Pure Type Systems with de Bruijn indices *

Fairouz Kamareddine!, and Alejandro Rios?

! Computing and Electrical Engineering, Heriot-Watt Univ., Riccarton, Edinburgh EH14 4AS, Scotland,
fairouz@cee.hw.ac.uk
2 Department of Computer Science, University of Buenos Aires, Pabellén I - Ciudad Universitaria
(1428) Buenos Aires, Argentina, rios@dc.uba.ar

Abstract. Nowadays, type theory has many applications and is used in many different
disciplines. Within computer science, logic and mathematics, there are many different type
systems. They serve several purposes, and are formulated in various ways. A general frame-
work called Pure Type Systems (PTSs for short) has been introduced independently by
Terlouw and Berardi in 1988 and 1989, in order to provide a unified formalism in which
many type systems can be represented. In particular, PTSs allow the representation of the
simple theory of types, the polymophic theory of types, the dependent theory of types and
various other well-known type systems such as the Edinburgh Logical Frameworks LF and
the Automath system.

Pure Type Systems are usually presented using variable names. In this article, we present a
formulation of PTSs with de Bruijn indices. De Bruijn indices [6] avoid the problems caused
by variable names during the implementation of type systems. We show that PTSs with
variable names and PTSs with de Bruijn indices are isomorphic. This isomorphism enables
us to answer questions about PTSs with de Bruijn indices including confluence, termination
(strong normalisation) and safety (subject reduction).

1 Introduction

The explosion of new type theories and their applications in the twentieth century is fascinating.
This is not surprising since type theory is considered as an important foundation for logic, the
formalisation of mathematics and the design and implementation of theorem proving and pro-
gramming languages. Of course, for every new type theory many questions need to be answered
before that theory can be useful for some applications. Of these questions, we mention issues
like termination and safety. For example, in programming terms, safety can be described as the
property that specifies that if a program has a certain type and if this program is evaluated to a
certain value (or another program), then this result itself has the same type. Termination can be
described by the property that if a program is typable, then this program terminates (does not
loop).

Some of these properties are hard to establish and it is hence desirable to generalise proofs
from one system to the other if at all possible. Hence, a general framework in which different
type systems can be described may turn out to be useful for providing general criteria and results
concerning the various systems. A general framework also helps comparing the different systems.
In 1988 and 1989, a general framework was given independently by Terlouw and Berardi in [5,
21] which classifies different known type theories. This framework is known as the Pure Type
Systems (PTSs for short) framework. In [4], a description of PTSs and of a cube of eight different
systems that are all PTSs can be found. Important type systems that are PTSs include Church’s
simply typed A-calculus [7] and the calculus of constructions [8,9] which are also systems of the
Barendregt cube [4].

As to how types are written within the terms, there are basically two type disciplines: the
implicit and the explicit. The implicit style, also known as typing a la Curry, does not annotate
variables with types. For example, the identity function is written as in the type-free case, as

* This work was supported by EPSRC grants GR/K25014, GR/L36963 and GR/L15685. We are grateful
for the anonymous referees for their thorough reading and valuable comments.

2 Fairouz Kamareddine, and Alejandro Rios

Az.xz. The type of terms however is found using the typing rules of the system in use. The explicit
style, also known as typing a la Church, does annotate variables and the identity function may be
written as Az : Bool.z to represent identity over booleans. PTSs are based on typing a la Church
and this is the discipline we consider in this paper.

So far, we know that there are two type disciplines of which we consider the explicitly typed
discipline, and that there are various type systems many of which fall under the PTSs framework
which we study in this paper. Besides the questions of what is the type system under consideration
and what is the type discipline, there is another important question, namely: what is the variable
discipline assumed by the system. There are many disciplines concerned with variables:

— The use of named variables as is usually assumed in many books of the A-calculus and type
theory. For example (ignoring types) Az.z represents the identity function. In the named vari-
able discipline, substitution can be a cumbersome operation due to variable manipulation and
renaming. There are some approaches used to avoid either the problem or variables themselves.
We mention next some of these methods that are used in the formalisation of A-calculus and
type theory and in the implementation of programming languages and theorem provers.

