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2 Formalizing Belief Revision in Type Theorytheory, and not onsidered at all in oherene theory.However, experiene in the past deades shows that when building automated sys-tems and theorem provers, expliit representation is absolutely neessary. This is thease for example in the theorem prover Automath (for automating mathematis, [31℄)where de�nitions (the heart of mathematis) are made expliit. This is also the asein the implementation of programming languages where ontexts and environmentsare made expliit. It turns out also that treating justi�ations expliitly (hene as�rst-lass itizens), allows for a dedutive perspetive of belief revision whih an beautomated.In this paper, we explore belief revision for belief states in whih justi�ationsare �rst-lass itizens represented expliitly. Our motivation for investigating beliefrevision along these lines stems from working on knowledge representation in PureType Systems [4℄ in the DenK-projet [9℄. Type theory was hosen due to its exellentsuess in the �eld of theorem proving (Automath [31℄ and Coq [5℄) and programminglanguages (ML [30℄). See also [6℄ where type theory has been shown to be usefulfor knowledge representation. In the DenK-projet a formal model was made of aspei� ommuniation situation, and used to implement a human-omputer interfae.Both in the model and in the system, belief states of agents were formalised as typetheoretial ontexts. This means that an agent's beliefs are represented in a binaryformat, where one part is the proposition believed by the agent and the other thejusti�ation the agent has for this belief. Both parts are syntati objets in theirown right, and an be alulated upon by means of the rules of the type theory. Thisway of representing beliefs turns justi�ations into �rst-lass itizens, and proved tobe very fruitful for the purposes of the projet.At that time mehanisms for belief revision were not investigated or implemented,but it beame lear that given this formalisation of belief states there is a straight-forward dedutive approah to the problem: sine every belief is aompanied by itsjusti�ation (and the rules of the alulus operate on both), every inonsisteny thatsurfaes in the agent's belief state has its own (omplex) justi�ation ontaining thejusti�ations of the beliefs that together ause the inonsisteny. This makes it easyto identify and remove the \suspets" among the beliefs in the agent's belief state.Although, tehnially speaking, this is a diret onsequene of the so-alled Propo-sitions As Types-priniple (f. setions 3 and 4), this simple idea seems not to havebeen explored before. We feel that this is of a more general interest for two reasons:1. Our type theoretial ase study shows that expliitly represented justi�ationshave lear advantages: a number of drawbaks traditionally assoiated with foun-dational approahes disappear. As suh, it may serve as a preursor to a moregeneral aount in the setting of Labelled Dedutive Systems [15℄, of whih typed�-aluli are a simple ase.12. It may ontribute to a more omputational aount of belief revision, one whihis appliable to agents that have �nite information and �nite reasoning powers.In developing the idea, we will ome aross other well-known issues in this �eld ofresearh. For instane the question whether belief states should be taken to be log-ially losed sets or rather a base set of beliefs whih is not losed under logial1Note that in the onlusion, [16℄ disusses the possibility of a general theory of inonsisteny where an aountof belief revision would fall out as a speial ase. However, as far as we know, this general theory of inonsistenyin LDS has not yet been materialized.



Formalizing Belief Revision in Type Theory 3onsequene [19℄, and the question whether an agent should always aept new in-formation (prioritized versus non-prioritized revision [21℄). In addition, we questiona number of assumptions that are traditionally made suh as the assumption thatan agent has in�nite reasoning powers, and that an agent has to solve the revisionproblem \in splendid isolation", i.e. without going bak to his soures of informationvia observation and ommuniation.The paper is strutured as follows: in Setion 2 we review type theory and itsuntyped basis (the type-free �-alulus), the propositions-as-types priniple and in-trodue the extension of type theory with de�nitions that will be used for beliefrevision. In Setion 3, we explain how belief states an be aptured in type theory.Setion 4 shows how type theoretial belief states develop as new information beomesavailable, and gives an informal statement of the problem of revision in type theory.This aount of type theoretial revision is formalised in Setion 5. In Setions 6 and7 we situate our approah with respet to standard approahes from the literature,and make a omparison on the level of belief hange operations. As it turns out, ourrevision proedure is partiularly lose to the so-alled onsolidation operations. Thisis shown in Appendix A. We onlude in Setion 8.2 Type theory2.1 Informal introdutionJudgementsThe basi relation in type theory is the judgement� ` a : Twhih an be read as `term a has type T in ontext �'. Here `a' and `T ' are bothformulas written aording to a well-de�ned syntax (on the basis of �-alulus). Theexpression a : T is alled a statement , term a is the subjet of the statement. Onealso says that term a is an inhabitant of type T .The ontext � is a list of statements with variables as subjets, e.g. x1 : T1; : : : ; xn :Tn. The above judgement an then be read as follows: \If x1 has type T1, : : :, andxn has type Tn, then term a has type T". Note that a may ontain x1, : : :, xn, so adepends on x1 to xn. The set fx1; : : : ; xng is alled the domain of �, or dom(�).StatementsThe intuitive notion `has type' has a diret ounterpart in naive set theory, viz. `iselement of'. For example, onsider the statement `a : N' ('term a has type N').Assuming that N is a symbol representing the set of natural numbers, this statementan be interpreted as `a 2 N' ('the objet represented by a is element of the naturals').The notion of having a type, however, is more general than the notion of set-theoretial elementhood. This is beause a type T an represent not only some kindof set, but also a proposition. In the latter representation, the statement a : Texpresses: `a is (a term representing) a proof of the proposition T '. One speaks of`propositions as types and proofs as terms' (together abbreviated as PAT ) in orderto emphasize this speial usage of types. Setion 2.2 below gives more details.



4 Formalizing Belief Revision in Type TheoryThe advantage of PAT is that proofs belong to the objet language, not the meta-language. That is, proofs are `�rst lass itizens' in the syntatial world of typetheory. This, ombined with the strength of the standard �-alulus operations,makes type theory a powerful mehanism.ContextsThe ontext � in a judgement � ` a : T ontains the `prerequisites' neessary forestablishing the statement a : T . A ontext � is a list of statements with distintvariables as subjets, like x1 : T1; : : : ; xn : Tn. A ontext statement xi : Ti anexpress several kinds of prerequisites, the simplest being:1. xi is an element of the set Ti,2. Ti is an assumption (a proposition) and xi is its atomi justi�ation.However, in type theory there are di�erent `levels' of typing: a type an have atype itself. Statements expressing the typing of types are onerned with the well-formedness of these types. For the Ti ourring in 1. and 2. above, suh statementshave the form:1. Ti : set, to express that Ti is a well-formed formula representing a set,2. Ti : prop, to express that Ti is a well-formed formula representing a proposition.The last-mentioned statements an also be part of a ontext in the speial ase that T1and T2 are variables. So a ontext ould look like: T1 : prop; T2 : set; x1 : T1; x2 : T2(to be read as: \let T1 be a proposition, T2 a set, x1 a justi�ation for T1 and x2 forT2"). The terms set and prop are examples of so-alled sorts , prede�ned onstantson whih the type system is based. Every type system has a spei� set of sorts,whih we denote by S.Note that the statements in the ontext are ordered : �rst arbitrary set T1 andproposition T2 are proposed, before their inhabitants x1 and x2 are introdued. Thisis a general priniple in ontexts: every variable (exept the sorts) used in a type mustbe introdued as the subjet of a preeding statement. As a matter of fat, a similaronsideration applies to judgements : in � ` a : T all variables and (free) onstantsused in a and T must be introdued as subjets in �.2.2 PAT: Propositions As TypesThe idea of pat originates in the formulation of intuitionisti logi where frequentlyourring onstrutions in intuitionisti mathematis have a logial ounterpart. Oneof these onstrutions is the proof of an impliation. Heyting [24℄ desribes the proofof an impliation a ) b as: Deriving a solution for the problem b from the problema. Kolmogorov [28℄ is even more expliit, and desribes a proof of a ) b as theonstrution of a method that transforms eah proof of a into a proof of b. Thismeans that a proof of a) b an be seen as a (onstrutive) funtion from the proofsof a to the proofs of b. In other words, the proofs of the proposition a ) b formexatly the set of funtions from the set of proofs of a to the set of proofs of b. Thissuggests to identify a proposition with the set of its proofs. Now types are used torepresent these sets of proofs. An element of suh a set of proofs is represented as



Formalizing Belief Revision in Type Theory 5a term of the orresponding type. This means that propositions are interpreted astypes , and proofs of a proposition a as terms of type a.PAT was, independently from Heyting and Kolmogorov, disovered by Curry andFeys [13℄. Howard [25℄ follows the argument of Curry and Feys [13℄ and ombines itwith Tait's disovery of the orrespondene between ut elimination and �-redutionof �-terms [32℄. Howard's disovery dates from 1969, but was not published until 1980.Independently of Curry and Feys and Howard, we �nd a variant of PAT in AUT-68, the�rst Automath system of De Bruijn [31℄. Though De Bruijn was probably inuenedby Heyting, his ideas arose independently from Curry, Feys and Howard. This anbe learly seen in Setion 2.4 of [8℄, where propositions as types (or better: Proofs asterms) was implemented in a di�erent way to that of Curry and Howard.The Propositions as Types and Proofs as Terms (PAT) priniple has opened thepossibility to use Type Theory not only as a restritive method (to prevent paradoxes)but also as a onstrutive method. Many proof hekers and theorem provers, likeAutomath [31℄, Coq [5℄ and LF [23℄, use the PAT priniple (see [29℄ for more details).\Proofs as terms" already suggests an important advantage of using type theory asa logial system: In this method proofs are �rst-lass itizens of the logial system,whilst for many other logial systems, proofs are rather omplex objets outside thelogi (for example: derivation trees), and therefore annot be easily manipulated.The fat that PAT was disovered independently by many di�erent people, and itsuse in various logial frameworks and theorem provers, is an evidene to the usefulnessof suh notion in logi and ompoutation. For our purpose of belief revision, PATallows to store the developmental history of the justi�ations of a belief and hene,to retrae bak this histoy and to restore inonsistent belief states.2.3 TheoriesA `proof' is generally onsidered to be a mathematial notion, but in the PAT-stylea proof is anything justifying a proposition. This an be a proof in the mathematialsense, but also any other aeptable justi�ation. Let T represent a proposition andlet a : T . Then:� If a is an atomi term (think of a onstant or a variable), then a enodes ajusti�ation whih annot be further analysed:{ It an stand for an axiomati justi�ation of a proposition: T is an axiom anda expresses that the axiom `holds'.{ The validity of proposition T an also ome from a reliable soure. In thisase the proof a itself annot be inspeted, but the reliability of the soure isenough guarantee to aept the proof. The origin of the knowledge an be anysoure, either virtual: e.g. a knowledge base, or real: a reliable (ommunity of)person(s).{ Proposition T an also be justi�ed by observational evidene. For example, theproposition that a ertain body is yellow an be justi�ed by an atomi termrepresenting the observation that this is the ase.{ Finally, proposition T an be an assumption. This ase is dealt with in typetheory by introduing a variable (say x) as an arbitrary (but fresh) inhabitantfor the proposition: the statement x : T then expresses: `Let x be a proof of T '.



