
The Bulletin of Symbolic Logic

Volume 8, Number 2, June 2002

TYPES IN LOGIC AND MATHEMATICS BEFORE 1940

FAIROUZ KAMAREDDINE, TWAN LAAN, AND ROB NEDERPELT

Abstract. In this article, we study the prehistory of type theory up to 1910 and its develop-

ment betweenRussell andWhitehead’sPrincipiaMathematica ([71], 1910–1912) andChurch’s

simply typed ë-calculus of 1940. We first argue that the concept of types has always been

present in mathematics, though nobody was incorporating them explicitly as such, before the

end of the 19th century. Then we proceed by describing how the logical paradoxes entered the

formal systems of Frege, Cantor and Peano concentrating on Frege’s Grundgesetze der Arith-

metik for which Russell applied his famous paradox1 and this led him to introduce the first

theory of types, the Ramified Type Theory (rtt). We present rtt formally using the modern

notation for type theory and we discuss how Ramsey, Hilbert and Ackermann removed the

orders from rtt leading to the simple theory of types stt. We present stt and Church’s own

simply typed ë-calculus (ë→C
2) and we finish by comparing rtt, stt and ë→C .

§1. Introduction. Nowadays, type theory has many applications and is
used in many different disciplines. Even within logic and mathematics,
there are many different type systems. They serve several purposes, and are
formulated in various ways. But, before 1903 when Russell first introduced
a type theory (see appendix of [62]), there were no formulations of any type
theory. It is only since the second half of the twentieth century that we see
explosions of type theories. In this article, we follow the evolution of type
theory up to 1940. We give a historical account as to why formulations
of type theory came into being and we describe the very first formulation
of type theory: Russell and Whitehead’s ramified theory of types (based
on Russell’s work [63] of 1908 which succeeded [62]). In addition, we

Received October 13, 2000; revised December 17, 2001.
We are grateful for the useful feedback from and discussions with Henk Barendregt,

Andreas Blass, Ivor Grattan-Guinness, Roger Hindley and Joe Wells. Randall Holmes
read our work in thorough detail, provided extremely useful comments and implemented an
impressive proof checker for the system of Principia Mathematica which helps one to see the
extent to which Russell and Whitehead were successful in their early attempt at the logical
formalization of mathematics.
1Russell discovered his paradox when he read Cantor’s work.
2We write ë→C for the original calculus of Church as presented in [14]. Note that this is

different from the calculus ë → used in frameworks like the Barendregt cube and the pure
type systems found in [3].

c© 2002, Association for Symbolic Logic

1079-8986/02/0802-0001/$7.10

185

186 FAIROUZ KAMAREDDINE, TWAN LAAN, AND ROB NEDERPELT

describe the simple theory of types that resulted from simplifications made
by Hilbert and Ackermann and Ramsey to the ramified theory of types.
Finally, we give the simply typed ë-calculus based on Church’s seminal
paper of 1940. It is important to stress that we do not give an extensive
history of the subject.3 Other developments deserve attention and we refer
the reader especially to Ivor Grattan-Guinness’s book [35] for an excellent
historical account of many of the concepts discussed in this paper. We
also refer the reader to Cocchiarella’s work in [16, 17] and Landini’s book
[49].
Following the historical line from Frege (1879) and urged by the threat
of the paradoxes, Russell and Whitehead developed the ramified theory of
types [62, 63, 71] which was later simplified (or deramified) by Ramsey
[59] and Hilbert and Ackermann [37] into the simple theory of types. The
simple theory of types existed before the ë-calculus was invented by Church
in 1932. Nevertheless, nowadays, when one refers to simple type theory, one
usually means Church’s simply typed ë-calculus of 1940. It should be noted
furthermore, that Russell’s type structure was different from that of Church.
The former was set-based with linear sequences of types. The latter was
function-based.
Our article is not only intended to introduce the prehistory of type theory
(up to 1910) and its development between Principia Mathematica ([71],
1910–1912) and Church’s simply typed ë-calculus of 1940, but also we will
present Russell’s ramified theory of types and the simple theory of types due
to Ramsey, in a modern setting.4 The presentation of the ramified theory
of types in a modern setting was already given in [48] but there, neither the
deramification nor the connection of the ramified type theory with that of
Church’s simple theory of types was given. Similarly, although these theories
have already been described in a modern framework, the relation between
the modern description and the original system has not always been made
clear. This is particularly the case because the original systems are quite
far from the modern framework with respect to notation, level of formality
and/or purpose. We will describe the ramified and simple theories of types
within the modern framework in such a way that:

• We respect the ideas and the philosophy underlying the original system;
3Curry, in his work on combinatory logic, introduced before 1940 an influential notion of

typing that is still used nowadays when one refers to typing à la Curry as opposed to typing à
la Church. Similarly, in 1937, Quine in [55] introduced his New Foundations which retained
typing axioms, but abandoned the idea of representing types formally as Russell did. Quine’s
NF presupposes the very simple linear type theory with types 0 for individuals, 1 for sets of
individuals, 2 for sets of sets of individuals, etc.
4Note that there was a large unsatisfaction with ramified types and the reducibility axiom

and this led to various calls for deramification. We already mentioned Hilbert and Acker-
mann, there is also the work of Leon Chwistek amongst others. In this paper, we concentrate
on the simple theory of types as envisaged by Ramsey.

TYPES IN LOGIC AND MATHEMATICS BEFORE 1940 187

• We meet contemporary requirements on formality and accuracy.
The explicit and formal use of types (and thus an early form of what is
presently called “type theory”) was originally intended to prevent the para-
doxes that occurred in logic and mathematics at the end of the 19th and the
beginning of the 20th century. But it was not the only method developed for
this purpose. Another tool was the fine-tuning of Cantor’s Set Theory [9, 10]
by Zermelo [73], and the iterative conception of set (see [7]) that resulted
from the foundation axiom of Zermelo-Fraenkel’s set theory ZF. Although
it was clear that in ZF, the foundation axiom does not help in avoiding the
paradoxes, it was added as a technical refinement. The separation axiom
which replaced the unrestricted comprehension axioms is the one responsible
for avoiding the paradoxes. This axiom goes as follows [23, 2]:

(Comprehension)
For each open well-formed formula Φ, ∃y ∀x [(x ∈ y) ⇐⇒ Φ(x)] where
y is not free in Φ(x).

This unrestricted comprehension leads to a paradox by taking Φ(x) to be
¬(x ∈ x):

∃y ∀x [(x ∈ y) ⇐⇒ ¬(x ∈ x)]=⇒∃y [(y ∈ y) ⇐⇒ ¬(y ∈ y)].

Such a comprehension axiom assumes that each open well-formed expres-
sion determines a concept whose extension exists and is the set of all those
elements which satisfy the concept. Iterative sets were proposed to avoid the
paradox and came to being by altering not the language, but the axioms of
the theory. The most straightforward such theory is ZF (Zermelo-Fraenkel)
where the axioms are made to fit the limitation of size doctrine. As an
example, the above comprehension principle is altered to the following:

(Separation)
For each open well formed formula Φ, ∃y ∀x [(x ∈ y)=⇒ (x ∈ z) ∧ Φ]
where y does not occur in Φ.

It is this new axiomwhich is responsible for the elimination of the paradox:
to prove the existence of {x : ¬(x ∈ x) } we need a z big enough so that
{x : ¬(x ∈ x) } is included in z. But we cannot show the existence of such
a z. More precisely the paradox is restricted in ZF as follows:
Take Φ(z) to be ¬(z ∈ z), and take y = {x : (x ∈ z) ∧ ¬(x ∈ x) }.
• If (y ∈ y)=⇒ (y ∈ z) and ¬(y ∈ y) contradiction,
• If ¬(y ∈ y)=⇒
– if (y ∈ z)=⇒ (y ∈ y) contradiction,
– if ¬(y ∈ z) then we are fine.

Note however that we still have the syntactical ability to consider whether
a set belongs to itself or not, but we are not committed to any set actually

188 FAIROUZ KAMAREDDINE, TWAN LAAN, AND ROB NEDERPELT

belonging to itself. For example, if we take Φ(x) to be x ∈ x then
∃z ∀x [(x ∈ z) ⇐⇒ (x ∈ α ∧ x ∈ x)];

in this case, although x ∈ x is well-formed, it is likely to be false in the
intended interpretation for any value of x. In the middle period of the
development of ZF, it was felt that the following foundation axiom (which is
independent of and consistent with all other axioms of ZF) has to be added:5

(∃x)(x ∈ a)=⇒ (∃x ∈ a)(∀y ∈ x)¬(y ∈ a).(FA)

As a corollary of (FA), we have that there is no set a which has itself as
its only element, for if there was then take x = a in the antecedant of (FA)
above and you get (∃x ∈ a)(∀y ∈ x)¬(y ∈ a), which is absurd.
It is worth pointing out that although very different conceptually, both the
simple theory of types and ZF (which includes (FA)), give rise to an iterative
concept of set. That is, both require the elements of a set be present before
a new set can be constructed [7]. We cannot however stop our discussion
of set theory here. Quine’s stratification in NF [55], and ML [56], (two
non-iterative set theories) are sufficiently type-like to merit some discussion.
Quine restricted the axiom of comprehension, to obtain the following:

∃x ∀y [(y ∈ x) ⇐⇒ Φ(y)](SCP)

where x is not free in Φ(y) and Φ(y) is stratified.6

Quine’s NF has attracted a lot of research. Specker [67] refuted the ax-
iom of Choice in NF, Jensen [41] established that NF with Urelements is
consistent (even when augmented with Choice, Infinity and unrestricted
mathematical induction). However, consistency of NF remains an open
problem. Moreover, NF is weak for mathematical induction (for proposi-
tions not expressible in type theory). Also, NF is said to lack motivation
because its axiom of comprehension is justified only on technical grounds
and one’s mental image of set theory does not lead to such an axiom. To
overcome some of the difficulties, Quine replaced (SCP) by two axioms, one
for class existence and one for elementhood. The rule of class existence
provides for the existence of the classes of all elements satisfying any con-
dition Φ, stratified or not. The rule of elementhood is such as to provide
the elementhood of just those classes which exist for NF. Therefore, the two
axioms of comprehension of ML:

5This changed in the 1980s when Peter Aczel introduced his non-well founded set theory
which relied on the Anti-Foundation axiom.
6Assume a first-order theory where for each primitive predicate F (x1, . . . , xn), we have

integer constants F1, . . . , Fn. A formula Φ in the language of that theory is said to be
stratified if there is an integer-valued function ó with domain the set of variables appearing
in φ with the property that in each atomic formula F (xi1 , . . . , xin) which appears in φ, and
each integer 1 ≤ j ≤ n, we have ó(xij)− ó(xi1) = Fj − F1.

TYPES IN LOGIC AND MATHEMATICS BEFORE 1940 189

(Comprehension by a set)
∃y ∀x (x ∈ y ⇐⇒ Φ(x)), where x and y range over sets, Φ(x) is
stratified with set variables only in which y does not occur free.

(Impredicative comprehension by a class)
∃y ∀x (x ∈ y ⇐⇒ Φ(x)), where x ranges over sets, Φ(x) is any formula
in which y does not occur free.

ML was liked both for the manipulative convenience we regain in it and
the symmetrical universe it furnishes. The earlier version of the first edition
of [56] was subject to the Burali-Forti paradox—the well ordered set Ω of
all ordinals has an ordinal which is greater than any member of Ω and
hence is greater than Ω. In the second edition of [56], Quine corrected the
axiomatization of ML (following a suggestion of Hao Wang) so that it is
demonstrably consistent ifNF is consistent. This latter version does not face
the Burali-Forti paradox.
The approach of type theory however, is completely different from the
set-theoretical approach. First, in the type theoretical approach, it is the
language that is altered in order to avoid the paradox, and not the axioms.7

Moreover, since Church’s ë-calculus being extended with simple types in
1940, type theory has continued to focus on the notion of function in logic
and mathematics. Since 1940, functions have remained one of the main
objects of study for type theorists.
The historical remarks in this article have been taken from various re-
sources. The most important ones are [6, 19, 68, 44, 53, 69, 72].
In Section 2 we discuss the prehistory of type theory. We first argue that
the concept of types has always been present in mathematics, though nobody

7The first two accounts of avoiding the paradox by restricting the language were due to
Russell and Poincaré. They both disallowed impredicative specification: only predicative
specification (as will be defined below) was to be permitted. Russell’s own solution (in
[63]) was to adopt the vicious circle principle which can be roughly stated as follows: “No
entity determined by a condition that refers to a certain totality should belong to this totality”.
Poincaré (in [54]) took refuge in banning “les définitions non prédicatives” which were taken
by him to be: Definitions by a relation between the object to be defined and all individuals of a
kind of which either the object itself to be defined is supposed to be a part or other things that
cannot be themselves defined except by the object to be defined. So both Russell and Poincaré
required only predicative sets to be considered, where A = {x : Φ(x) } is predicative if and
only if Φ contains no variable which can take A as a value. This helps because it is otherwise
very easy to get a vicious circle fallacy if we let the arguments of a certain propositional
function (or the elements of a set) presuppose the function (or the set) itself. Russell’s
and Poincaré’s solution was to use predicative comprehension, instances of which start with
individuals, then generate sets, then new sets and so on as in the following example: Take 0
at level 0, {0} at level 1, {0, {0}} at level 2, and so on. Russell’s ramified theory of types in
Principia Mathematica applied the vicious circle principle, assuming all the elements of the
set before constructing it. This theory obviously overcomes the paradox for the sentence Φ
denoting ¬(y ∈ y) is not predicative.

190 FAIROUZ KAMAREDDINE, TWAN LAAN, AND ROB NEDERPELT

was incorporating them explicitly as such, before the end of the 19th century
(Section 2.1). We study the way in which types implicitly occurred in logic
and mathematics before there was an explicit theory of types. Then, we
proceed by describing how the logical paradoxes entered the formal systems
of Frege, Cantor and Peano in Section 2.2. We pay special attention to
the formalisation of logic that is made in Frege’s Begriffsschrift [25] and
Grundgesetze der Arithmetik [28, 31], as in this system many basic ideas
are presented that are later used in type theory. Moreover, the system of
Grundgesetze der Arithmetik is the one for which Russell derives his famous
paradox, and this paradox was the reason for Russell to introduce the first
theory of types.
This first type theory is the subject of Section 3. Whitehead and Russell
present their theory, the Ramified Type Theory (rtt), in an informal way.
Several rough descriptions of this theory have been given in the literature
(see for instance [14, 15, 37, 59]) but we present a formalisation of rtt given
in [48] that is directly based on the presentation of rtt in Whitehead and
Russell’s Principia Mathematica ([71], 1910–12). The construction of this
formalisation is not a simple task. Whitehead and Russell do not present
a clear syntax for their so-called propositional functions in [71], neither do
they make a clear difference between syntax and semantics. We constantly
explain/defend our formalisation by using actual text from Principia Math-
ematica. We explain how the formal definition of propositional function
is faithful to the original ideas exposed in Principia Mathematica and how
the formalisation of the notion of propositional function makes it possible
to express the notion of substitution of Principia Mathematica in terms of
ë-calculus.
In 1926, Ramsey [59] proposes an important simplification of rtt, the
simple theory of types. This simple type theory has become the basis formany
modern type systems, and for the simply typed ë-calculus of Church [14].
The simplification consisted of the removal of one of the two hierarchies
from the rtt. The hierarchy of types is maintained, while the hierarchy
of orders is removed. In Section 4 we discuss this process of so-called
deramification.8

In Section 5 we follow this process of deramification to present Hilbert
and Ackermann’s [37] and Ramsey’s [59] simple theory of types stt. We
also present the well-known simple theory of types of Church ë→C [14]. We
compare rtt, stt and ë→C .
We conclude in Section 6.

8Note that though the orders do not occur in the mainstream of type theories, they still
provide an important intuition for logicians and play an important role in “categorising”
logical theories: first-order, second-order, higher-order. For a discussion of the use of orders
in modern systems, and its relation to Russell’s notion of orders, the reader is referred to [43].

TYPES IN LOGIC AND MATHEMATICS BEFORE 1940 191

§2. Prehistory of types. In this section, we discuss the development of type
theory before it was actually baptised. This may sound like a contradiction.
But types have played an important (though not very apparent) role in
mathematics even before the theory of types was explicitly introduced by
Russell in 1908 [63]. Moreover, knowledge of the development of logic and
mathematics before 1908, and especially of the occurrence of the logical
paradoxes at the turn of the 20th century, provides insight in the way in
which Russell and others formulated their theories of types.
When the first formalisations of parts of mathematics and logic appeared,
the types were left implicit. Cantor’s Set Theory [9, 10], Peano’s formalisa-
tion of the theory of natural numbers in [51], and Frege’s Begriffsschrift [25]
and Grundgesetze der Arithmetik [28, 31] did not have a formal type system.
The type of an object is indicated by means of natural language (“Let a be a
proposition”) or is taken for granted. Types were informally present in the
background of these theories, but a formal representation of the types was
not incorporated: one could say that they were separated from logic and
mathematics.
However, even without a formalisation of the notion of types, the intro-
duction of formal language had considerable advantages in the description
of mathematical notions. The formalisation made it easier to give a precise
definition of important abstract concepts, like the concept of function. The
precise formulation allowed for a generalisation of the notion of function
to include not only functions that take numbers as an argument, and re-
turn a number, but also functions that can take and return other sorts of
arguments (like propositions, but also functions). Unfortunately, this also
allowed logical paradoxes to enter the formal theory, without the (informal)
type mechanism being able to prevent that.

2.1. Paradox threats. The most fundamental idea behind type theory is
being able to distinguish between different classes of objects (types).9 Until
the end of the 19th century it had hardly ever been necessary to make
this ability explicit. The mathematical language itself was predominantly
informal, and so was the use of classes of objects.
It is, however, difficult to argue that there were no types before Russell “in-
vented” them in 1903. Already around 325 B.C., Euclid began his Elements
(page 153 of [22]) with the following primitive definitions:

1. A point is that which has no part;
2. A line is breadthless length.

From these two basic notions of “point” and “line”, Euclid defined more
complex notions, like the notion of “circle”:

9Note that it is controversial whether types should be literally taken to be classes of objects.
We do not use this correspondence literally.

192 FAIROUZ KAMAREDDINE, TWAN LAAN, AND ROB NEDERPELT

15. A circle is a plane figure contained by one line such that all the straight
lines falling upon it from one point among those lying within the figure
are equal to one another.

At first sight, these three observations are mere definitions. But these
three pieces of text do not only define the notions of point, line and circle,
they also show that Euclid distinguished between points, lines and circles.
Throughout the Elements, Euclid always mentioned to which class an object
belonged (the class of points, the class of lines, etc.). In doing so, he pre-
vented undesired results, like the intersection of two points (instead of two
lines).
Undesired results? Euclid himself would probably have said: impossible
results. When talking of an intersection, intuition implicitly forced him
to think about what we would nowadays call the type of the objects of
which he wanted to construct the intersection. As the intersection of two
points is not supported by intuition, he did not even try to undertake such a
construction.
Euclid’s attitude to, and implicit use of type theory was maintained by
the mathematicians and logicians of the next twenty-one centuries. From
the 19th century on, mathematical systems became less intuitive, for several
reasons:

1. The system itself was complex, or abstract. An example was the theory
of convergence in real analysis;

2. The system is a formal system, for example, the formalisation of logic
in Frege’s Begriffsschrift;

3. (In the secondhalf of the 20th century:) It is not a humanbeingworking
with the system, but something with less intuition, in particular: a
computer.

