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tThis paper formalizes belief revision for belief states in type theory. Type theory has been in
uentialin logi
 and 
omputer s
ien
e but as far as we know, this is the �rst a

ount at using type theory inbelief revision. The use of type theory allows an agent's beliefs as well as his justi�
ations for thesebeliefs to be expli
itly represented and hen
e to a
t as �rst-
lass 
itizens. Treating justi�
ations as�rst-
lass 
itizens allows for a dedu
tive perspe
tive on belief revision. We propose a pro
edure foridentifying and removing "suspe
t" beliefs, and beliefs depending on them. The pro
edure may beapplied iteratively, and terminates in a 
onsistent belief state. The pro
edure is based on introdu
ingexpli
it justi�
ation of beliefs. We study the belief 
hange operations emerging from this perspe
tivein the setting of typed �-
al
ulus, and situate these operations with respe
t to standard approa
hes.Keywords: Belief Revision, Type Theory, Expli
it Justi�
ations, Propositions asTypes.1 Introdu
tionAn agent who keeps expanding his belief state with new information may rea
h a stagewhere his beliefs have be
ome in
onsistent, and his belief state has to be adaptedto regain 
onsisten
y. Usually, in studying this problem of \belief revision", thejusti�
ations an agent has for his beliefs are not 
onsidered to be �rst-
lass 
itizens.The two main approa
hes in the belief revision literature regarding justi�
ations [17℄are:1. \Foundations theory", in whi
h one needs to keep tra
k of justi�
ations for one'sbeliefs; propositions that have no justi�
ation should not be a

epted as beliefs.2. \Coheren
e theory", in whi
h one needs not 
onsider justi�
ations; what mattersis how a belief 
oheres with the other beliefs that are a

epted in the present state.In foundations theory, beliefs are held to be justi�ed by one or several other beliefs(and some beliefs are justi�ed by themselves). However, in this view, justi�
ations areonly impli
itly present as relations between beliefs, rather than as obje
ts in their ownright whi
h are expli
itly represented in the formalisation of belief states and belief
hange operations. Hen
e, justi�
ations are not �rst-
lass 
itizens in foundations1L. J. of the IGPL, Vol. 0 No. 0, pp. 1{41 0000 
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2 Formalizing Belief Revision in Type Theorytheory, and not 
onsidered at all in 
oheren
e theory.However, experien
e in the past de
ades shows that when building automated sys-tems and theorem provers, expli
it representation is absolutely ne
essary. This is the
ase for example in the theorem prover Automath (for automating mathemati
s, [31℄)where de�nitions (the heart of mathemati
s) are made expli
it. This is also the 
asein the implementation of programming languages where 
ontexts and environmentsare made expli
it. It turns out also that treating justi�
ations expli
itly (hen
e as�rst-
lass 
itizens), allows for a dedu
tive perspe
tive of belief revision whi
h 
an beautomated.In this paper, we explore belief revision for belief states in whi
h justi�
ationsare �rst-
lass 
itizens represented expli
itly. Our motivation for investigating beliefrevision along these lines stems from working on knowledge representation in PureType Systems [4℄ in the DenK-proje
t [9℄. Type theory was 
hosen due to its ex
ellentsu

ess in the �eld of theorem proving (Automath [31℄ and Coq [5℄) and programminglanguages (ML [30℄). See also [6℄ where type theory has been shown to be usefulfor knowledge representation. In the DenK-proje
t a formal model was made of aspe
i�
 
ommuni
ation situation, and used to implement a human-
omputer interfa
e.Both in the model and in the system, belief states of agents were formalised as typetheoreti
al 
ontexts. This means that an agent's beliefs are represented in a binaryformat, where one part is the proposition believed by the agent and the other thejusti�
ation the agent has for this belief. Both parts are synta
ti
 obje
ts in theirown right, and 
an be 
al
ulated upon by means of the rules of the type theory. Thisway of representing beliefs turns justi�
ations into �rst-
lass 
itizens, and proved tobe very fruitful for the purposes of the proje
t.At that time me
hanisms for belief revision were not investigated or implemented,but it be
ame 
lear that given this formalisation of belief states there is a straight-forward dedu
tive approa
h to the problem: sin
e every belief is a

ompanied by itsjusti�
ation (and the rules of the 
al
ulus operate on both), every in
onsisten
y thatsurfa
es in the agent's belief state has its own (
omplex) justi�
ation 
ontaining thejusti�
ations of the beliefs that together 
ause the in
onsisten
y. This makes it easyto identify and remove the \suspe
ts" among the beliefs in the agent's belief state.Although, te
hni
ally speaking, this is a dire
t 
onsequen
e of the so-
alled Propo-sitions As Types-prin
iple (
f. se
tions 3 and 4), this simple idea seems not to havebeen explored before. We feel that this is of a more general interest for two reasons:1. Our type theoreti
al 
ase study shows that expli
itly represented justi�
ationshave 
lear advantages: a number of drawba
ks traditionally asso
iated with foun-dational approa
hes disappear. As su
h, it may serve as a pre
ursor to a moregeneral a

ount in the setting of Labelled Dedu
tive Systems [15℄, of whi
h typed�-
al
uli are a simple 
ase.12. It may 
ontribute to a more 
omputational a

ount of belief revision, one whi
his appli
able to agents that have �nite information and �nite reasoning powers.In developing the idea, we will 
ome a
ross other well-known issues in this �eld ofresear
h. For instan
e the question whether belief states should be taken to be log-i
ally 
losed sets or rather a base set of beliefs whi
h is not 
losed under logi
al1Note that in the 
on
lusion, [16℄ dis
usses the possibility of a general theory of in
onsisten
y where an a

ountof belief revision would fall out as a spe
ial 
ase. However, as far as we know, this general theory of in
onsisten
yin LDS has not yet been materialized.



Formalizing Belief Revision in Type Theory 3
onsequen
e [19℄, and the question whether an agent should always a

ept new in-formation (prioritized versus non-prioritized revision [21℄). In addition, we questiona number of assumptions that are traditionally made su
h as the assumption thatan agent has in�nite reasoning powers, and that an agent has to solve the revisionproblem \in splendid isolation", i.e. without going ba
k to his sour
es of informationvia observation and 
ommuni
ation.The paper is stru
tured as follows: in Se
tion 2 we review type theory and itsuntyped basis (the type-free �-
al
ulus), the propositions-as-types prin
iple and in-trodu
e the extension of type theory with de�nitions that will be used for beliefrevision. In Se
tion 3, we explain how belief states 
an be 
aptured in type theory.Se
tion 4 shows how type theoreti
al belief states develop as new information be
omesavailable, and gives an informal statement of the problem of revision in type theory.This a

ount of type theoreti
al revision is formalised in Se
tion 5. In Se
tions 6 and7 we situate our approa
h with respe
t to standard approa
hes from the literature,and make a 
omparison on the level of belief 
hange operations. As it turns out, ourrevision pro
edure is parti
ularly 
lose to the so-
alled 
onsolidation operations. Thisis shown in Appendix A. We 
on
lude in Se
tion 8.2 Type theory2.1 Informal introdu
tionJudgementsThe basi
 relation in type theory is the judgement� ` a : Twhi
h 
an be read as `term a has type T in 
ontext �'. Here `a' and `T ' are bothformulas written a

ording to a well-de�ned syntax (on the basis of �-
al
ulus). Theexpression a : T is 
alled a statement , term a is the subje
t of the statement. Onealso says that term a is an inhabitant of type T .The 
ontext � is a list of statements with variables as subje
ts, e.g. x1 : T1; : : : ; xn :Tn. The above judgement 
an then be read as follows: \If x1 has type T1, : : :, andxn has type Tn, then term a has type T". Note that a may 
ontain x1, : : :, xn, so adepends on x1 to xn. The set fx1; : : : ; xng is 
alled the domain of �, or dom(�).StatementsThe intuitive notion `has type' has a dire
t 
ounterpart in naive set theory, viz. `iselement of'. For example, 
onsider the statement `a : N' ('term a has type N').Assuming that N is a symbol representing the set of natural numbers, this statement
an be interpreted as `a 2 N' ('the obje
t represented by a is element of the naturals').The notion of having a type, however, is more general than the notion of set-theoreti
al elementhood. This is be
ause a type T 
an represent not only some kindof set, but also a proposition. In the latter representation, the statement a : Texpresses: `a is (a term representing) a proof of the proposition T '. One speaks of`propositions as types and proofs as terms' (together abbreviated as PAT ) in orderto emphasize this spe
ial usage of types. Se
tion 2.2 below gives more details.



4 Formalizing Belief Revision in Type TheoryThe advantage of PAT is that proofs belong to the obje
t language, not the meta-language. That is, proofs are `�rst 
lass 
itizens' in the synta
ti
al world of typetheory. This, 
ombined with the strength of the standard �-
al
ulus operations,makes type theory a powerful me
hanism.ContextsThe 
ontext � in a judgement � ` a : T 
ontains the `prerequisites' ne
essary forestablishing the statement a : T . A 
ontext � is a list of statements with distin
tvariables as subje
ts, like x1 : T1; : : : ; xn : Tn. A 
ontext statement xi : Ti 
anexpress several kinds of prerequisites, the simplest being:1. xi is an element of the set Ti,2. Ti is an assumption (a proposition) and xi is its atomi
 justi�
ation.However, in type theory there are di�erent `levels' of typing: a type 
an have atype itself. Statements expressing the typing of types are 
on
erned with the well-formedness of these types. For the Ti o

urring in 1. and 2. above, su
h statementshave the form:1. Ti : set, to express that Ti is a well-formed formula representing a set,2. Ti : prop, to express that Ti is a well-formed formula representing a proposition.The last-mentioned statements 
an also be part of a 
ontext in the spe
ial 
ase that T1and T2 are variables. So a 
ontext 
ould look like: T1 : prop; T2 : set; x1 : T1; x2 : T2(to be read as: \let T1 be a proposition, T2 a set, x1 a justi�
ation for T1 and x2 forT2"). The terms set and prop are examples of so-
alled sorts , prede�ned 
onstantson whi
h the type system is based. Every type system has a spe
i�
 set of sorts,whi
h we denote by S.Note that the statements in the 
ontext are ordered : �rst arbitrary set T1 andproposition T2 are proposed, before their inhabitants x1 and x2 are introdu
ed. Thisis a general prin
iple in 
ontexts: every variable (ex
ept the sorts) used in a type mustbe introdu
ed as the subje
t of a pre
eding statement. As a matter of fa
t, a similar
onsideration applies to judgements : in � ` a : T all variables and (free) 
onstantsused in a and T must be introdu
ed as subje
ts in �.2.2 PAT: Propositions As TypesThe idea of pat originates in the formulation of intuitionisti
 logi
 where frequentlyo

urring 
onstru
tions in intuitionisti
 mathemati
s have a logi
al 
ounterpart. Oneof these 
onstru
tions is the proof of an impli
ation. Heyting [24℄ des
ribes the proofof an impli
ation a ) b as: Deriving a solution for the problem b from the problema. Kolmogorov [28℄ is even more expli
it, and des
ribes a proof of a ) b as the
onstru
tion of a method that transforms ea
h proof of a into a proof of b. Thismeans that a proof of a) b 
an be seen as a (
onstru
tive) fun
tion from the proofsof a to the proofs of b. In other words, the proofs of the proposition a ) b formexa
tly the set of fun
tions from the set of proofs of a to the set of proofs of b. Thissuggests to identify a proposition with the set of its proofs. Now types are used torepresent these sets of proofs. An element of su
h a set of proofs is represented as



Formalizing Belief Revision in Type Theory 5a term of the 
orresponding type. This means that propositions are interpreted astypes , and proofs of a proposition a as terms of type a.PAT was, independently from Heyting and Kolmogorov, dis
overed by Curry andFeys [13℄. Howard [25℄ follows the argument of Curry and Feys [13℄ and 
ombines itwith Tait's dis
overy of the 
orresponden
e between 
ut elimination and �-redu
tionof �-terms [32℄. Howard's dis
overy dates from 1969, but was not published until 1980.Independently of Curry and Feys and Howard, we �nd a variant of PAT in AUT-68, the�rst Automath system of De Bruijn [31℄. Though De Bruijn was probably in
uen
edby Heyting, his ideas arose independently from Curry, Feys and Howard. This 
anbe 
learly seen in Se
tion 2.4 of [8℄, where propositions as types (or better: Proofs asterms) was implemented in a di�erent way to that of Curry and Howard.The Propositions as Types and Proofs as Terms (PAT) prin
iple has opened thepossibility to use Type Theory not only as a restri
tive method (to prevent paradoxes)but also as a 
onstru
tive method. Many proof 
he
kers and theorem provers, likeAutomath [31℄, Coq [5℄ and LF [23℄, use the PAT prin
iple (see [29℄ for more details).\Proofs as terms" already suggests an important advantage of using type theory asa logi
al system: In this method proofs are �rst-
lass 
itizens of the logi
al system,whilst for many other logi
al systems, proofs are rather 
omplex obje
ts outside thelogi
 (for example: derivation trees), and therefore 
annot be easily manipulated.The fa
t that PAT was dis
overed independently by many di�erent people, and itsuse in various logi
al frameworks and theorem provers, is an eviden
e to the usefulnessof su
h notion in logi
 and 
ompoutation. For our purpose of belief revision, PATallows to store the developmental history of the justi�
ations of a belief and hen
e,to retra
e ba
k this histoy and to restore in
onsistent belief states.2.3 TheoriesA `proof' is generally 
onsidered to be a mathemati
al notion, but in the PAT-stylea proof is anything justifying a proposition. This 
an be a proof in the mathemati
alsense, but also any other a

eptable justi�
ation. Let T represent a proposition andlet a : T . Then:� If a is an atomi
 term (think of a 
onstant or a variable), then a en
odes ajusti�
ation whi
h 
annot be further analysed:{ It 
an stand for an axiomati
 justi�
ation of a proposition: T is an axiom anda expresses that the axiom `holds'.{ The validity of proposition T 
an also 
ome from a reliable sour
e. In this
ase the proof a itself 
annot be inspe
ted, but the reliability of the sour
e isenough guarantee to a

ept the proof. The origin of the knowledge 
an be anysour
e, either virtual: e.g. a knowledge base, or real: a reliable (
ommunity of)person(s).{ Proposition T 
an also be justi�ed by observational eviden
e. For example, theproposition that a 
ertain body is yellow 
an be justi�ed by an atomi
 termrepresenting the observation that this is the 
ase.{ Finally, proposition T 
an be an assumption. This 
ase is dealt with in typetheory by introdu
ing a variable (say x) as an arbitrary (but fresh) inhabitantfor the proposition: the statement x : T then expresses: `Let x be a proof of T '.



