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Abstract

This paper formalizes belief revision for belief states in type theory. Type theory has been influential
in logic and computer science but as far as we know, this is the first account at using type theory in
belief revision. The use of type theory allows an agent’s beliefs as well as his justifications for these
beliefs to be explicitly represented and hence to act as first-class citizens. Treating justifications as
first-class citizens allows for a deductive perspective on belief revision. We propose a procedure for
identifying and removing ”suspect” beliefs, and beliefs depending on them. The procedure may be
applied iteratively, and terminates in a consistent belief state. The procedure is based on introducing
explicit justification of beliefs. We study the belief change operations emerging from this perspective
in the setting of typed A-calculus, and situate these operations with respect to standard approaches.

Keywords: Belief Revision, Type Theory, Explicit Justifications, Propositions as
Types.

1 Introduction

An agent who keeps expanding his belief state with new information may reach a stage
where his beliefs have become inconsistent, and his belief state has to be adapted
to regain consistency. Usually, in studying this problem of “belief revision”, the
justifications an agent has for his beliefs are not considered to be first-class citizens.

The two main approaches in the belief revision literature regarding justifications [17]
are:

1. “Foundations theory”, in which one needs to keep track of justifications for one’s
beliefs; propositions that have no justification should not be accepted as beliefs.
2. “Coherence theory”, in which one needs not consider justifications; what matters

is how a belief coheres with the other beliefs that are accepted in the present state.

In foundations theory, beliefs are held to be justified by one or several other beliefs
(and some beliefs are justified by themselves). However, in this view, justifications are
only implicitly present as relations between beliefs, rather than as objects in their own
right which are ezplicitly represented in the formalisation of belief states and belief
change operations. Hence, justifications are not first-class citizens in foundations
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2 Formalizing Belief Revision in Type Theory

theory, and not considered at all in coherence theory.

However, experience in the past decades shows that when building automated sys-
tems and theorem provers, explicit representation is absolutely necessary. This is the
case for example in the theorem prover Automath (for automating mathematics, [31])
where definitions (the heart of mathematics) are made explicit. This is also the case
in the implementation of programming languages where contexts and environments
are made explicit. It turns out also that treating justifications explicitly (hence as
first-class citizens), allows for a deductive perspective of belief revision which can be
automated.

In this paper, we explore belief revision for belief states in which justifications
are first-class citizens represented explicitly. Our motivation for investigating belief
revision along these lines stems from working on knowledge representation in Pure
Type Systems [4] in the DenK-project [9]. Type theory was chosen due to its excellent
success in the field of theorem proving (Automath [31] and Coq [5]) and programming
languages (ML [30]). See also [6] where type theory has been shown to be useful
for knowledge representation. In the DenK-project a formal model was made of a
specific communication situation, and used to implement a human-computer interface.
Both in the model and in the system, belief states of agents were formalised as type
theoretical contexts. This means that an agent’s beliefs are represented in a binary
format, where one part is the proposition believed by the agent and the other the
justification the agent has for this belief. Both parts are syntactic objects in their
own right, and can be calculated upon by means of the rules of the type theory. This
way of representing beliefs turns justifications into first-class citizens, and proved to
be very fruitful for the purposes of the project.

At that time mechanisms for belief revision were not investigated or implemented,
but it became clear that given this formalisation of belief states there is a straight-
forward deductive approach to the problem: since every belief is accompanied by its
justification (and the rules of the calculus operate on both), every inconsistency that
surfaces in the agent’s belief state has its own (complex) justification containing the
justifications of the beliefs that together cause the inconsistency. This makes it easy
to identify and remove the “suspects” among the beliefs in the agent’s belief state.
Although, technically speaking, this is a direct consequence of the so-called Propo-
sitions As Types-principle (cf. sections 3 and 4), this simple idea seems not to have
been explored before. We feel that this is of a more general interest for two reasons:

1. Our type theoretical case study shows that explicitly represented justifications
have clear advantages: a number of drawbacks traditionally associated with foun-
dational approaches disappear. As such, it may serve as a precursor to a more
general account in the setting of Labelled Deductive Systems [15], of which typed
A-calculi are a simple case.!

2. It may contribute to a more computational account of belief revision, one which
is applicable to agents that have finite information and finite reasoning powers.

In developing the idea, we will come across other well-known issues in this field of
research. For instance the question whether belief states should be taken to be log-
ically closed sets or rather a base set of beliefs which is not closed under logical

I Note that in the conclusion, [16] discusses the possibility of a general theory of inconsistency where an account
of belief revision would fall out as a special case. However, as far as we know, this general theory of inconsistency
in LDS has not yet been materialized.
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consequence [19], and the question whether an agent should always accept new in-
formation (prioritized versus non-prioritized revision [21]). In addition, we question
a number of assumptions that are traditionally made such as the assumption that
an agent has infinite reasoning powers, and that an agent has to solve the revision
problem “in splendid isolation”, i.e. without going back to his sources of information
via observation and communication.

The paper is structured as follows: in Section 2 we review type theory and its
untyped basis (the type-free A-calculus), the propositions-as-types principle and in-
troduce the extension of type theory with definitions that will be used for belief
revision. In Section 3, we explain how belief states can be captured in type theory.
Section 4 shows how type theoretical belief states develop as new information becomes
available, and gives an informal statement of the problem of revision in type theory.
This account of type theoretical revision is formalised in Section 5. In Sections 6 and
7 we situate our approach with respect to standard approaches from the literature,
and make a comparison on the level of belief change operations. As it turns out, our
revision procedure is particularly close to the so-called consolidation operations. This
is shown in Appendix A. We conclude in Section 8.

2 Type theory
2.1 Informal introduction

Judgements
The basic relation in type theory is the judgement

'kFa:T

which can be read as ‘term a has type T in context I’. Here ‘a’ and ‘T’ are both
formulas written according to a well-defined syntax (on the basis of A-calculus). The
expression a : T is called a statement, term a is the subject of the statement. One
also says that term a is an inhabitant of type T'.

The context I is a list of statements with variables as subjects, e.g. 1 : T1,..., Ty, :
T,. The above judgement can then be read as follows: “If z; has type 71, ..., and
Z, has type T}, then term a has type T”. Note that a may contain x1, ..., x,, SO a
depends on x; to z,. The set {z1,...,x,} is called the domain of ', or dom(T).

Statements

The intuitive notion ‘has type’ has a direct counterpart in naive set theory, viz. ‘is
element of’. For example, consider the statement ‘a : N’ (term a has type N’).
Assuming that N is a symbol representing the set of natural numbers, this statement
can be interpreted as ‘a € N’ ("the object represented by a is element of the naturals’).

The notion of having a type, however, is more general than the notion of set-
theoretical elementhood. This is because a type T' can represent not only some kind
of set, but also a proposition. In the latter representation, the statement a : T
expresses: ‘a is (a term representing) a proof of the proposition 7”. One speaks of
‘propositions as types and proofs as terms’ (together abbreviated as PAT) in order
to emphasize this special usage of types. Section 2.2 below gives more details.
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The advantage of PAT is that proofs belong to the object language, not the meta-
language. That is, proofs are ‘first class citizens’ in the syntactical world of type
theory. This, combined with the strength of the standard A-calculus operations,
makes type theory a powerful mechanism.

Contexts

The context I' in a judgement I' F a : T' contains the ‘prerequisites’ necessary for
establishing the statement a : T. A context I' is a list of statements with distinct
variables as subjects, like 1 : T%,...,z, : T,. A context statement z; : T; can
express several kinds of prerequisites, the simplest being;:

1. z; is an element of the set Tj,
2. T; is an assumption (a proposition) and z; is its atomic justification.

However, in type theory there are different ‘levels’ of typing: a type can have a
type itself. Statements expressing the typing of types are concerned with the well-
formedness of these types. For the T; occurring in 1. and 2. above, such statements
have the form:

1. T; : set, to express that T; is a well-formed formula representing a set,
2. T; : prop, to express that T; is a well-formed formula representing a proposition.

The last-mentioned statements can also be part of a context in the special case that T}
and T are variables. So a context could look like: T7i : prop,Ts : set,xy : 11,2 : 15
(to be read as: “let T} be a proposition, T» a set, x1 a justification for T and z for
T,”). The terms set and prop are examples of so-called sorts, predefined constants
on which the type system is based. Every type system has a specific set of sorts,
which we denote by S.

Note that the statements in the context are ordered: first arbitrary set 77 and
proposition 75 are proposed, before their inhabitants x; and x> are introduced. This
is a general principle in contexts: every variable (except the sorts) used in a type must
be introduced as the subject of a preceding statement. As a matter of fact, a similar
consideration applies to judgements: in I' F a : T all variables and (free) constants
used in a and T must be introduced as subjects in I'.

2.2 PAT: Propositions As Types

The idea of PAT originates in the formulation of intuitionistic logic where frequently
occurring constructions in intuitionistic mathematics have a logical counterpart. One
of these constructions is the proof of an implication. Heyting [24] describes the proof
of an implication a = b as: Deriving a solution for the problem b from the problem
a. Kolmogorov [28] is even more explicit, and describes a proof of a = b as the
construction of a method that transforms each proof of a into a proof of b. This
means that a proof of a => b can be seen as a (constructive) function from the proofs
of a to the proofs of b. In other words, the proofs of the proposition a = b form
exactly the set of functions from the set of proofs of a to the set of proofs of b. This
suggests to identify a proposition with the set of its proofs. Now types are used to
represent these sets of proofs. An element of such a set of proofs is represented as
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a term of the corresponding type. This means that propositions are interpreted as
types, and proofs of a proposition a as terms of type a.

PAT was, independently from Heyting and Kolmogorov, discovered by Curry and
Feys [13]. Howard [25] follows the argument of Curry and Feys [13] and combines it
with Tait’s discovery of the correspondence between cut elimination and S-reduction
of A-terms [32]. Howard’s discovery dates from 1969, but was not published until 1980.
Independently of Curry and Feys and Howard, we find a variant of PAT in AUT-68, the
first Automath system of De Bruijn [31]. Though De Bruijn was probably influenced
by Heyting, his ideas arose independently from Curry, Feys and Howard. This can
be clearly seen in Section 2.4 of [8], where propositions as types (or better: Proofs as
terms) was implemented in a different way to that of Curry and Howard.

The Propositions as Types and Proofs as Terms (PAT) principle has opened the
possibility to use Type Theory not only as a restrictive method (to prevent paradoxes)
but also as a constructive method. Many proof checkers and theorem provers, like
Automath [31], Coq [5] and LF [23], use the PAT principle (see [29] for more details).

“Proofs as terms” already suggests an important advantage of using type theory as
a logical system: In this method proofs are first-class citizens of the logical system,
whilst for many other logical systems, proofs are rather complex objects outside the
logic (for example: derivation trees), and therefore cannot be easily manipulated.

The fact that PAT was discovered independently by many different people, and its
use in various logical frameworks and theorem provers, is an evidence to the usefulness
of such notion in logic and compoutation. For our purpose of belief revision, PAT
allows to store the developmental history of the justifications of a belief and hence,
to retrace back this histoy and to restore inconsistent belief states.

2.8 Theories

A ‘proof’ is generally considered to be a mathematical notion, but in the PAT-style
a proof is anything justifying a proposition. This can be a proof in the mathematical
sense, but also any other acceptable justification. Let 7" represent a proposition and
let @ : T. Then:

o If a is an atomic term (think of a constant or a variable), then a encodes a
justification which cannot be further analysed:

— It can stand for an axiomatic justification of a proposition: T is an aziom and
a expresses that the axiom ‘holds’.

— The validity of proposition 7' can also come from a reliable source. In this
case the proof a itself cannot be inspected, but the reliability of the source is
enough guarantee to accept the proof. The origin of the knowledge can be any
source, either virtual: e.g. a knowledge base, or real: a reliable (community of)
person(s).

— Proposition T can also be justified by observational evidence. For example, the
proposition that a certain body is yellow can be justified by an atomic term
representing the observation that this is the case.

— Finally, proposition T' can be an assumption. This case is dealt with in type
theory by introducing a variable (say x) as an arbitrary (but fresh) inhabitant
for the proposition: the statement x : T then expresses: ‘Let x be a proof of T".