We will call these three situations paradox threats. In all these cases, there is
not enough intuition to activate the (implicitly present) type theory to warn
against an impossible situation. One proceeds to reason within the impos-
sible situation and then obtains a result that may be wrong or paradoxical:
an undesired situation. We mention examples related to the three situations
above:

S 1. The controversial results on convergence of series in analysis obtained
in the 17th and 18th century, due to lack of knowledge on what real
numbers actually are;

S 2. The logical paradoxes that arose from self-application of functions.
Self-application may lead to intuitively impossible situations, but this
is easily forgotten when working in a formal system in which such

TYPES IN LOGIC AND MATHEMATICS BEFORE 1940 193

self-application can be expressed. The result is undesirable: a logical
paradox;10

S 3. An untyped computer programmay receive instructions from a not too
watchful user to add the number 3 to the string four. The computer,
unaware of the fact that four is not a number, starts his calculation. It
is not programmed to handle the calculation of 3+ four. The result of
this calculation is unpredictable. The computermay: (a) give an answer
that is clearly wrong; (b) give no answer at all; (c) give an answer that is
not so clearly wrong (for example, 6); or (d) accidentally give the right
answer. Especially situation (c) is highly undesirable.

The example S 2 is the main subject of the next section (Section 2.2).

2.2. Paradox threats in formal systems. In the 19th century, the need for a
more precise style in mathematics arose. Controversial results had appeared
in analysis. Many of these controversies were solved by the work of Cauchy.
For instance, he introduced a precise definition of convergence in his Cours
d’Analyse [11]. Due to the more exact definition of real numbers given by
Dedekind [21], the rules for reasoning with real numbers became even more
precise.
In 1879, Frege published his Begriffsschrift [25], in which he presented
the first formalisation of logic that was uncommonly precise for those days.
Until then, it had been possible to make mathematical and logical concepts
more clear by textual refinement in the natural language in which they were
described. Frege was not satisfied with this:

“ . . . I found the inadequacy of language to be an obstacle; no
matter how unwieldy the expressions I was ready to accept, I was
less and less able, as the relations becamemore andmore complex,
to attain the precision that my purpose required.”

(Begriffsschrift, Preface)

Frege therefore presented a completely formal system, whose

“first purpose is to provide us with the most reliable test of the
validity of a chain of inferences and to point out every presup-
position that tries to sneak in unnoticed, so that its origin can be
investigated.”

(Begriffsschrift, Preface)

10Note that there are logical systems in which self-application is both consistent and use-
ful. Consider untyped ë-calculus or second-order polymorphic ë-calculus, not to mention
systems related to Quine’s “New Foundations”. For a modern intuition, trained in systems
that arose during or after the developments up to 1940, self-application is much more ob-
viously problematic than it was then (though certainly it was problematic for Russell!) For
example, self-application appears not to have been essentially problematic for Curry, who
was developing combinatory logic during that period.

194 FAIROUZ KAMAREDDINE, TWAN LAAN, AND ROB NEDERPELT

2.2.1. Functions and their course of values. The introduction of a very
general definition of function was the key to the formalisation of logic.
Frege defined what we will call the Abstraction Principle:

Abstraction Principle 1.

“If in an expression, [. . .] a simple or a compound sign has one
or more occurrences and if we regard that sign as replaceable in all
or some of these occurrences by something else (but everywhere by
the same thing), then we call the part that remains invariant in the
expression a function, and the replaceable part the argument of the
function.”

(Begriffsschrift, Section 9)

Up to this section in Begriffsschrift, Frege put no restrictions on what
could play the role of an argument. An argument could be a number (as was
the situation in analysis), but also a proposition, or a function. Similarly, the
result of applying a function to an argument did not necessarily have to be
a number. (In Section 11 of his Begriffsschrift, Frege makes restrictions as
we will see below.) Functions of more than one argument were constructed
by a method that is very close to the method presented by Schönfinkel [64]
in 1924:

Abstraction Principle 2.

“If, given a function, we think of a sign11 that was hitherto regarded
as not replaceable as being replaceable at some or all of its occur-
rences, then by adopting this conception we obtain a function that
has a new argument in addition to those it had before.”

(Begriffsschrift, Section 9)

With this definition of function, two of the three possible paradox threats
mentioned on p. 192 occurred:

1. The generalisation of the concept of function made the system more
abstract and less intuitive. The fact that functions could have different
types of arguments is at the basis of the Russell Paradox;

2. Frege introduced a formal system instead of the informal systems that
were used up till then. Type theory, that would be helpful in distinguish-
ing between the different types of arguments that a functionmight take,
was left informal.

So, Frege had to proceed with caution. And so he did, at this stage. He
remarked that

“if the [. . .] letter [sign] occurs as a function sign, this circumstance
[should] be taken into account.”

(Begriffsschrift, Section 11)

11We can now regard a sign that previously was considered replaceable as replaceable also
in those places in which up to this point it was considered fixed. [footnote by Frege]

TYPES IN LOGIC AND MATHEMATICS BEFORE 1940 195

This could be interpreted as if Frege was aware of some typing rule that does
not allow to substitute functions for object variables or objects for function
variables. In his paper Function and Concept [27], Frege more explicitly
stated:

“ Now just as functions are fundamentally different from objects,
so also functions whose arguments are and must be functions
are fundamentally different from functions whose arguments are
objects and cannot be anything else. I call the latter first-level, the
former second-level.”

(Function and Concept, pp. 26–27)

A few pages later he proceeded:

“In regard to second-level functions with one argument, we must
make a distinction, according as the role of this argument can be
played by a function of one or of two arguments.”

(Function and Concept, p. 29)

Therefore, we may safely conclude that Frege avoided the two paradox
threats in the Begriffsschrift. In Function and Concept we even see that
he was aware of the fact that making a difference between first-level and
second-level objects is essential in preventing certain paradoxes:

“The ontological proof of God’s existence suffers from the fallacy
of treating existence as a first-level concept.”

(Function and Concept, p. 27, footnote)

The Begriffsschrift, however, was only a prelude to Frege’s writings. In
Grundlagen der Arithmetik [26] he argued that mathematics can be seen
as a branch of logic. In Grundgesetze der Arithmetik [28, 31] he actually
described the elementary parts of arithmetics within an extension of the
logical framework that was presented in the Begriffsschrift.
Frege approached the paradox threats for a second time at the end of
Section 2 of his Grundgesetze. There he defined the expression “the function
Φ(x) has the same course-of-values as the function Ψ(x)” by

“the functions Φ(x) and Ψ(x) always have the same value for the
same argument.”

(Grundgesetze, p. 7)

Note that functions Φ(x) and Ψ(x) may have equal courses-of-values even
if they have different definitions. For instance, let Φ(x) be x∧¬x, and Ψ(x)
be x ↔ ¬x, for all propositions x. Then Φ(x) = Ψ(x) for all x. So Φ(x)
and Ψ(x) are different functions, but have the same course-of-values.

196 FAIROUZ KAMAREDDINE, TWAN LAAN, AND ROB NEDERPELT

Frege denoted the course-of-values of a function Φ(x) by ὲΦ(ε).12 The
definition of equal courses-of-values could therefore be expressed as

ὲf(ε) = ὲg(ε)←→ ∀a[f(a) = g(a)].(1)

In modern terminology, we could say that the functions Φ(x) and Ψ(x)
have the same course-of-values if they have the same graph.
Frege did not provide a satisfying intuition for the formal notion of course-
of-values of a function. He treated courses-of-values as ordinary objects.
As a consequence, a function that takes objects as arguments could have its
own course-of-values as an argument. In modern terminology: a function
that takes objects as arguments can have its own graph as an argument. All
essential information of a function is contained in its graph. So intuitively, a
system inwhicha function canbe applied to its owngraph shouldhave similar
possibilities as a system in which a function can be applied to itself. Frege
excluded the paradox threats from his system by forbidding self-application,
but due to his treatment of courses-of-values these threats were able to enter
his system through a back door.

2.2.2. The Russell Paradox in the Grundgesetze. In 1902, Russell wrote a
letter to Frege [61], in which he informed Frege that he had discovered a
paradox in Frege’s Begriffsschrift. Russell gave his well-known argument,
defining the propositional function f(x) by ¬x(x) (in Russell’s words: “to
be a predicate that cannot be predicated of itself”). He assumedf(f). Then
by definition of f, ¬f(f), a contradiction. Therefore: ¬f(f) holds. But
then (again by definition of f), f(f) holds. Russell concluded that both
f(f) and ¬f(f) hold, a contradiction.
Only six days later, Frege answered Russell that Russell’s derivation of the
paradox was incorrect [24]. He explained that the self-application f(f) is
not possible in theBegriffsschrift. f(x) is a function, which requires an object
as an argument, and a function cannot be an object in theBegriffsschrift (see
2.2.1).
In the same letter, however, Frege explained that Russell’s argument could
be amended to a paradox in the system of hisGrundgesetze, using the course-
of-values of functions. Frege’s amendment was shortly explained in that
letter, but he added an appendix of eleven pages to the second volume of his

12This may be the origin of Russell’s notation x̂Φ(x) for the class of objects that have
the property Φ. According to a paper by J. B. Rosser [60], the notation x̂Φ(x) has been
at the basis of the current notation ëx.Φ in ë-calculus. Church is supposed to have written
∧xΦ(x) for the function x 7→ Φ(x), writing the hat in front of the x in order to distinguish
this function from the class x̂Φ(x). For typographical reasons, the ∧ is supposed to have
changed into a ë. On the other hand, J. P. Seldin informed us [66] that he had asked Church
about it in 1982, and that Church had answered that there was no particular reason for
choosing ë, that some letter was needed and ë happened to have been chosen. Moreover,
Curry had told him that Church had a manuscript in which there were many occurrences of
ë already in 1929, so three years before the paper [12] appeared.

TYPES IN LOGIC AND MATHEMATICS BEFORE 1940 197

Grundgesetze in which he provided a very detailed and correct description of
the paradox.
The derivation goes as follows (using the same argument as Frege, though
replacing Frege’s two-dimensional notation by the nowadays more usual
one-dimensional notation). First, define the function f(x) by:

¬∀ϕ [(ὰϕ(α) = x) −→ ϕ(x)]

and write K = ὲf(ε). By (1) we have, for any function g(x), that ὲg(ε) =
ὲf(ε) −→ g(K) = f(K) and this implies

f(K) −→ ((ὲg(ε) = K) −→ g(K)).(2)

As this holds for any function g(x), we have

f(K) −→ ∀ϕ [(ὲϕ(ε) = K)→ ϕ(K)].(3)

On the other hand, for any function g,

∀ϕ [(ὲϕ(ε) = K)→ ϕ(K)] −→ ((ὲg(ε) = K)→ g(K)).

Substituting f(x) for g(x) results in:

∀ϕ [(ὲϕ(ε) = K)→ ϕ(K)] −→ ((ὲf(ε) = K)→ f(K))

and as ὲf(ε) = K by definition of K ,

∀ϕ [(ὲϕ(ε) = K)→ ϕ(K)] −→ f(K).

Using the definition of f, we obtain

∀ϕ [(ὲϕ(ε) = K)→ ϕ(K)] −→ ¬∀ϕ[(ὲϕ(ε) = K)→ ϕ(K)],

hence by reductio ad absurdum, ¬∀ϕ [(ὰϕ(α) = K) → ϕ(K)], or short-
hand:

f(K).(4)

Applying (3) results in ∀ϕ [(ὰϕ(α) = K)→ ϕ(K)], which implies

¬¬∀ϕ [(ὰϕ(α) = K)→ ϕ(K)],

or shorthand:

¬f(K).(5)

(4) and (5) contradict each other.

198 FAIROUZ KAMAREDDINE, TWAN LAAN, AND ROB NEDERPELT

2.2.3. How wrong was Frege? In the history of the Russell Paradox, Frege
is often depicted as the pitiful person whose system was inconsistent. This
suggests that Frege’s system was the only one that was inconsistent, and
that Frege was very inaccurate in his writings. On these points, history does
Frege an injustice.
In fact, Frege’s system was much more accurate than other systems of
those days. Peano’s work, for instance, was less precise on several points:

• Peanohardly paid any attention to logic, especially not to quantification
theory;
• Peano did not make a strict distinction between his symbolism and the
objects underlying this symbolism. Frege was much more accurate on
this point (see also his paper Über Sinn und Bedeutung [29]);
• Frege made a strict distinction between a proposition (as an object of
interest or discussion) and the assertionof a proposition. Frege denoted
a proposition, in general, by −A, and the assertion of the proposition
by ` A. The symbol ` is still widely used in logic and type theory.
Peano did not make this distinction and simply wrote A.

Nevertheless, Peano’s work was very popular, for several reasons:

• Peano had able collaborators, and in general had a better eye for pre-
sentation and publicity. For instance, he bought his own press, so that
he could supervise the printing of his journalRivista diMatematica and
Formulaire [52]
• Peano used a symbolismmuch more familiar to the notations that were
used in those days by mathematicians (and many of his notations, like
∈ for “is an element of”, and ⊃ for logical implication, are also used in
Russell’s Principia Mathematica, and are actually still in use).

Frege’s work did not have these advantages and was hardly read before
1902.13 In the last paragraph of [30], Frege concluded:

. . . I observe merely that the Peano notation is unquestionably
more convenient for the typesetter, and in many cases takes up
less room than mine, but that these advantages seem to me, due

13When Peano published his formalisation of mathematics in 1889 [51] he clearly did
not know Frege’s Begriffsschrift, as he did not mention the work, and was not aware of
Frege’s formalisation of quantification theory. Peano considered quantification theory to be
“abstruse” in [52], on which Frege proudly reacted:

“In this respect my conceptual notion of 1879 is superior to the Peano one.
Already, at that time, I specified all the laws necessary for my designation of
generality, so that nothing fundamental remains to be examined. These laws are
few in number, and I do not know why they should be said to be abstruse. If it is
otherwise with the Peano conceptual notation, then this is due to the unsuitable
notation.”

([30], p. 376)

TYPES IN LOGIC AND MATHEMATICS BEFORE 1940 199

to the inferior perspicuity and logical defectiveness, to have been
paid for too dearly—at any rate for the purposes I want to pursue.

(Ueber die Begriffschrift des Herrn Peano und meine Eigene, p. 378)

Frege’s systemwas not the only paradoxical one. The Russell Paradox can
be derived in Peano’s system as well, by defining the class

K
def
= {x | x /∈ x }

and deriving K ∈ K ←→ K /∈ K .
2.2.4. The importance of Russell’s Paradox. Russell’s paradox was cer-
tainly not the first or only paradox in history. Paradoxes were already widely
known in antiquity. The first known paradox is theAchilles paradox of Zeno
of Elea. It is a purely mathematical paradox. Due to a precise formulation
of mathematics and especially the concept of real numbers, the paradox can
now be satisfactorily solved.
The oldest logical paradox is probably the Liar’s Paradox, also known as
the Paradox of Epimenides. It can be very shortly formulated by the sentence
“This sentence is not true”. The paradox was widely known in antiquity.
For instance, it is referred to in the Bible (Titus 1:12). It is based on the
confusion between language and meta-language.
The Burali-Forti paradox ([8], 1897) is the first of the modern paradoxes.
It is a paradox within Cantor’s theory on ordinal numbers.14 Cantor’s
paradox on the largest cardinal number occurs in the same field. It must have
been discovered by Cantor around 1895, but was not published before 1932.
The logicians considered these paradoxes to be out of the scope of logic:
the paradoxes based on the Liar’s Paradox could be regarded as a problem of
linguistics, and the paradoxes of Cantor and Burali-Forti occurred in what
was considered in those days a highly questionable part of mathematics:
Cantor’s Set Theory.
The Russell Paradox, however, was a paradox that could be formulated
in all the systems that were presented at the end of the 19th century (except
for Frege’s Begriffsschrift). It was at the very basics of logic. It could not be
disregarded, and a solution to it had to be found. Russell’s solution to the
paradoxes was to use type theory.

§3. Type theory in Principia Mathematica. When Russell proved Frege’s
Grundgesetze to be inconsistent, Frege was not the only person in trouble.
In Russell’s letter to Frege (1902), we read:

“I am on the point of finishing a book on the principles of math-
ematics”

(Letter to Frege, [61])

14It is instructive to note that Cantor was aware of the Burali-Forti paradox and did not
think that it rendered his system incoherent.

200 FAIROUZ KAMAREDDINE, TWAN LAAN, AND ROB NEDERPELT

Therefore, Russell had to find a solution to the paradoxes, before he could
finish his book.
His paperMathematical logic as based on the theory of types [63] (1908),
in which a first step is made towards the Ramified Theory of Types, started
with a description of the most important contradictions that were known up
till then, including Russell’s own paradox. He then concluded:

“In all the above contradictions there is a common characteristic,
which we may describe as self-reference or reflexiveness. [. . .] In
each contradiction something is said about all cases of some kind,
and from what is said a new case seems to be generated, which
both is and is not of the same kind as the cases of which all were
concerned in what was said.”

(Ibid.)

Russell’s plan was, therefore, to avoid the paradoxes by avoiding all possible
self-references. He postulated the “vicious circle principle”:

Vicious Circle Principle 3.

“Whatever involves all of a collection must not be one of the collec-
tion.”

([47], p. 200)

Russell applies this principle very strictly. He implemented it using types,
in particular the so-called ramified types. The theory presented in Mathe-
matical logic as based on the theory of types was elaborated in Chapter II of
the Introduction to the famous Principia Mathematica [71] (1910–1912). In
thePrincipia, Whitehead andRussell foundedmathematics on logic, as far as
possible. The result was a very formal and accurate build-up ofmathematics,
avoiding the logical paradoxes.
The logical part of the Principia was based on the works of Frege. This
was acknowledged by Whitehead and Russell in the preface, and can also
be seen throughout the description of Type Theory. The notion of func-
tion is based on Frege’s Abstraction Principles 1 and 2, and the Principia
notation x̂f(x) for a class looks very similar to Frege’s ὲf(ε) for course-of-
values.
An important difference is that Whitehead and Russell treated functions
as first-class citizens. Frege used courses-of-values as a way of speaking
about functions (and was confronted with a paradox); in the Principia a
direct approach was possible. Equality, for instance, was defined for objects
as well as for functions by means of Leibniz equality (x = y if and only if
f(x)↔ f(y) for all propositional functions f—see [71], ∗13·11).
The description of the Ramified Theory of Types (rtt) in the Principia
was, though extensive, still informal. It is clear that Type Theory had not
yet become an independent subject. The theory

TYPES IN LOGIC AND MATHEMATICS BEFORE 1940 201

“only recommended itself to us in the first instance by its ability
to solve certain contradictions”

(Principia Mathematica, p. 37)

And though

“it has also a certain consonance with common sense whichmakes
it inherently credible”

(Principia Mathematica, p. 37)

(probably, Whitehead and Russell refer to the implicit, intuitive use of types
by mathematicians as explained in Section 2.1), Type Theory was not intro-
duced because it was interesting on its own, but because it had to serve as a
tool for logic and mathematics. A formalisation of Type Theory, therefore,
was not considered in those days.
Though the description of the ramified type theory in thePrincipiawas still
informal, it was clearly present throughout the work. It was not mentioned
very often, but when necessary, Russell made a remark on the ramified type
theory. This is an important difference with the earlier writings of Frege,
Peano and Cantor.
If we want to compare rtt with contemporary type systems, we have to
make a formalisation of rtt. Though there are many descriptions of rtt
available in the literature (like [14, 15, 37, 59] and Section 27 of [65]), none
of these descriptions presents a formalisation that is both accurate and as
close as possible to the ideas of the Principia. [47, 48] fill up this gap in the
literature. In this section, we review the formalisation of [47, 48] explaining
how it faithfully represents the intentions of Russell and Whitehead.
Formalisation of the ramified type theory is by no means easy:

• Important formal notions, especially the notion of substitution, re-
mained completely unexplained in the Principia;
• The accuracy of Frege’s work was not present in Russell’s. This was
already observed by Gödel, who said that the precision of Frege was
lost in the writings of Russell, and who, due to the informality of
some basic notions of the Principia, had to give his paper [33] the
title Über formal unentscheidbare Sätze der Principia Mathematica und
verwandter Systeme.