6 Formalizing Belief Revision in Type TheorySin
e x is an unspe
i�ed variable, this amounts to: `Assume T ' (albeit that theproof x 
an be 
alled upon later).� If a is a 
omposite term, 
omposed a

ording to the (type-theoreti
al) syntax, itembodies a 
omplex justi�
ation. In this 
ase the pre
ize stru
ture of a expresseshow the eviden
e for T is 
onstru
ted. For example, under the PAT-interpretationa 
omplete mathemati
al proof (of a theorem) is 
oded in one, possibly large,
omposite term. But also a justi�
ation that 
ombines knowledge obtained fromobserving a 
ertain obje
t with general rules about its behaviour, will lead to a
omposite term.The PAT-interpretation enables a well-established 
onne
tion between mathemat-i
s and type theory, as has been shown already in the Automath proje
t [31℄, in whi
hlarge parts of mathemati
s have been formalized in type theory: an entire mathemat-i
al theory was rendered as a list of judgements. The great importan
e of su
h atype-theoreti
al formalization is that it makes it possible to 
he
k whether a givenproof of a 
ertain theorem does indeed prove the theorem. In fa
t, it turns out thatsynta
ti
al 
orre
tness of the list of judgements is enough to establish the mathemat-i
al 
orre
tness of the mathemati
al theory. And the 
he
k on synta
ti
al 
orre
tnessis relatively easy, sin
e the question whether a 
ertain term is of a 
ertain type in a
ertain 
ontext is de
idable. This 
he
k on synta
ti
al 
orre
tness 
an be performedby man, but also by a straightforward 
omputer program. In the Automath proje
t,this has already been done with the 
omputer te
hnology of the seventies.A se
ond advantage is the long-standing 
onne
tion between logi
 and type theory.The `reasoning power' of logi
 �nds a natural 
ounterpart in the operations of �-
al
ulus underlying type theory. A well-known result is that logi
s of arbitrarily highorder 
an be expressed in type theory. In the PAT-interpretation of logi
, terms
apture the full proof pro
ess : from a proof term one 
an re
onstru
t not only thepremisses used in the proof, but also the order in whi
h they were used and the logi
alrules used to 
ombine them.2.4 The type free �-
al
ulusModern type theory is based on the �-
al
ulus. This se
tion intrtodu
es the type free�-
al
ulus.Definition 2.1 (Syntax of �-terms)The set of 
lassi
al �-terms or �-expressionsM is given by: M ::= Vj(�V :M)j(MM)where V = fx; y; z; : : : g is an in�nite set of term variables. We let v; v0; v00; � � � rangeover V and A;B;C � � � range over M.Example 2.2(�x:x), (�x:(xx)), (�x:(�y:x)), (�x:(�y:(xy))), and ((�x:x)(�x:x)) are all 
lassi
al�-expressions.This simple language is surprisingly ri
h. Its ri
hness 
omes from the freedom to 
reateand apply fun
tions, espe
ially higher order fun
tions to other fun
tions (and evento themselves). To explain the intuitive meaning of these three sorts of expressions,let us imagine a model where every �-expression denotes an element of that model(whi
h is a fun
tion). In parti
ular, the variables denote a fun
tion in the model



Formalizing Belief Revision in Type Theory 7via an interpretation fun
tion or an environment whi
h maps every variable into aspe
i�
 element of the model. Su
h a model by the way was not obvious for morethan forty years. In fa
t, for a domain D to be a model of �-
al
ulus, it requiresthat the set of fun
tions from D to D be in
luded in D. Moreover, as the �-
al
ulusrepresents pre
isely the re
ursive fun
tions, we know from Cantor's theorem that thedomain D is mu
h smaller than the set of fun
tions from D to D. Dana S
ott wasarmed by this theorem in his attempt to show the non-existen
e of the models of the�-
al
ulus. To his surprise, he proved the opposite of what he set out to show. Hefound in 1969 a model whi
h has opened the door to an extensive area of resear
h in
omputer s
ien
e. We will not go into the details of these models in this paper.Definition 2.3 (Meaning of Terms)Here is now the intuitive meaning of ea
h of the three �-expressions given in thesyntax:Variables Fun
tions denoted by variables are determined by what the variables arebound to in the environment. Binding is done by �-abstra
tion.Fun
tion appli
ation If A and B are �-expressions, then so is (AB). This expres-sion denotes the result of applying the fun
tion denoted by A to the fun
tiondenoted by B.Abstra
tion If v is a variable and A is an expression whi
h may or may not 
ontaino

urren
es of v, then �v:A denotes the fun
tion that maps the input value Bto the output value A[v := B℄, that is: the expression A in whi
h B has beensubstituted for v.Example 2.4(�x:x) denotes the identity fun
tion. (�x:(�y:x)) denotes the fun
tion whi
h takestwo arguments and returns the �rst.As parentheses are 
umbersome, we will use the following notational 
onvention:Definition 2.5 (Notational 
onvention)We use these notational 
onventions:1. Fun
tional appli
ation asso
iates to the left. So ABC denotes ((AB)C).2. The body of a � is anything that 
omes after it. So, instead of (�v:(A1A2 : : : An)),we write �v:A1A2 : : : An.3. A sequen
e of �'s is 
ompressed to one, so �xyz:t denotes �x:(�y:(�z:t)).As a 
onsequen
e of these notational 
onventions we get:1. Parentheses may be dropped: (AB) and (�v:A) are written AB and �v:A.2. Appli
ation has priority over abstra
tion: �x:yz means �x:(yz) and not (�x:y)z.2.4.1 Variables and SubstitutionWe need to manipulate �-expressions in order to get values. For example, we need toapply (�x:x) to y to obtain y. To do so, we use the �-rule whi
h says that (�v:A)Bevaluates to the body A where v is substituted by B, written A[v := B℄. However, onehas to be 
areful. Look at the following example:



8 Formalizing Belief Revision in Type TheoryExample 2.6Evaluating (�fx:fx)g to �x:gx is perfe
tly a

eptable but evaluating (�fx:fx)x to�x:xx is not. By De�nition 2.3, �fx:fx and �fy:fy have the same meaning andhen
e (�fx:fx)x and (�fy:fy)x must also have the same meaning. Moreover, theirvalues must have the same meaning. However, if (�fx:fx)x evaluates to �x:xx and(�fy:fy)x evaluates to �y:xy, then we easily see, a

ording to De�nition 2.3, that�x:xx and �y:xy have two di�erent meanings. The �rst takes a fun
tion and appliesit to itself, the se
ond takes a fun
tion y and applies x (whatever its value) to y.We de�ne the notions of free and bound variables whi
h will play an important rolein avoiding the problem above. In fa
t, the � is a variable binder, just like 8 in logi
:Definition 2.7 (Free and Bound variables)For a �-term C, the set of free variables FV (C), and the set of bound variablesBV (C), are de�ned indu
tively as follows:FV (v) =def fvg BV (v) =def ;FV (�v:A) =def FV (A)� fvg BV (�v:A) =def BV (A) [ fvgFV (AB) =def FV (A) [ FV (B) BV (AB) =def BV (A) [ BV (B)An o

urren
e of a variable v in a �-expression is free if it is not within the s
ope ofa �v:2, otherwise it is bound. For example, in (�x:yx)(�y:xy), the �rst o

urren
e ofy is free whereas the se
ond is bound. Moreover, the �rst o

urren
e of x is boundwhereas the se
ond is free. In �y:x(�x:yx) the �rst o

urren
e of x is free whereasthe se
ond is bound. A 
losed term is a �-term in whi
h all variables are bound.Here is now the de�nition of substitution:Definition 2.8 (Substitution)For any A;B; v, we de�ne A[v := B℄ to be the result of substituting B for every freeo

urren
e of v in A, as follows:v[v := B℄ � Bv0[v := B℄ � v if v 6� v0(AC)[v := B℄ � A[v := B℄C[v := B℄(�v:A)[v := B℄ � �v:A(�v0:A)[v := B℄ � �v0:A[v := B℄if v0 6� v and (v0 62 FV (B) or v 62 FV (A))(�v0:A)[v := B℄ � �v00:A[v0 := v00℄[v := B℄if v0 6� v and (v0 2 FV (B) and v 2 FV (A))In the last 
lause, v00 is 
hosen to be the �rst variable 62 FV (AB). In the 
ase whenterms are identi�ed modulo the names of their bound variables, then in the last 
lauseof the above de�nition, any v00 62 FV (AB) 
an be taken. In implementation however,this identi�
ation is useless and a parti
ular 
hoi
e of v00 has to be made.Example 2.9Che
k that (�y:yx)[x := z℄ � �y:yz, that (�y:yx)[x := y℄ � �z:zy, and that(�y:yz)[x := �z:z℄ � �y:yz.Lemma 2.10 (Substitution for variable names)LetA;B;C 2M, x; y; 2 V . For x 6= y and x 62 FV(C), we have that: A[x := B℄[y := C℄ �A[y := C℄[x := B[y := C℄℄.2Noti
e that the v in �v is not an o

urren
e of v.
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tionThe two important notions of redu
tion are �-redu
tion whi
h identi�es terms up tovariable renaming and �-redu
tion whi
h evaluates �-terms.Definition 2.11 (Compatibility for the type free �-
al
ulus)We say that a binary relation ! on the type free �-
al
ulus is 
ompatible i� for allterms A;B of the �-
al
ulus and variable v, the following holds:A! BAC ! BC A! BCA! CB A! B�v:A! �v:BDefinition 2.12 (Alpha redu
tion)!� is de�ned to be the least 
ompatible relation 
losed under the axiom:(�) �v:A!� �v0:A[v := v0℄ where v0 62 FV (A)Example 2.13�x:x!��y:y but it is not the 
ase that �x:xy!��y:yy.Moreover, �z:(�x:x)x!!��z:(�y:y)x.Re
all that �x:x 6� �y:y even though they represent the same fun
tion. They area
tually identi
al modulo �-
onversion. I.e. �x:x =� �y:y.Definition 2.14 (Beta redu
tion)!� is de�ned to be the least 
ompatible relation 
losed under the axiom:(�) (�v:A)B!�A[v := B℄We use !!� to denote the re
exive transitive 
losure of !� . We say that a term A isa �-normal form if there is no B su
h that A!�B.Example 2.15Che
k that (�x:x)(�z:z)!��z:z, that (�y:(�x:x)(�z:z))xy!!�y, and that both �z:zand y are �-normal forms.Here is a lemma about the intera
tion of �-redu
tion and substitution:Lemma 2.16Let A;B;C;D 2 M.1. If C !� D then A[x := C℄!!� A[x := D℄ .2. If A!� B then A[x := C℄!� B[x := C℄ .Proof. By indu
tion on the stru
ture of A for 1, on the derivation A!� B for 2.2.5 The syntax and rules of Pure Type SystemsNow we are ready to introdu
e the syntax and rules of Pure Type Systems (PTSs)whi
h will be the basis of our theory of belief revision. There are two type dis
iplines:the impli
it and the expli
it. The impli
it style, also known as typing �a la Curry, doesnot annotate variables with types. For example, the identity fun
tion is written asin the type-free 
ase, as �x:x. The type of terms however is found using the typing



10 Formalizing Belief Revision in Type Theoryrules of the system in use. The expli
it style, also known as typing �a la Chur
h,does annotate variables and the identity fun
tion may be written as �x : Bool:x torepresent identity over booleans. In this paper, we 
onsider typing �a la Chur
h.We present what is known as Pure Type Systems or PTSs. Important type systemsthat are PTSs in
lude Chur
h's simply typed �-
al
ulus [11℄ and the 
al
ulus of
onstru
tions [12℄ whi
h are also systems of the Barendregt 
ube [4℄. Berardi [7℄ andTerlouw [33℄ have independently generalised the method of generating type systemsinto the pure type systems framework. This generalisation has many advantages.First, it enables one to introdu
e eight logi
al systems that are in 
lose 
orresponden
ewith the systems of the Barendregt 
ube. Those eight logi
al systems 
an ea
h bedes
ribed as a PTS in su
h a way that the propositions-as-types interpretation obtainsa 
anoni
al system form [4℄. Se
ond, the general setting of the PTSs makes it easierto write various proofs about the systems of the 
ube.In PTSs, we have in addition to the usual �-abstra
tion, a type forming operator�. Brie
y, if A is a type, and B is a type possibly 
ontaining the variable x, then�x:A:B is the type of fun
tions that, given a term a : A, output a value of typeB[x := a℄. Here, again, a : A expresses that a is of type A. If x does not o

urin B, then �x:A:B is the type of fun
tions from A to B, written A ! B. To the�-abstra
tion at the level of types 
orresponds �-abstra
tion at the level of obje
ts.Roughly speaking, if M is a term of type B (M and B possibly 
ontaining x), then�x:A:M is a term of type �x:A:B. All PTSs have the same typing rules but aredistinguished from one another by the set R of triples of sorts (s1; s2; s3) allowed inthe so-
alled type-formation or �-formation rule, (produ
t). Ea
h PTS has its ownset R. A �-type 
an only be formed in a spe
i�
 PTS if the (produ
t) rule is satis�edfor some (s1; s2; s3) in the set R of that system. (see Figure 1).Definition 2.17The set of pseudo-terms T , is generated by the grammar:T ::= V j C j (T T ) j (�V : T :T ) j (�V : T :T ), where V is the in�nite set of variablesfx; y; z; : : :g and C a set of 
onstants over whi
h, 
; 
1; : : : range. We use A;B; : : : torange over T and v; v0; v00; : : : to range over V . Throughout, we take � 2 f�;�g.Note that in the type free lambda 
al
ulus, there were only three possibilities for terms(given in De�nition 2.1): variables, appli
ations or abstra
tions, and that abstra
tions
ontained no typings for the variables abstra
ted over. The above De�nition 2.17 onthe other hand, gives the typing of the abstra
ted variable, and also de�nes types aswell as terms. C is a set of 
onstants whi
h 
ontains a subset S 
alled the sorts. Theset sorts 
ontains amongst other things, four spe
ial elements: set, prop, � and �,with the relations to be de�ned later that: set: �, prop: � and � : �. If A : � (resp.A : �) we say that A is a type (resp. a kind). If A : set (resp. A : prop), then we
onsider A as a set (resp. a proposition).Definition 2.18 (Free and Bound variables)The free and bound variables in terms are de�ned similarly to those of De�nition 2.7with the ex
eption that FV (
) =def BV (
) =def ; and in the 
ase of abstra
-tion, FV (�v : A:B) =def (FV (B) n fvg) [ FV (A) and BV (�v : A:B) =def BV (A) [BV (B) [ fvg.We write A[x := B℄ to denote the term where all the free o

urren
es of x in Ahave been repla
ed by B. Furthermore, we take terms to be equivalent up to variable