6 Formalizing Belief Revision in Type Theory

Since z is an unspecified variable, this amounts to: ‘Assume 7" (albeit that the
proof x can be called upon later).

e If a is a composite term, composed according to the (type-theoretical) syntax, it
embodies a complex justification. In this case the precize structure of a expresses
how the evidence for T is constructed. For example, under the PAT-interpretation
a complete mathematical proof (of a theorem) is coded in one, possibly large,
composite term. But also a justification that combines knowledge obtained from
observing a certain object with general rules about its behaviour, will lead to a
composite term.

The PAT-interpretation enables a well-established connection between mathemat-
ics and type theory, as has been shown already in the Automath project [31], in which
large parts of mathematics have been formalized in type theory: an entire mathemat-
ical theory was rendered as a list of judgements. The great importance of such a
type-theoretical formalization is that it makes it possible to check whether a given
proof of a certain theorem does indeed prove the theorem. In fact, it turns out that
syntactical correctness of the list of judgements is enough to establish the mathemat-
ical correctness of the mathematical theory. And the check on syntactical correctness
is relatively easy, since the question whether a certain term is of a certain type in a
certain context is decidable. This check on syntactical correctness can be performed
by man, but also by a straightforward computer program. In the Automath project,
this has already been done with the computer technology of the seventies.

A second advantage is the long-standing connection between logic and type theory.
The ‘reasoning power’ of logic finds a natural counterpart in the operations of A-
calculus underlying type theory. A well-known result is that logics of arbitrarily high
order can be expressed in type theory. In the PAT-interpretation of logic, terms
capture the full proof process: from a proof term one can reconstruct not only the
premisses used in the proof, but also the order in which they were used and the logical
rules used to combine them.

2.4 The type free A\-calculus

Modern type theory is based on the A-calculus. This section intrtoduces the type free
A-calculus.

DEFINITION 2.1 (Syntax of A-terms)

The set of classical A-terms or A-expressions M is given by: M = V|[(AV.M)|(MM)
where V = {z,y, z,...} is an infinite set of term variables. We let v,v',v", - range
over V and A, B,C - -- range over M.

EXAMPLE 2.2
(Ax.z), A\v.(zz)), Ax.(Ay.x)), Az.(Ay.(zy))), and ((A\z.z)(Az.z)) are all classical
A-expressions.

This simple language is surprisingly rich. Its richness comes from the freedom to create
and apply functions, especially higher order functions to other functions (and even
to themselves). To explain the intuitive meaning of these three sorts of expressions,
let us imagine a model where every A-expression denotes an element of that model
(which is a function). In particular, the variables denote a function in the model
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via an interpretation function or an environment which maps every variable into a
specific element of the model. Such a model by the way was not obvious for more
than forty years. In fact, for a domain D to be a model of A-calculus, it requires
that the set of functions from D to D be included in D. Moreover, as the A-calculus
represents precisely the recursive functions, we know from Cantor’s theorem that the
domain D is much smaller than the set of functions from D to D. Dana Scott was
armed by this theorem in his attempt to show the non-existence of the models of the
A-calculus. To his surprise, he proved the opposite of what he set out to show. He
found in 1969 a model which has opened the door to an extensive area of research in
computer science. We will not go into the details of these models in this paper.

DEFINITION 2.3 (Meaning of Terms)
Here is now the intuitive meaning of each of the three A-expressions given in the
syntax:

Variables Functions denoted by variables are determined by what the variables are
bound to in the environment. Binding is done by A-abstraction.

Function application If A and B are A-expressions, then so is (AB). This expres-
sion denotes the result of applying the function denoted by A to the function
denoted by B.

Abstraction If v is a variable and A is an expression which may or may not contain
occurrences of v, then Av.A denotes the function that maps the input value B
to the output value A[v := BJ, that is: the expression A in which B has been
substituted for v.

EXAMPLE 2.4
(Az.z) denotes the identity function. (Az.(Ay.z)) denotes the function which takes
two arguments and returns the first.

As parentheses are cumbersome, we will use the following notational convention:

DEFINITION 2.5 (Notational convention)
We use these notational conventions:

1. Functional application associates to the left. So ABC denotes ((AB)C).

2. The body of a A is anything that comes after it. So, instead of (Av.(41 45 ... 4,)),
we write \v.A; Ay ... A,,.

3. A sequence of \’s is compressed to one, so Azyz.t denotes Az.(Ay.(Az.t)).
As a consequence of these notational conventions we get:

1. Parentheses may be dropped: (AB) and (Av.A) are written AB and Av.A.
2. Application has priority over abstraction: Az.yz means Az.(yz) and not (\z.y)z.

2.4.1 Variables and Substitution

We need to manipulate A-expressions in order to get values. For example, we need to
apply (Az.z) to y to obtain y. To do so, we use the S-rule which says that (A\v.A)B
evaluates to the body A where v is substituted by B, written A[v := B]. However, one
has to be careful. Look at the following example:
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EXAMPLE 2.6

Evaluating (Afxz.fxz)g to Ax.gx is perfectly acceptable but evaluating (Afz.fz)z to
Az.xzx is not. By Definition 2.3, Afz.fx and Afy.fy have the same meaning and
hence (Afz.fz)z and (Afy.fy)x must also have the same meaning. Moreover, their
values must have the same meaning. However, if (Afz.fz)z evaluates to Az.xzz and
(Mfy.fy)x evaluates to A\y.zy, then we easily see, according to Definition 2.3, that
Az.zx and Ay.xy have two different meanings. The first takes a function and applies
it to itself, the second takes a function y and applies x (whatever its value) to y.

We define the notions of free and bound variables which will play an important role
in avoiding the problem above. In fact, the A is a variable binder, just like V in logic:

DEFINITION 2.7 (Free and Bound variables)
For a A-term C, the set of free variables FV(C), and the set of bound variables
BV (C), are defined inductively as follows:

FV(v) =der {v} BV (v) =dqef 0
FV(Av.A) =45 FV(A)—{v} BV (Av.A) =45 BV(A)U{v}
FV(AB) =4 FV(A)UFV(B) BV(AB) =g BV(A)UBV(B)

An occurrence of a variable v in a A-expression is free if it is not within the scope of
a \v.?, otherwise it is bound. For example, in (Az.yz)(\y.zy), the first occurrence of
y is free whereas the second is bound. Moreover, the first occurrence of x is bound
whereas the second is free. In Ay.z(Az.yx) the first occurrence of x is free whereas
the second is bound. A closed term is a A-term in which all variables are bound.
Here is now the definition of substitution:

DEFINITION 2.8 (Substitution)

For any A, B, v, we define A[v := B] to be the result of substituting B for every free
occurrence of v in A, as follows:

v[v := B] = B
v'[v = B = v ifv#o
(AQ)v:=B] = Alv:=B]Cv:= B]
(MWwA)v:=B] = M.A
(M. A)v:=B] = M'.Alv:=B]
if v Zv and (v' ¢ FV(B) or v € FV(A))
(MW A)v:=B] = MN'"Ap :=0"][v:= B]

if v/ Zv and (v' € FV(B) and v € FV(4))

In the last clause, v" is chosen to be the first variable ¢ FV(AB). In the case when
terms are identified modulo the names of their bound variables, then in the last clause
of the above definition, any v" ¢ FV (AB) can be taken. In implementation however,
this identification is useless and a particular choice of v"" has to be made.

EXAMPLE 2.9

Check that (\y.yz)[z := z|] = My.yz, that (Ay.yz)[z = y] = Az.zy, and that
(Ayyz)[z == Az.2] = \y.yz.

LEMMA 2.10 (Substitution for variable names)

Let A,B,C € M, z,y, € V. Forz # y and z ¢ FV(C), we have that: Alz := B|[ly :=C] =
Aly := C][z := Bly := C]].

2Notice that the v in Av is not an occurrence of v.
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2.4.2 Reduction

The two important notions of reduction are a-reduction which identifies terms up to
variable renaming and f-reduction which evaluates A-terms.

DEFINITION 2.11 (Compatibility for the type free A-calculus)
We say that a binary relation — on the type free A-calculus is compatible iff for all
terms A, B of the A-calculus and variable v, the following holds:

A— B A— B A— B
AC — BC CA—- CB M.A — \v.B

DEFINITION 2.12 (Alpha reduction)
— is defined to be the least compatible relation closed under the axiom:

() Av.A =4 M Ao =] where v' € FV(A)

ExAMPLE 2.13
AT.z— o Ay.y but it is not the case that Az.zy—Ay.yy.
Moreover, Az.(Az.z)z—»,Az.(A\y.y)z.

Recall that Az.x #Z Ay.y even though they represent the same function. They are
actually identical modulo a-conversion. l.e. Az.x =, Ay.y.

DEFINITION 2.14 (Beta reduction)
— 3 is defined to be the least compatible relation closed under the axiom:

(B) (Av.A)B—3A[v := B]

We use —3 to denote the reflexive transitive closure of —3. We say that a term A is
a B-normal form if there is no B such that A—zB.

EXAMPLE 2.15
Check that (Az.z)(Az.2)—=gAz.z, that (\y.(Az.x)(Az.2))ry—» 3y, and that both A\z.z
and y are S-normal forms.

Here is a lemma about the interaction of S-reduction and substitution:

LEMMA 2.16
Let A,B,C,D € M.

1.If C =3 D then Alx:=C]—»3 Alz:=D].
2.1If A—p B then A[z :=C] —3 B[z :=C].

Proor. By induction on the structure of A for 1, on the derivation A —3 B for 2. [ |

2.5 The syntax and rules of Pure Type Systems

Now we are ready to introduce the syntax and rules of Pure Type Systems (PTSs)
which will be the basis of our theory of belief revision. There are two type disciplines:
the implicit and the explicit. The implicit style, also known as typing a la Curry, does
not annotate variables with types. For example, the identity function is written as
in the type-free case, as Ax.x. The type of terms however is found using the typing
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rules of the system in use. The explicit style, also known as typing a la Church,
does annotate variables and the identity function may be written as Az : Bool.z to
represent identity over booleans. In this paper, we consider typing & la Church.
We present what is known as Pure Type Systems or PTSs. Important type systems
that are PTSs include Church’s simply typed A-calculus [11] and the calculus of
constructions [12] which are also systems of the Barendregt cube [4]. Berardi [7] and
Terlouw [33] have independently generalised the method of generating type systems
into the pure type systems framework. This generalisation has many advantages.
First, it enables one to introduce eight logical systems that are in close correspondence
with the systems of the Barendregt cube. Those eight logical systems can each be
described as a PTS in such a way that the propositions-as-types interpretation obtains
a canonical system form [4]. Second, the general setting of the PTSs makes it easier
to write various proofs about the systems of the cube.

In PTSs, we have in addition to the usual A-abstraction, a type forming operator
I1. Briefly, if A is a type, and B is a type possibly containing the variable z, then
IMz:A.B is the type of functions that, given a term a : A, output a value of type
B[z := a]. Here, again, a : A expresses that a is of type A. If  does not occur
in B, then IIz:A.B is the type of functions from A to B, written A — B. To the
IT-abstraction at the level of types corresponds A-abstraction at the level of objects.
Roughly speaking, if M is a term of type B (M and B possibly containing z), then
Azx:A.M is a term of type Iz:A.B. All PTSs have the same typing rules but are
distinguished from one another by the set R of triples of sorts (s, s2, s3) allowed in
the so-called type-formation or Il-formation rule, (product). Each PTS has its own
set R. A II-type can only be formed in a specific PTS if the (product) rule is satisfied
for some (s1, s2,s3) in the set R of that system. (see Figure 1).

DEFINITION 2.17

The set of pseudo-terms T, is generated by the grammar:

Te=VI|C|(TT)| AV:T.T)| (IIV:T.T), where V is the infinite set of variables
{z,y,2,...} and C a set of constants over which, ¢,cy,... range. We use 4, B, ... to
range over 7 and v,v’,v",... to range over V. Throughout, we take 7 € {A,II}.

Note that in the type free lambda calculus, there were only three possibilities for terms
(given in Definition 2.1): variables, applications or abstractions, and that abstractions
contained no typings for the variables abstracted over. The above Definition 2.17 on
the other hand, gives the typing of the abstracted variable, and also defines types as
well as terms. C is a set of constants which contains a subset S called the sorts. The
set sorts contains amongst other things, four special elements: set, prop, * and O,
with the relations to be defined later that: set: %, prop: * and *: 0. If A : % (resp.
A : 0O) we say that A is a type (resp. a kind). If A : set (resp. A : prop), then we
consider A as a set (resp. a proposition).