In Section 2.2.1 we saw that Frege generalised the notion of function from
analysis. For Russell’s formalisation of mathematics within logic, a special
kind of these functions was needed: the so-called propositional functions. A
propositional function (pf) always returns a proposition when it is applied
to suitable arguments. In Section 3.1, we introduce a formalised version of
these pfs. This makes it possible to compare pfs with other formal systems,
like ë-calculus (which we do in Section 3.2), and to give a precise definition
of substitution (Section 3.4).

202 FAIROUZ KAMAREDDINE, TWAN LAAN, AND ROB NEDERPELT

In Section 3.5 we give a formalisation of Russell’s notion of ramified type,
followed by a formal definition of the notion the pf f is of type t. We
motivate this definition by referring to passages in the Principia. As the
formalisation of pf is precise enough to be translated to ë-calculus, we can
make a comparison between rtt and current type systems.
Thanks to our formal notation and its relation to ë-calculus, we are able to
prove properties of rtt in an easy way, using properties of modern type sys-
tems. This will be done in Section 3.8. Due to the new notation it is relatively
easy to see that we have proved variants of well-known theorems from Type
Theory, like Strong Normalisation, Free Variable Lemma, Strengthening
Lemma, Unicity of Types and Subterm Lemma.
In Section 3.9 we answer in full detail the question which pfs are typable.
We also make a comparison between our notion of typable pf, and the
corresponding notion in the Principia, and conclude that these two notions
of typable pf coincide.

3.1. Principia’s propositional functions. In this section we present a for-
malisation of the propositional functions (pfs) of the Principia by introduc-
ing a syntax that is as close as possible to the ideas of thePrincipia. Intuition
about this syntax is provided by translating pfs into ë-terms in Section 3.2.
A special attention is devoted to the notion of substitution. This notion
is clearly present in the Principia, but not formally defined. Due to our
translation of pfs to ë-calculus, we are able to give a precise definition.

3.1.1. Definition. The definition of propositional function in thePrincipia
is as follows:

“By a “propositional function” we mean something which con-
tains a variable x, and expresses a proposition as soon as a value
is assigned to x.”

(Principia Mathematica, p. 38)

Pfs are, however, constructed from propositions with the use of the Abstrac-
tion Principles: they arise when in a proposition one or more occurrences
of a sign are replaced by a variable. Therefore we have to begin our formal-
isation with certain basic propositions, certain basic signs, and signs that
indicate a replaceable object. For this purpose we use

• A set A of individual symbols (the basic signs);
• A set V of variables (the signs that indicate replaceable objects);
• A setR of relation symbols together with a map a : R→ N+ indicating
the arity of each relation-symbol (these are used to form the basic
propositions).

Wewant to have a sufficient supply of individual symbols, variables and rela-
tion symbols and therefore assume thatA and V are infinite (but countable),
and that {R ∈ R | a(R) = n } is infinite (but countable) for each n ∈ N+.
We assume that {a1, a2, . . . } ⊆ A, {x, y, z, x1, . . . } ⊆ V and {R, S, . . . } ⊆ R.

TYPES IN LOGIC AND MATHEMATICS BEFORE 1940 203

We use a1, a2, . . . as metavariables over A; x, y, z, x1, . . . as metavariables
over V and R, S, . . . as metavariables over R. For technical reasons we
assume that there is an order (e.g., alphabetical) on V . We write x < y if x
is ordered before y, and not equal to y (so: < is strict). In particular, we
assume that x < x1 < . . . y < y1 < . . . z < z1 . . . and: for each x there is a
y with x < y.

Definition 4 (Atomic propositions). A list of symbols of the form

R(a1, . . . , aa(R))

is called an atomic proposition.

Other names used for these atomic propositions in the Principia are ele-
mentary judgements and elementary propositions (cf. [71], pp. xv, 43–45, and
91).
Propositional functions in Principia Mathematica are generated from
atomic propositions by two means:

• The use of logical connectives and quantifiers;
• Abstraction from (earlier generated) propositional functions, using the
abstraction principles.

This leads to the following formal definition of propositional function.

Definition 5 (Propositional functions). We define a collection P of prop-
ositional functions (pfs), and for each element f of P we simultaneously
define the collection fv(f) of free variables of f:

1. If i1, . . . , ia(R) ∈ A ∪ V then R(i1, . . . , ia(R)) ∈ P .
fv(R(i1, . . . , ia(R)))

def
= {i1, . . . , ia(R)} ∩ V ;

2. If f, g ∈ P then f ∨ g ∈ P and ¬f ∈ P .
fv(f ∨ g) def= fv(f) ∪ fv(g); fv(¬f) def= fv(f);

3. If f ∈ P and x ∈ fv(f) then ∀x[f] ∈ P .
fv(∀x[f]) def= fv(f)r {x};

4. If n ∈ N and k1, . . . , kn ∈ A ∪ V ∪ P , then z(k1, . . . , kn) ∈ P .
fv(z(k1, . . . , kn))

def
= {z, k1, . . . , kn} ∩ V .

If n = 0 then we write z() in order to distinguish the pf z() from the
variable z15;

5. All pfs can be constructed by using the construction-rules 1, 2, 3 and 4
above.

We use the letters f, g, h as meta-variables over P .
Note that in clause 4. of the above definition, the variable binding in pf
arguments of terms z(k1, . . . , kn) may be quite unexpected. We explain this
feature in detail in Section 3.3 and especially in Remark 12.

15It is important to note that a variable is not a pf. See for instance [62], Chapter VIII:
“The variable”, p. 94 of the 7th impression.

204 FAIROUZ KAMAREDDINE, TWAN LAAN, AND ROB NEDERPELT

Definition 6 (Propositions). A propositional function f is a proposition
if fv(f) = ∅.

Example 7. We give some examples of (higher-order) pfs of the form
z(k1, . . . , kn) in ordinary mathematics. To keep the link with mathematics
clear, we use some extra logical connectives like↔ and→.
1. The pfs z(x) and z(y) in the definition of equality according to Leibniz:
By definition x = y if and only if ∀z[z(x)↔ z(y)];

2. The pfs z(0), z(x) and z(y) in the formulation of the principle of
mathematical induction:

∀z [z(0)→ (∀x ∀y [z(x)→ (S(x, y)→ z(y))])→ ∀x[z(x)]].

(we suppose that the relation symbol S represents the successor func-
tion: S(x, y) holds if and only if y is the successor of x);

3. z() in the formulationof the lawof the excludedmiddle: ∀z [z()∨¬z()].

3.2. Principia’s propositional functions as ë-terms. The binding structure
and the notion of free variable of pfs become more clear if we translate pfs
to ë-terms. Moreover, such a translation will be useful at several places in
this article, for instance when we give a definition of substitution.
We first translate one of the examples of Example 7. Then we give a
formal definition of the translation that we have in mind. After that we
provide additional remarks and intuition on pfs.

Example 8. Consider the pf f ≡ ∀z [z(x) ↔ z(y)] of Example 7.1. Two
objects x and y are Leibniz-equal if and only if they share the same proper-
ties. These objects are represented by the variables x and y. The variable z is
a variable for properties of objects, in other words: predicates over objects.
Such a predicate is a function that takes the object as argument, and returns
a truth value. The expression z(x) indicates that the predicate that is taken
for zmust be applied to the object that is taken for x. Therefore, we translate
z(x) by an application of z to x in ë-calculus: zx. Similarly we translate the
expression z(y) by zy.
Just as in [14], we can interpret logical connectives as functions. Therefore
we can translate z(x) ↔ z(y) by the ë-term ↔(zx)(zy). We handle the
translation of universal quantification also as in [14], hence ∀z[. . .] trans-
lates to ∀(ëz. . . .). As an effect we get a ë-term ∀(ëz.↔(zx)(zy)) with two
free variables, x and y. But we want to have a function taking two argu-
ments. This can be solved by a double ë-abstraction. The final result is
ëx.ëy.∀(ëz.(↔(zx)(zy))).
We remark that the pf f has two free variables, x and y. These two free
variables correspond to the two arguments that the propositional function
takes, and therefore to the two ë-abstractions that are at the front of the
translation of f.

TYPES IN LOGIC AND MATHEMATICS BEFORE 1940 205

In the following definition, we translate the propositional functions to
ë-terms in a similar way as we did in Example 8. Let f ∈ P and let
x1 < · · · < xm be the free variables of f. We define a ë-term f. We do
this in such a way that f ≡ ëx1. · · · ëxm.F , where F is a ë-term that is not
of the form ëx.F ′. To keep notations uniform, we also give translations a
for a ∈ A and x for x ∈ V . To keep notations short, we use ëmi=1 xi .F as
shorthand for ëx1. · · · ëxm.F .
Definition 9 (Translating propositional functions to ë-terms).

• a def= a for a ∈ A;
• x def= x for x ∈ V ;
• Now assume f ∈ P has free variables x1 < · · · < xm. Use induction
on the structure of f:

– f ≡ R(i1, . . . , ia(R)). Then f
def
= ëmi=1 xi .Ri1 · · · ia(R);

– f ≡ f1 ∨ f2. We can assume that for j = 1, 2, fj ≡ ëmji=1 y
j
i .Fj ,

where yj1 < · · · < y
j
mj are the free variables of fj .

Then f
def
= ëmi=1 xi .∨F1F2.

If f ≡ ¬f′ then we can assume that f ′ ≡ ëmi=1 xi .F , because
x1 < · · · < xm are the free variables of f ′. Let f

def
= ëmi=1 xi .¬F ;

– f ≡ z(k1, . . . , kn). Let f ≡ ëmi=1 xi .zk1 · · ·kn;
– f ≡ ∀x[f ′]. We can assume that f ≡ ëj−1i=1 xi .ëx. ëmi=j xi .F , be-
cause x1, . . . , xm, x are the free variables of f

′.
Define f ≡ ëmi=1 xi .∀(ëx.F).

Example 10.
f f

R(x) ëx.Rx
z(R(x), S(a)) ëz.z(ëx.Rx)(Sa)
z1(a) ∨ z2() ëz1.ëz2.∨(z1a)z2
z(y(R(x))) ëz.z(ëy.y(ëx.Rx))
∀x [R(x)] ∀(ëx.Rx)

Lemma 11 (Properties of ¯). Let f ∈ P .
1. fv(f) = ∅;
2. f is in â-normal form;
3. f is a ëI-term;
4. If x1 < · · · < xm are the free variables of f, then f ≡ ëmi=1 xi .F , where
F is not of the form ëx.F ′.

Proof. By induction on the structure of f. a
Observe that we use fv for indicating both the free variables of a pf and
the free variables of a ë-term. We take care that it will always be clear in
which meaning we use fv. In the above definition we also assume familiarity

206 FAIROUZ KAMAREDDINE, TWAN LAAN, AND ROB NEDERPELT

with the notion of ëI-term (see [4]): in ëI, terms of the form ëx.F are only
allowed if x appears as a free variable in F .

3.3. Remarks on Principia’s pfs and their translation in ë-calculus.

Remark 12. We show that the propositional functions of Definition 5 are
indeed objects that exist in the theory of Russell.

1. In Rule 1 we describe the atomic propositions, and the atomic proposi-
tions in which one or more individuals have been replaced by variables
due to one or more applications of the abstraction principles. The ab-
straction principles are not only present in the works of Frege, but also
in the Principia (cf. for instance ∗9·14 and ∗9·15);

2. Rule 2 describes the use of the logical connectives ∨ and ¬. These
logical connectives are also used in the Principia. Implication16, con-
junction17 and logical equivalence18 aredefined in termsof negationand
disjunction. In examples, we sometimes use symbols for implication,
conjunction and logical equivalence as abbreviations;

3. Rule 3 describes the use of the universal quantifier. It is explicitly stated
in thePrincipia (cf. pp. 14–16) that the pf ∀x[f] can only be constructed
if f is a pf that contains x as a variable. Existential quantification19 is
defined in terms of negation and universal quantification;20

4. Rule 4 is also an instantiation of the abstraction principle. The pfs that
can be constructed by using the construction-rules 1–3 only are exactly
the pfs of what in these days would be called first-order predicate logic.
With rule 4, higher-order pfs can be constructed. This is based on the
following idea. Let f be a (fixed) pf in which k1, . . . , kn occur. We can
interpret f as an instantiation of a function that has taken arguments
k1, . . . , kn. We now generalise this to z(k1, . . . , kn), representing any
function z taking these arguments. Such a construction is also explicitly
present in the Principia:
“the first matrices21 that occur are those whose values are of
the formsϕx,ø(x, y), ÷(x, y, z, . . .), i.e., where the arguments,
however many there may be, are all individuals. Such [propo-
sitional] functions we will call ‘first-order functions.’ We may
now introduce a notation to express ‘any first-order function.”’

(Principia Mathematica, p. 51)

16cf. Principia, ∗1·01, p. 94
17cf. Principia, ∗3·01, p. 109
18cf. Principia, ∗4·01, p. 117
19cf. Principia, ∗10·01, p. 140
20In the original system of Principia, existential quantification is not defined in terms of

negation and universal quantification, but negation of universally quantified statements is
defined in terms of existential quantification. But in Principia, ∗10·01, p. 140, we see that
Russell does present the definition of the existential quantifier as an alternative approach.
21See Remark 14 [footnote of the authors].

TYPES IN LOGIC AND MATHEMATICS BEFORE 1940 207

Remark 13. The definition of free variable needs some special attention.
We must notice that, for instance, fv(z(R(x), S(a))) = {z} and not {x, z}.
Similarly, fv(z(R(x), y)) = {y, z} and not {x, y, z}. The reason for this is
that the notion of free variable should harmonise with the intuitive notion
of “argument place” of Frege and Russell. As was indicated in Remark 12.4,
in the first example above, z represents an arbitrary function that takes R(x)
and S(a) as arguments and returns a proposition. This means that we do not
have to supply an argument for x “by hand”. As soon as we feed a suitable22

argument f to z in z(R(x), S(a)), f will take the arguments R(x) and S(a),
and return a proposition.
This idea is also clearly reflected in the translation of z(R(x), S(a)) to the
ë-term ëz.z(ëx.Rx)(Sa). The variable x is bound in a subterm ëx.Rx that is
an argument to the variable z. The full ë-term is a function of z only. See
example 24.

Remark 14. It appears that there is also an alternativeway of constructing
pfs in the Principia. Whitehead and Russell distinguish between quantifier-
free pfs (so-called matrices, i.e., the pfs that can be constructed using
construction-rules 1, 2 and 4). Then they form pfs by defining that

• Any matrix is a pf;
• If f is a pf and x ∈ fv(f) then ∀x [f] is a pf with free variables
fv(f)r {x}.

This definition is a little different from our Definition 5, as a pf of the form
z(∀x [f]) is not a matrix and therefore not a pf according to this alternative
definition. Nevertheless we feel that Whitehead and Russell intended to give
our Definition 5. In the Principia ([71], ∗54) they define the natural number
0 as the propositional function ∀x [¬z(x)].23 In defining the principle of
induction on natural numbers, one needs to express the property “0 has the
property y”, or: y(0). But y(0) is not a pf according to this alternative
definition, as 0 contains quantifiers.
Thereforewe feel that ourDefinition 5,which is also basedon the definition
of function by Frege and on the definition of propositional function on p. 38
of the Principia, is the definition that was meant by Whitehead and Russell.

Remark 15. Note that pfs as such do not yet obey to the vicious circle
principle 3 (on page 200). For example, ¬z(z) (the pf that is at the basis
of the Russell paradox) is a pf. In Section 3.5 we will assign types to some

22At this stage, we cannot provide a formalisation of “suitable”. This can only be done
after we have introduced types, and formalised the notion “the pf f is of type t”.
23This definition is based on Frege’s definition in Grundlagen der Arithmetik [26] (1884).

See [71], vol. II, p. 4. In [26], the natural number n is defined as the class of predicates f for
which there are exactly n objects a for which f(a) holds. Hence 0 is the class of predicates f
for whichf(a) does not hold for any object a. So 0 can be described by the pf ∀x [¬z(x)]. We
prefer this notation to the notation é‘∅ (which also lends itself), because the logical operators
¬ and ∀ are more freely available in type theory.

208 FAIROUZ KAMAREDDINE, TWAN LAAN, AND ROB NEDERPELT

pfs, and it will be shown (Remark 85) that no type can be assigned to the pf
¬z(z).

Remark 16. Before we make further developments of the theory based
on pfs, we must decide which of the two syntaxes introduced above shall be
used in the sequel. It looks attractive to use the syntax of ë-calculus:

• This syntax is well-known;
• It is used for many other type systems, so it makes the comparison of
ramified type theory with modern type systems easier;
• There is a lot of meta-theory on typed and untyped ë-calculus. This
can be useful when proving certain properties of the formalisation of
the ramified theory of types that is to be introduced in the next sections;
• The syntax of ë-calculus gives a better lookon the notion of free variable
than the syntax of pfs.

Nevertheless, we shall only indirectly use ë-calculus for our further study
of the ramified type theory in this article. We have several reasons for that:

• There are much more ë-terms than there are pfs. More precisely, the
mapping ¯ is not surjective. As we want to study the theory of Principia
Mathematica as precise as possible, we only want to study the proposi-
tional functions, which are directly related to the syntax used by Russell
and Whitehead. Not using pf-syntax may result in a system in which
it is not clear which term belongs to the original ramified type theory
and which term does not;
• The syntax of ë-calculus is strongly curried. This would give prob-
lems in the definition of substitution. In a pf R(x, y) we may want to
substitute some object a for y without substituting anything for x. In
ë-calculus, substitution should be translated to application followed by
â-reduction to â-normal form. If we want to substitute something for
y in the translation ëx.ëy.Rxy of R(x, y), we have to substitute some-
thing for x first. Choosing a different representation of propositional
functions does not help: the representation ëy.ëx.Ryxwould have given
problems if we wanted to substitute something for x without substitut-
ing something for y;
• The translation of pfs to ë-calculus makes it possible to use the meta-
theory and the intuition of ë-calculus when we need it without losing
control over the original system.

3.4. Principia’s substitution and related notions. We proceed our discus-
sion of pfs by defining a number of related notions. If a pf z(k1, . . . , kn)
takes an argument f for the variable z, the list k1, . . . , kn indicates what
should be substituted for the free variables of f (cf. also Remark 12.4). We
therefore call this list the list of parameters of z(k1, . . . , kn).

TYPES IN LOGIC AND MATHEMATICS BEFORE 1940 209

Another important notion is the notion of α-equality.24 We want the pfs
R(x) and R(y) to be the same. However, we want the pfs S(x, y) and S(y, x)
to be different. The reason for this is the alphabetical order of the variables
x, y. As x < y, we will consider x to be the “first” variable of the pfs S(x, y)
and S(y, x), and y the “second” variable . The place of the “first” variable in
S(x, y), however, is different from the place of the “first” variable in S(y, x).25

We therefore present the following definition of α-equality:

Definition 17 (α-equality). Let f and g be pfs. We say that f and g are
α-equal, notation f =α g, if there is a bijection ϕ : V → V such that
• g can be obtained from f by replacing each variable that occurs in f
by its ϕ-image;
• x < y if and only if ϕ(x) < ϕ(y).
This definition corresponds to the definition of α-equality in ë-calculus in
the following way:

Lemma 18. Let f, g ∈ P . f =α g if and only if f =α g.
Sometimes, we are not that precise, and want the pfs S(x, y) and S(y, x) to
be α-equal. This can be a consideration especially if we are not interested in
which free variable is “first” and which is “second”. We call this weakened
notion of α-equality: αP-equality (α-equality modulo permutation):

Definition 19 (α-equality modulo permutation). Letf and g be pfs. We
say that f and g are αP-equal, notation f =αP g, if there is a bijection
ϕ : V → V such that g can be obtained from f by replacing each variable
that occurs in f by its ϕ-image.