Formalizing Belief Revision in Type Theory 11renaming. We assume moreover, the Barendregt variable 
onvention whi
h is formallystated as follows:Convention 2.19(V C: Barendregt's Convention) Names of bound variables will always be 
hosen su
hthat they di�er from the free ones in a term. Moreover, di�erent �'s have di�erentvariables as subs
ript. Hen
e, we will not have (�x : A:x)x, but (�y : A:y)x instead.The de�nition of 
ompatibility of a redu
tion relation for PTSs is that of the type-free
al
ulus (given in De�nition 2.11) but where the 
ase of abstra
tion is repla
ed by:A1 ! A2�x : A1:B ! �x : A2:B B1 ! B2�x : A:B1 ! �x : A:B2Definition 2.20�-redu
tion is the least 
ompatible relation on T generated by(�) (�x : A:B)C ! B[x := C℄Note that (�x : A:B)C is redu
ed and not (�x : A:B)C. The latter needs spe
ialattention as is shown in [26, 27℄.Now, we de�ne some ma
hinery needed for typing:Definition 2.211. A statement is of the form A : B with A;B 2 T . We 
all A the subje
t and B thepredi
ate of A : B.2. A de
laration is of the form x : A with A 2 T and x 2 V . When d is x : A, wede�ne var(d) and type(d) to be x and A respe
tively.3. A pseudo-
ontext is a �nite ordered sequen
e of de
larations, all with distin
tsubje
ts. We use �;�;�0;�1;�2; : : : to range over pseudo-
ontexts. The empty
ontext is denoted by either <> or nothing at all.4. If � = x1 : A1: : : : :xn : An then �; x : B = x1 : A1; : : : ; xn : An; x : B and dom(�) =fx1; : : : ; xng.5. We de�ne substitutions on 
ontexts by: ;[x := A℄ � ;, and (�; y : B)[x := A℄ ��[x := A℄; y : B[x := A℄.Definition 2.22A type assignment relation is a relation between a pseudo-
ontext and two pseudo-terms written as � ` A : B. The rules of type assignment establish whi
h judgments� ` A : B 
an be derived. A judgement � ` A : B states that A : B 
an be derivedfrom the pseudo-
ontext �.Definition 2.23Let � be a pseudo-
ontext, A be a pseudo-term and ` be a type assignment relation.1. � is 
alled legal if 9A;B 2 T su
h that � ` A : B.2. A 2 T is 
alled a �-term if 9B 2 T su
h that � ` A : B or � ` B : A.We take �-terms = fA 2 T su
h that 9B 2 T and � ` A : B _ � ` B : Ag.3. A 2 T is 
alled legal if 9� su
h that A 2 �-terms.



12 Formalizing Belief Revision in Type Theory(axioms) ` 
 : s if 
 : s 2 A(start) � ` A : s�; x : A ` x : A if x 62 �(weakening) � ` B : C � ` A : s�; x : A ` B : C if x 62 �(produ
t) � ` A : s1 �; x : A ` B : s2� ` (�x : A:B) : s3 if (s1; s2; s3) 2 R(appli
ation) � ` F : (�x : A:B) � ` C : A� ` F C : B[x := C℄(abstra
tion) �; x : A ` C : B � ` (�x : A:B) : s� ` (�x : A:C) : (�x : A:B)(
onversion) � ` A : B � ` B0 : s B =� B0� ` A : B0Fig. 1. PTSs with variables namesDefinition 2.24The spe
i�
ation of a PTS is a triple S = (S;A;R), where S is a subset of C, 
alledthe sorts. A is a set of axioms of the form 
 : s with 
 2 C and s 2 S and R is a setof rules of the form (s1; s2; s3) with s1; s2; s3 2 S.Definition 2.25The notion of type derivation, denoted � `�S A : B (or simply � ` A : B), in aPTS whose spe
i�
ation is S = (S;A;R), is axiomatised by the axioms and rules ofFigure 1.Remark 2.26Note that in Figure 1, we insist in the (start) and (weakening) rules that x 62 �, butwe do not insist that x 62 A. The 
ondition that x 62 A 
an be derived from from thefa
t that x 62 �, that � ` A : s and the properties of PTSs.Ea
h of the eight systems of the 
ube is obtained by taking S = f�;�g, A = f�;�g,and R to be a set of rules of the form (s1; s2; s2) for s1; s2 2 f�;�g. We de-note rules of the form (s1; s2; s2) by (s1; s2). This means that the only possible(s1; s2) rules in the set R (in the 
ase of the 
ube) are elements of the following set:f(�; �); (�;�); (�; �); (�;�)g. The basi
 system is the one where (s1; s2) = (�; �) isthe only possible 
hoi
e. All other systems have this version of the formation rules,plus one or more other 
ombinations of (�;�), (�; �) and (�;�) for (s1; s2). SeeFigures 2 and 3.
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ube and its 
orresponding logi
 
ube3 Type theory for knowledge representationThis se
tion sets the stage for our a

ount of belief revision with expli
it justi�
a-tions. We give our de�nition of knowledge and knowledge state, and explain how su
hknowledge states 
an be formalized in type theory.3.1 Knowledge and type theoryPAT is suitable to express the proof as an obje
t embodying its developmental history.As a 
onsequen
e, type theory embodies an ex
ellent ma
hinery for storing (variouskinds of) information, in
luding knowledge. The 
onne
tion between type theory andknowledge is the subje
t of this se
tion.We do not intend to present a philosophi
al or psy
hologi
al theory of knowledge,but simply identify three 
hara
teristi
s of knowledge whi
h we believe should betaken into a

ount when formalizing knowledge:� Subje
tivity: Knowledge is formulated in terms of 
on
epts . We assume these
on
epts are subje
tive in the sense that one person may judge something to bean instan
e of a 
ertain 
on
ept, while another person would not re
ognize it assu
h. Another aspe
t of subje
tivity is that a person's knowledge is partial : noone knows everything, and people di�er in what they do and don't know.� Justi�
ation: Knowledge is justi�ed: persons not only know things, but they havereasons for knowing them. Generally, parts of knowledge are justi�ed in terms ofmore basi
 parts; a person's body of knowledge is stru
tured. And even atomi




14 Type theory for knowledge representationjusti�
ations are supports for the knowledge, sin
e they point at an origin (anaxiom, an observation, et
.).� In
rementality: The knowledge of a person 
an be extended as new informationbe
omes available. Whether this information 
an be in
orporated by the persondepends on the possibility to tie it to the knowledge already present. This maylead to simply adding the new information, to dismissing it (e.g., be
ause it isin
omprehensible) or even to a reorganization of the existing knowledge.Under an a

ount of knowledge satisfying these requirements, the traditionallymade distin
tion between knowledge and belief disappears: there 
an be no knowl-edge whi
h is true in any absolute sense, sin
e an agent's knowledge depends on hissubje
tive 
on
eptualisation of the world. At best some pie
es of knowledge turn outto be more reliable than others and some things 
an be agreed upon by more agentsthan others. There is a natural way to 
apture these 
hara
teristi
s in type theory:� Subje
tivity is 
aptured by types: Ea
h 
on
ept is formalized as a type, ea
h in-stan
e of the 
on
ept is a term inhabiting this type. A person's subje
tive abilityto re
ognize something as an instan
e of a 
on
ept, is mirrored in the ability tojudge that the 
orresponding term inhabits the 
orresponding type.Note that `having a 
on
ept' is also subje
tive in the sense that di�erent peoplemay have formed di�erent 
on
epts in the 
ourse of time. This means that oneperson 
an have a 
on
ept, whereas another person has no 
omparable 
on
ept.And in 
ase persons do have 
omparable 
on
epts, they may di�er in what theyre
ognise as belonging to this 
on
ept. In 
ase the type formalizing the 
on
eptis a `set-type', this means that they may di�er in what they regard as elementsof the set (a rhododendron may be a tree for the one, but a shrub for the other).In 
ase this type is a `proposition-type', they may di�er in what they a

ept as ajusti�
ation for that proposition.� Justi�
ation is 
aptured by terms: By the PAT-prin
iple, justi�
ations are �rst-
lass 
itizens, formalized in the type-theoreti
al syntax as terms. The fa
t thatterm a justi�es proposition T , is expressed as the statement a : T . The rules oftype theory allow these terms to be 
ombined into 
omplex terms, whi
h re
e
tsthat parts of knowledge may be a stru
tured 
ombination of more basi
 parts.� In
rementality is 
aptured by 
ontexts: As we will explain below, a person's knowl-edge state 
an be formalized as a type-theoreti
al 
ontext. Addition of new in-formation to the knowledge state 
an be formalized by adding statements to the
ontext, dismissing information amounts to redu
ing the 
ontext. Informationmay only be added if it `mat
hes' a person's knowledge state. Type theory hasan innate notion of `mat
hing': a statement 
an only extend a 
ontext if it obeys
ertain well-formedness restri
tions.3.2 Formalization of the knowledge stateThe knowledge state of a person 
onsists of `everything he knows' at a 
ertain instant.This knowledge state will be represented as a 
ontext � in our type system. Everystatement in � represents a pie
e of knowledge the person has.Given our 
hara
terization of knowledge, this means that everything in a knowledgestate is formulated in terms of the person's 
on
epts. This has several aspe
ts:



Type theory for knowledge representation 15� Meaningfulness: A person has formed his own, private 
on
epts, and only thingswhi
h are formulated by means of these 
on
epts 
an be meaningful to him.Whether or not information 
oming from outside (by observation or 
ommuni-
ation) makes sense, depends on the 
on
epts that are already available. (In thispaper we will assume that the entirety of 
on
epts of a person is �xed.)� Inhabitation: Whatever a person knows about the world around him is re
ordedin a knowledge state in the form of meaningful expressions that he a

epts. Thisin
ludes expressions about whi
h obje
ts `inhabit' the 
on
epts in the world, andwhi
h propositions hold in the world, a

ording to the person.If we take the following (very simple) 
ontext as representing a person's knowledgestates: T1 : prop; T2 : set; x1 : T1; x2 : T2, we 
an see:� Meaningfulness is 
aptured by statements of the form T : prop or T : set. That isto say, in this example the person has two 
on
epts, viz. T1, whi
h is a propositionto him, and T2, whi
h is a set. (Note that the statements T1 : prop by itself doesnot imply that the proposition T1 holds a

ording to the person, nor does T2 : setimply that the set T2 is non-empty.) At this stage, there are no other 
on
epts,i.e. all sets and propositions whi
h are not 
onstru
ted out of T1 and/or T2 arenot meaningful to him.� Inhabitation is 
aptured by statements of the form x : T , where T is meaningful . Inthe example 
ontext, the inhabitant x1 of T1 represents the person's justi�
ationfor the holding of T1, and the inhabitant x2 of T2 is an element of the set T2 whi
his re
ognized as su
h by the person3.'Everything a person knows' at a 
ertain instant 
an be divided into two 
ategories:� Expli
it knowledge is expressed by the statements in the 
ontext � . These areexpli
itly represented pie
es of knowledge dire
tly available to the person.� Impli
it knowledge is expressed by statements derivable on the 
ontext �. Theseare 
onsequen
es of a person's expli
it knowledge whi
h he 
an get by inferen
e.Hen
e, in a judgement of the form � ` a : T , the expli
it knowledge 
an be found tothe left of the symbol `, and the impli
it knowledge to the right of `.Note that the knowledge state is not dedu
tively 
losed, i.e. deriving 
onsequen
esrequires `work', whi
h is re
e
ted in the 
onstru
tion of a 
ompound justi�
ation afor T . Su
h a 
onstru
tion is a derivation using the rules of type theory; it 
onsists ofa sequen
e of judgements of whi
h the just-mentioned 
ompound justi�
ation is the�nal one. We 
ome ba
k to this in the next se
tion.Assumption 3.1In order to derive all 
onsequen
es of his expli
it knowledge, a person would have tobe able to perform possibly in�nite derivations. Sin
e this is not feasible, we assumea `bound' on the derivation depth.As the above dis
ussion meant that statements of the form A : B (where A may be
omplex) must be in the knowledge state (whi
h is a 
ontext in type theory), and asformulations of type theory only allow statements of the form x : B in the 
ontext,3Synta
ti
ally, x1 and x2 are variables. However, as we see later, ea
h of these `variables' may in fa
t be a de�ned
onstant, abbreviating a term whi
h 
odes all details of the justi�
ation.



16 Type theory for knowledge representationwe will present here an extension of type theory where 
ontexts not only 
ontainstatements of the form x;B, but also statements of the form x := A : B (whi
h alsostates that A : B), and are known as de�nitions.3.3 PTSs with de�nitionsIn this se
tion we introdu
e the extension of PTSs given in se
tion 2.5 with de�nitions.Terms and types remain un
hanged, but 
ontexts are now a list of de
larations ofthe form x : A or of de�nitions of the form x = B : A. These latter de�nitions de�ne xto be B and to have the type A. We extend De�nition 2.21 to deal with de�nitions aswell as de
larations, taking var(d), type(d) and def(d) to be x, A, and B respe
tivelywhen d is x = B : A. We de�ne FV (x = B : A) � FV (A) [ FV (B). We extend domto be dom(�) = fx j x : A 2 � or x := B : A 2 �g. Finally, we extend substitutionson 
ontexts by (�; y := B : C)[x := A℄ � �[x := A℄; y := B[x := A℄ : C[x := A℄. Notethat De�nitions 2.22, 2.23, 2.24 and 2.25 are un
hanged.Definition 3.2The new typing relation ` is obtained by adding four new rules to the typing rulesof De�nition 2.25: (start-def), (weak-def), and (def) below, and by repla
ing the(
onversion) by (new-
onv) as follows:(start-def) � ` A : s � ` B : A�; x := B:A ` x : A x 62 dom(�)(weak-def) � ` A : B � ` C : s � ` D : C�; x := D:C ` A : B x 62 dom(�)(def) �; x := B:A ` C : D� ` (�x : A:C)B : D[x := B℄ for � 2 f�;�g(new-
onv) � ` A : B � ` B0 : s � ` B =def B0� ` A : B0In (new-
onv), � ` B =def B0 is de�ned as the smallest equivalen
e relation 
losedunder:� If B =� B0 then � ` B =def B0� If x := D : C 2 � and B0 arises from B by substituting one parti
ular freeo

urren
e of x in B by D then � ` B =def B0.In De�nition 3.2, (start-def) and (weak-def) are the start and weakening rules thatdeal with de�nitions in the 
ontext. The (def) rule types �- and �-redexes usingde�nitions in the 
ontext.Now, here are some lemmas that show that the above system is suitable for rep-resenting beliefs. The �rst lemma establishes that di�erent beliefs have di�erentjusti�
ations and that all justi�
ations have their eviden
e in knowledge state �.Lemma 3.3 (Free variable Lemma for `)1. If d and d0 are two di�erent elements in a legal 
ontext �, then var(d) 6� var(d0).2. If � � �1; d;�2 and � ` B : C then FV (d) � dom(�1) and FV (B); FV (C) �dom(�).



