
De Bruijn's Automath and Pure Type SystemsFairouz Kamareddine� Twan Laany Rob NederpeltzAbstratWe study the position of theAutomath systems within the frameworkof Pure Type Systems (PTSs). In [2, 22℄, a rough relationship has beengiven between Automath and PTSs. That relationship ignores three ofthe most important features of Automath: de�nitions, parameters and�-redution, beause at the time, formulations of PTSs did not have thesefeatures. Sine, PTSs have been extended with these features and in viewof this, we revisit the orrespondene betweenAutomath and PTSs. Thispaper gives the most aurate desription of Automath as a PTS so far.1 IntrodutionThe Automath systems are the �rst examples of proof hekers, and in thisway they are predeessors of modern proof hekers like Coq [20℄ and Nuprl [16℄.The projet started in 1967 by N.G. de Bruijn:\it was not just meant as a tehnial system for veri�ation of mathematialtexts, it was rather a life style with its attitudes towards understanding, devel-oping and teahing mathematis." ([12℄; see [44℄ p. 201)Thus, the roots of Automath are not to be found in logi or type theory,but in mathematis and the mathematial vernaular [11℄. De Bruijn had beenwondering for years what a proof of a theorem in mathematis should be like, andhow its orretness should be heked. The development of omputers in the 60smade him wonder whether a mahine ould hek the proof of a mathematialtheorem, provided the proof was written in a very aurate way. De Bruijndeveloped the language Automath for this purpose. This language is not only(aording to de Bruijn [10℄) \a language whih we laim to be suitable forexpressing very large parts of mathematis, in suh a way that the orretnessof the mathematial ontents is guaranteed as long as the rules of grammarare obeyed" but also \very lose to the way mathematiians have always beenwriting". This is reeted in the goals of the Automath projet:\1. The system should be able to verify entire mathematial theories.�Mathematial and Computer Sienes, Heriot-Watt Univ., Riarton, Edinburgh EH144AS, Sotland. Email: fairouz�ee.hw.a.ukyWeerdstede 45, 3431 LS Nieuwegein, The Netherlands. Email: twan.laan�wxs.nlzMathematis and Computing Siene, Eindhoven Univ. of Tehnology, P.O.Box 513, 5600MB Eindhoven, the Netherlands. Email: r.p.nederpelt�tue.nl1



2. The system should remain very general, tied as little as possible to anyset of rules for logi and foundations of mathematis. Suh basi rulesshould belong to material that an be presented for veri�ation, on thesame level with things like mathematial axioms that have to be explainedto the reader.3. The way mathematial material is to be presented to the system shouldorrespond to the usual way we write mathematis. The only things to beadded should be details that are usually omitted in standard mathematis."([12℄; see [44℄ pp. 209{210)Goal 1 was ahieved: Van Benthem Jutting [3℄ translated and veri�ed Lan-dau's \Grundlagen der Analysis" [42℄ in Automath and Zuker [52℄ formalisedlassial real analysis in Automath.As for goal 2, de Bruijn used types and a propositions as types (pat) prini-ple1 that was somewhat di�erent from Curry and Howard's [17, 28℄. The appear-ane of types in Automath �nds its roots in de Bruijn's ontats with Heyting,who made de Bruijn familiar with the intuitionisti intertpretation of the logi-al onnetives (see [26, 40℄). The interpretation of the proof of an impliationA! B as an algorithm to transform any proof of A into a proof of B, so in fata funtion from proofs of A to proofs of B, gave rise to interpret a proposition asa lass (a type) of proofs. De Bruijn who was not inuened by developments in�-alulus or type theory when he started his work on Automath, disoveredthis notion of \proofs as objets", better known as \propositions as types", in-dependently from Curry [17℄ and Howard [28℄. Curry and Howard identi�ed thelogial impliation and the universal quanti�er with funtion types, followingHeyting's intuitionisti interpretation of logial onnetives. In doing so, theydo not leave a possibility for a di�erent interpretation of impliation and uni-versal quanti�ation. Using pat in de Bruijn's style, the rules for manipulatingthe logial onnetives must always be made expliit by the user (for examplesee Setions 12 and 13 of [4℄). This makes it possible to give interpretations oflogial onnetives that are not based on interpreting impliation and universalquanti�ation by a funtion type (see [41℄).De Bruijn spent a lot of e�ort on goal 3. He studied the language of math-ematis in great depth [11℄ and used the following features to ahieve goal 3:� The use of books. Like a mathematial text, Automath is written lineby line. Eah line may refer to de�nitions or results given in earlier lines.� The use of de�nitions and parameters. Without de�nitions, expressionsbeome too long. Also, a de�nition gives a name to a ertain expressionmaking it easy to remember what the use of the de�niens is.As Automath was developed independently from other developments in theworld of type theory and �-alulus, and as it invented powerful typing ideasthat were later adopted in inuential type systems (f. [2℄), there are manythings to be explained in (and learned from) the relation between the variousAutomath languages and other type theories. Type theory was originally in-vented by Bertrand Russell to exlude the paradoxes that arose from Frege's1The �rst pratial use of the propositions-as-types priniple is found in Automath.2



\Begri�shrift" [21℄. It was presented in 1910 in the famous \Prinipia Math-ematia" [51℄ and simpli�ed by Ramsey and Hilbert and Akermann. In 1940,Churh ombined his theory of funtions, the �-alulus with the simpli�ed typetheory, resulting in the inuenial \simple theory of types" [15℄. Sine, manyinuential type systems have been developed. Eight of the most important suhsystems have been uni�ed in the Barendregt ube [2℄. Terlouw [50℄ and Be-rardi [5℄ extended independently Barendregt's work into a general frameworkleading to the so-alled Pure Type Systems (PTSs [2℄).In this paper we fous on the relation between Automath and Pure TypeSystems (PTSs). Both [2℄ and [22℄ mention this relation in a few lines, but asfar as we know a satisfatory explanation of the relation between Automathand PTSs is not available. Moreover, both [2℄ and [22℄ onsider Automathwithout one of its most important mehanisms: de�nitions and parameters.But de�nitions and parameters are extremely powerful in Automath. Eventhe Automath system Pal, whih roughly onsists of the de�nition systemof Automath only, is able to express some simple mathematial reasoning(see Setion 5 of [10℄). Aording to de Bruijn [12℄ this is \due to the fatthat mathematiians worked with abbreviations all the time already". Reentdevelopments on the use of de�nitions and parameters in PTSs [31, 41, 32, 33, 47℄justify renewed researh on the relation between Automath and PTSs.� Setion 2 desribes pat, PTSs and the basi Automath system Aut-68.� Setion 3 disusses how we an transform Aut-68 into a PTS. Some prop-erties of Aut-68 are unusual for PTSs: � �-redution; � �-appliationand �-redution (as Aut-68 does not distinguish � and �: both �x:A:Band �x:A:B are denoted by [x:A℄B); � a de�nition system; � a parame-ter mehanism. We do not onsider �-redution as an essential feature ofAutomath, and fous on its most harateristi type-theoretial features:de�nitions and parameter. In systems with �-appliation, � behaves like�, and there is a rule of �-redution: (�x:A:B)N !� B[x:=N ℄: We leavethe features of �-appliation and �-redution till Setion 5.� In Setion 4, we give a system �68 that is (almost) a PTS. In �68, def-initions play an ative role. We show that �68 has the usual propertiesof PTSs and an be seen as Aut-68 without �-redution, �-appliationand �-redution. There is no diret parameter system in �68 either, butparameters are hidden in the rules for the onstrution of produt types.� In Setion 5 we disuss how �68 an be extended with diret parametersand with �-appliation and �-redution. We also disuss how our ap-proah an be extended to other Automath systems like aut-QE wherethe identi�ation of � and � is more subtle than that of Aut-68 and itis not easy to tell whether [x:A℄B should stand for �x:A:B or �x:A:Bin PTSs. In addition to aut-QE, we reet on �� (f. [44℄, B.7) whereterms are presented as lambda trees and to eah Automath book, thereorresponds a single lambda tree whose orretness is equivalent to thatof the book. We onlude in Setion 6.3



2 Automath, pat, PTSs and Aut-68Basi to Automath is the pat priniple ommonly known as the Curry-Howardisomorphism, although it was also invented independently by de Bruijn whoapplied it in a di�erent way to that of Howard and Curry. Many other proofhekers and theorem provers, like Coq [20℄, Nuprl [16℄ and LF [23℄, use thepat priniple. In Setion 2.1 we explain the origin of the pat priniple. Then,in Setion 2.2 we introdue PTSs and we devote the rest of this setion toAutomath with its formulation of lines, books and de�nitions.During the Automath-projet, severalAutomath-languages have been de-veloped. They all have two mehanisms for desribing mathematis:� The typed �-alulus, with the important features of �-abstration, �-appliation and �-redution.� The use of de�nitions and parameters.The latter mehanism is the same for most Automath-systems, and the dif-ferene between the various systems is mainly aused by di�erent �-aluli thatare inluded. In this setion we desribe the system Aut-68 [4, 9, 19℄ whih notonly is one of the �rst Automath-systems, but also a system with a relativelysimple typed �-alulus, whih makes it easier to fous on the (less known)mehanism for de�nitions and parameters. A more extensive desription ofAut-68 on whih our desription below is based, an be found in [4, 9, 19℄.2.1 Propositions as Types and Proofs as TermsAlthough Churh's simply typed �-alulus has logial symbols like _, 8, itannot be seen as a logial system. If one wants to make logial derivations,one has to build a logial system on top of it. Type theory nowadays plays animportant role in logi in a di�erent way: it an be used as a logial systemitself. This use of type theory is generally known as \propositions as types" or\proofs as terms". As both expressions abbreviate to pat, we will use this ab-breviation to indiate both \propositions as types" and \proofs as terms". patonly partially overs the idea of using type theory as a logial system. \Proofsas terms" already suggests an important advantage of using type theory as alogial system: here proofs are �rst-lass itizens of the logial system, whilst formany other logial systems, proofs are rather omplex objets outside the logi(for example: derivation trees), and therefore annot be easily manipulated.Below we mention some origins of the pat priniple.Intuitionisti logiThe idea of pat originates in the formulation of intuitionisti logi. Though it isnot orret that \intuitionisti logi" is simply the logi that is used in intuition-isti mathematis2, there are frequently ourring onstrutions in intuitionisti2\Intuitionisti logi" is standard terminology for \logi without the law of the exludedmiddle". The terminology suggests that it is \the logi that is used in intuitionism". However,4



mathematis that have a logial ounterpart. One of these onstrutions is theproof of an impliation. Heyting [25℄ desribes the proof of an impliation a) bas: deriving a solution for the problem b from the problem a. Kolmogorov [40℄is even more expliit, and desribes a proof of a ) b as the onstrution of amethod that transforms eah proof of a into a proof of b. This means that aproof of a ) b an be seen as a (onstrutive) funtion from the proofs of ato the proofs of b. In other words, the proofs of the proposition a ) b formexatly the set of funtions from the set of proofs of a to the set of proofs ofb. This suggests to identify a proposition with the set of its proofs. Now typesare used to represent these sets of proofs. An element of suh a set of proofs isrepresented as a term of the orresponding type. This means that propositionsare interpreted as types , and proofs of a proposition a as terms of type a.CurryPat was, independently from Heyting and Kolmogorov, disovered by Curryand Feys [17℄. In paragraph 8C of [17℄, Curry desribes so-alled F-objets,whih orrespond more or less to the simple types of Churh in [15℄. As a basis,a list of primitive objets #1; #2; : : : is hosen. All these primitive objets areF-objets. Moreover, if � and � are F-objets, then so is F��. Here, F is a newsymbol. F�� must be interpreted as the lass of funtions from � to �. If �is an F-objet, then the statement ` �X must be interpreted as \the objet Xbelongs to �". The rule-F is adopted: if ` FXY Z and ` XU then ` Y (ZU).This rule immediately orresponds to the appliation-rule of Churh's �-alulusand says: if Z belongs to FXY and U belongs to X , then ZU belongs to Y .Earlier in [17℄, Curry gave the impliation ombinator P with the rule-P: if` PXY and ` X then ` Y . PXY is interpreted as the proposition \if X thenY ". Curry noties that rule-P has similar behaviour to rule-F.Curry is the �rst to give a formalisation of pat. For eah F-objet � hede�nes a proposition �P by: #Pi � #i and (F��)P � P�P�P .3 Curry thenintuitionism (i.e., the philosophy of Brouwer and the mathematis based on it) delares math-ematis to be independent of logi. Aording to that philosophy, a proof of a mathematialtheorem is a method to read that theorem as a tautology. The fat that one needs a list of tau-tologies before the proof of more ompliated theorems beomes lear, only indiates that theonstrutions we make are too ompliated to be omprehended immediately. Mathematisitself however, is a onstrution in one's mind, independent of logi:\Een logishe opbouw der wiskunde, onafhankelijk van de wiskundige intu��tie, isonmogelijk | daar op die manier slehts een taalgebouw wordt verkregen, datvan de eigenlijke wiskunde onherroepelijk gesheiden blijft | en bovendien eenontraditio in terminis | daar een logish systeem, zoo goed als de wiskundezelf, de wiskundige oer-intu��tie nodig heeft"(Over de Grondslagen der Wiskunde [8℄, p. 180)(A logial onstrution of mathematis, independent of the mathematial intuition, is impos-sible | for by this method no more is obtained than a linguisti struture, whih irrevoablyremains separated from mathematis | and moreover it is a ontraditio in terminis | be-ause a logial system needs the basi intuition of mathematis as muh as mathematis itselfneeds it. [Translation from [27℄℄).3Remark that Curry's funtion � 7! �P is in fat an embedding of types in propositions5



shows that the types-as-propositions embedding � 7! �P is sound and omplete:if FmX1 � � �XmY is an abbreviation of FX1(FX2(: : : (FXmY ) : : : )) then:\If ` Fm�1 � � � �m�X then ` (Fm�1 � � � �m�)P . Moreover, if ` Fm�1 � � � �m�Xis derivable from the premises ` �iai (i = 1; : : : ; p) then ` (Fm�1 � � � �m�)P isderivable from the premises ` �Pi (i = 1; : : : ; p)."([17℄, paragraph 9E, Theorem 1)\If ` (Fm�1 � � � �m�)P is derivable by rule-P from the premises ` �Pi , thenfor eah derivation of this fat and eah assignment of a1; : : : ; ap to �1; : : : ; �prespetively there exists an X suh that ` Fm�1 � � � �m�X is derivable from thepremises ` �iai (i = 1; : : : ; p) by rule-F alone."([17℄, paragraph 9E, Theorem 2)The treatment of pat in [17℄ is mainly direted towards Propositions asTypes. Proofs as terms are impliitly present in the theory of [17℄: the termX in the proof of Theorem 1 of [17℄ an be seen as a proof of the proposition(Fm�1 � � � �m�)P . But this is not made expliit in [17℄.Example 1 As an example, we show the dedution of the proposition A ! Afrom the logial axioms X ! Y ! X4 (the K-axiom) and (X ! Y ! Z) !(X ! Y )! X ! Z (the S-axiom), both in the style of the ombinator P and inthe pat-style. Both derivations orrespond to the derivation of the propositionA ! A in natural dedution style, with the use of modus ponens, and axiomsX ! Y ! X and (X ! Y ! Z)! (X ! Y )! X ! Z only:` (A! (A! A)! A)! (A! A! A)! A! A` A! (A! A)! A` (A! A! A)! A! A ` A! A! A` A! A :� We use PmX1 � � �XmY as an abbreviation for PX1(PX2(: : : (PXmY ) : : : )):So PmX1 � � �XmY an be interpreted as the proposition X1 ! X2 !� � �Xm ! Y: In this notation, Rule-P is: ` Pm+1X0 � � �XmY ` X0` PmX1 � � �XmY :For terms X;Y; Z, we take the following axioms:(K): ` P2XYX ;(S): ` P3(P2XY Z)(PXY )XZ.Let A be a term. From the axioms we derive ` PAA, using rule-P:` P3(P2A(PAA)A)(PA(PAA))AA` P2A(PAA)A` P2(PA(PAA))AA ` PA(PAA)` PAA ;(so a types-as-propositions embedding instead of a propositions-as-types embedding).4We assume that ! is assoiative to the right, i.e. X ! Y ! Z denotes X ! (Y ! Z)and not (X ! Y )! Z. 6



