
Pure Type Systems with de Bruijn indies ?Fairouz Kamareddine1, and Alejandro R��os21 Computing and Eletrial Engineering, Heriot-Watt Univ., Riarton, Edinburgh EH14 4AS, Sotland,fairouz�ee.hw.a.uk2 Department of Computer Siene, University of Buenos Aires, Pabell�on I - Ciudad Universitaria(1428) Buenos Aires, Argentina, rios�d.uba.arAbstrat. Nowadays, type theory has many appliations and is used in many di�erentdisiplines. Within omputer siene, logi and mathematis, there are many di�erent typesystems. They serve several purposes, and are formulated in various ways. A general frame-work alled Pure Type Systems (PTSs for short) has been introdued independently byTerlouw and Berardi in 1988 and 1989, in order to provide a uni�ed formalism in whihmany type systems an be represented. In partiular, PTSs allow the representation of thesimple theory of types, the polymophi theory of types, the dependent theory of types andvarious other well-known type systems suh as the Edinburgh Logial Frameworks LF andthe Automath system.Pure Type Systems are usually presented using variable names. In this artile, we present aformulation of PTSs with de Bruijn indies. De Bruijn indies [6℄ avoid the problems ausedby variable names during the implementation of type systems. We show that PTSs withvariable names and PTSs with de Bruijn indies are isomorphi. This isomorphism enablesus to answer questions about PTSs with de Bruijn indies inluding onuene, termination(strong normalisation) and safety (subjet redution).1 IntrodutionThe explosion of new type theories and their appliations in the twentieth entury is fasinating.This is not surprising sine type theory is onsidered as an important foundation for logi, theformalisation of mathematis and the design and implementation of theorem proving and pro-gramming languages. Of ourse, for every new type theory many questions need to be answeredbefore that theory an be useful for some appliations. Of these questions, we mention issueslike termination and safety. For example, in programming terms, safety an be desribed as theproperty that spei�es that if a program has a ertain type and if this program is evaluated to aertain value (or another program), then this result itself has the same type. Termination an bedesribed by the property that if a program is typable, then this program terminates (does notloop).Some of these properties are hard to establish and it is hene desirable to generalise proofsfrom one system to the other if at all possible. Hene, a general framework in whih di�erenttype systems an be desribed may turn out to be useful for providing general riteria and resultsonerning the various systems. A general framework also helps omparing the di�erent systems.In 1988 and 1989, a general framework was given independently by Terlouw and Berardi in [5,21℄ whih lassi�es di�erent known type theories. This framework is known as the Pure TypeSystems (PTSs for short) framework. In [4℄, a desription of PTSs and of a ube of eight di�erentsystems that are all PTSs an be found. Important type systems that are PTSs inlude Churh'ssimply typed �-alulus [7℄ and the alulus of onstrutions [8, 9℄ whih are also systems of theBarendregt ube [4℄.As to how types are written within the terms, there are basially two type disiplines: theimpliit and the expliit. The impliit style, also known as typing �a la Curry, does not annotatevariables with types. For example, the identity funtion is written as in the type-free ase, as? This work was supported by EPSRC grants GR/K25014, GR/L36963 and GR/L15685. We are gratefulfor the anonymous referees for their thorough reading and valuable omments.



2 Fairouz Kamareddine, and Alejandro R��os�x:x. The type of terms however is found using the typing rules of the system in use. The expliitstyle, also known as typing �a la Churh, does annotate variables and the identity funtion may bewritten as �x : Bool:x to represent identity over booleans. PTSs are based on typing �a la Churhand this is the disipline we onsider in this paper.So far, we know that there are two type disiplines of whih we onsider the expliitly typeddisipline, and that there are various type systems many of whih fall under the PTSs frameworkwhih we study in this paper. Besides the questions of what is the type system under onsiderationand what is the type disipline, there is another important question, namely: what is the variabledisipline assumed by the system. There are many disiplines onerned with variables:{ The use of named variables as is usually assumed in many books of the �-alulus and typetheory. For example (ignoring types) �x:x represents the identity funtion. In the named vari-able disipline, substitution an be a umbersome operation due to variable manipulation andrenaming. There are some approahes used to avoid either the problem or variables themselves.We mention next some of these methods that are used in the formalisation of �-alulus andtype theory and in the implementation of programming languages and theorem provers.{ The use of ombinatory logi whih is equivalent to the �-alulus but does not use variablenames. For example, in ombinatory logi, the identity funtion �x:x is written as I where Iaredues to a. In fat, every term is a ombinator and no variables need to be introdued. It ishowever less intuitive to understand what the ombinators are doing espeially in really largeterms. Combinators looked very promising in the 1970s and 1980s when Turner developed thelanguage Miranda and when Hughes developed the notion of super-ombinators. We will notstudy ombinators in this artile. The interested reader an refer to [11℄.{ The use of de Bruijn indies whih avoid lashes of variable names and therefore neither �-onversion nor Barendregt's onvention are needed. The identity funtion will be written as�:1 using de Bruijn indies. The 1 refers to the number of �s before reahing the binding �.De Bruijn indies are explained in detail in Setion 4.1. De Bruijn indies are extensively usedin the implementation of programming languages and theorem provers.{ There are many other approahes to avoid the problem of named variables in type theory. Forexample, there is the higher order abstrat syntax approah [19℄ whih avoids formalising therenaming of variables in order to prevent unintended apture during substitution. There is alsoanother approah due to Coquand and used in formalisations of PTSs in LEGO [16℄ wherefree variables are syntatially distinguished from bound ones and where expliit �-onversionof named variables is not neessary in the theory of redution, onversion and typing.There are advantages and disadvantages to eah of the above mentioned approahes. Thispaper is not about what is the best approah to represent variables in type theory. The lasttwo deades has seen muh progress in this �eld with more work arried out on higher orderabstrat syntax, or on defending the use of named variables (and the variable onvention), or ondefending the need for newer disiplines of variables. Our paper is onerned with writing PTSs(whih are usually written using variable names) using de Bruijn indies whih seems to be themost used formulation in many implementations of type theory and theorem proving. Translationsbetween variable names and de Bruijn indies have reeived attention in the past for the lambdaalulus [20, 14℄, but never before has there been a formulation of PTSs using de Bruijn indies.Now that we have settled the type disipline to expliit, the type systems to PTSs and thevariable disipline to de Bruijn indies, we propose to write PTSs using de Bruijn indies. Allthe desirable properties of PTSs (suh as termination and safety) have been established for PTSswith variable names and there does not yet exist a formulation of PTSs with de Bruijn indies forwhih the desirable properties have been established.We believe that as far as possible, important theoretial properties like termination and safetyshould be established before a system an be the basis of an implementation. In this paper, wewill give suh a formulation of PTSs with de Bruijn indies and we show that our formulation isisomorphi to the formulation with variable names. This isomorphism will be used to establishthat our formulation of PTSs with de Bruijn indies satis�es the properties mentioned above.The diret result of our work is that on one hand, one an now �nd a formulation of PTSs with