— The use of combinatory logic which is equivalent to the A-calculus but does not use variable
names. For example, in combinatory logic, the identity function Az.z is written as I where Ia
reduces to a. In fact, every term is a combinator and no variables need to be introduced. It is
however less intuitive to understand what the combinators are doing especially in really large
terms. Combinators looked very promising in the 1970s and 1980s when Turner developed the
language Miranda and when Hughes developed the notion of super-combinators. We will not
study combinators in this article. The interested reader can refer to [11].

— The use of de Bruijn indices which avoid clashes of variable names and therefore neither a-
conversion nor Barendregt’s convention are needed. The identity function will be written as
A.1 using de Bruijn indices. The 1 refers to the number of As before reaching the binding A.
De Bruijn indices are explained in detail in Section 4.1. De Bruijn indices are extensively used
in the implementation of programming languages and theorem provers.

— There are many other approaches to avoid the problem of named variables in type theory. For
example, there is the higher order abstract syntax approach [19] which avoids formalising the
renaming of variables in order to prevent unintended capture during substitution. There is also
another approach due to Coquand and used in formalisations of PTSs in LEGO [16] where
free variables are syntactically distinguished from bound ones and where explicit a-conversion
of named variables is not necessary in the theory of reduction, conversion and typing.

There are advantages and disadvantages to each of the above mentioned approaches. This
paper is not about what is the best approach to represent variables in type theory. The last
two decades has seen much progress in this field with more work carried out on higher order
abstract syntax, or on defending the use of named variables (and the variable convention), or on
defending the need for newer disciplines of variables. Our paper is concerned with writing PTSs
(which are usually written using variable names) using de Bruijn indices which seems to be the
most used formulation in many implementations of type theory and theorem proving. Translations
between variable names and de Bruijn indices have received attention in the past for the lambda
calculus [20, 14], but never before has there been a formulation of PTSs using de Bruijn indices.

Now that we have settled the type discipline to explicit, the type systems to PTSs and the
variable discipline to de Bruijn indices, we propose to write PTSs using de Bruijn indices. All
the desirable properties of PTSs (such as termination and safety) have been established for PTSs
with variable names and there does not yet exist a formulation of PTSs with de Bruijn indices for
which the desirable properties have been established.

We believe that as far as possible, important theoretical properties like termination and safety
should be established before a system can be the basis of an implementation. In this paper, we
will give such a formulation of PTSs with de Bruijn indices and we show that our formulation is
isomorphic to the formulation with variable names. This isomorphism will be used to establish
that our formulation of PTSs with de Bruijn indices satisfies the properties mentioned above.
The direct result of our work is that on one hand, one can now find a formulation of PTSs with

Pure Type Systems with de Bruijn indices 3

de Bruijn indices for which desirable properties have been proved, and on the other hand, our
formulation can be directly implemented because it is written with de Bruijn indices which do not
lead to the problematic features that result from variable names.

This paper is divided as follows: In Section 2 we introduce the formal machinery needed. In
Section 3 we recall the Pure Type Systems with variable names as presented in [4] and some of their
properties. In Section 4 we introduce the Pure Type Systems with de Bruijn indices and prove some
properties concerning free variables. In Section 5 we establish the isomorphisms between PTS’s
and their de Bruijn versions. In Section 6 we use the isomorphism to establish the properties of
PTSs with de Bruijn indices.

2 Formal Machinery

We assume familiarity with the A-calculus as in [3]. In this section, we will introduce some ma-
chinery that will be used in the rest of this paper.

Definition 1 (Reduction Notations) Let S be a set and R a binary relation on S . We denote
R by — g and call it a reduction notion. We use the following notations and definitions:

1. —»pg or just —» is the reflexive and transitive closure of —-gr . When A —»g B we say there
exists an R-reduction sequence from A to B .

2. =g is the reflexive, symmetric and transitive closure of —g. That is, =g is the least equivalence
relation containing —g.

3. = is syntactic identity, and A = B means A and B are syntactically identical.