Development of the knowledge state 17Proof. 1. If � is legal then for some B;C, � ` B : C. Now use indu
tion on thederivation of � ` B : C. 2. is by indu
tion on the derivation of � ` B : C.Lemma 3.4 (Substitution Lemma for `)If �; x := D : C;� ` A : B or (�; x : C;� ` A : B and � ` D : C) then �;�[x :=D℄ ` A[x := D℄ : B[x := D℄.Proof. Indu
tion on the derivation rules, using Lemma 3.3.The following 
orollary means that the person 
an tra
k down those statements re-sponsible for him entertaining a parti
ular belief.Corollary 3.5 (Strengthening Lemma for `)For �1; y := E : T;�2 a legal 
ontext and M and B terms: if �1; y := E : T;�2 `M :B and y 62 FV (�2) [ FV (M) [ FV (B), then �1;�2 `M : B.The next lemma shows that all statements in a knowledge state are meaningful in thesense that if �1; x : A;�2 is legal then �1 ` x : A; and if �1; x := B : A;�2 is legalthen �1 ` x : A and �1 ` B : ALemma 3.6 (Context Lemma for `)Let �1; d;�2 be a legal 
ontext. Then we have: �1 ` type(d) : s for some sort s,�1; d ` var(d) : type(d) and if d is a de�nition then �1 ` def(d) : type(d).Proof. If � is legal then for some terms B;C: � ` B : C; now use indu
tion on thederivation of � ` B : C.Lemma 3.7 (Thinning Lemma for `)Let d be either a de
laration or a de�nition and let �1; d;�2 be a legal 
ontext.1. If �1;�2 ` A : B, then �1; d;�2 ` A : B.2. If d is x := D : C and �1; x : C;�2 ` A : B, then �1; d;�2 ` A : B.Lemma 3.8 (Swap Lemma for `)Assume ea
h of d1 and d2 is either a de
laration or a de�nition su
h that var(d1) 62FV (type(d2)) and if d2 is a de�nition then also var(d1) 62 FV (def(d2)).If �1; d1; d2;�2 ` A : B, then �1; d2; d1;�2 ` A : B.Proof. By indu
tion on the derivation �1; d1; d2;�2 ` A : B.4 Development of the knowledge stateThe knowledge state of a person is not stati
. As time goes by, new information 
omesto the person's attention and has to be dealt with. With the 
on
eption of knowledgestates as type-theoreti
al 
ontexts in mind, as explained in the previous se
tion, wedistinguish several stages in the treatment of new information by a person, markedby de
isions whi
h the person has to make. We des
ribe these stages below.Meaningfulness In the �rst stage, the meaningfulness of the new information is atstake. New information may or may not be meaningful to a person depending on his
urrent knowledge state. Type-theoreti
ally, new information manifests itself in theform of a (sequen
e of) statement(s). Whether these statements are meaningful withrespe
t to a knowledge state, 
an be synta
ti
ally de
ided. In se
tion 3.2 we noted



18 Development of the knowledge statethat type theory has an intrinsi
 notion of meaningfulness. Below we explain how thisnotion 
an be extended to statements of the form x : T , expressing the inhabitationof a proposition or set T .We presuppose that a person only pro
esses new information that is meaningful(makes sense) to him, i.e. meaningful with respe
t to his 
urrent knowledge state, andthat he de
ides to dismiss this information otherwise. (In a 
ommuni
ation setting,we expe
t the person to sear
h for 
lari�
ation, either by questioning his dialoguepartner, or by (re-)inspe
ting his environment.)Expanding the knowledge state If the information is meaningful, the person addsit provisionally to the knowledge state: � is extended to e.g. �1 � �; y1 : T1; y2 : T2.The resulting knowledge state 
an turn out to be 
onsistent, that is to say, theperson 
annot 
onstru
t a term M su
h that �1 ` M : ?, where ? is falsum (thelogi
al 
onstant `falsity'). Re
all assumption 3.1 where we assume that the personhas a limited dedu
tive power, so he 
an only 
onstru
t terms by derivations up to a
ertain length. Intuitively this means that the person has a `horizon' behind whi
hhe 
annot see the 
onsequen
es of his knowledge state. Hen
e, the person's notion of`
onsisten
y' is bound by his horizon. (Hen
e, a knowledge state 
an be in
onsistentwithout the person being able to �nd this out at the 
urrent point in time.)If the obtained knowledge state does not give 
ontradi
tions within the horizon,then �1 is a

epted as the new 
ontext.Revising the knowledge state There is, however, also the possibility that theperson has found an in
onsisten
y, i.e. he has 
onstru
ted in his newly expandedknowledge state some term M su
h that �1 ` M : ?. In that 
ase, he 
an de
ide toreje
t the new information and return to the previous knowledge state. But he 
analso de
ide to revise his new knowledge state in order to restore 
onsisten
y. (Theperson may a
tually be able to 
onstru
t more than one inhabitant of falsum; weassume that he 
on
entrates on one of these.) The most natural thing to do, is to�nd one or more statements in the 
ontext representing his knowledge state, whi
henabled the 
onstru
tion of M . These statement 
an be lo
ated in the `old' 
ontext,but also in the newly added pie
e of 
ontext, or in both. By removing one or more ofthese statements from his 
ontext, 
onsisten
y may be regained, sin
e this parti
ularproof of falsum, M , 
annot be 
onstru
ted any more. Below we propose a synta
ti
aliterative pro
edure whi
h restores 
onsisten
y. (In general, there is more than oneway to regain 
onsisten
y by removing statements from the knowledge state.)The stages and de
isions we distinguished above, are not intended to 
apture a
tual
ognitive pro
esses, but merely to state as 
learly as possible whi
h aspe
ts of beliefrevision we do and do not 
onsider in our formalization. For instan
e, the fa
t thatthe person de
ides whi
h statements to remove, means that this is not de
ided by theformalism, in other words, we do not postulate so-
alled epistemi
 entren
hement .(For a 
omparison with standard theories of belief revision, see se
tion 6.)In se
tions 4.1 and 7.3 we dis
uss the various stages of dealing with information asexplained just now, in more detail. We give spe
ial attention to the representation intype theory.



Development of the knowledge state 194.1 Adding informationThe knowledge state of a person 
hanges as new information be
omes available tohim. Sin
e knowledge states are modeled by type-theoreti
al 
ontexts, this meansthat 
ontexts should 
hange a

ordingly. In this subse
tion we demonstrate that typetheory has the possibility to a

ommodate su
h a 
hange in the knowledge state, viz.the addition of new information to the knowledge state.Adding information to a type-theoreti
al 
ontext amounts to adding statements tothis 
ontext. This does not mean that arbitrary information may be added, addition ofinformation is subje
t to synta
ti
al restri
tions. We dis
uss this below, distinguishingbetween the addition of information originating from inside and from outside theknowledge state of the person.Adding information from insideA person is able to reason with his knowledge. For example, let us assume that thestatements A ! B : prop and A : prop are meaningful to the person. I.e., fromhis knowledge state �, the person 
an derive � ` A ! B : prop and � ` A : prop.Moreover, let us assume that the person has justi�
ations for both propositions, sin
eA ! B and A are inhabited (e.g. x : A ! B and y : A o

ur in the 
ontext �representing his knowledge state). Then the person 
an infer that B holds, as well,expressed by the statement xy : B. This is the 
ase sin
e we have the followinginstan
e of the appli
ation rule (
f. Figure 1):� ` x : A! B � ` y : A� ` xy : BThis inferen
e allows the person to 
ombine his justi�
ation x for A ! B with hisjusti�
ation y for A into a 
omplex justi�
ation xy (pronoun
ed as `x applied to y')for the proposition B.Note that there are no more than a small number of typing rules, whi
h are alllike the above rule in that they enable to derive a new judgement from one or morejudgements whi
h are given or derived earlier.The judgement � ` xy : B resulting from the person's inferen
e as explained above,shows that the person is able to 
onstru
t a justi�
ation for B on his knowledgestate �. However, the statement xy : B is not yet part of his knowledge state. Toin
orporate this statement, it would simply be suÆ
ient to append it to �. However,for te
hni
al reasons only statements with variables as subje
t are allowed in the
ontext. In order to 
ir
umvent this (te
hni
al) problem, in Se
tion 3.3, we expandedour notion of `
ontext' given in Se
tion 2.5, by allowing also a new kind of statements,
alled de�nitions , in the 
ontext. A de�nition is a statement of the form z := E : T ,expressing that z is a name for the term E of type T . The new name z is the subje
tof the de�nition z := E : T . Formally, z is a variable. (This is in 
ontrast withthe good habit of 
alling su
h a de�ned name a 
onstant .) By means of de�nitions,
omplex justi�
ations 
an be abbreviated and re
orded in the 
ontext. This de�nitionme
hanism is essential in the pra
ti
al use of type theory for the formalization of`bodies of knowledge', as has been shown e.g. in the Automath proje
t [31℄.A de�nition z := E : T may be added to a 
ontext � whenever z is fresh withrespe
t to � and E : T is derivable on �. In the example above, this enables the



20 Development of the knowledge stateperson to re
ord the inferred xy : B in his knowledge state by adding the de�nitionu := xy : B, using some fresh variable u. Hen
e, the 
ontext � has evolved into the
ontext �; u := xy : B, re
e
ting the development of the person's knowledge statebrought about by his reasoning. The proposition B (and its justi�
ation), whi
h wasimpli
it knowledge of the person (sin
e it o

urred at the right hand side of the `),has now be
ome expli
it knowledge.From a purely logi
al point of view, it may seem that adding a derived propositionto the knowledge state (making it expli
it) does not 
ontribute to the person's impli
itknowledge. However, this is not the 
ase sin
e we assume a bound on the depth ofderivations a person 
an perform. Under this assumption, the impli
it knowledge islimited: it 
onsists of everything a person 
an derive on his 
ontext within a 
ertainnumber of derivation steps . As soon as the expli
it knowledge has grown, in generalthere is more that 
an be derived by the person in the same number of steps, so theimpli
it knowledge has grown as well: the person's `dedu
tive horizon' has broadened.Adding information from outsideThe knowledge state of a person 
an 
hange by reasoning (whi
h he does himself,from the inside), or by information originating from the outside. For the latter thereare two important knowledge sour
es: observational and 
ommuni
ational.� Observation: A person 
an re
ognize an obje
t (visually, or by any other sensoryper
eption) in his world as belonging to a 
ertain set . For example, he sees anobje
t whi
h he 
hara
terizes as being a ball. But he 
an also obtain eviden
e forpropositions by looking at the outside world. For example, he sees that the ballis yellow.In both 
ases, the new information 
an be added to the 
ontext of the person bythe addition of a new statement with a fresh atomi
 subje
t, a
ting as the justi�-
ation. The atomi
 
hara
ter of this justi�
ation is 
aused by the impossibility tode
ompose the observation into smaller parts.The two observations in the example above 
ould e.g. be 
ombined into the 
ontextextension b : ball ; o : yellow b.� Communi
ation: Another manner in whi
h a person 
an 
hange his knowledgestate is by information passed to him by another person. Again, this information
an involve (the existen
e of) obje
ts as well as (the holding of) propositions.For this 
ommuni
ation it is ne
essary that both persons share a language inwhi
h they 
ommuni
ate. We assume that ea
h person speaking this languagehas a mapping between the words of the language and the subje
tive 
on
eptspresent in his knowledge state, and vi
e versa. In [1℄ a type theoreti
al model of
ommuni
ation is developed based on this assumption. In this model, the types ina person's knowledge state are 
ommuni
able via the (mappings to) the 
ommonlanguage, but the inhabitants of these types (justi�
ations) are not. Hen
e the
ontents of a 
ommuni
ation take the form of a (sequen
e of) statement(s) ofwhi
h the subje
ts are atomi
, sin
e the original justi�
ations of the `sender' arenot 
ommuni
able to the `re
eiver'.Example: in a situation after the observation of the previous example, the utter-an
e `The yellow ball is hollow' 
an lead to the following extension of the person's
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ontext: 
 : hollow b, provided that `hollow' is a 
on
ept known to the person,and he is able to 
orre
tly mat
h the de�nite des
ription to the obje
ts b and o inhis 
ontext.Hen
e, be it either observation or 
ommuni
ation, the information to be added to aperson's 
ontext has the form of a sequen
e of statements with atomi
 subje
ts, hen
eof the form x : T , where x is a variable; note that de�nitions do not play a role if we
onsider adding information from the outside.However, as we said earlier, the types of the statements in the 
ontext give rise toa notion of meaningfulness. Only types `
onstru
table' from the statements alreadypresent in the 
ontext of a person are meaningful to him. This restri
ts the additionof statements originating from the outside.Te
hni
ally, this has the following form. Let � be the original 
ontext of the personand assume that the sequen
e x1 : T1; : : : ; xn : Tn is the information from the outside(with fresh subje
ts x1; : : : ; xn). Then these statements are added one by one, thus
hanging the knowledge state in
rementally. That is to say, for ea
h 1 � i � n, thestatement xi : Ti may only be added if�; x1 : T1; : : : ; xi�1 : Ti�1 ` Ti : swith s � set or s � prop. In other words, a statement may only be added if its typeis well-formed with respe
t to the 
urrent knowledge state. This shows, as we saidbefore, that new information (a sequen
e of statements) 
an only be absorbed in astep-by-step fashion (statement by statement), where the possibility to append a newstatement depends on the information available in the 
ontext at that stage, i.e. theoriginal 
ontext plus the already appended statements.This embodies pre
isely the notion of in
rementality, dis
ussed in subse
tion 3.1,whi
h not only applies to the 
ase of only one `
hunk' of information from the outside(i.e. one sequen
e of statements) as above, but also to subsequent additions of su
h
hunks of information. For instan
e, if a person is in a dialogue with another person,ea
h new utteran
e he re
eives will be added only if it is meaningful against theba
kground of the utteran
es a