Pure Type Systems with de Bruijn indies 3de Bruijn indies for whih desirable properties have been proved, and on the other hand, ourformulation an be diretly implemented beause it is written with de Bruijn indies whih do notlead to the problemati features that result from variable names.This paper is divided as follows: In Setion 2 we introdue the formal mahinery needed. InSetion 3 we reall the Pure Type Systems with variable names as presented in [4℄ and some of theirproperties. In Setion 4 we introdue the Pure Type Systems with de Bruijn indies and prove someproperties onerning free variables. In Setion 5 we establish the isomorphisms between PTS'sand their de Bruijn versions. In Setion 6 we use the isomorphism to establish the properties ofPTSs with de Bruijn indies.2 Formal MahineryWe assume familiarity with the �-alulus as in [3℄. In this setion, we will introdue some ma-hinery that will be used in the rest of this paper.De�nition 1 (Redution Notations) Let S be a set and R a binary relation on S . We denoteR by !R and all it a redution notion. We use the following notations and de�nitions:1. !!R or just !! is the reexive and transitive losure of !R . When A !!R B we say thereexists an R-redution sequene from A to B .2. =R is the reexive, symmetri and transitive losure of!R. That is, =R is the least equivalenerelation ontaining !R.3. = is syntati identity, and A = B means A and B are syntatially idential.4. A 2 S is an R-normal form (R-nf for short) if there is no B 2 S suh that A!R B.5. We say that B is an R-normal form of A or A has B as R-normal form if B is an R-normalform and A =R B.Expressions an be evaluated in di�erent orders. For example, we ould evaluate 2+3+4 byevaluating (2+3)+4 or 2+(3+4). We would like to get the same result either way. The followingde�nition helps us desribe this phenomenon:De�nition 2 (Conuene and Churh Rosser) Let R be a notion of redution on S . Wesay that R is onuent (or Churh Rosser CR) if !!R satis�es the property:8A;B;C 2 S 9D 2 S : (A !!R B ^ A !!R C)) (B !!R D ^ C !!R D) :Theorem 3 Let R be a notion of redution that is CR. The following holds:{ Let A =R B then� there is a C suh that A!!R C and B !!R C.1� if B is in R-normal form, then A!!R B.� either A and B do not have R-normal forms or A and B have the same R-normal form.� if A and B are in R-normal forms then A = B.{ If A has R-normal forms B and C, then B = C. Hene, we speak of the R-normal form of Aand denote it by R(A).A seond very important onern of redution (or rewrite) notions is that of termination. Weare interested in knowing if our rewriting of a partiular expression will terminate or will goinde�nitely. For example, the rule n ! n + 1 applied to 1 will not terminate. Termination is aruial property for implementation purposes. If an expression does not always terminate, perhapsit an terminate with some areful ordering of rules. Those expressions that will never terminateare disastrous for omputation. The following de�nition introdues notions related to termination:De�nition 4 (Normalisation) Let R be a redution notion on S . We say that:1 Sometimes, this is referred to as the onuene property. We have however identi�ed Churh Rosserand Conuene.



4 Fairouz Kamareddine, and Alejandro R��os{ A is R strongly normalising if there are no in�nite R-redution sequenes starting at A.{ R is strongly normalising (SN) if there is no in�nite sequene (Ai)i�0 in S suh that Ai !RAi+1 for all i � 0 . I.e. every A in S is R strongly normalising.{ R is weakly normalising (WN) if every A 2 S has an R-normal form.When no onfusion an arise, R is omitted and we speak simply of normal forms or normalisation.Strong normalisation implies weak normalisation and therefore the existene of normal forms.3 Pure Type Systems with variable namesIn this setion, we will review PTSs with variable names and some of their properties.3.1 Syntax and Rules of PTSs with variable namesDe�nition 5 The set of pseudo-terms T , is generated by the grammar:T ::= V j C j (T T ) j (�V : T :T ) j (�V : T :T ), where V is the in�nite set of variables fv1; v2; v3; : : : gand C a set of onstants over whih, ; 1; : : : range and ontaining two speial sorts � and 2. Weuse A;B; : : : to range over T and x; y; z; : : : to range over V.De�nition 6 (Notational onvention) We use the following notational onventions:1. Throughout, we take � to represent either � or �.2. Funtional appliation assoiates to the left. So ABC denotes ((AB)C).3. The body or sope of a � is anything that omes after it. So, instead of (�v : A:(A1A2 : : : An)),we write �v : A:A1A2 : : : An.4. A sequene of �'s is ompressed to one, so for example, �x : A y : B z : C:t denotes�x : A:(�y : B:(�z : C:t)).Therefore, appliation has priority over abstration: �x : A:yz means �x : A:(yz) and not (�x : A:y)z.� is a variable binder, just like 8 in logi. Hene we de�ne free and bound variables.De�nition 7 (Free and Bound variables) For a term C, the set of free variables FV (C), andthe set of bound variables BV (C), are de�ned indutively as follows:FV (v) =def fvg BV (v) =def ; ; is the empty setFV () =def ; BV () =def ;FV (�v : A:B) =def (FV (B) n fvg) [ FV (A) BV (�v : A:B) =def BV (A) [ BV (B) [ fvgFV (AB) =def FV (A) [ FV (B) BV (AB) =def BV (A) [ BV (B)An ourrene of a variable v in a term is free if it is not within the sope of a �v : A:, otherwise itis bound. A losed term is a term in whih all variables are bound. We write A[x := B℄ to denotethe term where all the free ourrenes of x in A have been replaed by B.An important notion for rewriting relations is that of ompatibility:De�nition 8 (Compatibility for PTSs) We say that a binary relation R on a PTS is om-patible i� for all terms A;B, and variable v, the following holds:(A;B) 2 R(AC;BC) 2 R (a1) (A;B) 2 R(CA;CB) 2 R (a2)(A;B) 2 R(�v : C:A; �v : C:B) 2 R (b1) (A;B) 2 R(�v : A:C; �v : B:C) 2 R (b2)�-redution identi�es terms up to variable renaming:



Pure Type Systems with de Bruijn indies 5De�nition 9 (Alpha redution) �-redution !� is de�ned to be the least ompatible relationgenerated by the axiom:(�) �v : A:B !� �v0 : A:B[v := v0℄ where v0 62 FV (B)Now one an follow De�nition 1 to de�ne =� (�-equivalenes), !!�, et.As usually done with aluli with named variables we will identify �-equivalent terms and we willnot use a speial notation to di�erentiate terms and lasses of terms. However, when we want tostress the fat that two terms, say A and B are � equivalent but may not be idential we willeventually write A =� B instead of A = B. Furthermore, we assume the Barendregt variableonvention whih is formally stated as follows:Convention 10 (V C: Barendregt's Convention) Names of bound variables will always behosen suh that they di�er from the free ones in a term. Moreover, di�erent �'s have di�er-ent variables as subsript. Hene, we will not have (�x : A:x)x, but (�y : A:y)x instead.Lemma 11 (Substitution for variable names) Let A;B;C 2 T , x; y 2 V. For x 6= y andx 62 FV (C), we have that: A[x := B℄[y := C℄ = A[y := C℄[x := B[y := C℄℄.De�nition 12 (Beta redution) �-redution!� is the least ompatible relation on T generatedby (�) (�x : A:B)C ! B[x := C℄Here is a lemma about the interation of �-redution and substitution. Note that in the �rst ase,!� is mapped into!!� . The reason being that x may our n times (for n � 0) as a free variablein A and hene the redution will be repeated following the number of ourrenes of x.Lemma 13 Let A;B;C;D 2 T .1. If C !� D then A[x := C℄!!� A[x := D℄ .2. If A!� B then A[x := C℄!� B[x := C℄ .Proof: By indution on the struture of A for 1, on the generation of A!� B for 2. �Now, we de�ne some mahinery needed for typing:De�nition 141. A statement is of the form A : B with A;B 2 T . We all A the subjet and B the prediateof A : B.2. A delaration is of the form x : A with A 2 T and x 2 V.3. A pseudo-ontext is a �nite ordered sequene of delarations, all with distint subjets. We use�;�; � 0; �1; �2; : : : to range over pseudo-ontexts. The empty ontext is denoted by either <>or nothing at all if no onfusion an arise.4. If � = x1 : A1; : : : ; xn : An then �; x : B = x1 : A1; : : : ; xn : An; x : B and dom(� ) = fx1; : : : ; xng.De�nition 15 A type assignment relation is a relation between pseudo-ontexts and pairs ofpseudo-terms written as � ` A : B. The rules of type assignment establish whih judgments� ` A : B an be derived. A judgement � ` A : B states that A : B an be derived from thepseudo-ontext � .De�nition 16 Let � be a pseudo-ontext and ` be a type assignment relation.1. � is alled legal if 9A;B 2 T suh that � ` A : B.2. A 2 T is alled a � -term if 9B 2 T suh that � ` A : B or � ` B : A.We take � -terms = fA 2 T suh that 9B 2 T and � ` A : B _ � ` B : Ag.3. A 2 T is alled legal if 9� suh that A 2 � -terms.