4. A €S is an R-normal form (R-nf for short) if there is no B € S such that A —g B.

5. We say that B is an R-normal form of A or A has B as R-normal form if B is an R-normal
form and A =g B.

Expressions can be evaluated in different orders. For example, we could evaluate 2+3+4 by
evaluating (2+3)+4 or 2+(3+4). We would like to get the same result either way. The following
definition helps us describe this phenomenon:

Definition 2 (Confluence and Church Rosser) Let R be a notion of reduction on S. We
say that R is confluent (or Church Rosser CR) if —» g satisfies the property:
VA,B,CGS dD e S (A —»r BN A —>»pg C)=>(B —w»r D N C —»pg D)

Theorem 3 Let R be a notion of reduction that is CR. The following holds:

— Let A =g B then
e there is a C such that A —+»r C and B —» C.!
e if B is in R-normal form, then A —»g B.
o cither A and B do not have R-normal forms or A and B have the same R-normal form.
e if A and B are in R-normal forms then A = B.
— If A has R-normal forms B and C, then B = C. Hence, we speak of the R-normal form of A
and denote it by R(A).

A second very important concern of reduction (or rewrite) notions is that of termination. We
are interested in knowing if our rewriting of a particular expression will terminate or will go
indefinitely. For example, the rule n — n + 1 applied to 1 will not terminate. Termination is a
crucial property for implementation purposes. If an expression does not always terminate, perhaps
it can terminate with some careful ordering of rules. Those expressions that will never terminate
are disastrous for computation. The following definition introduces notions related to termination:

Definition 4 (Normalisation) Let R be a reduction notion on S. We say that:

! Sometimes, this is referred to as the confluence property. We have however identified Church Rosser
and Confluence.

4 Fairouz Kamareddine, and Alejandro Rios

— A is R strongly normalising if there are no infinite R-reduction sequences starting at A.

— R is strongly normalising (SN) if there is no infinite sequence (A;);~, in S such that A; —p
Aiv1 forall i > 0. Le. every A in S is R strongly normalising.

— R is weakly normalising (WN) if every A € S has an R-normal form.

When no confusion can arise, R is omitted and we speak simply of normal forms or normalisation.

Strong normalisation implies weak normalisation and therefore the existence of normal forms.

3 Pure Type Systems with variable names

In this section, we will review PTSs with variable names and some of their properties.

3.1 Syntax and Rules of PTSs with variable names

Definition 5 The set of pseudo-terms T, is generated by the grammar:
Ta=VI|CI(TT|AV:T.T)|IIV:T.T), whereV is the infinite set of variables {vy,va,vs,...}
and C a set of constants over which, ¢, cy,... range and containing two special sorts * and O. We
use A, B, ... to range over T and x,y,z,... to range over V.

Definition 6 (Notational convention) We use the following notational conventions:

1. Throughout, we take w to represent either \ or II.
2. Functional application associates to the left. So ABC denotes ((AB)C).
3. The body or scope of a ™ is anything that comes after it. So, instead of (wv : A.(A1A4s ... Ay)),
we write v : A.A1As ... A,.
4. A sequence of w’s is compressed to one, so for example, Ax : Ay : B z : C.t denotes
Azt A.(Ay : B.(Az : C.1)).

Therefore, application has priority over abstraction: 7z : A.yz means 7z : A.(yz) and not (7x : A.y)z.
m is a variable binder, just like V in logic. Hence we define free and bound variables.

Definition 7 (Free and Bound variables) For a term C, the set of free variables FV (C), and
the set of bound variables BV (C), are defined inductively as follows:

FV(v) =qef {v} BV (v) =qef 0 0 is the empty set
FV(C) —def 0 BV(C) =def w

FV(mv:AB) =4y (FV(B)\ {v})UFV(A) BV(rv:A.B) =4,y BV(A)UBV(B)U {v}
FV(AB) =ge; FV(A)UFV(B) BV(AB) =g BV(A)UBV(B)

An occurrence of a variable v in a term is free if it is not within the scope of a 7v : A., otherwise it
is bound. A closed term is a term in which all variables are bound. We write Az := B] to denote
the term where all the free occurrences of x in A have been replaced by B.

An important notion for rewriting relations is that of compatibility:

Definition 8 (Compatibility for PTSs) We say that a binary relation R on a PTS is com-
patible iff for all terms A, B, and variable v, the following holds:

(A,B)eR (A,B)€eR
(AC.B0) e B (CA.CB) € B\
(A,B) € R (A,B) € R

b b
(FU:C.A,T{'U:C.B)ER(2 (FU:A.C,W’U:B.C)ER(2)

a-reduction identifies terms up to variable renaming:

Pure Type Systems with de Bruijn indices 5

Definition 9 (Alpha reduction) a-reduction —, is defined to be the least compatible relation
generated by the axiom:

() : A.B =4 ' 1 A.Bv := '] where v' &€ FV (B)
Now one can follow Definition 1 to define =, (a-equivalences), —»,, etc.