6 Formalizing Belief Revision in Type TheorySine x is an unspei�ed variable, this amounts to: `Assume T ' (albeit that theproof x an be alled upon later).� If a is a omposite term, omposed aording to the (type-theoretial) syntax, itembodies a omplex justi�ation. In this ase the preize struture of a expresseshow the evidene for T is onstruted. For example, under the PAT-interpretationa omplete mathematial proof (of a theorem) is oded in one, possibly large,omposite term. But also a justi�ation that ombines knowledge obtained fromobserving a ertain objet with general rules about its behaviour, will lead to aomposite term.The PAT-interpretation enables a well-established onnetion between mathemat-is and type theory, as has been shown already in the Automath projet [31℄, in whihlarge parts of mathematis have been formalized in type theory: an entire mathemat-ial theory was rendered as a list of judgements. The great importane of suh atype-theoretial formalization is that it makes it possible to hek whether a givenproof of a ertain theorem does indeed prove the theorem. In fat, it turns out thatsyntatial orretness of the list of judgements is enough to establish the mathemat-ial orretness of the mathematial theory. And the hek on syntatial orretnessis relatively easy, sine the question whether a ertain term is of a ertain type in aertain ontext is deidable. This hek on syntatial orretness an be performedby man, but also by a straightforward omputer program. In the Automath projet,this has already been done with the omputer tehnology of the seventies.A seond advantage is the long-standing onnetion between logi and type theory.The `reasoning power' of logi �nds a natural ounterpart in the operations of �-alulus underlying type theory. A well-known result is that logis of arbitrarily highorder an be expressed in type theory. In the PAT-interpretation of logi, termsapture the full proof proess : from a proof term one an reonstrut not only thepremisses used in the proof, but also the order in whih they were used and the logialrules used to ombine them.2.4 The type free �-alulusModern type theory is based on the �-alulus. This setion intrtodues the type free�-alulus.Definition 2.1 (Syntax of �-terms)The set of lassial �-terms or �-expressionsM is given by: M ::= Vj(�V :M)j(MM)where V = fx; y; z; : : : g is an in�nite set of term variables. We let v; v0; v00; � � � rangeover V and A;B;C � � � range over M.Example 2.2(�x:x), (�x:(xx)), (�x:(�y:x)), (�x:(�y:(xy))), and ((�x:x)(�x:x)) are all lassial�-expressions.This simple language is surprisingly rih. Its rihness omes from the freedom to reateand apply funtions, espeially higher order funtions to other funtions (and evento themselves). To explain the intuitive meaning of these three sorts of expressions,let us imagine a model where every �-expression denotes an element of that model(whih is a funtion). In partiular, the variables denote a funtion in the model



Formalizing Belief Revision in Type Theory 7via an interpretation funtion or an environment whih maps every variable into aspei� element of the model. Suh a model by the way was not obvious for morethan forty years. In fat, for a domain D to be a model of �-alulus, it requiresthat the set of funtions from D to D be inluded in D. Moreover, as the �-alulusrepresents preisely the reursive funtions, we know from Cantor's theorem that thedomain D is muh smaller than the set of funtions from D to D. Dana Sott wasarmed by this theorem in his attempt to show the non-existene of the models of the�-alulus. To his surprise, he proved the opposite of what he set out to show. Hefound in 1969 a model whih has opened the door to an extensive area of researh inomputer siene. We will not go into the details of these models in this paper.Definition 2.3 (Meaning of Terms)Here is now the intuitive meaning of eah of the three �-expressions given in thesyntax:Variables Funtions denoted by variables are determined by what the variables arebound to in the environment. Binding is done by �-abstration.Funtion appliation If A and B are �-expressions, then so is (AB). This expres-sion denotes the result of applying the funtion denoted by A to the funtiondenoted by B.Abstration If v is a variable and A is an expression whih may or may not ontainourrenes of v, then �v:A denotes the funtion that maps the input value Bto the output value A[v := B℄, that is: the expression A in whih B has beensubstituted for v.Example 2.4(�x:x) denotes the identity funtion. (�x:(�y:x)) denotes the funtion whih takestwo arguments and returns the �rst.As parentheses are umbersome, we will use the following notational onvention:Definition 2.5 (Notational onvention)We use these notational onventions:1. Funtional appliation assoiates to the left. So ABC denotes ((AB)C).2. The body of a � is anything that omes after it. So, instead of (�v:(A1A2 : : : An)),we write �v:A1A2 : : : An.3. A sequene of �'s is ompressed to one, so �xyz:t denotes �x:(�y:(�z:t)).As a onsequene of these notational onventions we get:1. Parentheses may be dropped: (AB) and (�v:A) are written AB and �v:A.2. Appliation has priority over abstration: �x:yz means �x:(yz) and not (�x:y)z.2.4.1 Variables and SubstitutionWe need to manipulate �-expressions in order to get values. For example, we need toapply (�x:x) to y to obtain y. To do so, we use the �-rule whih says that (�v:A)Bevaluates to the body A where v is substituted by B, written A[v := B℄. However, onehas to be areful. Look at the following example:



8 Formalizing Belief Revision in Type TheoryExample 2.6Evaluating (�fx:fx)g to �x:gx is perfetly aeptable but evaluating (�fx:fx)x to�x:xx is not. By De�nition 2.3, �fx:fx and �fy:fy have the same meaning andhene (�fx:fx)x and (�fy:fy)x must also have the same meaning. Moreover, theirvalues must have the same meaning. However, if (�fx:fx)x evaluates to �x:xx and(�fy:fy)x evaluates to �y:xy, then we easily see, aording to De�nition 2.3, that�x:xx and �y:xy have two di�erent meanings. The �rst takes a funtion and appliesit to itself, the seond takes a funtion y and applies x (whatever its value) to y.We de�ne the notions of free and bound variables whih will play an important rolein avoiding the problem above. In fat, the � is a variable binder, just like 8 in logi:Definition 2.7 (Free and Bound variables)For a �-term C, the set of free variables FV (C), and the set of bound variablesBV (C), are de�ned indutively as follows:FV (v) =def fvg BV (v) =def ;FV (�v:A) =def FV (A)� fvg BV (�v:A) =def BV (A) [ fvgFV (AB) =def FV (A) [ FV (B) BV (AB) =def BV (A) [ BV (B)An ourrene of a variable v in a �-expression is free if it is not within the sope ofa �v:2, otherwise it is bound. For example, in (�x:yx)(�y:xy), the �rst ourrene ofy is free whereas the seond is bound. Moreover, the �rst ourrene of x is boundwhereas the seond is free. In �y:x(�x:yx) the �rst ourrene of x is free whereasthe seond is bound. A losed term is a �-term in whih all variables are bound.Here is now the de�nition of substitution:Definition 2.8 (Substitution)For any A;B; v, we de�ne A[v := B℄ to be the result of substituting B for every freeourrene of v in A, as follows:v[v := B℄ � Bv0[v := B℄ � v if v 6� v0(AC)[v := B℄ � A[v := B℄C[v := B℄(�v:A)[v := B℄ � �v:A(�v0:A)[v := B℄ � �v0:A[v := B℄if v0 6� v and (v0 62 FV (B) or v 62 FV (A))(�v0:A)[v := B℄ � �v00:A[v0 := v00℄[v := B℄if v0 6� v and (v0 2 FV (B) and v 2 FV (A))In the last lause, v00 is hosen to be the �rst variable 62 FV (AB). In the ase whenterms are identi�ed modulo the names of their bound variables, then in the last lauseof the above de�nition, any v00 62 FV (AB) an be taken. In implementation however,this identi�ation is useless and a partiular hoie of v00 has to be made.Example 2.9Chek that (�y:yx)[x := z℄ � �y:yz, that (�y:yx)[x := y℄ � �z:zy, and that(�y:yz)[x := �z:z℄ � �y:yz.Lemma 2.10 (Substitution for variable names)LetA;B;C 2M, x; y; 2 V . For x 6= y and x 62 FV(C), we have that: A[x := B℄[y := C℄ �A[y := C℄[x := B[y := C℄℄.2Notie that the v in �v is not an ourrene of v.



Formalizing Belief Revision in Type Theory 92.4.2 RedutionThe two important notions of redution are �-redution whih identi�es terms up tovariable renaming and �-redution whih evaluates �-terms.Definition 2.11 (Compatibility for the type free �-alulus)We say that a binary relation ! on the type free �-alulus is ompatible i� for allterms A;B of the �-alulus and variable v, the following holds:A! BAC ! BC A! BCA! CB A! B�v:A! �v:BDefinition 2.12 (Alpha redution)!� is de�ned to be the least ompatible relation losed under the axiom:(�) �v:A!� �v0:A[v := v0℄ where v0 62 FV (A)Example 2.13�x:x!��y:y but it is not the ase that �x:xy!��y:yy.Moreover, �z:(�x:x)x!!��z:(�y:y)x.Reall that �x:x 6� �y:y even though they represent the same funtion. They areatually idential modulo �-onversion. I.e. �x:x =� �y:y.Definition 2.14 (Beta redution)!� is de�ned to be the least ompatible relation losed under the axiom:(�) (�v:A)B!�A[v := B℄We use !!� to denote the reexive transitive losure of !� . We say that a term A isa �-normal form if there is no B suh that A!�B.Example 2.15Chek that (�x:x)(�z:z)!��z:z, that (�y:(�x:x)(�z:z))xy!!�y, and that both �z:zand y are �-normal forms.Here is a lemma about the interation of �-redution and substitution:Lemma 2.16Let A;B;C;D 2 M.1. If C !� D then A[x := C℄!!� A[x := D℄ .2. If A!� B then A[x := C℄!� B[x := C℄ .Proof. By indution on the struture of A for 1, on the derivation A!� B for 2.2.5 The syntax and rules of Pure Type SystemsNow we are ready to introdue the syntax and rules of Pure Type Systems (PTSs)whih will be the basis of our theory of belief revision. There are two type disiplines:the impliit and the expliit. The impliit style, also known as typing �a la Curry, doesnot annotate variables with types. For example, the identity funtion is written asin the type-free ase, as �x:x. The type of terms however is found using the typing



10 Formalizing Belief Revision in Type Theoryrules of the system in use. The expliit style, also known as typing �a la Churh,does annotate variables and the identity funtion may be written as �x : Bool:x torepresent identity over booleans. In this paper, we onsider typing �a la Churh.We present what is known as Pure Type Systems or PTSs. Important type systemsthat are PTSs inlude Churh's simply typed �-alulus [11℄ and the alulus ofonstrutions [12℄ whih are also systems of the Barendregt ube [4℄. Berardi [7℄ andTerlouw [33℄ have independently generalised the method of generating type systemsinto the pure type systems framework. This generalisation has many advantages.First, it enables one to introdue eight logial systems that are in lose orrespondenewith the systems of the Barendregt ube. Those eight logial systems an eah bedesribed as a PTS in suh a way that the propositions-as-types interpretation obtainsa anonial system form [4℄. Seond, the general setting of the PTSs makes it easierto write various proofs about the systems of the ube.In PTSs, we have in addition to the usual �-abstration, a type forming operator�. Briey, if A is a type, and B is a type possibly ontaining the variable x, then�x:A:B is the type of funtions that, given a term a : A, output a value of typeB[x := a℄. Here, again, a : A expresses that a is of type A. If x does not ourin B, then �x:A:B is the type of funtions from A to B, written A ! B. To the�-abstration at the level of types orresponds �-abstration at the level of objets.Roughly speaking, if M is a term of type B (M and B possibly ontaining x), then�x:A:M is a term of type �x:A:B. All PTSs have the same typing rules but aredistinguished from one another by the set R of triples of sorts (s1; s2; s3) allowed inthe so-alled type-formation or �-formation rule, (produt). Eah PTS has its ownset R. A �-type an only be formed in a spei� PTS if the (produt) rule is satis�edfor some (s1; s2; s3) in the set R of that system. (see Figure 1).Definition 2.17The set of pseudo-terms T , is generated by the grammar:T ::= V j C j (T T ) j (�V : T :T ) j (�V : T :T ), where V is the in�nite set of variablesfx; y; z; : : :g and C a set of onstants over whih, ; 1; : : : range. We use A;B; : : : torange over T and v; v0; v00; : : : to range over V . Throughout, we take � 2 f�;�g.Note that in the type free lambda alulus, there were only three possibilities for terms(given in De�nition 2.1): variables, appliations or abstrations, and that abstrationsontained no typings for the variables abstrated over. The above De�nition 2.17 onthe other hand, gives the typing of the abstrated variable, and also de�nes types aswell as terms. C is a set of onstants whih ontains a subset S alled the sorts. Theset sorts ontains amongst other things, four speial elements: set, prop, � and �,with the relations to be de�ned later that: set: �, prop: � and � : �. If A : � (resp.A : �) we say that A is a type (resp. a kind). If A : set (resp. A : prop), then weonsider A as a set (resp. a proposition).Definition 2.18 (Free and Bound variables)The free and bound variables in terms are de�ned similarly to those of De�nition 2.7with the exeption that FV () =def BV () =def ; and in the ase of abstra-tion, FV (�v : A:B) =def (FV (B) n fvg) [ FV (A) and BV (�v : A:B) =def BV (A) [BV (B) [ fvg.We write A[x := B℄ to denote the term where all the free ourrenes of x in Ahave been replaed by B. Furthermore, we take terms to be equivalent up to variable



Formalizing Belief Revision in Type Theory 11renaming. We assume moreover, the Barendregt variable onvention whih is formallystated as follows:Convention 2.19(V C: Barendregt's Convention) Names of bound variables will always be hosen suhthat they di�er from the free ones in a term. Moreover, di�erent �'s have di�erentvariables as subsript. Hene, we will not have (�x : A:x)x, but (�y : A:y)x instead.The de�nition of ompatibility of a redution relation for PTSs is that of the type-freealulus (given in De�nition 2.11) but where the ase of abstration is replaed by:A1 ! A2�x : A1:B ! �x : A2:B B1 ! B2�x : A:B1 ! �x : A:B2Definition 2.20�-redution is the least ompatible relation on T generated by(�) (�x : A:B)C ! B[x := C℄Note that (�x : A:B)C is redued and not (�x : A:B)C. The latter needs speialattention as is shown in [26, 27℄.Now, we de�ne some mahinery needed for typing:Definition 2.211. A statement is of the form A : B with A;B 2 T . We all A the subjet and B theprediate of A : B.2. A delaration is of the form x : A with A 2 T and x 2 V . When d is x : A, wede�ne var(d) and type(d) to be x and A respetively.3. A pseudo-ontext is a �nite ordered sequene of delarations, all with distintsubjets. We use �;�;�0;�1;�2; : : : to range over pseudo-ontexts. The emptyontext is denoted by either <> or nothing at all.4. If � = x1 : A1: : : : :xn : An then �; x : B = x1 : A1; : : : ; xn : An; x : B and dom(�) =fx1; : : : ; xng.5. We de�ne substitutions on ontexts by: ;[x := A℄ � ;, and (�; y : B)[x := A℄ ��[x := A℄; y : B[x := A℄.Definition 2.22A type assignment relation is a relation between a pseudo-ontext and two pseudo-terms written as � ` A : B. The rules of type assignment establish whih judgments� ` A : B an be derived. A judgement � ` A : B states that A : B an be derivedfrom the pseudo-ontext �.Definition 2.23Let � be a pseudo-ontext, A be a pseudo-term and ` be a type assignment relation.1. � is alled legal if 9A;B 2 T suh that � ` A : B.2. A 2 T is alled a �-term if 9B 2 T suh that � ` A : B or � ` B : A.We take �-terms = fA 2 T suh that 9B 2 T and � ` A : B _ � ` B : Ag.3. A 2 T is alled legal if 9� suh that A 2 �-terms.