As function construction in Principia Mathematica can be compared to
â-expansion plus removing an argument in ë-calculus, this suggests that
instantiation in the Principia must be comparable to application plus â-
reduction in ë-calculus. In [46] we showed that this is indeed the case. There,
we gave a definition of instantiation using the syntax of and the intuition
behind pfs. We showed that this definition is faithful to the original ideas
of the Principia and that it can be imitated in ë-calculus using a translation
similar to the one in Definition 9. This allows us to give a definition of

24Historically, it is not correct to use this terminology when discussing Type Theory of
the Principia which dates from the first decade of the 20th century. The term α-equality
originates from Curry and Feys’ book Combinatory Logic [20], which appeared only in 1958.
In that book, conversion rules for the ë-calculus are numbered with Greek letters α, â , which
led to the names α- and â-conversion. In earlier papers of Church, Rosser and Kleene,
these rules were numbered with Roman capitals I, II, and the terminology α-conversion,
â-conversion, was not used.
25Compare this with their equivalents in ë-calculus ëx.ëy.Sxy and ëx.ëy.Syx, which are

not α-equal, either. We do not want to use the ë-notation for determining which variable is
“first” and which is “second”, for reasons to be explained in Remark 31. See also Remark
16.

210 FAIROUZ KAMAREDDINE, TWAN LAAN, AND ROB NEDERPELT

substitution for pfs that is based on that imitation in ë-calculus, as we do
below.
As was argued in Remark 16, the mapping f 7→ f is not perfectly suited
for a definition of substitution. This was due to the currying of the ë-
abstractions that are at the front of the term f. We therefore take a slightly
different notation and remove these front abstractions from f:

Definition 20. Let f ∈ P with free variables x1 < · · · < xm. Then
f ≡ ëmi=1 xi .F for some ë-term F by Lemma 11.4. Let f̃

def
= F .

Example 21.

f f̃
R(x) Rx

z(R(x), S(a)) z(ëx.Rx)(Sa)
z1(a) ∨ z2() ∨(z1a)z2
z(y(R(x))) z(ëy.y(ëx.Rx))
∀x [R(x)] ∀(ëx.Rx)

The mapping f 7→ f̃ has similar properties as f 7→ f (cf. Lemma 11):
Lemma 22 (Properties of ˜).
1. fv(f) = fv(f̃);

2. f̃ is in â-normal form for all f;

3. f̃ is a ëI-term for all f;

4. f is a closure of f̃;

5. If f̃ =α g̃, then f =α g.

With the ë-notation we can rely on the notions of â-reduction and â-normal
form to give the following definition of substitution:

Definition 23 (Substitution). Let f ∈ P , assume x1, . . . , xn are dis-
tinct variables, and g1, . . . , gn ∈ A ∪ V ∪ P . Assume that the ë-term
(ëx1 · · ·xn.f̃)g1 · · · gn has a â-normal form H . Assume h ∈ P such that
h̃ ≡ H . (If such an h exists, it is unique due to Lemma 22.5.) We de-
fine the simultaneous substitution of g1, . . . , gn for x1, . . . , xn in f by:

f[x1, . . . , xn := g1, . . . , gn]
def
= h.

We sometimes abbreviate f[x1, . . . , xn := g1, . . . , gn] to f[xi := gi]
n
i=1 or

f[
→

x :=
→

g].

So substitution in rtt can be seen as application plus â-reduction to â-
normal form in ë-calculus. Definition 23 is schematically reflected in Figure
1.
Notice that f[x1, . . . , xn := g1, . . . , gn] should be seen as a simultaneous
substitution of g1, . . . , gn for x1, . . . , xn. As the gis are either closed ë-terms,
or individuals, or variables, it is no problem to define this simultaneous

TYPES IN LOGIC AND MATHEMATICS BEFORE 1940 211

f[x1, . . . , xn := g1, . . . , gn] = h

(ëx1 · · ·xn.f̃)g1 · · · gn →→nfâ h̃
?

6

Figure 1. Substitution via â-reduction

substitution via a list of applications that results in a list of consecutive
substitutions.

Example 24.

1. S(x1)[x1 := a1] ≡ S(a1), as (ëx1.Sx1)a1 →nfâ Sa1;

2. S(x1)[x2 := a2] ≡ S(x1), as (ëx2.Sx1)a2 →nfâ Sx1;

3. z(S(x1), x2, a2)[x1 := a1] ≡ z(S(x1), x2, a2) as (ëx1.z(ëx1.Sx1)x2a2)a1
→nfâ z(ëx1.Sx1)x2a2. This illustrates that the ë-notation is more precise

and convenient with respect to free variables. In z(S(x1), x2, a2), it is
not immediately clear whether x1 is a free variable or not and one might
tend to write:

z(S(x1), x2, a2)[x1 := a1] ≡ z(S(a1), x2, a2).

Theë-notation ismore explicit in showing thatx1 /∈ fv(z(S(x1), x2, a2));
4. z(R(a), S(a))[z := z1() ∨ z2()] ≡ R(a) ∨ S(a), as

(ëz.z(Ra)(Sa))(ëz1z2.∨z1z2)
→â (ëz1z2.∨z1z2)(Ra)(Sa)→→nfâ ∨(Ra)(Sa);

5. x2(x1, R(x1))[x2 := x4(x3)] ≡ R(x1) as (ëx2.x2x1(ëx1.Rx1))(ëx3x4.x4x3)
→→â (ëx3x4.x4x3)x1(ëx1.Rx1)→→â (ëx1.Rx1)x1 →nfâ Rx1.

Remark 25. f[x1, . . . , xn := g1, . . . , gn] is not always defined. For its
existence we need:

• The existence of the normal form H in Definition 23. For instance,
this normal form does not exist if we choose n = 1, f ≡ x1(x1) and
g1 ≡ x1(x1): then we obtain for the calculation of f[x1 := g1] the
famous ë-term (ëx1.x1x1)(ëx1.x1x1);

• The existence of a (unique) h such that h̃ ≡ H . For instance, if we take
n = 1, f ≡ z(a) (with z ∈ V and a ∈ A) and g1 ≡ a, then H ≡ aa

and there is no h ∈ P such that h̃ ≡ aa.

In Corollary 61, wewill prove that, as long as we are within the type system
rtt (to be introduced in Section 3.5), both H and h always exist uniquely.
Until then, we implicitly assume that the substitution exists in the notation
f[x1, . . . , xn := g1, . . . , gn] = h.

212 FAIROUZ KAMAREDDINE, TWAN LAAN, AND ROB NEDERPELT

Remark 26. If we compute a substitution f[x1, . . . , xn := g1, . . . , gn],

we have to reduce the ë-term (ëx1 · · ·xn.f̃)ḡ1 · · · ḡn to its â-normal form
(if there is any). One might wonder whether this is too restrictive: In a
reduction path to this normal form, there may be an intermediate result H

that could be interpreted as the final result of the substitution f[
→

x :=
→

g].
However, this never happens, as any term that can be interpreted as such

a result is always of the form h̃, and is therefore always in â-normal form
(Lemma 22.2).

Remark 27. The alphabetical order of the variables plays a crucial role in
the substitution process, as it determines in which order the free variables of
a pff are curried in the translationf. For example, look at the substitutions
z(a, b)[z := R(x, y)] and z(a, b)[z := R(y, x)]. The result of the first one is
obtained via the normal form of (ëz.zab)(ëxy.Rxy), which is equal to Rab,
translated: R(a, b). The second one is calculated via (ëz.zab)(ëxy.Ryx),
resulting in Rba and R(b, a).

Remark 28. Now that substitution has been properly defined, we could
define that f is an abstraction of g if there are x1, . . . , xn ∈ fv(f) and
h1, . . . , hn ∈ A ∪ P such that f[

→

x :=
→

h] ≡ g, or, in ë-calculus notation:
(ëx1 · · ·xn.f̃)h1 · · · hn →→â g̃. The set of abstractions of a pf g is therefore
comparable with the set of â-expansions of the ë-term g̃.

Some elementary calculation with substitutions can be done using the
following lemma:

Lemma 29.

1. Assume (f1 ∨f2)[
→

x :=
→

h] exists. Then fj [
→

x :=
→

h] exists for j = 1, 2,
and

(f1 ∨ f2)[
→

x :=
→

h] ≡ (f1[
→

x :=
→

h]) ∨ (f2[
→

x :=
→

h]);

2. Assume (¬f)[→x :=
→

h] exists. Then f[
→

x :=
→

h] exists, and

(¬f)[→x :=
→

h] ≡ ¬(f[→x :=
→

h]);

3. Assume (∀x : ta [f])[→x :=
→

h] exists, and x /∈ ~x. Then f[→x :=
→

h] exists,
and

(∀x : ta [f])[→x :=
→

h] ≡ ∀x : ta [f[→x :=
→

h]];

4. Assume z(k1, . . . , kn)[z := f] exists, and x1 < · · · < xn are the free
variables of f. Then f[

→

x :=
→

k] exists, and

z(k1, . . . , kn)[z := f] ≡ f[
→

x :=
→

k];

TYPES IN LOGIC AND MATHEMATICS BEFORE 1940 213

5. Assume z(k1, . . . , kn)[
→

x :=
→

h] exists, z ≡ xp, and y1 < · · · < yn are
the free variables of kp ∈ P . Define k′i ≡ hj if ki ≡ xj , and k′i ≡ ki
otherwise. Then kp[

→

y :=
→

k′] exists, and

z(k1, . . . , kn)[
→

x :=
→

h′] ≡ kp[yj :=
→

k′].

Proof. Directly from the definition of substitution. a
3.5. Principia’s Ramified Theory of Types. In order to give a precise de-
scription of the type theory underlying the Principia, we need to explicitly
introduce types (there is no such introduction in Principia), and to formalise
the notion “the propositional function f has type t”.
3.5.1. Types. Types in the Principia have a double hierarchy: one of (sim-
ple) types and one of orders. First, we introduce the first hierarchy, then
we extend this hierarchy with orders, resulting in the ramified types of the
Principia.
Simple types. As we saw in Section 2.2, Frege already distinguished be-
tween objects, functions that take objects as arguments, and functions that
take functions as arguments. He also made a distinction between functions
that take one and functions that take two arguments (see the quotations
from Function and Concept on p. 195). In the Principia, Whitehead and
Russell use a similar principle. Whilst Frege’s argument for this distinc-
tion was only that functions are fundamentally different from objects, and
that functions taking objects as arguments are fundamentally different from
functions taking functions as arguments, Whitehead and Russell are more
precise:

“[The difference between objects and propositional functions]
arises from the fact that a [propositional] function is essentially
an ambiguity, and that, if it is to occur in a definite proposition, it
must occur in such a way that the ambiguity has disappeared, and
a wholly unambiguous statement has resulted.”

(Principia Mathematica, p. 47)

There is no definition of “type” in the Principia, only a definition of “being
of the same type”:

“Definition of “being of the same type.” The following is a step-by-
step definition, the definition for higher types presupposing that
for lower types. We say that u and v “are of the same type” if
1. both are individuals,
2. both are elementary [propositional] functions26 taking argu-
ments of the same type,

26See Definition 4 for the notion of elementary proposition. In the Principia, the term
elementary functions refers to a pf that has only elementary propositions as value, when it
takes suitable (well-typed) arguments. See Principia, p. 92.

214 FAIROUZ KAMAREDDINE, TWAN LAAN, AND ROB NEDERPELT

3. u is a pf and v is its negation,
4. u is ϕx̂27 or øx̂, and v is ϕx̂ ∨ øx̂, where ϕx̂ and øx̂ are
elementary pfs,

5. u is (y).ϕ(x̂, y)28 and v is (z).ø(x̂, z), where ϕ(x̂, ŷ),ø(x̂, ŷ)
are of the same type,

6. both are elementary propositions,
7. u is a proposition and v is ∼u29, or
8. u is (x).ϕx and v is (y).øy, where ϕx̂ andøx̂ are of the same
type.”

(Principia Mathematica, ∗9·131, p. 133)
The definition has to be seen as the definition of an equivalence relation. For
instance, assume that ϕx̂, øx̂ and ÷x̂ are elementary pfs. By rule 4, ϕx̂ and
ϕx̂ ∨ øx̂ are of the same type, and so are ϕx̂ and ϕx̂ ∨ ÷x̂. By (implicit)
transitivity, ϕx̂ ∨ øx̂ and ϕx̂ ∨ ÷x̂ are of the same type.
The definition seems rather precise at first sight. But there are several
remarks to be made:

• The notion “being of the same type” seems to be defined for pfs taking
one argument only. On the other hand, rules 2 and 5 suggest that such
a definition should be extended to pfs taking two arguments. How this
should be done is not made explicit;
• According to this definition, z1()∨¬z1() is not of the same type as z1().
The only rules by which could be derived that z1() and z1() ∨ ¬z1()
are of the same type, are rules 2 and 4. But if we want to use these rules,
z1() must be an elementary pf, which it is not: It can take the argument
∀x [R(x)], which has as result the proposition ∀x [R(x)]. This is not an
elementary proposition and therefore z1() is not an elementary pf.

So there are significant omissions in this definition. However, the intention
of the definition is clear: pfs that take a different number of arguments, or
that take arguments of different types, cannot be of the same type.
In order to make precise what is meant by “being of the same type”, it is
easier to explain what these types “are”. The notion “being of the same type”
can then be replaced by “having the same type”. The notion of simple type
as defined below is due to Ramsey [59] (1926). Historically, it is incorrect to
give Ramsey’s definition of simple type before Russell’s definition of ramified
type, as Russell’s definition is of an earlier date, and Ramsey’s definition is
in fact based on Russell’s ideas and not the other way around. On the other
hand, the ideas behind simple types were already explained by Frege (see
the quotes from Function and Concept on page 195). Moreover, knowledge

27Whitehead and Russell use ϕx̂ to denote that ϕ is a pf that has, amongst others, x as a
free variable. Similarly, they use ϕ(x̂, ŷ) to indicate thatϕ has x, y amongst its free variables.
28Whitehead and Russell write (x).ϕ(x) where we would write ∀x [ϕ].
29∼u is Principia notation for ¬u.

TYPES IN LOGIC AND MATHEMATICS BEFORE 1940 215

of the intuition behind simple types will make it easier to understand the
ramified ones.30 Therefore we present Ramsey’s definition first.

Definition 30 (Ramsey’s simple types).

1. 0 is a simple type;
2. If t1, . . . , tn are simple types, then also (t1, . . . , tn) is a simple type.
n = 0 is allowed: then we obtain the simple type ();

3. All simple types can be constructed using the rules 1 and 2.

We use t, u, t1, . . . as metavariables over simple types.

Here, (t1, . . . , tn) is the type of pfs that should take n arguments (have n
free variables), the ith argument having type ti . The type () stands for the
type of the propositions, and the type 0 stands for the type of the individuals.

Remark 31. To formalise the notion of ith argument that a pf takes, we
use the alphabetical order on variables that was introduced in Section 3.1.
The ith argument taken by a pf will be substituted for the ith free variable
of that pf, according to the alphabetical order.
Now it becomes clearwhywe considered the alphabetical order of variables
in the definition of α-equality 17: we want α-equal pfs to have the same type.
However, if f has type (t1, t2) and two free variables x < y, and g is the
same as f except that the roles of x and y have been switched, then g will
have type (t2, t1). Therefore we demand that the renaming of variables must
maintain the alphabetical order. See also Remark 43.

Example 32. The propositional function R(x) should have type (0), as it
takes one individual as argument.
The propositional function z(R(x), S(a)) (see Remark 12.4) takes one ar-
gument. This argument must be a pf that can take R(x) as its first argument
(so this first argument must be of type (0)), and a proposition (of type ()) as
its second argument. We conclude that in z(R(x), S(a)), we must substitute
pfs of type ((0), ()) for z. Therefore, z(R(x), S(a)) has type (((0), ())).

The intuition presented in Remark 31 and Example 32 will be formalised
in Definition 40. Theorem 54 shows that this formalisation follows the
intuition.

Notation 33. From now on we will use a slightly different notation for
quantification in pfs. Instead of ∀x [f] we now explicitly mention the type
(say: t) over which x is quantified: ∀x : t[f]. We do the same with the
translations of pfs to ë-calculus: instead of ëx.F we write ëx : T (t).F .

30See [38, 39] for a further discussion of the difference between simple and ramified type
theory, especially in connection with Quine’s new foundations for which there is a consistency
result for its predicative version (and hence one can get models of predicative type theory in
which very strong versions of ”systematic ambiguity” hold). In particular, [39] contains a
discussion of the relationship between a predicative linear type scheme (with types indexed
by the natural numbers) and the full ramified type scheme of Principia.

216 FAIROUZ KAMAREDDINE, TWAN LAAN, AND ROB NEDERPELT

Ramified types. Up to now, the type of a pf only depends on the types
of the arguments that it can take. In the Principia, a second hierarchy is
introduced by regarding also the types of the variables that are bound by a
quantifier (see Principia, pp. 51–55). Whitehead and Russell consider, for
instance, the propositions R(a) and ∀z : ()[z() ∨ ¬z()] to be of a different
level. The first is an atomic proposition, while the latter is based on the
pf z() ∨ ¬z(). The pf z() ∨ ¬z() involves an arbitrary proposition z,
therefore ∀z : ()[z() ∨ ¬z()] quantifies over all propositions z. According
to the vicious circle principle 3, ∀z : ()[z() ∨ ¬z()] cannot belong to this
collection of propositions.
This problem is solved by dividing types into orders (not to be confused
with the alphabetical order on the variables). An order is simply a natural
number. Basic propositions are of order 0, and in ∀z : ()[z() ∨ ¬z()] we
must mention the order of the propositions over which is quantified. The
pf ∀z : ()n[z() ∨ ¬z()] quantifies over all propositions of order n, and has
order n + 1.
The division of types into orders gives ramified types.

Definition 34 (Ramified types).

1. 00 is a ramified type;
2. If ta11 , . . . , t

an
n are ramified types, and a ∈ N, a > max(a1, . . . , an),

then (ta11 , . . . , t
an
n)
a
is a ramified type (if n = 0 then take a ≥ 0);

3. All ramified types can be constructed using the rules 1 and 2.

If ta is a ramified type, then a is called the order of ta .

Remark 35. In (ta11 , . . . , t
an
n)
a
, we demand that a > ai for all i . This

is because a pf of this type presupposes all the elements of type ti
ai , and

therefore must be of an order that is higher than ai .

Example 36. 00; (00)
1
; ((00)1, (00)4)5; and (00, ()2, (00, (00)1)2)7 are all

ramified types. However, (00, (00, (00)2)2)7 is not a ramified type.

In the rest of Section 3 we simply speak of types when we mean ramified
types, as long as no confusion arises.31

In the type (00)1, all orders are “minimal”, i.e., not higher than strictly
necessary. This is, for instance, not the case in the type (00)2. Types in which
all orders are minimal are called predicative and play a special role in the
Ramified Theory of Types. A formal definition:32

31Russell seems not to like the idea that propositions make up a type (see page 48 of
the Principia). We do however use the type (or types) of propositions because at various
places in Principia, Russell talks as if there are types of propositions, uses quantifiers over
propositions and discusses orders of propositions. For example, in 9*131 Russell refers to
elementary propositions as “being of the same type”, in spite of the things he says elsewhere.
32This definition comes straight from Whitehead and Russell. It should be noted that

ramified types which are not predicative are certainly not “impredicative” in the usual sense
of that word.