As usually done with calculi with named variables we will identify a-equivalent terms and we will
not use a special notation to differentiate terms and classes of terms. However, when we want to
stress the fact that two terms, say A and B are « equivalent but may not be identical we will
eventually write A =, B instead of A = B. Furthermore, we assume the Barendregt variable
convention which is formally stated as follows:

Convention 10 (VC: Barendregt’s Convention) Names of bound variables will always be
chosen such that they differ from the free ones in a term. Moreover, different w’s have differ-
ent variables as subscript. Hence, we will not have (nx : A.x)z, but (ry : A.y)z instead.

Lemma 11 (Substitution for variable names) Let A,B,C € T, z,y € V. For ¢ # y and
x & FV(C), we have that: A[z := B][y := C] = Aly := C][z := Bly :=C]].

Definition 12 (Beta reduction) [-reduction — g is the least compatible relation on T generated
by

(B) (Az : A.B)C — Bz := (]

Here is a lemma about the interaction of S-reduction and substitution. Note that in the first case,
— 3 is mapped into —g . The reason being that x may occur n times (for n > 0) as a free variable
in A and hence the reduction will be repeated following the number of occurrences of x.

Lemma 13 Let A,B,C,D € T.

1. If C =g D then Alx :=C]—»s Alz :=D].
2. If A—g B then Alz:=C|—p B[z :=C].

Proor: By induction on the structure of A for 1, on the generation of A —3 B for 2. X

Now, we define some machinery needed for typing:

Definition 14

1. A statement is of the form A : B with A,B € T. We call A the subject and B the predicate
of A: B.

2. A declaration is of the form x : A with A€ T andx € V.

3. A pseudo-context is a finite ordered sequence of declarations, all with distinct subjects. We use
A I 11,15, ... to range over pseudo-contexts. The empty context is denoted by either <>
or nothing at all if no confusion can arise.

4. IfI'=x1 : Ay, .. xp c Apthene : B=x1 : Ay,...,2n : Ap,x : B anddom(I") = {z1,...,zn}.

Definition 15 A type assignment relation is a relation between pseudo-contexts and pairs of
pseudo-terms written as I' = A : B. The rules of type assignment establish which judgments
I' - A : B can be derived. A judgement I' - A : B states that A : B can be derived from the
pseudo-context I.

Definition 16 Let I' be a pseudo-context and - be a type assignment relation.

1. I is called legal if 3A, B € T such that ' - A : B.
2. AeT iscalled a '-term ¢f AB € T such that '+ A: B or I' - B : A.

We take I'-terms = {A € T such that AB €T and '+ A: BVI' B: A}.
3. A €T is called legal if AT such that A € '-terms.

6 Fairouz Kamareddine, and Alejandro Rios

The next definition will introduce a generalised family of type systems called Pure Type Systems
(or PTSs). A PTS can be distinguished from another by:

— The set of sorts S which is a subset of the constants C. The two most used sorts are * and O.
A :x can be read as A is a type. A : O can be read as A is a kind.

— The set of axioms A of the form ¢ : s which type special constants. % : O is an example of such
an axiom.

— A set of rules R which restrict type formation as to allow/disallow notions like polymorphim,
dependent types, etc.

Definition 17 The specification of a PTS is a triple S = (S, A,R), where S is a subset of C,
called the sorts. A is a set of axioms of the form c: s withc € C and s € S and R is a set of rules
of the form (s1,s2,s3) with s1,s2,s3 € S.

Definition 18 The notion of type derivation, denoted I' Fxs A : B (or simply ' - A: B), in a
PTS whose specification is S = (S, A, R), is aziomatised by the axioms and rules of Figure 1.