6 Fairouz Kamareddine, and Alejandro R��osThe next de�nition will introdue a generalised family of type systems alled Pure Type Systems(or PTSs). A PTS an be distinguished from another by:{ The set of sorts S whih is a subset of the onstants C. The two most used sorts are � and 2.A : � an be read as A is a type. A : 2 an be read as A is a kind.{ The set of axioms A of the form  : s whih type speial onstants. � : 2 is an example of suhan axiom.{ A set of rules R whih restrit type formation as to allow/disallow notions like polymorphim,dependent types, et.De�nition 17 The spei�ation of a PTS is a triple S = (S;A;R), where S is a subset of C,alled the sorts. A is a set of axioms of the form  : s with  2 C and s 2 S and R is a set of rulesof the form (s1; s2; s3) with s1; s2; s3 2 S.De�nition 18 The notion of type derivation, denoted � `�S A : B (or simply � ` A : B), in aPTS whose spei�ation is S = (S;A;R), is axiomatised by the axioms and rules of Figure 1.
(axiom) <>`  : s if  : s 2 A(start) � ` A : s�; x : A ` x : A if x 62 dom(� )(weakening) � ` B : C � ` A : s�; x : A ` B : C if x 62 dom(� )(produt) � ` A : s1 �; x : A ` B : s2� ` (�x : A:B) : s3 if (s1; s2; s3) 2 R(appliation) � ` F : (�x : A:B) � ` C : A� ` F C : B[x := C℄(abstration) �; x : A ` C : B � ` (�x : A:B) : s� ` (�x : A:C) : (�x : A:B)(onversion) � ` A : B � ` B0 : s B =� B0� ` A : B0Fig. 1. PTSs with variables namesEah of the eight systems of the ube is obtained by taking S = f�;2g, A = f� : 2g, and R to be aset of rules of the form (s1; s2; s2) for s1; s2 2 f�;2g. This means that for the ube, the only possible(s1; s2; s2) rules in the set R are elements of the set: f(�; �; �); (�;2;2); (2; �; �); (2;2;2)g. Thebasi system is the one where (s1; s2; s2) = (�; �; �) is the only possible hoie. All other systemshave this version of the formation rules, plus one or more other ombinations of (�;2;2), (2; �; �)and (2;2;2) for (s1; s2; s2). See Figures 2 and 3. See also Page 192 of [4℄.Note that as in the ube there are only two sorts, � and 2, and as eah set R must ontain(�; �; �), there are only eight possible di�erent systems for the Cube. An important aspet of theCube is that it provides a fatorisation of the expressive power of the Calulus of Construtionsinto three features: polymorphism, type onstrutors, and dependent types:{ (�; �; �) is the basi rule that forms types. All type systems of the Cube have this rule.
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Fig. 3. The ube{ (2; �; �) is the rule that takes are of polymorphism. Girard's System (also known as �2) isthe weakest system on the Cube that features this rule.{ (2;2;2) takes are of type onstrutors. The system �! is the weakest system on the Cubethat features this rule.{ (�;2;2) takes are of term dependent types. The system �P is the weakest system on theCube that features this rule.Many other well-known type systems, like Automath [18℄, LF [10℄, and ML [17℄ an be moreor less related to one of the systems of the Barendregt Cube.3.2 Properties of PTSs with variable namesNow, we list some of the properties of PTSs with variable names (see [4℄ for proofs). In Setion 6,we will establish these properties for PTSs with de Bruijn indies.Lemma 19 Let A;B 2 T . If A!� B then FV (B) � FV (A).Theorem 20 (The Churh Rosser Theorem for PTSs with variable names) If A!!� Band A!!� C then there exists D suh that B !!� D and C !!� D.Lemma 21 (Free variable lemma) Let � = x1 : A1; : : : ; xn : An suh that� ` B : C. The following hold (proof is by indution on the derivation � ` B : C):1. FV (B); FV (C) � fx1; : : : ; xng.2. FV (Ai) � fx1; : : : ; xi�1g for 1 � i � n.Theorem 22 (Subjet Redution (SR) for PTSs with variable names)If � ` A : B and A!!� A0 then � ` A0 : B.The next de�nition introdues the notion of singly sorted PTSs, whih impose that the speialonstants have unique sorts as types and whih imply the uniity of types.



8 Fairouz Kamareddine, and Alejandro R��osDe�nition 23 Let �S = �(S;A;R) be a given PTS. �S is alled singly sorted if:1. ( : s1); ( : s2) 2 A implies s1 = s2.2. (s1; s2; s3); (s1; s2; s03) 2 R implies s3 = s03.Lemma 24 (Uniity of types for singly sorted PTSs with variable names) In any singlysorted PTS, the following holds:1. If � ` A : B1 and � ` A : B2 then B1 =� B2.2. If � ` A : B and � ` A0 : B0 then A =� A0 implies B =� B0.3. If � ` B : s, B =� B0 and � ` A0 : B0, then � ` B0 : s.Theorem 25 (Strong normalisation for the systems of the ube) Every legal term of theube with variable names is strongly normalising.4 Pure Type Systems with de Bruijn indies4.1 SyntaxDe Bruijn noted that due to the fat that terms like �x : z:x and �y : z:y are the \same", one an�nd a �-notation modulo �-onversion. That is, following de Bruijn, one an abandon variablesand use indies instead. The idea of de Bruijn indies is to remove all the variables of the �'s andto replae their ourrenes in the body of the term by the number whih represents how many�'s one has to ross before one reahes the � binding the partiular ourrene at hand.In the presene of free variables, a free variable list whih orders the variables must be assumed.For example, assume we take x; y; z; u; v; : : : to be the free variable list where x omes before ywhih is before z, et. Then, in order to write terms using de Bruijn indies, we use the sameproedure above for all the bound variables. For a free variable however, say z, we ount as far aspossible the �'s in whose sope z is, and then we ontinue ounting in the free variable list usingthe order assumed. The following exampli�es this situation:Example 261. �x : z:x is replaed by �3:1. That is, x is removed, and the x of the body x is replaed by 1 toindiate the � it refers to.2. �x : y:xz and (�x : z:xz)y translate respetively into �2:14 and (�3:14)2.Now we are ready to de�ne PTSs with de Bruijn indies.De�nition 27 We de�ne T , the set of pseudo-terms with de Bruijn indies, by the syntax:T ::= IN j C j (T T ) j (�T:T ) j (�T:T ), where C is a set of onstants over whih ; 1; : : : range.We use A;B; : : : to range over T and m;n; : : : to range over IN (positive natural numbers).We assume onventions 1, 2, and an analogous to 3 of De�nition 6 and their onsequenes.The de�nition of ompatibility (De�nition 8) is hanged for de Bruijn indies by replaing (b1)and (b2) by the following:(A;B) 2 R(�A:C; �B:C) 2 R (b01) (A;B) 2 R(�C:A; �C:B) 2 R (b02)4.2 Updating, Substitution and RedutionIn order to de�ne �-redution, we must de�ne the substitution of a variable by a term B in a termA. Therefore, we must identify amongst the numbers of a term A those that orrespond to thevariable that is being substituted for and we need to update the term to be substituted in orderto preserve the orret bindings of its variables.



Pure Type Systems with de Bruijn indies 9Example 28 Translating (�x : v:�y : v:zxy)(�x : v:yx) !� �u : v:z(�x : v:yx)u into de Bruijnindies, one gets (�5:�6:521)(�5:31) !� �5:4(�6:41)1. But, how an we arry the �-redutionwithout translating the result from variable names? The body of �5:�6:521 is �6:521 and the variablebound by the �rst � of �5:�6:521 is the 2. Hene, we need to replae in �6:521 the 2 by �5:31. Butif we simply replae 2 in �6:521 by �5:31 we get �6:5(�5:31)1, whih is not orret. We needed toderease 5 as one � disappeared and to inrement the free variables of �5:31 as they our withinthe sope of one more �. Doing all this will lead to the �nal result �5:4(�6:41)1.In order to de�ne �-redution (�C:A)B !�? using de Bruijn indies. We must:(a) �nd in A the ourrenes n1; : : : nk of the variable bound by the � of �C:A.(b) derease the free variables of A to reet the disappearane of the � from �A.() replae the ourrenes n1; : : : nk in A by updated versions of B whih take into aount thatfree variables in B may appear within the sope of extra �s in A.It will take some work to do this. Let us, in order to simplify things say that the �-rule is(�CA)B !� Aff1 Bgg and let us de�ne Aff1 Bgg in a way that all the work of (a)� () aboveis arried out. We need ounters desribed informally as follows:1. We start traversing A (here �6:521) with a unique ounter initialised at 1.2. When arriving at an appliation node, we reate a opy of the ounter in order to have oneounter for eah branh.3. When arriving at an abstration node, we inrement the ounter.4. When arriving at a leaf (i.e. a number):(a) If it is superior to the ounter, we derease the number by 1, beause there will be one �less between this number and the � that binds it.(b) If the number is equal to the ounter, say n, it must be replaed by B whih will be foundnow under n� 1 �'s. We must therefore adjust the numbers of B so that we an modifythe binding relations inside B. For this we use a family of funtions that we all updatingfuntions.() If the number is inferior to the value of the ounter, then it is bound by a � whih is insideA, and hene the number must not be modi�ed.Let us de�ne the updating funtions.De�nition 29 The updating funtions U ik : T ! T for k � 0 and i � 1 are de�ned indutivelyas follows:U ik() =  for  2 CU ik(�A:B) = �U ik(A):(U ik+1(B))U ik(AB) = U ik(A)U ik(B) U ik(n) = �n+ i� 1 if n > kn if n � k :The intuition behind U ik is the following: k tests for free variables and i � 1 is the value bywhih a variable, if free, must be inremented.Now we de�ne the family of substitution funtions:De�nition 30 The substitutions at level i , for i � 1 , of a term B 2 T in a term A 2 T ,denoted Affi Bgg , are de�ned indutively on A as follows:ffi Bgg =  for  2 C(A1A2)ffi Bgg = (A1ffi Bgg) (A2ffi Bgg)(�A:C)ffi Bgg = �Affi Bgg:(Cffi+ 1 Bgg) nffi Bgg = 8<:n� 1 if n > iU i0(B) if n = in if n < i :The seond and third equalities propagate the substitution through appliations and abstrationsand the �rst one arries out the substitution of the intended variable (when n = i) by the updatedterm. If the variable is not the intended one it must be dereased by 1 if it is free (ase n > i)beause one � has disappeared, whereas if it is bound (ase n < i) it must remain unaltered.The next lemma establishes the properties of the substitutions and updating funtions. Theproof of this lemma is obtained by indution on A and similar to the type-free ase in [13℄.