TYPES IN LOGIC AND MATHEMATICS BEFORE 1940 217

Definition 37 (Predicative types).

1. 00 is a predicative type;
2. If t1

a1 , . . . , tn
an are predicative types, and a = 1 + max(a1, . . . , an)

(take a = 0 if n = 0), then (ta11 , . . . , t
an
n)
a
is a predicative type;

3. All predicative types can be constructed using the rules 1 and 2 above.

3.6. A formalisation RTT of the Ramified Theory of Types. In this section
we formalise the intuition on types presented in Example 32 and (in Church’s
notation) in Definition 80 together with the intuition on orders. Before we
can do this we must introduce some additional terminology.
In the pf R(x) we implicitly assume that x is a variable for which objects
of type 0 must be substituted. For our formalisation we want to make
the information on the type of a variable explicit. We do this by storing
this information in so-called contexts. Contexts, common in modern type
systems, are not used in the Principia.

Definition 38 (Contexts). Let x1, . . . , xn ∈ V be distinct variables, and
assume ta11 , . . . , t

an
n are ramified types. Then {x1 : ta11 , . . . , xn : tann } is a

context. The set {x1, . . . , xn} is called the domain of the context and is
denoted by dom({x1 : ta11 , . . . , xn : tann }). We will use Greek capitals Γ, ∆ as
meta-variables over contexts.

The pfs z1(y1) and z2(y2) are α-equal, according to Definition 17. But in
a context Γ ≡ { y1 : 00, z1 : (00)1, y2 : (00)1, z2 : ((00)1)2} one does not want
to see z1(y1) and z2(y2) as equal, as the types of y1 and y2 differ, and the
types of z1 and z2 differ as well. Therefore, we introduce a more restricted
version of α-equality:

Definition 39. Let Γ be a context and f and g pfs. We say that f and g
are αΓ-equal, notation f =α,Γ g, if there is a bijection ϕ : V → V such that
• g can be obtained from f by replacing each variable that occurs in f
by its ϕ-image;
• x < y if and only if ϕ(x) < ϕ(y);
• x : t ∈ Γ if and only if ϕ(x) : t ∈ Γ.
We will now define what we mean by Γ ` f : ta , or, in words: f is of
type ta in the context Γ.33 If Γ ≡ ∅ then we will write ` f : ta . In this
definition we will try to follow the line of the Principia as much as possible.
For remarks, discussion and examples, see Section 3.7 below.

Definition 40 (Ramified Theory of Types: RTT). The judgement

Γ ` f : ta

33The symbol ` in Γ ` f : ta is the same symbol that Frege used to assert a proposition. It
enters Type Theory in 1934 [18], via Curry’s combinatory logic. Curry defines a functionality
combinator F in such a way that FXYf holds, exactly if f is a function from X to Y . To
denote the assertion of FXYf, Curry uses Frege’s symbol `.

218 FAIROUZ KAMAREDDINE, TWAN LAAN, AND ROB NEDERPELT

is inductively defined as follows:

1. (start) For all a we have: ` a : 00.
For all atomic pfs f we have: ` f : ()0;

2. (connectives) Assume Γ ` f : (ta11 , . . . , tann)
a
, ∆ ` g : (ub11 , . . . , ubmm)

b
,

and x < y for all x ∈ dom(Γ) and y ∈ dom(∆). Then

Γ ∪ ∆ ` f ∨ g : (ta11 , . . . , tann , u
b1
1 , . . . , u

bm
m)
max(a,b);

and

Γ ` ¬f : (ta11 , . . . , tann)
a
;

3. (abstraction from parameters) If Γ ` f : (ta11 , . . . , tamm)
a
, t

am+1
m+1 is a

predicative type34, g ∈ A ∪ P is a parameter of f, Γ ` g : tam+1m+1 , and
x < y for all x ∈ dom(Γ), then

Γ′ ` h : (ta11 , . . . , t
am+1
m+1)

max(a,am+1+1).

Here, h is a pf obtained by replacing all parameters g ′ of f which
are αΓ-equal to g by y. Moreover, Γ

′ is the subset of the context
Γ ∪ {y : tam+1m+1 } such that dom(Γ′) contains all and only those variables
occurring in h;35

4. (abstraction from pfs) If (ta11 , . . . , t
am
m)
a is a predicative type, Γ `

f : (ta11 , . . . , t
am
m)
a
, x < z for all x ∈ dom(Γ), and y1 < · · · < yn

are the free variables of f, then

Γ′ ` z(y1, . . . , yn) : (ta11 , . . . , tamm , (t
a1
1 , . . . , t

am
m)
a)a+1,

where Γ′ is the subset of Γ ∪ {z : (ta11 , . . . , tamm)
a} such that dom(Γ′) =

{y1, . . . , yn , z};
5. (weakening) If Γ, ∆ are contexts, Γ ⊆ ∆, and Γ ` f : ta , then also
∆ ` f : ta ;

6. (substitution) If y is the ith free variable in f (according to the order
on variables), and Γ ∪ {y : taii } ` f : (t

a1
1 , . . . , t

an
n)
a
, and Γ ` k : taii

then

Γ′ ` f[y := k] : (ta11 , . . . , t
ai−1
i−1 , t

ai+1
i+1 , . . . , t

an
n)
b
.

Here, b = 1 +max(a1, . . . , ai−1, ai+1, . . . , an , c) and

c = max{ j | ∀x : tjoccurs in f[y := k] }
(if n = 1 and { j | ∀x : tj occurs in f[y := k] } = ∅ then take b = 0)
and once more, Γ′ is the subset of Γ ∪ { y : taii } such that dom(Γ′)
contains all and only those variables occurring in f[y := k];

34The restriction to predicative types only is based on Principia, pp. 53–54.
35In Lemma 52 we prove that this context always exists.

TYPES IN LOGIC AND MATHEMATICS BEFORE 1940 219

7. (permutation) If y is the ith free variable in f (according to the order
on variables), and Γ∪ { y : taii } ` f : (t

a1
1 , . . . , t

an
n)
a , and x < y ′ for all

x ∈ dom(Γ), then

Γ′ ` f[y := y ′] : (ta11 , . . . , t
ai−1
i−1 , t

ai+1
i+1 , . . . , t

an
n , t

ai
i)
a
.

Γ′ is the subset of Γ∪{y : taii , y ′ : taii } such that domΓ′ contains all and
only those variables occurring in f[y := y ′];

8. (quantification) If y is the ith free variable in f (according to the order
on variables), and Γ ∪ { y : taii } ` f : (t

a1
1 , . . . , t

an
n)
a , then

Γ ` ∀y : taii [f] : (t
a1
1 , . . . , t

ai−1
i−1 , t

ai+1
i+1 , . . . , t

an
n)
a
.

Definition 41 (Legal propositional functions). A pf f is called legal, if
there is a context Γ and a ramified type ta such that Γ ` f : ta .

Remark 42. In our attempt to faithfully implement Russell’s ramified the-
ory of types in the above definition, we face a limitation in the terms typable
by our system. For example, it is not possible to type x1(x2(x1)) or the pf
x(∀y.(y() ∨ ¬y())).36 In fact, Russell intended (cf. page 165 of Principia)
that non-predicative orders in his hierarchy are always obtained from pred-
icative ones by quantification. Rule 8 of the above definition is the only one
which creates non-predicative types but the increase of order is only at the
top level of the type. This means that we cannot type terms z(k1, . . . , kn)
where one of the kis happens to be of non-predicative type. In fact, Theo-
rem 69 will prove that terms z(k1, . . . , kn) are typable only if the kis can be
assigned predicative types. This may be considered as a serious restriction
but our aim is to faithfully represent Russell’s ramified theory of types.
A drawback to our system is that, without the ability to assign non-
predicative types to variables, one cannot even state the axiomof reducibility.
Russell himself may have noted the need for variables with non-predicative
types when he introduced on page 165 of Principia a convention for variable
functions without assigned order which he used in the formal statement of
the axiom of reducibility. However, Russell did not allow quantification over
such variables. In our paper we ignore the representation of the axiom of
reducibility. In Section 4.2, we discuss the controversial nature of this axiom
leading to the deramification and we leave the extension of our formalisation
of Russell’s ramified type theory to include the reducibility axiom as future
work.
Finally, based on our above discussion, note that the third and fourth
types given in Example 36 cannot be assigned as types to a legal pf in the
sense of Definition 40. Future extensions must also address these examples.

36We are grateful for Randall Holmes for drawing our attention to this point.

220 FAIROUZ KAMAREDDINE, TWAN LAAN, AND ROB NEDERPELT

3.7. Discussion and examples. We will make some remarks on Definition
40. First of all, we motivate the eight rules of Definition 40 by referring
to passages in the Principia. Then we make some technical remarks, and
give some examples of how the rules work. It will be made clear that the
substitution rule is problematic, because substitution is not clearly defined
in the Principia.

Remark 43. Wewill motivate rtt (Definition 40) by referring to the Prin-
cipia:

1. Individuals and elementary judgements (atomic propositions) are, also
in the Principia, the basic ingredients for creating legal pfs;37

2. We can see rule 2 “at work” in ∗12, p. 163 of the Principia38:
“We can build up a number of new formulas, such as [. . .]
ϕ!x ∨ ϕ!y, ϕ!x ∨ ø!x, ϕ!x ∨ ø!y, [. . .] and so on.”

(Principia Mathematica, ∗12, p. 163))
The restriction about contexts that we make in rule 2 has technical
reasons and is not made in the Principia. It will be discussed in Remark
45;

3. Rule 3 is justified by ∗9·14 and ∗9·15 in the Principia. It is an instantia-
tion of the abstraction principles 1 and 2 for functions that was already
proposed by Frege (see Section 2.2). In Frege’s definition one does not
have to replace all parameters g ′ that are αΓ-equal to g, but one can
also take some of these parameters. In Section 3.9 we show that this is
not a serious restriction.
The restriction to predicative types is in line with the Principia (cf.
Principia, pp. 53–54);

4. Rule 4 is based on the Introduction of the Principia. There, pfs are
constructed, and
“the first matrices that occur are those whose values are of the
forms ϕx, ø(x, y), ÷(x, y, z, . . .), i.e., where the arguments,
however many there may be, are all individuals. Such [propo-
sitional] functions we will call ‘first-order functions.’ We may
now introduce a notation to express ‘any first-order function.”’

(Principia Mathematica, p. 51)
This quote from the Principia is, again, an instance of Frege’s abstrac-
tion principles, and so is rule 4 of our formalisation. It results in second
order pfs, and the process can be iterated to obtain pfs of higher orders.
Rule 4 makes it possible to introduce variables of higher order. In
fact, leaving out rule 4 would lead to first-order predicate logic, as

37As for individuals: seePrincipia, ∗9, p. 132, where “Individual” is presented as a primitive
idea. As for elementary judgements: See Principia, Introduction, pp. 43–45.
38In the Principia, Whitehead and Russell write ϕ!x instead of ϕx to indicate that ϕx is

not only (what we would call) a pf, but even a legal pf.

TYPES IN LOGIC AND MATHEMATICS BEFORE 1940 221

without rule 4 it is impossible to introduce variables of types that differ
from 00.
The use of predicative types only is inspired by the Principia, again;

5. The weakening rule cannot be found in thePrincipia, because no formal
contexts are used there. It is implicitly present, however: the addition of
an extra variable to the set of variables does not affect thewell-typedness
of pfs that were already constructed;

6. The rule of substitution is based on ∗9·14 and ∗9·15 of the Principia,
and can be seen as an inverse of the abstraction operators in rules 3 and
4. Notice that we do not know yet whether the substitution f[y := k]
exists or not. Therefore, we limit the use of rule 6 to the cases in which
the substitution exists. In Section 3.8 we show that it always exists if
the premises of rule 6 are fulfilled;

7. In the system above, the (sequential) order of the ti s is related to the
alphabetic order of the free variables of the pff that has type (t1, . . . , tn)
(see the remark before Definition 17, Remark 31, and Theorem 54).
This alphabetic order plays a role in the clear presentation of results
like Theorem 54, and in the definition of substitution (see Remark 27).
With rule 7 we want to express that the order of the tis in (t1, . . . , tn)
and the alphabetic order of the variables are not characteristics of the
Principia, but are only introduced for the technical reasons explained
in this remark. This is worked out in Corollary 55;

8. Notice that in the quantification rule, both f and ∀x : taii .f have order
a. The intuition is that the order of a propositional function f equals
one plus the maximum of the orders of all the variables (either free or
bound by a quantifier) in f. This is in line with the Principia: see [71],
page 53. See also the introduction to Definition 34, and the proof of
Lemma 56 below.

Remark 44. Rules 3 and 4 are a restricted version of the abstraction prin-
ciples of Frege, with less power. It is, for instance, not possible to imitate all
the abstractions of Remark 12 by using rules 3 and 4 only. But in combina-
tion with the other rules, rule 3 and 4 are sufficient (see Example 50 for the
cases of Remark 12, and Section 3.9, especially Theorem 69).

Remark 45. In rule 2 of rtt, we make the assumption that the variables
of Γ must all come before the variables of ∆. The reason for this is that we
want to prevent undesired results like

x1 : 0
0 ` R1(x1) ∨ R2(x1) : (00, 00)1.

In fact, R1(x1)∨ R2(x1) has only one free variable, so its type should be (00)1
and not (00, 00)1 (see Example 49, second part). For technical reasons (the
order of the taii s; see also Theorem 54) we strengthen the assumption such
that for x ∈ dom(Γ) and y ∈ dom(∆), x < y must hold.

222 FAIROUZ KAMAREDDINE, TWAN LAAN, AND ROB NEDERPELT

As Whitehead and Russell do not have a formal notation for types, they
do not forbid this kind of construction in the Principia.
InLemma67we show that our limitation to contextswith disjoint domains
as made in rule 2 is not a real limitation: all the desired judgements can still
be derived for contexts with non-disjoint domains.

Remark 46. In both rules 3 and 4 we see that it is necessary to introduce
at least one new variable. It is, for instance, not possible to interpret the
proposition R(a) as a (constant) pf of type (00)1. This is in line with the
abstraction principles of Frege and Russell. In Frege’s definition 1, for
example, it is explicitly mentioned that the object that is to be replaced
occurs at least once in the expression.
Translated to ë-calculus this means that the Principia have ëI-terms, only.
See also Lemma 11.3 and Lemma 22.3.

Remark 47. Contexts as used in rtt contain, in a sense, too much in-
formation: not only information on all free variables, but also information
on non-free variables (cf. rules 3, 6 and 7). The set of non-free variables
contains more than only the variables that are bound by a quantifier. For
example, in the pf z(R(x)), x is neither free, nor bound by a quantifier).

Remark 48. The system is based on the abstraction principles of Frege.
In a context Γ, one cannot introduce a variable of a certain type t unless
one has a pf (or an individual) f that has type t in Γ. This is different from
modern, ë-calculus based systems, where one can introduce a variable of a
type u without knowing whether or not there are terms of this type u.

We give some examples, in order to illustrate how our system works.
Example 49 shows applications of the rules. Example 50 makes a link
between the intuitive notion of abstraction that was explained in Remark 12
and the abstraction rules 3 and 4 of our system.
We will use a notation of the form

X1 · · ·Xn
Y

N,

indicating that from the judgements X1, . . . , Xn, we can infer the judgement
Y by using the rtt-rule of Definition 40 with number N . As usual, this is
called a derivation step. Subsequent derivation steps give a derivation. A
derivation of a judgement Y is a derivation tree with Y as root (the final
conclusion). The types in the examples below are all predicative (as a pf
of impredicative type must have a quantifier, and the examples below are
quantifier-free). To avoid too much notation, we omit the orders.

Example 49. The following type derivations are valid in rtt.

1. ` S(a1, a2) : () by rule 1 of Definition 40;
2.
` R1(a1) : () ` R2(a1) : ()

` R1(a1) ∨ R2(a1) : ()
rule 2

TYPES IN LOGIC AND MATHEMATICS BEFORE 1940 223

but not:

x1 : 0 ` R1(x1) : (0) x1 : 0 ` R2(x1) : (0)
x1 : 0 ` R1(x1) ∨ R2(x1) : (0, 0)

rule 2

(x1 6< x1 because < is strict). To obtain R1(x1) ∨ R2(x1) we must make
a different start:

` R1(a1) : () ` R2(a1) : ()
` R1(a1) ∨ R2(a1) : ()

rule 2 ` a1 : 0
x1 : 0 ` R1(x1) ∨ R2(x1) : (0)

rule 3;

3.

x1 : 0, x2 : 0, z1 : ((0), (0)) ` z1(R(x1), R(x2)) : (((0), (0)))
x1 : 0, x2 : 0, z1 : ((0), (0)) ` R(x1) : (0)

z1 : ((0), (0)), z2 : (0) ` z1(z2, z2) : (((0), (0)), (0))
rule 3

As R(x1) is α-equal to R(x2) in the context, both R(x1) and R(x2) are
replaced by the newly introduced variable z2;

4.
x1 : 0, x2 : 0 ` S(x1, x2) : (0, 0)

x1 : 0, x2 : 0, z : (0, 0) ` z(x1, x2) : (0, 0, (0, 0))
rule 4;

5.
x1 : 0 ` R1(x1) ∨ R2(x1) : (0) ` a1 : 0

` R1(a1) ∨ R2(a1) : ()
x1 : 0 ` R1(a1) ∨ R2(a1) : ()

rule 5

rule 6;

6.

x1 : 0, x2 : 0, x3 : (0, 0) ` R(x1) ∨ ¬x3(x1, x2) : (0, 0, (0, 0))
x1 : 0, x2 : 0 ` T(x1, x1, x2) : (0, 0)

x1 : 0, x2 : 0 ` R(x1) ∨ ¬T(x1, x1, x2) : (0, 0)
rule 6

T(x1, x1, x2) is substituted for x3.

Example 50. We give a formal derivation of the examples of the abstrac-
tion rules that were given in Remark 12. Again, we omit the orders.

• Constructing z(a) ∨ S(a) from R(a) ∨ S(a) cannot be done with the use
of rule 4 only. The following derivation is correct (to save space, we use “rx”
to denote “rule x”):

` a : 0
z : (0) ` a : 0 r5

` a : 0 ` R(a) : ()
x : 0 ` R(x) : (0) r3

x : 0, z : (0) ` z(x) : (0, (0)) r4

z : (0) ` z(a) : ((0)) r6 ` S(a) : ()
z : (0) ` z(a) ∨ S(a) : ((0)) r2.

To obtain z(a) instead of z(), we must transform R(a) into a pf R(x) by
abstracting from a. Then we can construct z(x) by abstraction from pfs
(rule 4). In this way, the “frame” for z(a) is of the right form. Substituting
a for x gives z(a) (and “neutralises” the application of rule 3 at the top of
the derivation). Simply applying rule 4 on the judgement ` R(a) : () does
not work: it results in z() ` z() : (());

224 FAIROUZ KAMAREDDINE, TWAN LAAN, AND ROB NEDERPELT

• Constructing z1() ∨ z2() is easier: z1() can be obtained by abstracting
from R(a), and z2() similarly from S(a). Result:

` R(a) : ()
z1 : () ` z1() : (())

rule 4
` S(a) : ()

z2 : () ` z2() : (())
rule 4

z1 : (), z2 : () ` z1() ∨ z2() : ((), ())
rule 2.