epted before.Remark 4.1In treating observation and 
ommuni
ation, we extended the use of type theory asit is traditionally des
ribed in the literature: one usually does not take into a

ountthat information 
an 
ome from outside the 
ontext. When type theory is applied toknowledge representation, one usually models (the progress of) a solitary reasoningperson, who 
an only extend his knowledge from the inside. However, sin
e we adoptedthe same well-formedness 
riteria as usual to adding information from the outside,the resulting 
ontext in our extension will always be synta
ti
ally 
orre
t with respe
tto the original type-theoreti
al standards. Hen
e, this extension of the use of typetheory does not lead to an extension of the formalism. (Even the 
omplete pro
essof adding information from the outside 
an be justi�ed in type-theoreti
al sense. Wewill not go into that here.)4.2 The problem of revisionAs we saw in the previous se
tion, a situation in whi
h a person has to revise hisknowledge state 
an be 
hara
terized as follows. The person is 
onfronted with new
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h is meaningful to him), and de
ides to a

ept it. When it turns outthat the in
orporation of this new information leads to in
onsisten
y of the resultingknowledge state, the person has to remove information from this new knowledgestate to restore 
onsisten
y. Below we des
ribe how this 
an be done by means oftype theory.Revision from a type-theoreti
al perspe
tive The need for revision 
an originateboth from the inside and from the outside. We begin by des
ribing the situation wherenew information is added from outside.Suppose that the 
ontext � represents the person's 
urrent knowledge state (whi
h is
onsistent within his horizon) and the sequen
e x1 : T1; : : : ; xn : Tn represents the newinformation from the outside resulting in the 
ontext �1 � �; x1 : T1; : : : ; xn : Tn. Thein
onsisten
y of �1 manifests itself in the existen
e of an inhabitant of falsity whi
hthe person 
an 
onstru
t within his horizon: there is an M su
h that �1 ` M : ?.There may be more than one su
h an inhabitant, but we assume that the person has
hosen one of these. (We 
ome ba
k to this in se
tion 5.)The fa
t that all justi�
ations are expli
itly present enables the person to identify all`suspe
ts': the beliefs in �1 that together 
ause the in
onsisten
y. Sin
e M embodiesa derivation of falsity in the sense explained earlier, we �nd in M the justi�
ations ofall beliefs that are part of this derivation (M 
ontains the full developmental historyof the derivation). The suspe
t justi�
ations o

ur as free variables in M , sin
ethese free variables point exa
tly at the premisses of the derivation of falsity: su
ha premiss x : T gives rise to a free x in M . This is a property of the proposition astypes interpretation of type theory. Moreover, the rules of type theory ensure thatall free variables of M o

ur as subje
ts in �1.Example 4.2Let A : prop and B : prop be statements belonging to the knowledge state (the 
on-text) and assume that the person has proofs of A, of A! B and of :B (abbreviatingB ! ?, to be read as \B implies 
ontradi
tion"). This is represented in the knowl-edge state by statements say x : A, y : A! B and z : :B. The rules of Type Theoryenable the derivations of � ` yx : B and � ` z(yx) : ?. The free variables x, y andz in the `proof obje
t' z(yx) point pre
isely at the propositions A, A ! B and :B,whi
h together enable the 
onstru
tion of the in
onsisten
y.Note that, given the 
onsisten
y of �, there have to be free variables in M whi
ho

ur as subje
ts in the new information x1 : T1; : : : ; xn : Tn. (Otherwise, M : ?
ould already be 
onstru
ted on � itself; this is a 
onsequen
e of the StengtheningCorollary 3.5.)New information 
an also originate from the inside, when a person adds a derived
onsequen
e to his knowledge state by means of a de�nition. This broadens his horizonand hen
e 
ontradi
tions whi
h were previously out of sight 
an now 
ome into view(
f. se
tion 4.1).Example 4.3Suppose � is 
onsistent and � ` N : P within the horizon. The result of adding N : Pto � by means of a de�nition is �0 � �; u := N : P . Now it is possible that thereexists an M su
h that �0 `M : ? within the new horizon. As above, this M 
ontainsinhabitants of all `suspe
ts' as its free variables.



Belief revision 23This shows that there is, te
hni
ally speaking, no di�eren
e between revision due toinformation from outside and from inside. Intuitively it may seem strange that aperson 
an be for
ed to revise his knowledge state by only adding a 
onsequen
e ofwhat he already knows to his knowledge state, without any external reason. However,if we take the idea of limited dedu
tive power seriously, this is inevitable.Restoring 
onsisten
y by removing information In the above situation, whenthere is an M su
h that �1 ` M : ?, the person 
an try to regain 
onsisten
y byremoving one or more of the `suspe
ts' from �1, being some of the statements xi : Tio

urring in �1 where xi o

urs free in M . As we pointed out before, we assume thatthe person de
ides whi
h statements he 
hooses to remove. Before making this 
hoi
e,the person probably re
onsiders the suspe
ts, with the help of new observations or
ommuni
ations with others.However, it is generally not suÆ
ient to simply erase the 
hosen suspe
ts from theknowledge state, sin
e there may be beliefs depending on the `suspe
t' beliefs. Su
ha dependent belief should be removed as well, sin
e it is no longer meaningful on theknowledge state from whi
h the suspe
t(s) have been erased.A belief 
an depend upon another belief in two ways:1. A belief B may 
ontain a free variable x whi
h is the subje
t variable of a statementx : A pre
eding y : B in the 
ontext.2. If x : A pre
edes a de�nition statement z := E : C, both E and C may 
ontainsu
h a free variable x.In these 
ases, y : B and z := E : C depend on x for their well-formedness. Hen
e,removal of x : A from the 
ontext has 
onsequen
es for these statements as well. Themost natural solution is to remove them.There is a relatively simple, synta
ti
al pro
edure for removing suspe
t beliefs andthe beliefs depending on them, whi
h we des
ribe in se
tion 5.1 The result of thispro
edure is a new knowledge state, �2. It is, however, not ne
essarily the 
ase thatthis �2 is 
onsistent within the person's horizon. Although the justi�
ation M offalsity is no longer 
onstru
table on �2, there may have been more than one justi�
a-tion for falsity on �1. Some of these justi�
ations of falsity may still be 
onstru
tibleon �2. In that 
ase, the person 
hooses one of these justi�
ations and sele
ts a newset of suspe
ts on whi
h the pro
edure des
ribed above is repeated. Iteration leadsto a sequen
e of knowledge states �1; : : : whi
h is �nite, sin
e in every iteration stepat least one of the (�nite number of) justi�
ations of falsity is removed. So thereis a �nal knowledge state �n, on whi
h no justi�
ations of falsity are 
onstru
table.Hen
e, �n is 
onsistent within the person's horizon. This �n is then the resultingrevised knowledge state.5 Belief revisionIn this se
tion we give a formal des
ription of the pro
ess of belief revision in typetheory, as des
ribed above. First we de�ne the synta
ti
al pro
edure for removing`suspe
t' beliefs and the beliefs depending on them (se
tion 5.1) stating some proper-ties of this removal pro
edure. Finally, we dis
uss the full revision pro
edure, whi
hmay involve iterative removal of suspe
t beliefs, and we investigate the properties ofthe pro
edure.



24 Belief revision5.1 The removal operationWe start with a knowledge state represented by a 
ontext � and new informationrepresented by the sequen
e x1 : T1; : : : ; xn : Tn. We add the new knowledge to theoriginal knowledge state, obtaining �1 � �; x1 : T1; : : : ; xn : Tn. We assume thatthis `new' 
ontext �1 turns out to be in
onsistent and we assume that the personhas 
hosen one or more suspe
t beliefs in �1 whi
h he wants to remove. Note theassumption that the suspe
t beliefs 
an be found in the entire �1, so also among thenew information: 
ontrary to standard a

ounts of belief revision we do not award aspe
ial priority to the new information (
f. se
tion 7.3).The removal operation that we des
ribe below results in the transformation of �1into a new 
ontext �2. However, as we dis
uss below, regaining 
onsisten
y mayinvolve more than one su
h transformation, hen
e in our de�nition we de�ne thetransformation as leading from �i to �i+1.In order to give a general de�nition of removal, we write a 
ontext as if all statementsin the 
ontext were de�nitions: y1 := E1 : T1; : : : ; ym := Em : Tm, with the 
onventionthat yl := El : Tl must be read as yl : Tl if it is not a de�nition and we take FV (El) = ;in the last mentioned 
ase. (FV (M) is the set of all variables o

urring free in M .)We assume that V is the set of variables whi
h are the subje
ts of suspe
t beliefsyk := Ek : Tk in �i whi
h the person has 
hosen to remove. As we explained atthe end of se
tion 4, also beliefs yl := El : Tl depending on the variables in V mustbe removed. Below we 
hara
terize the set dep�(V ) 
onsisting of V plus all subje
tvariables of statements depending on V .We start with the de�nition of the notion `sub
ontext'.Definition 5.1Let � � �1; y := E : T;�2 and �0 � �1;�2 or �0 � �1; y : T;�2. Then �0 � �.The relation � is the re
exive and transitive 
losure of �. If �1 � �2 we say that �1is a sub
ontext of �2.Next we de�ne the dependen
y relation �, a partial order between subje
t variablesof a 
ontext �.Definition 5.2Let � � �1; y := E : T;�2. Then def�(y) = E, type�(y) = T and stat�(y) = (y :=E : T ). For y and z 2 dom(�) we say that y < z if y 2 FV(def�(z) [ type�(z)).(For
onvenien
e, we write `<' instead of <�.) The relation � is the re
exive and tran-sitive 
losure of <. The set dep�(y) is fz 2 dom(�)jy � zg. Moreover, dep�(V ) isSy2V dep�(y), for V � dom(�).Note that the set of variables depending on a set of variables V , in
ludes V itself.Next, we de�ne a deletion operator del, erasing statements from a 
ontext, andthe removal operator `n'.Definition 5.3For domain variable y of � � �1; y := E : T;�2, we de�ne � � stat�(y) as �1;�2.For a set W of domain variables of �, we de�ne del�(W ) as � � Sy2W stat�(y).For a 
ontext � and a set V � dom(�), the removal operation ` n ' is de�ned by�nV = del�(dep�(V )).So, �nV is the 
ontext resulting from removing all statements depending on the setV of 
hosen subje
t variables, from �.



Belief revision 25As explained in se
tion 4.1, knowledge states are in
remental, in the sense that thetype of ea
h statement should be meaningful given the statements pre
eding it. Intype theory this is expressed by legality given in De�nition 2.23 and whi
h satis�es theimportant Context Lemmma 3.6. The removal operator applied to a legal 
ontext,results in a new, legal sub
ontext:Lemma 5.4Let � be a 
ontext and V � dom(�). Then �nV � �. Moreover, if � is legal, then�nV is legal.Proof. For the se
ond part: Subsequently delete all stat(y) for y 2 dep�(V ) from�, from right to left, using Strengthening Corollary 3.5.The removal operator has the ni
e property that the result of subsequent appli
a-tions to V and W is the same as applying it in the reverse order, or by applying it tothe union of V and W :Lemma 5.5If � is legal and V and W are subsets of dom(�), then (�nV )nW = (�nW )nV =�n(V [W ).Proof. By the de�nition of n and basi
 set theory.5.2 The revision pro
edureIn this se
tion we show how the removal operator 
an be used to regain 
onsisten
y.We assume that a person has originally a legal and 
onsistent knowledge state �.He extends his 
ontext � with new information x1 : T1; : : : ; xn : Tn, obtaining �1 ��; x1 : T1; : : : ; xn : Tn. Let's assume that �1 is legal again, but that it has be
omein
onsistent: he 
an now 
onstru
t an M su
h that �1 ` M : ?. (Note: in thissubse
tion we forget about the `horizon' of a person, i.e. the limited dedu
tion powerof a human being; we 
onsider this horizon in the following subse
tion.) We 
onsidertwo 
ases in both of whi
h the proofM of falsity is no longer derivable on the resulting
ontext �2:� The person 
hooses to remove a single subje
t variable z o

urring freely in M ,plus all statements depending on this z. Hen
e, he obtains �2 � �1nfzg as his new
ontext. Note that the 
hosen variable z may be the inhabitant of a statement inthe original 
ontext � or of a statement xi := Ei : Ti whi
h is part of the extension.In the latter 
ase, dep�1(z) 
ontains only variables o

urring as subje
ts in theextension. In the former 
ase, however, dep�1(z) may 
ontain subje
t variables of� as well as subje
t variables of the extension. Hen
e, the removal operation may
hange the new information in both 
ases.� The person 
hooses a non-empty set V of variables o

urring freely in M andobtains �2 � �1nV as his new 
ontext. Note that by lemma 5.5, the removal ofV has the same e�e
t as removing the separate elements of V , one by one, in anyorder. (This also holds if V is the set of all free variables in M .)The above does not guarantee that �2 is 
onsistent: it may be the 
ase that theperson 
an still 
onstru
t a proof of falsity, say M 0, on �2. Then the person 
an