(axiom) <>kc:s if c:seA
I'HA:s .
(start) m if xﬁdom(f’)
. I'trB:C TFA:s .
(weakening) Tz AFB.C if x¢dom(I)
I'A:s1 Ix:AF B: s .
(product) I'F (Tz AB) : 55 if (si,s2,83) €R
(application) I''F:(IIz:AB) I'HC:A
PP TFFC:Blz:=C]
. I''c:A+-C:B TI't([Izx:AB):s
(abstraction) I'-(Az:AC): (lIz: A.B)
(conversion) I'-A:B TI'+FB':s B=3B
v IFA4:B

Fig. 1. PTSs with variables names

Each of the eight systems of the cube is obtained by taking & = {*,0}, A = {*: O}, and R to be a
set of rules of the form (s1, s2, s2) for s1,s2 € {*, 0}. This means that for the cube, the only possible
(s1,82,s2) rules in the set R are elements of the set: {(x, %, %), (*,0,0), (0, %,%),(0,0,0)}. The
basic system is the one where (s1, s2, s2) = (%, %, %) is the only possible choice. All other systems
have this version of the formation rules, plus one or more other combinations of (x,d,0), (O, , %)
and (0,0, 0) for (s1,s2,s2). See Figures 2 and 3. See also Page 192 of [4].

Note that as in the cube there are only two sorts, * and O, and as each set R must contain
(%, %, %), there are only eight possible different systems for the Cube. An important aspect of the
Cube is that it provides a factorisation of the expressive power of the Calculus of Constructions
into three features: polymorphism, type constructors, and dependent types:

— (%, x,%) is the basic rule that forms types. All type systems of the Cube have this rule.

Pure Type Systems with de Bruijn indices 7

)‘—> (*:*7*)

A2 (%, %, %) (O, *, *)

AP (%, %, *) (¥,0,0)

AP2 (%, %, %)| (O, %, %) |(x, 0, 0)

Aw (%, *, *) (0,0,0)
Aw (*7 *7 *) (D7*7 *) (D7D’D)
APw (*:*7*) (*7D7D) (D7D:D)
APw = AC|(*,*,%)|(0, %, *)|(x,0,0)|(0,0,0)

Fig. 3. The cube

— (O, %, %) is the rule that takes care of polymorphism. Girard’s System (also known as A2) is
the weakest system on the Cube that features this rule.

— (00,0, 0) takes care of type constructors. The system Aw is the weakest system on the Cube
that features this rule.

— (x,0,0) takes care of term dependent types. The system AP is the weakest system on the
Cube that features this rule.

Many other well-known type systems, like AuTOMATH [18], LF [10], and ML [17] can be more
or less related to one of the systems of the Barendregt Cube.
3.2 Properties of PTSs with variable names

Now, we list some of the properties of PTSs with variable names (see [4] for proofs). In Section 6,
we will establish these properties for PTSs with de Bruijn indices.

Lemma 19 Let A, B € T. If A -3 B then FV(B) C FV(A).

Theorem 20 (The Church Rosser Theorem for PTSs with variable names) IfA —»3 B
and A —»5 C then there exists D such that B =3 D and C —»g D.

Lemma 21 (Free variable lemma) Let I' = x; : Ay, ...,z : Ay, such that
I'+ B : C. The following hold (proof is by induction on the derivation I' - B : C):

1. FV(B),FV(C) C{x1,...,zn}-
2. FV(A;) C{a1,...,zi-1} for 1 <i <.

Theorem 22 (Subject Reduction (SR) for PTSs with variable names)
Ifr'+-A:Band A—»g A then ' A’ : B.

The next definition introduces the notion of singly sorted PTSs, which impose that the special
constants have unique sorts as types and which imply the unicity of types.

8 Fairouz Kamareddine, and Alejandro Rios

Definition 23 Let AS = A(S, A, R) be a given PTS. \S is called singly sorted if:

1. (c:s1),(c:s2) € A implies s1 = s2.
2. (s1,82,53), (51, 82,55) € R implies s3 = s5.

Lemma 24 (Unicity of types for singly sorted PTSs with variable names) In any singly
sorted PTS, the following holds:

1.IfTFA:By and I' - A: By then By =g Bs.
2.IfT-A:Band '+ A’ : B' then A =3 A’ implies B =3 B'.
3. If’'tB:s,B=gB and ' A" : B, then I' - B' : 5.

