed intuitively as follows:� id is the identity substitution fi=ig (for all i).� " is the substitution f(i+1)=ig (for all i). E.g., 1["℄ = 2. Thus, n+1an be enoded as 1["n℄, where "n is the omposition: " Æ � � � Æ ".� For all i, i[s℄ is the value of the de Bruijn index i in the substitutions, also written s(i) when s is viewed as a funtion.� a � s is the substitution fa=1; s(i)=(i + 1)g (for all i). E.g., a � id =fa=1; 1=2; 2=3; � � �g and 1� "= f1=1; " (1)=2; " (2)=3; � � �g = id.� s Æ t (the omposition of s and t) is suh that a[s Æ t℄ = a[s℄[t℄,hene s Æ t = fs(i)=ig Æ t = fs(i)[t℄=ig (for all i).2.2. �0: a variant of �, and the proofs of terminationWe disuss the strong normalisation (termination/noetherianity) of �.We start with the statement of the theorem that will be proof heked:THEOREM 2 (SN of �). The alulus � is strongly normalising.There are various proofs of this theorem in the literature:1. The �rst strong normalisation proof of � is based on the strongnormalisation of SUBST [16℄, whih is, within CCL, the set ofrewriting rules that ompute the substitutions. See [16℄.2. The proof in [12℄ shows the termination of � via a strit translationfrom � to another alulus �0 (Lemma 6) and the termination of�0 (Theorem 7). This proof is given in detail in Setion 2.3 as it isthe one that we shall formalise in this paper.3. Zantema gives two proofs in [33, 34℄. The �rst is based on a suitablegeneralisation of polynomial orders to show the termination of thealulus �0 given below (and hene the termination of �). Theseond uses semanti labelling to show the termination of �.
final.tex; 16/09/2002; 17:43; p.5

6As the proof of [12℄ is given via the strong normalisation of �0 (aneonomi variant of �), and a strit translation from � to �0, we givethe de�nition of �0. The alulus �0 is one sorted and treats both Æand [℄ as Æ, observing that Æ and [℄ behave in the same way.DEFINITION 3 (The �0-alulus). The set of terms ��0 of the �0-alulus has the abstrat syntax s; t ::= 1 j id j "j �s j s Æ t j s � t.The set, denoted �0, of rules of the alulus is the following:(VrId) 1 Æ id! 1 (ShId) " Æid!"(VrCons) 1 Æ (s � t)! s (Abs) (�s) Æ t! �(s Æ (1 � (tÆ ")))(ShCons) " Æ(s � t)! t (Map) (s � t) Æ u! (s Æ u) � (t Æ u)(IdL) id Æ s! s (Ass) (s Æ t) Æ u! s Æ (t Æ u)REMARK 4. �0 is a partiular ase of the system Subst of CCL.Rules (V rId) and (ShId) are partiular ases of the right identity rule.We shall often interpret a alulus C1 into another alulus C2. Weall strit interpretation a funtion whih maps a redution step ofC1 into one or many redution steps in C2. Termination of C2 and theexistene of a strit interpretation of C1 into C2 yield termination of C1.The interpretation funtion from �� to ��0 is given by the following:DEFINITION 5 (Interpreting �� in ��0). Let F : �� ! ��0 be:F (1) = 1 F (ab) = F (a) � F (b) F (�a) = �(F (a))F (") =" F (a � s) = F (a) � F (s) F (a[s℄) = F (a) Æ F (s)F (id) = id F (s Æ t) = F (s) Æ F (t)Then we have the following lemma that was easily heked in ALF:LEMMA 6 (F preserves redutions). If a!� b then F (a)!�0 F (b).Of ourse, with Lemma 6, it is enough to show the termination of �0in order to guarantee the termination of �. Hene the next theorem:THEOREM 7 (SN of �0). The alulus �0 is strongly normalising.2.3. The proof of [12℄[12℄ notes that it is easy to de�ne an R.P.O to show the terminationof �0 � f(Abs)g but that it was not possible to extend this R.P.O. toall of �0. Hene, they prove that those terms whih do not ontain �sterminate. For this, they start by the following de�nition:
final.tex; 16/09/2002; 17:43; p.6

7DEFINITION 8 (W-terms and L-terms). In �0 a term is alled a W-term if no � ours in it. Otherwise it is alled a L-term.It is obvious that in �0, a term is either a W-term or an L-term.Now, the following lemma is shown in [12℄ (SN is the set of stronglynormalising terms in ��0):LEMMA 9 (SN of W-terms).1. For s 2 ��0, �s 2 SN i� s 2 SN.2. For s; t 2 ��0, s � t 2 SN i� both s 2 SN and t 2 SN.3. The �0-reduts of W-terms are also W-terms.4. For s; t W-terms, if s 2 SN and t 2 SN then s Æ t 2 SN .5. If s is a W-term, then s 2 SN.But we want to show that all �0-terms are strongly normalising. To doso, the (Abs) rule must be handled. [12℄ hene omes to the onlusionthat what remains for this to be shown is to establish the property:(�) if s 2 SN; then sÆ "2 SN:Proving (�) is diÆult and one needs to prove a more general result: any\inrement" of a strongly normalising term is strongly normalising. Inother words, (�) needs to be strengthened in order to make an indutionargument work. To this end, [12℄ introdued the notion of \ontext"and a mahinery for the ontexts when the \inrement" is redued. Ofpartiular relevane are the notions of (very) good ontexts (see below).The basi idea of the ontext alulus is to think of a term t asa \ontext" with multi-holes �lled by its sub-terms, and to hek themahinery of these ontexts while reduing t.DEFINITION 10 (Contexts). Contexts with multi-holes are given in-dutively by: Cont ::= �n j 1 j id j " j �C j C �D j C ÆDwhere n � 1 and �n denotes a hole.NOTATION 11. Let be an ourrene within the ontext C. Thenotation C= stands for the subontext of C at the ourrene andCf sg stands for the ontext obtained by replaing in C the subon-text C= by the term s. An analogous notation is used for terms: s=and sf sg. When C= is a hole, then C[s℄ is written instead ofCf sg. The notation �k 2 C means that there exists an ourrene in the set of ourrenes of C suh that C= = �k.DEFINITION 12 (Hole �lling). Let C be a ontext, nC = maxfm :�m 2 Cg, n � nC and u = (u1; : : : un) a tuple of terms. Then C[u℄ =C[u1; : : : ; un℄ is the term obtained by plaing uk in all the holes �k ofC for 1 � k � n.
final.tex; 16/09/2002; 17:43; p.7

8NOTATION 13. Let C be a ontext and q � 0. Cq denotes the ontextobtained from C by renaming the holes �k as �k+q.Let u = (u1; � � � ; um) and v = (v1; � � � ; vn). The juxtaposition of uand v will be denoted by u�v = (u1; � � � ; um; v1; � � � ; vn). We will denotethe length of u by Lg(u) or juj.EXAMPLE 14. Let C = ((��4)�(�2Æ "))�(1��4), s = (�(1Æ "))�(1�id)and t =" Æ�1. Then:C=1 = (��4) � (�2Æ ") Cf12 tg = ((��4) � (" Æ�1)) � (1 ��4)C=12 = �2Æ " sf11 tg = (�(" Æ�1)) � (1 � id)s=2 = 1 � id C[t℄121 = ((��4) � ((" Æ�1)Æ ")) � (1 ��4)s=11 = 1Æ " C3 = ((��7) � (�5Æ ")) � (1 ��7)t=21 = 1 C["; 1 � id; " � "; 1℄ = ((�1) � ((1 � id)Æ ")) � (1 � 1)Now we de�ne the relation between ontexts and terms:DEFINITION 15 (Relative ontexts). A ontext C relative to s is aontext suh that s = C[u℄ for some u. A hole �m in a ontext Crelative to s is alled a W-hole if the orresponding sub-term um is aW-term, otherwise it is alled a L-hole.DEFINITION 16 (Inations). An ination of s is a pair (C;w) whereC is a ontext and w an n-tuple of W-terms suh that there is a n-tupleof terms u whih satis�es s = C[u℄. We shall also say (s; C; u; w) or(C; u;w) is an ination.The result of ination (s; C; u; w) is s0 = C[u0℄ where u0 is given by:u0k = � wk if uk is a W-termuk Æ wk otherwiseWe shall also all the result s0 = C[u0℄ as an inrement of s.One an onsider 0 as an operator whih takes u and w and givesbak u0. The phrase '(C;w) is an ination of s = C[u℄' will stand for'(C;w) is an ination of s and u is Lg(w)-tuple suh that s = C[u℄'.REMARK 17. C[u0℄ = C[v0℄ if (C;w) is an ination of s = C[u℄ = C[v℄.Below we give the restritions on ontexts. These restritions wereintrodued in [12℄ in order to prove the Preservation Theorem 24.3 Amotivating example for introduing these restritions is the following:Let C = �1 Æ �2 and s = C[t; �u℄ where t is not a W-term. Takethe ination (C(w1; w2)) of s whose result is (t Æw1) Æ ((�u) Æw2). It ispossible to have (t Æw1) Æ ((�u) Æw2)! t Æ (w1 Æ ((�u) Æw2)), but suh3 Espeially when onsidering the (Abs) ase whose non-straightforwardness wasommented on at the begin of this setion.
final.tex; 16/09/2002; 17:43; p.8

9a redution must be forbidden beause the redut annot be treated asthe result of an ination of s, when w1 Æ ((�u) Æ w2) is not a W-term.The solution [12℄ proposed for this problem is to prevent �2 frombeing a �-hole. Hene, the following de�nition whih says that a ontextC is good for s if it is a ontext for s, and whenever AÆB is a sub-ontextof C and there exists a hole in A, then B must be a W-hole.DEFINITION 18 (Good ontexts). A good ontext relative to s is aontext C relative to s whih satis�es the ondition that: for every o-urrene of a omposition in C, if there exists a hole at an ourreneof the form 1�, then C=2 is a W-hole.Now we introdue the seond restrition on ontexts whih saysthat a ontext C for s is very good if it is good, and whenever C= isa W-hole, s=Æ is an L-term for any proper-pre�x Æ of .DEFINITION 19 (Very good ontexts). A very good ontext C relativeto s is a good ontext relative to s suh that if s = C[u℄ and uk is aW-term, then for every ourrene suh that C= = �k and for everyÆ proper pre�x of , s=Æ is not a W-term.DEFINITION 20 (Good/Very good ination). An ination of s is agood/very good ination if its ontext relative to s is good/very good.EXAMPLE 21. The ination (�1; ") is very good and for s an L-term,sÆ " is the result of this very good ination of s[12℄ gives two important lemmas (22 and 23) whih say that goodinations behave niely and that one an pass from good inations tovery good ones. Lemma 22 (resp. Lemma 23) is enoded in ALF as inFigure 13 (resp. Figure 14) and proved in Lemma 51 (resp. Lemma 52).LEMMA 22 (Redution of ontexts preserves good inations). Let s0be the result of the good ination (C;w) of s = C[u℄. Let D be a ontextsuh that C ! D, and let t = D[u℄ (hene, s ! t and s0 ! t0). Thenthere exists a good ination (D0; w0) of t whose result is t0.LEMMA 23 (Very good inations with same results as good inations).Let K(C) be the number of the holes in C. If (C; u;w) is a good ina-tion of s with result s0, then there exists a very good ination (C 0; u0; w0)of s with result s0 that K(C 0) � K(C).THEOREM 24 (Preservation of SN). Let s 2 SN and let s0 be theresult of a very good ination (C;w) of s = C[u℄. Then s0 2 SN.
final.tex; 16/09/2002; 17:43; p.9