We see that in fact two abstractions are needed to construct this pf: we must
abstract from R(a) as an instance of the pf z1(), and from S(a) as an instance
of the pf z2(). As rule 4 does not work on parts of pfs, these abstractions
have to be made before we use rule 2. Applying rule 4 on ` R(a)∨ S(a) : ()0
would result in z : () ` z() : (());
•We can extend the derivation of z1 : (), z2 : () ` z1()∨ z2() : ((), ()) to
obtain a type for z(R(a), S(a)):

x1 : (), x2 : () ` x1() ∨ x2() : ((), ())
x1 : (), x2 : (), z : ((), ()) ` z(x1, x2) : ((), (), ((), ()))

rule 4

x2 : (), z : ((), ()) ` z(R(a), x2) : ((), ((), ()))
rule 6

z : ((), ()) ` z(R(a), S(a)) : (((), ())) rule 6

(for reasons of space, we omitted the premises z : ((), ()), x2 : () ` R(a) : ()
and z : ((), ()) ` S(a) : () of the first and second application of the substi-
tution rule);
• For the derivation of the type of z(R(x), S(a)) we first make a derivation
of the “frame” z(y1, y2) of this pf (to save space, we use “rx” to denote “rule
x”):

` a : 0

y1 : (0) ` a : 0
r5

` a : 0 ` R(a) : ()

x : 0 ` R(x) : (0)
r3

x : 0, y1 : (0) ` y1(x) : (0, (0))
r4

y1 : (0) ` y1(a) : ((0))
r6

` R(a) : ()

y2 : ()`y2() : (())
r4

y1 : (0), y2 : () ` y1(a) ∨ y2() : ((0), ())
r2

y1 : (0), y2 : (), z : ((0), ()) ` z(y1, y2) : ((0), (), ((0), ()))
r4.

Then we derive x : 0 ` R(x) : (0) and ` S(a) : (), and after applying the
weakening rule, we can substitute R(x) for y1 and S(a) for y2. As a result,
we get

z : ((0), ()), x : 0 ` z(R(x), S(a)) : (((0), ())).
Example 51. In the example below, the orders are important:

` R(a) : ()0
` R(a) : ()0
` ¬R(a) : ()0

rule 2

` R(a) ∨ ¬R(a) : ()0 rule 2

z : ()0 ` z() ∨ ¬z : (()0)1 rule 4

` ∀z : ()0 [z() ∨ ¬z()] : ()1 rule 8.

We see that ∀z : ()0 [z()0 ∨ ¬z()] does not have a predicative type. This is
the case because this pf has a bound variable z that is of a higher order than

TYPES IN LOGIC AND MATHEMATICS BEFORE 1940 225

the order of any free variable (as there are no free variables here). Therefore,
the order of this pf is determined by the order of the bound variable z.

We still need to prove that the contexts in the conclusions of rules 3, 4 and
6 exist. This follows from the following Lemma:

Lemma 52. Assume Γ ` f : ta . Then
1. (Free variable lemma)All variables off that are not bound by a quantifier
are in dom(Γ);

2. (Strengthening lemma) If ∆ is the (unique) subset of Γ such thatdom(∆)
contains all and only those variables off that are not bound by a quantifier,
then ∆ ` f : ta .

Proof. An easy induction on the definition of Γ ` f : ta . a
3.8. Properties of RTT.

3.8.1. Types and free variables. In this section we treat somemeta-proper-
ties of rtt. Using the ë-notation for pfs, we can often refer to known results
in typed ë-calculus.39 For proofs and further details, see [48, 47].

Theorem 53 (First Free Variable Theorem). Let f ∈ P ; k1, . . . , kn ∈
A ∪ V ∪ P .

fv(f[x1, . . . , xn := k1, . . . , kn])

= (fv(f)r {x1, . . . , xn}) ∪ {ki ∈ V | xi ∈ fv(f) }.

Theorem 54 (Second Free Variable Theorem). Assume that we can derive
Γ ` f : (ta11 , . . . , tann)a , and x1 < · · · < xm are the free variables of f. Then
m = n and xi : t

ai
i ∈ Γ for all i ≤ n.

Proof. An easy induction on Γ ` f : (ta11 , . . . , tann)
a
. For rules 6 and 7,

use Theorem 53. a
We can now prove a corollary that we promised in Remark 43.7:

Corollary 55. If Γ ` f : (ta11 , . . . , tann)a and ϕ is a bijection {1, . . . , n} →
{1, . . . , n} then there is a context Γ′ and a pf f ′ which is αP-equal to f such

that Γ′ ` f′ :
(
t
aϕ(1)
ϕ(1)
, . . . , t

aϕ(n)
ϕ(n)

)a
.

We can also prove unicity of types and unicity of orders. Orders are unique
in the following sense:

Lemma 56. Assume Γ ` f : ta . If x occurs in f and x : ub ∈ Γ, then ub is
predicative. Moreover, if also Γ ` f : t ′a′ , then a = a ′.
Proof. By induction on the derivation of Γ ` f : ta one shows that a
variable x that occurs in f always has a predicative type in Γ, and that both
a and a ′ equal one plus the maximum of the orders of all the (free and
non-free) variables that occur in f. a

39The meta-properties can also be proved directly, without ë-calculus: see [46].

226 FAIROUZ KAMAREDDINE, TWAN LAAN, AND ROB NEDERPELT

Corollary 57 (Unicity of types for pfs). Assume Γ is a context, f is a pf,
Γ ` f : ta and Γ ` f : ub . Then ta ≡ ub .
Proof. t ≡ u follows from Theorem 54; a = b from Lemma 56. a
Remark 58. We cannot omit the context Γ in Corollary 57. For example,
the pf z(x) can have different types in different contexts, as is illustrated
by the following derivations (we have omitted the orders as they can be
calculated via Lemma 56):

` R(a1) : () ` a1 : 0
x : 0 ` R(x) : (0) rule 3

x : 0, z : (0) ` z(x) : (0, (0)) rule 4

versus

` R(a1) : ()
x : () ` x() : (()) rule 4

x : (), z : (()) ` z(x) : ((), (())) rule 4.

Theorem 54 and Corollary 57 show that our system rtt makes sense, in
a certain way: The type of a pf only depends on the context and does not
depend on the way in which we derived the type of that pf.
As a corollary of Corollary 57 we find:

Corollary 59. If

Γ ` f : ta , Γ ` k : ub , x : ub ∈ Γ and Γ ` f[x := k] : t ′a
′

then a ≥ a ′.
Proof. If x /∈ fv(f) then f ≡ f[x := k] and the corollary follows from
Unicity of Types (Corollary 57). If x ∈ fv(f) then the variables that occur
in f[x := k], occur either in f or in k, and as the order of k is smaller than
the order of f (x ∈ fv(f), so b < a), the corollary follows from the proof
of Lemma 56. a
We conclude this section with mending the two loose ends discussed in
Remark 25 which play a role in rtt-Definition 40:
First, using the strong normalisation of Church’s ë→C , it is easy to see
that:

Theorem 60 (Existence of normal forms). Take i ≤ n. Assume
Γ ∪ {y : taii } ` f : (t

a1
1 , . . . , t

an
n)
a and Γ ` k : taii

(so the preconditions of rule 6 of rtt are fulfilled). Then (ëy : T (taii).f̃)k is
strongly normalising.

Substitution always exists in the case of rtt-rule 6 of Definition 40.

Theorem 61 (Existence of substitution). If f ∈ P , y is the ith free vari-
able in f, Γ ∪ {y : taii } ` f : (t

a1
1 , . . . , t

an
n)
a , and Γ ` k : taii , then f[y := k]

exists.

TYPES IN LOGIC AND MATHEMATICS BEFORE 1940 227

3.9. Legal propositional functions in RTT. We recall Definition 41: a pf f
is called legal if Γ ` f : ta for some Γ and ta . We will check whether this
definition of legal pf coincides with the definition of formula that was given
in the Principia. For this purpose we prove a number of lemmas concerning
the relation between legal pfs and predicative types.
We do not distinguish between pfs that are αP-equal, nor between types
(t1, . . . , tn) and (tϕ(1), . . . , tϕ(n)) for a bijection ϕ. This is justified by Corol-
lary 55 and by the fact, that pfs that are αP-equal are supposed to be the
same in the Principia too.
We define the notion “up to αP-equality” formally:

Definition 62. Let f ∈ P , Γ a context, ta a type. f is of type ta in the
contextΓ up to αP-equality, notation Γ ` f : ta (mod αP), if there isf ′ ∈ P ,
a context Γ′ and a bijection ϕ : V → V such that
• Γ′ ` f′ : ta ;
• f′ and f are αP-equal via the bijection ϕ;
• Γ′ = {ϕ(x) : ub | x : ub ∈ Γ }.

We say that f is legal in the context Γ up to αP-equality if there is a type u
b

such that Γ ` f : ub (mod αP). We say that f is legal up to αP-equality if
there is a context Γ such that f is legal in Γ up to αP-equality.

The following lemma states that all predicative types are “inhabited”:

Lemma 63. If ta is predicative then there are f, Γ such that Γ ` f : ta .
Proof. We use induction on predicative types. a

Remark 64. From a modern point of view, this is a remarkable lemma.
Many modern type systems are based on the principle of propositions-as-
types. In such systems types represent propositions, and terms inhabiting
such a type represent proofs of that proposition. In a propositions-as-
types based system in which all types are inhabited, all propositions are
provable. Such a system would be (logically) inconsistent. Rtt is not based
on propositions-as-types, and there is nothing paradoxical or inconsistent
in the fact that all rtt-types are inhabited.

This lemma can be generalised to some non-predicative types:

Corollary 65. If (ta11 , . . . , t
am
m)
a is a type such that the taii are all predica-

tive, then there are f and Γ such that Γ ` f : (ta11 , . . . , tamm)a .
We can also show that z(k1, . . . , km) is legal if k1, . . . , km are either legal
pfs or variables, and z is “fresh”.

Lemma 66. If k1, . . . , kn ∈ A∪V ∪P , ta = (ta11 , . . . , tann)a is a predicative
type, Γ ` ki : taii for all ki ∈ A ∪ P and ki : taii ∈ Γ for all ki ∈ V , and
z ∈ V r dom(Γ), then z(k1, . . . , kn) is legal in the context Γ ∪ {z : ta} (up to
αP-equality).

228 FAIROUZ KAMAREDDINE, TWAN LAAN, AND ROB NEDERPELT

It is also not hard to show that f ∨ g is legal if f and g are (see also
Remark 45):

Lemma 67. If f and g are legal in contexts Γ1 and Γ2, respectively, and
Γ1 ∪ Γ2 is a context, then f ∨ g is legal in the context Γ1 ∪ Γ2 (up to αP-
equality).

The following lemma is easy to prove and will be used in the proof of the
main result of this section.

Lemma 68. IfR(i1, . . . , ia(R)) is a pf with free variables x1 < · · · < xm, then
it is legal in the context {xj : 0 | 1 ≤ j ≤ m }.
Proof. Write f = R(i1, . . . , ia(R)). Let a1, . . . , am ∈ A be m different
individuals that do not occur in f, and replace each variable xj in f by aj ,
calling the resultf ′. By the first rule of rtt, f ′ is legal in the empty context.
Re-introducing the variables x1, . . . , xm (by applying rule 3 of rtt m times)
for the individuals a1, . . . , am, respectively, we obtain that f is legal in the
context {xj : 0 | 1 ≤ j ≤ m }. a
Finally, we can give a characterisation of the legal pfs:

Theorem 69 (Legal pfs in rtt). Let f ∈ P . f is legal (mod αP) if and
only if:

• f ≡ R(i1, . . . , ia(R)), or
• f ≡ z(k1, . . . , kn), z 6= kj for all kj ∈ V and z does not occur in
any kj ∈ P , and there is Γ with fv(f) ⊆ dom (Γ) and for all kj ∈ P ,
Γ ` kj :tajj for some predicative type t

aj
j , or

• f ≡ ¬f′ and f′ is legal (mod αP) or
• f ≡ f1 ∨ f2 and there are Γi and taii such that Γi ` fi : taii (mod αP)
for i = 1, 2 and Γ1 ∪ Γ2 is a context, or
• f ≡ ∀x : ta .f′ and f′ is legal.

Proof. Use induction on the structure of f. a
We can now answer the question whether our legal pfs (as given in Defini-
tion 41) are the same as the formulas of the Principia.
First of all, we must notice that all the legal pfs fromDefinition 41 are also
formulas of the Principia: This was motivated in Remark 43.
Moreover, we proved (in Theorem 69) that if f is a pf, then the only
reasons why f cannot be legal (according to Definition 41) are:

• There is a constituent z(k1, . . . , km) of f in which z occurs in one of
the kis;
• There is a constituent z(k1, . . . , km) of f and a j ∈ {1, . . . , m} such
that kj is a pf, but not a legal pf;
• f contains two non-overlapping constituents f1, f2 that cannot be
typed in one and the same context;
• There is a legal constituent z(k1, . . . , km) off which is not of predicative
type.

TYPES IN LOGIC AND MATHEMATICS BEFORE 1940 229

Pfs of the first type cannot be legal in the Principia, because of the vicious
circle principle. The same holds for pfs of the second type, because also
in the Principia, parameters cannot be untyped. The third problem is a
non-issue in the Principia. Formal contexts are not present in the Principia,
but have been introduced in this article to make a precise analysis of rtt
possible. Propositional functions of the Principia are always constructed in
one, implicitly defined, context.40 A formula, therefore, cannot contain two
non-overlapping constituents that cannot be typed in the same context. This
excludes pfs of the third type. As to the fourth type, it represents Russell’s
assumption that non-predicative orders in his hierarchy are always obtained
from predicative ones by generalization (i.e., by quantification). Of course
Russell’s assumption is not true of terms z(k1, . . . , kn) where one of the kis
happens to be of non-predicative type. This means that both our system and
Russell’s intended system are not able to type such terms.
We conclude that we have described the legal pfs of the Principia Mathe-
matica with the formal system rtt.
We present some refinements of Theorem 69:

Theorem 70. Assume Γ ` f : ta .
• If f ≡ R(i1, . . . , ia(R)) and x ∈ fv(f) then x : 00 ∈ Γ;
• If f ≡ z(k1, . . . , km) then there are ub11 , . . . , ubmm , b such that
– z : (ub11 , . . . , u

bm
m)
b ∈ Γ;

– Γ ` ki : ubii for ki ∈ A ∪ P ;
– ki : u

bi
i ∈ Γ for ki ∈ V .

In this section we gave a formalisation of the Ramified Theory of Types.
Some of themain ideas underlying this theory were already present in Frege’s
Abstraction Principles 1 and 2.
Rtt not only prevents the paradoxes of Frege’s Grundgesetze der Arith-
metik, but also guarantees thewell-definedness of substitution (Theorem61).

40It is worth remarking that it is possible to formalizePrincipiawithout resorting to explicit
contexts at all. For example, Randall Holmes has an implementation which constructs
contexts from the structures of the terms analysed. Following Randall Holmes, the price of
this is that the types deduced for terms by his checker are polymorphic: for STT this isn’t a
problem at all (it’s an advantage); Holmes expresses that inRTT, the handling of polymorphic
types was quite difficult—he had to allow orders defined in terms of the unknown orders
of polymorphic types. Further, in RTT, the type checker had to be much smarter than the
STT checker, because it had to be able to deduce identity between polymorphic types in
order to successfully infer types for quite simple terms (such as the “definition of equality”
(∀x.(x(y)↔ x(z))), where the two variables y and z are both polymorphic, and one has to
be careful to determine that they have the same type (because they are in the same argument
of the same unknown pf x) before attempting the final type-checking of the term: if one is
not careful about the order in which things are done, two incompatible types for x will be
deduced depending on unknown and possibly different orders for y and z).

230 FAIROUZ KAMAREDDINE, TWAN LAAN, AND ROB NEDERPELT

This second problem was not realized in the Principia, where substitution
did not even have a proper definition.
There is a close relation between substitution in Principia and â-reduction
in ë-calculus (Definition 23). Rtt has characteristics that are also the basic
properties of modern type systems for ë-calculus.
As there is no real reduction in rtt, we don’t have an equivalent of the
Subject Reduction theorem. However, the fact that the Free Variable prop-
erty (Theorem 54) is maintained under substitution can be seen as a (very
weak) form of Subject Reduction.
Expressing Russell’s propositional functions in ë-calculus has made it
possible to compare these pfs with ë-terms. We found that pfs can be seen
as ë-terms, but in a rather simple way:

• A pf is always a ëI-term, i.e., if ëx : A.B is a subterm of the translation
f̃ of a pf f, then x ∈ fv(B);
• Substitution in thePrincipia can be seen as application plus â-reduction
to normal form.

Although the description of the Ramified Theory of Types in the Principia
is very informal, it is remarkable that an accurate formalisation of this
system can be made (see Theorem 69 and the discussion that follows it).
The formalisation shows that Russell and Whitehead’s ideas on the notion
of types, though very informal to modern standards, must have been very
thorough and to the point.
A characteristic of rtt that is maintained in many modern type systems
is the syntactic nature of the system: type and order of a pf are determined
on purely syntactical grounds. No attention is paid to the interpretation
of such a pf. This is remarkable, as the propositions ∀x : 00 [R(x)] and
∀x : 00[R(x)]∨∀z : ()9 [z()∧¬z()] are logically equivalent in most logics,41
though they are of different type (the former pf has type ()1 and the latter
has type ()10). In [42], it is shown that other viewpoints are possible besides
this concentration on syntax.

§4. History of the deramification.

4.1. The problematic character of RTT. The main part of the Principia
is devoted to the development of logic and mathematics using the legal pfs
of the ramified type theory. It appears that rtt is not easy to use. The
main reason for this is the implementation of the so-called ramification: the
division of simple types into orders. We illustrate this with two examples:

Example 71 (Equality). One tends to define the notion of equality in the
style of Leibniz ([32]):

x =L y
def↔ ∀z [z(x)↔ z(y)],

41At least in all the logical systems that Russell had in mind when he wrote the Principia.

TYPES IN LOGIC AND MATHEMATICS BEFORE 1940 231

or in words: Two individuals are equal if and only if they have exactly the
same properties.
Unfortunately, in order to express this general notion in our formal system,
we have to incorporate all pfs ∀z : (00)n [z(x) ↔ z(y)] for n > 1, and this
cannot be expressed in one pf.

The ramification does not only influence definitions in logic. Some impor-
tant mathematical concepts cannot be defined any more:

Example 72 (Real numbers, least upper bounds). Dedekind constructed
the real numbers from the rationals using so-called Dedekind cuts. In this
construction, a real number is a set r of rationals such that

• r 6= ∅;
• r 6= Q;
• If x ∈ r and y < x then y ∈ r;
• If x ∈ r then there is y ∈ r with x < y.

For instance, the real number 1/2 is represented by the set {x ∈ Q | 2x < 1 },
and the real number

√
2 is represented by the set {x ∈ Q | x < 0 or x2 < 2 }.