� In pat-style, the situation is similar. Now we do not use any axioms,but we use some standard ombinators. The ombinator K (whih an beompared to the �-term �xy:x) has type F2XYX , for arbitrary F-objetsX;Y (a term an have more than one type in Curry's theory). K an beseen as a \proof" of the axiom (F2XYX)P . This is indiated by puttingK behind the axiom: (F2XYX)PK: The ombinator S, omparable tothe �-term �xyz:xz(yz), has type F3(F2XYZ)(FXY )XZ for arbitrary F-objets X;Y; Z. S is a \proof" of the axiom (F3(F2XY Z)(FXY )XZ)P .This is denoted as (F3(F2XY Z)(FXY )XZ)PS: The derivation above nowtranslates to:` F3(F2A(FAA)A)(FA(FAA))AAS` F2A(FAA)AK` F2(FA(FAA))AA(SK) ` FA(FAA)K` FAA(SKK) :The onlusion of this derivation an be read as: SKK is a funtion fromA to A, or, with pat in mind: SKK is a proof of the proposition A! A.Both derivations orrespond to the derivation of the proposition A ! A innatural dedution style, with the use of modus ponens, and axiomsX ! Y ! Xand (X ! Y ! Z)! (X ! Y )! X ! Z only:` (A! (A! A)! A)! (A! A! A)! A! A` A! (A! A)! A` (A! A! A)! A! A ` A! A! A` A! A :HowardHoward [28℄ ombines the argument of Curry and Feys [17℄ with Tait's disoveryof the orrespondene between ut elimination and �-redution of �-terms [49℄.Example 2 Take this natural dedution style derivation of a proposition B:[A℄D1B D2A! B ABHere, [A℄ denotes that the assumption A has been disharged at the point wherewe onluded A ! B from B. D1 is a derivation with some assumptions of A,and onlusion B, whilst D2 is a derivation with onlusion A. The derivationD2 an be used to replae the assumptions of A in derivation D1. This meansthat we an transform the derivation to:7



D2AD1Bwhere opies of D2 have replaed the assumptions A in D1.We an deorate the two derivations above with �-terms that representproofs. This results in the following two dedutions:[x:A℄D1T : B D2(�x:A:T ) : (A! B) S : A((�x:A:T )S) : Band D2S : AD1T [x:=S℄ : BThe assumption of A is represented by a variable x of type A. This is a naturalidea: the variable expresses the idea \assume we have some proof of A". Thederivation D1 is represented by a �-term T , in whih the variable x may our(we an use the assumption A in derivation D1). Then the term �x:A:T exatlyrepresents a proof of A ! B: it is a funtion that transforms any proof x of Ainto a proof T of B. As D2 is a derivation of A (assume, S is a proof term ofA), we an apply �x:A:T to S, obtaining a proof (�x:A:T )S of B.Substituting the derivation D2 for the assumptions of A in D1 is nothingmore than replaing the assumption \assume we have some proof of A" bythe expliit proof S (i.e., substituting S for x). This gives a term T , whereeah ourrene of x has been replaed by S: the �-term T [x:=S℄. The prooftransformation exatly orresponds to the �-redution (�x:A:T )S !� T [x:=s℄.This is the �rst time that proofs are treated as �-terms. Howard doesn't allthese �-terms \proofs" but \onstrutions". Moreover, Howard's treatment ofpat pays attention to both Propositions as Types (following the line of Curryand Feys) and Proofs as Terms (by using �-terms to represent proofs, thusfollowing the interpretation of logial impliation as given by Heyting).Howard's disovery dates from 1969, but was not published until 1980.De BruijnIndependently of Curry and Feys and Howard, we �nd a variant of pat in the�rst Automath system of de Bruijn (Aut-68 [44℄, [10℄). Though de Bruijnwas probably inuened by Heyting (see [12℄ in [44℄, p. 211), his ideas arose8



independently from Curry, Feys and Howard This an be learly seen in Setion2.4 of [9℄, where propositions as types (or better: proofs as terms) is implementedin the following way, di�ering from the method of Curry and Howard.First, a onstant bool is introdued. bool is a type: the type of propositions.If b is a term of type bool (so b is a proposition), then true(b) is a primitivenotion of type type. true(b) represents the type of the proofs of b. So, a proof ofproposition b is of type true(b) and not of type b (sine propositions themselvesare no types) With this \bool-style" implementation (as it was alled by deBruijn in [12℄) in mind, it beomes lear why de Bruijn prefers the terminology\proofs as terms" to \propositions as types": in the bool-style, propositionsare not represented as types. Only the lass of proofs of suh a propositionis represented as a type. Proofs however, are represented as terms, just asin Howard's implementation of pat. So in the bool-style, the link betweenproposition and type is not as diret as the link between proof and term. Theimplementation of Howard (alled \prop-style" by de Bruijn) does not makeany distintion between a proposition and the type of its proofs.The bool-style implementation has as advantage that one does not need ahigher order lambda alulus to onstrut prediate logi. In relatively weakAutomath systems suh as aut-68 one usually �nds a \bool-style" implemen-tation of pat. It would be impossible to give a \prop-style" implementation insuh a system as its �-alulus is not strong enough to support it. In Automathsystems with a more powerful �-alulus we also �nd \prop-style" implementa-tions. See [43℄ for a desription of prop-style implementations in Automath.Another advantage of the bool-style implementation is that one does notdepend on a �xed interpretation of the logial onnetives. One is free to de�neones own logial system (and it is possible to base that system on the Brouwer-Heyting-Kolmogorov interpretation of the logial onnetives. This has beenone of the reasons for de Bruijn to implement pat in a bool-style way (see [12℄).Though the bool-style implementation is not used in later Automath sys-tems, it is still in use in the Edinburgh Logial Framework [23℄, and othersystems[48℄2.2 Pure Type SystemsLambda alulus was introdued by Churh [13, 14℄, as a formalisation of thenotion of funtion. With this formal notation he ould formulate his set of pos-tulates for the foundation of logi. Kleene and Rosser [38℄ showed that Churh'sset of postulates was inonsistent. The lambda alulus itself, however, appearedto be a very useful tool. Being a suitable framework for the formalisation offuntions, it is not surprising that lambda alulus beame an exellent toolfor formalising the Simple Theory of Types [15℄. This formalisation is at thebasis of most modern type theories and espeially at the basis of PTSs. In thissetion, we give the neessary mahinery of PTSs needed for this paper.De�nition 3 Let V be a set of variables and C a set of onstants (both ount-ably in�nite). The set T(V; C ) (or T, if it is lear whih sets V and C are used)9



of typed lambda terms with variables from V and onstants from C is de�nedby the following abstrat syntax: T ::= V j C j TT j �V:T:T j �V:T:T:We use x; y; z; �; � as meta-variables over V. In examples, we sometimeswant to use some spei� elements of V; we use typewriter-style to denote suhspei� elements. So: x is a spei� element of V; while x is a meta-variableover V. The variables x, y, z are assumed to be distint elements of V (sox 6� y et.), while meta-variables x; y; z; : : : may refer to variables in the objetlanguage that are syntatially equal. We use A;B;C;M;N; : : : ; a; b; : : : asmeta-variables over T. fv(A), the set of free variables of A, and substitutionA[x:=B℄ are de�ned in the usual way. We use � to denote syntatial equalitybetween lambda terms.Terms that are equal up to a hange of bound variables are taken to be syn-tatially equal. This allows the Barendregt Convention where bound variablesare hosen to di�er from free ones. Throughout, we let � 2 f�;�g.Notation 4 � We write (� � � ((AB1)B2) � � �Bn) as AB1 � � �Bn.� We write �x1:A1:(�x2:A2:(� � � (�xn:An:A) � � � )) as �~x: ~A:B, or �ni=1xi:Ai:A.� We write A[xm:=Bm℄ � � � [xn:=Bn℄ as A[xi:=Bi℄ni=m. If m > n thenA[xi:=Bi℄ni=m denotes A. We also write A[xi:=Bi℄ni=1 as A[~x:= ~B℄.De�nition 5 (�-redution) The relation !� is given by the ontration rule(�x:A1:A2)B !� A2[x:=B℄ and the usual ompatibility rules. The relation!!�(resp. =�) is the smallest reexive and transitive (resp. equivalene) relation thatinludes !� . By A!!+� B we indiate that A!!� B, but A 6� B.A term with no subterms of the form (�x:A1:A2)B is in �-normal form, ora normal form if no onfusion arises. We write A !nf� B (resp. A !!nf� B) ifA!� B (resp. A!!� B) and B is in �-normal form.De�nition 6 � A spei�ation is a triple (S;A;R), suh that S � C , A �S �S and R � S �S �S. The spei�ation is singly sorted if A and Rare (partial) funtions from S ! S and S � S ! S resp. We all S theset of sorts , A the set of axioms , and R the set of (�-formation) rules .� A ontext is a �nite (possibly empty) list x1:A1; : : : ; xn:An (or ~x: ~A) of vari-able delarations. fx1; : : : ; xng is the domain dom�~x: ~A� of the ontext.The empty ontext is denoted hi. We use �, � to range over ontexts.� We extend substitutions to ontexts by: hi[x:=A℄ � hi; and(�0; y:B)[x:=A℄ � � �0[x:=A℄ if x � y;�0[x:=A℄; y:B[x:=A℄ if x 6� y.Though PTSs were not introdued before 1988 [5, 50℄ many rules are highlyinuened by rules of known type systems like Churh's Simple Theory of Types[15℄ and Automath (see 5.5.4. of [18℄, and Setion 2).10



(axiom) hi ` s1 : s2 (s1; s2) 2 A(start) � ` A : s�; x:A ` x : A x 62 dom (�)(weak) � ` A : B � ` C : s�; x:C ` A : B x 62 dom (�)(�) � ` A : s1 �; x:A ` B : s2� ` (�x:A:B) : s3 (s1; s2; s3) 2 R(�) �; x:A ` b : B � ` (�x:A:B) : s� ` (�x:A:b) : (�x:A:B)(appl) � ` F : (�x:A:B) � ` a : A� ` Fa : B[x:=a℄(onv) � ` A : B � ` B0 : s B =� B0� ` A : B0Figure 1: Typing rules of PTSs�! (�; �)�2 (�; �) (2; �)�P (�; �) (�;2)�! (�; �) (2;2)�P2 (�; �) (2; �) (�;2)�! (�; �) (2; �) (2;2)�P! (�; �) (�;2) (2;2)�C (�; �) (2; �) (�;2) (2;2) �������������! �P�2 �P2�! �P!�C�!p ppp p ppp -6��1 (�;2) 2 R(2;2) 2 R(2; �) 2 R
Figure 2: The Barendregt CubeDe�nition 7 (Pure Type Systems) Let S = (S;A;R) be a spei�ation.The Pure Type System �S desribes the judgements (given in Figure 7) � `SA : B (or � ` A : B, if it is lear whih S is used). � ` A : B states that A hastype B in ontext �. A ontext � is legal if there are A;B suh that � ` A : B.A term A is legal if there are �; B suh that � ` A : B or � ` B : A.An important lass of PTSs is given as eight PTSs in the Barendregt Cube [2℄of Figure 2. These systems all have f�;2g as set of sorts, and �:2 as only axiom,but di�er on the �-formation rules. We write (s1; s2; s2) as (s1; s2).2.3 Books, lines and expressions of AutomathInAutomath, a mathematial text is thought of as being a series of onseutive\lauses". Eah lause is expressed as a line. Lines are stored in so-alled books .For writing lines and books in Aut-68 we need: � The symbol type; � A setV of variables; � A set C of onstants; � The symbols ( ) [ ℄ : | ; .11



We assume V and C are in�nite, V \ C = ? and type 62 V [ C. The elements ofV are alled blok openers , those of V [ C are alled identi�ers in [10℄.De�nition 8 (Expressions) We de�ne the set E of Aut-68-expressions (orexpressions) indutively as below. Sometimes we use the set E+ def= E [ ftypeg.(variable) If x 2 V then x 2 E ; We use the same meta-variables and spei�elements as for V.(parameter) If a 2 C, n 2 N (n � 0) and �1; : : : ;�n 2 E then a(�1; : : : ;�n) 2E . We all �1; : : : ;�n the parameters of a(�1; : : : ;�n);(abstration) If x 2 V , � 2 E [ ftypeg and 
 2 E then [x:�℄
 2 E ;(appliation) If �1;�2 2 E then h�2i�1 2 E .Remark 9 � The Aut-68-expression [x:�℄
 isAutomath-notation for ab-stration. In PTS-notation one writes �x:�:
 or �x:�:
. In a relativelysimple Automath-system like Aut-68, it is easy to determine whether�x:�:
 or �x:�:
 is the orret interpretation for [x:�℄
. This is harderin Automath-systems with a more omplex �-alulus, like aut-QE.� The Aut-68-expression h�2i�1 is Automath-notation for the intendedappliation of the \funtion" �1 to the \argument" �2. In PTS-notation:�1�2. (Note the unusual order of \funtion" �1 and \argument" �2).The advantages of writing h�2i�1 instead of the lassial �1�2 are exten-sively disussed in [37℄. In partiular, if �1 is a funtion [x:
1℄
2, thenh�2i�1 � h�2i[x:
1℄
2. The argument �2 and the abstration [x:
1℄ be-long together: as soon as the intended appliation of the funtion �1 toits argument is arried out, �2 is substituted for x everywhere in 
2. Itis onvenient to put expressions that belong together next to eah other.In lassial notation, one writes ([x:
1℄
2)�2, where �2 and [x:
1℄ areseparated from eah other by the expression 
2. This makes the strutureof the expression less lear, in partiular if 
2 is a very long expression.We de�ne fv(A) in the same way as for PTSs where also fv(a(�1; : : : ;�n)) def=Sni=1 fv(�i). We adhere to the usual onvention that names of bound variablesin an expression di�er from the free variables in that expression. We use � todenote syntatial equivalene (up to renaming of bound variables).De�nition 10 If 
;�1; : : : ;�n are expressions (in E), and x1; : : : ; xn are dis-tint variables, then 
[x1; : : : ; xn:=�1; : : : ;�n℄ denotes the expression 
 inwhih all free ourrenes of x1; : : : ; xn have simultaneously been replaed by�1; : : : ;�n. This is an expression in E (this an be proved by indution on thestruture of 
). Moreover, type[x1; : : : ; xn:=�1; : : : ;�n℄ is de�ned as type.De�nition 11 (Books and lines) An Aut-68-book (or book) is a �nite list(possibly empty) of (Aut-68)-lines (to be de�ned next). If l1; : : : ; ln are thelines of book B, we write B � l1; : : : ; ln. (See Example 13.)An Aut-68-line (line if no onfusion arises) is a 4-tuple (�; k; �1; �2). Here,12