10 Fairouz Kamareddine, and Alejandro R��osLemma 311. [Substitution lemma℄ For 1 � i � n we have:Affi Bggffn Cgg = Affn+ 1 Cggffi Bffn� i+ 1 Cgggg.2. [Distribution lemma℄ For n � k + 1 we have: U ik(Affn Bgg) = U ik+1(A)ffn U ik�n+1(B)gg :Case 1 is the version of Lemma 11 using de Bruijn indies.De�nition 32 (Beta redution) �-redution is the least ompatible redution on T generatedby: (�) (�A:C)B !� Cff1 BggRemark that we use !� to denote both, �-redution on T and �-redution on T . The ontextwill always be lear enough to determine the intended redution.Finally, here is the version of Lemma 13 for de Bruijn indies. Note that we need not only toensure the good passage of the �-rule through the substitutions but also through the U ik.Lemma 33 Let A; B; C; D 2 T .1. If C !� D then i) U ik(C)!� U ik(D) and ii)Affi Cgg !!� Affi Dgg .2. If A!� B then Affi Cgg !� Bffi Cgg .Proof: 1. Case i) is by indution on C using Lemma 31.2. Case ii) is by indution on A usingi). 2. Is by indution on A using Lemma 31.1. �We now de�ne the set of free variables of a term with de Bruijn indies. We need �rst to de�nethe following operations on sets of natural numbers.De�nition 34 Let N � IN and k � 0. We de�ne:1: N n k = fn� k : n 2 N;n > kg 2: N + k = fn+ k : n 2 Ng3: N>k = fn 2 N : n > kg 4: N<k = fn 2 N : n < kgThe following properties of the above operations will be needed later and their proofs are easy.Remark 35 Let N; M � IN and k; k0 � 0. We have1: (N [M) n k = (N n k) [ (M n k) 2: (N n k) n k0 = N n (k + k0)3: (N + k) n 1 = N + (k � 1) if k � 1 4: (N n 1)<k = (N<k+1) n 15: (N n 1)>k = (N>k+1) n 1In the de�nition of free variables we give now, only the di�erene n is needed. The otheroperations will be useful later.De�nition 36 The set of free variables of a term with de Bruijn indies is de�ned by indutionas follows: FV () =def ; for  2 C FV (AB) =def FV (A) [ FV (B)FV (n) =def fng FV (�A:C) =def FV (A) [ (FV (C) n 1)Lemma 37 For A 2 T we have FV (U ik(A)) n k = (FV (A) n k) + (i� 1).Proof: Indution on A. Use Remark 35.1 for the ase A = BC and Remark 35.2 for the aseA = �B:C. �Lemma 38 For A; B 2 T and j � 1, the following hold:1. FV (Affj Bgg) = (FV (A))<j [ ((FV (A))>j n 1) if j 62 FV (A).2. FV (Affj Bgg) = (FV (A))<j [ ((FV (A))>j n 1) [ (FV (B) + (j � 1)) if j 2 FV (A).Proof: By simultaneous indution on A. Use the previous lemma for the ase A = j and Remark35.3, 4, 5 for the ase A = �B:C. �The following lemma on T orresponds to Lemma 19 on T .Lemma 39 Let A;B 2 T . If A!� B then FV (B) � FV (A).Corollary 40 Let A;B 2 T . If A!!� B then FV (B) � FV (A).



Pure Type Systems with de Bruijn indies 114.3 Rules of PTSs with de Bruijn indiesDe�nition 14 for PTSs with variable names hanges when de Bruijn indies are used as follows:A (de Bruijn) pseudo-ontext � beomes a �nite ordered sequene of de Bruijn terms. Wewrite it simply as � = A1; : : : ; An. Statements, subjet and prediate remain unhanged, anddelarations disappear.De�nitions 15, 16 and 17 are the same for de Bruijn indies (exept that T hanges to T ).Now, we an give the de�nition of PTSs using de Bruijn indies:De�nition 41 The notion of type derivation, denoted � `�S A : B (or simply � ` A : B), in aPTS whose spei�ation is S = (S;A;R), is axiomatised by the axioms and rules of Figure 4.
(axiom) <>`  : s if  : s 2 A(start) � ` A : sA;� ` 1 : U20 (A)(weakening) � ` B : C � ` A : sA; � ` U20 (B) : U20 (C)(produt) � ` A : s1 A;� ` B : s2� ` (�A:B) : s3 if (s1; s2; s3) 2 R(appliation) � ` F : (�A:B) � ` C : A� ` F C : Bff1 Cgg(abstration) A;� ` C : B � ` (�A:B) : s� ` (�A:C) : (�A:B)(onversion) � ` A : B � ` B0 : s B =� B0� ` A : B0Fig. 4. PTSs with de Bruijn indiesRemark that in the rules (start), (weakening), (produt), (abstration) the position of A withrespet to � is reversed with respet to its position in the orresponding rules of the lassialsetting. However, we have hosen this presentation following the original work of type systems inde Bruijn notation (f. [1℄).Remark also the role played by the updating U20 in the rules (start), (weakening). This funtioninreases with 1 the de Bruijn indies whih orrespond to free variables and its ourrene in thesetwo rules is reasonable sine the orresponding ontexts have been augmented by the addition ofa new omponent.Example 421: ` � : 2 by axiom2: � ` 1 : � by 1 and start3: 1; � ` 1 : 2 by 2 and start4: 1; 1; � ` 2 = U20 (1) : 3 = U20 (2) by 3 twie and weakeningThe following lemma is the equivalent for de Bruijn indies, of Lemma 21.