DEFINITION 2.18 (Free and Bound variables)

The free and bound variables in terms are defined similarly to those of Definition 2.7
with the exception that FV(c) =4y BV (c) =gy @ and in the case of abstrac-
tion, FV (mv : A.B) =4ey (FV(B) \ {v}) UFV(A) and BV (7v : A.B) =4y BV(A)U
BV(B) U {v}.

We write A[z := B] to denote the term where all the free occurrences of z in A
have been replaced by B. Furthermore, we take terms to be equivalent up to variable
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renaming. We assume moreover, the Barendregt variable convention which is formally
stated as follows:

CONVENTION 2.19

(VC: Barendregt’s Convention) Names of bound variables will always be chosen such
that they differ from the free ones in a term. Moreover, different \’s have different
variables as subscript. Hence, we will not have (Az : A.z)z, but (Ay : A.y)z instead.

The definition of compatibility of a reduction relation for PTSs is that of the type-free
calculus (given in Definition 2.11) but where the case of abstraction is replaced by:

A1 — A2 B, — By
mx:A1.B = mx: Ay.B mx 1 A.By — wx : A.By

DEFINITION 2.20
B-reduction is the least compatible relation on 7 generated by

(B) (Az : A.B)C — Bz := (]

Note that (Az : A.B)C is reduced and not (Ilz : A.B)C. The latter needs special
attention as is shown in [26, 27].
Now, we define some machinery needed for typing;:

DEFINITION 2.21

1. A statement is of the form A : B with A, B € 7. We call A the subject and B the
predicate of A : B.

2. A declaration is of the form x : A with A € 7 and ¢z € V. When d is = : A, we
define var(d) and type(d) to be z and A respectively.

3. A pseudo-context is a finite ordered sequence of declarations, all with distinct
subjects. We use I', A, IV, T';,I's,... to range over pseudo-contexts. The empty
context is denoted by either <> or nothing at all.

4. Ul =mx 2 Ay . ... T ApthenT w: B=ux: Ay,...,x, : Ay, o : Band dom(l") =
{xl, . ,.’I,'n}.

5. We define substitutions on contexts by: [z := A] =0, and (T',y : B)[z := A] =
Iz := A],y : Blz := A].

DEFINITION 2.22
A type assignment relation is a relation between a pseudo-context and two pseudo-
terms written as I' - A : B. The rules of type assignment establish which judgments

I'F A: B can be derived. A judgement I' - A : B states that A : B can be derived
from the pseudo-context I'.

DEFINITION 2.23
Let " be a pseudo-context, A be a pseudo-term and F be a type assignment relation.

1. T' is called legal if 3A, B € T such that ' A : B.

2.AeTiscalled al-termif 3B € 7T suchthat 'F A: BorI' - B : A.
We take [-terms = {A € T such that AB € T and 'F A: BVI'|F B: A}.

3. A €T is called legal if II" such that A € ['-terms.
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(axioms) Fe:s if c:seA
FFA:s .
(start) m if :1:¢F
. '-B:C TFA:s .
(weakening) T e AFB.C if ¢
I'FA:s; T,z:AF B:sy .
f
(product) TT (o A8) 55 if (s1,52,83) €ER
(application) F'FF:(Ilz:AB) T'FC:A
pp TFFC:Blz:=C]
(abstraction) Fe:AFC:B TF{lz:AB):s
'k (Az:AC): Iz : A.B)
( ion) 'A:B T+B':s B=3B
conversion TE A B

Fi1c. 1. PTSs with variables names

DEFINITION 2.24

The specification of a PTS is a triple S = (S, .4, R), where S is a subset of C, called
the sorts. A is a set of azioms of the form ¢ : s with ¢ € C and s € S and R is a set
of rules of the form (sq, s2,s3) with s1,s2,53 € S.

DEFINITION 2.25

The notion of type derivation, denoted I" Fyg A : B (or simply ' - A : B), in a
PTS whose specification is S = (S, .4, R), is axiomatised by the axioms and rules of
Figure 1.

REMARK 2.26

Note that in Figure 1, we insist in the (start) and (weakening) rules that ¢ I, but
we do not insist that @ € A. The condition that € A can be derived from from the
fact that € I, that ' F A : s and the properties of PTSs.

Each of the eight systems of the cube is obtained by taking § = {*,0}, A = {*,0},
and R to be a set of rules of the form (si,s2,s2) for s1,s2 € {*,0}. We de-
note rules of the form (si,s2,s2) by (s1,s2). This means that the only possible
(s1,82) rules in the set R (in the case of the cube) are elements of the following set:
{(x, %), (x,0), (3, %), (O,0)}. The basic system is the one where (s1,s2) = (x,%) is
the only possible choice. All other systems have this version of the formation rules,
plus one or more other combinations of (x,0), (O, ) and (0,0) for (s1,s2). See
Figures 2 and 3.
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AL (%, %)

A2 (x,%) | (O, %)

AP (%, %) (x,0)

AP2 (x,%) | (O,%) | (x,0)

Aw (%, %) (0,0
Aw (%, %) | (8,%) (0,0
APw (%, %) (x,0) | (30,0
APw=XC | (x,%) | (Od,%) | (x,0) | (3dO,0)

FiG. 2. Different type formation condition
APROPw APREDw

FiG. 3. The A-cube and its corresponding logic cube

3 Type theory for knowledge representation

This section sets the stage for our account of belief revision with explicit justifica-
tions. We give our definition of knowledge and knowledge state, and explain how such
knowledge states can be formalized in type theory.

3.1 Knowledge and type theory

PAT is suitable to express the proof as an object embodying its developmental history.
As a consequence, type theory embodies an excellent machinery for storing (various
kinds of) information, including knowledge. The connection between type theory and
knowledge is the subject of this section.

We do not intend to present a philosophical or psychological theory of knowledge,
but simply identify three characteristics of knowledge which we believe should be
taken into account when formalizing knowledge:

o Subjectivity: Knowledge is formulated in terms of concepts. We assume these
concepts are subjective in the sense that one person may judge something to be
an instance of a certain concept, while another person would not recognize it as
such. Another aspect of subjectivity is that a person’s knowledge is partial: no
one knows everything, and people differ in what they do and don’t know.

o Justification: Knowledge is justified: persons not only know things, but they have
reasons for knowing them. Generally, parts of knowledge are justified in terms of
more basic parts; a person’s body of knowledge is structured. And even atomic
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justifications are supports for the knowledge, since they point at an origin (an
axiom, an observation, etc.).

e Incrementality: The knowledge of a person can be extended as new information
becomes available. Whether this information can be incorporated by the person
depends on the possibility to tie it to the knowledge already present. This may
lead to simply adding the new information, to dismissing it (e.g., because it is
incomprehensible) or even to a reorganization of the existing knowledge.

Under an account of knowledge satisfying these requirements, the traditionally
made distinction between knowledge and belief disappears: there can be no knowl-
edge which is true in any absolute sense, since an agent’s knowledge depends on his
subjective conceptualisation of the world. At best some pieces of knowledge turn out
to be more reliable than others and some things can be agreed upon by more agents
than others. There is a natural way to capture these characteristics in type theory:

e Subjectivity is captured by types: Each concept is formalized as a type, each in-

stance of the concept is a term inhabiting this type. A person’s subjective ability
to recognize something as an instance of a concept, is mirrored in the ability to
judge that the corresponding term inhabits the corresponding type.
Note that ‘having a concept’ is also subjective in the sense that different people
may have formed different concepts in the course of time. This means that one
person can have a concept, whereas another person has no comparable concept.
And in case persons do have comparable concepts, they may differ in what they
recognise as belonging to this concept. In case the type formalizing the concept
is a ‘set-type’, this means that they may differ in what they regard as elements
of the set (a rhododendron may be a tree for the one, but a shrub for the other).
In case this type is a ‘proposition-type’, they may differ in what they accept as a
justification for that proposition.

Justification is captured by terms: By the PAT-principle, justifications are first-
class citizens, formalized in the type-theoretical syntax as terms. The fact that
term a justifies proposition T', is expressed as the statement a : T'. The rules of
type theory allow these terms to be combined into complex terms, which reflects
that parts of knowledge may be a structured combination of more basic parts.

Incrementality is captured by contexts: As we will explain below, a person’s knowl-
edge state can be formalized as a type-theoretical context. Addition of new in-
formation to the knowledge state can be formalized by adding statements to the
context, dismissing information amounts to reducing the context. Information
may only be added if it ‘matches’ a person’s knowledge state. Type theory has
an innate notion of ‘matching’: a statement can only extend a context if it obeys
certain well-formedness restrictions.

3.2 Formalization of the knowledge state

The knowledge state of a person consists of ‘everything he knows’ at a certain instant.
This knowledge state will be represented as a context I' in our type system. Every
statement in I' represents a piece of knowledge the person has.

Given our characterization of knowledge, this means that everything in a knowledge
state is formulated in terms of the person’s concepts. This has several aspects:
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o Meaningfulness: A person has formed his own, private concepts, and only things
which are formulated by means of these concepts can be meaningful to him.
Whether or not information coming from outside (by observation or communi-
cation) makes sense, depends on the concepts that are already available. (In this
paper we will assume that the entirety of concepts of a person is fixed.)

o Inhabitation: Whatever a person knows about the world around him is recorded
in a knowledge state in the form of meaningful expressions that he accepts. This
includes expressions about which objects ‘inhabit’ the concepts in the world, and
which propositions hold in the world, according to the person.

If we take the following (very simple) context as representing a person’s knowledge
states: T : prop,T5 : set,xy : T, x5 : T, we can see:

o Meaningfulness is captured by statements of the form T : prop or T : set. That is
to say, in this example the person has two concepts, viz. 77, which is a proposition
to him, and T», which is a set. (Note that the statements T} : prop by itself does
not imply that the proposition 7} holds according to the person, nor does 7 : set
imply that the set T5 is non-empty.) At this stage, there are no other concepts,
i.e. all sets and propositions which are not constructed out of 77 and/or T» are
not meaningful to him.

e Inhabitation is captured by statements of the form x : T, where T is meaningful. In
the example context, the inhabitant x; of 7T} represents the person’s justification
for the holding of 77, and the inhabitant xs of 75 is an element of the set 75 which

is recognized as such by the person3.

"Everything a person knows’ at a certain instant can be divided into two categories:

e Fxplicit knowledge is expressed by the statements in the context I' . These are
explicitly represented pieces of knowledge directly available to the person.

o Implicit knowledge is expressed by statements derivable on the context I'. These
are consequences of a person’s explicit knowledge which he can get by inference.

Hence, in a judgement of the form ' - a : T, the explicit knowledge can be found to
the left of the symbol F, and the implicit knowledge to the right of I-.

Note that the knowledge state is not deductively closed, i.e. deriving consequences
requires ‘work’, which is reflected in the construction of a compound justification a
for T'. Such a construction is a derivation using the rules of type theory; it consists of
a sequence of judgements of which the just-mentioned compound justification is the
final one. We come back to this in the next section.

ASSuMPTION 3.1

In order to derive all consequences of his explicit knowledge, a person would have to
be able to perform possibly infinite derivations. Since this is not feasible, we assume
a ‘bound’ on the derivation depth.

As the above discussion meant that statements of the form A : B (where A may be
complex) must be in the knowledge state (which is a context in type theory), and as
formulations of type theory only allow statements of the form x : B in the context,

3Syntactically, z1 and zo are variables. However, as we see later, each of these ‘variables’ may in fact be a defined
constant, abbreviating a term which codes all details of the justification.
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we will present here an extension of type theory where contexts not only contain
statements of the form x; B, but also statements of the form z := A : B (which also
states that A : B), and are known as definitions.

3.8 PTSs with definitions

In this section we introduce the extension of PTSs given in section 2.5 with definitions.

Terms and types remain unchanged, but contexts are now a list of declarations of
the form x : A or of definitions of the form x = B : A. These latter definitions define z
to be B and to have the type A. We extend Definition 2.21 to deal with definitions as
well as declarations, taking var(d), type(d) and def(d) to be z, A, and B respectively
when d is ¢ = B : A. We define FV(x = B: A) = FV(A) UFV(B). We extend dom
tobe dom(I') ={z |z : A€l orz:=B:A €T} Finally, we extend substitutions
on contexts by (I',y := B : C)[x := A] =I'[z := A],y := B[z := A] : Clz := A]. Note
that Definitions 2.22, 2.23, 2.24 and 2.25 are unchanged.