10See Page 34 for a proof of Theorem 24 and Setion 8 for the ALF proofof Corollary 25.COROLLARY 25 (� and �0 are strongly normalising). The aluli �and �0 are strongly normalising (i.e. Theorems 2 and 7 are now proved).Proof: First, we prove this orollary for �0. By Example 21 and The-orem 24, if s is an L-term, and s 2 SN, then sÆ "2 SN. But, if s is aW-term, then sÆ " is also a W-term and hene by Lemma 9, sÆ "2 SN.Hene, in all ases, if s 2 SN, then sÆ "2 SN. Hene, property (�) isproved. Now, one an easily prove that if s; t 2 SN, then s Æ t 2 SN.Finally, use Lemma 9 to show that if s 2 ��0 then s 2 SN. Now, for �,simply use the strong normalisation of �0 and Lemma 6. 23. The alulus �s and the termination proofs of sWe present the alulus �s [21℄ in this setion and give three strongnormalisation proofs of the s-alulus, eah using a di�erent method.The proof of Setion 3.4 was given in [21℄ and is by a strit translationfrom s to � (and the strong normalisation of the alulus �). In Se-tions 3.2 and 3.3 we give two new proofs. In this paper, we formaliseall these proofs in ALF. For omparison between �s and ��, see [23℄.3.1. The alulus �sDEFINITION 26 (The �s-alulus). The terms �s of the �s-alulusare given by: a; b ::= N j ab j �a j a�ib j 'ika where i � 1; k � 0.The set, denoted �s, of rules of the alulus is given in Figure 2.The alulus of substitutions assoiated with the �s-alulus, alled thes-alulus, is the rewriting system whose rules are �sn f�-generationg.THEOREM 27 (SN of s). The s-alulus is strongly normalizing.3.2. Interpretations for the termination of the alulus sThe interpretation method an be used to prove the termination of s.DEFINITION 28 (Polynomial interpretation of s). The polynomial in-terpretations for s are de�ned by indution on the struture of the termsin �s: [[n℄℄ = 2; [[ab℄℄ = [[a℄℄ + [[b℄℄ + 1; [['ika℄℄ = 2[[a℄℄;[[�a℄℄ = [[a℄℄ + 1; [[a�ib℄℄ = [[a℄℄([[b℄℄ + 1)Now we an prove Theorem 29 whih gives another termination proofof s. It was heked in ALF by some trivial inequalities like: \For anya 2 �s, [[a℄℄ � 2" (proved by indution on the struture of terms of s).
final.tex; 16/09/2002; 17:43; p.10

11(�-generation) (�a)b! a�1b(�-�-transition) (�a)�ib! �(a�i+1b)('-�-transition) 'ik(�a)! �('ik+1a)(�-app-transition) (a1a2)�ib! (a1�ib)(a2�ib)('-app-transition) 'ik(a1a2)! ('ika1)('ika2)(�-destrution) n�ib! 8>><>>: n� 1 if n > i'i0b if n = in if n < i('-destrution) 'ikn! (n+ i� 1 if n > kn if n � kFigure 2. Rules of �sTHEOREM 29. For any a; b 2 �s, if a!s b then [[a℄℄ > [[b℄℄.3.3. Another termination proof of s by indutionNow we give the diret proof that s is strongly normalising. This proofis reminisent of the method of Reduibility Candidates. It is done bystrutural indution, the method used to prove strong normalisation of�0 (the proof is easier for s). Let SN be the set of all strongly normalisingterms. For t 2 SN, dpth(t) is the length of the longest derivation4,lgth(t) is the number of variables and operations de�ned as follows:lgth(n) = 1lgth(�a) = lgth(a) + 1 lgth(ab) = lgth(a) + lgth(b) + 1lgth('ika) = lgth(a) + 1 lgth(a�ib) = lgth(a) + lgth(b) + 1Sine there are no rules of the alulus s whih ontain \�" or \ap-ply" as head symbol, in order to prove that all terms are terminat-ing, we need only to hek that if a; b 2 SN, then 'ika 2 SN anda�ib 2 SN whih we prove in Lemma 30 by lexiographi indution on(dpth(a); lgth(a))) and (dpth(a); lgth(a); dpth(b); lgth(b)) respetively.LEMMA 30. Let a; b 2 �s. We have (i� stands for if and only if):1. ab 2 SN i� a 2 SN and b 2 SN. Also, �a 2 SN i� a 2 SN.2. If a 2 SN, then 'ika 2 SN for all i � 1, k � 0.3. If a; b 2 SN, then a�ib 2 SN for all i � 1, k � 0.4 dpth(t) is well de�ned for t 2 SN by K�onig Lemma. Note also that when a; bare terminating and a �!+ b, then dpth(a) > dpth(b). However, we do not need thenotion of \depth" when formalising the lexiographi indution priniple in ALF.
final.tex; 16/09/2002; 17:43; p.11

123.4. A termination proof of s via termination of �[21℄ shows strong normalisation of s by giving a strit translation froms to � (Theorem 32 below) whih we formalise in ALF in Setion 6.The termination proof of � will be given in Setion 8.DEFINITION 31. We introdue some notations:� Let k � 0, i � 1. De�ne ski = 1 � 2 � ::: � k� "k+i�1 (write s0i ="i�1).� Let b 2 ��t. We de�ne a family of substitutions (bk)k�1 as follows:b1 = b[id℄ � id b2 = 1 � b["℄� " ... bi+1 = 1 � 2 � ::: � i � b["i℄� "i� Let �� = ��t [��s. De�ne the funtion T : �s! �� by:T (n) = n T (ab) = T (a)T (b) T ('ika) = T (a)[ski℄T (�(a) = �(T (a)) T (a�ib) = T (a)[T (b)i℄THEOREM 32. If a!s b then T (a)!+� T (b).4. The proof assistant ALF4.1. About Martin-L�of's Type TheoryIn Martin-L�of's type theory [25℄ prediate logi is interpreted withintype theory through Pat, the Curry-Howard-de Bruijn interpretationof propositions as types (sets). A proposition is interpreted as a setwhose elements represent the proofs of the proposition. Hene, a falseproposition is interpreted as the empty set and a true proposition as anon-empty set. To prove a proposition is to prove the set is inhabited.There are two ways of introduing types in Martin-L�of's type the-ory: funtion types and indutively de�ned sets of the type Set. Thefuntion types make it possible to express rules in a natural dedutionstyle and logi an then be introdued by the Pat priniple.For every indutively de�ned set, one �nds one formation rule (ex-pressing how to form a set), introdution rules (expressing how toform the elements of the set), and one elimination rule (giving theindution priniple for this set, i.e. how to prove all the elements of theset satisfy some property). Basially one states in the elimination rulethat if for every onstrutor one an show the property holds, then theproperty holds for all the elements of the set. Another way to look atthe elimination rule is that it says there are no other objets in this setexept those given by the introdution rules. There is a general shemeto derive the elimination rule from the introdution rules of a set.As an example, we give the formation, elimination and introdutionrules of the set of natural numbers N. First, we give some notations:
final.tex; 16/09/2002; 17:43; p.12

13NOTATION 33. A funtion f whih takes arguments x1 2 A1; : : : ; xn 2An and returns f(x1; : : : xn) 2 B, is written as f 2 (x1 2 A1; : : : ; xn 2An)B. E.g., the suessor funtion on natural numbers is written assu 2 (n 2 N)N. I.e., it takes n 2 N and returns su(n) 2 N.Now, the set N is formed by the formation rule: N 2 SetThe elements of the set N are de�ned by two introdution rules:5zero 2 N a 2 Nsu(a) 2 NThe elimination rule of N is just the indution priniple:C(v)set[v 2 N℄a 2 Nd 2 C(zero)e(x; y) 2 C(su(x))[x 2 N; y 2 C(x)℄natre(a; d; e) 2 C(a)In ALF (see Setion 4.2), the introdution rules of N look like:N 2 Setzero 2 Nsu 2 (n 2 N)NWe present rules in a natural dedution style or in ALF style above.We use a 2 A or a : A to denote a is an element (objet) of the set(type) A. A proposition is proved by onstruting a proof objet, or anelement of the set in ALF. Objets of a type are formed from onstantsand variables using appliation (app) and abstration (abs) given by: 2 (x 2 A)B a 2 A(a) 2 B[x := a℄ (app) b 2 B[x 2 A℄[x℄b 2 (x 2 A)B (abs)4.2. The proof assistant ALFALF [24, 32℄ implements a monomorphi version of type theory whereall type information is in the term. As a result there is a lot of redundantor uninteresting type information, and the size of the proofs an bevery large. However, the user an instrut ALF to suppress unwantedtype information when displaying proofs. ALF emphasizes the intera-tive development of type-theoreti onstrutions, i.e. proof objets andprograms, using a window-based user interfae. Thus ALF supports anarbitrary mixture of top-down and bottom-up development.The basi metaphor of ALF is the re�nement of an inomplete proofobjet whih is displayed in a window (srath area). Using the mouse,5 Here N is a set having two onstrutors: the nullary zero and the unary su,whih is a funtion from N to N.
final.tex; 16/09/2002; 17:43; p.13

14the user an �ll in plaeholders by pointing at them and then seletinga previously onstruted objet from a menu. In ALF plae-holders areused to represent those parts of objets whih are to be �lled in. Theexpression ? 2 A expresses a state of an ongoing proess of �nding anobjet in the type A. There are four ways of re�ning a plaeholder:� The plaeholder is replaed by a onstant . This is orret if thetype of is equal to A.� The plaeholder is replaed by a variable x, where x must be inthe loal sope of the plaeholder.� The plaeholder is replaed by an abstration [x℄? 2 A if A is equalto funtion type (y 2 B)C. We are onstruting a solution to theproblem C under the assumption that we have a solution to B.� The plaeholder an be replaed by an appliation (?1; : : : ; ?n).In this ase we an divide the problem to several subproblems.We have used Window ALF whih was implemented by Magnusson[24℄. By the Pat priniple, to prove a theorem in ALF is the sameas writing a program \witnessing" the truth of the theorem. This is afundamental di�erene between ALF and HOL (and many other proof-assistants), where the proof is presented as a sequene of tatis.5. Formalising expliit substitution aluli in ALFIn this setion we give the implementations of �0, � and s, and presentthe notion of termination and the well-founded indution priniple.5.1. Expliit substitution aluli in ALFAn expliit substitution alulus is de�ned by a set of terms (substi-tutions) and a set of rules. Eah set is indutively de�ned by its intro-dution rules in ALF. There is an elimination rule for eah indutivelyde�ned set, whih gives the indution priniple on the set.For �0, the set of terms ��0 and the redution rules R�0 (f. De�-nition 3) are given below. Note that in ALF, we should use somethinglike Sig0Term instead of ��0, but for readability, we write the latter inthis paper and follow the same abuse of notation for all other names:
final.tex; 16/09/2002; 17:43; p.14