12 Fairouz Kamareddine, and Alejandro R��osLemma 43 Let A1; : : : ; An ` B : C then1: FV (B); FV (C) � f1; : : : ; ng 2: for 0 � i � n� 1, FV (An�i) � f1; : : : ; ig.Proof: Both items are proved by indution on the derivation.1. For (start) and (weakening) use lemma 37. For (appliation) use lemma 38. The other rulesare immediate.2. For (start) and (weakening) use 1. The other rules are immediate. �5 The isomorphismIn the rest of this paper, we present the isomorphism between PTSs written using variable namesand PTSs written using de Bruijn indies. The method is as follows:1. We translate eah term A and eah ontext � written using variable names, into a term t[::: ℄(A)and a ontext t(� ) written with de Bruijn indies. We then prove that these translationspreserve �-redution (if in T , A !� B then in T , t[::: ℄(A) !� t[::: ℄(B)) and type assignment(if in T , � ` A : B then in T , t(� ) ` t[::: ℄(A) : t[::: ℄(B)).2. We de�ne translations u[::: ℄ and u in the other diretion and also prove preservation of �-redution and type assignment.3. We prove that these translations are inverses of eah other.Notation 441. We write [x1; : : : ; xn℄ for the ordered list of x1; : : : ; xn.2. For i � 0, we write xi for x1; : : : ; xi and xi for xi; : : : ; x1.5.1 Translating T to TDe�nition 45 (The translation t) For every term A 2 T suh that FV (A) � fx1; : : : ; xng wede�ne t[x1;:::;xn℄(A) by indution on A as follows:t[x1;:::;xn℄() =def  for  2 Ct[x1;:::;xn℄(vi) =def minfj suh that vi = xjgNote: minfj suh that vi = xjg is interpreted as a de Bruijn index.t[x1;:::;xn℄(AB) =def t[x1;:::;xn℄(A)t[x1;:::;xn℄(B)t[x1;:::;xn℄(�x : B:A) =def �t[x1;:::;xn℄(B):t[x;x1;:::;xn℄(A)Let � = x1 : A1; : : : ; xn : An be a legal ontext. We de�ne:t(� ) =def t[xn�1;:::;x1℄(An); t[xn�2;:::;x1℄(An�1); : : : ; t[x1℄(A2); t[ ℄(A1).Remark that De�nition 45 is a good de�nition thanks to Lemma 21.Lemma 46 Let A 2 T suh that FV (A) � fx1; : : : ; xng. Then FV (t[x1;:::;xn℄(A)) � f1; : : : ; ng.Proof: By indution on A. �We need to establish some lemmas before proving the preservation of type assignment. Theselemmas state how the translation behaves with the updating funtions, the substitutions, the�-ontrations and �-equivalene.Lemma 47 Let A 2 T , k � 0, i � 1 and n � k + i suh that xk+1; : : : ; xk+i�1 62 FV (A).Then t[x1;:::;xn℄(A) = U ik(t[x1;:::;xk;xk+i;:::;xn℄(A)).



Pure Type Systems with de Bruijn indies 13Proof: By indution on A. The ase A =  2 C is immediate, the ase A = BC just need theIH, the ases A = �x : B:C and A = �x : B:C are similar. Therefore, we just study:A = vm : Let j = minfi : vm = xig. Then t[x1;:::;xn℄(vm) = j.If j � k we have t[x1;:::;xn℄(A) = j = U ik(j) = U ik(t[x1;:::;xk;xk+i;:::;xn℄(A)).If j � k + i we have t[x1;:::;xn℄(A) = j = U ik(j � i+ 1) = U ik(t[x1;:::;xk;xk+i;:::;xn℄(A)).A = �x : B:C : We have t[x1;:::;xn℄(A) = �t[x1;:::;xn℄(B):t[x;x1;:::;xn℄(C) IH=�U ik(t[x1;:::;xk;xk+i;:::;xn℄(B)):U ik+1(t[x1;:::;xk;xk+i;:::;xn℄(C)) =U ik(�t[x1;:::;xk;xk+i;:::;xn℄(B):t[x1;:::;xk;xk+i;:::;xn℄(C)) = U ik(t[x1;:::;xk;xk+i;:::;xn℄(A)) �Lemma 48 Let A; B 2 T suh that the bound variables of B are not free in A and take yi�1 andxn for i � 1 and n � 0. Let x be a variable not bound in B and distint from y1; : : : ; yi�1 andassume y1; : : : ; yi�1 62 FV (A). Then t[yi�1;xn℄(B[x := A℄) = (t[yi�1;x;xn℄(B))ffi t[xn℄(A)gg.Proof: By indution on B. We just study the interesting ases:B = z 2 V : We onsider three ases:If z = x, then t[yi�1;xn℄(B[x := A℄) = t[yi�1;xn℄(A) L 47=U i0(t[xn℄(A)) = (t[yi�1;x;xn℄(B))ffi t[xn℄(A)ggIf fj : z = yjg 6= ;, let k = minfj : z = yjg. Thent[yi�1;xn℄(B[x := A℄) = k = (t[yi�1;x;xn℄(B))ffi t[xn℄(A)ggIf fj : z = xjg 6= ;, let k = minfj : z = xjg. We an assume xk 6= x sine the ase z = x hasalready been onsidered. We havet[yi�1;xn℄(B[x := A℄) = k+ i� 1 = k+ iffi t[xn℄(A)gg = (t[yi�1;x;xn℄(B))ffi t[xn℄(A)ggB = �z : D:E : Remark that, sine x is not bound in B, x 6= z. We havet[yi�1;xn℄(B[x := A℄) = �t[yi�1;xn℄(D[x := A℄):t[z;yi�1;xn℄(E[x := A℄) IH=�(t[yi�1;x;xn℄(D))ffi t[xn℄(A)gg:(t[z;yi�1;x;xn℄(E))ffi+ 1 t[xn℄(A)gg =(�t[yi�1;x;xn℄(D):t[z;yi�1;x;xn℄(E))ffi t[xn℄(A)gg = (t[yi�1;x;xn℄(B))ffi t[xn℄(A)ggRemark that we were able to apply the IH, beause z 62 FV (A), sine we assumed that the boundvariables of B are not free in A. �Lemma 49 Let A;B 2 T suh that FV (A) � fx1; : : : xng and A!� B.Then t[x1;:::;xn℄(A)!� t[x1;:::;xn℄(B).Proof: Remark that Lemma 19 guarantees the good de�nition of t[x1;:::;xn℄(B).The proof is by indution on A. The interesting ase is when A is an appliation and the redutiontakes plae at the root.Therefore, let A = (�x : D:C)E and B = C[x := E℄. We havet[x1;:::;xn℄(A) = (�t[x1;:::;xn℄(D):t[x;x1;:::;xn℄(C))t[x1;:::;xn℄(E)!�(t[x;x1;:::;xn℄(C))ff1 t[x1;:::;xn℄(E)gg L 48= t[x1;:::;xn℄(C[x := E℄) = t[x1;:::;xn℄(B) �Corollary 50 Let A;B 2 T suh that FV (A) � fx1; : : : xng and A!!� B.Then t[x1;:::;xn℄(A)!!� t[x1;:::;xn℄(B).Lemma 51 Let A 2 T suh that FV (A) � fx1; : : : ; xng and let y1; : : : ; ym suh that for every i,1 � i � m, either yi 62 FV (A) or yi = xj for some j, 1 � j � n.Then t[x1;:::;xn;y1;:::;ym℄(A) = t[x1;:::;xn℄(A).Proof: Easy indution on A. �Lemma 52 Let A; B 2 T suh that FV (A) [ FV (B) � fx1; : : : ; xng and A =� B.Then t[x1;:::;xn℄(A) =� t[x1;:::;xn℄(B).Proof: By indution on the number k of �-ontrations and �-expansions in A =� B.If k = 0 the lemma is obvious. There are two possibilities for k > 0:



14 Fairouz Kamareddine, and Alejandro R��osA =� C !� B : If FV (C) � fx1; : : : ; xng apply IH and Lemma 49.Otherwise let fy1; : : : ; ymg = FV (C) n fx1; : : : ; xng. Thent[x1;:::;xn;y1;:::;ym℄(A) IH=� t[x1;:::;xn;y1;:::;ym℄(C) L 49!� t[x1;:::;xn;y1;:::;ym℄(B)And we onlude by the previous lemma.B !� C =� A : By Lemma 19, FV (C) � FV (B). Now, IH and Lemma 49 settle this ase. �Now we are ready to state and prove the preservation of type assignment by t:Theorem 53 Let � = x1 : A1; : : : ; xn : An suh that � ` A : B.Then t(� ) ` t[xn;:::;x1℄(A) : t[xn;:::;x1℄(B).Proof: By indution on the derivation � ` A : B. If A : B is an axiom the theorem followsimmediately. Let us study the last rule in the derivation � ` A : B.(start) : Let � = x1 : A1; : : : ; xn : An. If � ` A : s then, by IH, t(� ) ` t[xn;:::;x1℄(A) : s andhene, applying (start), t[xn;:::;x1℄(A); t(� ) ` 1 : U20 (t[xn;:::;x1℄(A)). Sine, by de�nition, t(�; x :A) = t[xn;:::;x1℄(A); t(� ) and t[x;xn;:::;x1℄(x) = 1, we must only hek that t[x;xn;:::;x1℄(A) =U20 (t[xn;:::;x1℄(A)), but this is an instane of Lemma 47, and we are done.(weakening) : As in the previous item, Lemma 47 solves this ase.(appliation) : In this ase use Lemma 48.(abstration) and (produt) : Just use the IH.(onversion) : Lemma 52 settles this ase. �5.2 Translating T to TDe�nition 54 (The translation u) Let A 2 T suh that FV (A) � f1; : : : ; ng and let x1; : : : ; xnbe distint variables of V . We de�ne u[xn;:::;x1℄(A) by indution on A:u[xn;:::;x1℄() =def  for  2 Cu[xn;:::;x1℄(i) =def xiu[xn;:::;x1℄(AB) =def u[xn;:::;x1℄(A)u[xn;:::;x1℄(B)u[xn;:::;x1℄(�B:A) =def �x : u[xn;:::;x1℄(B):u[xn;:::;x1;x℄(A) with x 62 fx1; : : : ; xngRemark that De�nition 54 is orret sine FV (�B:A)�f1; : : : ; ng implies FV (A) � f1; : : : ; n+1g. Furthermore, the de�nition for abstrations and produts does not depend on the hoie ofthe variable x thanks to the following remark.Remark 55 Let B;C 2 T suh that FV (�B:C) � f1; : : : ; ng, let x1; : : : ; xn distint variables andx; y variables suh that x; y 62 fx1; : : : ; xng.Then �x : u[xn;:::;x1℄(B):u[xn;:::;x1;x℄(C) = �y : u[xn;:::;x1℄(B):u[xn;:::;x1;y℄(C).Proof: It is enough to show that u[xn;:::;x1;x℄(C)[x := y℄ = u[xn;:::;x1;y℄(C), whih is a partiularase of the following lemma. �Lemma 56 Let B 2 T suh that FV (B) � f1; : : : ; n+m + 1g, and let the variables x1; : : : ; xn,z1; : : : ; zm, x and y be all distint . Then (u[xn;:::;x1;x;zm;:::;z1℄(B))[x := y℄ = u[xn;:::;x1;y;zm;:::;z1℄(B).Proof: By indution on B. The only interesting ase is when B = �A:C. Let u[xn;x;zm℄(B) =�w : u[xn;x;zm℄(A):u[xn;x;zm;w℄(C). Let u[xn;y;zm℄(B) = �v : u[xn;y;zm℄(A):u[xn;y;zm;v℄(C).Remark that we an assume that w 6= y. In fat, if w = y we an hoose z suh that z 6= y andalso distint from x1; : : : ; xn, z1; : : : ; zm, x, and we haveu[xn;x;zm℄(B) = �z : u[xn;x;zm℄(A):u[xn;x;zm;w℄(C)[w := z℄ IH= �z : u[xn;x;zm℄(A):u[xn;x;zm;z℄(C).Therefore, sine w 6= y, we have(u[x;x;zm℄(B))[x := y℄ = (�w : u[xn;x;zm℄(A):u[xn;x;zm;w℄(C))[x := y℄ =�w : u[xn;x;zm℄(A)[x := y℄:u[xn;x;zm;w℄(C)[x := y℄ IH= �w : u[xn;y;zm℄(A):u[xn;y;zm;w℄(C) =�v : u[xn;y;zm℄(A):u[xn;y;zm;w℄(C)[w := v℄ IH= �v : u[xn;y;zm℄(A):u[xn;y;zm;v℄(C) = u[xn;y;zm℄(B) �



Pure Type Systems with de Bruijn indies 15De�nition 57 Let � = A1; : : : ; An be a legal ontext. We de�ne:u(� ) = v1 : u[ ℄(An); v2 : u[v1℄(An�1); : : : ; vn : u[v1;:::;vn�1℄(A1)De�nition 57 is orret thanks to Lemma 43.As in the previous subsetion, we must establish some lemmas in order to prove that u pre-serves type assignement. These lemmas larify the interation of u with the updating funtions,substitutions, �-ontrations and �-equivalene.Lemma 58 Let A 2 T , i � 1, k � 0 and n � k + i suh that FV (A) � f1; : : : ; n� i+ 1g. Thenu[xn;:::;x1℄(U ik(A)) = u[xn;:::;xk+i;xk;:::;x1℄(A).Proof: By indution on A. As usual we study the two interesting ases:A = m : If m � k then u[xn;:::;x1℄(U ik(A)) = xm = u[xn;:::;xk+i;xk;:::;x1℄(A).If m > k then u[xn;:::;x1℄(U ik(A)) = xm+i�1 = u[xn;:::;xk+i;xk;:::;x1℄(A).A = �B:C : We an hoose x to obtain:u[xn;:::;x1℄(U ik(A)) = �x : u[xn;:::;x1℄(U ik(B)):u[xn;:::;x1;x℄(U ik+1(C)) IH=�x : u[xn;:::;xk+i;xk;:::;x1℄(B):u[xn;:::;xk+i;xk;:::;x1;x℄(C) = u[xn;:::;xk+i;xk;:::;x1℄(A) �Lemma 59 Let A; B 2 T and x1; : : : ; xn, y1; : : : ; yi�1, x distint variables.Then u[xn;:::;x1;yi�1;:::;y1℄(Affi Bgg) = (u[xn;:::;x1;x;yi�1;:::;y1℄(A))[x := u[xn;:::;x1℄(B)℄.Proof: By indution on A. We study the two interesting ases:A = j : If j < i then u[xn;yi�1℄(Affi Bgg) = yj = (u[xn;x;yi�1℄(A))[x := u[xn;:::;x1℄(B)℄.If j > i then u[xn;yi�1℄(Affi Bgg) = xj�i = (u[xn;x;yi�1℄(A))[x := u[xn;:::;x1℄(B)℄.If j = i then u[xn;yi�1℄(Affi Bgg) = u[xn;yi�1℄(U i0(B)) L 58=u[xn;:::;x1℄(B) = (u[xn;x;yi�1℄(A))[x := u[xn;:::;x1℄(B)℄:A = �D:C : We hoose z 6= x to obtain:u[xn;y℄(Affi Bgg) = �z : u[xn;yi�1℄(Dffi Bgg):u[xn;yi�1;z℄(Cffi+ 1 Bgg) IH=�z : (u[xn;x;yi�1℄(D))[x := u[xn;:::;x1℄(B)℄:(u[xn;x;yi�1;z℄(C))[x := u[xn;:::;x1℄(B)℄ =(u[xn;x;yi�1℄(A))[x := u[xn;:::;x1℄(B)℄ �Lemma 60 Let A;B 2 T suh that FV (A) � f1; : : : ng and A!� B.Then u[xn;:::;x1℄(A)!� u[xn;:::;x1℄(B).Proof: Remark that Lemma 39 guarantees the good de�nition of u[xn;:::;x1℄(B).The proof is by indution on A. The interesting ase is when A is an appliation and the redutiontakes plae at the root.Therefore, let A = (�D:C)E and B = Cff1 Egg. We haveu[xn;:::;x1℄(A) = (�x : u[xn;:::;x1℄(D):u[xn;:::;x1;x℄(C))u[xn;:::;x1℄(E)!�(u[xn;:::;x1;x℄(C))[x := u[xn;:::;x1℄(E)℄ L 59= u[xn;:::;x1℄(Cff1 Egg) = u[xn;:::;x1℄(B) �Corollary 61 Let A;B 2 T suh that FV (A) � f1; : : : ng and A!!� B.Then u[xn;:::;x1℄(A)!!� u[xn;:::;x1℄(B).Lemma 62 Let A 2 T suh that FV (A) � f1; : : : ; ng and let m � n.Then u[xm;:::;x1℄(A) = u[xn;:::;x1℄(A).Proof: Easy indution on A. �Lemma 63 Let A; B 2 T suh that FV (A) [ FV (B) � f1; : : : ; ng and A =� B.Then u[xn;:::;x1℄(A) =� u[xn;:::;x1℄(B).Proof: By indution on the number of �-ontrations and �-expansions in A =� B. The proof isanalogous to the proof of Lemma 52 and uses Lemma 62. �



16 Fairouz Kamareddine, and Alejandro R��osHere is now the preservation of type assignment by u:Theorem 64 If � ` A : B then u(� ) ` u[v1;:::;vn℄(A) : u[v1;:::;vn℄(B).Proof: By indution on the derivation � ` A : B. If A : B is an axiom the theorem followsimmediately. Let us study the last rule in the derivation � ` A : B.(start) : Let � = A1; : : : ; An. If � ` A : s then, by IH, u(� ) ` u[v1;:::;vn℄(A) : s and hene,applying (start), u(� ); vn+1 : u[v1;:::;vn℄(A) ` vn+1 : u[v1;:::;vn℄(A). Sine, by De�nition 57,u(A;� ) = u(� ); vn+1 : u[v1;:::;vn℄(A) and u[v1;:::;vn+1℄(1) = vn+1, we must only hek thatu[v1;:::;vn+1℄(U20 (A)) = u[v1;:::;vn℄(A), but this is an instane of Lemma 58, and we are done.(weakening) : As in the previous item, Lemma 58 solves this ase.(appliation) : For this ase use Lemma 59.(abstration) and (produt) : Just use the IH.(onversion) : Lemma 63 settles this ase. �5.3 t and u are inversesWe must hek that the ompositions of t and u are the identity. We begin by studying tÆu, whihas expeted is exatly the identity. We prove �rst the following lemma:Lemma 65 Let A 2 T suh that FV (A) � f1; : : : ; ng and let x1; : : : ; xn be distint variables.Then t[x1;:::;xn℄(u[xn;:::;x1℄(A)) = A.Proof: By indution on A. The usual two interesting ases are:A = i : Sine x1; : : : ; xn are distint variables, we have:t[x1;:::;xn℄(u[xn;:::;x1℄(A)) = t[x1;:::;xn℄(u[xn;:::;x1℄(i)) = t[x1;:::;xn℄(xi) = i = AA = �B:C : We have: t[x1;:::;xn℄(u[xn;:::;x1℄(A)) = t[x1;:::;xn℄(�x : u[xn;:::;x1℄(B):u[xn;:::;x1;x℄(C)) =�t[x1;:::;xn℄(u[xn;:::;x1℄(B)):t[x;x1;:::;xn℄(u[xn;:::;x1;x℄(C)) IH= �B:C �We use `T for type derivations in PTSs with de Bruijn indies, and `T for type derivations inPTSs with variable names.De�nition 66 (Derivations that are exatly the same) We say that two derivations � `A : B and � 0 ` A0 : B0 are exatly the same if � = � , A = A0 and B = B0.Proposition 67 Let � = A1; : : : ; An suh that � ` A : B. Then the derivations � `T A : B andt(u(� )) `T t[vn;:::;v1℄(u[v1;:::;vn℄(A)) : t[vn;:::;v1℄(u[v1;:::;vn℄(B)) are exatly the same.Proof: Remark that t(u(� )) = t(v1 : u[ ℄(An); v2 : u[v1℄(An�1); : : : ; vn : u[v1;:::;vn�1℄(A1)) =t[vn�1;:::;v1℄(u[v1;:::;vn�1℄(A1)); : : : ; t[v1℄(u[v1℄(An�1)); t[ ℄(u[ ℄(An)) L 65= � . Using again Lemma 65 weare done. �We study now uÆt. We annot expet to have exatly the identity now, sine when we translatede Bruijn derivations we hoose the variables in the delarations of the ontext in a determinedway: v1, v2, et. Therefore we are going to end up with a derivation whih di�ers from the originalone in the hoie of these variables. We say that these derivations are equivalent and this notionof equivalene is de�ned preisely as follows:De�nition 68 (Equivalent derivations) For any ontext � and any term A 2 T we de�ne��:A, for � 2 f�;�g by indution on the length of the ontext as follows:� <> :A =def A and �(�; x : B):A =def ��:�x : B:AWe say that the derivations � `T A : B and � 0 `T A0 : B0 are equivalent when ��:A =� �� 0:A0and ��:B =� �� 0:B0.



Pure Type Systems with de Bruijn indies 17Lemma 69 Let A 2 T suh that FV (A) � fx1; : : : ; xng and x1; : : : ; xn are distint variables.Then u[xn;:::;x1℄(t[x1;:::;xn℄(A)) =� A.Proof: By indution on A. The usual two interesting ases are:A = xi : Sine x1; : : : ; xn are distint variables, we have:u[xn;:::;x1℄(t[x1;:::;xn℄(A)) = u[xn;:::;x1℄(t[x1;:::;xn℄(xi)) = u[xn;:::;x1℄(i) = xi = AA = �x : B:b : By VC we an assume x distint from x1; : : : ; xn. We have:u[xn;:::;x1℄(t[x1;:::;xn℄(A)) = u[xn;:::;x1℄(�t[x1;:::;xn℄(B):t[x;x1;:::;xn℄(b) =�x : u[xn;:::;x1℄(t[x1;:::;xn℄(B)):u[xn;:::;x1;x℄(t[x;x1;:::;xn℄(b)) IH=� �x : B:b �Proposition 70 Let � = x1 : A1; : : : ; xn : An and A; B 2 T . The derivations� `T A : B and u(t(� )) `T u[v1;:::;vn℄(t[xn;:::;x1℄(A)) : u[v1;:::;vn℄(t[xn;:::;x1℄(B)) are equivalent in thesense of De�nition 68.Proof: By indution on the length of � . For � = ; we use Lemma 69. Therefore let us assumethat the proposition holds for � = x1 : A1; : : : ; xn : An and let us prove it for the ontext�; xn+1 : An+1.Hene, we must establish the following �-ongruenes:�u(t(�; xn+1 : An+1)):u[v1;:::;vn+1℄(t[xn+1;:::;x1℄(A)) =� �(�; xn+1 : An+1):A�u(t(�; xn+1 : An+1)):u[v1;:::;vn+1℄(t[xn+1;:::;x1℄(B)) =� �(�; xn+1 : An+1):BWe prove the �rst one. Note that u(t(�; xn+1 : An+1)) = u(t(� )); vn+1 : u[v1;:::;vn℄(t[xn;:::;x1℄(An+1)).Therefore, �u(t(�; xn+1 : An+1)):u[v1;:::;vn+1℄(t[xn+1;:::;x1℄(A)) =�u(t(� )):�vn+1 : u[v1;:::;vn℄(t[xn;:::;x1℄(An+1)):u[v1;:::;vn+1℄(t[xn+1;:::;x1℄(A)) =�u(t(� )):u[v1;:::;vn℄(�t[xn;:::;x1℄(An+1):t[xn+1;:::;x1℄(A)) =�u(t(� )):u[v1;:::;vn℄(t[xn;:::;x1℄(�xn+1 : An+1:A)) IH=���:�xn+1 : An+1:A = �(�; xn+1 : An+1):A �The following two lemmas establish that both t and u preserve strong normalisation in thefollowing sense:Lemma 71 Let A 2 T suh that FV (A) � fx1; : : : ; xng. If A is strongly normalising then so ist[x1;:::;xn℄(A).Proof: Assume that t[x1;:::;xn℄(A) is not SN. I.e., there is an in�nite sequene of Ai, i � 1suh that t[x1;:::;xn℄(A) !� A1 !� A2 : : : . By Lemma 46, FV (t[x1;:::;xn℄(A)) � f1; : : : ; ng andhene by Lemma 39, FV (Ai) � f1; : : : ; ng for i � 1. By Lemma 60, u[xn;:::;x1℄(t[x1;:::;xn℄(A)) !�u[xn;:::;x1℄(t[x1;:::;xn℄(A1)) !� (u[xn;:::;x1℄(t[x1;:::;xn℄(A2)) : : : . By Lemma 69, A !� A1 !� A2 : : :and hene A is not SN. This is absurd. �Lemma 72 Let A 2 T suh that FV (A) � f1; : : : ; ng. If A is strongly normalising then so isu[xn;:::;x1℄(A).Proof: Similar to the proof of Lemma 71 �6 Properties of PTSs with de Bruijn indiesIn this setion, we will establish the properties of the PTSs with variable names listed in Setion 3.2for our formulation of the PTSs with de Bruijn indies. First, note that Lemmas 19 and 21 havealready been established for de Bruijn indies in Lemmas 39 and 43 respetively. Theorems 20, 22and 25 will be established as Theorems 73, 74 and 76 below and Lemma 24 will be established asLemma 75 below. First, note that the de�nition of singly sorted PTSs (De�nition 23) is unhangedfor de Bruijn indies. Moreover, the notion singly sorted does not get lost during translationbetween variable names and de Bruijn indies.