12 Formalizing Belief Revision in Type Theory(axioms) `  : s if  : s 2 A(start) � ` A : s�; x : A ` x : A if x 62 �(weakening) � ` B : C � ` A : s�; x : A ` B : C if x 62 �(produt) � ` A : s1 �; x : A ` B : s2� ` (�x : A:B) : s3 if (s1; s2; s3) 2 R(appliation) � ` F : (�x : A:B) � ` C : A� ` F C : B[x := C℄(abstration) �; x : A ` C : B � ` (�x : A:B) : s� ` (�x : A:C) : (�x : A:B)(onversion) � ` A : B � ` B0 : s B =� B0� ` A : B0Fig. 1. PTSs with variables namesDefinition 2.24The spei�ation of a PTS is a triple S = (S;A;R), where S is a subset of C, alledthe sorts. A is a set of axioms of the form  : s with  2 C and s 2 S and R is a setof rules of the form (s1; s2; s3) with s1; s2; s3 2 S.Definition 2.25The notion of type derivation, denoted � `�S A : B (or simply � ` A : B), in aPTS whose spei�ation is S = (S;A;R), is axiomatised by the axioms and rules ofFigure 1.Remark 2.26Note that in Figure 1, we insist in the (start) and (weakening) rules that x 62 �, butwe do not insist that x 62 A. The ondition that x 62 A an be derived from from thefat that x 62 �, that � ` A : s and the properties of PTSs.Eah of the eight systems of the ube is obtained by taking S = f�;�g, A = f�;�g,and R to be a set of rules of the form (s1; s2; s2) for s1; s2 2 f�;�g. We de-note rules of the form (s1; s2; s2) by (s1; s2). This means that the only possible(s1; s2) rules in the set R (in the ase of the ube) are elements of the following set:f(�; �); (�;�); (�; �); (�;�)g. The basi system is the one where (s1; s2) = (�; �) isthe only possible hoie. All other systems have this version of the formation rules,plus one or more other ombinations of (�;�), (�; �) and (�;�) for (s1; s2). SeeFigures 2 and 3.



Type theory for knowledge representation 13�! (�; �)�2 (�; �) (�; �)�P (�; �) (�;�)�P2 (�; �) (�; �) (�;�)�! (�; �) (�;�)�! (�; �) (�; �) (�;�)�P! (�; �) (�;�) (�;�)�P! = �C (�; �) (�; �) (�;�) (�;�)Fig. 2. Di�erent type formation ondition
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Fig. 3. The �-ube and its orresponding logi ube3 Type theory for knowledge representationThis setion sets the stage for our aount of belief revision with expliit justi�a-tions. We give our de�nition of knowledge and knowledge state, and explain how suhknowledge states an be formalized in type theory.3.1 Knowledge and type theoryPAT is suitable to express the proof as an objet embodying its developmental history.As a onsequene, type theory embodies an exellent mahinery for storing (variouskinds of) information, inluding knowledge. The onnetion between type theory andknowledge is the subjet of this setion.We do not intend to present a philosophial or psyhologial theory of knowledge,but simply identify three harateristis of knowledge whih we believe should betaken into aount when formalizing knowledge:� Subjetivity: Knowledge is formulated in terms of onepts . We assume theseonepts are subjetive in the sense that one person may judge something to bean instane of a ertain onept, while another person would not reognize it assuh. Another aspet of subjetivity is that a person's knowledge is partial : noone knows everything, and people di�er in what they do and don't know.� Justi�ation: Knowledge is justi�ed: persons not only know things, but they havereasons for knowing them. Generally, parts of knowledge are justi�ed in terms ofmore basi parts; a person's body of knowledge is strutured. And even atomi



14 Type theory for knowledge representationjusti�ations are supports for the knowledge, sine they point at an origin (anaxiom, an observation, et.).� Inrementality: The knowledge of a person an be extended as new informationbeomes available. Whether this information an be inorporated by the persondepends on the possibility to tie it to the knowledge already present. This maylead to simply adding the new information, to dismissing it (e.g., beause it isinomprehensible) or even to a reorganization of the existing knowledge.Under an aount of knowledge satisfying these requirements, the traditionallymade distintion between knowledge and belief disappears: there an be no knowl-edge whih is true in any absolute sense, sine an agent's knowledge depends on hissubjetive oneptualisation of the world. At best some piees of knowledge turn outto be more reliable than others and some things an be agreed upon by more agentsthan others. There is a natural way to apture these harateristis in type theory:� Subjetivity is aptured by types: Eah onept is formalized as a type, eah in-stane of the onept is a term inhabiting this type. A person's subjetive abilityto reognize something as an instane of a onept, is mirrored in the ability tojudge that the orresponding term inhabits the orresponding type.Note that `having a onept' is also subjetive in the sense that di�erent peoplemay have formed di�erent onepts in the ourse of time. This means that oneperson an have a onept, whereas another person has no omparable onept.And in ase persons do have omparable onepts, they may di�er in what theyreognise as belonging to this onept. In ase the type formalizing the oneptis a `set-type', this means that they may di�er in what they regard as elementsof the set (a rhododendron may be a tree for the one, but a shrub for the other).In ase this type is a `proposition-type', they may di�er in what they aept as ajusti�ation for that proposition.� Justi�ation is aptured by terms: By the PAT-priniple, justi�ations are �rst-lass itizens, formalized in the type-theoretial syntax as terms. The fat thatterm a justi�es proposition T , is expressed as the statement a : T . The rules oftype theory allow these terms to be ombined into omplex terms, whih reetsthat parts of knowledge may be a strutured ombination of more basi parts.� Inrementality is aptured by ontexts: As we will explain below, a person's knowl-edge state an be formalized as a type-theoretial ontext. Addition of new in-formation to the knowledge state an be formalized by adding statements to theontext, dismissing information amounts to reduing the ontext. Informationmay only be added if it `mathes' a person's knowledge state. Type theory hasan innate notion of `mathing': a statement an only extend a ontext if it obeysertain well-formedness restritions.3.2 Formalization of the knowledge stateThe knowledge state of a person onsists of `everything he knows' at a ertain instant.This knowledge state will be represented as a ontext � in our type system. Everystatement in � represents a piee of knowledge the person has.Given our haraterization of knowledge, this means that everything in a knowledgestate is formulated in terms of the person's onepts. This has several aspets:



Type theory for knowledge representation 15� Meaningfulness: A person has formed his own, private onepts, and only thingswhih are formulated by means of these onepts an be meaningful to him.Whether or not information oming from outside (by observation or ommuni-ation) makes sense, depends on the onepts that are already available. (In thispaper we will assume that the entirety of onepts of a person is �xed.)� Inhabitation: Whatever a person knows about the world around him is reordedin a knowledge state in the form of meaningful expressions that he aepts. Thisinludes expressions about whih objets `inhabit' the onepts in the world, andwhih propositions hold in the world, aording to the person.If we take the following (very simple) ontext as representing a person's knowledgestates: T1 : prop; T2 : set; x1 : T1; x2 : T2, we an see:� Meaningfulness is aptured by statements of the form T : prop or T : set. That isto say, in this example the person has two onepts, viz. T1, whih is a propositionto him, and T2, whih is a set. (Note that the statements T1 : prop by itself doesnot imply that the proposition T1 holds aording to the person, nor does T2 : setimply that the set T2 is non-empty.) At this stage, there are no other onepts,i.e. all sets and propositions whih are not onstruted out of T1 and/or T2 arenot meaningful to him.� Inhabitation is aptured by statements of the form x : T , where T is meaningful . Inthe example ontext, the inhabitant x1 of T1 represents the person's justi�ationfor the holding of T1, and the inhabitant x2 of T2 is an element of the set T2 whihis reognized as suh by the person3.'Everything a person knows' at a ertain instant an be divided into two ategories:� Expliit knowledge is expressed by the statements in the ontext � . These areexpliitly represented piees of knowledge diretly available to the person.� Impliit knowledge is expressed by statements derivable on the ontext �. Theseare onsequenes of a person's expliit knowledge whih he an get by inferene.Hene, in a judgement of the form � ` a : T , the expliit knowledge an be found tothe left of the symbol `, and the impliit knowledge to the right of `.Note that the knowledge state is not dedutively losed, i.e. deriving onsequenesrequires `work', whih is reeted in the onstrution of a ompound justi�ation afor T . Suh a onstrution is a derivation using the rules of type theory; it onsists ofa sequene of judgements of whih the just-mentioned ompound justi�ation is the�nal one. We ome bak to this in the next setion.Assumption 3.1In order to derive all onsequenes of his expliit knowledge, a person would have tobe able to perform possibly in�nite derivations. Sine this is not feasible, we assumea `bound' on the derivation depth.As the above disussion meant that statements of the form A : B (where A may beomplex) must be in the knowledge state (whih is a ontext in type theory), and asformulations of type theory only allow statements of the form x : B in the ontext,3Syntatially, x1 and x2 are variables. However, as we see later, eah of these `variables' may in fat be a de�nedonstant, abbreviating a term whih odes all details of the justi�ation.



16 Type theory for knowledge representationwe will present here an extension of type theory where ontexts not only ontainstatements of the form x;B, but also statements of the form x := A : B (whih alsostates that A : B), and are known as de�nitions.3.3 PTSs with de�nitionsIn this setion we introdue the extension of PTSs given in setion 2.5 with de�nitions.Terms and types remain unhanged, but ontexts are now a list of delarations ofthe form x : A or of de�nitions of the form x = B : A. These latter de�nitions de�ne xto be B and to have the type A. We extend De�nition 2.21 to deal with de�nitions aswell as delarations, taking var(d), type(d) and def(d) to be x, A, and B respetivelywhen d is x = B : A. We de�ne FV (x = B : A) � FV (A) [ FV (B). We extend domto be dom(�) = fx j x : A 2 � or x := B : A 2 �g. Finally, we extend substitutionson ontexts by (�; y := B : C)[x := A℄ � �[x := A℄; y := B[x := A℄ : C[x := A℄. Notethat De�nitions 2.22, 2.23, 2.24 and 2.25 are unhanged.Definition 3.2The new typing relation ` is obtained by adding four new rules to the typing rulesof De�nition 2.25: (start-def), (weak-def), and (def) below, and by replaing the(onversion) by (new-onv) as follows:(start-def) � ` A : s � ` B : A�; x := B:A ` x : A x 62 dom(�)(weak-def) � ` A : B � ` C : s � ` D : C�; x := D:C ` A : B x 62 dom(�)(def) �; x := B:A ` C : D� ` (�x : A:C)B : D[x := B℄ for � 2 f�;�g(new-onv) � ` A : B � ` B0 : s � ` B =def B0� ` A : B0In (new-onv), � ` B =def B0 is de�ned as the smallest equivalene relation losedunder:� If B =� B0 then � ` B =def B0� If x := D : C 2 � and B0 arises from B by substituting one partiular freeourrene of x in B by D then � ` B =def B0.In De�nition 3.2, (start-def) and (weak-def) are the start and weakening rules thatdeal with de�nitions in the ontext. The (def) rule types �- and �-redexes usingde�nitions in the ontext.Now, here are some lemmas that show that the above system is suitable for rep-resenting beliefs. The �rst lemma establishes that di�erent beliefs have di�erentjusti�ations and that all justi�ations have their evidene in knowledge state �.Lemma 3.3 (Free variable Lemma for `)1. If d and d0 are two di�erent elements in a legal ontext �, then var(d) 6� var(d0).2. If � � �1; d;�2 and � ` B : C then FV (d) � dom(�1) and FV (B); FV (C) �dom(�).