If we takeQ as the set of individualsA, and assume that the binary relation
< on Q is an element of R, the set of relations, we can see real numbers as
unary predicates f over Q such that

(6) ∃x : 00 [z(x)] ∧ ∃x : 00[¬z(x)]
∧ ∀x : 00 [∀y : 00 [z(x)→ y < x→ z(y)]]

∧ ∀x : 00 [z(x)→ ∃y : 00 [z(y) ∧ x < y]]

holds if we substitute f for z. We will abbreviate the predicate (6) (with
the free variable z) as R. It has type ((00)1)2, and real numbers can be
seen as pfs of type (00)1. We will, for shortness of notation, write R(f) for
R[z := f], soR ≡ R(z). A real number r is smaller than or equal to another
real number r′ if for all x with r(x), also r ′(x) holds. We write, shorthand,
r ≤ r′ if r is smaller than or equal to r ′.
In traditional mathematics, the above would define a system that obeys the
traditional axioms for real numbers. In particular, the theorem of the least
upper bound holds for this system. This theorem states that each non-empty
subset ofRwith an upper bound has a least upper bound. In our formalism:

∀v ⊆ R
[(
∃z1 ∈ R [v(z1)] ∧ ∃z2 ∈ R ∀z3 ∈ R [v(z3)→ z3 ≤ z2]

)

→ ∃z1 ∈ R
[
∀z2 ∈ R [v(z2)→ z2 ≤ z1]

∧ ∀z3 ∈ R [∀z4 ∈ R [v(z4)→ z4 ≤ z3]→ z1 ≤ z3]
]]
.

(We write, shorthand, ∀v ⊆ R [g] to denote ∀v : ((00)1)2 [∀u : (00)1 [v(u)→
R(u)]→ g], and ∀z ∈ R [g] to denote ∀z : (00)1 [R(z)→ g]).

232 FAIROUZ KAMAREDDINE, TWAN LAAN, AND ROB NEDERPELT

Ifwe try to prove this theoremwithin the systemofDedekind as formulated
in the Principia-language rtt, we have to specify a type ta for the variable
z1. As z1 must be a real number, its type must be (0

0)1. If we give a proof
of the theorem, and construct some object f that should be the least upper
bound of a set of real numbers V , f will depend on V . Therefore, a general
description of f will have a variable v for V in it. As v is of order 2, f
must be of order 3 or more. Therefore, f cannot be a real number, since real
numbers have order 1. This makes it impossible to give a constructive proof
of the theorem of the least upper bound within a ramified type theory.

This is a consequence of the fact that it is not possible in rtt to give a
definition of an object that refers to the class to which this object belongs
(because of the Vicious Circle Principle). Such a definition is called an
impredicative definition. The relation with the notion of impredicative type
is immediate:42 an object defined by an impredicative definition is of a higher
order than the order of the elements of the class to which this object should
belong. This means that the defined object f has an impredicative type.
Nowadays we would consider the use of the Vicious Circle Principle too
strict. We consider the impredicative definition of f as a matter of syntax,
whilst the existence of the object f has to do with semantics.43 The fact that
we are not able to give a predicative definition of f does not imply that such
an object does not exist. Here we must remark that Russell and Whitehead
did not make a distinction between syntax and semantics in the Principia.44

Therefore they had to interpret the Vicious Circle Principle in the strict way
above.

42This terminology is again the one assumed by Principia and not everyone agrees with
it. There is actually no problem with the formulation of “impredicative” types from a
predicative standpoint: objects of these types are predicatively respectable. An object of
truly impredicative type would be defined using quantifiers over its own type or even higher
types (as is allowed in simple type theory), and would not be typable in the ramified theory
at all.
43This is obviously a point on which one might disagree. For example, Randall Holmes

is unconvinced by the remarks about “syntax” and “semantics”. He believes that the syn-
tactical criteria of ramified type theory are a correct implementation of the Vicious Circle
Principle and that the Vicious Circle Principle is best understood as a criterion appropriate
for definitions. According to Randall Holmes, if instances of abstraction or comprehension
principles are to be thought of as definitions, then impredicative abstraction or compre-
hension is indeed questionable and hence the conclusion to be drawn is that abstraction or
comprehension axioms are not definitions, but assertions of matters of fact (so “semantic”
rather than “syntactic”), and so are not subject to the Vicious Circle Principle (it is not that
it should be applied in a more lenient way, but that it does not apply at all). But as long as the
Vicious Circle Principle is to be applied, syntactical criteria are appropriate: what a correct
definition is should be a matter of syntax.
44Though the basic ideas for this were already present in the works of Frege. See for

instance Über Sinn und Bedeutung [29].

TYPES IN LOGIC AND MATHEMATICS BEFORE 1940 233

4.2. TheAxiomofReducibility. Russell andWhitehead tried to solve these
problems explained in Section 4.1 with the so-called axiom of reducibility.

Axiom 73 (Axiom of Reducibility). For each formulaf, there is a formula
g with a predicative type such that f and g are (logically) equivalent.

Accepting this axiom, one may define equality on formulas of order 1
only:

x =1 y
def
= ∀z : (00)1 [z(x)↔ z(y)].

If f is a function of type (00)n for some n > 1, and a and b are individuals
for which the Leibniz equality a =L b holds then f(a)↔ f(b) holds: With
the Axiom of Reducibility we can determine a predicative function g (so of
type (00)1), equivalent to f. As g has order 1, g(a) ↔ g(b) holds. And
because f and g are equivalent, also f(a) ↔ f(b) holds. This solves the
problem of Example 71. A similar solution gives, in Example 72, the proof
of the theorem of the least upper bound.
The validity of the Axiom of Reducibility has been questioned from the
moment it was introduced. In the introduction to the 2nd edition of the
Principia, Whitehead and Russell admit:

“This axiom has a purely pragmatic justification: it leads to the
desired results, and to no others. But clearly it is not the sort of
axiom with which we can rest content.”

(Principia Mathematica, p. xiv)

Though Weyl [70] made an effort to develop analysis within the Ramified
Theory of Types (but without the Axiom of Reducibility), and various parts
of mathematics can be developed within rtt and without the Axiom,45 the
general attitude towards rtt (without the axiom) was that the system was
too restrictive, and that a better solution had to be found.

4.3. Deramification. The first impulse to such a solution was given by
Ramsey in 1926 [59]. He recalls that the Vicious Circle Principle 3 was
postulated in order to prevent the paradoxes. Though all the paradoxes
were prevented by this Principle, Ramsey considers it essential to divide
them into two parts:

1. One group of paradoxes is removed

“by pointing out that a propositional function cannot significantly
take itself as argument, and by dividing functions and classes into
a hierarchy of types according to their possible arguments.”

(The Foundations of Mathematics, p. 356)

45See [40], where many algebraic notions are developed within the Nuprl Proof Develop-
ment System, a proof checker based on the hierarchy of types and orders of rtt without the
Axiom of Reducibility.

234 FAIROUZ KAMAREDDINE, TWAN LAAN, AND ROB NEDERPELT

This means that a class can never be a member of itself. The paradoxes
solved by introducing the hierarchy of types (but not orders), like the Russell
paradox, and the Burali-Forti paradox, are logical or syntactical paradoxes;
2. The second group of paradoxes is excluded by the hierarchy of orders.
These paradoxes (like the Liar’s paradox, and the Richard Paradox) are
based on the confusion of language and meta-language. These paradoxes
are, therefore, not of a purely mathematical or logical nature. When a proper
distinction between object language (the pfs of the system rtt, for example)
and meta-language is made, these so-called semantical paradoxes disappear
immediately.

Ramsey agrees with the part of the theory that eliminates the syntactic
paradoxes. This part is in fact rtt without the orders of the types. The
second part, the hierarchy of orders, does not gain Ramsey’s support, for
the reasons described above. Moreover, by accepting the hierarchy in its full
extent one either has to accept the Axiom of Reducibility or reject ordinary
real analysis. Ramsey is supported in his view by Hilbert and Ackermann
[37]. They all suggest a deramification of the theory, i.e., leaving out the
orders of the types. When making a proper distinction between language
and meta-language, the deramification will not lead to a re-introduction of
the (semantic) paradoxes.
The solution proposed by Ramsey, and Hilbert and Ackermann, looks
better than the Axiom of Reducibility. Nevertheless, both deramification
and the Axiom of Reducibility are violations of the Vicious Circle Principle,
and reasons (of a more fundamental character than “they do not lead to
a re-introduction of the semantic paradoxes” and “it leads to the desired
results, and to no others”) why these violations can be harmlessly made
must be given. Gödel [34] fills in this gap. He points out that whether
one accepts this second principle or not, depends on the philosophical
point of view that one has with respect to logical and mathematical ob-
jects:

“it seems that the vicious circle principle [. . .] applies only if the
entities involved are constructed by ourselves. In this case there
must clearly exist a definition (namely the description of the con-
struction) which does not refer to a totality to which the object
defined belongs, because the construction of a thing can certainly
not be based on a totality of things to which the thing to be con-
structed itself belongs. If, however, it is a question of objects
that exist independently of our constructions, there is nothing in
the least absurd in the existence of totalities containing members,
which can be described only by reference to this totality.”

(Russell’s mathematical logic)

TYPES IN LOGIC AND MATHEMATICS BEFORE 1940 235

The remark puts the Vicious Circle Principle back from a proposition (a
statement that is either true or false, without any doubt) to a philosophical
principle that will be easily accepted by, for instance, intuitionists (for whom
mathematics is a pure mental construction) or constructivists, but that will
be rejected, at least in its full strength, by mathematicians with a more pla-
tonic point of view. It should be noted that intuitionisticmathematics is quite
often impredicative although different “constructivist” mathematicians have
different opinions about this.
Gödel is supported in his ideas by Quine [58], sections 34 and 35. Quine’s
criticism on impredicative definitions (for instance, the definition of the least
upper bound of a nonempty subset of the real numbers with an upper bound)
is not on the definition of a special symbol, but rather on the very assumption
of the existence of such an object at all. Quine continues by stating that
even for Poincaré, who was an opponent of impredicative definitions and
deramification, one of the doctrines of classes is that they are there “from
the beginning”. So, even for Poincaré there should be no evident fallacy in
impredicative definitions.
The deramification has played an important role in the development of
type theory. In 1932 and 1933, Church presented his (untyped) ë-calculus
[12, 13]. In 1940 he combined this theory with a deramified version of
Russell’s theory of types to the system that is known as the simply typed
ë-calculus46.

§5. The Simple Theory of Types.

5.1. Constructing the Simple Theory of Types STT from RTT. So far, we
have seen the development of type theory since the appearance of Principia
Mathematica (1910–1912) went through a process of deramification where
Ramsey [59], and Hilbert and Ackermann [37], simplified the Ramified
Theory of Types by removing the orders. The result is known as the Simple
Theory of Types (stt).
Nowadays, stt is known via Church’s formalisation in ë-calculus. How-
ever, stt already existed (1926) before ë-calculus did (1932), and is therefore
not inextricably bound up with ë-calculus. In this section we show how
we can obtain a formalisation of stt directly from the formalisation of rtt
that was presented in Section 3 by simply removing the orders. Most of the
properties that were proved for rtt hold for stt as well, including Unicity
of Types and Strong Normalisation. The proofs are all similar to the proofs
that were given for rtt. We also make a comparison between Church’s for-
malisation in ë-calculus and the formalisation of stt that is obtained from

46Thus, the adjective simple is used to distinguish the theory from the more complicated—
both in its construction with a double hierarchy and in its use—ramified theory. The clas-
sification “simple”, therefore, has nothing to do with the fact that stt, formulated with
ë-calculus as described in [14], is the simplest system of the Barendregt Cube (see [3]).

236 FAIROUZ KAMAREDDINE, TWAN LAAN, AND ROB NEDERPELT

rtt. It appears that Church’s system ismuchmore than only a formalisation.
Because of the ë-calculus, Church’s system is more expressive.47

It is straightforward to carry out the deramification as it was originally
proposed by Ramsey, Hilbert and Ackermann: We take the formalisation
of rtt that was presented in Section 3, and leave out all the orders and the
references to orders (including the notions of predicative and impredicative
types). The system we obtain in this way will be denoted stt. The types
used in the system are the simple types of Definition 30.
The following definitions, lemmas, theorems and corollaries, including
their proofs, can be adapted to stt without any problems: Definitions 38,
39, 40, 41, Lemma 52, Theorems 53 (first free variable theorem), 54 (second
free variable theorem), Corollaries 55, 57 (unicity of types), and Theorem
61 (existence of substitution).
The description of legal pfs for stt follows the same line as in Section 3.9,
with straightforward adaptions of Definition 62, and Lemmas 63 (now, all
simple types are inhabited), 66, 67, 68, and finally Theorem 69 (characteri-
sation of legal pfs):

Theorem 74 (Legal pfs in stt). Let f ∈ P . f is legal (mod α) if and only
if:

• f ≡ R(i1, . . . , ia(R)), or
• f ≡ z(k1, . . . , kn), z 6= kj for all kj ∈ V and z does not occur in
any kj ∈ P , and there is Γ with fv(f) ⊆ dom (Γ) and for all kj ∈ P ,
Γ ` kj : tj , or
• f ≡ ¬f′ and f′ is legal (mod α) or f ≡ f1 ∨ f2, there are Γi and ti
such that Γi ` fi : ti (mod α) and Γ1 ∪ Γ2 is a context, or
• f ≡ ∀x : t.f ′ and f′ is legal.

A comparison between the formalisations of stt and rtt can easily be
made using Theorems 74 and 69. We find that

• All rtt-legal pfs are (when the ramified types behind the quantifiers are
replaced by their corresponding simple types) stt-legal;
• A stt-legal pf f is rtt-legal, except when f contains a subformula of
the form z(k1, . . . , kn), where one or more of the kjs are not rtt-legal
or can only be typed in rtt by an impredicative type.

47The removal of orders from type theory may suggest that orders are to be blamed for the
restrictiveness of rtt, and that the concept of order is problematic. [42] shows that this is not
necessarily the case by introducing a system ktt, based on Kripke’s Hierarchy of Truths [45],
that has an approach completely opposite to stt. Whilst stt is order-free, and types play the
main role, Kripke’s Hierarchy of Truths is type-free, and orders play an important, though
not a restrictive, role. The main difference between Kripke’s and Russell’s notion of order is
that Russell’s classification is purely syntactical, whilst Kripke’s is essentially semantical. [42]
shows that rtt can be embedded in ktt and that there is a straightforward relation between
the orders in rtt and the hierarchy of truths of ktt.

TYPES IN LOGIC AND MATHEMATICS BEFORE 1940 237

5.2. Church’s simply typed ë-calculus ë→C . We give a definition of the
simply typed ë-calculus as introduced by Church [14] in 1940.
The types and terms in the original presentation of ë→C are a bit different
from the presentation in [3]. We give some explanation after repeating the
original definition:

Definition 75 (Types of ë→C). The types of ë→C are defined as follows:
• é and o are types;
• If α and â are types, then so is α → â .

We denote the set of simple types by T.

é represents the type of individuals; o is the type of propositions. α → â
is the type of functions with domain α and range â . We use α, â , . . . as
meta-variables over types. → associates to the right: α → â → ã denotes
α → (â → ã).
Definition 76 (Terms of ë→C). The terms of ë→C are the following:
• ¬, ∧, ∀α for each type α, and éα for each type α, are terms;
• A variable is a term;
• If A, B are terms, then so is AB ;
• If A is a term, and x a variable, then ëx : α.A is a term.
Remark 77. We see that the constants ¬, ∧, ∀α and éα are terms. This
may need some explanation for the modern reader.

• Church considers ¬ and ∧ to be functions. The function ¬ takes a
proposition as argument, and returns a proposition; similarly ∧ takes two
propositions as arguments, and returns a proposition. In Definition 79, we
see that¬ and∧ are assigned the corresponding types o → o and o → o → o;
•More remarkable: ∀α and éα are just terms, and do not act as binding op-
erators. The usual variable binding of∀α and éα is obtained via ë-abstraction:
instead of ∀x : α.f, Church writes ∀α(ëx : α.f). In this way, ∀α is a func-
tion that takes a propositional function of type α → o as argument, and
returns a proposition (a term of type o). In Definition 79, ∀α obtains the
corresponding type (α → o) → o. Similarly, the unique choice operator éα
takes a propositional function of type α → o as argument, and returns a
term of type α. The term éx : α.f, or in Church’s notation: éα(ëx : α.f),
has as interpretation: the (unique) object t of type α for which f[x := t]
holds. Correspondingly, the type of éα is (α → o)→ α.
Definition 78 (Contexts of ë→C). A context in ë→C is a set

{x1 : α1, . . . , xn : αn}
where the xi are distinct variables and the αi are types.

Some terms are typable (legal) in ë→C , according to the following deriva-
tion rules:

238 FAIROUZ KAMAREDDINE, TWAN LAAN, AND ROB NEDERPELT

Definition 79 (Typing rules of ë→C). The judgement Γ ` A : α holds if
it can be derived using the following rules:

• Γ ` ¬ : o → o;
Γ ` ∧ : o → o → o;
Γ ` ∀α : (α → o)→ o;
Γ ` éα : (α → o)→ α;
• Γ ` x : α if x : α ∈ Γ;
• If Γ, x : α ` A : â then Γ ` (ëx : α.A) : α → â ;
• If Γ ` A : α → â and Γ ` B : α then Γ ` (AB) : â .
We use`ë→C if we need to distinguish derivability in ë→C fromderivability
in other type systems.
The simply typed ë-calculus can be seen as a pure type system, and there-
fore has the properties of pure type systems [3]. To adapt the simply typed
ë-calculus to a pure type system, some amendments are made:

• The two basic types é, o are replaced by an infinite set of type variables;
• The constants ¬, ∧, ∀α and éα are not introduced in the PTS-presenta-
tion.

These adaptions do not seriously affect the system and are only used tomake
ë→C fit in the PTS-framework.
5.3. Comparing RTT and ë→C . Apart from the orders, rtt is a subsystem
of ë→C via the embeddings ¯ of Section 3.2 and a mapping T that we define
below. There are, however, important differences between the way in which
the type of a pf is determined in rtt, and the way in which the type of a
ë-term is determined in ë-Church. The rules of rtt, and the method of
deriving the types of pfs that was presented in Section 3.9, have a bottom-up
character: one can only introduce a variable of a certain type in a context Γ,
if there is a pf that has that type in Γ. In ë→C , one can introduce variables
of any type without wondering whether such a type is inhabited or not.
Church’s ë→C is more general than rtt in the sense that Church does
not only describe (typable) propositional functions. In ë→C , also functions
of type ô → é (where é is the type of individuals) can be described, and
functions that take such functions as arguments, etc.
Just as propositional functions can be translated to ë-terms, simple types
(see Definition 30) can be translated to types of the simply typed ë-calculus
of Church.

Definition 80 (Translating simple types to ë→C -types). Wedefine a type
T (t) for each simple type t by induction:

1. T (0)
def
= é;

2. T ((t1, . . . , tn))
def
= T (t1)→ · · · → T (tn)→ o.

A simple type t of Definition 30 has the same interpretation as its transla-
tion T (t). Moreover, T is injective:

TYPES IN LOGIC AND MATHEMATICS BEFORE 1940 239

Lemma 81. If t and u are simple types (Definition 30), then T (t) = T (u) if
and only if t = u.

Proof. Induction on the definition of simple type. a
The mapping T is injective when restricted to predicative types:

Lemma 82. If ta and ub are predicative types, then T (ta) = T (ub) if and
only if ta = ub .

Proof. Induction on the definition of predicative type. a
Ramified types can also be translated to types of the simply typed ë-
calculus. However, we lose the orders if we do so.

Definition 83 (Translating ramified types to ë→C -types). We define a
type T (t) for each ramified type t by induction:

1. T (00)
def
= é;

2. T ((ta11 , . . . , t
an
n)
a)
def
= T (t1)→ · · · → T (tn)→ o.

Now we can relate typing in rtt to that of Church’s ë→C :
Theorem 84 (Typability in rtt implies typability in ë→C). If Γ ` f : ta
in rtt then

1. T (Γ) `ë→C
f̃ : o;

2. T (∅) `ë→C
f : T (ta).

Proof. Astraightforward induction onΓ ` f : ta with the use of Theorem
54 and the Subject Reduction property for ë-Church. a
Remark 85. Observe that the above theorem immediately excludes the pf
that leads to the Russell Paradox from the well-typed pfs: If¬z(z) were legal
then the ë-term ¬(zz) would be typable in ë-Church, which is not the case
(see [3]).