26 Belief revisionrepeat the removal operation with one or more free variables o

urring in M 0, and soon obtaining a sequen
e of 
ontexts �1;�2; : : :, where ea
h �i+1 is a legal sub
ontextof � being properly `smaller' (i.e. 
ontains fewer statements) than �i. It follows thatthe sequen
e �1;�2; : : : is �nite, so that a 
ontext �n whi
h is 
onsistent is �nallyobtained. (In the extreme 
ase �n = ", but there is no proof of falsity on the empty
ontext " by the 
onsisten
y of type theory.) This implies:Lemma 5.6Iterated appli
ation of the removal operation terminates resulting in a 
onsistentknowledge state.In other words, it is a revision pro
edure. It is interesting to note that this iteration
an be summarized in a single appli
ation of the removal operation: Let's 
all thenon-empty set of variables that the person 
hooses to remove in the transition from�i to �i+1, Vi (whi
h 
an be a singleton set). Then �i+1 = �inVi. However:Lemma 5.7Su

essively removing Vi from �i for i = 1; : : : ; n � 1, leads to the same result asremoving the union of all Vis from �1: I.e. �n = �1nSn�1i=1 Vi.Proof. This is again a 
onsequen
e of lemma 2.In this se
tion we assumed that it is the person who makes the de
ision about whi
hstatements to remove, and not the formalism. We gave arguments for this point ofview in se
tion 4. However, in 
omparing our system with others in the literature wewill in se
tion 7.4 dis
uss formal heuristi
s for making these de
isions.5.3 Revision with horizonIn the previous subse
tion we assumed that the person is `omnis
ient' in the sensethat he is able to provide a proof of falsity at any time, if there exists one. This, of
ourse, is not realisti
. For this reason we introdu
ed in the beginning of se
tion 4 thenotion of `horizon' for the person. If we look at the revision pro
edure, the presen
eof a horizon has important 
onsequen
es.Firstly, a knowledge state � has only a limited number of 
onsequen
es within agiven horizon. We formulate this as a theorem, provable by 
ombinatorial arguments:Theorem 5.8Given a 
ontext � and a number h limiting the derivation depth of derivations on �(`the distan
e to the horizon'), there is a �nite number of statements derivable on �(modulo �-
onversion).Note that we do not 
onsider the full dedu
tive 
losure of �, whi
h possibly 
or-responds with an `in�nite horizon', whi
h is no horizon at all. For 
onvenien
e, wedenote the �nite set of derivable statements from 
ontext � (the set of 
onsequen
esof �) within horizon distan
e h by Conseqh(�).Corollary 5.9Given a 
ontext � that is in
onsistent within horizon distan
e h, there is a �nitenumber of inhabitants of falsity (`proofs of falsity') (modulo �-
onversion). I.e., thereare �nitely many terms M su
h that M : ? 2 Conseqh(�).
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h 27By appli
ation of the revision pro
edure, statements are removed from the 
ontext �.This will eliminate a (number of) proof(s) of falsity, but the question arises whetherthere are new proofs of falsity on the revised (smaller) 
ontext. This is not the 
ase:Theorem 5.10If �nV is the result of revising � with respe
t to V , then there is no statementderivable within horizon distan
e h on �nV whi
h was not already derivable withinhorizon distan
e h on �. I.e., Conseqh(�nV ) � Conseqh(�).Proof. Note that �nV � � by lemma 5.4. For any two PTS-
ontexts � and �0 theso-
alled Thinning Lemma holds: if �0 � � and �0 ` A : B, then � ` A : B. Hen
eif �nV ` A : B then � ` A : B. However, if we regard the horizon distan
e, it mightstill be possible that there exists a statement A : B whi
h is derivable on �nV in atmost h steps, and on � in more than h steps (due to extra steps needed to 'retrieve'the premisses on the larger 
ontext). We assume, however, that the axiomatizationof Type Theory is su
h that the Start-rule allows any number of Weakenings. In that
ase, a derivation of �nV ` A : B 
an always be `
opied' into a derivation of � ` A : Bwith the same number of derivation steps.Corollary 5.11The removal pro
edure does not allow the introdu
tion of new proofs of falsity.Corollaries 5.9 and 5.11 imply the following theorem, whi
h says that we 
an alwaysrea
h a 
onsistent 
ontext in one revision step:Theorem 5.12Given an in
onsistent 
ontext � and a horizon distan
e h, there exists a set of variablesV su
h that �nV is 
onsistent within the same horizon distan
e.Proof. Take V to be the set of all free variables o

urring in all proofs of falsitywhi
h 
an be derived on � within horizon distan
e h. By Corollary 5.9, this set is�nite and by the de�nition of the revision pro
edure, none of these proofs of falsityare 
onstru
table on �nV . By Corollary 5.11, there are no new proofs of falsity on�nV , hen
e �nV is 
onsistent within horizon distan
e h.6 Situating our approa
hIn this paper, we presented an approa
h to belief revision based on type theory. Asfar as we know, this approa
h is new. In the setting of type theory, justi�
ationsof beliefs are `�rst 
lass 
itizens', whi
h is not the 
ase in 
urrent approa
hes tobelief revisions. In this se
tion we dis
uss the relations between our approa
h andwell-known approa
hes from the literature. We take [18℄ as our guideline.6.1 Belief bases with justi�
ationsBy the methodologi
al taxonomy of [18℄, our approa
h has these 
hara
teristi
s:� Beliefs are represented as statements in type theory, a person's belief state as atype-theoreti
al 
ontext (se
tion 4). The result of a belief 
hange operation isagain a type-theoreti
al 
ontext (se
tion 5.2).
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h� The statements that are elements of the 
ontext representing a person's beliefstate, represent his expli
it beliefs. Beliefs derivable from these statements are hisimpli
it beliefs (se
tion 3.2). Contrary to standard pra
ti
e, we assume the dedu
-tive powers of the person are limited by a dedu
tive horizon and only statementsthat are derivable within this horizon 
ount as his impli
it beliefs.� Our theory does not pres
ribe how 
hoi
es are made 
on
erning what beliefs toretra
t. It gives a set of 
andidates for retra
tion, but leaves the a
tual 
hoi
e tothe person (Se
tion 5.2). One 
an give heuristi
s for this 
hoi
e (Se
tion 7.4).G�ardenfors and Rott mention four integrity 
onstraints guiding the 
onstru
tion ofbelief revision formalism:� The beliefs in the data base should be kept 
onsistent whenever possible. We adhereto this 
onstraint taking `
onsistent' to mean: `
onsistent with respe
t to thelimited dedu
tive powers of the person'.� If the beliefs in the data base logi
ally entail a senten
e, then this senten
e shouldbe in
luded in the data base (`dedu
tive 
losure'). It will be 
lear from our earlier
omments (se
tions 4 and 5.3) that we do not subs
ribe to this point of view.However, it is possible to expli
itly in
lude a derived belief (to be pre
ise: de-rived within the person's horizon) in the knowledge state by means of a de�nition(se
tion 4.1).� The amount of information lost in a belief 
hange should be kept minimal. Ina

ordan
e with the fa
t that our theory says nothing about extra-logi
al fa
torsgoverning the 
hoi
e of beliefs-to-be-retra
ted, there is no notion of minimalityinherent in our theory.� In so far as some beliefs are 
onsidered more important or entren
hed than othersone should retra
t the least important ones. In line with our previous 
omment, anotion of extra-logi
al preferen
e like entren
hment should in our opinion not bepart of a theory as it belongs to the realm of heuristi
s.The 
hoi
es we made above imply that we work with the so-
alled belief bases : theknowledge state of a person is represented by a �nite set of senten
es, a 
ontext �.The belief set of the person 
onsists of his expli
it beliefs (statements in �) and hisimpli
it beliefs (statements derivable on � within the horizon, i.e. Conseqh(�)). Notethat � � Conseqh(�): every expli
it belief in the 
ontext � is derivable on �, and ishen
e also impli
it. Therefore we 
an represent a person's belief set by Conseqh(�).Sin
e we 
hoose to represent justi�
ations for beliefs expli
itly, as inhabitants, inthe knowledge state, our approa
h is 
losely related to what is 
alled FoundationsTheory in the literature, see e.g. [17℄.6.2 The relation with Foundations TheoryFoundations Theory is based on the prin
iple that belief revision should 
onsist ingiving up all beliefs that no longer have a satisfa
tory justi�
ation, and in adding newbeliefs that have be
ome justi�ed. This prin
iple has a number of 
onsequen
es:� Disbelief propagation If in revising a knowledge state a 
ertain belief is retra
ted,not only this belief should be given up, but also all beliefs depending on this
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h 29belief for their justi�
ation. Sin
e our theory has an expli
it representation ofjusti�
ations, this propagation 
an be 
aptured synta
ti
ally, as was shown inde�nition 5.2, by means of the relation �. Hen
e, our approa
h does not havethe drawba
ks that are often asso
iated with disbelief propagation, viz. `
hainrea
tions' and `severe bookkeeping problems'.� Non-
ir
ularity. Sin
e beliefs 
an depend on other beliefs for their justi�
ation,we should be 
areful that the dependen
y graph is well-founded, i.e. does not
ontain 
ir
ularities. In our approa
h su
h 
ir
ularities 
annot o

ur, sin
e theyare ruled out by the well-formedness requirements for the type-theoreti
al 
ontexts(se
tion 4).� Multiple justi�
ations. A belief may be supported by several independent beliefs.The removal of one of those justi�
ations does not automati
ally lead to givingup the belief. This 
hara
teristi
 is re
e
ted in our approa
h, where a belief mayhave more than one inhabitant. Suppose that a person has two justi�
ations forthe belief that A holds on his knowledge state �, for example: � ` M : A and� ` N : A. Sin
e the free variable sets of M and N may be disjoint, it may bepossible to retra
t the justi�
ation M of A, while retaining N and hen
e the beliefthat A (see se
tion 5.2).There is a well-known problem in Foundations Theory, following from the hypothesisthat all beliefs must have a justi�
ation. This indu
es a distin
tion between beliefs:some beliefs are justi�ed by one or more other beliefs, but there must also exist beliefswhi
h are justi�ed `by themselves'. These so-
alled foundational beliefs are 
onsideredto be `self-evident', they need no further justi�
ation.In Foundations Theory, justi�
ation is a relation on the level of the beliefs. Intype theory, however, justi�
ations are expli
itly represented by terms inhabiting thebeliefs they justify. The distin
tion between foundational and other beliefs is re
e
tedin type theory in the stru
ture of the term inhabiting the belief:� Atomi
 justi�
ations. If the term inhabiting the belief is a 
onstant or a variable,the justi�
ation 
annot be further analyzed. This 
orresponds to the foundationalbeliefs, but only to a 
ertain extent: it does not imply that these beliefs are ne
es-sarily self-evident. The atomi
 justi�
ation simply re
e
ts the person's de
ision toadopt the belief in its own right, e.g. on the basis of an observation, 
ommuni
ationor an a
t of will. (See also se
tion 2.)� Composite justi�
ations. If the term inhabiting the belief is a 
omposite term, thejusti�
ation 
an be analyzed a

ording to the stru
ture of the term. These termso

ur in the 
ontext in de�nitions , e.g. in the statement y := E : T , where E isa 
omposite justi�
ation for T . One 
an �nd the inhabitants of the other beliefssupporting the belief that T , as the free variables o

urring in E.Thus the justi�
ation relation from Foundations Theory be
omes a relation betweeninhabitants of beliefs in type theory. This relation is 
aptured by the dependen
yrelation � of de�nition 5.2.



30 Comparing operations for belief 
hange7 Comparing operations for belief 
hangeBefore we 
an 
ompare the formal properties of our revision pro
edure with those ofthe literature, we must formulate our equivalents of the three standard belief 
hangeoperations: expansion, 
ontra
tion and revision.� Expansion: Adding a new senten
e A to the belief base K, regardless of the 
on-sisten
y of the resulting belief base. The result is usually denoted by K +A.In our type-theoreti
al setting, expansion is just addition of either a statementor a de�nition to the 
ontext: � 
hanges into �; x : A (with x fresh), or into�; x :=M : A. In the �rst 
ase new information originating from outside is added,in the se
ond 
ase a 
onsequen
e of the belief base is made expli
it by adding itto the 
ontext.Note that, in both 
ases, the type A must already be well-formed with respe
tto �, i.e. � ` A : s with s a sort in the set of sorts S of the type system (
f.se
tions 3.2 and 4.1). In the se
ond 
ase, x := M : A may only be added when� `M : A is derivable. This again gives a well-formedness guarantee.Notation: The type-theoreti
al analogue of Expansion will be denoted byExpx:=M :A(�; �0) if the expansion of � with the statement or de�nition x :=M : Ayields �0. Hen
e, �0 � �; x :=M : A.� Contra
tion: Retra
ting some senten
e A from the belief base K, as well as sen-ten
es depending on A (without adding new beliefs). This is denoted by K�Æ A.In type theory, retra
ting has to be done with statements instead of formulas.Moreover, given a 
ontext � and a horizon depth h, there 
an be several termsinhabiting a belief A that is to be retra
ted. There is a set of terms t su
h thatt : A 2 Conseqh(�). If we take retra
tion to mean that no statement M : Ashould be derivable any more, we need a retra
tion pro
edure similar to the onedes
ribed in se
tion 5.2. That is, the person iteratively 
hooses variables o

urringfree in su
h terms t inhabiting A and removes them from �, in order to eliminateeviden
e for A.Formally, we 
an say that there is a set VA := FV ftjt : A 2 Conseqh(�)g. Thevariables 
hosen by the person together 
onstitute a subset V of VA (
f. Lemma4). Retra
tion of A with respe
t to � then amounts to a removal �nV with V
hosen su
h that :9t(t : A 2 Conseqh(�nV )).Note: In its generality, this pro
edure always gives the desired result. There is,however, a slight 
ompli
ation: there are senten
es whi
h we never want to be
ontra
ted, for example tautologies. How we 
an prevent in type theory that thiskind of senten
es 
an be retra
ted, is dis
ussed in se
tion 7.2.Notation: The type-theoreti
al analogue of Contra
tion is denoted by CtrA(�; �0),if �0 is the result of 
ontra
ting � with respe
t to A. In 
ase A 62 Conseqh(�), wetake �0 to be �.� Revision: Adding a new senten
e A to the belief base K while maintaining 
on-sisten
y, by (possibly) deleting a number of senten
es in K. This is denoted byK �A.In the standard a