� � is a ontext, i.e. a �nite (possibly empty) list x1:�1; : : : ; xn:�n, wherethe xis are di�erent elements of V and the �is are elements of E [ftypeg;� �1 an be (only): Æ The symbol | (if k 2 V); Æ The symbol pn (if k 2 C)(pn stands for \primitive notion"); Æ An element of E (if k 2 C);� k is an element of V [ C; and �2 is an element of E [ ftypeg.Remark 12 There are three sorts of Automath-lines (see Example 13):1. (�; k;|;�2) with k 2 V . This is a variable delaration of the variable khaving type �2. This does not really add a new statement to the book,but these delarations are needed to form ontexts.Variables an play two roles. First of all they an represent an unspe-i�ed objet of a ertain type (ompare this to the mathematial way ofspeaking: \let x be a natural number"). Seondly, a variable an at as alogial assumption. This happens if the variable has as type the proof ofa ertain proposition A. The usual mathematial way of speaking in suha situation is not \let x be a proof of A", but: \assume A";2. (�; k; pn; �2) with k 2 C. This line introdues a primitive notion: a on-stant k of type �2. This onstant an at as a primitive notion (for instaneintroduing the type of natural numbers, or introduing the number 0),or as an axiom. The introdution of k is parametrised by the ontext�. For instane, if we want to introdue the primitive notion of \logialonjuntion", we do not want to have a separate primitive notion for eahpossible onjuntion and(A;B).5 Instead, we want to have one primitivenotion and, to whih we an add two propositions A and B as parameterswhen we want to form the proposition and(A;B). Therefore, we introdueand in a ontext � � x:prop; y:prop. Given ertain propositions A;B thisenables us to form the Aut-68-expression and(A;B);3. (�; k; �1; �2) with k 2 C and �1 2 E . This line introdues a de�nition.The de�niendum k is de�ned by the de�niens �1 and has type �2. De�-nitions are parametrised like primitive notions. They help to:� abbreviate long expressions, larify the book struture, and makeexpression manipulations eÆient;� give a name to an expression. For instane, we an abbreviateS(S(S(S(S(S(S(0))))))) by 7.Example 13 In Figure 3 we give an example of an automath-book that intro-dues some elementary notions of propositional logi. We have numbered eahline in the example, and use these line numbers for referene in our ommentsbelow. To keep things lear, we have omitted the types of the variables in theontext. The book onsists of three parts:5Unlike the habit in mathematis to use only one harater (possibly indexed) for a variable,AUTOMATH adopts the onvention of omputer siene to use variables ontaining more thanone harater. So and represents only one variable, and not the appliation of a to n and d.13



? prop pn type (1)? x | prop (2)x y | prop (3)x,y and pn prop (4)x proof pn type (5)x,y px | proof(x) (6)x,y,px py | proof(y) (7)x,y,px,py and-I pn proof(and) (8)x,y pxy | proof(and) (9)x,y,pxy and-O1 pn proof(x) (10)x,y,pxy and-O2 pn proof(y) (11)x prx | proof(x) (12)x,prx and-R and-I(x,x,prx,prx) proof(and(x,x)) (13)x,y,pxy and-S and-I(y,x,and-O2,and-O1) proof(and(y,x)) (14)Figure 3: Example of an automath-book� In lines 1{5 we introdue some basi material:1. We take the type prop as a primitive notion. This type an beinterpreted as the type of propositions;2. We delare a variable x of type prop. This variable will be used inthe sequel of the book;3. We similarly de�ne a variable y of type prop within the ontextx:prop. For reasons of spae, we do not expliitly mention the typeof x in the ontext; if neessary we an �nd that type in line 2;4. Given propositions x and y, we introdue a new primitive notion, theonjuntion and(x,y) of x and y;5. Given a proposition x we introdue the type proof(x) of the proofsof x as a primitive notion. In this way, we an use the pat priniple�a la de Bruijn (f. Setion 2.1);� In lines 6{11 we show how we an onstrut proofs of propositions of theform and(x; y), and how we an use proofs of suh propositions:6. Given propositions x and y, we assume that we have a px 2 V of typeproof(x). I.e., the variable px represents a proof of x;7. We also assume a proof py of y;8. Given propositions x and y, and proofs px and py of x and y, wewant to onlude that and(x,y) holds. This is a natural dedutionaxiom whih we all and-I (and-introdution). and-I(x,y,px,py)is a proof of and(x,y), so of type proof(and(x,y)).In line 8, we see proof(and) instead of proof(and(x,y)) as the typeof and-I. This is usual in Automath, and keeps lines short. This\default mehanism" works as follows. As the ontext of line 4 hastwo variables x and y, we onlude that and should always arry twoparameters. In the expression proof(and) in line 8, no parameters14



are provided for and. It is then assumed that the �rst two variables ofthe ontext of line 8 are used as \default parameters". The �rst twovariables of the ontext of line 8 are x and y. Therefore, proof(and)in line 8 should be read as proof(and(x,y)).Similarly, we an write proof instead of proof(x) in line 6. Fromline 5 (where proof is introdued) we �nd that proof arries oneparameter. Writing just proof in line 6 means that we must use the�rst variable of the ontext of line 6, x, as a default parameter. Wemust write proof(y) in line 7 beause proof would give proof(x);9. To express how we an use a proof of and(x,y), �rst we introdue avariable pxy that represents an arbitrary proof of and(x,y);10. As we want x to hold when and(x,y) holds, we introdue an axiomand-O1 (and-out, �rst and-elimination). Given propositions x,y anda proof pxy of and(x,y), and-O1(x,y,pxy) is a proof of x;11. Similarly, we introdue an axiom and-O2 representing a proof of y;� We an now derive some elementary theorems:12. We want to derive and(x,x) from x. That is: from a proof of x, wean onstrut a proof of and(x,x). In line 6, we introdued a variablepx for a proof of x. However, we delared px in the ontext x,y. Aswe do not want a seond proposition y to our in this theorem, wedelare a new proof variable prx, in the ontext x;13. We derive our theorem: the reexivity of the logial onjuntion.Given a proposition x, and a proof prx of x, we an use the axiomand-I to �nd a proof of and(x,x): we an use and-I(x,x,px,px)thanks to line 8. We give a name to this proof: and-R. If, anywherein the sequel of the book, � is a proposition, and 
 is a proof of �,we an write and-R(�;
) for a proof of and(�;�). This is shorter,and more expressive, than the original expression and-I(�;�;
;
);14. We also show that and is symmetri: whenever and(x,y) holds, wealso have and(y,x). The idea is as follows. Given propositions x,yand a proof pxy of and(x,y), we an form proofs and-O1(x,y,pxy) ofx and and-O2(x,y,pxy) of y. We an feed these proofs \in reverse or-der" to the axiom and-I: the expression and-I(y,x,and-O2,and-O1)represents a proof of and(y,x). The expression and-O2 should beread as and-O2(x,y,pxy) due to the \default parameter" meha-nism. Similarly, and-O1 must be read as and-O1(x,y,pxy).2.4 Corret booksNot all books are good books. If (�; k; �1; �2) is a line of a book B, theexpressions �1 and �2 (as long as �1 is not pn or |, and �2 is not type) mustbe well-de�ned, i.e. the elements of V [ C ourring in them must have beenestablished (as variables, primitive notions, or de�ned onstants) in previous15



parts of B. The same holds for the type assignments xi:�i that our in �.Moreover, if �1 is not pn or |, then �1 must be of the same type as k, hene�1 must be of type �2 (within the ontext �). Finally, there should be only onede�nition of any objet in a book, so k should not our in the preeding linesof the book. Hene we need notions of orretness and of typing.We write B;? ` ok to indiate that a book B is orret, and B; � ` ok toindiate that the ontext � is orret with respet to the (orret) book B.6 Wewrite B; � ` �1 : �2 to indiate that �1 is a orret expression of type �2 (orsimply a orret expression) with respet to B and �. We also say: �1 : �2 isa orret statement with respet to B and �. We write `AUT�68 if a onfusionof systems arises. The following two interrelated de�nitions are based on [19℄.De�nition 14 (Corret books and ontexts) A book B and a ontext �are orret if B; � ` ok an be derived with the rules below (=�d is given inSetion 2.5. The rules use orret statements of De�nition 15):(axiom) ?;? ` ok(ontext ext.) B1; (�;x;|;�);B2; � ` okB1; (�;x;|;�);B2; �; x:� ` ok(book ext.: var1) B; � ` okB; (�;x;|; type);? ` ok(book ext.: var2) B; � ` �2 : typeB; (�;x;|;�2);? ` ok(book ext.: pn1) B; � ` okB; (�; k; pn; type);? ` ok(book ext.: pn2) B; � ` �2 : typeB; (�; k; pn; �2);? ` ok(book ext.: def1) B; � ` �1 : typeB; (�; k; �1; type);? ` ok(book ext.: def2) B; � ` �2 : type B; � ` �1 : �02 B; � ` �2 =�d �02B; (�; k; �1; �2);? ` okFor the (book ext.) rules, we assume x 2 V and k 2 C do not our in B or �.De�nition 15 (Corret statements) A statement B; � ` � : 
 is orret ifit an be derived with the rules below (the start rule uses the notions of orretontext and orret book as given in De�nition 14).6As the empty ontext will be orret with respet to any orret book.
16



(start) B; �1; x:�;�2 ` okB; �1; x:�;�2 ` x:�(parameters) B � B1; (x1:�1; : : : ; xn:�n; b; 
1; 
2);B2B; � ` �i:�i[x1; : : : ; xi�1:=�1; : : : ;�i�1℄(i = 1; : : : ; n)B; � ` b(�1; : : : ;�n) : 
2[x1; : : : ; xn:=�1; : : : ;�n℄(abstr.1) B; � ` �1:type B; �; x:�1 ` 
1:typeB; � ` [x:�1℄
1 : type(abstr.2) B; � ` �1:type B; �; x:�1 ` 
1:type B; �; x:�1 ` �2:
1B; � ` [x:�1℄�2 : [x:�1℄
1(appliation) B; � ` �1 : [x:
1℄
2 B; � ` �2 : 
1B; � ` h�2i�1 : 
2[x:=�2℄(onversion) B; � ` � : 
1 B; � ` 
2:type B; � ` 
1 =�d 
2B; � ` � : 
2When using the parameter rule, we assume that B; � ` ok, even if n = 0.Lemma 16 The book of Example 13 (see Figure 3) is orret.Proof: We prove this for the �rst four lines (we leave lines 5{14 for the reader).We write (m{n) to denote the book that onsists of lines m to n of Example 13.1. By (axiom), ?;? ` ok, so (?; prop; pn; type);? ` ok (book ext.: pn1).2. By (parameters), (1{1);? ` prop : type. Therefore by (book ext.: var1),we have: (1{1); (?; x;|; prop);? ` ok.3. By (ontext ext.), (1{2); x:prop ` ok.Therefore by (book ext.: var1), we have: (1{2); (x:prop; y;|; prop) ` ok.4. By two appliations of (ontext ext.), (1{3); x:prop; y:prop ` ok.By (parameters), we have: (1{3); x:prop; y:prop ` prop:type.Therefore by (book ext.: pn2), we have: (1{4);? ` ok. �2.5 De�nitional equalityWe need to desribe the relation =�d (\de�nitional equality"). This notion isbased on the mehanisms of de�nition and abstration/appliation of Aut-68.The abstration/appliation mehanism provides the well-known notion of �-equality, originating from h�i[x:
2℄
1 !� 
1[x:=�℄: We need to desribe thede�nition mehanism of Aut-68 via the notion of d-equality.7De�nition 17 (d-equality) Assume, B; � ` � : �0. We de�ne the d-normalform nfd(�) of � with respet to B by indution on the length of B. Assumenfd(�) has been de�ned for all B0 with less lines than B, and all � that areorret with respet to B0 and a ontext �. By indution on the struture of �:7This de�nition depends on the de�nition of derivability ` whih in turn depends onthe de�nition of =�d. The de�nitions of orret book, orret line, orret ontext, orretexpression and =�d should be given within one de�nition, using indution on the length ofthe book. This would lead to a orret but very long de�nition, and that is the reason whythe de�nitions are split into smaller parts (in this paper as well as in [19℄).17



� If � is a variable x, then nfd(�) def= x;� If � � b(
1; : : : ;
n) and the normal forms of the 
is have been de�ned,determine a line (�; b; �1; �2) in the book B (there is exatly one suhline, and it is determined by b). Write � � x1:�1; : : : ; xn:�n. Distinguish:Æ �1 �|. This ase doesn't our, as b 2 C;Æ �1 � pn. Then de�ne nfd(�) def= b(nfd(
1); : : : ; nfd(
n));Æ �1 is an expression. Then �1 is orret with respet to B0 that ontainsless lines than B (B0 doesn't ontain the line (�; b; �1; �2), and alllines of B0 are lines of B), hene we an assume nfd(�1) has beende�ned. De�ne nfd(�) def= nfd(�1)[x1; : : : ; xn:=nfd(
1); : : : ; nfd(
n)℄;� If � � [x:
1℄
2 then nfd(�) def= [x:nfd(
1)℄nfd(
2);� If � � h
2i
1 then nfd(�) def= hnfd(
2)infd(
1).Write �1 =d �2 if nfd(�1) � nfd(�2)8 and =�d for the smallest equivalenerelation ontaining =� and =d.De�nition 18 �1 and �2 are alled de�nitionally equal (with respet to a bookB) if �1 =�d �2.9Instead of De�nition 17, we an de�ne d-equality via a redution relation.De�nition 19 (Æ-redution) Let B be a book, � a orret ontext with re-spet to B, and � a orret expression with respet to B; �. We de�ne �!Æ 
by the usual ompatibility rules, and(Æ) If � = b(�1; : : : ;�n), and B ontains a line (x1:�1; : : : ; xn:�n; b; �1; �2)where �1 2 E , then �!Æ �1[x1; : : : ; xn:=�1; : : : ;�n℄:� is in Æ-normal form if for no expression 
, �!Æ 
. We de�ne !!Æ, !!+Æ and=Æ as usual. Again, !Æ depends on B, but we drop B if no onfusion ours.Lemma 20 1. (Churh-Rosser) If A1 =Æ A2 then there is B suh thatA1 !Æ B and A2 !Æ B;2. nfd(�) is the unique Æ-normal form of �;3. � =Æ 
 if and only if � =d 
.4. !Æ is strongly normalising.8Note that the d-normal form nfd(�) of a orret expression � depends on the book B,and to be ompletely orret we should write nfdB(�) instead of nfd(�). We will, however,omit the subsript B as long as no onfusion arises.9De�nitional equality of expressions �1 and �2 depends on the book B, so we should write=�dB instead of =�d. As before, we leave out the subsript B as long as no onfusion arises.18