Theorem 25 (Strong normalisation for the systems of the cube) FEvery legal term of the
cube with variable names is strongly normalising.

4 Pure Type Systems with de Bruijn indices

4.1 Syntax

De Bruijn noted that due to the fact that terms like Az : z.z and Ay : z.y are the “same”, one can
find a A-notation modulo a-conversion. That is, following de Bruijn, one can abandon variables
and use indices instead. The idea of de Bruijn indices is to remove all the variables of the \’s and
to replace their occurrences in the body of the term by the number which represents how many
A’s one has to cross before one reaches the A binding the particular occurrence at hand.

In the presence of free variables, a free variable list which orders the variables must be assumed.
For example, assume we take z,y,z,u,v,... to be the free variable list where x comes before y
which is before z, etc. Then, in order to write terms using de Bruijn indices, we use the same
procedure above for all the bound variables. For a free variable however, say z, we count as far as
possible the A’s in whose scope z is, and then we continue counting in the free variable list using
the order assumed. The following examplifies this situation:

Example 26

1. Az : z.x is replaced by A3.1. That is, x is removed, and the x of the body x is replaced by 1 to
indicate the X\ it refers to.
2. Xz :y.xz and (Az : z.x2)y translate respectively into X\2.14 and (A3.14)2.

Now we are ready to define PTSs with de Bruijn indices.

Definition 27 We define T, the set of pseudo-terms with de Bruijn indices, by the syntaz:
Tu=IN|C|(TT)| (ANT.T) | (IIT.T), where C is a set of constants over which c,c1, ... range.
We use A, B, ... to range over T' and m,n,... to range over IN (positive natural numbers).

We assume conventions 1, 2, and an analogous to 3 of Definition 6 and their consequences.
The definition of compatibility (Definition 8) is changed for de Bruijn indices by replacing (b;)
and (bz) by the following:

(A,B) € R , (A,B) € R ,
(rA.C,mB.C) € R(bl) (rC.A,mC.B) € R(bZ)

4.2 Updating, Substitution and Reduction

In order to define S-reduction, we must define the substitution of a variable by a term B in a term
A. Therefore, we must identify amongst the numbers of a term A those that correspond to the
variable that is being substituted for and we need to update the term to be substituted in order
to preserve the correct bindings of its variables.

Pure Type Systems with de Bruijn indices 9

Example 28 Translating (A\x : v.\y : v.zzy)(Az : v.yz) =g Au: v.z(A\x : v.yz)u into de Bruijn
indices, one gets (A5.06.521)(A5.31) —5 A5.4(A6.41)1. But, how can we carry the [-reduction
without translating the result from variable names? The body of A5.16.521 is A6.521 and the variable
bound by the first X of A5.06.521 is the 2. Hence, we need to replace in \6.521 the 2 by A5.31. But
if we simply replace 2 in A6.521 by A\5.31 we get A6.5(A\5.31)1, which is not correct. We needed to
decrease 5 as one \ disappeared and to increment the free variables of A5.31 as they occur within
the scope of one more \. Doing all this will lead to the final result A\5.4(A6.41)1.

In order to define f-reduction (AC.A)B —37 using de Bruijn indices. We must:

(a) find in A the occurrences nq,...ny of the variable bound by the A of AC.A.

(b) decrease the free variables of A to reflect the disappearance of the A\ from AA.

(c) replace the occurrences nq,...ng in A by updated versions of B which take into account that
free variables in B may appear within the scope of extra As in A.

It will take some work to do this. Let us, in order to simplify things say that the [-rule is
(ACA)B —3 A{1<+ B} and let us define A1+ B} in a way that all the work of (a) — (c) above
is carried out. We need counters described informally as follows:

1. We start traversing A (here A6.521) with a unique counter initialised at 1.

2. When arriving at an application node, we create a copy of the counter in order to have one
counter for each branch.

3. When arriving at an abstraction node, we increment the counter.

4. When arriving at a leaf (i.e. a number):

(a) If it is superior to the counter, we decrease the number by 1, because there will be one A
less between this number and the A that binds it.

(b) If the number is equal to the counter, say n, it must be replaced by B which will be found
now under n — 1 A’s. We must therefore adjust the numbers of B so that we can modify
the binding relations inside B. For this we use a family of functions that we call updating
functions.