Development of the knowledge state 17Proof. 1. If � is legal then for some B;C, � ` B : C. Now use indution on thederivation of � ` B : C. 2. is by indution on the derivation of � ` B : C.Lemma 3.4 (Substitution Lemma for `)If �; x := D : C;� ` A : B or (�; x : C;� ` A : B and � ` D : C) then �;�[x :=D℄ ` A[x := D℄ : B[x := D℄.Proof. Indution on the derivation rules, using Lemma 3.3.The following orollary means that the person an trak down those statements re-sponsible for him entertaining a partiular belief.Corollary 3.5 (Strengthening Lemma for `)For �1; y := E : T;�2 a legal ontext and M and B terms: if �1; y := E : T;�2 `M :B and y 62 FV (�2) [ FV (M) [ FV (B), then �1;�2 `M : B.The next lemma shows that all statements in a knowledge state are meaningful in thesense that if �1; x : A;�2 is legal then �1 ` x : A; and if �1; x := B : A;�2 is legalthen �1 ` x : A and �1 ` B : ALemma 3.6 (Context Lemma for `)Let �1; d;�2 be a legal ontext. Then we have: �1 ` type(d) : s for some sort s,�1; d ` var(d) : type(d) and if d is a de�nition then �1 ` def(d) : type(d).Proof. If � is legal then for some terms B;C: � ` B : C; now use indution on thederivation of � ` B : C.Lemma 3.7 (Thinning Lemma for `)Let d be either a delaration or a de�nition and let �1; d;�2 be a legal ontext.1. If �1;�2 ` A : B, then �1; d;�2 ` A : B.2. If d is x := D : C and �1; x : C;�2 ` A : B, then �1; d;�2 ` A : B.Lemma 3.8 (Swap Lemma for `)Assume eah of d1 and d2 is either a delaration or a de�nition suh that var(d1) 62FV (type(d2)) and if d2 is a de�nition then also var(d1) 62 FV (def(d2)).If �1; d1; d2;�2 ` A : B, then �1; d2; d1;�2 ` A : B.Proof. By indution on the derivation �1; d1; d2;�2 ` A : B.4 Development of the knowledge stateThe knowledge state of a person is not stati. As time goes by, new information omesto the person's attention and has to be dealt with. With the oneption of knowledgestates as type-theoretial ontexts in mind, as explained in the previous setion, wedistinguish several stages in the treatment of new information by a person, markedby deisions whih the person has to make. We desribe these stages below.Meaningfulness In the �rst stage, the meaningfulness of the new information is atstake. New information may or may not be meaningful to a person depending on hisurrent knowledge state. Type-theoretially, new information manifests itself in theform of a (sequene of) statement(s). Whether these statements are meaningful withrespet to a knowledge state, an be syntatially deided. In setion 3.2 we noted



18 Development of the knowledge statethat type theory has an intrinsi notion of meaningfulness. Below we explain how thisnotion an be extended to statements of the form x : T , expressing the inhabitationof a proposition or set T .We presuppose that a person only proesses new information that is meaningful(makes sense) to him, i.e. meaningful with respet to his urrent knowledge state, andthat he deides to dismiss this information otherwise. (In a ommuniation setting,we expet the person to searh for lari�ation, either by questioning his dialoguepartner, or by (re-)inspeting his environment.)Expanding the knowledge state If the information is meaningful, the person addsit provisionally to the knowledge state: � is extended to e.g. �1 � �; y1 : T1; y2 : T2.The resulting knowledge state an turn out to be onsistent, that is to say, theperson annot onstrut a term M suh that �1 ` M : ?, where ? is falsum (thelogial onstant `falsity'). Reall assumption 3.1 where we assume that the personhas a limited dedutive power, so he an only onstrut terms by derivations up to aertain length. Intuitively this means that the person has a `horizon' behind whihhe annot see the onsequenes of his knowledge state. Hene, the person's notion of`onsisteny' is bound by his horizon. (Hene, a knowledge state an be inonsistentwithout the person being able to �nd this out at the urrent point in time.)If the obtained knowledge state does not give ontraditions within the horizon,then �1 is aepted as the new ontext.Revising the knowledge state There is, however, also the possibility that theperson has found an inonsisteny, i.e. he has onstruted in his newly expandedknowledge state some term M suh that �1 ` M : ?. In that ase, he an deide torejet the new information and return to the previous knowledge state. But he analso deide to revise his new knowledge state in order to restore onsisteny. (Theperson may atually be able to onstrut more than one inhabitant of falsum; weassume that he onentrates on one of these.) The most natural thing to do, is to�nd one or more statements in the ontext representing his knowledge state, whihenabled the onstrution of M . These statement an be loated in the `old' ontext,but also in the newly added piee of ontext, or in both. By removing one or more ofthese statements from his ontext, onsisteny may be regained, sine this partiularproof of falsum, M , annot be onstruted any more. Below we propose a syntatialiterative proedure whih restores onsisteny. (In general, there is more than oneway to regain onsisteny by removing statements from the knowledge state.)The stages and deisions we distinguished above, are not intended to apture atualognitive proesses, but merely to state as learly as possible whih aspets of beliefrevision we do and do not onsider in our formalization. For instane, the fat thatthe person deides whih statements to remove, means that this is not deided by theformalism, in other words, we do not postulate so-alled epistemi entrenhement .(For a omparison with standard theories of belief revision, see setion 6.)In setions 4.1 and 7.3 we disuss the various stages of dealing with information asexplained just now, in more detail. We give speial attention to the representation intype theory.



Development of the knowledge state 194.1 Adding informationThe knowledge state of a person hanges as new information beomes available tohim. Sine knowledge states are modeled by type-theoretial ontexts, this meansthat ontexts should hange aordingly. In this subsetion we demonstrate that typetheory has the possibility to aommodate suh a hange in the knowledge state, viz.the addition of new information to the knowledge state.Adding information to a type-theoretial ontext amounts to adding statements tothis ontext. This does not mean that arbitrary information may be added, addition ofinformation is subjet to syntatial restritions. We disuss this below, distinguishingbetween the addition of information originating from inside and from outside theknowledge state of the person.Adding information from insideA person is able to reason with his knowledge. For example, let us assume that thestatements A ! B : prop and A : prop are meaningful to the person. I.e., fromhis knowledge state �, the person an derive � ` A ! B : prop and � ` A : prop.Moreover, let us assume that the person has justi�ations for both propositions, sineA ! B and A are inhabited (e.g. x : A ! B and y : A our in the ontext �representing his knowledge state). Then the person an infer that B holds, as well,expressed by the statement xy : B. This is the ase sine we have the followinginstane of the appliation rule (f. Figure 1):� ` x : A! B � ` y : A� ` xy : BThis inferene allows the person to ombine his justi�ation x for A ! B with hisjusti�ation y for A into a omplex justi�ation xy (pronouned as `x applied to y')for the proposition B.Note that there are no more than a small number of typing rules, whih are alllike the above rule in that they enable to derive a new judgement from one or morejudgements whih are given or derived earlier.The judgement � ` xy : B resulting from the person's inferene as explained above,shows that the person is able to onstrut a justi�ation for B on his knowledgestate �. However, the statement xy : B is not yet part of his knowledge state. Toinorporate this statement, it would simply be suÆient to append it to �. However,for tehnial reasons only statements with variables as subjet are allowed in theontext. In order to irumvent this (tehnial) problem, in Setion 3.3, we expandedour notion of `ontext' given in Setion 2.5, by allowing also a new kind of statements,alled de�nitions , in the ontext. A de�nition is a statement of the form z := E : T ,expressing that z is a name for the term E of type T . The new name z is the subjetof the de�nition z := E : T . Formally, z is a variable. (This is in ontrast withthe good habit of alling suh a de�ned name a onstant .) By means of de�nitions,omplex justi�ations an be abbreviated and reorded in the ontext. This de�nitionmehanism is essential in the pratial use of type theory for the formalization of`bodies of knowledge', as has been shown e.g. in the Automath projet [31℄.A de�nition z := E : T may be added to a ontext � whenever z is fresh withrespet to � and E : T is derivable on �. In the example above, this enables the



20 Development of the knowledge stateperson to reord the inferred xy : B in his knowledge state by adding the de�nitionu := xy : B, using some fresh variable u. Hene, the ontext � has evolved into theontext �; u := xy : B, reeting the development of the person's knowledge statebrought about by his reasoning. The proposition B (and its justi�ation), whih wasimpliit knowledge of the person (sine it ourred at the right hand side of the `),has now beome expliit knowledge.From a purely logial point of view, it may seem that adding a derived propositionto the knowledge state (making it expliit) does not ontribute to the person's impliitknowledge. However, this is not the ase sine we assume a bound on the depth ofderivations a person an perform. Under this assumption, the impliit knowledge islimited: it onsists of everything a person an derive on his ontext within a ertainnumber of derivation steps . As soon as the expliit knowledge has grown, in generalthere is more that an be derived by the person in the same number of steps, so theimpliit knowledge has grown as well: the person's `dedutive horizon' has broadened.Adding information from outsideThe knowledge state of a person an hange by reasoning (whih he does himself,from the inside), or by information originating from the outside. For the latter thereare two important knowledge soures: observational and ommuniational.� Observation: A person an reognize an objet (visually, or by any other sensorypereption) in his world as belonging to a ertain set . For example, he sees anobjet whih he haraterizes as being a ball. But he an also obtain evidene forpropositions by looking at the outside world. For example, he sees that the ballis yellow.In both ases, the new information an be added to the ontext of the person bythe addition of a new statement with a fresh atomi subjet, ating as the justi�-ation. The atomi harater of this justi�ation is aused by the impossibility todeompose the observation into smaller parts.The two observations in the example above ould e.g. be ombined into the ontextextension b : ball ; o : yellow b.� Communiation: Another manner in whih a person an hange his knowledgestate is by information passed to him by another person. Again, this informationan involve (the existene of) objets as well as (the holding of) propositions.For this ommuniation it is neessary that both persons share a language inwhih they ommuniate. We assume that eah person speaking this languagehas a mapping between the words of the language and the subjetive oneptspresent in his knowledge state, and vie versa. In [1℄ a type theoretial model ofommuniation is developed based on this assumption. In this model, the types ina person's knowledge state are ommuniable via the (mappings to) the ommonlanguage, but the inhabitants of these types (justi�ations) are not. Hene theontents of a ommuniation take the form of a (sequene of) statement(s) ofwhih the subjets are atomi, sine the original justi�ations of the `sender' arenot ommuniable to the `reeiver'.Example: in a situation after the observation of the previous example, the utter-ane `The yellow ball is hollow' an lead to the following extension of the person's



Development of the knowledge state 21ontext:  : hollow b, provided that `hollow' is a onept known to the person,and he is able to orretly math the de�nite desription to the objets b and o inhis ontext.Hene, be it either observation or ommuniation, the information to be added to aperson's ontext has the form of a sequene of statements with atomi subjets, heneof the form x : T , where x is a variable; note that de�nitions do not play a role if weonsider adding information from the outside.However, as we said earlier, the types of the statements in the ontext give rise toa notion of meaningfulness. Only types `onstrutable' from the statements alreadypresent in the ontext of a person are meaningful to him. This restrits the additionof statements originating from the outside.Tehnially, this has the following form. Let � be the original ontext of the personand assume that the sequene x1 : T1; : : : ; xn : Tn is the information from the outside(with fresh subjets x1; : : : ; xn). Then these statements are added one by one, thushanging the knowledge state inrementally. That is to say, for eah 1 � i � n, thestatement xi : Ti may only be added if�; x1 : T1; : : : ; xi�1 : Ti�1 ` Ti : swith s � set or s � prop. In other words, a statement may only be added if its typeis well-formed with respet to the urrent knowledge state. This shows, as we saidbefore, that new information (a sequene of statements) an only be absorbed in astep-by-step fashion (statement by statement), where the possibility to append a newstatement depends on the information available in the ontext at that stage, i.e. theoriginal ontext plus the already appended statements.This embodies preisely the notion of inrementality, disussed in subsetion 3.1,whih not only applies to the ase of only one `hunk' of information from the outside(i.e. one sequene of statements) as above, but also to subsequent additions of suhhunks of information. For instane, if a person is in a dialogue with another person,eah new utterane he reeives will be added only if it is meaningful against thebakground of the utteranes aepted before.Remark 4.1In treating observation and ommuniation, we extended the use of type theory asit is traditionally desribed in the literature: one usually does not take into aountthat information an ome from outside the ontext. When type theory is applied toknowledge representation, one usually models (the progress of) a solitary reasoningperson, who an only extend his knowledge from the inside. However, sine we adoptedthe same well-formedness riteria as usual to adding information from the outside,the resulting ontext in our extension will always be syntatially orret with respetto the original type-theoretial standards. Hene, this extension of the use of typetheory does not lead to an extension of the formalism. (Even the omplete proessof adding information from the outside an be justi�ed in type-theoretial sense. Wewill not go into that here.)4.2 The problem of revisionAs we saw in the previous setion, a situation in whih a person has to revise hisknowledge state an be haraterized as follows. The person is onfronted with new