15��0 2 Set R�0 2 (s; t 2 ��0)Set1 2 ��0 V rId 2 R�0(1 Æ id; 1)id 2 ��0 V rCons 2 R�0(1 Æ (s � t); s)" 2 ��0 Abs 2 (s; t 2 ��0)R�0((�s) Æ t; �(s Æ (1 � (tÆ "))))� 2 (a 2 ��0)��0 IdL 2 R�0(id Æ s; s)Æ 2 (s; t 2 ��0)��0 ShId 2 R�0(" Æid; ")� 2 (s; t 2 ��0)��0 ShCons 2 R�0(" Æ(s � t); t)Map 2 R�0((s � t) Æ u; (s Æ u) � (t Æ u))Ass 2 R�0((s Æ t) Æ u; s Æ (t Æ u))For readability, we will not be using the real syntax of ALF in thispaper. The reader an refer to [1℄ for all the ode in ALF. We abusethe notation of ALF and write some operators as in�x rather thanpre�x, we use the same names of the original alulus rather than namesallowed by the syntax of ALF, and we suppress some arguments of theonstrutors. The real implementation in ALF looks as follows:R�0 2 (s; t 2 ��0)SetV rId 2 R�0(Com(V1; Id); V1)V rCons 2 (s; t 2 ��0)R�0(Com(V1; App(s; t)); s)Abs 2 (s; t 2 ��0)R�0(Com(Lam(s); t); Lam(Com(s;App(V1; Com(t; Shift))))): : :One step redution ! is formalised as follows:!2 (s; t 2 ��0)SetDiret 2 (R�0(s; t))s! t�Compa 2 (s! t)�s! �tÆCompL 2 (s1 ! s2)s1 Æ t! s2 Æ tÆCompR 2 (s1 ! s2)t Æ s1 ! t Æ s2�CompL 2 (s1 ! s2)s1 � t! s2 � t�CompR 2 (s1 ! s2)t � s1 ! t � s2The aluli � and s are formalised in the same way.5.2. Termination of expliit substitutions in ALFLet (A;R) be an expliit substitution alulus, where R is the one stepredution relation. Termination is de�ned as a family of sets indutivelyde�ned in ALF by the Formation, Introdution6 and elimination rulesgiven in Figure 3. E.g., we give the de�nition of SN for �0 in Figure 4.The introdution rule says that an element a is strongly normalisingif whenever it is one step redued to a term b, b is also strongly nor-malising. This is a reursive de�nition. SNintr is the onstrutor. Wewill write SN(a) or a 2 SN when the term a is strongly normalising.Let C be a proposition on SN(a) for a 2 A. The elimination rulesays that to prove C holds for sn 2 SN(t) and t 2 A, we need to show:6 This is a typial onstrutive way to desribe in�nite objets. We have hiddenthe arguments A and R in the introdution rule.
final.tex; 16/09/2002; 17:43; p.15

16 a : ASN(a) : Set (Formation)a : ASNintr : (a : A;h : (b : A;R(a; b))SN(b))SN(a) (Introdution)C : (t : A; SN(t))Setd : (x : A; b : (y : A;R(x; y))SN(y); b1 : T1)T2yt : Asn : SN(t)SNelim(C; b; t; sn) : C(t; sn) (Elimination)y: where T1 � (y : A; a : R(x; y))C(y; b(y; a)) and T2 � C(x; SNintr(x; b))Figure 3. TerminationSN 2 (a 2 ��0)SetSNintr 2 (a 2 ��0; (b 2 ��0; a! b)SN(b))SN(a)Figure 4. De�nition of SN for �0� if whenever x is one step redued to y then y is strongly normalisingand there is a proof of C(y; b(y; a)), then we an get a proof ofC(x;SNintr(x; b)) (note that b is the indution hypothesis).We will use the non-dependent version of the reursor ReSN given inFigure 5 to simulate indution over the length of the longest redutionof a strongly normalising term. ReSN as an indution priniple saysthat SN is the smallest set of terms losed under one step redution.In later setions we will need to prove propositions like SN(a) impliesSN(a0). To prove suh propositions using the indution priniple ofFigure 5 we an try to �nd a prediate P suh that SN(a) implies P(a),and P(a) implies SN(a0). To prove SN(a) implies P(a), by the indutionpriniple we need only to prove P is losed under one step redution. Wewill use this tehnique to prove some lemmas in Setion 6. Alternatively,we de�ne a � b if b! a. Then a redution! is strongly normalising ifand only if the order � is well founded. Hene the indution prinipleReSN is just the well founded indution priniple.P : (a : A)Seth : (m : A; (n : A;R(m;n))SN; (n : A;R(m;n))P (n))P (m)m1 : Asn : SN(m1) ReSN(P; h;m1; sn) : P (m1)Figure 5. ReSN
final.tex; 16/09/2002; 17:43; p.16

17�s 2 Set [[℄℄ 2 (�s)NV ar 2 (n 2 N;n > zero))�s [[V ar(n)℄℄ � su(su(zero))ap 2 (s; t 2 �s)�s [[st℄℄ � su(plus([[s℄℄; [[t℄℄))� 2 (s 2 �s)�s [[�t℄℄ � su([[t℄℄)� 2 (s 2 �s; j 2 N; j > zero); t 2 �s)�s [[s�jt℄℄ �Multiply([[s℄℄; su([[t℄℄))' 2 (i; k 2 N; i > zero); s 2 �s)�s [['iks℄℄ �Multiply(su(su(zero)); [[s℄℄)Figure 6. The (sugared) Implemenation of the alulus s6. Formalising the termination proof of s in ALF6.1. Formalising the Interpretations for termination of sThe implementation of the interpretations for the termination of s isnot diÆult. All we need is some inequalities about the addition andmultipliation of natural numbers. See Setion 3.2.The (sugared) implementation of the alulus s (De�nition 26) andof its interpretation (De�nition 28) is given in Figure 6 (again, by abuseof notation, we write ab instead of ap(a; b)).We formalise Theorem 29 as: Prop1 2 (a; b 2 �s; a! b)[[a℄℄ > [[b℄℄:All the details of this proof of termination of s using interpretation(see Setion 3.2) have been fully formalised in ALF. See [1℄.6.2. Formalising the indution termination proof of sNow let us see how to implement the strong normalisation proof of sgiven in Setion 3.3. We use SNs for strong normalisation in �s.Theorem 27 is proved by indution on the struture of terms, orusing the elimination rule:�s elim : (C : (�s)Set)(e1 : C(V ar(n)))(e2 : (a; b : �s;C(a);C(b))C(ab))(e3 : (a : �s;C(a))C(�a)(e4 : (a : �s; i; k : N ;C(a))C('ika)(e5 : (a; b : �s; i : N ;C(a);C(b))C(a�ib)(a : �s)C(a)To this end we need Lemma 36 below whih gives the proof objets ofe1; e2; e3; e4 and e5 when C is SNs. Intuitively, SNs holds for all normalforms beause for them the premise of the introdution rule for SNs isvauously true. Sine every variable is strongly normalising, e1 is easyto get. After proving Lemma 36, we �nish the proof of Theorem 27 byindution on the struture of terms.
final.tex; 16/09/2002; 17:43; p.17

18REMARK 34. By using pattern mathing, we do not need to write theelimination rule of �s. Theorem 27 reads in ALF: SNs : (a : �s)SNs(a).By pattern mathing on the argument a, we get the following equations:SNs : (a : �s)SNs(a)SNs(V ar(n)) =?e1SNs(ab) =?e2SNs(�(a)) =?e3SNs('ika) =?e4SNs(a�ib) =?e5Here we have the same tasks to give those proof objets e1; � � � ; e5.REMARK 35. It is easy to prove Lemma 36 in lassial logi usingthe de�nition \there are no in�nite derivations". But when proving itin ALF, we an't use the lassial law of refutation. In ALF, we mustuse introdution and elimination rules to give a onstrutive proof.LEMMA 36. The following hold:1. ab 2 SNs if and only if a 2 SNs and b2 SNs.2. �a 2 SNs if and only if a 2 SNs.3. For any i � 1; k � 0, 'ika 2 SNs if and only if a 2 SNs.4. For any i � 1, a�ib 2 SNs if and only if a; b 2 SNs.Proof: Cases 1 and 2 are by indution on the derivation sequenes,that is by SNs elimination. Cases 3 and 4 need to ombine the SNselimination and term elimination, whih orrespond to indution on(dpth(a), lgth(a)).7 Below, we only give the ALF proof of ase 2.Case 2: We prove �rst the \only if" part. We de�ne a prediate P1(a) �8x 2 �s((a = �(x))) SNs(x)). We will prove the following fats:1. 8x 2 �s(P1(�(x))) SNs(x)): 2. 8x 2 �s(SNs(x)) P1(x)).1. It is easy to see that P1(�(a)) implies SNs(a) by de�nition of P1.This is proved in ALF by giving a funtion whih for any proof ofP1(�(a)) gives a proof of SNs(a):Suppose we have a proof h : P1(�(a)); by the elimination rule of 8,we have a proof: Forall elim(h; �(a)) : (�(a) = �(a))) SNs(a)). Bythe elimination rule of) and a proof r : �(a) = �(a), we get a proofof SNs(a). The �nal proof of P1(�(a))) SNs(a) for any a 2 �slooks like: Imply intro([h℄Imply elim(Forall elim(h; �(a)); r). Usingintrodution rule of 8, we get the proof of 2.7 Reall that dpth(a) is the number of redutions in the longest derivation pathstarting from term a, however we don't need to formalise dpth(a), whih is a partialfuntion de�ned only on strongly normalising terms.
final.tex; 16/09/2002; 17:43; p.18

192. We must prove that 8x 2 �s(SNs(x)) P1(x)). This is by theindution priniple ReSNs, whih amounts to indution on deriva-tions. We should prove that P1(x) is losed under one step redu-tion, i.e.: m : �s;h : (n : �s;m! n)P1(n)? : P1(m)Note that we denote statemens of the form: \under assumption A,�nd a proof of type B" by: A? : BP1(m) is solved by introdution rules of universal quanti�er, implyand by �nding a proof objet of type SNs(x): x : �s;m � �(x)? : SNs(x)The problem SNs(x) is solved by the introdution rule of SNs and�nding a proof objet of type SNs(b): b : �s;h2 : x! b? : SNs(b)This is proved using the proofs of P1(�(b))) SNs(b) and P1(�(b)).The proof of P1(�(b)) omes from the proof h : (n : �s;m !n)P1(n), where m = �(x); n = �(b) and m! n beause h2 : x! b.The \if" diretion is proved in the same way: Suppose P2(x) � SNs(�(x)),then we an prove that P2(x) is losed under one step redution. Byredution on derivations, we prove that 8x 2 �s(SNs(x)) P2(x)).Finally, it is easy to see that P2(x) implies SNs(�(x)). 2Again, all the details of this indution termination proof of s (seeSetion 3.3) have been fully formalised in ALF. See [1℄.6.3. Formalising the termination proof of s via �In this setion, we formalise in ALF, the strong normalisation of s bygiving a translation from s to � (see Setion 3.4). The translation T ofDe�nition 31 is formalised in ALF as follows (in sugared notation):T 2 (a 2 �s)��T (V ar(n)) � ode(n)T (st) � T (s)T (t)T (�t) � �T (t)T (s�jt) � T (s)[T (tj℄T ('iks) � T (s)[ski℄Theorem 32 is heked, whih is implemented in ALF (again in sugarednotation) as: SigSimulateS 2 (a; b 2 �s; p 2 a! b)T (a)!+� T (b).The ALF proof of this theorem is by ase analysis on the proofobjet p. We should hek when any of the seven ! redution rulesfor p, the theorem is orret. One of the main tasks is, when oming tothe rule Diret for one step redution in s (see page 15), to prove thetheorem holds for any of the redution rules of s. We an use indutionto prove other ases, i.e. the ompatible rules. For instane, we shouldprove the following propositions hold when we are at �-destrution:
final.tex; 16/09/2002; 17:43; p.19