Proof:1. Aut-68 with !Æ is an orthogonal term rewrite system (see [39℄). Suh aterm rewrite system has the Churh-Rosser property (see [39℄);2. It is not hard to show that � !!Æ nfd(�). By indution on the de�nitionof nfd(�) one shows that nfd(�) is in Æ-normal form. The uniqueness ofthis normal form follows from the Churh-Rosser property;3. If � =Æ 
 then by (1) there is 	 suh that � !Æ 	 and 
 !Æ 	. Thismeans that the Æ-normal forms of � and 
 are equal, so by (2), nfd(�) �nfd(
). On the other hand, if nfd(�) � nfd(
), then � and 
 have thesame Æ-normal forms (by (2)), so � =Æ 
.4. By 2,!Æ is weakly normalising. Moreover, De�nition 17 of nfd(�) induesan innermost redution strategy. By a theorem of O'Donnell ([45℄, or pp.75{76 of [39℄), !Æ is strongly normalising. �De�nition 21 � A book B is part of a book B0, notation B � B0, if alllines of B are lines of B0.� A ontext � is part of a ontext �0, notation � � �0, if all delarationsx:� of � are delarations in �0.Lemma 22 (Weakening) If B; � ` � : 
, B � B0, � � �0 and B0; �0 ` okthen B0; �0 ` � : 
.Proof: By indution on the derivation of B; � ` � : 
. �3 From Aut-68 towards a PTS �68We want to give a desription of Aut-68 within the framework of the PureType Systems. One of the most important hoies to be made is whether ornot to maintain the parameter mehanism (that is: to allow expressions withparameters, as in the seond lause of De�nition 8). On the one hand, theparameter mehanism is an important feature ofAutomath. On the other handPTSs do not have a parameter mehanism, and the parameter mehanism an beeasily imitated by funtion appliation (f. the seond lause of the forthomingDe�nition 23). Moreover, the desription by van Benthem Jutting in [2℄ of thesystems Aut-68 and Aut-QE in a PTS style does not use parameters.In this paper, we provide a translation to PTSs without parameters. In doingso, we an explain van Benthem Jutting's desription of Aut-68 and Aut-QE.We will see, however, that the way in whih we must handle parameters inthe resulting PTS is a bit arti�ial. Moreover, we think that parameters play animportant role in the Automath systems, and that they ould play a similarrole in other PTSs. Therefore, we present extensions of PTSs with parametersin [32, 41, 33℄. These extensions are based on the way in whih parameters arehandled in Automath, and it was shown that Automath an be desribedvery well within these PTSs with parameters.19



To desribe Aut-68 as a PTS without parameters (all it �68), we �rsttranslate the expressions of Aut-68 to typed �-terms (note that the parametermehanism of De�nition 8 is replaed by repeated funtion appliation in PTSs):De�nition 23 Reall that T and V are the set of terms and variables for PTSs.We de�ne a mapping [: : :℄ from the orret expressions in E (relative to a bookB and a ontext �) to T. We assume that C [ V � V.� x def= x for x 2 V ; � b(�1; : : : ;�n) def= b�1 � � ��n; � h
i� def= � 
;� type def= �; � [x:�℄
 def= � �x:�:
 if [x:�℄
 has type type;�x:�:
 otherwiseWith this translation in mind, we want to �nd a type system �68 that \suits"Aut-68, i.e. if � is a orret expression of type 
 with respet to a book Band a ontext �, then we want B0;�0 ` � : 
 to be derivable in �68, and vieversa. Here, B0 and �0 are some suitable translations of B and �. The searhfor a suitable �68 will fous on three points: �-formation and parameter types;onstants and variables; and de�nitions.3.1 The hoie of the orret formation (�) rules and theparameter types {x:A:BAs type � �, De�nition 15 lari�es whih �-rules are implied by the abstrationmehanism of Aut-68, the rule on the left translates into the rule on the rightwhih is �-rule (�; �; �) (B and � are suitable translations of B and �):B; � ` �1:type B; �; x:�1 ` 
1:typeB; � ` [x:�1℄
1 : type B;� ` �1: � B;�; x:�1 ` 
1:�B;� ` (�x:�1:
1) : � ;It is, however, not immediately lear whih �-rules are indued by theparameter mehanism of Aut-68. Let � � b(�1; : : : ;�n) be a orret ex-pression of type 
 with respet to a book B and a ontext �. By De�ni-tion 14 there is a line (x1:�1; : : : ; xn:�n; b; �1; �2) in B suh that eah �i isa orret expression with respet to B and �, and has a type that is de�-nitionally equal to �i[x1; : : : ; xi�1:=�1; : : : ;�i�1℄. We also know that 
 =�d�2[x1; : : : ; xn:=�1; : : :�n℄. Now � � b�1 � � ��n, and, assuming that we anderive in �68 that �i has type �i[x1; : : : ; xi�1:=�1; : : : ;�i�1℄; it is not unrea-sonable to assign the type �x1:�1 � � ��xn:�ntob:�2. We will abbreviate thislast term by Qni=1 xi:�i:�2. Then we an derive (using n times the appliationrule that we will introdue for �68) that � has type 
 in �68.It is important to notie that the type of b, Qni=1 xi:�i:�2, does not nees-sarily have an equivalent in Aut-68, as in Aut-68 abstrations over type arenot allowed (only abstrations over expressions � that have type as type arepossible | f. De�nition 15). In other words, the type of b, Qni=1 xi:�i:�2, isnot neessarily a �rst-lass itizen of Aut-68 and should therefore have speialtreatment in �68. This is the reason to reate a speial sort 4, in whih thesetypes of Aut-68 onstants and de�nitions are stored. This idea originates fromvan Benthem Jutting and was �rstly presented in [2℄.20



If we onstrut �xn:�n:�2 from �2, we must use a rule (s1; s2; s3), wheres1; s2; s3 are sorts. Sort s1 must be the type of �n. As �n � type or �n has typetype, we must allow the possibilities s1 � � and s1 � 2. Similarly, �2 � typeor �2 has type type, so we also allow s2 � � and s2 � 2. As we intended tostore the new type in sort 4, we take s3 � 4.For similar reasons, we introdue rules (�;4;4) and (2;4;4) to onstrutQni=1 xi:�i:�2 from �xn:�n:�2 for n > 1. Hene, we have the �-rules:(�; �; �); (�; �;4); (2; �;4); (�;2;4); (2;2;4); (�;4;4); (2;4;4):We do not have rules of the form (4; s2; s3) or (s1;4; s3) with s3 � � ors3 � 2. So types of sort 4 annot be used to onstrut types of other sorts.In this way, we an keep the types of the �-alulus part of Aut-68 separatedfrom the types of the parameter mehanism: the last ones are stored in 4.In Example 5.2.4.8 of [2℄, there is no rule (�; �;4). In priniple, this rule issuperuous, as eah appliation of rule (�; �;4) an be replaed by an applia-tion of rule (�; �; �). Nevertheless we maintain this rule beause:� The presene of both (�; �; �) and (�; �;4) in the system stresses the fatthat Aut-68 has two type mehanisms: one provided by the parametermehanism and one by the �-abstration mehanism;� There are tehnial arguments to make a distintion between types formedby the abstration mehanism and types that appear via the parametermehanism. In this paper, we denote produt types onstruted by theabstration mehanism in the usual way (so: �x:A:B), whilst we will usethe notation {x:A:B for a type onstruted by the parameter mehanism.Hene, we have for the onstant b above that b : {ni=1 xi:�i:�210. As anadditional advantage, the resulting system will maintain Uniity of Types.This would have been lost if we use rules (�; �; �) and (�; �;4) withoutmaking this di�erene, as we an then derive both�:� ` �: � �:�; x:� ` �:��:� ` (�x:�:�) : � and �:� ` �: � �:�; x:� ` �:��:� ` (�x:�:�) : 4� There is another reason to make a distintion between types formed bythe abstration mehanism and types that appear in the translation viathe de�nition mehanism. So far, we use Aut-68 without �-appliation.In Aut-68 with �-appliation (all this system Aut-68� for the moment;see also Setion 5) the appliation rule of De�nition 15 (see below on theleft, is replaed by the rule on the right, but the rule desribing the typeof b(�1; : : : ;�n) is the same as the rule in De�nition 15 (parameters):B; � ` �1:[x:
1℄
2 B; � ` �2:
1B; � ` h�2i�1 : 
2[x:=�2℄ B; � ` �1:[x:
1℄
2 B; � ` �2:
1B; � ` h�2i�1 : h�2i
2 :So if we want to make a translation of Aut-68�, the appliation rule for�-terms has to be di�erent from the appliation rule for {-terms. Withoutdistintion between �-terms and {-terms, it would be impossible to amendthe system to represent Aut-68�. Distinguishing between �-terms and10we use {ni=1 xi:�i:�2 as an abbreviation for {x1:�1 � � � {xn:�n:�221



{-terms makes it possible to obtain a translation of Aut-68� from thetranslation of Aut-68 in a simple way.3.2 The di�erent treatment of onstants and variablesWhen we seek to translate the Aut-68 judgement B; � ` � : 
 in �68, we mustpay attention to the translation ofB, as there is no equivalent of books in PTSs.Our solution is to store the information on identi�ers of B in a PTS-ontext.Therefore, ontexts of �68 will have the form �;�. The left part � ontainstype information on primitive notions and de�nitions, and an be seen as thetranslation of the information on primitive notions and de�nitions in B. Theright part � has the usual type information on variables.The idea to store the onstant information of B in the left part of theontext arises naturally. Let B be a orret Aut-68 book, to whih we add aline (�; b; pn; �2). Then � � x1:�1; : : : ; xn:�n is a orret ontext with respettoB, and B; � ` �2:type or �2 � type. In �68 we an work as follows. Assumethe information on onstants in B has been translated into the left part � ofa �68 ontext. We have (assuming that �68 is a type system that behaves likeaut-68, and writing � for the translation x1:�1; : : : ; xn:�n of �): �; � ` �2:s(s � � if B; � ` �2:type; s � 2 if �2 � type). Applying the {-formationrule n times, we obtain �;? ` {�:�2 : 4 (if � is the empty ontext, then{�:�2 � �2, and �2 has type � or 2 instead of 4. We write {� for {ni=1 xi:�i).As {�:�2 is exatly the type that we want to give to b (see the disussion inSetion 3.1), we use this statement as premise for the start rule that introduesb. As the right part � of the original ontext has disappeared when we appliedthe {-formation rules, b:{�:�2 is automatially plaed at the righthand end of�: The onlusion of the start rule is �; b:{�:�2 ` b:{�:�2:Adding b:{�:�2 at the end of � an be ompared with adding the line(�; b; pn; �2) at the end of B. This proess an be aptured by the rule belowwhere s1 2 f�;2g (ompare: �2:type or �2 � type) and s2 2 f�;2;4g (usually,s2 � 4; the ases s2 � �;2 only our if � is empty):�; � ` �2:s1 �;` {�:�2:s2�; b:{�:�2;` b:{�:�2 :3.3 The de�nition system and the translation using xA line (x1:�1; : : : ; xn:�n; b; �1; �2), in whih b is a onstant and �1 2 E , rep-resents the de�nition: \for all expressions 
1; : : : ;
n (obeying some type on-ditions), b(
1; : : : ;
n) abbreviates �1[x1; : : : ; xn:=
1; : : : ;
n℄, and has type�2[x1; : : : ; xn:=
1; : : : ;
n℄:" So in �68, the ontext should also mention thatbX1 � � �Xn \is equal to" �1[x1; : : : ; xn:=X1; : : : ; Xn℄, for all terms X1; : : : ; Xn.This an be done by writing b:= ��ni=1 xi:�i:�1� : �{ni=1 xi:�i:�2� in the on-text instead of only b:{ni=1 xi:�i:�2, and adding a Æ-redution rule that unfoldsthe de�nition of b: if b:= ��ni=1 xi:�i:�1� : �{ni=1 xi:�i:�2� 2 � then � ` b !Æ�ni=1 xi:�i:�1. Unfolding the de�nition of b in a term b�1 � � ��n and applying�-redution n times gives �1[x1:=�1℄ � � � [xn:=�n℄. This proedure orresponds22



exatly to the Æ-redution � ` b(�1; : : : ;�n)!Æ �1[x1; : : : ; xn:=�1; : : : ;�n℄ inAut-6811. This method, however, has disadvantages:� In theAut-68 line (x1:�1; : : : ; xn:�n; b; �1; �2), b(�1; : : : ;�n) has for equiv-alent in �68, b�1 � � ��n. If n > 0, this �68-term has B � b�1 � � ��m asa subterm for any m < n. But B has no equivalent in Aut-68: only af-ter B is applied to suitable terms �m+1; : : : ;�n the result B�m+1 � � ��nhas b(�1; : : : ;�n) as its equivalent in Aut-68. Hene B is not diretlytranslatable into Automath, but only an intermediate result neessaryto onstrut the equivalent of b(�1; : : : ;�n). B is reognisable as an in-termediate result via its type {ni=m+1 xi:�i:�2, of sort 4 (not � or 2).The method above allows to unfold the de�nition of b already in B, beauseb�1 � � ��m an redue to ��ni=1 xi:�i:�1��1 � � ��m, and we an �-reduethis term m times to ��ni=m+1 xi:�i:�1� [xj :=�j ℄mj=1. It is more in linewith Aut-68 to make suh unfolding not possible before all n arguments�1; : : : ;�n have been applied to b, so only when the onstrution of theequivalent of b(�1; : : : ;�n) has been ompleted;� Moreover, �ni=1 xi:�i:�1 does not neessarily have an equivalent in Aut-68. Take for example the onstant b in line (�:type; b; [x:�℄x; [x:�℄�):Then �ni=1 xi:�i:�1 � ��:�:�x:�:x. Its equivalent in Aut-68 would be[�:type℄[x:�℄x, but an abstration [�:type℄ annot be made in Aut-68.12This explains why we do not inorporate �ni=1 xi:�i:�1 as a itizen of �68.Therefore we hoose a di�erent translation. The line (x1:�1; : : : ; xn:�n; b; �1; �2);where �1 2 E , will be translated using b:= �xni=1 xi:�i:�1� : �{ni=1 xi:�i:�2� in-stead of b:= ��ni=1 xi:�i:�1� : �{ni=1 xi:�i:�2� in the left part of the translatedontext �. A redution rule bX1 � � �Xn !Æ �1[x1; : : : ; xn:=X1; : : : ; Xn℄ is addedfor all terms X1; : : : ; Xn. The symbol x is used instead of �. This emphasisesthat, though both xx:A and �x:A are abstrations, they are not the same kindof abstration.4 �68Here, we give �68, show that it has the desirable properties of PTSs and thatit is the PTS version of Aut-68.De�nition 24 (�68)1. Let S is the set of sorts f�;2;4g. Terms of �68 are given by T ::= V jC j S j T T j �V :T :T j xV :T :T j �V :T :T j {V :T :T : Free variables fv(T )and \free" onstants f(T ) of term T are de�ned as usual;11We an assume that the xi do not our in the �j , so the simultaneous substitution�1[x1; : : : ; xn:=�1; : : : ;�n℄ is equal to �1[x1:=�1℄ � � � [xn:=�n℄.12This situation ompares to that of Setion 3.1, where we found that the type of b is notneessarily a �rst-lass itizen of AUT-68. There, we ould not avoid that the type of b beamea itizen of �68 (though we made it a seond-lass itizen by storing it in the sort 4).23