22 Development of the knowledge stateinformation (whih is meaningful to him), and deides to aept it. When it turns outthat the inorporation of this new information leads to inonsisteny of the resultingknowledge state, the person has to remove information from this new knowledgestate to restore onsisteny. Below we desribe how this an be done by means oftype theory.Revision from a type-theoretial perspetive The need for revision an originateboth from the inside and from the outside. We begin by desribing the situation wherenew information is added from outside.Suppose that the ontext � represents the person's urrent knowledge state (whih isonsistent within his horizon) and the sequene x1 : T1; : : : ; xn : Tn represents the newinformation from the outside resulting in the ontext �1 � �; x1 : T1; : : : ; xn : Tn. Theinonsisteny of �1 manifests itself in the existene of an inhabitant of falsity whihthe person an onstrut within his horizon: there is an M suh that �1 ` M : ?.There may be more than one suh an inhabitant, but we assume that the person hashosen one of these. (We ome bak to this in setion 5.)The fat that all justi�ations are expliitly present enables the person to identify all`suspets': the beliefs in �1 that together ause the inonsisteny. Sine M embodiesa derivation of falsity in the sense explained earlier, we �nd in M the justi�ations ofall beliefs that are part of this derivation (M ontains the full developmental historyof the derivation). The suspet justi�ations our as free variables in M , sinethese free variables point exatly at the premisses of the derivation of falsity: suha premiss x : T gives rise to a free x in M . This is a property of the proposition astypes interpretation of type theory. Moreover, the rules of type theory ensure thatall free variables of M our as subjets in �1.Example 4.2Let A : prop and B : prop be statements belonging to the knowledge state (the on-text) and assume that the person has proofs of A, of A! B and of :B (abbreviatingB ! ?, to be read as \B implies ontradition"). This is represented in the knowl-edge state by statements say x : A, y : A! B and z : :B. The rules of Type Theoryenable the derivations of � ` yx : B and � ` z(yx) : ?. The free variables x, y andz in the `proof objet' z(yx) point preisely at the propositions A, A ! B and :B,whih together enable the onstrution of the inonsisteny.Note that, given the onsisteny of �, there have to be free variables in M whihour as subjets in the new information x1 : T1; : : : ; xn : Tn. (Otherwise, M : ?ould already be onstruted on � itself; this is a onsequene of the StengtheningCorollary 3.5.)New information an also originate from the inside, when a person adds a derivedonsequene to his knowledge state by means of a de�nition. This broadens his horizonand hene ontraditions whih were previously out of sight an now ome into view(f. setion 4.1).Example 4.3Suppose � is onsistent and � ` N : P within the horizon. The result of adding N : Pto � by means of a de�nition is �0 � �; u := N : P . Now it is possible that thereexists an M suh that �0 `M : ? within the new horizon. As above, this M ontainsinhabitants of all `suspets' as its free variables.



Belief revision 23This shows that there is, tehnially speaking, no di�erene between revision due toinformation from outside and from inside. Intuitively it may seem strange that aperson an be fored to revise his knowledge state by only adding a onsequene ofwhat he already knows to his knowledge state, without any external reason. However,if we take the idea of limited dedutive power seriously, this is inevitable.Restoring onsisteny by removing information In the above situation, whenthere is an M suh that �1 ` M : ?, the person an try to regain onsisteny byremoving one or more of the `suspets' from �1, being some of the statements xi : Tiourring in �1 where xi ours free in M . As we pointed out before, we assume thatthe person deides whih statements he hooses to remove. Before making this hoie,the person probably reonsiders the suspets, with the help of new observations orommuniations with others.However, it is generally not suÆient to simply erase the hosen suspets from theknowledge state, sine there may be beliefs depending on the `suspet' beliefs. Suha dependent belief should be removed as well, sine it is no longer meaningful on theknowledge state from whih the suspet(s) have been erased.A belief an depend upon another belief in two ways:1. A belief B may ontain a free variable x whih is the subjet variable of a statementx : A preeding y : B in the ontext.2. If x : A preedes a de�nition statement z := E : C, both E and C may ontainsuh a free variable x.In these ases, y : B and z := E : C depend on x for their well-formedness. Hene,removal of x : A from the ontext has onsequenes for these statements as well. Themost natural solution is to remove them.There is a relatively simple, syntatial proedure for removing suspet beliefs andthe beliefs depending on them, whih we desribe in setion 5.1 The result of thisproedure is a new knowledge state, �2. It is, however, not neessarily the ase thatthis �2 is onsistent within the person's horizon. Although the justi�ation M offalsity is no longer onstrutable on �2, there may have been more than one justi�a-tion for falsity on �1. Some of these justi�ations of falsity may still be onstrutibleon �2. In that ase, the person hooses one of these justi�ations and selets a newset of suspets on whih the proedure desribed above is repeated. Iteration leadsto a sequene of knowledge states �1; : : : whih is �nite, sine in every iteration stepat least one of the (�nite number of) justi�ations of falsity is removed. So thereis a �nal knowledge state �n, on whih no justi�ations of falsity are onstrutable.Hene, �n is onsistent within the person's horizon. This �n is then the resultingrevised knowledge state.5 Belief revisionIn this setion we give a formal desription of the proess of belief revision in typetheory, as desribed above. First we de�ne the syntatial proedure for removing`suspet' beliefs and the beliefs depending on them (setion 5.1) stating some proper-ties of this removal proedure. Finally, we disuss the full revision proedure, whihmay involve iterative removal of suspet beliefs, and we investigate the properties ofthe proedure.



24 Belief revision5.1 The removal operationWe start with a knowledge state represented by a ontext � and new informationrepresented by the sequene x1 : T1; : : : ; xn : Tn. We add the new knowledge to theoriginal knowledge state, obtaining �1 � �; x1 : T1; : : : ; xn : Tn. We assume thatthis `new' ontext �1 turns out to be inonsistent and we assume that the personhas hosen one or more suspet beliefs in �1 whih he wants to remove. Note theassumption that the suspet beliefs an be found in the entire �1, so also among thenew information: ontrary to standard aounts of belief revision we do not award aspeial priority to the new information (f. setion 7.3).The removal operation that we desribe below results in the transformation of �1into a new ontext �2. However, as we disuss below, regaining onsisteny mayinvolve more than one suh transformation, hene in our de�nition we de�ne thetransformation as leading from �i to �i+1.In order to give a general de�nition of removal, we write a ontext as if all statementsin the ontext were de�nitions: y1 := E1 : T1; : : : ; ym := Em : Tm, with the onventionthat yl := El : Tl must be read as yl : Tl if it is not a de�nition and we take FV (El) = ;in the last mentioned ase. (FV (M) is the set of all variables ourring free in M .)We assume that V is the set of variables whih are the subjets of suspet beliefsyk := Ek : Tk in �i whih the person has hosen to remove. As we explained atthe end of setion 4, also beliefs yl := El : Tl depending on the variables in V mustbe removed. Below we haraterize the set dep�(V ) onsisting of V plus all subjetvariables of statements depending on V .We start with the de�nition of the notion `subontext'.Definition 5.1Let � � �1; y := E : T;�2 and �0 � �1;�2 or �0 � �1; y : T;�2. Then �0 � �.The relation � is the reexive and transitive losure of �. If �1 � �2 we say that �1is a subontext of �2.Next we de�ne the dependeny relation �, a partial order between subjet variablesof a ontext �.Definition 5.2Let � � �1; y := E : T;�2. Then def�(y) = E, type�(y) = T and stat�(y) = (y :=E : T ). For y and z 2 dom(�) we say that y < z if y 2 FV(def�(z) [ type�(z)).(Foronveniene, we write `<' instead of <�.) The relation � is the reexive and tran-sitive losure of <. The set dep�(y) is fz 2 dom(�)jy � zg. Moreover, dep�(V ) isSy2V dep�(y), for V � dom(�).Note that the set of variables depending on a set of variables V , inludes V itself.Next, we de�ne a deletion operator del, erasing statements from a ontext, andthe removal operator `n'.Definition 5.3For domain variable y of � � �1; y := E : T;�2, we de�ne � � stat�(y) as �1;�2.For a set W of domain variables of �, we de�ne del�(W ) as � � Sy2W stat�(y).For a ontext � and a set V � dom(�), the removal operation ` n ' is de�ned by�nV = del�(dep�(V )).So, �nV is the ontext resulting from removing all statements depending on the setV of hosen subjet variables, from �.



Belief revision 25As explained in setion 4.1, knowledge states are inremental, in the sense that thetype of eah statement should be meaningful given the statements preeding it. Intype theory this is expressed by legality given in De�nition 2.23 and whih satis�es theimportant Context Lemmma 3.6. The removal operator applied to a legal ontext,results in a new, legal subontext:Lemma 5.4Let � be a ontext and V � dom(�). Then �nV � �. Moreover, if � is legal, then�nV is legal.Proof. For the seond part: Subsequently delete all stat(y) for y 2 dep�(V ) from�, from right to left, using Strengthening Corollary 3.5.The removal operator has the nie property that the result of subsequent applia-tions to V and W is the same as applying it in the reverse order, or by applying it tothe union of V and W :Lemma 5.5If � is legal and V and W are subsets of dom(�), then (�nV )nW = (�nW )nV =�n(V [W ).Proof. By the de�nition of n and basi set theory.5.2 The revision proedureIn this setion we show how the removal operator an be used to regain onsisteny.We assume that a person has originally a legal and onsistent knowledge state �.He extends his ontext � with new information x1 : T1; : : : ; xn : Tn, obtaining �1 ��; x1 : T1; : : : ; xn : Tn. Let's assume that �1 is legal again, but that it has beomeinonsistent: he an now onstrut an M suh that �1 ` M : ?. (Note: in thissubsetion we forget about the `horizon' of a person, i.e. the limited dedution powerof a human being; we onsider this horizon in the following subsetion.) We onsidertwo ases in both of whih the proofM of falsity is no longer derivable on the resultingontext �2:� The person hooses to remove a single subjet variable z ourring freely in M ,plus all statements depending on this z. Hene, he obtains �2 � �1nfzg as his newontext. Note that the hosen variable z may be the inhabitant of a statement inthe original ontext � or of a statement xi := Ei : Ti whih is part of the extension.In the latter ase, dep�1(z) ontains only variables ourring as subjets in theextension. In the former ase, however, dep�1(z) may ontain subjet variables of� as well as subjet variables of the extension. Hene, the removal operation mayhange the new information in both ases.� The person hooses a non-empty set V of variables ourring freely in M andobtains �2 � �1nV as his new ontext. Note that by lemma 5.5, the removal ofV has the same e�et as removing the separate elements of V , one by one, in anyorder. (This also holds if V is the set of all free variables in M .)The above does not guarantee that �2 is onsistent: it may be the ase that theperson an still onstrut a proof of falsity, say M 0, on �2. Then the person an



26 Belief revisionrepeat the removal operation with one or more free variables ourring in M 0, and soon obtaining a sequene of ontexts �1;�2; : : :, where eah �i+1 is a legal subontextof � being properly `smaller' (i.e. ontains fewer statements) than �i. It follows thatthe sequene �1;�2; : : : is �nite, so that a ontext �n whih is onsistent is �nallyobtained. (In the extreme ase �n = ", but there is no proof of falsity on the emptyontext " by the onsisteny of type theory.) This implies:Lemma 5.6Iterated appliation of the removal operation terminates resulting in a onsistentknowledge state.In other words, it is a revision proedure. It is interesting to note that this iterationan be summarized in a single appliation of the removal operation: Let's all thenon-empty set of variables that the person hooses to remove in the transition from�i to �i+1, Vi (whih an be a singleton set). Then �i+1 = �inVi. However:Lemma 5.7Suessively removing Vi from �i for i = 1; : : : ; n � 1, leads to the same result asremoving the union of all Vis from �1: I.e. �n = �1nSn�1i=1 Vi.Proof. This is again a onsequene of lemma 2.In this setion we assumed that it is the person who makes the deision about whihstatements to remove, and not the formalism. We gave arguments for this point ofview in setion 4. However, in omparing our system with others in the literature wewill in setion 7.4 disuss formal heuristis for making these deisions.5.3 Revision with horizonIn the previous subsetion we assumed that the person is `omnisient' in the sensethat he is able to provide a proof of falsity at any time, if there exists one. This, ofourse, is not realisti. For this reason we introdued in the beginning of setion 4 thenotion of `horizon' for the person. If we look at the revision proedure, the preseneof a horizon has important onsequenes.Firstly, a knowledge state � has only a limited number of onsequenes within agiven horizon. We formulate this as a theorem, provable by ombinatorial arguments:Theorem 5.8Given a ontext � and a number h limiting the derivation depth of derivations on �(`the distane to the horizon'), there is a �nite number of statements derivable on �(modulo �-onversion).Note that we do not onsider the full dedutive losure of �, whih possibly or-responds with an `in�nite horizon', whih is no horizon at all. For onveniene, wedenote the �nite set of derivable statements from ontext � (the set of onsequenesof �) within horizon distane h by Conseqh(�).Corollary 5.9Given a ontext � that is inonsistent within horizon distane h, there is a �nitenumber of inhabitants of falsity (`proofs of falsity') (modulo �-onversion). I.e., thereare �nitely many terms M suh that M : ? 2 Conseqh(�).