18 Fairouz Kamareddine, and Alejandro R��osTheorem 73 (The Churh Rosser Theorem for PTSs with de Bruijn indies) In any PTSwith de Bruijn indies we have:if A!!� B and A!!� C then there exists D suh that B !!� D and C !!� D.Proof: Assume FV (A) � f1; : : : ; ng and let x1; : : : ; xn be distint variables of V . By Corollary 61,u[xn;:::;x1℄(A) !!� u[xn;:::;x1℄(B) and u[xn;:::;x1℄(A) !!� u[xn;:::;x1℄(C). Hene, by Theorem 20,9D suh that u[xn;:::;x1℄(B) !!� D and u[xn;:::;x1℄(C) !!� D. Note that FV (u[xn;:::;x1℄(B)) �fx1; : : : ; xng and FV (u[xn;:::;x1℄(C)) � fx1; : : : ; xng and hene by Corollary 50 we have:t[x1;:::;xn℄(u[xn;:::;x1℄(B)) !!� t[x1;:::;xn℄(D) and t[x1;:::;xn℄(u[xn;:::;x1℄(C)) !!� t[x1;:::;xn℄(D). Then,Corollary 40 sorts out the free variable ondition for Lemma 65, and the latter gives B !!�t[x1;:::;xn℄(D) and C !!� t[x1;:::;xn℄(D). �Theorem 74 (Subjet Redution SR, for PTSs with de Bruijn indies)If � `T A : B and A!!� A0 then � `T A0 : B.Proof: First, we use Theorem 64 and Lemma 60 to obtain the onditions of Theorem 22 in T .Then, we use Theorem 53 and Proposition 67 to obtain SR in T . �Lemma 75 (Uniity of types for singly sorted PTSs with de Bruijn indies)In any singly sorted PTS, the following holds:1. If � `T A : B1 and � `T A : B2 then B1 =� B2.2. If � `T A : B and � `T A0 : B0 then A =� A0 implies B =� B0.3. If � `T B : S, B =� B0 and � `T A0 : B0, then � `T B0 : S.Proof:We will only show 1. The other two ases are similar. Assume that � `T A : B1 and � `TA : B2. Then, by Theorem 64, u(� ) `T u[xn;:::;x1℄(A) : u[xn;:::;x1℄(B1) and u(� ) `T u[xn;:::;x1℄(A) :u[xn;:::;x1℄(B2). By Lemma 24 we get u[xn;:::;x1℄(B1) =� u[xn;:::;x1℄(B2). Finally, by Lemma 52,t[x1;:::;xn℄(u[xn;:::;x1℄(B1)) =� t[x1;:::;xn℄(u[xn;:::;x1℄(B2)) and we use Lemma 65 to get B1 =� B2. �Theorem 76 (Strong normalisation for the systems of the ube) Every legal term of theube with de Bruijn indies is strongly normalising.Proof: Let � `T A : B and let us show that A and B are SN. By Theorem 64, u(� ) `Tu[xn;:::;x1℄(A) : u[xn;:::;x1℄(B). Hene, u[xn;:::;x1℄(A) and u[xn;:::;x1℄(B) are SN by Theorem 25. Nowby Lemma 71, t[x1;:::;xn℄(u[xn;:::;x1℄(A)) and t[x1;:::;xn℄(u[xn;:::;x1℄(B)) are SN and so by Lemma 65,A and B are SN and we are done. �7 ConlusionsAlthough type theory and the �-alulus are vital for the foundations and implementation ofprogramming languages, they are usually written using variable names whih are problematito implement. For this reason, during implementations, variable names are replaed by notionssuh as ombinators, de Bruijn indies, graphs, and so on. PTSs like other type systems havebeen introdued using variable names. This paper provides a formulation of PTSs using de Bruijnindies and establishes an isomorphism between this formulation and the one with variable names.This isomorphism is then used to establish the properties of PTSs with de Bruijn indies.As we said above, de Bruijn indies are usually used in implementations of type theory andof the �-alulus. However, when proving properties of these implementations, it is important toknow what are the properties of the systems written with de Bruijn indies and used during theimplementation. This is the reason for the interest in establishing results suh as onuene forthe type-free �-alulus with de Bruijn indies and its isomorphism to the type-free �-aluluswith variable names. Another example we give for this is the formulation of some typed �-aluliwith de Bruijn indies in order to build systems of expliit substitutions (e.g., see [1℄). As far aswe know, our work is the �rst formulation of PTSs with de Bruijn indies. For this formulation,



Pure Type Systems with de Bruijn indies 19we establish its isomorphism to PTSs with variable names, and its desirable properties suh asonuene, subjet redution, uniity of types and strong normalisation (when appropriate), et.Of ourse this formulation opens the door to future work where extensions of type theory anbe written using either named variables or de Bruijn's indies. We have already for instane startedwriting generalised redutions using de Bruijn indies (f. [15℄) and this enabled us to ombinegeneralised redution with expliit substitutions to obtain a system where there is more ontrolin delaying omputations. Expliit substitutions is another area where avoiding �-onversion isdesirable beause the main goal of expliit substitutions is to improve and ontrol omputations.De Bruijn's indies are one way of avoiding �-onversion and hene our work on formulating PTSswith de Bruijn indies opens the door to extensions of these PTSs with expliit substitutions in auseful way for implementations. There is yet no extensions of PTSs (ontaining all the systems ofthe ube) with expliit substitutions using de Bruijn indies and satisfying the desirable properties.We are investigating this point at the moment.Another useful extension of PTSs is adding de�nitions (or let expressions) and/or�-redutions[12℄ or other forms of generalised redutions [15℄. We have worked these extensions for variablenames and we plan to ondut this work for de Bruijn indies.Finally, in this paper, we rewrote PTSs using de Bruijn indies. It is interesting to do the sameusing ombinators and/or other disiplines of treating/avoiding variables whih has not yet beenused in PTSs. Our next goal is to investigate PTSs with ombinators.Referenes1. M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. L�evy. Expliit substitutions. Journal of FuntionalProgramming, 1(4):375{416, 1991.2. S. Abramsky, Dov M. Gabbay, and T.S.E. Maibaum, editors. Handbook of Logi in Computer Siene,Volume 2: Bakground: Computational Strutures. Oxford University Press, 1992.3. H.P. Barendregt. The Lambda Calulus: its Syntax and Semantis. Studies in Logi and the Founda-tions of Mathematis 103. North-Holland, Amsterdam, revised edition, 1984.4. H.P. Barendregt. Lambda aluli with types. In [2℄, pages 117{309. Oxford University Press, 1992.5. S. Berardi. Towards a mathematial analysis of the Coquand-Huet alulus of onstrutions and theother systems in Barendregt's ube. Tehnial report, Dept. of Computer Siene, Carnegie-MellonUniversity and Dipartimento Matematia, Universita di Torino, 1988.6. N.G. de Bruijn. Lambda alulus notation with nameless dummies, a tool for automati formulamanipulation with appliation to the hurh rosser theorem. In Proeedings of the Koninklijke Neder-landse Aademie van Wetenshappen. Mathematial Sienes, 1972. Volume 75; also in [18℄, ChapterC2.7. A. Churh. A formulation of the simple theory of types. The Journal of Symboli Logi, 5:56{68,1940.8. T. Coquand. Une th�eorie des onstrutions. PhD thesis, Universit�e Paris VII, Th�ese de troisi�emeyle, 1985.9. T. Coquand and G. Huet. The alulus of onstrutions. Information and Computation, 76:95{120,1988.10. R. Harper, F. Honsell, and G. Plotkin. A framework for de�ning logis. In Proeedings SeondSymposium on Logi in Computer Siene, pages 194{204, Washington D.C., 1987. IEEE.11. J.R. Hindley and J.P. Seldin. Introdution to Combinators and �-alulus, volume 1 of London Math-ematial Soiety Student Texts. Cambridge University Press, 1986.12. F. Kamareddine, R. Bloo, and R.P. Nederpelt. On �-onversion in the �-ube and the ombinationwith abbreviations. Annals of Pure and Applied Logis, 97:27{45, 1999.13. F. Kamareddine and A. R��os. A �-alulus �a la de Bruijn with expliit substitutions. Proeedingsof 7th international symposium on Programming Languages: Implementations, Logis and Programs,PLILP'95. Leture Notes in Computer Siene 982, pages 45{62, 1995.14. F. Kamareddine and A. R��os. Bridging de Bruijn indies and variable names in expliit subst itutionsaluli. The Logi Journal of the Interest Group of Pure and Applied Logi, IGPL, 6(6):843{874,1998.15. F. Kamareddine, A. R��os, and J.B. Wells. Caluli of Generalised �-redution and expliit substitution:Type Free and Simply Typed Versions. Journal of Funtional and Logi Programming, 1998(Artile5):1{44, 1998.
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