20 Projetion1 : (n : N ; b : ��t)n[bn℄!+� b["n℄Projetion2 : (n; i : N ; i > n; b : ��t)n[bi℄!+� nProjetion3 : (n; i : N ;n > i; b : ��t)n[bi℄!+� n� 1It is easy to see that they are intuitively true. However when provingthem in ALF, there are a lot of details whih we need to hek. Let ustake these projetions to see some details of the ALF proof.First of all, we should have a denotation for bi for any i � 1. Whenwe write bi, we atually refer to a funtion bi : ��t �N ! ��s. In thefollowing we will feel free to use the onvention notation bi de�ned by:bi = ConaFinite(i; b["i�1℄� "i�1) where:ConaFinite : (n : N ; s : ��s)��sConaFinite(0; s) = s;ConaFinite(n+ 1; s) = ConaFinite(n; n � s)Alternatively we ould give bi by two simultaneously de�ned funtions" Subs and " term: b01 = b[id℄ � id and b0i+1 = 1� " Subs(b0i) where" Subs : (s : ��s)��s " term : (a : ��t)��t" Subs(id) =" " term(1) = 1["℄" Subs(") =" Æ " " term(ab) =" term(a) " term(b)" Subs(a � s) =" term(a)� " Subs(s) " term(�a) = �(a[1 � (" Æ ")℄)" Subs(s Æ t) = sÆ " Subs(t) " term(a[s℄) = a[" Subs(s)℄LEMMA 37. For any a 2 ��t, s 2 ��s and n 2 N, the following hold:1: a["℄!?�" term(a): 2: sÆ "!?�" Subs(s).3: " Subs("n) ="n+1 : 4: " term(n) = n+ 1:Projetion1 is proved by Lemma 38, whih is shown by indution on n:LEMMA 38. "n ÆConaFinite(n; s)!+� s for any s 2 ��s and n > 0.LEMMA 39. Projetion1 : (n : N ;n > 0; b : ��t)n[bn℄!+� b["n℄.Proof: By indution on n.� For n = 1, 1[b1℄ = 1[b[id℄ � id℄ ! b[id℄ = b["0℄ by the rule (VrCons).� For n+1, (n+1)[bn℄ = 1["n℄[bn℄ ! 1["n Æbn℄! 1[b["n℄� "n℄! b["n℄by the rule (Clos) and Lemma 38. 2Similarly, Projetion2 is proved by indution on n.� For n = 1 we need to prove: 1[ConaFinite(b; i)℄! 1This is proved by the rule (VrCons) in one step. This is beausebi = 1 � s for some substitution s when i > 1. However, bi isde�ned by the funtion ConaFinite, we need to prove this fat. Itis immediate if we use the notation b0i.
final.tex; 16/09/2002; 17:43; p.20

21� For n+1, we should prove: 1["n℄[bi℄!+� 1["n℄.By the losure rule, we have: 1["n℄[bi℄!� 1["n Æbi℄.Intuitively "n Æbi = (n + 1) � ::: � b["i�1℄� "i�1, and Projetion2 issolved by the rule VarCons.Therefore we should prove that "n Æbi = (n+ 1) � ::: � b["i�1℄� "i�1Now there should be a notation for (n+ 1) � ::: � b["i�1℄� "i�1So we de�ne another notation ConaFinite3:ConaFinite3 : (n; i : N ; s : ��s)��sConaFinite3(n; 0; s) = n � sConaFinite3(n; i + 1; s) = ConaFinite3(n; i; (n+ i+ 1) � s)LEMMA 40. Let n 2 N, s 2 ��s and i > n.� ConaFinite3(0; n; s) = ConaFinite(n+ 1; s)� "n ÆConaFinite(i; s)!+� ConaFinite3(n; i� n� 1; s).We have to prove that ConaFinite3(n; i; s) has the form n � s forsome substitution s expliitly.LEMMA 41. Let i; n 2 N, s 2 ��s, LS1(n; i+1; s) = ConaFinite3(n+1; i; s) and LS1(n; 0; s) = s. ConaFinite3(n; i; s) = n � LS1(n; i; s).LEMMA 42. Projetion2 : (n; i : N ; i > n; b : ��t)n[bi℄!+� n.Projetion3 is proved by indution on the proof objet p : n > i basedon proving the following lemma:LEMMA 43. "n+1+i Æbi !+� "n+i for any i; n 2 N.This is beause n[bi℄ = 1["n�1℄[bi℄! 1["n�1 Æbi℄! 1["n�2℄.LEMMA 44. Projetion3 : (n; i : N ;n > i; b : ��t)n[bi℄!+� n� 1.Having proved T is a strit interpretation, we an onlude Theo-rem 27 using of ourse the proof of termination of � (Setion 8).Again, all the details of this termination proof of s via terminationof � (see Setion 3.3) have been fully formalised in ALF. See [1℄.7. Formalising the ontext alulus of �0 in ALFIn this setion we formalise in ALF all the notions informally given in[12, 30℄. In [12℄, many notions were taken for granted and not intro-dued, and many lemmas were left unproven. To formalise the proofsof [12℄ we had to rewrite all the intuitions and informal notions, and to
final.tex; 16/09/2002; 17:43; p.21

22 = : (C 2 Cont; 2 L)Cont = : (s 2 ��0; 2 L)��0C=nil = C t=nil = t�m=f1; 2g = 11=f1; 2g = 1 1=f1; 2g = 1id=f1; 2g = id id=f1; 2g = id" =f1; 2g =" " =f1; 2g ="�(C)=f1; 2g = C= �(s)=f1; 2g = s=C � D=1 = C= s � t=1 = s=C � D=2 = D= s � t=2 = t=C Æ D=1 = C= s Æ t=1 = s=C Æ D=2 = D= s Æ t=2 = t=Figure 7. Formulation of Notation 11hek a lot of details. Sometimes we had to hange the implementationto make the proofs go through. We shall disuss some of the implemen-tations during the proess of the formalisation in this setion.8 Whenformalising on a mahine, nothing an be left to the intuition.The ontexts of De�nition 10 are formalised in ALF as follows:Cont 2 Set� 2 (n 2 N;n � 1)Contid; 1; "2 Cont� 2 (C 2 Cont)Cont�; Æ 2 (C;D 2 Cont)ContLet f1; 2g mean 1 or 2. Let L be the set of lists of f1; 2g. L is alsoalled the set of ourrenes. Figure 7 formalises Notation 11. This isdone by the position of the sub-ontext, whih is a list of f1; 2g (alsoalled an ourrene). In Figure 7 whih implements the notion of sub-ontext, we write C= instead of =(C;), whih denotes the sub-ontextof C at . Similarly we de�ne the sub-terms of a term by its ourrenesof the sub-terms. 0 � denotes 0 is a proper pre�x of .7.1. Substitutions of the ontextThere are several ways to think of a term t as a ontext �lled with itssub-terms. We �rst de�ne the substitutions of ontexts with tuples ofterms Subst 2 (C 2 Cont;n 2 N;u 2 ��n0)��0 and implement Cq byLiftCont : (C 2 Cont; q 2 N)Cont. We use C[u℄ for Subst(C;Lg(u); u)8 Pages 33{53 of [30℄ are simply the Frenh version of Setions 2{7 of [12℄.
final.tex; 16/09/2002; 17:43; p.22

23T1 � (C 2 Cont; 2 L;B 2 Cont)Cont T2 � (s 2 ��0; 2 L; t 2 ��0)��0SubSubon : T1 SubSubtm : T2Cfnil Bg = B sfnil tg = t�mff1; 2g Bg = �midff1; 2g Bg = id idff1; 2g tg = id1ff1; 2g Bg = 1 1ff1; 2g tg = 1" ff1; 2g Bg =" " ff1; 2g tg ="�(C)ff1; 2g Bg = �Cf Bg) �(s)ff1; 2g tg = �(Cf tgC � Df1 Bg = (Cf Bg) � D s1 � s2f1 tg = s1f tg � s2C � Df2 Bg = C � (Df Bg) s1 � s2f2 tg = s1 � s2f tgC Æ Df1 Bg = (Cf Bg) Æ D s1 Æ s2f1 tg = s1f tg Æ s2C Æ Df2 Bg = C Æ (Df Bg) s1 Æ s2f2 tg = s1 Æ s2f tgFigure 8. Formulation of substitutions in ontexts and terms(f. De�nition 12 and Notation 13)). We use uk to denote Proj(n; k; u),the kth-projetion of the n-tuple u. We take K(C) to be the numberof the holes in C, and N(C) to be the largest hole index in ontext C.The next lemma states some basi fats about the substitution C[u℄:LEMMA 45. Let u = (u1; � � � ; um) and v = (v1; � � � ; vn). We have:1. Proj(m+ n;m+ k; u�v) = Proj(n; k; v).2. C[u�v℄ = C[u℄ if N(C) � Lg(u).3. Cm[u�v℄ = C[v℄.4. If K(C) = 0, then C[u℄ = C[v℄ for any u and v.Intuitively they are all true, but to formally prove them, we need tohek a lot of ases by indution. For all the ALF proofs see [1℄.Substitutions in ontexts is a basi operation in the ontext alu-lus. We use Cf Dg for the ontext obtained by replaing in Cthe sub-ontext C= by the ontext D, and sf tg for the termobtained by replaing in s the sub-term s= by the term t. We againabuse notation and write in the ALF de�nition, Cf Bg instead ofSubSubon(C; ;B).9 Substitution is given in Figure 8.We onsider both substitutions on variables (holes) and on \posi-tions", where we only substitute some ourrenes of a variable.9 TmtoCont(s) will denote the ontext when thinking of term s as a ontextwithout any hole. We shall use Cf tg instead of Cf TmtoCont(t)g.
final.tex; 16/09/2002; 17:43; p.23