Situating our approah 27By appliation of the revision proedure, statements are removed from the ontext �.This will eliminate a (number of) proof(s) of falsity, but the question arises whetherthere are new proofs of falsity on the revised (smaller) ontext. This is not the ase:Theorem 5.10If �nV is the result of revising � with respet to V , then there is no statementderivable within horizon distane h on �nV whih was not already derivable withinhorizon distane h on �. I.e., Conseqh(�nV ) � Conseqh(�).Proof. Note that �nV � � by lemma 5.4. For any two PTS-ontexts � and �0 theso-alled Thinning Lemma holds: if �0 � � and �0 ` A : B, then � ` A : B. Heneif �nV ` A : B then � ` A : B. However, if we regard the horizon distane, it mightstill be possible that there exists a statement A : B whih is derivable on �nV in atmost h steps, and on � in more than h steps (due to extra steps needed to 'retrieve'the premisses on the larger ontext). We assume, however, that the axiomatizationof Type Theory is suh that the Start-rule allows any number of Weakenings. In thatase, a derivation of �nV ` A : B an always be `opied' into a derivation of � ` A : Bwith the same number of derivation steps.Corollary 5.11The removal proedure does not allow the introdution of new proofs of falsity.Corollaries 5.9 and 5.11 imply the following theorem, whih says that we an alwaysreah a onsistent ontext in one revision step:Theorem 5.12Given an inonsistent ontext � and a horizon distane h, there exists a set of variablesV suh that �nV is onsistent within the same horizon distane.Proof. Take V to be the set of all free variables ourring in all proofs of falsitywhih an be derived on � within horizon distane h. By Corollary 5.9, this set is�nite and by the de�nition of the revision proedure, none of these proofs of falsityare onstrutable on �nV . By Corollary 5.11, there are no new proofs of falsity on�nV , hene �nV is onsistent within horizon distane h.6 Situating our approahIn this paper, we presented an approah to belief revision based on type theory. Asfar as we know, this approah is new. In the setting of type theory, justi�ationsof beliefs are `�rst lass itizens', whih is not the ase in urrent approahes tobelief revisions. In this setion we disuss the relations between our approah andwell-known approahes from the literature. We take [18℄ as our guideline.6.1 Belief bases with justi�ationsBy the methodologial taxonomy of [18℄, our approah has these harateristis:� Beliefs are represented as statements in type theory, a person's belief state as atype-theoretial ontext (setion 4). The result of a belief hange operation isagain a type-theoretial ontext (setion 5.2).



28 Situating our approah� The statements that are elements of the ontext representing a person's beliefstate, represent his expliit beliefs. Beliefs derivable from these statements are hisimpliit beliefs (setion 3.2). Contrary to standard pratie, we assume the dedu-tive powers of the person are limited by a dedutive horizon and only statementsthat are derivable within this horizon ount as his impliit beliefs.� Our theory does not presribe how hoies are made onerning what beliefs toretrat. It gives a set of andidates for retration, but leaves the atual hoie tothe person (Setion 5.2). One an give heuristis for this hoie (Setion 7.4).G�ardenfors and Rott mention four integrity onstraints guiding the onstrution ofbelief revision formalism:� The beliefs in the data base should be kept onsistent whenever possible. We adhereto this onstraint taking `onsistent' to mean: `onsistent with respet to thelimited dedutive powers of the person'.� If the beliefs in the data base logially entail a sentene, then this sentene shouldbe inluded in the data base (`dedutive losure'). It will be lear from our earlieromments (setions 4 and 5.3) that we do not subsribe to this point of view.However, it is possible to expliitly inlude a derived belief (to be preise: de-rived within the person's horizon) in the knowledge state by means of a de�nition(setion 4.1).� The amount of information lost in a belief hange should be kept minimal. Inaordane with the fat that our theory says nothing about extra-logial fatorsgoverning the hoie of beliefs-to-be-retrated, there is no notion of minimalityinherent in our theory.� In so far as some beliefs are onsidered more important or entrenhed than othersone should retrat the least important ones. In line with our previous omment, anotion of extra-logial preferene like entrenhment should in our opinion not bepart of a theory as it belongs to the realm of heuristis.The hoies we made above imply that we work with the so-alled belief bases : theknowledge state of a person is represented by a �nite set of sentenes, a ontext �.The belief set of the person onsists of his expliit beliefs (statements in �) and hisimpliit beliefs (statements derivable on � within the horizon, i.e. Conseqh(�)). Notethat � � Conseqh(�): every expliit belief in the ontext � is derivable on �, and ishene also impliit. Therefore we an represent a person's belief set by Conseqh(�).Sine we hoose to represent justi�ations for beliefs expliitly, as inhabitants, inthe knowledge state, our approah is losely related to what is alled FoundationsTheory in the literature, see e.g. [17℄.6.2 The relation with Foundations TheoryFoundations Theory is based on the priniple that belief revision should onsist ingiving up all beliefs that no longer have a satisfatory justi�ation, and in adding newbeliefs that have beome justi�ed. This priniple has a number of onsequenes:� Disbelief propagation If in revising a knowledge state a ertain belief is retrated,not only this belief should be given up, but also all beliefs depending on this



Situating our approah 29belief for their justi�ation. Sine our theory has an expliit representation ofjusti�ations, this propagation an be aptured syntatially, as was shown inde�nition 5.2, by means of the relation �. Hene, our approah does not havethe drawbaks that are often assoiated with disbelief propagation, viz. `hainreations' and `severe bookkeeping problems'.� Non-irularity. Sine beliefs an depend on other beliefs for their justi�ation,we should be areful that the dependeny graph is well-founded, i.e. does notontain irularities. In our approah suh irularities annot our, sine theyare ruled out by the well-formedness requirements for the type-theoretial ontexts(setion 4).� Multiple justi�ations. A belief may be supported by several independent beliefs.The removal of one of those justi�ations does not automatially lead to givingup the belief. This harateristi is reeted in our approah, where a belief mayhave more than one inhabitant. Suppose that a person has two justi�ations forthe belief that A holds on his knowledge state �, for example: � ` M : A and� ` N : A. Sine the free variable sets of M and N may be disjoint, it may bepossible to retrat the justi�ation M of A, while retaining N and hene the beliefthat A (see setion 5.2).There is a well-known problem in Foundations Theory, following from the hypothesisthat all beliefs must have a justi�ation. This indues a distintion between beliefs:some beliefs are justi�ed by one or more other beliefs, but there must also exist beliefswhih are justi�ed `by themselves'. These so-alled foundational beliefs are onsideredto be `self-evident', they need no further justi�ation.In Foundations Theory, justi�ation is a relation on the level of the beliefs. Intype theory, however, justi�ations are expliitly represented by terms inhabiting thebeliefs they justify. The distintion between foundational and other beliefs is reetedin type theory in the struture of the term inhabiting the belief:� Atomi justi�ations. If the term inhabiting the belief is a onstant or a variable,the justi�ation annot be further analyzed. This orresponds to the foundationalbeliefs, but only to a ertain extent: it does not imply that these beliefs are nees-sarily self-evident. The atomi justi�ation simply reets the person's deision toadopt the belief in its own right, e.g. on the basis of an observation, ommuniationor an at of will. (See also setion 2.)� Composite justi�ations. If the term inhabiting the belief is a omposite term, thejusti�ation an be analyzed aording to the struture of the term. These termsour in the ontext in de�nitions , e.g. in the statement y := E : T , where E isa omposite justi�ation for T . One an �nd the inhabitants of the other beliefssupporting the belief that T , as the free variables ourring in E.Thus the justi�ation relation from Foundations Theory beomes a relation betweeninhabitants of beliefs in type theory. This relation is aptured by the dependenyrelation � of de�nition 5.2.



30 Comparing operations for belief hange7 Comparing operations for belief hangeBefore we an ompare the formal properties of our revision proedure with those ofthe literature, we must formulate our equivalents of the three standard belief hangeoperations: expansion, ontration and revision.� Expansion: Adding a new sentene A to the belief base K, regardless of the on-sisteny of the resulting belief base. The result is usually denoted by K +A.In our type-theoretial setting, expansion is just addition of either a statementor a de�nition to the ontext: � hanges into �; x : A (with x fresh), or into�; x :=M : A. In the �rst ase new information originating from outside is added,in the seond ase a onsequene of the belief base is made expliit by adding itto the ontext.Note that, in both ases, the type A must already be well-formed with respetto �, i.e. � ` A : s with s a sort in the set of sorts S of the type system (f.setions 3.2 and 4.1). In the seond ase, x := M : A may only be added when� `M : A is derivable. This again gives a well-formedness guarantee.Notation: The type-theoretial analogue of Expansion will be denoted byExpx:=M :A(�; �0) if the expansion of � with the statement or de�nition x :=M : Ayields �0. Hene, �0 � �; x :=M : A.� Contration: Retrating some sentene A from the belief base K, as well as sen-tenes depending on A (without adding new beliefs). This is denoted by K�Æ A.In type theory, retrating has to be done with statements instead of formulas.Moreover, given a ontext � and a horizon depth h, there an be several termsinhabiting a belief A that is to be retrated. There is a set of terms t suh thatt : A 2 Conseqh(�). If we take retration to mean that no statement M : Ashould be derivable any more, we need a retration proedure similar to the onedesribed in setion 5.2. That is, the person iteratively hooses variables ourringfree in suh terms t inhabiting A and removes them from �, in order to eliminateevidene for A.Formally, we an say that there is a set VA := FV ftjt : A 2 Conseqh(�)g. Thevariables hosen by the person together onstitute a subset V of VA (f. Lemma4). Retration of A with respet to � then amounts to a removal �nV with Vhosen suh that :9t(t : A 2 Conseqh(�nV )).Note: In its generality, this proedure always gives the desired result. There is,however, a slight ompliation: there are sentenes whih we never want to beontrated, for example tautologies. How we an prevent in type theory that thiskind of sentenes an be retrated, is disussed in setion 7.2.Notation: The type-theoretial analogue of Contration is denoted by CtrA(�; �0),if �0 is the result of ontrating � with respet to A. In ase A 62 Conseqh(�), wetake �0 to be �.� Revision: Adding a new sentene A to the belief base K while maintaining on-sisteny, by (possibly) deleting a number of sentenes in K. This is denoted byK �A.In the standard aount, revision is related to ontration and expansion by meansof the Levi-identity: K � A = (K�Æ :A) + A. This implies, that for belief bases,revision an be de�ned as a two step proedure:



Comparing operations for belief hange 311. Contrat by :A 2. Expand by AWe an math this so-alled internal revision [21℄ via the two type-theoretialoperations de�ned above:1. Ctr:A(�; �0) 2. Expx:=M :A(�0; �00)Note that this proedure will always lead to a ontext (�00) ontaining the newinformation (x := M : A), whereas the proedure desribed in setions 5.2 and5.3 did not, sine there it was possible that (parts of) the new information wereremoved as well, if this information ontributed to the inonsisteny. In litera-ture, this alternative approah is known as `semi-revision'. In setion 7.3 we willshow that the type-theoretial version of revision developed in this paper loselyresembles the semi-revision operation onsolidation of [21℄. Antiipating on this,we introdue the following.Notation: The type-theoretial analogue of Revision (i.e., Contration by :Aand Expansion by A) is denoted by Revx:=M :A(�; �0), if �0 is the result of revising� with respet to x :=M : A.Finally we note that the operations of expansion and ontration, and hene re-vision, desribed above an also be exeuted with new information onsisting of asequene of statements (x1 := M1 : A1; : : : ; xi := Mi : Ai), rather than a singlestatement (x := M : A). From a type-theoretial point of view, this is a natu-ral generalization. Moreover, experienes obtained in formalizing the addition ofoutside-information (as desribed in setion 4.1) to type-theoretial knowledge states,suggests that suh information generally takes the form of a sequene of statements.Now we have given our equivalents of the standard belief hange operations, ex-pansion, ontration and revision, we give a more detailed omparison between thetwo approahes in order to position our approah with respet to the literature. Weonentrate on the results of G�ardenfors [18℄ and Hansson [21℄.7.1 ExpansionIn the standard approah, expansion is the set-theoretial addition of a sentene to setof propostions representing a person's belief base. In the type theoretial approahit is the addition of a statement to the ontext representing a person's belief base.As explained above, the type theoretial addition requires that the new statementis well-formed with respet to the existing ontext, whih ensures that the addedinformation is meaningfull to the person. Assuming that this the ase, as is usuallydone, expansion behaves the same in both approahes.7.2 ContrationWe now look at the rationality postulates for ontration as they are reformulatedfor belief bases in [18℄. As already remarked earlier, our approah is more �ne-grained than that of G�ardenfors, beause we deal with spei� proofs of propositions,whereas the standard approah does only onsiders (sets of) propositions. Hene,when G�ardenfors ontrats with respet to a proposition A, from our perspetive,he impliitly quanti�es over all proofs of A. This di�erene also plays a role in theformulation of the postulates themselves.