ount, revision is related to 
ontra
tion and expansion by meansof the Levi-identity: K � A = (K�Æ :A) + A. This implies, that for belief bases,revision 
an be de�ned as a two step pro
edure:
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hange 311. Contra
t by :A 2. Expand by AWe 
an mat
h this so-
alled internal revision [21℄ via the two type-theoreti
aloperations de�ned above:1. Ctr:A(�; �0) 2. Expx:=M :A(�0; �00)Note that this pro
edure will always lead to a 
ontext (�00) 
ontaining the newinformation (x := M : A), whereas the pro
edure des
ribed in se
tions 5.2 and5.3 did not, sin
e there it was possible that (parts of) the new information wereremoved as well, if this information 
ontributed to the in
onsisten
y. In litera-ture, this alternative approa
h is known as `semi-revision'. In se
tion 7.3 we willshow that the type-theoreti
al version of revision developed in this paper 
loselyresembles the semi-revision operation 
onsolidation of [21℄. Anti
ipating on this,we introdu
e the following.Notation: The type-theoreti
al analogue of Revision (i.e., Contra
tion by :Aand Expansion by A) is denoted by Revx:=M :A(�; �0), if �0 is the result of revising� with respe
t to x :=M : A.Finally we note that the operations of expansion and 
ontra
tion, and hen
e re-vision, des
ribed above 
an also be exe
uted with new information 
onsisting of asequen
e of statements (x1 := M1 : A1; : : : ; xi := Mi : Ai), rather than a singlestatement (x := M : A). From a type-theoreti
al point of view, this is a natu-ral generalization. Moreover, experien
es obtained in formalizing the addition ofoutside-information (as des
ribed in se
tion 4.1) to type-theoreti
al knowledge states,suggests that su
h information generally takes the form of a sequen
e of statements.Now we have given our equivalents of the standard belief 
hange operations, ex-pansion, 
ontra
tion and revision, we give a more detailed 
omparison between thetwo approa
hes in order to position our approa
h with respe
t to the literature. We
on
entrate on the results of G�ardenfors [18℄ and Hansson [21℄.7.1 ExpansionIn the standard approa
h, expansion is the set-theoreti
al addition of a senten
e to setof propostions representing a person's belief base. In the type theoreti
al approa
hit is the addition of a statement to the 
ontext representing a person's belief base.As explained above, the type theoreti
al addition requires that the new statementis well-formed with respe
t to the existing 
ontext, whi
h ensures that the addedinformation is meaningfull to the person. Assuming that this the 
ase, as is usuallydone, expansion behaves the same in both approa
hes.7.2 Contra
tionWe now look at the rationality postulates for 
ontra
tion as they are reformulatedfor belief bases in [18℄. As already remarked earlier, our approa
h is more �ne-grained than that of G�ardenfors, be
ause we deal with spe
i�
 proofs of propositions,whereas the standard approa
h does only 
onsiders (sets of) propositions. Hen
e,when G�ardenfors 
ontra
ts with respe
t to a proposition A, from our perspe
tive,he impli
itly quanti�es over all proofs of A. This di�eren
e also plays a role in theformulation of the postulates themselves.
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hangeIn some of the G�ardenfors postulates, 
onditions o

ur of the form ` A and 6` A.Type-theoreti
ally, we take these to state that there exists respe
tively doesn't exista proof obje
t for the type A within the horizon. Moreover, the fa
t that A is orisn't a tautology, suggests that this proof obje
t 
an (or 
annot) be 
onstru
ted onthe empty 
ontext ". However, in type theory the type A itself must be well-de�nedbefore we 
an think about the 
onstru
tion of inhabitants of A. Hen
e, we need someinitial 
ontext �init whi
h ensures the well-de�nedness of all propositions: ` A istranslated into 9M (�init `M : A) and 6` A into :9M (�init `M : A).Of 
ourse, statements in the initial 
ontext should not be 
ontra
ted in a revisionpro
ess, sin
e this initial 
ontext a
ts as a kind of `axiom base' for the well-de�nednessof the propositions. The above 
ontra
tion pro
edure CtrA(�; �0), will not 
onsidervariables inside �init, sin
e the statements of �init are at the wrong level of typing tohave their subje
ts appear in terms inhabiting propositions (
f. se
tion 2).Note that if A is a tautology, there exists a proof obje
t in whi
h no free variableso

ur: 9M (�init ` M : A) where VA = ;. Sin
e M 
annot be blo
ked by removingvariables in VA from the 
ontext, we 
annot 
ontra
t over tautologies. On the onehand this is a good thing: one does not want to lose tautologies. On the other hand,this has as a 
onsequen
e that Contra
tion be
omes a partial operation, whi
h maybe unsu

essful!Below we present the G�ardenfors postulates for belief bases as given in [18℄, followedby their type-theoreti
al translation and a dis
ussion of their validity. The originalpostulates quantify over all senten
es A and belief sets H , their translations over alltypes A and 
ontexts � (where � � �init). In addition, the postulates are stated usingCn(H), the dedu
tively 
losed set of 
onsequen
es of H (i.e. with in�nite horizon). Inthe translation of e.g. G�ardenfors's (H�Æ3)-postulate we take A 62 Cn(H) to mean thatthere exists no proof obje
t of type A (within the horizon) on the person's 
ontext,:9N (N : A 2 Conseqh(�)).(H�Æ 1) H�Æ A is a belief set.Its translation is:If CtrA(�; �0), then �0 is a well-formed 
ontext.This holds: Assume CtrA(�; �0), then there exists some set V � VA, possiblyempty, su
h that �nV � �0. By Lemma 1, �0 is a well-formed 
ontext.(H�Æ 2) H�Æ A � H .Its translation is:If CtrA(�; �0), then �0 � �.This follows from the de�nition of the removal-operation (de�nition 5.2).(H�Æ 3) If A 62 Cn(H), then H�Æ A = H .Its translation is:If :9N (N : A 2 Conseqh(�)) and CtrA(�; �0), then � � �0.This holds: Assume :9N (N : A 2 Conseqh(�)) and CtrA(�; �0) and suppose� 6� �0. Then (see H�Æ 2) �0 is a proper sub
ontext of �. Hen
e there is somevariable z o

urring in � as a subje
t, su
h that z 2 V , where V is the setof variables 
hosen to be removed and z 2 V not in �0. Hen
e z must haveo

urred free in some term N su
h that � ` N : A within the horizon, but then9N (N : A 2 Conseqh(�)). Contradi
tion.
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hange 33(H�Æ 4) If 6` A, then A 62 Cn(H�Æ A).Its translation is:If CtrA(�; �0), then :9M (M : A 2 Conseqh(�0)).This postulate holds by our de�nition of 
ontra
tion.Note that the 
ondition 6` A ('A' is not a tautology) is impli
itly present in ourtranslation, be
ause this is implied by the 
ondition CtrA(�; �0). In fa
t, if A is atautology, then A has a proof obje
t, but this proof obje
t has no free variables.Therefore the set VA is empty and hen
e Contra
tion of A as des
ribed before isnot possible (there is no �0 su
h that CtrA(�; �0)).(H�Æ 5) H � (H�Æ A) +A.Its translation is:If CtrA(�; �0), then � � �0; z : A.Note that we have to add a proof obje
t z for A. We 
ould not use a de�nitionz := M : A, sin
e this implies that �0 ` M : A for some M , whi
h 
ontradi
tsCtrA(�; �0).This postulate, whi
h has a 
ontroversial status in the literature (in fa
t: base
ontra
tions generally violate it), does not hold here. A simple 
ounterexample isthe following: Take � � �init; x : B ! A; y : B ` xy : A, then CtrA(�;�0), where�0 � �init, but � 6� �init; z : A.(H�Æ 6) If ` A, B, then H�Æ A = H�Æ B.Its translation is:If 9N (�init ` N : A, B) and CtrA(�; �0) and CtrB(�; �00), then �0 � �00.This postulate does not hold in general, but there is a 
ase in whi
h it holds, aswe explain below.First, observe that in type theory we have to do work to transform proofs of Ainto proofs of B (and vi
e versa) by means of the proof N of the equivalen
e ofA and B whi
h 
ontains subproofs N1 for A ! B and N2 for B ! A. Then forexample: If � `M : A for some M , then � ` N1M : B (and vi
e versa).We 
all M a dire
t proof of A and N1M an indire
t proof of B. Note thattransforming a dire
t proof of A into an indire
t proof of B involves one extraproof step. Hen
e, this 
an lead to a situation in whi
h the dire
t proof is withinthe horizon, whereas the indire
t proof is not.Disregarding this horizon problem, the postulate still does not hold in general: inorder to blo
k all proofs of B, all proofs of A also have to be blo
ked. Hen
e, a setV will have to be 
hosen whi
h is a subset of the union of the variables o

urringfree in all proofs of A and all proofs of B, i.e., V � (VA [ VB). However, it mightstill be possible to �nd di�erent subsets V1 and V2 whi
h both blo
k all proofs ofA and B.Example: � � �init; x : C ! A; y : C; z : D ! B; u : D, and � ` N : A , B.Then VA = VB = fx; y; z; ug. Now take V1 = fx; zg and V2 = fy; ug. It is easy to
he
k that both V1 and V2 blo
k all proofs of A and B. If we take �0 � �nV1 and�00 � �nV2, then CtrA(�; �0) and CtrB(�; �00), but �0 6� �00.However, the postulate does hold if we use the `safe 
ontra
tion' des
ribed inse
tion 7.4, i.e. take V1 = V2 = VA = VB , then �0 � �00.
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hangeHere we end our dis
ussion of the basi
 postulates H�Æ 1 to H�Æ 6 for base 
ontra
tion.There exist two more (non-basi
) postulates, H�Æ 7 and H�Æ 8, 
on
erning 
onjun
tiveformulas A ^ B. We do not dis
uss those here for two reasons: as remarked above,the type-theoreti
al notion of 
ontra
tion 
an easily be generalized to a sequen
e ofstatements, so that there is no need to give a spe
ial status to the ^-
onne
tive;moreover, it would require us to go into the te
hni
al details of 
oding 
onjun
tion intype theory, whi
h does not serve the purpose of this paper.Con
luding, as in most approa
hes to base revision in the literature, postulatesH�Æ 1 through H�Æ 4 are satis�ed in the type-theoreti
al translation, but H�Æ 5 does nothold. In addition, the type-theoreti
al equivalent of `safe 
ontra
tion' satis�es H�Æ 6.This exa
tly re
e
ts Theorem 5.4.1 of [18℄.7.3 RevisionIn the standard a

ount of revising a belief base K with new information A, the newinformation is always a

epted and beliefs in K are abandoned to maintain 
onsis-ten
y. Obje
tions have been raised to this a

ount, on the grounds that too mu
hpriority is given to new information [21℄: at ea
h stage, new information is 
ompletelytrusted. However, this 
omplete trust is only temporary: on
e the new informationis in
orporated in the belief base, it is itself sus
eptible to abandonment when in thenext stage even newer information be
omes available. This seems awkward.We agree with these obje
tions. Moreover, this emphasis on `new information' hasa number of additional undesired 
onsequen
es from our point of view. Firstly, thenew information always has to be a

epted as a whole, whereas in our approa
h it is apossible out
ome of revision that the person a

epts only part of the new information.The standard a

ount is also too absolute in another respe
t: be
ause of the unlimiteddedu
tive power assumed in this approa
h, the person 
an dete
t beforehand whethera pie
e of new information is in
onsistent with his 
urrent belief base, and hen
ewhether revision should be 
arried out. Under the more realisti
 assumption of thededu
tive horizon, it is not possible to do this 
onsisten
y 
he
k on
e and for all:in
onsisten
ies, and hen
e the need for revision, may arise as proofs of falsity turnup inside the horizon. Finally, thinking of standard belief revision in the setting of
ommuni
ation, a person would be for
ed to a

ept every utteran
e by his dialoguepartner(s), even if a

ommodating this information requires a major re
onstru
tionof his own belief base. Therefore, new information and information in the belief baseshould be treated equally by the revision operation.Revision pro
edures whi
h do not ne
essarily a

ept the new information are knownin literature as non-prioritized revision pro
edures. Hansson was one of the �rst to
onsider this kind of belief revision [20℄, and in re
ent years a number of di�er-ent non-prioritized approa
hes have been developed, see [22℄. For belief bases, anon-prioritized form of revision 
alled semi-revision 
an be spe
i�ed as a two-stagepro
edure [21℄:1. Expand by A2. Make the belief base 
onsistent by deleting either A or some original belief(s)Compared to the revision pro
edure formulated at the beginning of se
tion 7, theorder of the steps is reversed4 and the se
ond step has been modi�ed. The operation4Reversing the order alone yields external revision, [21℄
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hange 35performed in the se
ond stage is 
alled 
onsolidation, [21℄, and 
an be 
arried out by
ontra
ting over falsehood. In our approa
h, the pro
edure looks like:1. Expx:=M :A(�; �0) 2. Ctr?(�0; �00)In other words, revision and 
ontra
tion are related by the following identity:Revx:=M :A(�; �0) = Ctr?(�; x :=M : A; �0)This is exa
tly the revision pro
edure des
ribed earlier in se
tions 5.2 and 5.3. Firstthe new information, one or more statements, is added to the 
ontext �, then anumber of statements from the expanded 
ontext is removed to blo
k the 
onstru
tionof inhabitants of falsity.There is a 
lose resemblan
e between our revision pro
edure and that of [21℄, 
alledkernel 
onsolidation. This 
orresponden
e is given in Appendix A of this paper.7.4 Heuristi
sWhat we have done so far does not add up to a theory of belief revision in the tradi-tional sense. We have shown how a person 
an �nd the suspe
t beliefs when his beliefstate has be
ome in
onsistent, and how he 
an remove a number of the suspe
ts toregain 
onsisten
y, but our revision pro
edure does not tell the person whi
h suspe
tsto remove. Standard approa
hes have a parametri
 sele
tion me
hanism whi
h em-bodies some notion of \rational 
hoi
e" between the various possibilities for revisionin any given situation. Given a value for their parameters they sele
t one \optimal"revision out
ome. They usually introdu
e extra-logi
al stru
ture in the belief state,and are 
omputationally unwieldy. The underlying view is that of a solitary reasonerwho has to solve the in
onsisten
y in splendid isolation, using his in�nite reasoningpowers and looking only at the beliefs in his (in�nite) belief state. Only re
ently,papers have started to appear that question some of these idealizations, and in whi
hbelief 
hange operations are de�ned for resour
e-bounded agents, see e.g. [10℄. Our
on
ern is with agents who have �nite belief states (in
luding justi�
ations), �nite
omputational resour
es, and who have a

ess to the world by means of observationand 
ommuni
ation. Su
h agents have possibilities to (re)evaluate the various sus-pe
ts, by performing observations/tests or by 
ommuni
ating with other agents, and atheory of belief revision 
annot and should not pres
ribe how they make their 
hoi
es.Strategies used by an agent to make these 
hoi
es are not part of the theory, if they
an be 
aptured formally they 
ould be used as heuristi
s on top of the theory. In thisse
tion, we brie
y dis
uss how some sele
tion me
hanisms from standard approa
hesmentioned in [18℄ �t into our a