2. We de�ne the notion of ontext indutively:� ?;? is a ontext; dom (?;?) = ?;� If �; � is a ontext, x 2 V , x does not our in �; � and A 2T , then �; �; x:A is a ontext (x is a newly introdued variable);dom (�; �) = dom (�; �) [ fxg;� If �; � is a ontext, b 2 C, b does not our in �; � and A 2 Tthen �; b:A; � is a ontext (in this ase b is a primitive onstant;dom (�; b:A; �) = dom (�; �) [ fbg;� If �; � is a ontext, b 2 C, b does not our in �; �, A 2 T , andT 2 T , then �; b:=T :A; � is a ontext (in this ase b is a de�nedonstant; dom (�; b:=T :A; �) = dom (�; �) [ fbg.Note that a semiolon is used as the separation mark between the twoparts of the ontext. A omma separates expressions within eah part.We de�ne primons (�; �) = fb 2 dom (�; �) j b is a primitive onstantg;defons (�; �) = fb 2 dom (�; �) j b is a de�ned onstantg; andfv(�; �) = dom (; �) :3. We de�ne Æ-redution on terms. Let � be the left part of a ontext.If (b:= (xni=1 xi:Ai:T ) : ({ni=1 xi:Ai:B)) 2 � and B is not {y:B1:B2, then� ` bX1 � � �Xn !Æ T [x1; : : : ; xn:=X1; : : : ; Xn℄ for all X1; : : : Xn 2 T .We also have the usual ompatibility rules on Æ-redution. We use nota-tions like !!Æ;!!+Æ ;=Æ as usual. If no onfusion about whih � ours,we simply write bX1 � � �Xn !Æ T [x1; : : : ; xn:=X1; : : : ; Xn℄;4. We use the usual notion of �-redution;5. Judgements in �68 have the form �;� ` A : B, where �; � is a ontextand A and B are terms. In the ase that a judgement �; � ` A : B isderivable aording to the rules below, �; � is a legal ontext and A andB are legal terms. We write �; � ` A : B : C if both �; � ` A : B and�; � ` B : C are derivable in �68. The rules for �68 are given in Figure 5(v, p, and d are shorthand for variable, primitive onstant, and de�nedonstant, respetively). The newly introdued variables in the Start-rulesand Weakening-rules are assumed to be fresh. Moreover, when introduinga variable x with a \p"-rule or a \d"-rule, we assume x 2 C, and whenintroduing x via a \v"-rule, we assume x 2 V . We write �; � `�68 A : Binstead of �; � ` A : B if the latter gives rise to onfusion.Note that there is no rule (x). This is beause we do not want terms like xx:A:Bto be �rst-lass itizens of �68: they do not have an equivalent in Automath.De�nition 25 We de�ne: �1; �1 ` �2; �2 if and only if� If b:A 2 �2; �2 then �1; �1 ` b:A; � If b:=T :A 2 �2 then �1; �1 ` b:A;� If b:=(xni=1 xi : Ai:U):B 2 �2 and U 6� x y:B:A0 then �1 ` bx1 � � �xn =�Æ U .24



(Axiom) ;` � : 2(Start : v) �; � ` A : s�;�; x:A ` x : A s � �;2(Start : p) �; � ` B : s1 �;` {�:B : s2�; b:{�:B;` b : {�:B s1 � �;2(Start : d) �; � ` T : B : s1 �;` {�:B : s2�; b:=(x�:T ):({�:B);` b : {�:B s1 � �;2(Weak : v) �; � `M : N �;� ` A : s�;�; x:A `M : N s � �;2(Weak : p) �;`M : N �;� ` B : s1 �;` {�:B : s2�; b:{�:B;`M : N s1 � �;2(Weak : d) �;`M : N �;� ` T : B : s1 �;` {�:B : s2�; b:=(x�:T ):({�:B);`M : N s1 � �;2(�� form) �; � ` A : � �;�; x:A ` B : ��;� ` (�x:A:B) : �({ � form) �; � ` A : s1 �;�; x:A ` B : s2�;� ` ({x:A:B) : 4 s1 � �;2(�) �;� ` �x:A:B : � �;�; x:A ` F : B�;� ` (�x:A:F ) : (�x:A:B)(App1) �; � `M : �x:A:B �;� ` N : A�;� `MN : B[x:=N ℄(App2) �; � `M : {x:A:B �;� ` N : A�;� `MN : B[x:=N ℄(Conv) �; � `M : A �;� ` B : s � ` A =�Æ B�;� `M : BFigure 4: Rules of �68
25



Many properties for PTSs hold for �68 and an be proved by the samemethods as for PTSs. Due to the split of ontexts and the di�erent treatmentof onstants and variables, these properties are on some points di�erently for-mulated than usual. The proofs of Lemmas 26, 27, 30, 31, 32 follow [2℄.Lemma 26 (Free Variable Lemma) Let � � b1:B1; : : : ; bm:Bm (in �, alsoexpressions bi:=Ti:Bi may our, but for uniformity of notation we leave out the:=Ti-part); let � � x1:A1; : : : ; xn:An and �;� `M : N . Then:� The b1; : : : ; bm 2 C and x1; : : : ; xn 2 V are all distint;� f(M); f(N) � fb1; : : : ; bmg; fv(M); fv(N) � fx1; : : : ; xng;� b1:B1; : : : ; bi�1:Bi�1;` Bi:si for si 2 f�;2;4g;and �;x1:A1; : : : ; xj�1:Aj�1 ` Aj :tj for tj 2 f�;2g.Lemma 27 � (Start) Let �;� be a legal ontext. Then�;� ` � : 2, and if b:A 2 �;�, or :=T :A 2 �, then �;� `  : A.� (De�nition) Assume �1; b:= (xni=1 xi:Ai:T ) : ({ni=1 xi:Ai:B) and�2; � `M : N; where B is not of the form {y:B1:B2. Then�1;x1:A1; : : : ; xn:An ` T : B : s for an s 2 f�;2g.The Transitivity Lemma must be formulated di�erently than usual (f. 30)beause ontexts may ontain de�nitions. To the usual formulation\Let �1; �1 and �2; �2 be ontexts, of whih �1; �1 is legal. Assumethat for all b:A 2 �2; �2 and for all b:=T :A 2 �2; �2, �1; �1 ` b:A.Then �2; �2 ` B : C ) �1; �1 ` B : C."we must add a lause that b is de�ned in �1; �1 in a similar way as it has beende�ned in �2; �2. The next example shows that things go wrong otherwise:Example 28 Let �1 � b1:�; b2:�; b3:=b1:� and �2 � b1:�; b2:�; b3:=b2:�. Let�1 � �2 � x3:b3. Note that all the assumptions of the traditional formulation ofthe Transitivity Lemma (see above) hold for �1; �1 and �2; �2. Nevertheless,we an derive �2; �2 ` x3 : b2 (beause �2; �2 ` x:b3 and aording to �2,b3 =�d b2, so we an use the onversion rule). But we annot derive �1; �1 `x3 : b2 (beause b3 and b2 are not de�nitionally equal aording to �1).The following formulation of the Transitivity Lemma is orret:De�nition 29 We de�ne: �1; �1 ` �2; �2 if and only if� If b:A 2 �2; �2 then �1; �1 ` b:A;� If b:=T :A 2 �2 then �1; �1 ` b:A;� If b:=(xni=1 xi : Ai:U):B 2 �2 and U 6� x y:B:A0 then�1 ` bx1 � � �xn =�Æ U . 26



Lemma 30 � (Transitivity) Assume �1; �1 ` �2; �2 and �2; �2 ` B : C.Then �1; �1 ` B : C.� (Substitution) If �;�1; x:A;�2 ` B : C and �;�1 ` D : A then�;�1;�2[x:=D℄ ` B[x:=D℄ : C[x:=D℄.� (Thinning) Let �1; �1 be a legal ontext, and let �2; �2 be a legal ontextsuh that �1 � �2 and �1 � �2. Then �1; �1 ` A : B ) �2; �2 ` A : B.Lemma 31 (Generation Lemma)� If x 2 V and �;� ` x:C then 9s 2 f�;2g and B =�Æ C suh that�;� ` B : s and x:B 2 �;� If b 2 C and �;� ` b:C then 9s 2 S and B =�Æ C suh that �;� ` B : s,and either b:B 2 � or 9T suh that b:=T :B 2 �;� If s 2 S and �;� ` s:C then s � � and C =�Æ 2;� If �;� ` MN : C then 9A;B suh that �;� ` M : (�x:A:B) or �;� `M : ({x:A:B), and �;� ` N :A and C =�Æ B[x:=N ℄;� If �;� ` (�x:A:b) : C then 9B suh that �;� ` (�x:A:B) : �, �;�; x:A `b : B and C =�Æ �x:A:B;� Assume �;� ` (�x:A:B) : C. Then C =�Æ �, �;� ` A:� and �;�; x:A `B:�;� If �;� ` ({x:A:B) : C then C =�Æ 4, �;� ` A:s1 for s1 2 f�;2g, and�;�; x:A ` B:s2 for s2 2 f�;2;4g.Lemma 32 � (Uniity of Types) If �;� ` A : B1 and �;� ` A : B2then B1 =�Æ B2.� (Corretness of Types) If �;� ` A : B then there is s 2 S suh thatB � s or �;� ` B : s.� If �;� ` A : (�x:B1:B2) then �;� ` B1 : �; and �;�; x:B1 ` B2 : �.� If �;� ` A : ({x:B1:B2) then�;� ` B1 : s1 for s1 2 f�;2g; and �;�; x:B1 ` B2:s2 for some s2.In order to show some properties of the redution relations!� ,!Æ and!�Æand as Æ-redution also depends on books, we �rst have to give a translation ofAut-68 books and Aut-ontexts to �68-ontexts:De�nition 33 � Let � be a Aut-68-ontext x1:�1; : : : ; xn:�n. Then� def= x1:�1; : : : ; xn:�n.� Let B be a book. We de�ne the left part B of a ontext in �68 as:� ? def= ?; � B; (�; b; pn; 
) def= B; b:{�:
;� B; (�;x;|;
) def= B; � B; (�; b; �; 
) def= B; b:= x�:�:{�:
.27



prop : �,and : {x:prop.{y:prop.prop,proof : {x:prop.�,and-I : {x:prop.{y:prop.{px:(proof)x.{py:(proof)y.(proof)((and)xy),and-O1 : {x:prop.{y:prop.{pxy:(proof)((and)xy).(proof)x,and-O2 : {x:prop.{y:prop.{pxy:(proof)((and)xy).(proof)y,and-R := xx:prop.xprx : (proof)x.(and-I)xx(prx)(prx): {x:prop.{prx : (proof)x.(proof)((and)xx),and-S := xx:prop.xy:prop.xpxy:(proof)((and)xy).(and-I)yx((and-O2)xy(pxy))((and-O1)xy(pxy)): {x:prop.{y:prop.{pxy:(proof)((and)xy).(proof)((and)yx)Figure 5: Translation of Example 13Example 34 The translation of theAutomath book of Example 13 into �68 isgiven in Figure 5. (Beause of the habit in omputer siene to use more than onedigit for a variable, we have to write some additional brakets around subtermslike proof to preserve unambiguity). Note that all variable delarations of theoriginal book have disappeared in the translation. In the original book, theydo not add any new knowledge but are only used to onstrut ontexts. In ourtranslation, this happens in the right (instead of the left) part of the ontext.Lemma 35 Assume, � is a orret expression with respet to a book B.� 1. �!� �0 if and only if �!� �0;� 2. B `AUT�68 �!Æ �0 if and only if B `�68 �!Æ �0.Proof: An easy indution on the struture of �. �The Churh-Rosser property of !�Æ (Theorem 44) will be proved by ParallelRedution )�Æ, �a la Martin-L�of and Tait (see Setion 3.2 of [1℄). The nextthree pages are devoted to this proof. We use IH for Indution Hypothesis.De�nition 36 Let � be the left part of a ontext. We de�ne a \parallel re-dution" relation )�Æ on T : � For x 2 V , � ` x)�Æ x;� For b 2 C, � ` b)�Æ b; � For s 2 S, � ` s)�Æ s;� If � ` P )�Æ P 0 and � ` Q)�Æ Q0, thenÆ � ` �x:P:Q)�Æ �x:P 0:Q0; Æ � ` �x:P:Q)�Æ �x:P 0:Q0;Æ � ` {x:P:Q)�Æ {x:P 0:Q0; Æ � ` PQ)�Æ P 0Q0;� If � ` Q)�Æ Q0 and � ` R)�Æ R0, then � ` (�x:P:Q)R)�Æ Q0[x:=R0℄;� If b:=(xni=1 xi:Ai:T ):({ni=1 xi:Ai:U) 2 �, the term T is not of the form xy:T1:T2,� ` T )�Æ T 0 and � `Mi )�Æ M 0i for i = 1; : : : ; n, then � ` bM1 � � �Mn )�ÆT 0[x1; : : : ; xn:=M 01; : : : ;M 0n℄.Some elementary properties of )�Æ are:Lemma 37 (Properties of )�Æ) Let � be the left part of a ontext. Then:1. � `M )�Æ M ; 2. If � `M !�Æ M 0 then � `M )�Æ M 0;3. If � `M )�Æ M 0 then � `M !!�Æ M 0.Proof: All proofs an be given by indution on the struture of M . �28