247.2. Relations on ontextsIn this setion we formalise in ALF many of the notions of Setion 2.3(e.g., relative ontexts, good (very good) ontexts, inations, et.) andwe prove in ALF many of the properties of these notions that areneessary for our main proof in ALF (in partiular of Theorems 2and 24). We will write all these formalisations in sugared notation andrefer the reader to [1℄ for the full details and non sugared ode.10Let N1 be the singleton set and I is the intensional equalityI 2 (a; b 2 A)Setr 2 (A 2 Set; a 2 A)I(a; a)The onstrutive de�nition of the relation relative of De�nition 15, isde�ned indutively on the struture of C as follows:Relative : (C : Cont; s : ��0)SetRelative(�m; s) = N1Relative(id; s) = I(s; id)Relative(1; s) = I(s; 1)Relative("; s) = I(s; ")Relative(�(C); s) = 9h(I(s; �(h)) ^Relative(C; h))Relative(C � D; s) = 9a; b(I(s; a � b) ^Relative(C; a) ^Relative(D; b))Relative(C Æ D; s) = 9a; b(I(s; a Æ b) ^Relative(C; a) ^Relative(D; b))Let R(C; s) stand for C is a ontext relative to s. Let G(C; s) (resp.V(C; s)) stand for C is a good (resp. very good) ontext relative to s.The next lemma relates sub-ontexts and sub-terms:LEMMA 46 (Preservation of relative ontexts in terms). Let C;D beontexts, s; t be terms, u be a tuple of terms and be an ourrene.� R(C; s) if and only if R(�(C); �(s)).� R(C � D; s � t) if and only if R(C; s) and R(D; t).� R(C Æ D; s Æ t) if and only if R(C; s) and R(D; t).� IfR(C; s with u) then R(Cq; s with v�u) for any v = (v1; � � � ; vq).� If D[u℄ = E[u℄ then Cf Dg[u℄ = Cf Eg[u℄.� If R(C; s) then R(Cf tg; sf tg).The notion of inations of De�nition 16 is de�ned as a relation inALF in Figure 9 (where WtmTuple(w) means w is a W-Tuple, i.e. atuple of W-terms). Figure 9 also de�nes a funtion in ALF to expressthe prime operation of De�nition 16.The next lemma relates ontext operations to inations:LEMMA 47 (Preservation of inations in the struture of terms). LetC;D be ontexts, s; t be terms, u; u1; u2; w;w1; w2 be tuples of terms.10 Many lemmas of the ontext alulus were proved in ALF by analysing if aterm is a W-term or L-term.
final.tex; 16/09/2002; 17:43; p.24

25Ination 2 (s 2 ��0;C 2 Cont;n 2 N;u; w 2 ��n0))SetInation(s; C; n; u; w) � (n � NumofHoles(C)) ^ I(s; C[u℄) ^WtmTuple(w)~Æ : (u; w : ��n0)��n0u~Æw = one< a; b > ~Æ < a1; b1 >=< a~Æa1; IfThEl(b; b1; b Æ b1) >where IfThEl : (s 2 ��0; t1; t2 : ��0)��0IfThEl(s; t1; t2) = t1 if s is a W-termIfThEl(s; t1; t2) = t2 otherwiseFigure 9. Inations and the prime operation of De�nition 16GoodCont : (C : Cont; s : ��0)SetGoodCont(�m; s) = N1GoodCont(id; s) = I(s; id)GoodCont(1; s) = I(s; 1)GoodCont("; s) = I(s; ")GoodCont(�(C); s) = 9h(I(s; �(h)) ^ GoodCont(C; h))GoodCont(C � D; s) = 9a; b(I(s; a � b) ^ GoodCont(C; a) ^ GoodCont(D; b))GoodCont(C Æ D; s) = 9a; b(I(s; a Æ b) ^GoodCont(C; a) ^GoodCont(D; b)^(((9l)IsHole(C; l))! W-hole(D)))Figure 10. Good ontexts De�nition 18� Ination(s; C; u; w) if and only if Ination(�(s); �(C); u; w).� If Ination(s; C; u1; w1) and Ination(t;D; u2; w2), thenInation(s � t; C � Dm; u1�u2; w1�w2).� If Ination(s; C; u1; w1) and Ination(t;D; u2; w2), thenInation(s Æ t; C Æ Dm; u1�u2; w1�w2).� If K(C) = 0 then Ination(C[u℄; C; n; u; w) for any u;w.A good ontext (De�nition 18) is de�ned as a set on C and s (seeFigure 10) where IsHole(C; l) denotes C=l is a hole and W-hole(D)denotes that D is a W-hole. We shall also say a ontext C is goodfor a term s where we mean that C is a good ontext for s. A goodInation De�nition 20 will be de�ned in ALF as in Figure 11. A verygood ontext (De�nition 19) is de�ned in ALF as in Figure 12.Many fats about good ontexts are needed when proving someimportant lemmas in Setion 7.3:
final.tex; 16/09/2002; 17:43; p.25

26 GoodInation 22 (s 2 ��0;C 2 Cont;n 2 N;u;w 2 ��n0))SetGoodInation(s; C; n; u; w) � GoodCont(C; s) ^ Ination(s;C; n; u; w)Figure 11. Good Inations De�nition 20VeryGoodCont(C; s) i� GoodCont(C; s) ^ ((8(IsHole(C;))! 8(Æ �)Lterm(s=Æ)))Figure 12. Very Good Contexts of De�nition 19LEMMA 48. Suppose that C;D are ontexts, and s; t; ; d; e are terms.� If R(C; s) and K(C) = 0 then G(C; s).� G(C; s) if and only if G(�(C); �(s)).� G(C � D; s � t) if and only if G(C; s) and G(D; t).� If G(C Æ D; s Æ t) then G(C; s) and G(D; t).� If G(C; s), K(C) = 0, and G(D; t) then G(C Æ D; s Æ t).� If G(C; s) and t is a W-term, then G(C Æ �m; s Æ t).� If G(C ÆD; a Æ b), K(C) � 1, and G(E; e); then G(E ÆD; e Æ b).� If G(C; s), then G(Cm; s) for any m 2 N.� If G((C �D)ÆE; (�d)Æe), then G((CÆE)�(DÆE); (Æe)�(dÆe)).� If G((C Æ D) Æ E; (Æ d) Æ e) then G(D Æ E; d Æ e).� If G((C Æ D) Æ E; (Æ d) Æ e) and K(C) = 0, thenG(C Æ (D Æ E); Æ (d Æ e)).The following lemma will be needed when the main ase of the Preser-vation Theorem 56 is heked:LEMMA 49. Let C;D be ontexts, s; t be terms , be an ourreneand m 2 N.1. If G(C; s), C= is a W-hole, t is a W-term, then G(Cf �mg; sf tg). Moreover, G(Cf �mg; s).2. If G(C; s), C= is �-hole and G(D; t) then G(Cf Dg; sf tg).3. If V(C; s) then V(C=; s=).4. If V(C; s), C= is a �-hole, and t is an L-term, then V(Cf tg; sf tg).5. Let R(C; s). If K(C) = 0 then V(C; s).6. If K(C) = 0, V(C; s) and V(D; t). If s � t is an L-term then V(C �D; s � t). If s Æ t is an L-term then V(C Æ D; s Æ t).7. If V(C; s) and C=(6= nil) is a hole, then s is an L-term.8. If V(C; s) then V(Cm; s) for any m 2 N.9. If s is an L-term, t is a W-term and V(C; s) then V(C Æ�m; sÆ t).10. If V(C; s) then V(Cf �mg; s).11. If V(C; s), C= is a � � hole, t is an L-term and V(D; t) thenV(Cf Dg; sf tg).
final.tex; 16/09/2002; 17:43; p.26

277.3. Redution of ontextsThe main theorem in this setion, the Preservation Theorem, basiallysays, the redut of an inrement of a strongly normalising term is still aninrement of a strongly normalising term, and is smaller in some sense.Hene we are interested in the properties of ontext redution. We de-�ne a notion of ontext redution suh that C ! D ifC[u℄! D[u℄. Thisontext redution is de�ned as (C ! D denotes ContOneStep(C;D)):ContOneStep : (Cont; Cont)Setid Æ D! D1 Æ id ! 11 Æ (C � D)! C" Æid !"" Æ(C � D)! D�(C) Æ D ! �(C Æ (1 � (DÆ ")))(C � D) Æ E ! (C � E) Æ (D �E)(C Æ D) Æ E ! C Æ (D Æ E)�(C)! �(D) if C ! DC � D! C0 � D if C ! C0C � D! C � D0 if D ! D0C Æ D! C0 Æ D if C ! C0C Æ D! C Æ D0 if D ! D0LEMMA 50. Suppose that C;D are ontexts, is an ourrene.1. f C ! D and D= is a hole, then there is Æ suh that C=Æ is a hole.2. If C ! D and K(C) = 0, then K(D) = 0.The next lemma is the formalisation of lemma 22. Figure 13 gives itsexpliit version in ALF.LEMMA 51. Let s0 be the result of the good ination (C;w) of s =C[u℄, D be a ontext where C ! D, and t = D[u℄ (hene, s !t and s0 ! t0). There is a good ination (D0; w0) of t whose result is t0.Proof: This is proved by indution on Lg(C). Let us see how the aseC = A Æ B is proved. Let s = C[u℄ = A[u℄ Æ B[u℄ = a Æ b, and m = juj.When C = A Æ B ! D, there are three possibilities aording to theposition of the redex. (We drop when no onfusion arises.)1. The redex is within A. Suppose that A ! E, by I.H. there exists(E0; u0; w0) whih is the good ination of E[u℄, and E0[u0~Æw0℄ =E[u~Æw℄. There are two ases: K(A) = 0 or K(A) � 1.a) K(A) = 0. We have the following fats:� If C ! D and K(C) = 0, then K(D) = 0. So K(E) = 0.� (E Æ Bq; u0�u;w0�w) is a good ination E[u℄ Æ B[u℄ by Lem-mas 48 and 47, where q = ju0j.� The equality is heked by Lemma 45: (EÆBq)[(u0�u)~Æ(w0�w)℄= (EÆBq)[(u0~Æw0)�(u~Æw)℄ = (E[u0~Æw0℄)Æ(B[u~Æw℄) = (E[u~Æw℄)Æ(B[u~Æw℄) = (E Æ B)[u~Æw℄.
final.tex; 16/09/2002; 17:43; p.27

28 b) K(A) � 1. We have the following fats:� B is a hole and B[u℄ is a W-term by de�nition.� (E0Æ�m+1; u0�B[u℄; w0�B[w℄) is a good ination of E[u℄ÆB[u℄by Lemmas 48 and 47.� The equality is heked: (E0 Æ�m+1)[(u0�B[u℄)~Æ(w0�B[w℄)℄ =(E0[u0~Æw0℄)Æ(B[u℄~ÆB[w℄) = (E[u~Æw℄)Æ(B[u~Æw℄) = (EÆB)[u~Æw℄.2. The redex is within B. Suppose B ! E. We have these fats:� If C ! D, then C is not a hole. Therefore B is not a hole.� If C ÆD is good for a Æ b and D is not a hole, then K(C) = 0.Hene K(A) = 0 here as A ÆB is good and B is not a hole.By I.H. there is a good ination (E0; u0; w0) of b suh that b0 =E0[u0~Æw0℄ = E[u~Æw℄. From Lemma 48 A Æ E0m is good for s =A[u℄ Æ E[u℄. Now we have: (A Æ E0m)[(u�u0)~Æ(w�w0)℄ = (A[u~Æw℄) Æ(E0[u0~Æw0℄) = (A[u~Æw℄) Æ (E[u~Æw℄) = (A Æ E)[u~Æw℄. Hene (A ÆE0m; u�u0; w�w0) is the good ination of (A Æ E)[u℄ in the lemma.3. The redex is A Æ B. We argue aording to the rule:(Ass): C = (E Æ F) Æ B. Two ases arise:a) K(E) = 0. We an prove that (E Æ F) Æ B is good for(aÆ b)Æ implies that E Æ (F ÆB) is good for aÆ (bÆ) (seeLemma 48). Thus (E Æ (F ÆB); u; w) is the good ination.b) K(E) � 1. Then F [u℄ Æ B[u℄ is a W-term, and the goodination is (E Æ�m+1; u�(F [u℄ ÆB[u℄); w�(F [w℄ ÆB[w℄)).(Abs): C = (�(E))ÆB and D = �(E Æ (1 � (BÆ "))). Two ases:a) If K(E) = 0, (�(E Æ (1 � B Æ �m+1)); u� "; w� ") is thegood ination.b) If K(E) � 1, (�(E Æ �m+1); u�(1 � (B[u℄Æ ")); w�(1 �(B[w℄Æ ")) is the good ination.(Map): C = (E �F) ÆB and D = (E ÆB) � (F ÆB). ((E ÆB) � (F ÆB); u; w) is the good ination, as by Lemma 48 if (E � F) Æ Bis good for (a � b) Æ then (E Æ B) � (F Æ B). ((E Æ B) is goodfor (a Æ) � (b Æ) and the equality is heked easily. 2The next lemma is the formalisation of Lemma 23. Figure 14 givesits expliit ALF version.LEMMA 52. If (C; u;w) is a good ination of s with result s0, thenthere exists a very good ination (C 0; u0; w0) of s with result s0 thatK(C 0) � K(C).Proof: Indution on the struture of C. K(C 0) � K(C) ensures thatindution an be done. (Note that is dropped if no onfusion arises.)
final.tex; 16/09/2002; 17:43; p.28