ount as heuristi
 prin
iples.In so-
alled (partial) meet 
ontra
tion, the idea is that the optimal 
ontra
tion orrevision is the one that requires the smallest number of insertions and/or deletions inthe belief state. These 
ontra
tion operations were originally de�ned for dedu
tively
losed belief sets, rather than belief bases. They start from the maximal subsets of abelief set that do not imply the proposition that is to be removed. In general, there
an be quite a few of these. Pi
king an arbitrary maximal non-implying set as theresult of the operation (
hoi
e 
ontra
tion), will often yield a new belief set that istoo large. In meet 
ontra
tion, an interse
tion of maximal non-implying sets is taken,to obtain a new belief set based on the beliefs the non-implying sets have in 
ommon.
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hangeTaking the interse
tion of all maximal non-implying sets (full meet 
ontra
tion) 
anresult in an empty set. Al
hourr�on, G�ardenfors, and Makinson introdu
ed partialmeet 
ontra
tion [2℄ in whi
h a sele
tion fun
tion pi
ks out a 
lass of \best" or \mostinteresting" maximal non-implying subsets. These sele
ted sets are then interse
tedto obtain the new belief set. (For a fresh look at (full) meet 
ontra
tion for beliefbases, see [14℄).The minimality 
riterion 
an be applied in the type theoreti
al approa
h. Givenone parti
ular proof of in
onsisten
y, � `M : ?, removing any one of the statementsof whi
h the subje
ts o

ur free in M is suÆ
ient to blo
k this parti
ular proof.However, these statements may have di�erent numbers of statements depending onthem in �, and so one 
ould prefer to remove the statement with the least numberof dependents to minimise the deletions from the belief state. In 
ases where morethan one proof of falsity has to be blo
ked, a \blo
king" subset has to be 
hosen fromthe set of all variables o

urring free in these proofs. When there is more than onesubset that does the job, one 
ould again prefer the subset with the smallest numberof statements (possibly taking the number of dependent statements into a

ount).As in the standard approa
h, this 
riterion will not always yield a single optimalsolution. It is possible to end up with two or more minimal sets of statements whoseremoval will restore 
onsisten
y. To over
ome this indeterminism, additional stru
-ture is introdu
ed in the belief state. The 
entral idea in this 
onstru
tion is knownas epistemi
 entren
hement: \not all senten
es that are believed to be true are equalvalue for planning of problem-solving purposes, but 
ertain pie
es of knowledge andbeliefs about world are more important than others when planning future a
tions
ondu
ting s
ienti�
 investigations or reasoning in general" [17℄. In performing 
on-tra
tion or revision, the beliefs that are given up should be the ones with the lowestdegree of epistemi
 entren
hement. Although in our opinion su
h an ordering of epis-temi
 entren
hement of the beliefs in the belief state 
annot be given on
e and forallindependent of the 
urrent goals and a
tivities of the agent performing the 
ontra
tionor revision, su
h an ordering 
ould in prin
iple be added to the 
ontext representingthe agent's belief state. Note that the imposed entren
hment ordering has to respe
tthe dependen
y relations between the beliefs in the 
ontext: if a belief y := N : Bdepends on a belief x := M : A, then y := N : B should not be epistemi
ally moreentren
hed than x :=M : A sin
e removing x :=M : A without removing y := N : Bwill result in a 
ontext whi
h is not well-formed.Another idea that 
an be applied, at least in spirit, in the type theoreti
al settingis that of safe 
ontra
tion: a proposition B is safe with respe
t to a proposition Aif it 
annot be blamed for the derivability of A. To 
ontra
t over A, all propositionsthat are not safe with respe
t to A have to be removed. This approa
h, introdu
edby Al
hourr�on and Makinson [3℄, starts from the so-
alled \entailment sets": minimalsubsets of the belief state that entail the proposition to be removed. An element Bof the belief state is said to be safe with respe
t to the proposition A if B is nota minimal element of any entailment set of A. The minimality is determined withrespe
t to an a
y
li
 ordering of the beliefs in the belief state, expressed by meansof a relation `<'. This ordering 
an be seen as a form of the epistemi
 entren
hmentdes
ribed above, with A < B meaning that A is \less se
ure, plausible or reliable"than B.There is an obvious way to translate this idea to our approa
h to revision: a belief
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luding remarks 37x := M : A is safe if it 
annot be blamed for the fa
t that a proof obje
t for ? 
anbe 
onstru
ted on the belief state �. The simplest interpretation of \being to blame"for a statement in 
ontext would be \to have its subje
t appear as a free variable in aproof obje
t for ?". Hen
e the simplest form of safe 
ontra
tion would be to removeall statements of whi
h the subje
ts appear free in a proof obje
t for ? and theirdependents from the 
ontext. However, this does not suÆ
e if all statements that areremoved themselves depend upon earlier statements in 
ontext, sin
e the proof obje
tfor ? 
ould be rebuilt from these \an
estors". One way around this problem, is touse the 
onstru
tion of a so-
alled kernel set des
ribed in the Appendix. For a givenderivation horizon and a given 
ontext, this 
onstru
tion indu
tively builds the set ofminimal falsity implying subsets of statements in �. This kernel set 
an reasonably besaid to 
ontain all statements that are \to blame" for the in
onsisten
y of the 
ontext(within the horizon), hen
e we 
an de�ne safe 
ontra
tion as the removal of all thesestatements and their dependents. Although this will yield a unique solution, it willusually not be minimal in terms of the number of statements that are removed.8 Con
luding remarksSin
e its birth in 1903, type theory has proved to be a useful medium for the de-sign and implementation of dedu
tive systems, programming languages and theoremprovers. This paper explored the use of type theory to provide a dedu
tive approa
h tobelief revision whi
h 
an be easily implemented. The starting idea is that type theoryenables expli
it representations of justi�
ations in belief revision. With the represen-tation of beliefs as type theoreti
al statements and belief states as type theoreti
al
ontexts, we showed that the presen
e of justi�
ations makes it easy to identify thebeliefs that 
ause in
onsisten
y of the belief state (se
tion 4.2). Their presen
e alsogreatly simpli�es the handling of dependen
ies between beliefs (se
tion 5.1). Withrespe
t to literature, our initial assumptions put us in the area of foundations theoryfor belief bases. However, our a

ount does not su�er from the drawba
ks usually as-so
iated with foundations theory su
h as problems with disbelief propagation, 
ir
ularjusti�
ations, and multiple justi�
ations for the same belief (se
tion 6.2). The opera-tion of belief revision that naturally arises from our approa
h is one of non-prioritizedrevision: new information is not automati
ally 
ompletely trusted (se
tion 7.3).The fa
t that our approa
h is dedu
tive, and that we do not require that our theoryof belief revision itself sele
ts whi
h beliefs have to be removed, makes its appli
ableto agents with limited 
omputational resour
es (see appendix). This holds indepen-dently of the strength of the logi
 in whi
h the belief 
hange operations are 
ast:the me
hanisms that were used to represent justi�
ations and dependen
y relationsbetween beliefs are at the heart of type theory, making our approa
h appli
able toa large family of type systems. Given the well established 
onne
tions between typetheory and logi
, this means it is appli
able in a wide range of logi
s. For instan
e, it
an be applied in ea
h of the Pure Type Systems from the well-known Logi
 Cube [4℄,whi
h 
orresponds to logi
s ranging from minimal propositional logi
 to higher orderpredi
ate logi
. Our immediate goal is to use the extensive resear
h in implementa-tions of logi
s based on type theory in order to provide a working automated systemof belief revision based on the approa
h of this paper.
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e, University of Nijmegen, 1989.A Kernel 
onsolidationOur revision pro
edure is parti
ularly 
lose to what Hansson 
alls kernel 
onsolidation. This form of
onsolidation is based on the idea that a subset of senten
es in the knowledge base K implies falsityif and only if this subset 
ontains some minimal falsity-implying subset of K. Hen
e the 
onsisten
yof K 
an be restored by removing at least one element of ea
h minimal falsity-implying subset of K.Minimal falsity-implying subsets are 
alled kernels, they are de�ned as follows.Definition A.1A subset X of senten
es from a belief base K is a kernel if:1. X � K2. ? 2 Cn(X), and3. If Y � X, then ? 62 Cn(Y )The set of all kernels of K is 
alled the kernel set, denoted by K`?.The senten
es of K that have to be dis
arded to restore 
onsisten
y, are sele
ted by an in
isionfun
tion:Definition A.2An in
ision fun
tion � for K is a fun
tion su
h that:1. �(K`?) � [(K`?)2. If X 2 (K`?), then X \ �(K`?) 6= ;Definition A.3Let � be an in
ision fun
tion for K. The kernel 
onsolidation �� for K is de�ned as follows:K �� ? = Kn�(Ka?)In the typetheoreti
al approa
h, falsity-implying subsets of the 
ontext � are sets of statementsof whi
h the subje
ts o

ur free in a proof obje
t inhabiting ?, i.e. fstat�(y)jy 2 FV (M)g, whereM is a term su
h that � ` M : ?. If we 
all this set of statements for a given proof obje
t M`SM ' (`suspe
ts' in M), we 
an see that this set ful�ls the �rst two 
riteria for kernels given inDe�nition A.1:1. SM � �2. �init; SM ` M : ?, that is: ? is a 
onsequen
e of SM (where �init 
ontains the well-typednessinformation needed for the derivation)However, su
h a falsity-implying subset SM is not ne
essarily minimal in the sense required forkernels (the third 
riterion): there may exist another proof obje
t N su
h that � ` N : ? andSN � SM . This is due to the fa
t that proof obje
ts 
ode an entire proof for the proposition
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luding proofs that 
ontain `detours', sequen
es of steps that 
ould havebeen omitted in the proof. Su
h detours 
an invoke premises that are not really needed to provethe proposition, resulting in non-minimal subsets. A very simple example of this is the following:take � � �init; x : A; z : A ! A; y : A ! ?, then there are at least two proof obje
ts inhabitingfalsity, � ` y(zx) : ? and � ` yx : ?. Clearly, the falsity-implying subset for the �rst proof obje
tis not minimal, the se
ond proof obje
t is 
onstru
ted without using z : A! A. Although in typed�-
al
ulus some detours 
an be eliminated by performing redu
tions on proof obje
ts5 , we 
annotin general prevent a person from having a belief state on whi
h non-minimal proofs of falsity 
an bederived.Moreover, in dis
ussing the minimality of falsity-implying subsets, the limited dedu
tive powershave to be taken into a

ount. Sin
e the person 
an only 
onstru
t proofs of � h steps, where his the horizon distan
e, we 
an at best talk about falsity-implying subsets whi
h are minimal withrespe
t to these proofs. Given a subset SM for some inhabitant M of falsity, there may exist aset SN su
h that SN � SM where the proof obje
t N for falsity 
annot be 
onstru
ted within thehorizon h. Hen
e, this smaller set SN should not be 
onsidered by the sele
tion pro
edure.The assumption of horizon enables an indu
tive pro
edure for the 
onstru
ting the kernel set�`h?, the set of all minimal falsity-implying subsets within the horizon. For a given 
ontext �,one systemati
ally generates all derivations of length zero,then all derivations of length 1, then allderivations of length 2, . . . , up to all derivations of length h. Among ea
h layer of derivations,one pi
ks out all derivations of an inhabitant of falsity. By 
omparing the sets of free variables ofthese inhabitants, the minimal falsity-implying subsets for that layer 
an be found, i.e. for the i-thlayer (1 � i � h) all FV (M) su
h that � `i M : ?, and there is no N su
h that � `i N : ? andFV (N) � FV (M). The sets SM that are minimal for a layer are then added to the kernel set �`i ?if there is no SN already in �`i? su
h that SN � SM . In other words, before adding the setsthat are minimal in a layer it is a 
he
ked whether they are also minimal with respe
t to sets fromprevious layers.Given the indu
tively 
onstru
ted kernel set �`h?, the type theoreti
al analogons of in
isionfun
tion and kernel 
onsolidation 
an be de�ned ex
tly as given in De�nitions A.2 and A.3, butfor the repla
ement of K`? by �`h?. Note that in the newly attained de�nition the slash in�n�(�`h?) stands for the type theoreti
al removal operation de�ned in se
tion 5.1, rather thanthe standard set theoreti
al operation in de�nition A.2, i.e. not only the statements sele
ted bythe in
ision fun
tion (�(�`h?)) are removed from � but also all statements depending on them(dep�(�(�`h?))). Sin
e dependen
ies are not 
onsidered in the setting of Hansson, we need to beable to distinguish between those two kinds of statements. The notion of 'independen
e' 
an easilybe de�ned as follows:Definition A.4A statement x :=M : A is an independent member of the set of statements � i� there is no statementz := N : B 2 � su
h that x 2 dep�(z).In [21℄, kernel 
onsolation is 
hara
terised by a theorem linking its 
onstru
tion to a number ofpostulates. We restate this theorem for type theoreti
al knowledge states:Theorem A.5An operation > de�ned on type-theoreti
al knowledge states is an operation of kernel 
onsolation i�for all 
ontexts �:1. (� >) is 
onsistent (
onsisten
y)2. (� >) � � (in
lusion)3. If x := M : A is an independent member of � � (� >), then there is �0 su
h that �0 � �, �0 is
onsistent and �0; x :=M : A is in
onsistent (
ore-retainment).Proof. As x is independent, the proof is analogous to that of Hansson. There are two 
ases inthe proof where the independen
e is needed to ensure that a statement is an element of �(�`h?)rather than merely an element of dep�(�(�`h?)): in proving 
ore-retainment in the dire
tion5Sometimes a term representing a non-minimal proof 
an be �-redu
ed to a minimal one, sin
e �- redu
tion
orresponds to 
ut elimination: take � � �init; x : A; y : B; z : A ! ?, and M � (((�u : A:(�v : B:u))x)y)z : ?,then the ?-implying subset SM is fx : A; y : B; z : A ! ?g. After performing �-redu
tion twi
e, we �nd thenormal form of M whi
h is xz. Now fx : A; z : A! ?g is a minimal ?-implying subset.
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onstru
tion to postulates, and in proving that � is an in
ision fun
tion in the dire
tion frompostulates to 
onstru
tion.Re
eived 10 February 2002