By Lemma 37, !!�Æ (the reexive and transitive losure of !�Æ) in � is thesame relation as the reexive and transitive losure of )�Æ in �. Therefore, ifwe want to prove Churh-Rosser!!�Æ, it suÆes to prove the Diamond Propertyfor )�Æ. We �rst make some preliminary de�nitions and remarks:Lemma 38 If � `M )�Æ M 0 and � ` N )�Æ N 0 then� `M [y:=N ℄)�Æ M 0[y:=N 0℄.Proof: Indution on the struture of M . �Lemma 39 Assume, � and �;�0 are left parts of legal ontexts, and f(M) �dom (�). Then � `M )�Æ N if and only if �;�0 `M )�Æ N .Proof: By indution on the length of � and by indution on the de�nitionof � ` M )�Æ N . All ases in the de�nition of � ` M )�Æ N followdiretly from IH for � ` M )�Æ N , exept for the ase bM1 � � �Mn )�ÆT 0[x1; : : : ; xn:=M 01; : : : ;M 0n℄. As f(M) � dom (�), we have b 2 dom (�).Write � � �1; b:=(xni=1 xi:Ai:T ):({ni=1 xi:Ai:U);�2.� Notie that T is typable in �1;x1:A1; : : : ; xn:An (De�nition Lemma). Bythe Free Variable Lemma: f(T ) � dom (�1). By IH on the length of� we have �1 ` T )�Æ T 0 i� � ` T )�Æ T 0, and �1 ` T )�Æ T 0 i��;�0 ` T )�Æ T 0;� We onlude: � ` T )�Æ T 0 i� �;�0 ` T )�Æ T 0;� By IH on the de�nition of � ` M )�Æ N , we have � ` Mi )�Æ M 0i i��;�0 `Mi )�Æ M 0i ;� Note that b:=(xni=1 xi:Ai:T ):({ni=1 xi:Ai:U) is an element of both �;�0 and�. Moreover, b 62 dom (�0) (as �;�0 is the left part of a legal ontext).Hene � ` bM1 � � �Mn )�Æ N i� �;�0 ` bM1 � � �Mn )�Æ N . �For left parts � of ontexts and forM 2 T with f(M) � dom (�), we de�nea termM�. InM�, all �-redexes that exist inM are ontrated simultaneously(this is a usual step in a proof of Churh-Rosser by Parallel Redution), but alsoall Æ-redexes are ontrated. We will show that � ` N )�Æ M� for any N with� `M )�Æ N ; so M� helps us to show the Diamond Property for )�Æ.De�nition 40 We de�ne M� for any left part � of a ontext and any M 2 Tsuh that f(M) � dom (�). The de�nition of M� is by indution on thelength of �. So assume M�0 has been de�ned for ontexts �0 shorter than �.We use indution on the struture of M :� x� def= x for any x 2 V ; s� def= s for any s 2 S;� M � b. Distinguish:{ b� def= b for any b 2 primons (�; );{ b� def= b for any b 2 defons (�; ) that is not a Æ-redex;29



{ If b 2 defons (�; ) is a Æ-redex, then � � �1; b:=T :U;�2, whereT 6� xy:T1:T2. By the De�nition Lemma, �1;` T : U , so we anassume that T�1 has already been de�ned. Then b� def= T�1 ;� (�x:P:Q)� def= �x:P�:Q�; (�x:P:Q)� def= �x:P�:Q�;({x:P:Q)� def= {x:P�:Q�;� M is an appliation term. We distinguish three possibilities:{ M � PQ is not a �Æ-redex. Then we de�ne M� def= P�Q�;{ M is a �-redex (�x:P:Q)R. We de�ne M� def= Q�[x:=R�℄;{ M is a Æ-redex bM1 � � �Mn, and for T is not of the form xy:T1:T2, � is�1; b:= (xni=1 xi:Ai:T ) : ({ni=1 xi:Ai:U) ;�2: So �1;x1:A1; : : : ; xn:An `T : U (by the De�nition Lemma) and we an assume that T�1 hasalready been de�ned. Then M� def= T�1 [x1; : : : ; xn:=M�1 ; : : : ;M�n ℄.Lemma 41 Let � be the left part of a legal ontext. Then � ` M )�Æ M�for all M with f(M) � dom (�).Proof: By indution on the de�nition of M�. We only treat the ase � `bM1 � � �Mn )�Æ (bM1 � � �Mn)� where bM1 � � �Mn is a Æ-redex. Write � ��1; b:= (xni=1 xi:Ai:T ) : ({ni=1 xi:Ai:U) ;�2, as in the de�nition of (bM1 � � �Mn)�.By indution, we may assume that �1 ` T )�Æ T�1 and � ` Mi )�Æ M�i .By the De�nition Lemma, T is typable in �1;x1:A1; : : : ; xn:An, so by the FreeVariable Lemma, f(T ) � dom (�1). By Lemma 39, � ` T )�Æ T�1 . So� ` bM1 � � �Mn )�Æ T�1 [x1; : : : ; xn:=M�1 ; : : : ;M�n ℄. �Theorem 42 Let � be the left part of a legal ontext. Assume f(M) �dom (�). If � `M )�Æ N then � ` N )�Æ M�.Proof: Indution on the the de�nition of M�.� M � x. Then N � x and M� � x;� M � b. Distinguish:{ b 2 primons (�; ). Then N � b and M� � b;{ b 2 defons (�; ), but b is not a Æ-redex. Then N � b and M� � b;{ b 2 defons (�; ), and � � �1; b:=T :U;�2, and T 6� xy:T1:T2. Theneither N � b or N � T 0 where T )�Æ T 0. If N � b then M � N andwe an use Lemma 41. If N � T then observe that by IH, �1 ` T )�ÆT�1 , that by Lemma 39 � ` T )�Æ T�1 , and that M� � T�1 ;� M � s. Then N � s and M� � s;� M � �x:P:Q. Then N � �x:P 0:Q0 for some P 0; Q0 with � ` P )�Æ P 0and � ` Q )�Æ Q0. By IH on P and Q we �nd � ` P 0 )�Æ P� and� ` Q0 )�Æ Q�. Therefore � ` �x:P 0:Q0 )�Æ �x:P�:Q�.The ases M � �x:P:Q, M � {x:P:Q, and M � PQ where PQ is not a�Æ-redex, are proved similarly; 30



� M is an appliation term (and is either a � or a Æ-redex). Distinguish:{ M is a �-redex, M � (�x:P:Q)R. Distinguish:� N � (�x:P 0:Q0)R0 for P 0; Q0; R0 with � ` P )�Æ P 0, � ` Q )�ÆQ0 and � ` R )�Æ R0. By indution, � ` Q0 )�Æ Q� and� ` R0 )�Æ R�. Therefore � ` N )�Æ Q�[x:=R�℄;� N � Q0[x:=R0℄ for Q0; R0 with � ` Q)�Æ Q0 and � ` R)�Æ R0.By indution, � ` Q0 )�Æ Q� and � ` R0 )�Æ R�. By Lemma38, � ` Q0[x:=R0℄)�Æ Q�[x:=R�℄;{ M is a Æ-redex, M � bM1 � � �Mn, and for T 6� xy:T1:T2, we have� � �1; b:= (xni=1 xi:Ai:T ) : ({ni=1 xi:Ai:U) ;�2:� N � bM 01 � � �M 0n for M 0i with � ` Mi )�Æ M 0i . By indution,we have � ` M 0i )�Æ M�i . By the De�nition Lemma, T istypable in a ontext �1;x1:A1; : : : ; xn:An, so by the Free Vari-able Lemma, f(T ) � dom (�1). By Lemma 41, �1 ` T )�ÆT�1 . By Lemma 39, � ` T )�Æ T�1 . Hene � ` N )�ÆT�1 [x1; : : : ; xn:=M�1 ; : : : ;M�n ℄;� N � T 0[x1; : : : ; xn:=M 01; : : : ;M 0n℄ for a T 0 with � ` T )�Æ T 0 andfor M 0i with � ` Mi )�Æ M 0i . By the De�nition Lemma, T istypable in �1;x1:A1; : : : ; xn:An, so by the Free Variable Lemma,f(T ) � dom (�1). By Lemma 39, �1 ` T )�Æ T 0. By IH on T ,�1 ` T 0 )�Æ T�1 . As �1 ` T )�Æ T 0, f(T 0) � dom (�1), soby Lemma 39, � ` T 0 )�Æ T�1 . By IH, also � ` M 0i )�Æ M�i .Repeatedly applying Lemma 38, we �nd13� ` T 0[x1; : : : ; xn:=M 01; : : :M 0n℄)�ÆT�1 [x1; : : : ; xn:=M�1 ; : : : ;M�n ℄. �Corollary 43 (Diamond Property for )�Æ) Let � be the left part of aontext in whih M is typable. Assume � ` M )�Æ N1 and � ` M )�Æ N2.Then there is P suh that � ` N1 )�Æ P and � ` N2 )�Æ P .Proof: Immediately from the theorem above: Take P �M�. �Theorem 44 (Churh-Rosser for !�Æ) Let � be the left part of a ontextin whih M is typable. If � `M !!�Æ N1 and � `M !!�Æ N2 then there is Psuh that � ` N1 !!�Æ P and � ` N2 !!�Æ P .Proof: Diretly from Lemma 37.2, Lemma 37.3 and Corollary 43. �Lemma 45 (Subjet Redution) Let �;� ` A : B.1. If A!� A0 then �;� ` A0 : B. 2. A!Æ A0 then �;� ` A0 : B.3. If A!!�Æ A0 then �;� ` A0 : B.13We must remark that T 0[x1; : : : ; xn:=M 01; : : : ;M 0n℄ � T 0[x1:=M 01℄ � � � [xn:=M 0n℄ andT�1 [x1; : : : ; xn:=M�1 ; : : : ;M�n ℄ � T�1 [x1:=M�1 ℄ � � � [xn:=M�n ℄: This is orret as we anassume that the xi do not our in the M 0j and M�j .31



Proof: The proof for 1. is as in [2℄. The proof for 3. is by indution on the lengthof redution using 1. and 2. As for 2. we de�ne �; �!Æ �;�0 if � � �1; x:A;�2,and �0 � �1; x:A0;�2, and � ` A !Æ A0. We de�ne �; � !Æ �0; � similarly.By indution on the derivation of �; � ` A:B we prove simultaneously:�; � ` A:B and � ` A!Æ A0 ) �;� ` A0:B�;� ` A:B and �; �!Æ �0; � ) �0; � ` A:B�;� ` A:B and �; �!Æ �;�0 ) �;�0 ` A:B;We only treat the ase where the last applied rule is the 2nd appliation rule,and only prove the �rst of the three statements. Assume:� � �1; b:=� nxi=1xi:Ai:T� :� n{i=1 xi:Ai:B� ;�2 (1)with B 6� {y:B1:B2, and that the onlusion of the 2nd appliation rule is�; � ` bM1 � � �Mn : Kn (2)for some Kn, and therefore � ` bM1 � � �Mn !Æ T [xi:=Mi℄ni=1: We must prove:�; � ` T [xi:=Mi℄ni=1 : Kn. We do this in two steps.1. We analyse the struture ofKn, and derive that � ` Kn =�Æ B[xi:=Mi℄ni=1;2. We show that �; � ` T [xi:=Mi℄ni=1 : B[xi:=Mi℄ni=1.Ad 1. We repeatedly apply the Generation Lemma, starting with (2), thusobtaining Kn;Kn�1; : : : ;K1, K 0n;K 0n�1; : : : ;K 01, Ln; Ln�1; : : : ; L1 suh that�; � ` bM1 � � �Mi�1 : ({xi:Li:K 0i); (3)�; � `Mi : Li; (4)� ` Ki =�Æ K 0i[xi:=Mi℄; (5)� ` Ki�1 =�Æ {xi:Li:K 0i: (6)We end with �; � ` b : ({x1:L1:K 01). By (1) and Generation: � ` {x1:L1:K 01 =�Æ{nj=1 xj :Aj :B: By Churh-Rosser we have L1 =�Æ A1 and� ` K 01 =�Æ n{j=2 xj :Aj :B: (7)Hene � ` {x2:L2:K 02 (6)=�Æ K1 (5;7)=�Æ �{nj=2 xj :Aj :B� [x1:=M1℄ �{ni=2 xi:Ai[x1:=M1℄:B[x1:=M1℄, so by the Churh-Rosser Theorem we haveL2 =�Æ A2[x1:=M1℄. Proeeding in this way, we obtain for i = 1; : : : ; n:� ` Li =�Æ Ai[xj :=Mj ℄i�1j=1; (8)� ` K 0i =�Æ n{j=i+1 xj :Aj [xk:=Mk℄i�1k=1:B[xk :=Mk℄i�1k=1;� ` Ki =�Æ n{j=i+1 xj :Aj [xk:=Mk℄ik=1:B[xk :=Mk℄ik=1:32



In partiular,� ` Kn =�Æ B[xi:=Mi℄ni=1: (9)Ad 2. We alulate the type of T [xi:=Mi℄ni=1. By De�nition Lemma on (1):�1;x1:A1; : : : ; xn:An ` T : B: (10)By Start Lemma: �1;x1:A1; : : : ; xi�1:Ai�1 ` Ai:si for sorts si 2 S. Hene:�; � ` A1 : s1 (Thinning Lemma);�; �; x1:A1 is legal (Start Rule);�; �; x1:A1 ` A2 : s2 (Thinning Lemma);�; �; x1:A1; x2:A2 is legal (Start Rule);...�; �; x1:A1; : : : ; xn:An is legal. (Start Rule).By Thinning Lemma to (10), �; �; x1:A1; : : : ; xn:An ` T : B: As �; � `M1 : L1(4) and �; � ` A1 : s1, we have �; � ` M1 : A1 by the Conversion ruleand (8). By Substitution Lemma: �; �; x2:A2[x1:=M1℄; : : : ; xn:An[x1:=M1℄ `T [x1:=M1℄ : B[x1:=M1℄; and �; � ` A2[x1:=M1℄ : s2:As �; � ` M2 : L2 (4) and � ` A2[x1:=M1℄ =�Æ L2 (8) we have by onversion�; � `M2 : A2[x1:=M1℄, and again by the Substitution Lemma:�; �; x3:A3[xi:=Mi℄2i=1; : : : ; xn:An[xi:=Mi℄2i=1 ` T [xi:=Mi℄2i=1 : B[xi:=Mi℄2i=1�;� ` A3[x1:=M1℄[x2:=M2℄ : s3:Proeeding in this way we eventually �nd�; � ` T [xi:=Mi℄ni=1 : B[xi:=Mi℄ni=1: (11)Applying Lemma 32 to (9) we have �; � ` Kn : s. Now use the ConversionRule, (11), and the fat that � ` Kn =�Æ B[xi:=Mi℄ni=1: �Lemma 46 Assume s 2 S and M legal. If � `M =�Æ s then M � s.Proof: First assume s 2 f2;4g. If �; � ` M : N for some � and N , and� ` M =�Æ s then by Churh-Rosser � ` M !!�Æ s, so by Subjet Redution�; � ` s : N , ontraditing the Generation Lemma. If �; � ` N : M and� ` M =�Æ s and M 6� s then we have by Lemma 32 that �; � ` M : P forsome P , so again �; � ` s : P , in ontradition with the Generation Lemma.Now assume s � �, �; � ` M : N , and � ` M =�Æ s. By Churh-Rosser,� ` M !!�Æ �, say � ` M !�Æ : : : !�Æ M 0 !�Æ �. By Subjet Redution,�; � `M 0 : N and �; � ` � : N . By Generation � ` N =�Æ 2, so N � 2.33