291. C = �(A). By I.H. there exists a very good ination (A0; u0; w0) fors = A[u℄. Then we simply hoose (�(A0); u0; w0).2. C = AÆB. Suppose that (A0; uA; wB) and (B0; uB ; wB) are the verygood inations for A[u℄ and B[u℄ respetively, and A0[uA~ÆwA℄ =A[u~Æw℄ and B0[uB~ÆwB ℄ = B[u~Æw℄. Two ases arise:a) (A Æ B)[u℄ is a W-term, if there is no hole in A Æ B, then(A ÆB; u;w) is the very good ination, otherwise (�1; (A Æ B)[u℄; (A ÆB)[u~Æw℄) is the very good ination. By Lemma 49, for the W-termC[u℄, we always have C[u℄ = C[u~Æw℄.b) (A Æ B)[u℄ is an L-term.� If K(A0) = 0, then A0 ÆB0q is very good for A[u℄ ÆB[u℄ by 49,and (A0 Æ B0q; uA�uB ; wA�wB) is a good ination for A[u℄ ÆB[u℄, where q = juAj. The equality an be heked:(A0ÆB0q)[(uA�uB)~Æ(wA�wB)℄ = (A0ÆB0q)[(uA~ÆwA)�(uB~ÆwB)℄= A0[uA~ÆwA℄ Æ B0[uB~ÆwB ℄ = A[u~Æw℄ Æ B[u~Æw℄. K(A0 Æ B0q) �K(A Æ B) beause K(B0q) = K(B0).� K(A0) � 1. Then K(A) � 1, and B is a w-hole, this alsoimplies that A[u℄ is an L-term beause A Æ B is very good.A Æ�q+1 is a very good ontext for A[u℄ ÆB[u℄ by Lemma 49.(AÆ�q+1; uA�B[u℄; wA�B[w℄) is the very good ination. Theequality is heked easily. K(A0Æ�q+1) = K(A0)+1 � K(AÆB) as K(B) = 1.3. C = A � B. Similarly to the above ase. 2Combining the last two lemmas, we get the following lemma whih isneeded in Lemma 56. See Figure 15 for the expliit ALF representation.LEMMA 53. Suppose that s0 is the result of a very good ination(C; u;w) of s = C[u℄, C ! D, and t0 = D[u~Æw℄, then there exists a verygood ination (D0; u0; w0) of t = D[u℄ suh that D0[u0~Æw0℄ = D[u~Æw℄.Proof: This follows diretly from Lemmas 51 and 52, and the ALFproof is not big, but it took some time to hek. 2(Note: VeryGoodInation(C[u℄; A; u; w0) = GoodInation(C[u℄; A; u; w0)^V eryGood(A;C[u℄) and EX4 denotes four existential quanti�ers.)Now let us see what is happening when a term s = C[u℄ is redued.Intuitively there are three possibilities: the redex is in C, the redex isin some uk or there is an interation between C and u. For our purposeand simpliity, we only onsider the redution C[u~Æw℄! t. In this ase,three ases arise aording to the ourrene of the redex:1. The redution is in the ontext, i.e. C ! D and t = D[u~Æw℄.
final.tex; 16/09/2002; 17:43; p.29

30Prop6 2 (C;D 2 Cont;n Nat;u;w 2 ��n0 ;C ! D; GoodInation(C[u℄; C; n; u; w))AuxProp6(C;D; n; u; w)whereAuxProp6 2 (C;D 2 Cont;n Nat;u;w 2 ��n0)SetAuxProp6 � [C;D; n; u; w℄EX4(Cont; [h℄N; [h; h1℄��h10 ; [h; h1; h2℄��h10 ;[h; h1; h2; h3℄GoodInation(D[u℄; h; h1; h2; h3) ^ I(D[u~Æw℄; h[h2~Æh3℄)EX4 2 (A 2 Set;B 2 (A)Set;C 2 (h 2 A;B(h))Set;D 2 (h 2 A;h1 2 B(h);h2 2 C(h; h1))Set;D 2 (h 2 A;h1 2 B(h);h2 2 C(h; h1);h3 2 D(h; h1; h2))Set)Set GoodInation(C; u; w);C ! DEX4(A;m; u0; w0)(GoodInation(A; u0; w0) ^ I(D[u~Æw℄; A[u0~Æw0℄))Figure 13. Enoding Lemma 51 (or Lemma 22) in ALFProp7 2 (C;D 2 Cont;n Nat;u;w 2 ��n0 ; GoodInation(C[u℄; C; n; u; w))AuxProp7(C; n; u; w)where AuxProp7 2 (C 2 Cont;n Nat;u; w 2 ��n0)SetAuxProp7 � [C; n; u; w℄EX4(Cont; [h℄N; [h; h1℄��h10 ; [h; h1; h2℄��h10 ; [h; h1; h2; h3℄)GoodInation(C[u℄; h; h1; h2; h3) ^VeryGoodCont(h;C[u℄)^I(C[u~Æw℄; h[h2~Æh3℄) ^K(C) � K(h)GoodInation(C;u; w)EX4(A;m;u0; w0)Twhere T � VeryGoodInation(C[u℄; A; u; w0) ^ I(C[u~Æw℄; A[u0~Æw0℄) ^ K(C) � K(A)Figure 14. Enoding Lemma 52 (or Lemma 23) in ALFProp67 2 (C;D 2 Cont;n Nat;u; w 2 ��n0 ;C ! D; GoodInation(C[u℄; C; n; u; w))AuxProp7(D;n; u; w)GoodInation(C;u; w);C ! DEX4(A;m; u0; w0)Twhere T � VeryGoodInation(D[u℄; A; u; w0) ^ I(D[u~Æw℄; A[u0~Æw0℄) ^K(D) � K(A)Figure 15. Enoding Lemma 53 in ALF
final.tex; 16/09/2002; 17:43; p.30

312. The redex is in some hole �k, (u Æ w)k ! r and t = C 0[(u~Æw)�r℄where C 0 is the ontext by replaing the square �k, where uk isredued to r, by �N(C)+1;3. There is an interation between C and u~Æw. It is not easy to statethis ase learly. There are three ases whih may ause interation:�(�m ÆD)[u~Æw℄! b. �(1 Æ�m)[u~Æw℄! b. �(" Æ�m)[u~Æw℄! bIf C is a very good ontext of C[u℄, 3.b) and 3.) turn to ase 2.The ase 3.a) happens only when the rule (Ass.) is applied, and(u~Æw)m = um Æ wm. This means there exists a very good inationfor C[u℄ and the result is still C[u~Æw℄, whih is what we want forproving the Preservation Theorem.LEMMA 54. Let (C; u;w) is a very good ination and C[u~Æw℄ ! b.One of the following holds:1. There exists a ontext D suh that C ! D and b = D[u~Æw℄.2. There is 2 L; 2 ��0 suh that C= is a hole, C[u~Æw℄= ! and b = (Cf �qg)[u�℄.3. There exist D 2 Cont; n 2 N; u0; w0 2 ��n0 suh that (D;u0; w0) isa very good ination of C[u℄, b = D[u0~Æw0℄, Lg(D) > Lg(C) andK(D) � K(C).Proof: By indution on the struture of C. Let us see how the lemmais proved when C = A Æ B. We prove this ase by analysing the rule(A Æ B)[u~Æw℄. We shall use the notation C(n;) = Cf �g.1. The redex is in A[u~Æw℄ and A[u~Æw℄! b. Three ases by I.H.:a) There exists a ontext A0 suh that A! A0. Therefore AÆB !A0 Æ B and b = (A0 ÆB)[u~Æw℄.b) A= is a hole and A[u℄= ! a0 and b = A(n;)[(u~Æw)�a0℄. ThenA ÆB=1 is a hole, (A ÆB)[u℄=1 ! a0 ÆB[u℄ and b ÆB[u~Æw℄ =((A ÆB)f1 �kg)[(u~Æw)�a0℄.) There is a very good ination (A[u℄; A0; u0; w0) suh that b =A0[u0~Æw0℄. Two ases arise:i) K(A0) = 0. If K(B) = 0, then we take the ination(A0 ÆB; u;w). The result of the ination is (A0 ÆB)[u0~Æw0℄ =bÆB[u~Æw℄ beause K(A0) = 0, A0[u0~Æw0℄ = A0[u~Æw℄. Other-wise, we take the ination (A0ÆBq; u0�u;w0�w). The resultis bÆB[u~Æw℄. In both ases they are very good inations byLemma 49 with the same result b ÆB[u~Æw℄.ii) K(A0) � 1. We take the ination (A0Æ�q; u0�B[u℄; w0�B[w℄).In this ase, K(A) � 1, hene B is W-hole. By Lemma 49,it is a very good ination. The result is b ÆB[u~Æw℄.For both ases the two equalities are true.
final.tex; 16/09/2002; 17:43; p.31

322. The redex is in B[u~Æw℄, it is similar to the above ase.3. The redex is (A Æ B)[u~Æw℄.(IdL): C = id Æ B ! B, (id Æ B)[u~Æw℄! B[u~Æw℄. Hene the �rstase of the lemma holds.(V rId): C = 1 Æ id! 1. The �rst ase of the lemma holds.(V rCons): C = 1 Æ (A � B) and 1 Æ (A � B)! A. The �rst ase ofthe lemma holds.(1 Æ�k): C = 1 Æ�k. In this ase we have the following fats:� If C Æ D is very good for a Æ b and K(C Æ D) � 1, thena Æ b is an L-term; hene uk is an L-term beause 1 Æ �kis very good for 1 Æ uk;� (1 Æ�k)[u~Æw℄ = 1 Æ (uk Æwk) beause uk is an L-term andhene (u~Æw)k = uk Æ wk� If 1 Æ (a Æ b) ! , then = 1 Æ d where a Æ b ! d. Thisonludes that the redex is in (u~Æw)k = uk Æ wk.Therefore the seond ase of the lemma holds, = 2 and1 Æ (uk Æ wk)=2! .(" Æ�k): C =" Æ�k, it is the same as the ase above.(ShId): C =" Æid!". The �rst ase of the lemma holds.(ShCons): C =" Æ(A �B)! B. The �rst ase of the lemma holds.(Interation): C = �k ÆB. The following fats were proved:� B is a W-hole and uk is an L-term as �k ÆB is very good.� b = uk Æ (wk Æ B[u~Æw℄)� (uk Æ�n+1; u�B[u℄; w�(wk Æ B[w℄)) is a good ination.� uk Æ�n+1 is a very good ontext for (uk Æ�n+1)[u℄.� b = (uk Æ�n+1)[u~Æw℄.� Lg(uk Æ�n+1) = Lg(uk) + 1 > 1 = Lg(�k ÆB).� K(uk Æ�n+1) = 1 < 2 = �k ÆB.All these fats mean that the third ase of the lemma holds.Now, eah of the ases below imply the �rst ase of the lemma.(Abs): C = �(A) Æ B ! �(A Æ (1 � (BÆ "))).(Map): C = (A � B) Æ E ! (A Æ E) � (B Æ E).(Ass): C = (A ÆB) Æ E ! A Æ (B Æ E). 2REMARK 55. The seond statement was hanged many times in or-der to present all the information when it is applied. What we shouldpresent is the most original information whih an derive other infor-mation when it is needed. In this ase, the most original informationis presented in terms of the \position". The �rst statement is:
final.tex; 16/09/2002; 17:43; p.32