5.4. Comparison of STT with Church’s ë→C . The mappings T for types
and ¯ for terms (see Definitions 83 and 9), adapted for stt, make it possible
to compare stt with ë→C .
Regarding the types, we find that T gives an injective correspondence
between types of stt and ë→C . T is clearly not surjective, as T (t) is never
of the form α → é (this follows directly from Definition 80). This indicates
an important difference between stt and ë→C . In rtt and stt, functions
(other than propositional functions) have to be defined via relations (and this
is the way it is done in Principia Mathematica). The value of such a function
f, described via the relation R, for a certain value a is described using the

é-operator: éy.R(a, y) (to be interpreted as: the unique y for which R(a, y)
holds). Things get even more complicated if one realizes that the é-operator
is not a part of the syntax used inPrincipiaMathematica, but an abbreviation
with a not so straightforward translation (see [71], pp. 66–71). In ë→C , as
everywhere in ë-calculus, functions (both propositional functions and other

240 FAIROUZ KAMAREDDINE, TWAN LAAN, AND ROB NEDERPELT

ones) are first-class citizens, which means that the construction with the é-
operator is not the first tool to be used when constructing a function. If one
has an algorithm (a ë-term) that describes the function f, the value of f for
the argument a can be easily described via the term fa. And even if such
an algorithm is not at hand, one can use the é-operator, which is part of the
syntax of ë→C . This makes ë→C much easier to use for the formalisation
of logic and mathematics than rtt and stt.
Regarding the terms, ¯ provides an injective correspondencebetween terms
of stt and ë→C . Again, this mapping is not surjective, for several reasons:
• T is not surjective. As there is no t with T (t) = é → é, there cannot be
a legal pf f such that f ≡ ëx : é.x;
• We already observed thatf is a ëI-term for allf ∈ P . ë→C also allows
terms like ëx : α.y;
• If f ≡ zH1 · · ·Hn for some z ∈ V and some termsH1, . . . ,Hn , theHi s
must be either closed ë-terms, or variables, or individuals. This means
that there is no f ∈ P such that f ≡ ëz : o→o.ëx : é.z(Rx), since Rx
contains the free variable x and is neither a variable nor an individual;
• We remark that f is always a closed ë-term, so there is no f ∈ P such
that f ≡ x;
• It has already been remarked that the é-operator is part of the syntax
of ë→C , and this is not the case in stt and rtt.

The discussion abovemakes clear that ë→C is a farmore expressive system
than rtt and stt. Type-theoretically, it generalises the idea of function types
of Frege andRussell from propositional functions tomore general functions.
Philosophically, there is another important difference between stt and
ë→C . The systems stt and rtt have a strong bottom-up approach: To type
a higher-order pf one has to start with propositions of order 0. Only by
applying the abstraction principles, it is possible to obtain higher-order pfs.
In ë→C , one can introduce a variable of a higher-order type at once, without
having to refer to terms of lower order.

§6. Conclusion. In this article, we gave a history of type theory up to 1910
and presented in detail the first type theory rtt due to Russell which he used
to prevent the paradoxes of Frege’s Grundgesetze der Arithmetik. Then we
discussed the deramification of rtt (i.e., the removal of orders) leading to
the simple theory of types stt. We also presented Church’s simply typed
ë-calculus ë→C and compared the three type systems rtt, stt and ë→C .
Some of the main ideas underlying rtt were already present in Frege’s
Abstraction Principles 1 and 2.
Rtt not only prevents the paradoxes of Frege’s Grundgesetze der Arith-
metik, but also guarantees the well-definedness of substitution, as we have
shown in Corollary 61. This second problem was not realized in the Prin-
cipia, where substitution did not even have a proper definition.

TYPES IN LOGIC AND MATHEMATICS BEFORE 1940 241

There is a close relation between substitution in Principia and â-reduc-
tion in ë-calculus (Definition 23). Rtt has characteristics that are also
the basic properties of modern type systems for ë-calculus. As there is no
real reduction in rtt, we don’t have an equivalent of the Subject Reduction
theorem. However, the fact that the Free Variable property 54 is maintained
under substitution can be seen as a (very weak) form of Subject Reduction.
Although the description of the Ramified Theory of Types in the Principia
is very informal, it is remarkable that an accurate formalisation of this
system can be made (see Theorem 69 and the discussion that follows it).
The formalisation shows that Russell and Whitehead’s ideas on the notion
of types, though very informal to modern standards, must have been very
thorough and to the point.
Apart from the orders, rtt is a subsystem of Church’s ë→C of [14] via
the embeddings ¯ of Section 3.2 and T of Section 5.3. There are, however,
important differences between the way in which the type of a pf is determined
in rtt, and the way in which the type of a ë-term is determined in ë-Church.
The rules of rtt, and the method of deriving the types of pfs that was
presented in Section 3.9, have a bottom-up character: one can only introduce
a variable of a certain type in a context Γ, if there is a pf that has that type
in Γ. In ë→C , one can introduce variables of any type without wondering
whether such a type is inhabited or not.
Church’s ë→C is more general than rtt in the sense that Church does
not only describe (typable) propositional functions. In ë→C , also functions
of type ô → é (where é is the type of individuals) can be described, and
functions that take such functions as arguments, etc.
A characteristic of rtt that is maintained in many modern type systems
is the syntactic nature of the system: type and order of a pf are determined
on purely syntactical grounds. No attention is paid to the interpretation
of such a pf. This is remarkable, as the propositions ∀x : 00 [R(x)] and
∀x : 00 [R(x)]∨∀z : ()9 [z()∧¬z()] are logically equivalent in most logics,48
though they are of different type (the former pf has type ()1 and the latter
has type ()10).
We saw in Section 4.1 that the Ramified Theory of Types is very restrictive
for the description of mathematics within logic, because it is not possible to
formulate impredicative definitions in rtt.
This was already realised by Russell and Whitehead, who tried to solve
this by postulating the Axiom of Reducibility (Axiom 73). This axiom has
been criticised from the moment it was written down, both by Russell and
Whitehead themselves and by others. Ramsey, Hilbert and Ackermann were
not satisfied by rtt’s orders and therefore deramified rtt: They removed the
orders. They observed that this does not lead to known paradoxes as long
as a proper distinction between language and metalanguage is made.

48At least in all the logical systems that Russell had in mind when he wrote the Principia.

242 FAIROUZ KAMAREDDINE, TWAN LAAN, AND ROB NEDERPELT

Gödel and Quine observed that the deramification does not violate the
Vicious Circle Principle, as long as one accepts that objects and pfs exist
independently of our constructions.
The main line in the history continues with non-ramified theories. For
example, Church’s combination of ë-calculus with simple type theory, the
basis formostmodern type systems, has no orders. Similarly to rtt however,
ë→C is very restrictive. The hierarchy of the simple theory of types used
by ë→C leads to a duplication of work. For example, numbers, booleans,
the identity function have to be defined at every level. This led to the
development of type theories that are polymorphic and hence avoid this
unsatisfactory and inefficient duplication of work.49 In [3], the reader may
find a review of some of these type theories.

REFERENCES

[1] S. Abramsky, Dov M. Gabbay, and T. S. E. Maibaum (editors), Handbook of logic
in computer science, Volume 2: Background: Computational structures, Oxford University
Press, 1992.
[2] Y. Bar-Hillel, A. Fraenkel, andA. Levy, Foundations of set theory, North-Holland,

1973.
[3] H. P. Barendregt, Lambda calculi with types, in [1], pp. 117–309, Oxford University

Press, 1992.
[4] , The lambda calculus: its syntax and semantics, revised ed., Studies in Logic

and the Foundations of Mathematics, vol. 103, North-Holland, Amsterdam, 1984.
[5] P. Benacerraf and H. Putnam (editors), Philosophy of mathematics, second ed., Cam-

bridge University Press, 1983.
[6] E. W. Beth, The foundations of mathematics, Studies in Logic and the Foundations of

Mathematics, North-Holland, Amsterdam, 1959.
[7] G. Boolos, The iterative conception of set, Philosophy, vol. LXVIII (1971), pp. 215–

231.
[8] C. Burali-Forti, Una questione sui numeri transfiniti, Rendiconti del Circolo Matem-

atico di Palermo, vol. 11 (1897), pp. 154–164, English translation in [68], pp. 104–112.
[9] G. Cantor, Beiträge zur Begründung der transfiniten Mengenlehre (Erster Artikel),

Mathematische Annalen, vol. 46 (1895), pp. 481–512.
[10] , Beiträge zur Begründung der transfiniten Mengenlehre (Zweiter Artikel),

Mathematische Annalen, vol. 49 (1897), pp. 207–246.
[11] A.-L. Cauchy, Cours d’Analyse de l’Ecole Royale Polytechnique, Debure, Paris, 1821,

also asŒuvres Complètes (2), vol. III, Gauthier-Villars, Paris, 1897.
[12] A. Church, A set of postulates for the foundation of logic (1), Annals of Mathematics,

vol. 33 (1932), pp. 346–366.
[13] , A set of postulates for the foundation of logic (2), Annals of Mathematics,

vol. 34 (1933), pp. 839–864.
[14] , A formulation of the simple theory of types, The Journal of Symbolic Logic,

vol. 5 (1940), pp. 56–68.

49Note that polymorphism was already recognized by Russell as typical ambiguity (cf.
pages 161 and 162 of Principia). Moreover, Quine’s NF and ML are polymorphic systems.

TYPES IN LOGIC AND MATHEMATICS BEFORE 1940 243

[15] , Comparison of Russell’s resolution of the semantic antinomies with that of
Tarski, The Journal of Symbolic Logic, vol. 41 (1976), pp. 747–760.
[16] N. B. Cocchiarella, Frege’s double correlation thesis and Quine’s set theories NF and

ML, Philosophical Logic, vol. 13 (1984).
[17] , Philosophical perspectives on formal theories of predication, Handbook of

Philosophical Logic, vol. 4 (1986).
[18] H. B. Curry, Functionality in combinatory logic, Proceedings of the National Academy

of Science of the USA, vol. 20 (1934), pp. 584–590.
[19] , Foundations of mathematical logic, McGraw-Hill Series in Higher Mathe-

matics, McGraw-Hill Book Company, Inc., 1963.
[20] H. B. Curry andR. Feys, Combinatory logic I, Studies in Logic and the Foundations

of Mathematics, North-Holland, Amsterdam, 1958.
[21] R.Dedekind, Stetigkeit und irrationaleZahlen, Vieweg&Sohn, Braunschweig, 1872.
[22] Euclid, The Elements, 325 B.C., English translation in [36].
[23] S. Feferman, Towards useful type-free theories I, Symbolic Logic, vol. 49 (1984),

pp. 75–111.
[24] G. Frege, Letter to Russell, English translation in [68], pp. 127–128, 1902.
[25] ,Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen

Denkens, Nebert, Halle, 1879, also in [68], pp. 1–82.
[26] , Grundlagen der Arithmetik, eine logisch-mathematische Untersuchung über

den Begriff der Zahl, Breslau, 1884.
[27] , Funktion und Begriff, Vortrag gehalten in der Sitzung vom 9. Januar der

Jenaischen Gesellschaft für Medicin und Naturwissenschaft, Hermann Pohle, Jena, 1891,
English translation in [50], pp. 137–156.
[28] ,Grundgesetze der Arithmetik, begriffsschriftlich abgeleitet, vol. I, Pohle, Jena,

1892, reprinted 1962 (Olms, Hildesheim).
[29] , Über Sinn und Bedeutung, Zeitschrift für Philosophie und philosophische

Kritikf (new series), vol. 100 (1892), pp. 25–50, English translation in [50], pp. 157–177.
[30] , Ueber die Begriffschrift des Herrn Peano und meine eigene, Berichte über die

Verhandlungen der Königlich Sächsischen Gesellschaft der Wissenschaften zu Leipzig, Mathe-

matisch-physikalische Klasse 48, 1896, English translation in [50], pp. 234–248, pp. 361–378.
[31] , Grundgesetze der Arithmetik, begriffsschriftlich abgeleitet, vol. II, Pohle,

Jena, 1903, reprinted 1962 (Olms, Hildesheim).
[32] C. I. Gerhardt (editor), Die Philosophischen Schriften von Gottfried Wilhelm Leibniz,

Berlin, 1890.
[33] K. Gödel, Über formal unentscheidbare Sätze der Principia Mathematica und ver-

wandter Systeme I,Monatshefte für Mathematik und Physik, vol. 38 (1931), pp. 173–198, in
German; English translation in [68], pp. 592–618.
[34] , Russell’s mathematical logic, The philosophy of Bertrand Russell (P. A.

Schlipp, editor), Northwestern University, Evanston & Chicago, 1944, also in [5], pp. 447–
469.
[35] I. Grattan-Guinness, The search for mathematical roots, 1870–1930, Princeton Uni-

versity Press, 2001.
[36] T. L. Heath, The thirteen books of Euclid’s Elements, Dover Publications, Inc., New

York, 1956.
[37] D. Hilbert and W. Ackermann, Grundzüge der Theoretischen Logik, first ed., Die

Grundlehren der Mathematischen Wissenschaften in Einzeldarstellungen, Band XXVII,
Springer-Verlag, Berlin, 1928.
[38] R. Holmes, Systems of combinatory logic related to predicative and “mildly impred-

icative” fragments of quine’s “new foundations”, Annals of Pure and Applied Logic, vol. 59
(1993), pp. 45–53.

244 FAIROUZ KAMAREDDINE, TWAN LAAN, AND ROB NEDERPELT

[39] , Subsystems of Quine’s “New Foundations” with predicativity restrictions,
Notre Dame Journal of Formal Logic, vol. 40 (1999), no. 2, pp. 183–196.
[40] P. B. Jackson, Enhancing the nuprl proof development system and applying it to com-

putational abstract algebra, Ph.D. thesis, Cornell University, Ithaca, New York, 1995.
[41] R. B. Jensen, On the consistency of a slight modification of Quine’s NF, Synthese,

vol. 19 (1969), pp. 250–263.
[42] F. Kamareddine and T. Laan, A reflection on Russell’s ramified types and Kripke’s

hierarchy of truths, Journal of the Interest Group in Pure and Applied Logic, vol. 4 (1996),
no. 2, pp. 195–213.
[43] ,A correspondence betweenMartin-Löf type theory, the ramified theory of types

and pure type systems, Logic, Language and Information, vol. 10 (2001), no. 3, pp. 375–402.
[44] G. T. Kneebone, Mathematical logic and the foundations of mathematics, D. Van

Nostrand Comp., London, New York, Toronto, 1963.
[45] S. Kripke, Outline of a theory of truth, Journal of Philosophy, vol. 72 (1975), pp. 690–

716.
[46] T. Laan, A formalization of the Ramified Type Theory, Technical Report 94-33, TUE

Computing Science Reports, Eindhoven University of Technology, 1994.
[47] ,The evolution of type theory in logic andmathematics,Ph.D. thesis, Eindhoven

University of Technology, 1997.
[48] T. Laan andR. P. Nederpelt, Amodern elaboration of the Ramified Theory of Types,

Studia Logica, vol. 57 (1996), no. 2/3, pp. 243–278.
[49] G. Landini, Russell’s hidden substitutional theory, Oxford University Press, 1998.
[50] B. McGuinness (editor), Gottlob Frege: Collected papers on mathematics, logic, and

philosophy, Basil Blackwell, Oxford, 1984.
[51] G. Peano, Arithmetices principia, nova methodo exposita, Bocca, Turin, 1889, English

translation in [68], pp. 83–97.
[52] , Formulaire deMathématique, Bocca, Turin, 1894–1908, 5 successive versions;

the final edition issued as Formulario Mathematico.
[53]W. Peremans,Ups and downs of type theory,Technical Report 94-14, TUEComputing

Science Notes, Eindhoven University of Technology, 1994.
[54] H. Poincaré, Du rôle de l’intuition et de la logique en mathematiques, C. R. du IIme

Cong. Intern. des Math., Paris 1900, (1902), pp. 200–202.
[55]W. Van Orman Quine, New foundations for mathematical logic, American Mathe-

matical Monthly, vol. 44 (1937), pp. 70–80, also in [57], pp. 80–101.
[56] ,Mathematical logic, Norton, New York, 1940, revised edition Harvard Uni-

versity Press, Cambridge, 1951.
[57] , From a logical point of view: 9 logico-philosophical essays, second ed., Har-

vard University Press, Cambridge, Massachusetts, 1961.
[58] , Set theory and its logic, Harvard University Press, Cambridge, Mas-

sachusetts, 1963.
[59] F. P. Ramsey, The foundations of mathematics, Proceedings of the LondonMathemat-

ical Society (second series), vol. 25 (1926), pp. 338–384.
[60] J. B. Rosser,Highlights of the history of the lambda-calculus, Annals of the History of

Computing, vol. 6 (1984), no. 4, pp. 337–349.
[61] B. Russell, Letter to Frege, English translation in [68], pp. 124–125, 1902.
[62] , The principles of mathematics, Allen & Unwin, London, 1903.
[63] , Mathematical logic as based on the theory of types, American Journal of

Mathematics, vol. 30 (1908), pp. 222–262, also in [68], pp. 150–182.
[64]M. Schönfinkel, Über die Bausteine der mathematischen Logik,Mathematische An-

nalen, vol. 92 (1924), pp. 305–316, also in [68], pp. 355–366.

TYPES IN LOGIC AND MATHEMATICS BEFORE 1940 245

[65] K. Schütte, Beweistheorie, Die Grundlehren der Mathematischen Wissenschaften
in Einzeldarstellungen, Band 103, Springer-Verlag, Berlin, 1960.
[66] J. P. Seldin, Personal communication, 1996.
[67] E. P. Specker, The axiom of choice in Quine’s New Foundations formathematical logic,

Proceedings of the National Academy of Sciences of the USA, vol. 39 (1953), pp. 972–975.
[68] J. van Heijenoort (editor), From Frege to Gödel: A source book in mathematical logic,

1879–1931, Harvard University Press, Cambridge, Massachusetts, 1967.
[69] A. C. M. van Rooij, Analyse voor Beginners, Epsilon Uitgaven, Utrecht, 1986.
[70] H. Weyl, Das Kontinuum, Veit, Leipzig, 1918, in German; also in: Das Kontinuum

und andere Monographien, Chelsea Pub. Comp., New York, 1960.
[71] A. N. Whitehead and B. Russell, Principia Mathematica, vol. I, II, III, Cambridge

University Press, 1910, 1912, 19131, 1925, 1925, 19272, all references are to the first volume
unless otherwise stated.
[72] R. L. Wilder, The foundations of mathematics, second ed., Robert E. Krieger Pub-

lishing Company, Inc., New York, 1965.
[73] E. Zermelo, Untersuchungen über die Grundlagen der Mengenlehre, Mathematische

Annalen, vol. 65 (1908), pp. 261–281.

COMPUTING AND ELECTRICAL ENGINEERING

HERIOT-WATT UNIVERSITY

RICCARTON, EDINBURGH EH14 4AS, SCOTLAND

E-mail: fairouz@cee.hw.ac.uk

WEERDSTEDE 45

3431 LS NIEUWEGEIN, THE NETHERLANDS

E-mail: twan.laan@wxs.nl

MATHEMATICS AND COMPUTING SCIENCE

EINDHOVEN UNIVERSITY OF TECHNOLOGY

P. O. BOX 513

5600 MB EINDHOVEN, THE NETHERLANDS

E-mail: r.p.nederpelt@tue.nl