32 Comparing operations for belief hangeIn some of the G�ardenfors postulates, onditions our of the form ` A and 6` A.Type-theoretially, we take these to state that there exists respetively doesn't exista proof objet for the type A within the horizon. Moreover, the fat that A is orisn't a tautology, suggests that this proof objet an (or annot) be onstruted onthe empty ontext ". However, in type theory the type A itself must be well-de�nedbefore we an think about the onstrution of inhabitants of A. Hene, we need someinitial ontext �init whih ensures the well-de�nedness of all propositions: ` A istranslated into 9M (�init `M : A) and 6` A into :9M (�init `M : A).Of ourse, statements in the initial ontext should not be ontrated in a revisionproess, sine this initial ontext ats as a kind of `axiom base' for the well-de�nednessof the propositions. The above ontration proedure CtrA(�; �0), will not onsidervariables inside �init, sine the statements of �init are at the wrong level of typing tohave their subjets appear in terms inhabiting propositions (f. setion 2).Note that if A is a tautology, there exists a proof objet in whih no free variablesour: 9M (�init ` M : A) where VA = ;. Sine M annot be bloked by removingvariables in VA from the ontext, we annot ontrat over tautologies. On the onehand this is a good thing: one does not want to lose tautologies. On the other hand,this has as a onsequene that Contration beomes a partial operation, whih maybe unsuessful!Below we present the G�ardenfors postulates for belief bases as given in [18℄, followedby their type-theoretial translation and a disussion of their validity. The originalpostulates quantify over all sentenes A and belief sets H , their translations over alltypes A and ontexts � (where � � �init). In addition, the postulates are stated usingCn(H), the dedutively losed set of onsequenes of H (i.e. with in�nite horizon). Inthe translation of e.g. G�ardenfors's (H�Æ3)-postulate we take A 62 Cn(H) to mean thatthere exists no proof objet of type A (within the horizon) on the person's ontext,:9N (N : A 2 Conseqh(�)).(H�Æ 1) H�Æ A is a belief set.Its translation is:If CtrA(�; �0), then �0 is a well-formed ontext.This holds: Assume CtrA(�; �0), then there exists some set V � VA, possiblyempty, suh that �nV � �0. By Lemma 1, �0 is a well-formed ontext.(H�Æ 2) H�Æ A � H .Its translation is:If CtrA(�; �0), then �0 � �.This follows from the de�nition of the removal-operation (de�nition 5.2).(H�Æ 3) If A 62 Cn(H), then H�Æ A = H .Its translation is:If :9N (N : A 2 Conseqh(�)) and CtrA(�; �0), then � � �0.This holds: Assume :9N (N : A 2 Conseqh(�)) and CtrA(�; �0) and suppose� 6� �0. Then (see H�Æ 2) �0 is a proper subontext of �. Hene there is somevariable z ourring in � as a subjet, suh that z 2 V , where V is the setof variables hosen to be removed and z 2 V not in �0. Hene z must haveourred free in some term N suh that � ` N : A within the horizon, but then9N (N : A 2 Conseqh(�)). Contradition.



Comparing operations for belief hange 33(H�Æ 4) If 6` A, then A 62 Cn(H�Æ A).Its translation is:If CtrA(�; �0), then :9M (M : A 2 Conseqh(�0)).This postulate holds by our de�nition of ontration.Note that the ondition 6` A ('A' is not a tautology) is impliitly present in ourtranslation, beause this is implied by the ondition CtrA(�; �0). In fat, if A is atautology, then A has a proof objet, but this proof objet has no free variables.Therefore the set VA is empty and hene Contration of A as desribed before isnot possible (there is no �0 suh that CtrA(�; �0)).(H�Æ 5) H � (H�Æ A) +A.Its translation is:If CtrA(�; �0), then � � �0; z : A.Note that we have to add a proof objet z for A. We ould not use a de�nitionz := M : A, sine this implies that �0 ` M : A for some M , whih ontraditsCtrA(�; �0).This postulate, whih has a ontroversial status in the literature (in fat: baseontrations generally violate it), does not hold here. A simple ounterexample isthe following: Take � � �init; x : B ! A; y : B ` xy : A, then CtrA(�;�0), where�0 � �init, but � 6� �init; z : A.(H�Æ 6) If ` A, B, then H�Æ A = H�Æ B.Its translation is:If 9N (�init ` N : A, B) and CtrA(�; �0) and CtrB(�; �00), then �0 � �00.This postulate does not hold in general, but there is a ase in whih it holds, aswe explain below.First, observe that in type theory we have to do work to transform proofs of Ainto proofs of B (and vie versa) by means of the proof N of the equivalene ofA and B whih ontains subproofs N1 for A ! B and N2 for B ! A. Then forexample: If � `M : A for some M , then � ` N1M : B (and vie versa).We all M a diret proof of A and N1M an indiret proof of B. Note thattransforming a diret proof of A into an indiret proof of B involves one extraproof step. Hene, this an lead to a situation in whih the diret proof is withinthe horizon, whereas the indiret proof is not.Disregarding this horizon problem, the postulate still does not hold in general: inorder to blok all proofs of B, all proofs of A also have to be bloked. Hene, a setV will have to be hosen whih is a subset of the union of the variables ourringfree in all proofs of A and all proofs of B, i.e., V � (VA [ VB). However, it mightstill be possible to �nd di�erent subsets V1 and V2 whih both blok all proofs ofA and B.Example: � � �init; x : C ! A; y : C; z : D ! B; u : D, and � ` N : A , B.Then VA = VB = fx; y; z; ug. Now take V1 = fx; zg and V2 = fy; ug. It is easy tohek that both V1 and V2 blok all proofs of A and B. If we take �0 � �nV1 and�00 � �nV2, then CtrA(�; �0) and CtrB(�; �00), but �0 6� �00.However, the postulate does hold if we use the `safe ontration' desribed insetion 7.4, i.e. take V1 = V2 = VA = VB , then �0 � �00.



34 Comparing operations for belief hangeHere we end our disussion of the basi postulates H�Æ 1 to H�Æ 6 for base ontration.There exist two more (non-basi) postulates, H�Æ 7 and H�Æ 8, onerning onjuntiveformulas A ^ B. We do not disuss those here for two reasons: as remarked above,the type-theoretial notion of ontration an easily be generalized to a sequene ofstatements, so that there is no need to give a speial status to the ^-onnetive;moreover, it would require us to go into the tehnial details of oding onjuntion intype theory, whih does not serve the purpose of this paper.Conluding, as in most approahes to base revision in the literature, postulatesH�Æ 1 through H�Æ 4 are satis�ed in the type-theoretial translation, but H�Æ 5 does nothold. In addition, the type-theoretial equivalent of `safe ontration' satis�es H�Æ 6.This exatly reets Theorem 5.4.1 of [18℄.7.3 RevisionIn the standard aount of revising a belief base K with new information A, the newinformation is always aepted and beliefs in K are abandoned to maintain onsis-teny. Objetions have been raised to this aount, on the grounds that too muhpriority is given to new information [21℄: at eah stage, new information is ompletelytrusted. However, this omplete trust is only temporary: one the new informationis inorporated in the belief base, it is itself suseptible to abandonment when in thenext stage even newer information beomes available. This seems awkward.We agree with these objetions. Moreover, this emphasis on `new information' hasa number of additional undesired onsequenes from our point of view. Firstly, thenew information always has to be aepted as a whole, whereas in our approah it is apossible outome of revision that the person aepts only part of the new information.The standard aount is also too absolute in another respet: beause of the unlimiteddedutive power assumed in this approah, the person an detet beforehand whethera piee of new information is inonsistent with his urrent belief base, and henewhether revision should be arried out. Under the more realisti assumption of thededutive horizon, it is not possible to do this onsisteny hek one and for all:inonsistenies, and hene the need for revision, may arise as proofs of falsity turnup inside the horizon. Finally, thinking of standard belief revision in the setting ofommuniation, a person would be fored to aept every utterane by his dialoguepartner(s), even if aommodating this information requires a major reonstrutionof his own belief base. Therefore, new information and information in the belief baseshould be treated equally by the revision operation.Revision proedures whih do not neessarily aept the new information are knownin literature as non-prioritized revision proedures. Hansson was one of the �rst toonsider this kind of belief revision [20℄, and in reent years a number of di�er-ent non-prioritized approahes have been developed, see [22℄. For belief bases, anon-prioritized form of revision alled semi-revision an be spei�ed as a two-stageproedure [21℄:1. Expand by A2. Make the belief base onsistent by deleting either A or some original belief(s)Compared to the revision proedure formulated at the beginning of setion 7, theorder of the steps is reversed4 and the seond step has been modi�ed. The operation4Reversing the order alone yields external revision, [21℄



Comparing operations for belief hange 35performed in the seond stage is alled onsolidation, [21℄, and an be arried out byontrating over falsehood. In our approah, the proedure looks like:1. Expx:=M :A(�; �0) 2. Ctr?(�0; �00)In other words, revision and ontration are related by the following identity:Revx:=M :A(�; �0) = Ctr?(�; x :=M : A; �0)This is exatly the revision proedure desribed earlier in setions 5.2 and 5.3. Firstthe new information, one or more statements, is added to the ontext �, then anumber of statements from the expanded ontext is removed to blok the onstrutionof inhabitants of falsity.There is a lose resemblane between our revision proedure and that of [21℄, alledkernel onsolidation. This orrespondene is given in Appendix A of this paper.7.4 HeuristisWhat we have done so far does not add up to a theory of belief revision in the tradi-tional sense. We have shown how a person an �nd the suspet beliefs when his beliefstate has beome inonsistent, and how he an remove a number of the suspets toregain onsisteny, but our revision proedure does not tell the person whih suspetsto remove. Standard approahes have a parametri seletion mehanism whih em-bodies some notion of \rational hoie" between the various possibilities for revisionin any given situation. Given a value for their parameters they selet one \optimal"revision outome. They usually introdue extra-logial struture in the belief state,and are omputationally unwieldy. The underlying view is that of a solitary reasonerwho has to solve the inonsisteny in splendid isolation, using his in�nite reasoningpowers and looking only at the beliefs in his (in�nite) belief state. Only reently,papers have started to appear that question some of these idealizations, and in whihbelief hange operations are de�ned for resoure-bounded agents, see e.g. [10℄. Ouronern is with agents who have �nite belief states (inluding justi�ations), �niteomputational resoures, and who have aess to the world by means of observationand ommuniation. Suh agents have possibilities to (re)evaluate the various sus-pets, by performing observations/tests or by ommuniating with other agents, and atheory of belief revision annot and should not presribe how they make their hoies.Strategies used by an agent to make these hoies are not part of the theory, if theyan be aptured formally they ould be used as heuristis on top of the theory. In thissetion, we briey disuss how some seletion mehanisms from standard approahesmentioned in [18℄ �t into our aount as heuristi priniples.In so-alled (partial) meet ontration, the idea is that the optimal ontration orrevision is the one that requires the smallest number of insertions and/or deletions inthe belief state. These ontration operations were originally de�ned for dedutivelylosed belief sets, rather than belief bases. They start from the maximal subsets of abelief set that do not imply the proposition that is to be removed. In general, therean be quite a few of these. Piking an arbitrary maximal non-implying set as theresult of the operation (hoie ontration), will often yield a new belief set that istoo large. In meet ontration, an intersetion of maximal non-implying sets is taken,to obtain a new belief set based on the beliefs the non-implying sets have in ommon.