DEFINITION 3.2

The new typing relation I is obtained by adding four new rules to the typing rules
of Definition 2.25: (start-def), (weak-def), and (def) below, and by replacing the
(conversion) by (new-conv) as follows:

T'HFA:s '-B:A

(start-def) Te—BArz A z ¢ dom(T")
'HA:B 'C:s T'FD:C
(weak-def) Tt =DCOFA DB z ¢ dom(T")
Fx:=B:A-C:D

f : f il
(def) TF (nz:AC)B: Dz = B] or m € {\, 10}
( ) I'-A:B I'-B:s 't B =45 B
new-conv TE A B

In (new-conv), I' F B =4,y B’ is defined as the smallest equivalence relation closed
under:

oIf B= B thenI' B =4,y B’
oelf x := D : C € I and B’ arises from B by substituting one particular free
occurrence of ¢ in B by D then I' - B =4.¢ B'.

In Definition 3.2, (start-def) and (weak-def) are the start and weakening rules that
deal with definitions in the context. The (def) rule types A- and Il-redexes using
definitions in the context.

Now, here are some lemmas that show that the above system is suitable for rep-
resenting beliefs. The first lemma establishes that different beliefs have different
justifications and that all justifications have their evidence in knowledge state .

LeMMA 3.3 (Free variable Lemma for )
1. If d and d' are two different elements in a legal context I', then var(d) Z var(d').
2.1 T =TI4,d,T2 and T' - B : C then FV(d) C dom(I';) and FV(B),FV(C) C
dom(T).
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ProorF. 1. If T is legal then for some B,C, I' - B : C'. Now use induction on the
derivation of I' = B : C'. 2. is by induction on the derivation of ' - B : C. [ |

LEMMA 3.4 (Substitution Lemma for I)
Ile:=D:C, A+ A:Bor Iz :C,AFA:Band '+ D : C) then I', Alz :=
D]+ Alz := D] : B[z := D).

ProoOF. Induction on the derivation rules, using Lemma 3.3. | |

The following corollary means that the person can track down those statements re-
sponsible for him entertaining a particular belief.

COROLLARY 3.5 (Strengthening Lemma for )
ForI'y,y:= E:T,I's alegal context and M and B terms: if I'1,y:=FE: T, s - M :
Band y ¢ FV(I'2) UFV(M)U FV(B), then I'1,T's - M : B.

The next lemma shows that all statements in a knowledge state are meaningful in the
sense that if I'y,z : A)T5 is legal then 'y -z : A; and if I,z := B : A, T3 is legal
then'T Fz:Aand I FB: A

LeEMMA 3.6 (Context Lemma for )
Let I'1,d,T's be a legal context. Then we have: I'1 F type(d) : s for some sort s,
Iy,dF var(d) : type(d) and if d is a definition then I'; F def(d) : type(d).

ProOF. If T is legal then for some terms B,C: I' + B : C'; now use induction on the
derivation of ' - B : C. [ |

LeMMA 3.7 (Thinning Lemma for F)
Let d be either a declaration or a definition and let 'y, d, 'y be a legal context.

1.IfI, Iy F A: B, thenI'1,d, T, - A: B.
2.Ifdisz:=D:Cand 'j,z:C, Iy - A: B, then I'1,d, T2 - A: B.

LeEMMA 3.8 (Swap Lemma for F)

Assume each of d; and ds is either a declaration or a definition such that var(d;) ¢
FV(type(dz)) and if dy is a definition then also var(d;) ¢ FV (def(dz)).

If Fl,dl,dg,rz FA: B, then Fl,dg,dl,rz FA:B.

PROOF. By induction on the derivation I'y,d;,ds, o F A : B. [ |

4 Development of the knowledge state

The knowledge state of a person is not static. As time goes by, new information comes
to the person’s attention and has to be dealt with. With the conception of knowledge
states as type-theoretical contexts in mind, as explained in the previous section, we
distinguish several stages in the treatment of new information by a person, marked
by decisions which the person has to make. We describe these stages below.

Meaningfulness In the first stage, the meaningfulness of the new information is at
stake. New information may or may not be meaningful to a person depending on his
current knowledge state. Type-theoretically, new information manifests itself in the
form of a (sequence of) statement(s). Whether these statements are meaningful with
respect to a knowledge state, can be syntactically decided. In section 3.2 we noted
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that type theory has an intrinsic notion of meaningfulness. Below we explain how this
notion can be extended to statements of the form x : T', expressing the inhabitation
of a proposition or set 7.

We presuppose that a person only processes new information that is meaningful
(makes sense) to him, i.e. meaningful with respect to his current knowledge state, and
that he decides to dismiss this information otherwise. (In a communication setting,
we expect the person to search for clarification, either by questioning his dialogue
partner, or by (re-)inspecting his environment.)

Expanding the knowledge state If the information is meaningful, the person adds
it provisionally to the knowledge state: I' is extended to e.g. I'y = ', y; : 11,y : Ts.

The resulting knowledge state can turn out to be consistent, that is to say, the
person cannot construct a term M such that I'y F M : L, where L is falsum (the
logical constant ‘falsity’). Recall assumption 3.1 where we assume that the person
has a limited deductive power, so he can only construct terms by derivations up to a
certain length. Intuitively this means that the person has a ‘horizon’ behind which
he cannot see the consequences of his knowledge state. Hence, the person’s notion of
‘consistency’ is bound by his horizon. (Hence, a knowledge state can be inconsistent
without the person being able to find this out at the current point in time.)

If the obtained knowledge state does not give contradictions within the horizon,
then I'; is accepted as the new context.

Revising the knowledge state There is, however, also the possibility that the
person has found an inconsistency, i.e. he has constructed in his newly expanded
knowledge state some term M such that I'y - M : L. In that case, he can decide to
reject the new information and return to the previous knowledge state. But he can
also decide to revise his new knowledge state in order to restore consistency. (The
person may actually be able to construct more than one inhabitant of falsum; we
assume that he concentrates on one of these.) The most natural thing to do, is to
find one or more statements in the context representing his knowledge state, which
enabled the construction of M. These statement can be located in the ‘old’ context,
but also in the newly added piece of context, or in both. By removing one or more of
these statements from his context, consistency may be regained, since this particular
proof of falsum, M, cannot be constructed any more. Below we propose a syntactical
iterative procedure which restores consistency. (In general, there is more than one
way to regain consistency by removing statements from the knowledge state.)

The stages and decisions we distinguished above, are not intended to capture actual
cognitive processes, but merely to state as clearly as possible which aspects of belief
revision we do and do not consider in our formalization. For instance, the fact that
the person decides which statements to remove, means that this is not decided by the
formalism, in other words, we do not postulate so-called epistemic entrenchement.
(For a comparison with standard theories of belief revision, see section 6.)

In sections 4.1 and 7.3 we discuss the various stages of dealing with information as
explained just now, in more detail. We give special attention to the representation in
type theory.
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4.1 Adding information

The knowledge state of a person changes as new information becomes available to
him. Since knowledge states are modeled by type-theoretical contexts, this means
that contexts should change accordingly. In this subsection we demonstrate that type
theory has the possibility to accommodate such a change in the knowledge state, viz.
the addition of new information to the knowledge state.

Adding information to a type-theoretical context amounts to adding statements to
this context. This does not mean that arbitrary information may be added, addition of
information is subject to syntactical restrictions. We discuss this below, distinguishing
between the addition of information originating from inside and from outside the
knowledge state of the person.

Adding information from inside

A person is able to reason with his knowledge. For example, let us assume that the
statements A — B : prop and A : prop are meaningful to the person. ILe., from
his knowledge state I', the person can derive I' H A — B : prop and ' - A : prop.
Moreover, let us assume that the person has justifications for both propositions, since
A — B and A are inhabited (e.g. = : A — B and y : A occur in the context I’
representing his knowledge state). Then the person can infer that B holds, as well,
expressed by the statement xy : B. This is the case since we have the following
instance of the application rule (cf. Figure 1):

'rz:A—-B I'kFy:A
'ay:B

This inference allows the person to combine his justification x for A — B with his
justification y for A into a complex justification zy (pronounced as ‘z applied to y’)
for the proposition B.

Note that there are no more than a small number of typing rules, which are all
like the above rule in that they enable to derive a new judgement from one or more
judgements which are given or derived earlier.

The judgement I' - zy : B resulting from the person’s inference as explained above,
shows that the person is able to construct a justification for B on his knowledge
state I'. However, the statement xy : B is not yet part of his knowledge state. To
incorporate this statement, it would simply be sufficient to append it to I'. However,
for technical reasons only statements with variables as subject are allowed in the
context. In order to circumvent this (technical) problem, in Section 3.3, we expanded
our notion of ‘context’ given in Section 2.5, by allowing also a new kind of statements,
called definitions, in the context. A definition is a statement of the form z := E : T,
expressing that z is a name for the term E of type T. The new name z is the subject
of the definition z := E : T. Formally, z is a variable. (This is in contrast with
the good habit of calling such a defined name a constant.) By means of definitions,
complex justifications can be abbreviated and recorded in the context. This definition
mechanism is essential in the practical use of type theory for the formalization of
‘bodies of knowledge’, as has been shown e.g. in the Automath project [31].

A definition z := E : T may be added to a context A whenever z is fresh with
respect to A and E : T is derivable on A. In the example above, this enables the
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person to record the inferred zy : B in his knowledge state by adding the definition
w = zy : B, using some fresh variable u. Hence, the context I' has evolved into the
context I',u := zy : B, reflecting the development of the person’s knowledge state
brought about by his reasoning. The proposition B (and its justification), which was
implicit knowledge of the person (since it occurred at the right hand side of the F),
has now become explicit knowledge.

From a purely logical point of view, it may seem that adding a derived proposition
to the knowledge state (making it explicit) does not contribute to the person’s implicit
knowledge. However, this is not the case since we assume a bound on the depth of
derivations a person can perform. Under this assumption, the implicit knowledge is
limited: it consists of everything a person can derive on his context within a certain
number of derivation steps. As soon as the explicit knowledge has grown, in general
there is more that can be derived by the person in the same number of steps, so the
implicit knowledge has grown as well: the person’s ‘deductive horizon’ has broadened.

Adding information from outside

The knowledge state of a person can change by reasoning (which he does himself,
from the inside), or by information originating from the outside. For the latter there
are two important knowledge sources: observational and communicational.

e Observation: A person can recognize an object (visually, or by any other sensory
perception) in his world as belonging to a certain set. For example, he sees an
object which he characterizes as being a ball. But he can also obtain evidence for
propositions by looking at the outside world. For example, he sees that the ball
is yellow.

In both cases, the new information can be added to the context of the person by
the addition of a new statement with a fresh atomic subject, acting as the justifi-
cation. The atomic character of this justification is caused by the impossibility to
decompose the observation into smaller parts.

The two observations in the example above could e.g. be combined into the context
extension b : ball ,0: yellow b.

e Communication: Another manner in which a person can change his knowledge
state is by information passed to him by another person. Again, this information
can involve (the existence of) objects as well as (the holding of) propositions.
For this communication it is necessary that both persons share a language in
which they communicate. We assume that each person speaking this language
has a mapping between the words of the language and the subjective concepts
present in his knowledge state, and vice versa. In [1] a type theoretical model of
communication is developed based on this assumption. In this model, the types in
a person’s knowledge state are communicable via the (mappings to) the common
language, but the inhabitants of these types (justifications) are not. Hence the
contents of a communication take the form of a (sequence of) statement(s) of
which the subjects are atomic, since the original justifications of the ‘sender’ are
not communicable to the ‘receiver’.

Example: in a situation after the observation of the previous example, the utter-
ance ‘The yellow ball is hollow’ can lead to the following extension of the person’s
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context: ¢ : hollow b, provided that ‘hollow’ is a concept known to the person,
and he is able to correctly match the definite description to the objects b and o in
his context.

Hence, be it either observation or communication, the information to be added to a
person’s context has the form of a sequence of statements with atomic subjects, hence
of the form z : T, where z is a variable; note that definitions do not play a role if we
consider adding information from the outside.

However, as we said earlier, the types of the statements in the context give rise to
a notion of meaningfulness. Only types ‘constructable’ from the statements already
present in the context of a person are meaningful to him. This restricts the addition
of statements originating from the outside.