33There exist 2 L; k 2 N; 2 ��0 suh that (u~Æw)k ! and b =(Cf �qg)[u�℄.Then one need the information that C= is a hole, and k � n = jujand C[u~Æw℄= = (u~Æw)k, whih we have when the lemma is proved.However, it is not enough still. One need to say that C[u℄= = uk andC[w℄= = wk, whih we an not get from the revised statement. In fatall the information is stored in the following statement:There exist 2 L; 2 ��0 suh that C= is a hole, and C[u~Æw℄= ! and b = (Cf �qg)[u�℄.The following lemma, whih is proved by analysing the position ofthe redex of s0 based on Lemma 54, enables us to use indution on thetriple �s;s0 = (dp(s); lg(s) � lg(C);��kdp(wk)) to prove Theorem 24.LEMMA 56. If s0 is the result of a very good ination (C; u;w) ofsome term s, and s0 ! t0, then:� there exists a term t suh that s! t and t0 is the result of a verygood ination of t; or� t0 is the result of a very good ination (D; a; b) of s and lg(D) >lg(C); or� there exists some term r suh that wk ! r and t0 is the result ofthe very good ination (C 0; u�uk; w�r) of s where C 0 = Cf �ng and n = Lg(u) + 1.Proof: This is proved by analysing the position of the redex of s0 basedon Lemma 54. We will prove that for any t0 suh that s0 = C[u~Æw℄! t0,t0 an be the result of a very good ination of some t suh that �t;t0 <�s;s0, so the I.H. an be applied. There are three ases by Lemma 54:1. The redution is in the ontext. By Lemma 53, t = D[u℄, s! t andthere is a very good ination (D0; u0; w0) of t. The result remains t0.2. The redution is in some hole of ontext C, i.e. there is 2 L; k 2 Nsuh that C[u~Æw℄= = (u~Æw)k and (u~Æw)k ! t0. Let C 0 = Cf �ng. Two ases arise: (u~Æw)k is either an L- or a W-term.a) (u~Æw)k is an L-term. In this ase, (u~Æw)k = ukÆwk and uk mustbe an L-term. We argue aording to the redex. Five ases arise:(Ass): Let uk = a Æ b, and so, s = C 0[u�(a Æ b)℄ and s0 =C 0[(u~Æw)�((aÆb)Æwk)℄. Then t0 = C 0[(u~Æw)�(aÆ(bÆwk))℄,where C 0 = Cf �ng. Take C 00 = Cf aÆ�ng and theination (C[u℄; C 00; u�a;w�wn), where wn = IfThEl(b; b Æwk; wk), whih is a W-term. The next fats (whih give the2nd ase of Lemma 56) are proved:� C[u℄f (a Æ�n)[u�b℄g = C[u℄� C 00 is a very good ontext of C[u℄ by Lemma 49;
final.tex; 16/09/2002; 17:43; p.33

34 � (C[u℄; C 00; u�b; w�wk) is a very good ination;� t0 = C 0[(u~Æw)�(a Æ (b Æ wk))℄ = C 00[((u�b)~Æ(w�wn))℄;� Lg(C 00) > Lg(C).(Abs): Take uk = �(a), C 00 = Cf ��ng and the ination(C[u℄; C 00; u�a;w�wn) where wn = IfThEl(a; aÆ (1 � (wkÆ ")); 1 � (wkÆ ")), whih is a W-term. The next fats (whihgive the 2nd ase of Lemma 56) are proved:� C[u℄f (��n)[u�a℄g = C[u℄.� C 00 is good for C[u℄ by Lemma 49.� C 00 is very good for C[u℄ by lemma 49.� Lg(C 00) > Lg(C).(Map): Take uk = a�b, C 00 = f �n��n+1g and the inationI = (C[u℄; C 00; u� < a; b >;w� < wn; wn+1 >), wherewn = IfThEl(a; aÆwk; wk), wn+1 = IfThEl(b; bÆwk; wk). Wehave the next fats (whih give the 2nd ase of Lemma 56):� C[u℄f a Æ bg = C[u℄.� C 00 is good for C[u℄ by Lemma 49.� C 00 is very good for C[u℄ by Lemma 49.� (C[u℄; C 00; u� < a; b >;w� < wn; wn+1 >) is a verygood ination.� C 00[(u� < a; b >)~Æ(w� < wn; wn+1 >)℄ = C 0[(u~Æw)�((aÆwk) � (b Æ wk))℄ = t0.� Lg(C 00) > Lg(C).(ComL): The redex is in uk, and uk ! a. Let t = C 0[u�a℄.Then s! t. By Lemma 49 C 0 is a good ontext for t.i) If a is an L-term. (Cf �ng; u�a;w�wk) is a verygood ination with the result(Cf �ng)[(u~Æw)�(a Æ wk)℄.ii) If a is a W-term, Cf �ng is a good ontext for t =(Cf �ng)[u�a℄, then (Cf �ng; u�a;w�(a Æwk) is a good ination. By Lemma 52 there is a verygood ination with the same result. Therefore the �rstase of the Lemma holds.(ComR): In this ase, wk ! b, and (C[u℄; C 0; u�uk; w�b) isthe very good ination with the result C 0[(u~Æw)�(uk Æ b)℄.The third ase of the lemma holds.b) (u~Æw)k is a W-term, hene uk is also a W-term. So (u~Æw)k = wk,wk ! b, and b is a W-term. By Lemma 49 Cf �ng is verygood for C[u℄(; b). Then the ination (Cf �ng; u�uk; w�b)is very good, and the result is (Cf �ng)[(u~Æw)�wk℄.3. For the 3rd ase of Lemma 54, use the 2nd ase of the lemma. 2Now we are in the position to prove Theorem 24. See Figure 16 forits ALF representation.Proof: By indution over a triple �s;s0 = (dp(s); lg(s)�lg(C);��kdp(wk))where �k = ardf : C= = �kg, i.e. the number of ourrenes of �k
final.tex; 16/09/2002; 17:43; p.34

35Preservation-Th 2 (u;w 2 ��n0 ; GoodInation(C[u℄; C; n; u; w);VeryGoodCont(C;C[u℄); SN(C[u℄))SN(C[u~Æw℄)Preservation-Th(u;w; h; h1; SN-intr(�; h3)) �SN-intr(C[u~Æw℄[b; h2℄Or-elim([h4℄SN(b);[x℄Preservation-Th1(u;w; b; h; h1; SN-intr(C[u℄; h3)h2; x)[h4℄Preservation-Th2(u;w; b; h; h1; SN-intr(C[u℄; h3)h2; h4)IH-Preservation(C; n; u; w; b; h; h1; h2)))Figure 16. Preservation Theoremin C. By Lemma 56, there are three ases. 1) b is a very good ination oft and the �rst omponent dereases and t is strongly normalising,heneI.H. applies. 2) b is the result of a very good ination of s and the seondomponent dereases, hene I.H. applies. 3) b is a result of a very goodination of s and the third omponent dereases, so I.H. applies. 28. Formalising the termination proof of � in ALFNow we give the strong normalisation proofs of �0 and � in ALF.8.1. Termination of �0 in ALFThe strong normalisation of �0 is proved by the elimination rule of ��0.The diÆulty is in the proof e5 : (a; b : ��0; SN(a); SN(b))SN(a Æ b), ormore preisely when oming to the rule: (Abs) : (�s) Æ t! �(s Æ (1 �(tÆ "))). If we prove (�) : If s 2 SN then sÆ "2 SN, then indution on(dpth(s); lgth(s); dpth(t); lgth(t)) gives the proof objet e5. To solve (�),we introdued a ontext alulus in Setion 7. Now we give the proofof (�) by the Preservation Theorem. It is easy to prove that redutionwhih does not involve the rule (Abs) is strongly normalising.LEMMA 57. Let s; t 2 ��0.1. �(t) are strongly normalising if and only if t is strongly normalising.2. s � t is strongly normalising if and only if s and t are stronglynormalising.3. If sÆt is strongly normalising, then s and t are strongly normalising.4. Let s; t be W-terms. If s and t are strongly normalising, then s Æ tis strongly normalising.5. If tÆ " is strongly normalising whenever t is, then s Æ t is stronglynormalising for any strongly normalising terms s and t.
final.tex; 16/09/2002; 17:43; p.35

366. Any W-term is strongly normalising.In ALF, this lemma was proved by indution on depth and length.We gave the details of the indution proof in Setion 6 when we provedthe termination of the alulus s. Now we ome to the lemma wherethe Preservation Theorem is used and the problem (�) is solved:LEMMA 58. Let s be a L-term, then sÆ " is the result of the very goodination (�1; ") of s. So if s is strongly normalising then sÆ " is stronglynormalising. In ALF: Com SN3 2 (s 2 ��0;Lterm(s); SN(s)))SN(sÆ ")It is easy to see that sÆ " is the result of a very good ination (�k; ")of s when s is not a W-term, and it is strongly normalising by thepreservation theorem. If s is a W-term, then sÆ " is also a W-term, andit is strongly normalising. Hene we have the following lemma:LEMMA 59. If s is strongly normalising, then sÆ " is strongly nor-malising. In ALF: Com SN4 2 (s 2 ��0; SN(s))SN(sÆ ")The next lemma gives the proof objet e5. It is proved by indutionon (dpth(s); lgth(s); dpth(t); lgth(t))LEMMA 60. If s; t are strongly normalising, then s Æ t is stronglynormalising. In ALF:Com SN5 2 (s; t 2 ��0; SN(s);SN(t)))SN(s Æ t)Com SN5(s; t; h; h1) �Com SN1(Forall intr([x℄Imply intr([h2℄Com SN4(x; h2)); s; t; h; h1)where Com SN1 2(Forall(��0; [h℄Imply(SN(h); SN(hÆ "))); s; t 2 ��0;SN(s);SN(t))SN(s Æ t)Having got all the proof objets e1; � � � ; e6, we prove Theorem 7, thestrong normalisation of �0 by indution on the struture of �0-terms:SN 2 (s 2 ��0)SN(s)SN(1) � L4W (1; 1)SN(id) � L4W (id; 1)SN(") � L4W ("; 1)SN(�(a)) � L4�(a; SN(a))SN(s1 Æ t) � ComSN5(s1; t; SN(s1); SN(t))SN(App(s1; t)) � L4App(s1; t; SN(s1); SN(t))whereL4W 2 (a 2 ��0;Wterm(a))SN(a)L4� 2 (a 2 ��0;SNs0(a))SN(�(a))L4App 2 (a; b 2 ��0;SN(a);SNs0(b))SN(App(a; b))