� M 0 � (�x:A:B)C and � � B[x:=C℄. By Generation 9B0 where � `B0[x:=C℄ =�Æ 2 (so B0[x:=C℄ � 2), �; � ` (�x:A:B) : (�x:A:B0) and�; � ` C : A. C � 2 ontradits �; � ` C : A, so B0 � 2. By Lemma 32,�; � ` (�x:A:2) : �, so by Generation �; �; x:A ` 2 : �, ontradition;� M 0 � bM1 � � �Mn and � ` bM1 � � �Mn !Æ T [xi:=Mi℄ni=1 � � as above.If s � �, �; � ` N : M , and � ` M =�Æ s then by Lemma 32 M � s (and weare done) or �; � `M : s0 (whih implies M � s by the above argument). �We prove Strong Normalisation for �Æ-redution in �68 by mapping a typableterm M (in a ontext �; �) of �68 to a term jM j� that is typable in a stronglynormalising PTS. The mapping is onstruted in suh a way that if M !� N ,jM j� !!+� jN j�, and that if � `M !Æ N , jM j� !!� jN j�.De�nition 47 Let � be the left part of a legal ontext and let M 2 T . Wede�ne jM j� by indution on the length of � and the struture of M .� jxj� def= x for x 2 V ; � jsj� def= s for s 2 S � jPQj� def= jP j� jQj�� j�x:P:Qj� def= �x: jP j� : jQj� � j�x:P:Qj� def= �x: jP j� : jQj�� j{x:P:Qj� def= �x: jP j� : jQj� � jbj� def= b for all b 2 C n defons (�; )� jbj� def= �ni=1 xi: jAij�1 : jT j�1 if � � �1; b:=(xni=1 xi:Ai:T ):({ni=1 xi:Ai:U);�2The following lemma is useful:Lemma 48 Let �, �1, �2 be left parts of legal ontexts and M;N 2 T .1. fv(jM j�) = fv(M).2. If �2 � �1;�0 and f(M) � dom (�1) then jM j�2 � jM j�1 .3. jM [x:=N ℄j� � jM j� [x:= jN j�℄:Proof: 1. is by indution on the de�nition of jM j�. We show the non trivialase where M � b and � � �1; b:=(x�:T ):({�:U);�2 (T 6� x y:T1:T2). Bythe De�nition Lemma, T is typable in �1; �; therefore fv(T ) � dom (�) (FreeVariable Lemma). By IH, fv�jT j�1� � dom (�) and therefore fv(jbj�) = ?.2. is by an easy indution on the de�nition of jM j�1 .3. is by indution on the de�nition of jM j�. In the ase M � b and b:=T :U 2�, use the fat that fv(jM j�) = fv(M) = ? (Lemma48.1) and thereforejM j� [x:= jN j�℄ � jM j� � jM [x:=N ℄j�. �The purpose of the de�nition of jM j� is explained in the following lemma:Lemma 49 1. If M !� N then jM j� !!+� jN j�.2. If � `M !Æ N , then jM j� !!� jN j�.34



Proof: 1. is by indution on the struture of M . We only treat the aseM � (�x:P:Q)R and N � Q[x:=R℄. ThenjM j� � (�x: jP j� : jQj�) jRj� !� jQj� [x:= jRj�℄ 48:3� jQ[x:=R℄j� :2. is by indution on the struture of M . We only treat the ase in whihM � bM1 � � �Mn; � � �1; b:= (xni=1 xi:Ai:T ) : ({ni=1 xi:Ai:U) ;�2; and N �T [x1; : : : ; xn:=M1; : : : ;Mn℄: Note thatjM j� � ��ni=1 xi: jAij�1 : jT j�1� jM1j� � � � jMnj� !!� jT j�1 [xi:= jMij�℄ni=148:2� jT j� [xi:= jMij�℄ni=1 48:3� jT [xi:=Mi℄ni=1j� � jT [x1; : : : ; xn:=M1; : : : ;Mn℄j�.At the last equivalene, we must make a remark similar to footnote 13. �Let �SN be the PTS over �-terms with variables from V[C and sorts from S, andthe rules:14 (�; �; �); (�; �;4); (2; �;4); (�;2;4); (2;2;4); (�;4;4); (2;4;4):This is in fat the pure type system that is based on the �-formation rules ofSetion 3.1. �SN is ontained in ECC [2℄. As ECC is �-strongly normalising,also �SN is �-strongly normalising.We present a translation of �68-ontexts to �SN-ontexts:De�nition 50 Let �; � be a legal �68-ontext.� We de�ne j�j by indution on the length of �:� j?j def= ?; � j�; b:U j def= j�j ; b: jU j�; � j�; b:=T :U j def= j�j;� If � � x1:A1; : : : ; xn:An then j�;�j def= j�j ; x1: jA1j� ; : : : ; xn: jAnj�.We see that de�nitions b:=T :U in � are not translated into j�j. This or-responds to the fat that all these de�nitions are unfolded (replaed by theirde�niendum) in jbj�. Now we prove a very important lemma:Lemma 51 If �;� `�68 M : N then j�;�j `�SN jM j� : jN j�.Proof: By indution on the derivation of �; � `M : N . We treat the ases:(Start: Primitive Constants) �;� `�68 B : s1 �;`�68 {�:B : s2�; b:{�:B;`�68 b : {�:B s1 = �;2By IH, j�j `�SN j{�:Bj� : s2, so by Start j�j ; b: j{�:Bj� ` b: j{�:Bj� :Observe that j�; b:{�:Bj � j�j ; b: j{�:Bj�, that jbj�;b:{�:B � b and that(by Lemma 48.2) j{�:Bj� � j{�:Bj�;b:{�:B ;(Start: De�ned Constants) �;� `�68 T : B : s1 �;`�68 {�:B : s2�; b:=(�:T ):({�:B);`�68 b : {�:B s1 = �;2By indution j�; j `�SN j{�:Bj� : s2; so (write � � x1:A1; : : : ; xn:An):j�; j `�SN nQi=1xi: jAij� : jBj� : s2: (12)14We hoose the name �SN beause this system will help us in showing that �68 is SN.35



By indution, we also have j�;�j `�SN jT j� : jBj�, so:j�j ; x1: jA1j� ; : : : ; xn: jAnj� `�SN jT j� : jBj� ; (13)and by repeatedly applying the �-rule on (13) and using the fat that, byIH, the types Qnj=i xj : jAj j� : jBj� are all typable, we �nd:j�; j `�SN � n�i=1xi: jAij� : jT j�� : � nQi=1xi: jAij� : jBj�� ; (14)(Appliation 1) �;� `�68 M : (�x:A:B) �; � `�68 N : A�;� `�68 MN : B[x:=N ℄ .By IH, j�;�j `�SN jM j� : (�x: jAj� : jBj�) and j�;�j `�SN jN j� : jAj�.By appliation j�;�j `�SN jM j� jN j� : jBj� [x:= jAj�℄: By de�nition ofjMN j� and Lemma 48.3, j�;�j `�SN jMN j� : jB[x:=A℄j� : �Theorem 52 (Strong Normalisation) �68 is �Æ-strongly normalising.Proof: Assume, we have an in�nite �Æ-redution path in �68:M1 !�Æ M2 !�Æ M3 !�Æ : : : (15)As Æ-redution is strongly normalising (Lemmas 20 and 35), there must bein�nitely many �-redutions in this redution path, so we have a path N1 !�N 01 !!Æ N2 !� N 02 !!Æ N3 !� N 03 !!Æ : : : By Lemmas 49.1 and 49.2, this givesa path jN1j� !!+� jN 01j� !!� jN2j� !!+� jN 02j� !!� jN3j� !!+� jN 03j� !!� : : :whih is an in�nite �-redution path in �SN. By Lemma 51, jN1j� is legal in�SN. But as �SN is strongly normalising, this in�nite �-redution path annotexist. Hene, the in�nite �Æ-redution path (15) does not exist, either. �The next two theorems establish the formal relation between Aut-68 and �68.Theorem 53 Let B be an Automath book and � an Automath ontext.� If B; � `AUT�68 ok then B; � is legal;� If B; � `AUT�68 � : 
 then B; � `�68 � : 
.Proof: We prove both statements simultaneously, by indution on the deriva-tion of B; � `AUT�68 ok and B; � ` � : 
 of De�nitions 14 and 15. We onlytreat one ase. Assume, the last step is book extension rule def2:B; � `AUT�68 �2:type B; � `AUT�68 �1:�02 B; � `AUT�68 �2 =�d �02B; (�; k; �1; �2);? `AUT�68 ok :By IH, we haveB; � `�68 �2 : � (16)and B; � `�68 �1 : �02: (17)36



By Lemma 35, we haveB `�68 �2 =�Æ �02: (18)Applying the onversion rule of �68 to (16), (17) and (18) yieldsB; � `�68 �1 : �2: (19)As B; � is legal, for eah x:� 2 � (say: � � �1; x:�;�2) we have B; �1 ` � : sfor an s 2 f�;2g, by the Free Variable Lemma 26. Thus we an repeatedlyapply the {-formation rule (starting with (16)) to obtain:B;`�68 {�:�2 : 4 (20)(If � � ? then we apply the {-formation rule zero times, and the type of {�:�2is � instead of 4). Now we an apply the (Start: d) rule on (19), (16) and (20)to obtain: B; k:=(x�:�1):({�:�2);`�68 k : {�:�2;so B; (�; k; �1; �2); � B; k:=(x�:�1):({�:�2); is legal. �Theorem 54 Let �;� `�68 M : N . There is an Automath book B andontext �0 suh that B; �0 `AUT�68 ok, and B;�0 � �;�. Moreover,1. If N � 2 then M � �;2. If �;� `�68 N : 2 then N � � and there is 
 2 E suh that 
 � M andB; �0 `AUT�68 
 : type;3. If N � 4 then there is �00 � x1:�1; : : : ; xn:�n and 
 2 E [ ftypeg suhthat: � �0;�00 is orret with respet to B; � M � {�00:
;� 
 � type or B; �0 `AUT�68 
 : type;4. If �;� `�68 N : 4 then there are b 2 C and �1; : : : ;�n 2 E suh that M �b�1 � � ��n. Moreover, B ontains a line (x1:
1; : : : ; xm:
m; b; �1; �2)suh that: � N � �{mi=n+1 xi:
i:�2� [x1; : : : ; xn:=�1; : : : ;�n℄; � m > n;� B; �0 `AUT�68 �i:
i[x1; : : : ; xi�1:=�1; : : : ;�i�1℄ (1 � i � n);5. If N � � then 9
 2 E suh that 
 �M and B; �0 `AUT�68 
 : type;6. If �;� `�68 N : � then there are �;
 2 E suh that � �M and 
 � N ,and B; �0 `AUT�68 � : 
, and B; �0 `AUT�68 
 : type.Proof: Indution on the derivation of �; � `�68 M : N . We treat the ases:Weakening: de�nitions Assume the last step is�;`�68 M : N �;� `�68 T : B : s1 �;`�68 {�:B : s2�; b:=(x�:T ):({�:B);`�68 M : N where s1 � �or s1 � 2. Use IH and determine B, �0, �1, �2, 
1, and 
2 suh thatB � �, �0 � �, �1 � T , �2 � B, 
1 � M and 
2 � N . We know byindution that B; �0 `AUT�68 �2 : type (if s1 � �) or �2 � � (if s2 � 2).Also, B; �0 `AUT�68 �1 : �2. This makes it possible to extend B with anew line, thus obtaining a legal book B; (�0; b; �1; �2). Using Weakeningfor Aut-68 (Lemma 22) and IH on �;`�68 M : N , it is not hard to verifythe ases 1{6 for �; b:=(x�:T ):({�:B);`�68 M : N ;37



Appliation 2 The last step is �; � `�68 M1 : ({x:A:B) �; � `�68 M2 : A�;� `�68 M1M2 : B[x:=M2℄ :Determine B, �0 suh that B � � and �0 � �. By Corretness of Types32 and Generation Lemma 31, �; � `�68 ({x:A:B) : 4, so by IH (ase4), there are b;�1; : : : ;�n suh that M1 � b�1 � � ��n, and there is aline (x1:
1; : : : ; xm:
m; b; �1; �2) in B suh that m > n, B; �0 `AUT�68�i:
i[xj :=�j ℄i�1j=1 1 � i � n and {x:A:B � �{mi=n+1 xi:
i:�2� [xj :=�j ℄nj=1:Observe: A � 
n+1[xj :=�j ℄nj=1. As B; �0 `AUT�68 
n+1 : type or
n+1 � type, we have �; � `�68 
n+1 : s for an s 2 f�;2g, and by Substi-tution and Transitivity Lemmas we have �; � `�68 
n+1[xj :=�j ℄nj=1 :s, hene �; � `�68 A : s. With IH we determine � 2 E suh thatB; �0 `AUT�68 � : 
n+1[xj :=�j ℄nj=1; and M2 � �.We now treat the most important ones of the ases 1{6:4. The only thing that does not diretly follow from the results aboveis m > n + 1. Assume, for the sake of the argument, m = n +1. Then B[x:=M2℄ � �2[xj :=�j ℄n+1j=1 . As �; � `�68 B[x:=M2℄ : 4,�2[xj :=�j ℄n+1j=1 is of the form {x:P:Q, whih is impossible;6. Note: B[x:=M2℄ � �{mj=n+2 xi:
i:�2� [xj :=�j ℄n+1j=1 . We have �; � `�68B[x:=M2℄ : �. So B[x:=M2℄ 6� {y:P:Q, and hene m = n+ 1. There-fore, B; �0 `AUT�68 b(�1; : : : ;�n+1) : �2[xi:=�i℄n+1i=1 . �Remark 55 We explain di�erent ases used in the formulation of Theorem 54.� The ases N � 2 and �; � ` N : 2 imply that there are no other termsin �68 than � itself at the same level as �. This orresponds to the fatthat type is the only \top-expression" in Aut-68;� The ases N � � and �; � ` N : � give a preise orrespondene betweenexpressions of Aut-68 and terms of �68: If M : N in �68 then there are�;
 in Aut-68 suh that � : 
 in Aut-68 and � �M and 
 � N ;� The ases N � 4 and �; � ` N : 4 over terms that do not havean equivalent in Aut-68 but are neessary in �68 to form terms thathave equivalents in Aut-68. More spei�, this onerns terms of theform {ni=1 xi:Ai:B (needed to introdue onstants) and terms of the formbM1 � � �Mn, where b is a onstant of type {mi=1 xi:Ai:B for ertain m > n(needed to onstrut �68-equivalents of expressions like b(�1; : : : ;�m)).We onlude that �68 and Aut-68 oinide as muh as possible, and thatthe terms in �68 that do not have an equivalent in Aut-68 an be traed easily(these are the terms of type 4 and the terms of a type N : 4, and the sorts 2and 4, whih are needed to give a type to � and to the {-types).Notie that the alternative de�nition of Æ-redution in �68, disussed at theend of Subsetion 2.5, would introdue more terms in �68 without an equivalentin Aut-68, namely terms of the form �ni=1 xi:Ai:B.38