Technically, this has the following form. Let I" be the original context of the person
and assume that the sequence 1 : T1,...,x, : Ty is the information from the outside
(with fresh subjects z1,...,2,). Then these statements are added one by one, thus
changing the knowledge state incrementally. That is to say, for each 1 < i < n, the
statement x; : T; may only be added if

F,:Ul 2T1,...,:Ui,1 ZTi,1 '—TzS

with s = set or s = prop. In other words, a statement may only be added if its type
is well-formed with respect to the current knowledge state. This shows, as we said
before, that new information (a sequence of statements) can only be absorbed in a
step-by-step fashion (statement by statement), where the possibility to append a new
statement depends on the information available in the context at that stage, i.e. the
original context plus the already appended statements.

This embodies precisely the notion of incrementality, discussed in subsection 3.1,
which not only applies to the case of only one ‘chunk’ of information from the outside
(i.e. one sequence of statements) as above, but also to subsequent additions of such
chunks of information. For instance, if a person is in a dialogue with another person,
each new utterance he receives will be added only if it is meaningful against the
background of the utterances accepted before.

REMARK 4.1

In treating observation and communication, we extended the use of type theory as
it is traditionally described in the literature: one usually does not take into account
that information can come from outside the context. When type theory is applied to
knowledge representation, one usually models (the progress of) a solitary reasoning
person, who can only extend his knowledge from the inside. However, since we adopted
the same well-formedness criteria as usual to adding information from the outside,
the resulting context in our extension will always be syntactically correct with respect
to the original type-theoretical standards. Hence, this extension of the use of type
theory does not lead to an extension of the formalism. (Even the complete process
of adding information from the outside can be justified in type-theoretical sense. We
will not go into that here.)

4.2 The problem of revision

As we saw in the previous section, a situation in which a person has to revise his
knowledge state can be characterized as follows. The person is confronted with new
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information (which is meaningful to him), and decides to accept it. When it turns out
that the incorporation of this new information leads to inconsistency of the resulting
knowledge state, the person has to remove information from this new knowledge
state to restore consistency. Below we describe how this can be done by means of
type theory.

Revision from a type-theoretical perspective The need for revision can originate
both from the inside and from the outside. We begin by describing the situation where
new information is added from outside.

Suppose that the context I’ represents the person’s current knowledge state (which is
consistent within his horizon) and the sequence zy : 11, ..., z, : T, represents the new
information from the outside resulting in the context I'y = ', z; : T3, ..., 2, : T- The
inconsistency of I'; manifests itself in the existence of an inhabitant of falsity which
the person can construct within his horizon: there is an M such that 'y - M : L.
There may be more than one such an inhabitant, but we assume that the person has
chosen one of these. (We come back to this in section 5.)

The fact that all justifications are explicitly present enables the person to identify all
‘suspects’: the beliefs in I'; that together cause the inconsistency. Since M embodies
a derivation of falsity in the sense explained earlier, we find in M the justifications of
all beliefs that are part of this derivation (M contains the full developmental history
of the derivation). The suspect justifications occur as free variables in M, since
these free variables point exactly at the premisses of the derivation of falsity: such
a premiss x : T gives rise to a free x in M. This is a property of the proposition as
types interpretation of type theory. Moreover, the rules of type theory ensure that
all free variables of M occur as subjects in I'y.

EXAMPLE 4.2

Let A : prop and B : prop be statements belonging to the knowledge state (the con-
text) and assume that the person has proofs of A, of A — B and of =B (abbreviating
B — 1, to be read as “B implies contradiction”). This is represented in the knowl-
edge state by statements say z : A, y : A — B and z : =B. The rules of Type Theory
enable the derivations of I' - yz : B and I' + z(yz) : L. The free variables z, y and
z in the ‘proof object’ z(yx) point precisely at the propositions A, A — B and —B,
which together enable the construction of the inconsistency.

Note that, given the consistency of I', there have to be free variables in M which
occur as subjects in the new information z; : Ti,...,x, : T,. (Otherwise, M : L
could already be constructed on I' itself; this is a consequence of the Stengthening
Corollary 3.5.)

New information can also originate from the inside, when a person adds a derived
consequence to his knowledge state by means of a definition. This broadens his horizon
and hence contradictions which were previously out of sight can now come into view
(cf. section 4.1).

EXAMPLE 4.3

Suppose T is consistent and I' F N : P within the horizon. The result of adding N : P
to I' by means of a definition is I' = I';u := N : P. Now it is possible that there
exists an M such that IV - M : 1 within the new horizon. As above, this M contains
inhabitants of all ‘suspects’ as its free variables.
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This shows that there is, technically speaking, no difference between revision due to
information from outside and from inside. Intuitively it may seem strange that a
person can be forced to revise his knowledge state by only adding a consequence of
what he already knows to his knowledge state, without any external reason. However,
if we take the idea of limited deductive power seriously, this is inevitable.

Restoring consistency by removing information In the above situation, when
there is an M such that I'y F M : L, the person can try to regain consistency by
removing one or more of the ‘suspects’ from I'y, being some of the statements z; : T;
occurring in I'; where z; occurs free in M. As we pointed out before, we assume that
the person decides which statements he chooses to remove. Before making this choice,
the person probably reconsiders the suspects, with the help of new observations or
communications with others.

However, it is generally not sufficient to simply erase the chosen suspects from the
knowledge state, since there may be beliefs depending on the ‘suspect’ beliefs. Such
a dependent belief should be removed as well, since it is no longer meaningful on the
knowledge state from which the suspect(s) have been erased.

A belief can depend upon another belief in two ways:

1. A belief B may contain a free variable  which is the subject variable of a statement
x : A preceding y : B in the context.

2. If z : A precedes a definition statement z := E : C, both E and C' may contain
such a free variable x.

In these cases, y : B and z := E : C' depend on z for their well-formedness. Hence,
removal of  : A from the context has consequences for these statements as well. The
most natural solution is to remove them.

There is a relatively simple, syntactical procedure for removing suspect beliefs and
the beliefs depending on them, which we describe in section 5.1 The result of this
procedure is a new knowledge state, I's. It is, however, not necessarily the case that
this I'y is consistent within the person’s horizon. Although the justification M of
falsity is no longer constructable on I's, there may have been more than one justifica-
tion for falsity on I';. Some of these justifications of falsity may still be constructible
on I'y. In that case, the person chooses one of these justifications and selects a new
set of suspects on which the procedure described above is repeated. Iteration leads
to a sequence of knowledge states I', ... which is finite, since in every iteration step
at least one of the (finite number of) justifications of falsity is removed. So there
is a final knowledge state I, on which no justifications of falsity are constructable.
Hence, I'), is consistent within the person’s horizon. This I',, is then the resulting
revised knowledge state.

5 Belief revision

In this section we give a formal description of the process of belief revision in type
theory, as described above. First we define the syntactical procedure for removing
‘suspect’ beliefs and the beliefs depending on them (section 5.1) stating some proper-
ties of this removal procedure. Finally, we discuss the full revision procedure, which
may involve iterative removal of suspect beliefs, and we investigate the properties of
the procedure.
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5.1 The removal operation

We start with a knowledge state represented by a context I' and new information
represented by the sequence z1 : T4, ..., %, : T),. We add the new knowledge to the
original knowledge state, obtaining I'y1 = 'z, : T1,...,2, : T),. We assume that
this ‘new’ context I'y turns out to be inconsistent and we assume that the person
has chosen one or more suspect beliefs in I'y which he wants to remove. Note the
assumption that the suspect beliefs can be found in the entire I'1, so also among the
new information: contrary to standard accounts of belief revision we do not award a
special priority to the new information (cf. section 7.3).

The removal operation that we describe below results in the transformation of I'y
into a new context I';. However, as we discuss below, regaining consistency may
involve more than one such transformation, hence in our definition we define the
transformation as leading from I'; to I';41.

In order to give a general definition of removal, we write a context as if all statements
in the context were definitions: y, := Ey : 11, ..., Ym := En, : T, with the convention
that y; := E; : T; must be read as y; : T} if it is not a definition and we take FV (E;) = ()
in the last mentioned case. (F'V (M) is the set of all variables occurring free in M.)

We assume that V' is the set of variables which are the subjects of suspect beliefs
yr = Ej : T} in T'; which the person has chosen to remove. As we explained at
the end of section 4, also beliefs y; := E; : T} depending on the variables in V' must
be removed. Below we characterize the set dep (V') consisting of V' plus all subject
variables of statements depending on V.

We start with the definition of the notion ‘subcontext’.

DEFINITION 5.1

LetT’' = A,y:=E:T,Asand IV = A,AsorIV = Ay,y:T,Ay. ThenI" CT.
The relation C is the reflexive and transitive closure of C. If I'; C I's we say that 'y
is a subcontext of I's.

Next we define the dependency relation <, a partial order between subject variables
of a context I'.

DEFINITION 5.2

LetI' = A,y :=E:T,A,. Thendefr(y) = E, typer(y) = T and statp(y) = (y :=
E :T). For y and z € dom(I') we say that y < z if y € FV(defr(z) U typer(z)).(For
convenience, we write ‘<’ instead of <p.) The relation < is the reflexive and tran-
sitive closure of <. The set depp(y) is {# € dom(I')|y < z}. Moreover, dep(V) is

U,ev depp(y), for V C dom(T').

Note that the set of variables depending on a set of variables V', includes V itself.
Next, we define a deletion operator del, erasing statements from a context, and
the removal operator ‘\’.

DEFINITION 5.3

For domain variable y of I' = A,y := E : T, A,, we define I — statp(y) as Ay, As.
For a set W of domain variables of I', we define delp(W) as I' — {J, oy statr(y).
For a context I' and a set V' C dom(I'), the removal operation ‘ \ ’ is defined by
I'\V = delr(depp(V)).

So, I'\V is the context resulting from removing all statements depending on the set
V' of chosen subject variables, from T'.
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As explained in section 4.1, knowledge states are incremental, in the sense that the
type of each statement should be meaningful given the statements preceding it. In
type theory this is expressed by legality given in Definition 2.23 and which satisfies the
important Context Lemmma 3.6. The removal operator applied to a legal context,
results in a new, legal subcontext:

LeEmMMA 5.4
Let T be a context and V' C dom(I"). Then I'\V' C I'. Moreover, if T" is legal, then
I'\V is legal.

PRrOOF. For the second part: Subsequently delete all stat(y) for y € depp(V) from
[, from right to left, using Strengthening Corollary 3.5.

The removal operator has the nice property that the result of subsequent applica-
tions to V and W is the same as applying it in the reverse order, or by applying it to
the union of V' and W:

LEMMA 5.5
If T is legal and V' and W are subsets of dom(I'), then (T\V)\W = (I\W)\V =
D\(Vuw).

ProOOF. By the definition of \ and basic set theory. [ |

5.2 The revision procedure

In this section we show how the removal operator can be used to regain consistency.
We assume that a person has originally a legal and consistent knowledge state I
He extends his context I' with new information zy : Ty, ...,x, : 1), obtaining '} =
e, - TY,...,x, : T),. Let’s assume that I'; is legal again, but that it has become
inconsistent: he can now construct an M such that I'y M : L. (Note: in this
subsection we forget about the ‘horizon’ of a person, i.e. the limited deduction power
of a human being; we consider this horizon in the following subsection.) We consider
two cases in both of which the proof M of falsity is no longer derivable on the resulting
context ['s:

e The person chooses to remove a single subject variable z occurring freely in M,
plus all statements depending on this z. Hence, he obtains I'y = I';\{z} as his new
context. Note that the chosen variable z may be the inhabitant of a statement in
the original context I or of a statement x; := E; : T; which is part of the extension.
In the latter case, depp (2) contains only variables occurring as subjects in the
extension. In the former case, however, depp (z) may contain subject variables of
I" as well as subject variables of the extension. Hence, the removal operation may
change the new information in both cases.

e The person chooses a non-empty set V of variables occurring freely in M and
obtains I'; = ['1\V as his new context. Note that by lemma 5.5, the removal of

V has the same effect as removing the separate elements of V', one by one, in any
order. (This also holds if V' is the set of all free variables in M)

The above does not guarantee that I's is consistent: it may be the case that the
person can still construct a proof of falsity, say M', on I'y. Then the person can
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repeat the removal operation with one or more free variables occurring in M’, and so
on obtaining a sequence of contexts I'1,I's, .. ., where each I';;; is a legal subcontext
of T being properly ‘smaller’ (i.e. contains fewer statements) than I';. It follows that
the sequence I'y, Ty, ... is finite, so that a context I',, which is consistent is finally
obtained. (In the extreme case I';, = g, but there is no proof of falsity on the empty
context ¢ by the consistency of type theory.) This implies:

LEMMA 5.6
Iterated application of the removal operation terminates resulting in a consistent
knowledge state.