36 Comparing operations for belief hangeTaking the intersetion of all maximal non-implying sets (full meet ontration) anresult in an empty set. Alhourr�on, G�ardenfors, and Makinson introdued partialmeet ontration [2℄ in whih a seletion funtion piks out a lass of \best" or \mostinteresting" maximal non-implying subsets. These seleted sets are then intersetedto obtain the new belief set. (For a fresh look at (full) meet ontration for beliefbases, see [14℄).The minimality riterion an be applied in the type theoretial approah. Givenone partiular proof of inonsisteny, � `M : ?, removing any one of the statementsof whih the subjets our free in M is suÆient to blok this partiular proof.However, these statements may have di�erent numbers of statements depending onthem in �, and so one ould prefer to remove the statement with the least numberof dependents to minimise the deletions from the belief state. In ases where morethan one proof of falsity has to be bloked, a \bloking" subset has to be hosen fromthe set of all variables ourring free in these proofs. When there is more than onesubset that does the job, one ould again prefer the subset with the smallest numberof statements (possibly taking the number of dependent statements into aount).As in the standard approah, this riterion will not always yield a single optimalsolution. It is possible to end up with two or more minimal sets of statements whoseremoval will restore onsisteny. To overome this indeterminism, additional stru-ture is introdued in the belief state. The entral idea in this onstrution is knownas epistemi entrenhement: \not all sentenes that are believed to be true are equalvalue for planning of problem-solving purposes, but ertain piees of knowledge andbeliefs about world are more important than others when planning future ationsonduting sienti� investigations or reasoning in general" [17℄. In performing on-tration or revision, the beliefs that are given up should be the ones with the lowestdegree of epistemi entrenhement. Although in our opinion suh an ordering of epis-temi entrenhement of the beliefs in the belief state annot be given one and forallindependent of the urrent goals and ativities of the agent performing the ontrationor revision, suh an ordering ould in priniple be added to the ontext representingthe agent's belief state. Note that the imposed entrenhment ordering has to respetthe dependeny relations between the beliefs in the ontext: if a belief y := N : Bdepends on a belief x := M : A, then y := N : B should not be epistemially moreentrenhed than x :=M : A sine removing x :=M : A without removing y := N : Bwill result in a ontext whih is not well-formed.Another idea that an be applied, at least in spirit, in the type theoretial settingis that of safe ontration: a proposition B is safe with respet to a proposition Aif it annot be blamed for the derivability of A. To ontrat over A, all propositionsthat are not safe with respet to A have to be removed. This approah, introduedby Alhourr�on and Makinson [3℄, starts from the so-alled \entailment sets": minimalsubsets of the belief state that entail the proposition to be removed. An element Bof the belief state is said to be safe with respet to the proposition A if B is nota minimal element of any entailment set of A. The minimality is determined withrespet to an ayli ordering of the beliefs in the belief state, expressed by meansof a relation `<'. This ordering an be seen as a form of the epistemi entrenhmentdesribed above, with A < B meaning that A is \less seure, plausible or reliable"than B.There is an obvious way to translate this idea to our approah to revision: a belief



Conluding remarks 37x := M : A is safe if it annot be blamed for the fat that a proof objet for ? anbe onstruted on the belief state �. The simplest interpretation of \being to blame"for a statement in ontext would be \to have its subjet appear as a free variable in aproof objet for ?". Hene the simplest form of safe ontration would be to removeall statements of whih the subjets appear free in a proof objet for ? and theirdependents from the ontext. However, this does not suÆe if all statements that areremoved themselves depend upon earlier statements in ontext, sine the proof objetfor ? ould be rebuilt from these \anestors". One way around this problem, is touse the onstrution of a so-alled kernel set desribed in the Appendix. For a givenderivation horizon and a given ontext, this onstrution indutively builds the set ofminimal falsity implying subsets of statements in �. This kernel set an reasonably besaid to ontain all statements that are \to blame" for the inonsisteny of the ontext(within the horizon), hene we an de�ne safe ontration as the removal of all thesestatements and their dependents. Although this will yield a unique solution, it willusually not be minimal in terms of the number of statements that are removed.8 Conluding remarksSine its birth in 1903, type theory has proved to be a useful medium for the de-sign and implementation of dedutive systems, programming languages and theoremprovers. This paper explored the use of type theory to provide a dedutive approah tobelief revision whih an be easily implemented. The starting idea is that type theoryenables expliit representations of justi�ations in belief revision. With the represen-tation of beliefs as type theoretial statements and belief states as type theoretialontexts, we showed that the presene of justi�ations makes it easy to identify thebeliefs that ause inonsisteny of the belief state (setion 4.2). Their presene alsogreatly simpli�es the handling of dependenies between beliefs (setion 5.1). Withrespet to literature, our initial assumptions put us in the area of foundations theoryfor belief bases. However, our aount does not su�er from the drawbaks usually as-soiated with foundations theory suh as problems with disbelief propagation, irularjusti�ations, and multiple justi�ations for the same belief (setion 6.2). The opera-tion of belief revision that naturally arises from our approah is one of non-prioritizedrevision: new information is not automatially ompletely trusted (setion 7.3).The fat that our approah is dedutive, and that we do not require that our theoryof belief revision itself selets whih beliefs have to be removed, makes its appliableto agents with limited omputational resoures (see appendix). This holds indepen-dently of the strength of the logi in whih the belief hange operations are ast:the mehanisms that were used to represent justi�ations and dependeny relationsbetween beliefs are at the heart of type theory, making our approah appliable toa large family of type systems. Given the well established onnetions between typetheory and logi, this means it is appliable in a wide range of logis. For instane, itan be applied in eah of the Pure Type Systems from the well-known Logi Cube [4℄,whih orresponds to logis ranging from minimal propositional logi to higher orderprediate logi. Our immediate goal is to use the extensive researh in implementa-tions of logis based on type theory in order to provide a working automated systemof belief revision based on the approah of this paper.
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Conluding remarks 39[26℄ Kamareddine, F., Bloo, R., and Nederpelt, R.P., On �-onversion in the �-ube and the ombi-nation with abbreviations. Annals of Pure and Applied Logis, 97:27{45, 1999.[27℄ F. Kamareddine and R.P. Nederpelt. Canonial typing and �-onversion in the BarendregtCube. Journal of Funtional Programming, 6(2):245{267, 1996.[28℄ Kolmogorov, A.N., Zur Deutung der Intuitionistishen Logik,Mathematishes Zeitshrift, Volme35, Pages 58{65, 1932.[29℄ Laan, T., The Evolution of Type Theory in Logi and Mathematis, PhD thesis, TehnisheUniversiteit Eindhoven, 1997.[30℄ Milner, M., Tofte, M., and Harper, R., The De�nition of Standard ML. MIT Press, 1991,Cambridge, MA.[31℄ Nederpelt, R.P., Geuvers, J.H., De Vrijer, R.C. (Eds.), Seleted Papers on Automath, Studiesin Logi and the Foundations of Mathematis 133, North-Holland, Amsterdam (1994).[32℄ Tait, W.W., In�nitely long terms of trans�nite type, In Formal Systems and Reursive Fun-tions, Crossley, J.N. and Dummett, M.A.E., (editors), North-Holland, Amsterdam, 1965.[33℄ J. Terlouw. Een nadere bewijstheoretishe analyse van GSTT's. Tehnial report, Departmentof Computer Siene, University of Nijmegen, 1989.A Kernel onsolidationOur revision proedure is partiularly lose to what Hansson alls kernel onsolidation. This form ofonsolidation is based on the idea that a subset of sentenes in the knowledge base K implies falsityif and only if this subset ontains some minimal falsity-implying subset of K. Hene the onsistenyof K an be restored by removing at least one element of eah minimal falsity-implying subset of K.Minimal falsity-implying subsets are alled kernels, they are de�ned as follows.Definition A.1A subset X of sentenes from a belief base K is a kernel if:1. X � K2. ? 2 Cn(X), and3. If Y � X, then ? 62 Cn(Y )The set of all kernels of K is alled the kernel set, denoted by K`?.The sentenes of K that have to be disarded to restore onsisteny, are seleted by an inisionfuntion:Definition A.2An inision funtion � for K is a funtion suh that:1. �(K`?) � [(K`?)2. If X 2 (K`?), then X \ �(K`?) 6= ;Definition A.3Let � be an inision funtion for K. The kernel onsolidation �� for K is de�ned as follows:K �� ? = Kn�(Ka?)In the typetheoretial approah, falsity-implying subsets of the ontext � are sets of statementsof whih the subjets our free in a proof objet inhabiting ?, i.e. fstat�(y)jy 2 FV (M)g, whereM is a term suh that � ` M : ?. If we all this set of statements for a given proof objet M`SM ' (`suspets' in M), we an see that this set ful�ls the �rst two riteria for kernels given inDe�nition A.1:1. SM � �2. �init; SM ` M : ?, that is: ? is a onsequene of SM (where �init ontains the well-typednessinformation needed for the derivation)However, suh a falsity-implying subset SM is not neessarily minimal in the sense required forkernels (the third riterion): there may exist another proof objet N suh that � ` N : ? andSN � SM . This is due to the fat that proof objets ode an entire proof for the proposition



40 Conluding remarksrepresented by their type, inluding proofs that ontain `detours', sequenes of steps that ould havebeen omitted in the proof. Suh detours an invoke premises that are not really needed to provethe proposition, resulting in non-minimal subsets. A very simple example of this is the following:take � � �init; x : A; z : A ! A; y : A ! ?, then there are at least two proof objets inhabitingfalsity, � ` y(zx) : ? and � ` yx : ?. Clearly, the falsity-implying subset for the �rst proof objetis not minimal, the seond proof objet is onstruted without using z : A! A. Although in typed�-alulus some detours an be eliminated by performing redutions on proof objets5 , we annotin general prevent a person from having a belief state on whih non-minimal proofs of falsity an bederived.Moreover, in disussing the minimality of falsity-implying subsets, the limited dedutive powershave to be taken into aount. Sine the person an only onstrut proofs of � h steps, where his the horizon distane, we an at best talk about falsity-implying subsets whih are minimal withrespet to these proofs. Given a subset SM for some inhabitant M of falsity, there may exist aset SN suh that SN � SM where the proof objet N for falsity annot be onstruted within thehorizon h. Hene, this smaller set SN should not be onsidered by the seletion proedure.The assumption of horizon enables an indutive proedure for the onstruting the kernel set�`h?, the set of all minimal falsity-implying subsets within the horizon. For a given ontext �,one systematially generates all derivations of length zero,then all derivations of length 1, then allderivations of length 2, . . . , up to all derivations of length h. Among eah layer of derivations,one piks out all derivations of an inhabitant of falsity. By omparing the sets of free variables ofthese inhabitants, the minimal falsity-implying subsets for that layer an be found, i.e. for the i-thlayer (1 � i � h) all FV (M) suh that � `i M : ?, and there is no N suh that � `i N : ? andFV (N) � FV (M). The sets SM that are minimal for a layer are then added to the kernel set �`i ?if there is no SN already in �`i? suh that SN � SM . In other words, before adding the setsthat are minimal in a layer it is a heked whether they are also minimal with respet to sets fromprevious layers.Given the indutively onstruted kernel set �`h?, the type theoretial analogons of inisionfuntion and kernel onsolidation an be de�ned extly as given in De�nitions A.2 and A.3, butfor the replaement of K`? by �`h?. Note that in the newly attained de�nition the slash in�n�(�`h?) stands for the type theoretial removal operation de�ned in setion 5.1, rather thanthe standard set theoretial operation in de�nition A.2, i.e. not only the statements seleted bythe inision funtion (�(�`h?)) are removed from � but also all statements depending on them(dep�(�(�`h?))). Sine dependenies are not onsidered in the setting of Hansson, we need to beable to distinguish between those two kinds of statements. The notion of 'independene' an easilybe de�ned as follows:Definition A.4A statement x :=M : A is an independent member of the set of statements � i� there is no statementz := N : B 2 � suh that x 2 dep�(z).In [21℄, kernel onsolation is haraterised by a theorem linking its onstrution to a number ofpostulates. We restate this theorem for type theoretial knowledge states:Theorem A.5An operation > de�ned on type-theoretial knowledge states is an operation of kernel onsolation i�for all ontexts �:1. (� >) is onsistent (onsisteny)2. (� >) � � (inlusion)3. If x := M : A is an independent member of � � (� >), then there is �0 suh that �0 � �, �0 isonsistent and �0; x :=M : A is inonsistent (ore-retainment).Proof. As x is independent, the proof is analogous to that of Hansson. There are two ases inthe proof where the independene is needed to ensure that a statement is an element of �(�`h?)rather than merely an element of dep�(�(�`h?)): in proving ore-retainment in the diretion5Sometimes a term representing a non-minimal proof an be �-redued to a minimal one, sine �- redutionorresponds to ut elimination: take � � �init; x : A; y : B; z : A ! ?, and M � (((�u : A:(�v : B:u))x)y)z : ?,then the ?-implying subset SM is fx : A; y : B; z : A ! ?g. After performing �-redution twie, we �nd thenormal form of M whih is xz. Now fx : A; z : A! ?g is a minimal ?-implying subset.



Conluding remarks 41from onstrution to postulates, and in proving that � is an inision funtion in the diretion frompostulates to onstrution.Reeived 10 February 2002