5 More suitable PTSs for Automath systemsReall that we related the system Aut-68 to a PTS �68 ignoring the Au-tomath features: parameters, and identifying �s and �s or at least, providingboth �-redution and �-appliation. In partiular, in De�nition 23, we gaveb(�1; : : : ;�n) def= b�1 � � ��n as �68 does not have diret parameters. Also, al-though we had �s and �s in �68, unlike Automath whih used expressionsof the form [x:�℄
 for both abstrations, we did not allow neither �-redutionwhere the redution rule !� works like �-redution as follows:�-redution (�x:A:B)N !� B[x:=N ℄nor �-appliation where the �68 rule (App1) is hanged into�-appliation �;� `M : �x:A:B �;� ` N : A�;� `MN : (�x:A:B)NThere are good reasons to use parameters (f. [32, 33℄), �-redution and�-appliation (f. [31, 36℄). In Setion 5.1 we look at how we might remedy theabove shoromings to reate more faithful interpretations of Aut-68 as PTSs.The system Aut-68 is one of several Automath-systems that have beenproposed. Another frequently used system is aut-QE. In Setion 5.2 we ompareAut-68 to Aut-QE and desribe how we an easily adapt �68 to a system �QE.In Setion 5.3 we reet on the system �� whih is laimed by de Bruijn toembrae all the essential aspets of Automath apart from type inlusion.5.1 �68 with parameters, �-redution and �-appliationPTSs don't usually follow Automath in identifying �s and �s. PTSs don'teven follow Automath in allowing �-redution and �-appliation. We havethe following results in the area:� [30℄ showed that as long as the usual appliation rule of PTSs is used, aPTS system remains unhanged whether �-redution is inluded or not.As a result, if the usual appliation rule of PTSs is used, a PTS systemremains unhanged whether �s and �s are uni�ed or not. [30℄ onludedthat a PTS system where �s and �s are uni�ed and where the appliationis hanged to �-appliation faes the same problem (and inherits the samesolution) as that of the PTSs where �s and �s are not uni�ed but where�-appliation and �-redution are used.� [36℄ showed that PTSs with �-redution and �-appliation lose SubjetRedution. For instane, one an derive �:�; x:� ` (�y:�:y)x : (�y:�:�)x;but it is not possible to derive �:�; x:� ` x : (�y:�:�)x:� [31℄ showed that PTSs with �-redution and �-appliation have all thedesirable properties if a de�nition system is used. Let us all the PTSwith �-redution and �-appliation and de�nitions as in [31℄, ���d.39



Though our system �68 does not have �-redution and �-appliation, it iseasy to extend it to a system ��68 by adding these rules:� Changing rule (App1) into �; � `M : �x:A:B �;� ` N : A�;� `MN : (�x:A:B)N(Rule (App2) remains unhanged | see also the disussion in Setion 3.1);� Adding the new redution rule !� by (�x:A:B)N !� B[x:=N ℄:The system ��68 is atually muh loser to Aut-68 than �68.In ��68 we do not have Subjet Redution, either: it is not hard to derive;�:�; x:� ` (�y:�:y)x : (�y:�:�)xNevertheless, we an not derive in ��68;�:�; x:� ` x : (�y:�:�)xThe \restoration" of Subjet Redution in ���d is only beause of the spe-ial way in whih de�nitions are introdued and removed from the ontext. In��68, one de�nitions have been introdued, they annot be removed from theleft part of the ontext any more. So, we need to investigate whether the methodof [31℄ an be extended to ��68 in order to restore Subjet Redution in ��68.As for parameters, [32℄ gives a formulation of PTSs with parameters, [33℄formulates PTSs with parameters, �-redution, �-appliation, de�nitions �a la[31℄ and expliit substitutions, [41, 6℄ formulate PTSs with parameters andde�nitions as in Automath and [30℄ gives a formulation of PTSs where �s and�s are uni�ed, and with parameters, �-appliation, expliit substitutions andde�nitions �a la [31℄. All these formulations satisfy the good properties of PTSs.In the above systems, PTSs are extended with parameters by adding termsof the form C(A1; : : : ; An) where C is a set of onstants disjoint from the setof variables, and n � 0. Then, in addition to the set of (�-formation) rulesR, a set of parametri onstrution rules P is added. Typing rules for dealingwith the new terms are �nally added as follows: (� � x1:B1; : : : ; xn:Bn, �i �x1:B1; : : : ; xi�1:Bi�1 and ons (�) is the set of onstant delarations in �):(~C-weak) � `a C : B �;�i `a Bi : si �;� `a A : s�; (�) : A `a C : B (si; s) 2 P ,  62 ons (�)(~C-app) �1; (�):A;�2 `a Ai:Bi[xj :=Aj ℄i�1j=1 (i = 1; : : : ; n)�1; (�):A;�2 `a A : s (if n = 0)�1; (�):A;�2 `a (A1; : : : ; An) : A[xj :=Aj ℄nj=1With this in mind, the Barendregt ube of Figure 2 an be re�ned into theeight smaller ubes on the left, and the Automath systems Aut-68 and Aut-QE, as well as the Edinburgh LF and Milner's ML �nd a more aurate plaingin this re�ned ube as on the piture on the right (f. [32, 33, 41℄).40
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rr r rr rFigure 6: LF, ML, Aut-68, and Aut-QE in the re�ned Barendregt Cube5.2 Aut-QEThe system Aut-QE has many similarities with Aut-68, and a few extensions:1. We an form abstration expression [x:�℄type (extending De�nition 8);2. Inhabitants of types of the form [x:�℄type are introdued by extendingthe abstration rules 1 and 2 of De�nition 15 with the rule for Aut-QE:B; � ` �1:type B; �; x:�1 ` �2:typeB; � ` [x:�1℄�2 : [x:�1℄type :Notie that the expression [x:�1℄type is not typable, just as type is nottypable. In a translation to a PTS, these expressions should get type 2;3. There is a new redution relation on expressions, whih is spei� forAut-QE (whih we all !QE in the sequel). This relation is given by the rule[x1:�1℄ � � � [xn:�n℄[y:
℄type!QE [x1:�1℄ � � � [xn:�n℄type (for n � 0).The �rst two rules are rather straightforward. They orrespond to an extensionof �! to �P in Pure Type Systems. It is also easy to extend �68 with similarrules: We just add the �-formation rule (�;2;2):�; � ` A : � �;�; x:A ` B : 2�;� ` (�x:A:B) : 2 :In Aut-68, pat is implemented in de Bruijn-style (see Setion 2.1 and Example13). An implementation of prediate logi in Howard-style is not possible inAut-68, but due to the extension with types of the form [x:�℄type, suh animplementation beomes possible in Aut-QE. See [18℄.The third rule deserves attention, as it is very unusual. It is needed in Aut-QE beause that system does not distinguish �s and �s. In aut-68 this did notmatter, as from the ontext it ould always be derived whether an expression41



[x:�℄
 should be interpreted as �x:�:
 or as �x:�:
. The latter should havetype type, and the �rst should not have type type. In Aut-QE the situationis more ompliated. An expression [x:�℄
 may have more than one type:Example 56 Let B onsist of two lines:(?; �;|; type);(�:type; x;|; �):Notie that, using rule (abstr.1) of De�nition 15, we an derive thatB;�:type `QE [x:�℄� : type: (21)But using the new abstration rule of Aut-QE we an also deriveB;�:type `QE [x:�℄� : [x:�℄type: (22)More generally, we an prove that the two statements below are equivalentin Aut-QE (that is: if either of them is derivable then they are both derivable):B; � `QE [x1:�1℄ � � � [xn:�n℄
 : [x1:�1℄ � � � [xn:�n℄type; (23)B; � `QE [x1:�1℄ � � � [xn:�n℄
 : [x1:�1℄ � � � [xm:�m℄type (24)(for m < n). In (23), the expression [x1:�1℄ � � � [xn:�n℄
 should be read as�ni=1 xi:�i:
; in (24) it should be read as �mi=1 xi:�i:Qnj=m+1 xj :�j :
.But this equivalene holds only for expressions of the form[x1:�1℄ � � � [xn:�n℄
and not for general expressions � (take, for instane, � a variable). In orderthat the equivalene holds for general expressions �, de Bruijn introdued a rulefor type inlusion: B; � `QE � : [x1:�1℄ � � � [xn:�n℄typeB; � `QE � : [x1:�1℄ � � � [xn�1:�n�1℄type :Lists of abstrations [x1:�1℄ � � � [xn:�n℄ were also alled telesopes by de Bruijn.In the rule for type inlusion, we see that one part of the telesope \ollapses".5.3 ��As we saw above, de Bruijn departed from the lassial notation of the �-alulus and wrote the argument before the funtion and used [x : A℄ instead of�x : A or �x : A. So for example, de Bruijn wrote hzi[x : �℄[y : x℄y instead of(�x : �:�y : x:y)z.De Bruijn alled items of the form hBi and [x : C℄, A- (for appliation)respetively T- (for typing) wagons. De Bruijn alled hBi[x : C℄, an AT-pair.In de Bruijn's notation, the �-rule (�x : C:A)B !� A[x := B℄ beomes:hBi[x : C℄A!� [x := B℄A42



Note that the A-wagon hBi and the T-wagon [x : C℄ our NEXT to eah other.Here is an example whih ompares �-redution in both the lassial and thede Bruijn notation. Wagons that have the same symbol on top, are mathed(we ignore types for the sake of simpliity):Classial Notation De Bruijn's Notation( Æ�x :( +�y : ��z :zD) +C) ÆB) �A �hAi ÆhBi Æ[x℄ +hCi +[y℄ �[z℄ hDiz#� #�(( +�y : ��z :zD) +C) �A �hAi +hCi +[y℄ �[z℄ hDiz#� #�( ��z :zD) �A �hAi �[z℄hDiz#� #�AD hDiAThe braketing struture in lassial notation of (( Æ�x :( +�y : ��z :zD) +C) ÆB) �A),is Æ[1 +[2 �[3 +℄2 Æ℄1 �℄3, where [i and ℄i math. Whereas �hAi ÆhBi Æ[x℄ +hCi +[y℄ �[z℄ hDiz hasthe simpler braketing struture �[ Æ[ Æ℄+[ +℄�℄ or even better: [ [ ℄[ ℄ ℄ in de Bruijn'snotation. An A-wagon hBi and a T-wagon [x : C℄ are partners when they math.Non-partnered wagons are bahelors. A sequene of wagons is alled a segment.A segment is well balaned when it ontains only partnered wagons.Moreover, de Bruijn de�ned loal �-redution, whih keeps the AT-pair anddoes �-redution at one instane (instead of all the instanes). For example (wetake a simpler example than above and again ignore types for simpliity):hyi[x℄hxix �-redues loally to hyi[x℄hxiy and to hyi[x℄hyix. Doing a furtherloal �-redution gives hyi[x℄hyiy. Now that the [x℄ does not bind any variableany more, and hene we an remove the AT-pair hyi[x℄ obtaining hyiy.Furthermore, de Bruijn generalised the AT-pair to the AT-ouple where forexample, in hAihBi[x℄hCi[y℄[z℄hDiz, we have the AT-pairs: hBi[x℄ and hCi[y℄and the AT-ouple hAi[z℄. This de�nition of AT-ouples leads to a naturalgeneralisation of �-redution as follows:hBis[x : C℄A;� s[x := B℄A where s is a well balaned segment.So for example, hAihBi[x℄hCi[y℄[z℄hDiz ;� hBi[x℄hCi[y℄[z := A℄hDiz.The �-alulus �a la de Bruijn has many advantages over the lassial �-alulus. Some of these advantages are summarised in [37℄.In Aut-SL (f. B.2 of [44℄), de Bruijn desribed how a omplete Automathbook an be written as a single lambda alulus formula. The disadvantage ofAut-SL was that in order to put the book into the lambda alulus framework,it was neessary to �rst eliminate all de�nitional lines of the book. De Bruijndid not like this idea as without de�nitions, formulae an exponentially grow.For this reason, de Bruijn developped the �� alulus (f. B.7 of [44℄), withwhih he attempts to embrae all essential aspets of Automath apart from43



type inlusion. �� is the lambda alulus written in his notation (as above)15but where �-redution16 is presented as the result of loal �-redutions and AT-removals. The reason for this is that the delta redutions of Automath an beonsidered as loal �-redutions, and not as ordinary �-redutions.We have fully investigated PTSs and the type free lambda alulus in deBruijn's notation [35, 37, 7℄. We have also shown that ;� satis�es nie prop-erties in the type free lambda alulus [29℄ and that it loses subjet redutionin PTSs but that subjet redution an be regained if de�nitions are added inthe ontexts [7℄. We have not yet studied PTSs with loal �-redutions andAT-removal, although we have studied the type free lambda alulus with loal�-redution, AT-removal and expliit substitution [34℄. We leave the study ofPTSs with de Bruijn's loal �-redution and AT-removal for future work.6 ConlusionIn this paper we desribed the most basiAutomath-system,Aut-68, in a PTSstyle. Though an attempt at suh a desription has been given before in [2, 22℄,we feel that our desription is more aurate. Moreover, unlike [2, 22℄, ourdesription pays attention to the de�nition and parameter systems, whih areruial in Automath. We gave a PTS alled �68 whih is losely related toAut-68. Although �68 does not inlude �-onversion (while Automath does),one an adapt it to inlude �-onversion following the lines of [31℄.The adaptation of �68 to a system �QE, representing theAutomath-systemAut-QE is not hard, either: it requires adaptation of the �-formation rule toinlude not only the rule (�; �; �) but also (�;2;2) and the introdution of theadditional redution rule of type inlusion. We leave this as a future work. Wealso leave as a future work the extension of PTSs with loal �-redution andAT-removal �a la de Bruijn and hene the onnetion between de Bruijn's ��and PTSs with de�nitions.There is no doubt that Automath has had an amazing inuene in the-orem proving, type theory and logial frameworks. Automath however, wasdeveloped independently from other developments in type theory and uses a�-alulus and type-theoretial style that is unique to Automath. WritingAutomath in the modern style of type theory will enable useful omparisonsbetween type systems to take plae. There are still many lessons to learn fromAutomath and writing it in modern style is a useful step in this diretion.Referenes[1℄ H.P. Barendregt. The Lambda Calulus: its Syntax and Semantis. Studies in Logi andthe Foundations of Mathematis 103. North-Holland, Amsterdam, revised edition, 1984.[2℄ H.P. Barendregt. �-aluli with types. In Handbook of Logi in Computer Siene, pages117{309. OUP, 1992.15In ��, de Bruijn favours trees over harater strings and does not make use of AT-ouples.16Reall this is now both �- and �-redution as he uni�es �s and �s.44
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