In other words, it is a revision procedure. It is interesting to note that this iteration
can be summarized in a single application of the removal operation: Let’s call the
non-empty set of variables that the person chooses to remove in the transition from
[; to Tiy1, Vi (which can be a singleton set). Then I';1; = I';\V;. However:

LEMMA 5.7
Successively removing V; from T'; for i = 1,...,n — 1, leads to the same result as

removing the union of all Vs from I'y: Le. T, = T'\ U?;ll V;.
Proor. This is again a consequence of lemma 2. [ |

In this section we assumed that it is the person who makes the decision about which
statements to remove, and not the formalism. We gave arguments for this point of
view in section 4. However, in comparing our system with others in the literature we
will in section 7.4 discuss formal heuristics for making these decisions.

5.8 Rewsion with horizon

In the previous subsection we assumed that the person is ‘omniscient’ in the sense
that he is able to provide a proof of falsity at any time, if there exists one. This, of
course, is not realistic. For this reason we introduced in the beginning of section 4 the
notion of ‘horizon’ for the person. If we look at the revision procedure, the presence
of a horizon has important consequences.

Firstly, a knowledge state I' has only a limited number of consequences within a
given horizon. We formulate this as a theorem, provable by combinatorial arguments:

THEOREM 5.8

Given a context I' and a number h limiting the derivation depth of derivations on I'
(‘the distance to the horizon’), there is a finite number of statements derivable on I’
(modulo a-conversion).

Note that we do not consider the full deductive closure of I', which possibly cor-
responds with an ‘infinite horizon’, which is no horizon at all. For convenience, we
denote the finite set of derivable statements from context I' (the set of consequences
of I') within horizon distance h by Consegp(I).

COROLLARY 5.9

Given a context I' that is inconsistent within horizon distance h, there is a finite
number of inhabitants of falsity (‘proofs of falsity’) (modulo a-conversion). Le., there
are finitely many terms M such that M : L € Conseqp(T).
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By application of the revision procedure, statements are removed from the context I,
This will eliminate a (number of) proof(s) of falsity, but the question arises whether
there are new proofs of falsity on the revised (smaller) context. This is not the case:

THEOREM 5.10

If T'\V is the result of revising I' with respect to V', then there is no statement
derivable within horizon distance h on I'\V which was not already derivable within
horizon distance h on I'. Le., Conseqp(I'\V) C Conseqp(T).

PROOF. Note that T\V C T by lemma 5.4. For any two PTS-contexts A and A’ the
so-called Thinning Lemma holds: if A' C A and A'+ A: B, then A+ A: B. Hence
if T\V - A: B thenT'F A: B. However, if we regard the horizon distance, it might
still be possible that there ezists a statement A : B which is derivable on I'\V in at
most h steps, and on T' in more than h steps (due to extra steps needed to ’retrieve’
the premisses on the larger context). We assume, however, that the aziomatization
of Type Theory is such that the Start-rule allows any number of Weakenings. In that
case, a derivation of [\V + A : B can always be ‘copied’ into a derivation of T - A : B
with the same number of derivation steps. [ |

COROLLARY 5.11
The removal procedure does not allow the introduction of new proofs of falsity.

Corollaries 5.9 and 5.11 imply the following theorem, which says that we can always
reach a consistent context in one revision step:

THEOREM 5.12
Given an inconsistent context [ and a horizon distance h, there exists a set of variables
V such that ['\V is consistent within the same horizon distance.

PROOF. Take V' to be the set of all free variables occurring in all proofs of falsity
which can be derived on I' within horizon distance h. By Corollary 5.9, this set is
finite and by the definition of the revision procedure, none of these proofs of falsity
are constructable on T\V. By Corollary 5.11, there are no new proofs of falsity on
I'\V, hence T\V is consistent within horizon distance h.

6 Situating our approach

In this paper, we presented an approach to belief revision based on type theory. As
far as we know, this approach is new. In the setting of type theory, justifications
of beliefs are ‘first class citizens’, which is not the case in current approaches to
belief revisions. In this section we discuss the relations between our approach and
well-known approaches from the literature. We take [18] as our guideline.

6.1 Belief bases with justifications

By the methodological taxonomy of [18], our approach has these characteristics:

e Beliefs are represented as statements in type theory, a person’s belief state as a
type-theoretical context (section 4). The result of a belief change operation is
again a type-theoretical context (section 5.2).
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e The statements that are elements of the context representing a person’s belief
state, represent his explicit beliefs. Beliefs derivable from these statements are his
implicit beliefs (section 3.2). Contrary to standard practice, we assume the deduc-
tive powers of the person are limited by a deductive horizon and only statements
that are derivable within this horizon count as his implicit beliefs.

e Our theory does not prescribe how choices are made concerning what beliefs to
retract. It gives a set of candidates for retraction, but leaves the actual choice to
the person (Section 5.2). One can give heuristics for this choice (Section 7.4).

Gérdenfors and Rott mention four integrity constraints guiding the construction of
belief revision formalism:

o The beliefs in the data base should be kept consistent whenever possible. We adhere
to this constraint taking ‘consistent’ to mean: ‘consistent with respect to the
limited deductive powers of the person’.

o If the beliefs in the data base logically entail a sentence, then this sentence should
be included in the data base (‘deductive closure’). It will be clear from our earlier
comments (sections 4 and 5.3) that we do not subscribe to this point of view.
However, it is possible to explicitly include a derived belief (to be precise: de-
rived within the person’s horizon) in the knowledge state by means of a definition
(section 4.1).

e The amount of information lost in a belief change should be kept minimal. In
accordance with the fact that our theory says nothing about extra-logical factors
governing the choice of beliefs-to-be-retracted, there is no notion of minimality
inherent in our theory.

e In so far as some beliefs are considered more important or entrenched than others
one should retract the least important ones. In line with our previous comment, a
notion of extra-logical preference like entrenchment should in our opinion not be
part of a theory as it belongs to the realm of heuristics.

The choices we made above imply that we work with the so-called belief bases: the
knowledge state of a person is represented by a finite set of sentences, a context T.
The belief set of the person consists of his explicit beliefs (statements in I') and his
implicit beliefs (statements derivable on I' within the horizon, i.e. Consegy(I')). Note
that T' C Consegy(T): every explicit belief in the context I' is derivable on T', and is
hence also implicit. Therefore we can represent a person’s belief set by Conseqp,(T).

Since we choose to represent justifications for beliefs explicitly, as inhabitants, in
the knowledge state, our approach is closely related to what is called Foundations
Theory in the literature, see e.g. [17].

6.2 The relation with Foundations Theory

Foundations Theory is based on the principle that belief revision should consist in
giving up all beliefs that no longer have a satisfactory justification, and in adding new
beliefs that have become justified. This principle has a number of consequences:

e Disbelief propagation If in revising a knowledge state a certain belief is retracted,
not only this belief should be given up, but also all beliefs depending on this
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belief for their justification. Since our theory has an explicit representation of
justifications, this propagation can be captured syntactically, as was shown in
definition 5.2, by means of the relation <. Hence, our approach does not have
the drawbacks that are often associated with disbelief propagation, viz. ‘chain
reactions’ and ‘severe bookkeeping problems’.

e Non-circularity. Since beliefs can depend on other beliefs for their justification,
we should be careful that the dependency graph is well-founded, i.e. does not
contain circularities. In our approach such circularities cannot occur, since they
are ruled out by the well-formedness requirements for the type-theoretical contexts
(section 4).

e Multiple justifications. A belief may be supported by several independent beliefs.
The removal of one of those justifications does not automatically lead to giving
up the belief. This characteristic is reflected in our approach, where a belief may
have more than one inhabitant. Suppose that a person has two justifications for
the belief that A holds on his knowledge state I', for example: ' F M : A and
' N : A. Since the free variable sets of M and N may be disjoint, it may be
possible to retract the justification M of A, while retaining N and hence the belief
that A (see section 5.2).

There is a well-known problem in Foundations Theory, following from the hypothesis
that all beliefs must have a justification. This induces a distinction between beliefs:
some beliefs are justified by one or more other beliefs, but there must also exist beliefs
which are justified ‘by themselves’. These so-called foundational beliefs are considered
to be ‘self-evident’, they need no further justification.

In Foundations Theory, justification is a relation on the level of the beliefs. In
type theory, however, justifications are explicitly represented by terms inhabiting the
beliefs they justify. The distinction between foundational and other beliefs is reflected
in type theory in the structure of the term inhabiting the belief:

e Atomic justifications. If the term inhabiting the belief is a constant or a variable,
the justification cannot be further analyzed. This corresponds to the foundational
beliefs, but only to a certain extent: it does not imply that these beliefs are neces-
sarily self-evident. The atomic justification simply reflects the person’s decision to
adopt the belief in its own right, e.g. on the basis of an observation, communication
or an act of will. (See also section 2.)

e Composite justifications. If the term inhabiting the belief is a composite term, the
justification can be analyzed according to the structure of the term. These terms
occur in the context in definitions, e.g. in the statement y := E : T, where E is
a composite justification for 7. One can find the inhabitants of the other beliefs
supporting the belief that T', as the free variables occurring in E.

Thus the justification relation from Foundations Theory becomes a relation between
inhabitants of beliefs in type theory. This relation is captured by the dependency
relation < of definition 5.2.
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7 Comparing operations for belief change

Before we can compare the formal properties of our revision procedure with those of
the literature, we must formulate our equivalents of the three standard belief change
operations: expansion, contraction and revision.

e FExpansion: Adding a new sentence A to the belief base K, regardless of the con-

sistency of the resulting belief base. The result is usually denoted by K + A.

In our type-theoretical setting, expansion is just addition of either a statement

or a definition to the context: I' changes into I';z : A (with z fresh), or into

[z := M : A. In the first case new information originating from outside is added,

in the second case a consequence of the belief base is made explicit by adding it

to the context.

Note that, in both cases, the type A must already be well-formed with respect

to ', ie. T'F A : s with s a sort in the set of sorts S of the type system (cf.

sections 3.2 and 4.1). In the second case, x := M : A may only be added when

I'F M : A is derivable. This again gives a well-formedness guarantee.

NoTATION: The type-theoretical analogue of Expansion will be denoted by

Expy.—pn.4(T;T7) if the expansion of I with the statement or definition z := M : A

yields I''. Hence, I" = ',z := M : A.

Contraction: Retracting some sentence A from the belief base K, as well as sen-

tences depending on A (without adding new beliefs). This is denoted by K 2 A.

In type theory, retracting has to be done with statements instead of formulas.

Moreover, given a context I' and a horizon depth h, there can be several terms

inhabiting a belief A that is to be retracted. There is a set of terms ¢ such that

t: A € Conseqy(T'). If we take retraction to mean that no statement M : A

should be derivable any more, we need a retraction procedure similar to the one

described in section 5.2. That is, the person iteratively chooses variables occurring
free in such terms ¢ inhabiting A and removes them from T, in order to eliminate

evidence for A.

Formally, we can say that there is a set V4 := FV{t|t : A € Consegy(I')}. The

variables chosen by the person together constitute a subset V' of V4 (cf. Lemma

4). Retraction of A with respect to I' then amounts to a removal I'\V with V

chosen such that =3;(t : A € Conseqp(T\V)).

Note: In its generality, this procedure always gives the desired result. There is,

however, a slight complication: there are sentences which we never want to be

contracted, for example tautologies. How we can prevent in type theory that this

kind of sentences can be retracted, is discussed in section 7.2.

NoTaTION: The type-theoretical analogue of Contraction is denoted by Ctr 4 (I'; '),

if I is the result of contracting I’ with respect to A. In case A ¢ Conseq,(T), we

take I to be I.

e Revision: Adding a new sentence A to the belief base K while maintaining con-
sistency, by (possibly) deleting a number of sentences in K. This is denoted by
KxA.