final.tex; 16/09/2002; 17:43; p.36

378.2. Termination of � in ALFHaving proved that the alulus �0 is terminating, now we an provethat the alulus � is terminating. Let F 0 and F 00 be the translationsin ALF of the funtion F from � to �0 in De�nition 5, where F 0 2(��t)��0 F 00 2 (��s)��0 are de�ned in the obvious way followingDe�nition 5. Then, we get the strong normalisation of � by hekingthat the translation is really a strit interpretation from � to �0, i.e.by proving Lemma 6 in ALF:S1 2 (a; b 2 ��t; a! b)F 0(a)! F 0(b)S2 2 (a; b 2 ��s; a! b)F 00(a)! F 00(b)Hene, �nally, we have:THEOREM 61. The alulus � is strongly normalising.9. Conlusion and future workIn this paper we gave formal proofs of the strong normalisation of � ands in ALF. To prove � is strongly normalising, we formalised the notionsand heked all the proofs of [12℄. Some of these proofs were informaland needed to be heked formally, e.g. Lemma 54. For the alulus s,we gave three formal proofs of strong normalisation, whih follow theusual ways of proving strong normalisation of expliit substitutions.Two of these proofs are given for the �rst time in this paper.The formalisation of this paper lead us to remark that:� During formalisations, one has to explain how to move from thelassial logi used in informal proofs to a onstrutive logi. Forexample, Lemma 36 is easy to prove using lassial logi beauseone an resort to the de�nition of the absene of in�nite deriva-tions. However, in a proof heker based on the Pat priniple, it isnot possible to use the lassial laws of refutation and hene, proofsare onstrutive and are done via introdution and eliminationrules. See the ALF proof of Lemma 36 disussed in Setion 6.3.� Many of the intuitively true statements required heking a lotof details in ALF. For example, Projetion1 � Projetion3 in Se-tion 6.3) needed muh details some of whih are given in Se-tion 6.3. Similarly, Lemma 45 lists some basi fats about substi-tution that are intuitively true but we needed to hek a lot ofases by indution to be able to formally prove them.
final.tex; 16/09/2002; 17:43; p.37

38� The ontext alulus of [12℄ demanded muh work during the for-malisation. In [12, 30℄, many notions were not introdued, andmany lemmas were left unproven. To formalise the proofs in [12℄we had to rewrite all the intuitions and informal notions, and tohek a lot of details. We often had to hange the implementationto make the proofs go through. For example, the seond statementof Lemma 54 was hanged several times in order to present all thedetails when this lemma is applied (see Remark 55).A lot of work has been done on proof heking in various proofhekers (e.g., ALF, Coq, Lego). Advantages of this work inlude:1. Helping people prove theorems whose proofs are umbersome. Inthe proof proess, one only gives some orders to the prover and theprover arries out the detailed omputations and reasoning. Forinstane, when �lling a hole, the user an give only the name ofthe lemma and the prover itself will �ll in all the parameters byuni�ations. However, one needs to do more work to give a formalproof. In the strong normalisation proof of �, many lemmas are trueintuitively, but involve muh work to prove formally. For instane,in Lemma 54, the position of a redex an our in three ases. InLemma 49, when replaing a �-hole in a ontext C, whih is verygood for s, with a L-term t, the resulting ontext is very good forthe term replaing the sub-term at the same position with t.2. Investigating the proesses of mathematial proofs, to help peo-ple understand mathematial reasoning and to build automatitheorem provers. In fat, it is during the implementation of the-orem provers and during the heking of proofs that one under-stands more about mathematial proofs. In the ase of terminationof expliit substitutions, we hope to understand why dereasingmeasures an be found for some aluli but not for others.It is interesting to �nd a general way to prove properties of expliitsubstitutions suh as strong normalisation, onuene and preserving�-strong normalisation and to develop a pakage of speial tools todeal with aluli of expliit substitutions, e.g. to help researhers toprove the above properties. In our formalisation, we tried to remain asgeneral as possible with the intention that our proof should be adaptedto other existing aluli of substitutions. The fat that during ourformalisation of the four di�erent proofs of termination we shared alot of implemented proofs, means that our work an well be adapted toformalising other proofs of terminations of other substitution aluli.Of ourse, there is the question of portability of our proofs of thispaper to other theorem provers. Although we did not attempt to run
final.tex; 16/09/2002; 17:43; p.38

39our proofs on any of these other provers, we believe that the top level(that is �lling in the intuition by formal details) an be used by anyother prover, given the right translation between the formalism of thatother prover and ALF. And, looking at those lemmas whose proofs inALF depart from the proofs on paper (like those mentioned above,Lemmas 36, 45, 54 and 49), it seems that they an be dealt withsimilarly in a prover based on Pat suh as Coq.Referenes1. ftp://ftp.s.halmers.se/users/s/qiao/Sigma/.2. M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. L�evy. Expliit substitutions.Journal of Funtional Programming, 1(4):375{416, 1991.3. B. Barras. Auto-validation d'un syst�eme de preuves ave familles indutives.Th�ese de dotorat, Universit�e Paris 7, November 1999.4. Z. Benaissa, D. Briaud, P. Lesanne, and J. Rouyer-Degli. ��, a alulus of ex-pliit substitutions whih preserves strong normalisation. Journal of FuntionalProgramming, 6(5):699{722, September 1996.5. R. Bloo and K. Rose. Preservation of strong normalisation in named lambdaaluli with expliit substitution and garbage olletion. In CSN-95: ComputerSiene in the Netherlands, November 1995.6. M. Bognar and R. de Vrijer. The ontext alulus lambda-. Workshop onLogial Frameworks and Meta-languages, 1999.7. R. L. Constable, S. Allen, H. Bromely, W. Cleveland, et al. Implementing Math-ematis with the Nuprl Development System. Prentie-Hall, In., EnglewoodCli�s, NJ, 1986.8. Projet Coq. The Coq proof assistant referene manual, version 6.1. Tehnialreport, INRIA, 1996.9. C. Coquand. From semantis to rules: A mahine assisted analysis. InE. B�orger, Y. Gurevih, and K. Meinke, editors, Proeedings of the 7th Work-shop on Computer Siene Logi, pages 91{105. Springer-Verlag LNCS 832,1993.10. P.-L. Curien. Categorial Combinators, Sequential Algorithms, and FuntionalProgramming. Progress in Theoretial Computer Siene. Birkh�auser, Boston,2nd edition, 1993. (1st ed., Pitman Publishing, London, and J. Wiley and Sons,New York).11. P-L Curien, T. Hardin, and J-J. L�evy. Conuene properties of weak andstrong aluli of expliit substitutions. Tehnial Report RR 1617, INRIA,Roquenourt, 1992.12. P-L Curien, T. Hardin, and A. R��os. Strong normalisation of substitutions.Logi and Computation, 6:799{817, 1996.13. R. David and B. Guillaume. The lambda l alulus. Seond InternationalWorkshop on Expliit Substitutions, Theory and Appliations, 1999.14. N. de Bruijn. A namefree lambda alulus with failities for internal de�nitionof expressions and segments. Tehnial report, Department of Mathematis ,University of Eindhoven, Netherlands, 1978.15. M. J. C. Gordon and T. F. Melham. Introdution to HOL: A theorem provingenvironment for higher order logi. Cambridge University Press, 1993.
final.tex; 16/09/2002; 17:43; p.39

4016. T. Hardin and A. Laville. Proof of termination of the rewriting system SUBSTon CCL. Theoretial Computer Siene, 46(2-3):305{312, 1986.17. T. Hardin and J.-J. L�evy. A onuent alulus of substitutions. Frane-JapanArti�ial Intelligene and Computer Siene Symposium, Deember 1989.18. T. Hardin, L. Maranget, and B. Pagano. Funtional runtime systems withinthe lambda-sigma alulus. Funtional Programming, 8(2):131{176, 1998.19. M. Hashimoto and A. Ohori. A typed ontext alulus. Type theory and itsappliations to omputer systems (Japanese), 1023:76{91, 1998.20. F. Kamareddine and R. P. Nederpelt. On stepwise expliit substitution.International Journal of Foundations of Computer Siene, 4(3):197{240, 1993.21. F. Kamareddine and A. R��os. A �-alulus a la de Bruijn with expliit substi-tutions. In PLILP95, Leture Notes in Computer Siene, volume 982, pages45{62. Springer-Verlag, 1995.22. F. Kamareddine and A. R��os. Extending a �-alulus with expliit substitutionwhih preserves strong normalisation into a onuent alulus on open terms.Journal of Funtional Programming, 7(4):395{420, July 1997.23. F. Kamareddine and A. R��os. Relating the ��- and �s-styles of expliitsubstitutions. Logi and Computation, 10(3):349{380, 2000.24. L. Magnusson. The Implementation of ALF|A Proof Editor Based on Martin-L�of's Monomorphi Type Theory with Expliit Substitution. PhD thesis,Chalmers University of Tehnology and G�oteborg University, January 1995.25. P. Martin-L�of. An intuitionisti theory of types. Logi Colloquium '73, 1975.26. Yukiyoshi Kameyama Masahiko Sato, Takafumi Sakurai. A simply typed on-text alulus with �rst-lass environments. Fifth International Symposium onFuntional and Logi Programming, FLOPS'01, 2001.27. J. MKinna and R. Pollak. Pure type systems formalised. In M. Bezem andJ. F. Groote, editors, Proeedings 1st Intl. Conf. on Typed Lambda Caluli andAppliations, TLCA'93, Utreht, The Netherlands, 16{18 Marh 1993, volume664 of Leture Notes in Computer Siene, pages 289{305. Springer-Verlag,Berlin, 1993.28. C. Mu~noz. Conuene and preservation of strong normalisation in an expliitsubstitutions alulus (extended abstrat). In Proeedings of the Eleven AnnualIEEE Symposium on Logi in Computer Siene, New Brunswik, New Jersey,July 1996. IEEE Computer Soiety Press.29. L. C. Paulson. Isabelle: The next 700 theorem provers. In Piergiorgio Odifreddi,editor, Logi and Computer Siene, pages 361{386. Aademi Press, 1990.30. A. R��os. Contribution �a l'�etude des �-aluls ave substitutions expliites. PhDthesis, Universit�e de Paris 7, 1993.31. A. Sa��bi. Formalisation of a �-alulus with expliit substitutions in Coq. InP. Dybjer, B. Nordstr�om, and J. Smith, editors, Proeedings of the InternationalWorkshop on Types for Proofs and Programs, pages 183{202, B�astad, Sweden,June 1994. Springer-Verlag LNCS 996.32. B. Nordstr�om T. Altenkirh, V. Gaspes. A user's guide to alf. Tehnial report,University of G�oteborg, 1994.33. H. Zantema. Termination of term rewriting: interpretation and type elim-ination. Journal of Symboli Computation, 17(1):23{50, January 1994.Conditional term rewriting systems (Pont-�a-Mousson, 1992).34. H. Zantema. Termination of term rewriting by semanti labelling. FundamentaInformatiae, 24:89{105, 1995.
final.tex; 16/09/2002; 17:43; p.40