In the standard account, revision is related to contraction and expansion by means
of the Levi-identity: K x A = (K =-A) + A. This implies, that for belief bases,
revision can be defined as a two step procedure:
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1. Contract by - A 2. Ezxpand by A
We can match this so-called internal revision [21] via the two type-theoretical
operations defined above:

1. Ctr_4(T; 1) 2. Expy.—p.4(0;T)
Note that this procedure will always lead to a context (I'') containing the new
information (z := M : A), whereas the procedure described in sections 5.2 and
5.3 did not, since there it was possible that (parts of) the new information were
removed as well, if this information contributed to the inconsistency. In litera-
ture, this alternative approach is known as ‘semi-revision’. In section 7.3 we will
show that the type-theoretical version of revision developed in this paper closely
resembles the semi-revision operation consolidation of [21]. Anticipating on this,
we introduce the following.
NotaTiON: The type-theoretical analogue of Revision (i.e., Contraction by —A
and Expansion by A) is denoted by Rev,.=p.4(F; ), if I' is the result of revising
I' with respect to = := M : A.

Finally we note that the operations of expansion and contraction, and hence re-
vision, described above can also be executed with new information consisting of a
sequence of statements (xz; := M; : Ay,...,x; := M; : A;), rather than a single
statement (z := M : A). From a type-theoretical point of view, this is a natu-
ral generalization. Moreover, experiences obtained in formalizing the addition of
outside-information (as described in section 4.1) to type-theoretical knowledge states,
suggests that such information generally takes the form of a sequence of statements.

Now we have given our equivalents of the standard belief change operations, ex-
pansion, contraction and revision, we give a more detailed comparison between the
two approaches in order to position our approach with respect to the literature. We
concentrate on the results of Gérdenfors [18] and Hansson [21].

7.1 FExpansion

In the standard approach, expansion is the set-theoretical addition of a sentence to set
of propostions representing a person’s belief base. In the type theoretical approach
it is the addition of a statement to the context representing a person’s belief base.
As explained above, the type theoretical addition requires that the new statement
is well-formed with respect to the existing context, which ensures that the added
information is meaningfull to the person. Assuming that this the case, as is usually
done, expansion behaves the same in both approaches.

7.2 Contraction

We now look at the rationality postulates for contraction as they are reformulated
for belief bases in [18]. As already remarked earlier, our approach is more fine-
grained than that of Gérdenfors, because we deal with specific proofs of propositions,
whereas the standard approach does only considers (sets of) propositions. Hence,
when Gérdenfors contracts with respect to a proposition A, from our perspective,
he implicitly quantifies over all proofs of A. This difference also plays a role in the
formulation of the postulates themselves.
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In some of the Gérdenfors postulates, conditions occur of the form F A and I/ A.
Type-theoretically, we take these to state that there ewists respectively doesn’t exist
a proof object for the type A within the horizon. Moreover, the fact that A is or
isn’t a tautology, suggests that this proof object can (or cannot) be constructed on
the empty context . However, in type theory the type A itself must be well-defined
before we can think about the construction of inhabitants of A. Hence, we need some
initial context I';,;; which ensures the well-definedness of all propositions: + A is
translated into Jps (Tinge = M : A) and I/ A into =3ps (Tinie E M : A).

Of course, statements in the initial context should not be contracted in a revision
process, since this initial context acts as a kind of ‘axiom base’ for the well-definedness
of the propositions. The above contraction procedure Ctr4(L;I"), will not consider
variables inside [';,;, since the statements of I';,;; are at the wrong level of typing to
have their subjects appear in terms inhabiting propositions (cf. section 2).

Note that if A is a tautology, there exists a proof object in which no free variables
occur: Aps(Tine H M : A) where V4 = (). Since M cannot be blocked by removing
variables in V4 from the context, we cannot contract over tautologies. On the one
hand this is a good thing: one does not want to lose tautologies. On the other hand,
this has as a consequence that Contraction becomes a partial operation, which may
be unsuccessful!

Below we present the Gardenfors postulates for belief bases as given in [18], followed
by their type-theoretical translation and a discussion of their validity. The original
postulates quantify over all sentences A and belief sets H, their translations over all
types A and contexts I’ (where I' D T';,;). In addition, the postulates are stated using
Cn(H), the deductively closed set of consequences of H (i.e. with infinite horizon). In
the translation of e.g. Gérdenfors’s (H<3)-postulate we take A ¢ Cn(H) to mean that
there exists no proof object of type A (within the horizon) on the person’s context,
—3n (N : A € Conseqy(T)).

(H=1) H= A is a belief set.
Its translation is:
If Ctr(T;T), then I' is a well-formed context.
This holds: Assume Ctr4(;T7), then there exists some set V' C Vyu, possibly
empty, such that I'\V = I'". By Lemma 1, I is a well-formed context.
(H22) HSAC H.
Its translation is:
If Ctra(0;I7), then TV CT.
This follows from the definition of the removal-operation (definition 5.2).
(H23)If A¢ Cn(H), then HS A = H.
Its translation is:
If -35 (N : A € Conseqy(T)) and Ctra(T;T), then T =T,
This holds: Assume —3In(N : A € Conseqn(I')) and Ctra(T';T”) and suppose
' Z I'. Then (see H=2) I' is a proper subcontext of I'. Hence there is some
variable z occurring in I'" as a subject, such that z € V, where V is the set
of variables chosen to be removed and z € V not in I''. Hence z must have

occurred free in some term N such that I' = NV : A within the horizon, but then
In(N : A € Conseqp(T)). Contradiction.
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(H=4)If I/ A, then A¢ Cn(H2A).
Its translation is:
If Ctra(L;T7), then —=3p (M : A € Conseqp(T)).
This postulate holds by our definition of contraction.

Note that the condition I/ A (A’ is not a tautology) is implicitly present in our
translation, because this is implied by the condition C'tr4(T;T"). In fact, if A is a
tautology, then A has a proof object, but this proof object has no free variables.
Therefore the set Vy is empty and hence Contraction of A as described before is
not possible (there is no I such that Ctr4(I;TV)).

(H=5) HC (H=A)+ A.
Its translation is:
If Ctra(I;IY), then T C TV, 2 ¢ A.
Note that we have to add a proof object z for A. We could not use a definition
z := M : A, since this implies that I' + M : A for some M, which contradicts
Ctra(T;T7).
This postulate, which has a controversial status in the literature (in fact: base
contractions generally violate it), does not hold here. A simple counterexample is
the following: Take I' = [0, : B — A,y : BF zy : A, then Cirs (T, T'), where
' = Finit; but I g Fim’t; z: A.

(H26)If - A< B, then H2 A= H=*B.
Its translation is:
3Nt N : A& B) and Ctru(I; 1) and Ctrg(LT;T"), then IV =T,
This postulate does not hold in general, but there is a case in which it holds, as
we explain below.

First, observe that in type theory we have to do work to transform proofs of A
into proofs of B (and vice versa) by means of the proof N of the equivalence of
A and B which contains subproofs N; for A -+ B and N, for B — A. Then for
example: If '+ M : A for some M, then I' - Ny M : B (and vice versa).

We call M a direct proof of A and N1 M an indirect proof of B. Note that
transforming a direct proof of A into an indirect proof of B involves one extra
proof step. Hence, this can lead to a situation in which the direct proof is within
the horizon, whereas the indirect proof is not.

Disregarding this horizon problem, the postulate still does not hold in general: in
order to block all proofs of B, all proofs of A also have to be blocked. Hence, a set
V' will have to be chosen which is a subset of the union of the variables occurring
free in all proofs of A and all proofs of B, i.e., V C (V4 UVg). However, it might
still be possible to find different subsets V; and V5 which both block all proofs of
A and B.

Example: I' = T,z : C - Ay : C,z: D - Bu:D,and TN : A& B.
Then V4 =V = {z,y,z,u}. Now take Vi = {z,2} and Vo = {y, u}. It is easy to
check that both V; and V5 block all proofs of A and B. If we take I'' = T'\V} and
I'" =T'\Vs, then Ctra([;TY) and Ctrg(L;T"), but IV £ T,

However, the postulate does hold if we use the ‘safe contraction’ described in
section 7.4, i.e. take Vi = Vo = V4 = Vg, then I =T,
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Here we end our discussion of the basic postulates H<1 to H26 for base contraction.
There exist two more (non-basic) postulates, H27 and H28, concerning conjunctive
formulas A A B. We do not discuss those here for two reasons: as remarked above,
the type-theoretical notion of contraction can easily be generalized to a sequence of
statements, so that there is no need to give a special status to the A-connective;
moreover, it would require us to go into the technical details of coding conjunction in
type theory, which does not serve the purpose of this paper.

Concluding, as in most approaches to base revision in the literature, postulates
H<=21 through H<4 are satisfied in the type-theoretical translation, but H<5 does not
hold. In addition, the type-theoretical equivalent of ‘safe contraction’ satisfies H < 6.
This exactly reflects Theorem 5.4.1 of [18].

7.8 Revision

In the standard account of revising a belief base K with new information A, the new
information is always accepted and beliefs in K are abandoned to maintain consis-
tency. Objections have been raised to this account, on the grounds that too much
priority is given to new information [21]: at each stage, new information is completely
trusted. However, this complete trust is only temporary: once the new information
is incorporated in the belief base, it is itself susceptible to abandonment when in the
next stage even newer information becomes available. This seems awkward.

We agree with these objections. Moreover, this emphasis on ‘new information’ has
a number of additional undesired consequences from our point of view. Firstly, the
new information always has to be accepted as a whole, whereas in our approach it is a
possible outcome of revision that the person accepts only part of the new information.
The standard account is also too absolute in another respect: because of the unlimited
deductive power assumed in this approach, the person can detect beforehand whether
a piece of new information is inconsistent with his current belief base, and hence
whether revision should be carried out. Under the more realistic assumption of the
deductive horizon, it is not possible to do this consistency check once and for all:
inconsistencies, and hence the need for revision, may arise as proofs of falsity turn
up inside the horizon. Finally, thinking of standard belief revision in the setting of
communication, a person would be forced to accept every utterance by his dialogue
partner(s), even if accommodating this information requires a major reconstruction
of his own belief base. Therefore, new information and information in the belief base
should be treated equally by the revision operation.

Revision procedures which do not necessarily accept the new information are known
in literature as mon-prioritized revision procedures. Hansson was one of the first to
consider this kind of belief revision [20], and in recent years a number of differ-
ent non-prioritized approaches have been developed, see [22]. For belief bases, a
non-prioritized form of revision called semi-revision can be specified as a two-stage
procedure [21]:

1. Expand by A

2. Make the belief base consistent by deleting either A or some original belief(s)
Compared to the revision procedure formulated at the beginning of section 7, the
order of the steps is reversed* and the second step has been modified. The operation

4Reversing the order alone yields ezternal revision, [21]
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performed in the second stage is called consolidation, [21], and can be carried out by
contracting over falsehood. In our approach, the procedure looks like:
1. Expe.=pr.a(T;T) 2. Ctr (T';T")
In other words, revision and contraction are related by the following identity:

Revg.—pra(D; 1) = Ctry (T2 := M : A;T)

This is exactly the revision procedure described earlier in sections 5.2 and 5.3. First
the new information, one or more statements, is added to the context I', then a
number of statements from the expanded context is removed to block the construction
of inhabitants of falsity.

There is a close resemblance between our revision procedure and that of [21], called
kernel consolidation. This correspondence is given in Appendix A of this paper.

7.4  Heuristics

What we have done so far does not add up to a theory of belief revision in the tradi-
tional sense. We have shown how a person can find the suspect beliefs when his belief
state has become inconsistent, and how he can remove a number of the suspects to
regain consistency, but our revision procedure does not tell the person which suspects
to remove. Standard approaches have a parametric selection mechanism which em-
bodies some notion of “rational choice” between the various possibilities for revision
in any given situation. Given a value for their parameters they select one “optimal”
revision outcome. They usually introduce extra-logical structure in the belief state,
and are computationally unwieldy. The underlying view is that of a solitary reasoner
who has to solve the inconsistency in splendid isolation, using his infinite reasoning
powers and looking only at the beliefs in his (infinite) belief state. Only recently,
papers have started to appear that question some of these idealizations, and in which
belief change operations are defined for resource-bounded agents, see e.g. [10]. Our
concern is with agents who have finite belief states (including justifications), finite
computational resources, and who have access to the world by means of observation
and communication. Such agents have possibilities to (re)evaluate the various sus-
pects, by performing observations/tests or by communicating with other agents, and a
theory of belief revision cannot and should not prescribe how they make their choices.
Strategies used by an agent to make these choices are not part of the theory, if they
can be captured formally they could be used as heuristics on top of the theory. In this
section, we briefly discuss how some selection mechanisms from standard approaches
mentioned in [18] fit into our account as heuristic principles.

In so-called (partial) meet contraction, the idea is that the optimal contraction or
revision is the one that requires the smallest number of insertions and/or deletions in
the belief state. These contraction operations were originally defined for deductively
closed belief sets, rather than belief bases. They start from the maximal subsets of a
belief set that do not imply the proposition that is to be removed. In general, there
can be quite a few of these. Picking an arbitrary maximal non-implying set as the
result of the operation (choice contraction), will often yield a new belief set that is
too large. In meet contraction, an intersection of maximal non-implying sets is taken,
to obtain a new belief set based on the beliefs the non-implying sets have in common.
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Taking the intersection of all maximal non-implying sets (full meet contraction) can
result in an empty set. Alchourrén, Gérdenfors, and Makinson introduced partial
meet contraction [2] in which a selection function picks out a class of “best” or “most
interesting” maximal non-implying subsets. These selected sets are then intersected
to obtain the new belief set. (For a fresh look at (full) meet contraction for belief
bases, see [14]).

The minimality criterion can be applied in the type theoretical approach. Given
one particular proof of inconsistency, I' = M : L, removing any one of the statements
of which the subjects occur free in M is sufficient to block this particular proof.
However, these statements may have different numbers of statements depending on
them in I', and so one could prefer to remove the statement with the least number
of dependents to minimise the deletions from the belief state. In cases where more
than one proof of falsity has to be blocked, a “blocking” subset has to be chosen from
the set of all variables occurring free in these proofs. When there is more than one
subset that does the job, one could again prefer the subset with the smallest number
of statements (possibly taking the number of dependent statements into account).

As in the standard approach, this criterion will not always yield a single optimal
solution. It is possible to end up with two or more minimal sets of statements whose
removal will restore consistency. To overcome this indeterminism, additional struc-
ture is introduced in the belief state. The central idea in this construction is known
as epistemic entrenchement: “not all sentences that are believed to be true are equal
value for planning of problem-solving purposes, but certain pieces of knowledge and
beliefs about world are more important than others when planning future actions
conducting scientific investigations or reasoning in general” [17]. In performing con-
traction or revision, the beliefs that are given up should be the ones with the lowest
degree of epistemic entrenchement. Although in our opinion such an ordering of epis-
temic entrenchement of the beliefs in the belief state cannot be given once and forall
independent of the current goals and activities of the agent performing the contraction
or revision, such an ordering could in principle be added to the context representing
the agent’s belief state. Note that the imposed entrenchment ordering has to respect
the dependency relations between the beliefs in the context: if a belief y := N : B
depends on a belief z := M : A, then y := N : B should not be epistemically more
entrenched than z := M : A since removing z := M : A without removing y := N : B
will result in a context which is not well-formed.

Another idea that can be applied, at least in spirit, in the type theoretical setting
is that of safe contraction: a proposition B is safe with respect to a proposition A
if it cannot be blamed for the derivability of A. To contract over A, all propositions
that are not safe with respect to A have to be removed. This approach, introduced
by Alchourrén and Makinson [3], starts from the so-called “entailment sets”: minimal
subsets of the belief state that entail the proposition to be removed. An element B
of the belief state is said to be safe with respect to the proposition A if B is not
a minimal element of any entailment set of A. The minimality is determined with
respect to an acyclic ordering of the beliefs in the belief state, expressed by means
of a relation ‘<’. This ordering can be seen as a form of the epistemic entrenchment
described above, with A < B meaning that A is “less secure, plausible or reliable”
than B.

There is an obvious way to translate this idea to our approach to revision: a belief
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x := M : A is safe if it cannot be blamed for the fact that a proof object for L can
be constructed on the belief state I'. The simplest interpretation of “being to blame”
for a statement in context would be “to have its subject appear as a free variable in a
proof object for L”. Hence the simplest form of safe contraction would be to remove
all statements of which the subjects appear free in a proof object for L and their
dependents from the context. However, this does not suffice if all statements that are
removed themselves depend upon earlier statements in context, since the proof object
for L could be rebuilt from these “ancestors”. One way around this problem, is to
use the construction of a so-called kernel set described in the Appendix. For a given
derivation horizon and a given context, this construction inductively builds the set of
minimal falsity implying subsets of statements in I'. This kernel set can reasonably be
said to contain all statements that are “to blame” for the inconsistency of the context
(within the horizon), hence we can define safe contraction as the removal of all these
statements and their dependents. Although this will yield a unique solution, it will
usually not be minimal in terms of the number of statements that are removed.

8 Concluding remarks

Since its birth in 1903, type theory has proved to be a useful medium for the de-
sign and implementation of deductive systems, programming languages and theorem
provers. This paper explored the use of type theory to provide a deductive approach to
belief revision which can be easily implemented. The starting idea is that type theory
enables explicit representations of justifications in belief revision. With the represen-
tation of beliefs as type theoretical statements and belief states as type theoretical
contexts, we showed that the presence of justifications makes it easy to identify the
beliefs that cause inconsistency of the belief state (section 4.2). Their presence also
greatly simplifies the handling of dependencies between beliefs (section 5.1). With
respect to literature, our initial assumptions put us in the area of foundations theory
for belief bases. However, our account does not suffer from the drawbacks usually as-
sociated with foundations theory such as problems with disbelief propagation, circular
justifications, and multiple justifications for the same belief (section 6.2). The opera-
tion of belief revision that naturally arises from our approach is one of non-prioritized
revision: new information is not automatically completely trusted (section 7.3).

The fact that our approach is deductive, and that we do not require that our theory
of belief revision itself selects which beliefs have to be removed, makes its applicable
to agents with limited computational resources (see appendix). This holds indepen-
dently of the strength of the logic in which the belief change operations are cast:
the mechanisms that were used to represent justifications and dependency relations
between beliefs are at the heart of type theory, making our approach applicable to
a large family of type systems. Given the well established connections between type
theory and logic, this means it is applicable in a wide range of logics. For instance, it
can be applied in each of the Pure Type Systems from the well-known Logic Cube [4],
which corresponds to logics ranging from minimal propositional logic to higher order
predicate logic. Our immediate goal is to use the extensive research in implementa-
tions of logics based on type theory in order to provide a working automated system
of belief revision based on the approach of this paper.
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A Kernel consolidation

Our revision procedure is particularly close to what Hansson calls kernel consolidation. This form of
consolidation is based on the idea that a subset of sentences in the knowledge base K implies falsity
if and only if this subset contains some minimal falsity-implying subset of K. Hence the consistency
of K can be restored by removing at least one element of each minimal falsity-implying subset of K.
Minimal falsity-implying subsets are called kernels, they are defined as follows.

DEFINITION A.1
A subset X of sentences from a belief base K is a kernel if:
1.XCK

2. 1 € Cn(X), and

3.If Y C X, then L ¢ Cn(Y)
The set of all kernels of K is called the kernel set, denoted by K [] L.

The sentences of K that have to be discarded to restore consistency, are selected by an incision
function:

DEFINITION A.2

An incision function o for K is a function such that:
L.o(K[IL) CUK]TL)

2.If X € (K[[L), then XNo(K[[L)#D

DEFINITION A.3
Let o be an incision function for K. The kernel consolidation ~, for K is defined as follows:

~o L=K\o(K[]1)

In the typetheoretical approach, falsity-implying subsets of the context I' are sets of statements
of which the subjects occur free in a proof object inhabiting L, i.e. {statp(y)|y € FV(M)}, where
M is a term such that I' H M : L. If we call this set of statements for a given proof object M
¢SM> (‘suspects’ in M), we can see that this set fulfils the first two criteria for kernels given in
Definition A.1:

.sMcr
2. Tinit,SM + M : L, that is: L is a consequence of SM (where I, contains the well-typedness
information needed for the derivation)

However, such a falsity-implying subset S is not necessarily minimal in the sense required for
kernels (the third criterion): there may exist another proof object N such that I' - N : L and
SN c S§M. This is due to the fact that proof objects code an entire proof for the proposition
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represented by their type, including proofs that contain ‘detours’, sequences of steps that could have
been omitted in the proof. Such detours can invoke premises that are not really needed to prove
the proposition, resulting in non-minimal subsets. A very simple example of this is the following:
take I' = I'jpip, ¢ : A,z A - Ay : A — L, then there are at least two proof objects inhabiting
falsity, I' - y(zz) : L and T' - yz : L. Clearly, the falsity-implying subset for the first proof object
is not minimal, the second proof object is constructed without using z : A — A. Although in typed
A-calculus some detours can be eliminated by performing reductions on proof objects®, we cannot
in general prevent a person from having a belief state on which non-minimal proofs of falsity can be
derived.

Moreover, in discussing the minimality of falsity-implying subsets, the limited deductive powers
have to be taken into account. Since the person can only construct proofs of < h steps, where h
is the horizon distance, we can at best talk about falsity-implying subsets which are minimal with
respect to these proofs. Given a subset SM for some inhabitant M of falsity, there may exist a
set SN such that SV C SM where the proof object N for falsity cannot be constructed within the
horizon h. Hence, this smaller set SV should not be considered by the selection procedure.

The assumption of horizon enables an inductive procedure for the constructing the kernel set
F]_[h 1, the set of all minimal falsity-implying subsets within the horizon. For a given context T,
one systematically generates all derivations of length zero,then all derivations of length 1, then all
derivations of length 2, ..., up to all derivations of length h. Among each layer of derivations,
one picks out all derivations of an inhabitant of falsity. By comparing the sets of free variables of
these inhabitants, the minimal falsity-implying subsets for that layer can be found, i.e. for the i-th
layer (1 <4 < h) all FV(M) such that ' F¥ M : L, and there is no N such that I' = N : L and
FV(N) C FV(M). The sets S™ that are minimal for a layer are then added to the kernel set I' []* L
if there is no S already in F]_[i L such that SN C SM. In other words, before adding the sets
that are minimal in a layer it is a checked whether they are also minimal with respect to sets from
previous layers.

Given the inductively constructed kernel set F]_[h 1, the type theoretical analogons of incision
function and kernel consolidation can be defined exctly as given in Definitions A.2 and A.3, but
for the replacement of K [[ L by I'[[* L. Note that in the newly attained definition the slash in
I\o(I'[T* L) stands for the type theoretical removal operation defined in section 5.1, rather than
the standard set theoretical operation in definition A.2, i.e. not only the statements selected by
the incision function (o(I'T[* 1)) are removed from I’ but also all statements depending on them
(depp(o(I'[I* L))). Since dependencies are not considered in the setting of Hansson, we need to be
able to distinguish between those two kinds of statements. The notion of ’independence’ can easily
be defined as follows:

DEFINITION A.4
A statement x := M : A is an independent member of the set of statements A iff there is no statement
z:= N : B € A such that & € depx ().

In [21], kernel consolation is characterised by a theorem linking its construction to a number of
postulates. We restate this theorem for type theoretical knowledge states:

THEOREM A.5

An operation > defined on type-theoretical knowledge states is an operation of kernel consolation iff
for all contexts I':

1. (T’ >) is consistent (consistency)

2. (I' >) C T (inclusion)
3.If zx := M : A is an independent member of I' — (I" >), then there is IV such that IV C T, I is
consistent and I,z := M : A is inconsistent (core-retainment).

PRrROOF. As z is independent, the proof is analogous to that of Hansson. There are two cases in
the proof where the independence is needed to ensure that a statement is an element of o(I' [[* L)
rather than merely an element of depp(o(I'[[* L)): in proving core-retainment in the direction

5Sometimes a term representing a non-minimal proof can be [-reduced to a minimal one, since - reduction
corresponds to cut elimination: take I' = I,z : A,y : B,z : A —» L,and M = (((Au : A.(Av : B.u))z)y)z : L,
then the L-implying subset SM s {z: Ay: B,z: A — L1}. After performing (-reduction twice, we find the
normal form of M which is #z. Now {z : A,z : A — L1} is a minimal L-implying subset.
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from construction to postulates, and in proving that o is an incision function in the direction from
postulates to construction. |
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