(c) If the number is inferior to the value of the counter, then it is bound by a A which is inside
A, and hence the number must not be modified.

Let us define the updating functions.

Definition 29 The updating functions U} : T — T for k > 0 and i > 1 are defined inductively
as follows:

U,é(c) =c forceC - '
U(mA.B) = mU(A).(Ugy, (B)) Ui(n):{n-'_l_lz,f n>k
Ui(AB) = Ui(A) Ui (B) k n if n<k.

The intuition behind U} is the following: k tests for free variables and i — 1 is the value by
which a variable, if free, must be incremented.
Now we define the family of substitution functions:

Definition 30 The substitutions at level i, for ¢ > 1, of a term B € T in a term A € T,
denoted A{i < B}, are defined inductively on A as follows:

cf{i+ B} =c forceC n—1if n>i
(A1A2){i « B} = (A1 {i < B}) (A={i « B}) nfi« B} = ¢ UUB)if n=i
(mrA.C){i+ B} = nrA{i<B}.(C{i+ 1+ B}) n if n<i.

The second and third equalities propagate the substitution through applications and abstractions
and the first one carries out the substitution of the intended variable (when n =) by the updated
term. If the variable is not the intended one it must be decreased by 1 if it is free (case n > i)
because one \ has disappeared, whereas if it is bound (case n < 7) it must remain unaltered.
The next lemma establishes the properties of the substitutions and updating functions. The
proof of this lemma is obtained by induction on A and similar to the type-free case in [13].

10 Fairouz Kamareddine, and Alejandro Rios

Lemma 31

1. [Substitution lemma] For 1 < i <mn we have:
Afi<Bj{n+C} =A{n+ 1< C}{i<B{n—-i+1<C}}. .
2. [Distribution lemma/ For n <k +1 we have: Uy (Af{n«B}) = U, (A)f{nU;_,, ., (B)}.

Case 1 is the version of Lemma 11 using de Bruijn indices.
Definition 32 (Beta reduction) S-reduction is the least compatible reduction on T generated
by:
(B) (M.C)B —5 C{1+ B}
Remark that we use —3 to denote both, S-reduction on 7 and f-reduction on 7. The context
will always be clear enough to determine the intended reduction.

Finally, here is the version of Lemma 13 for de Bruijn indices. Note that we need not only to
ensure the good passage of the S-rule through the substitutions but also through the U;.

Lemma 33 Let A, B,C, D €T.
1. If C =3 D then i) UL(C) =5 U(D) and ii) A{i+ C} —»3 A{i< D} .
2. If A—g B then A{i+C} -3 B{i<C}.

Proor: 1. Case i) is by induction on C using Lemma 31.2. Case ii) is by induction on A using
i). 2. Is by induction on A using Lemma 31.1. X

We now define the set of free variables of a term with de Bruijn indices. We need first to define
the following operations on sets of natural numbers.

Definition 34 Let N C IN and k > 0. We define:
IL.N\k={n—k:neN,n>k} 2N+k={n+k:neN}
3.Nsp={neN:n>k} 4 Nep={neN:n<k}
The following properties of the above operations will be needed later and their proofs are easy.
Remark 35 Let N, M C IN and k, k' > 0. We have
LINUM)\k=(N\k)U(M\Ek) 2.(N\E)\K'=N\(k+£)
B(N+E\1=N+(k-1)ifk>1 4. (N\1)<p = (Negr1) \ 1
5. (N\ 1>k = (Nspt1) \ 1
In the definition of free variables we give now, only the difference \ is needed. The other

operations will be useful later.

Definition 36 The set of free variables of a term with de Bruijn indices is defined by induction
as follows:

FV(c) =aef 0 for ceC FV(AB) =4ep FV(A) UFV(B)

FV(n) =ges {n} FV(rA.C) =g FV(A)U (FV(C)\ 1)
Lemma 37 For A € T we have FV(UL(A))\ k= (FV(A)\ k) + (i — 1).
PRrROOF: Induction on A. Use Remark 35.1 for the case A = BC and Remark 35.2 for the case
A= AB.C. X
Lemma 38 For A, B€ T and j > 1, the following hold:
1. FV(A{§BY}) = (FV(4)<; U((FV(A)s; \ 1) if j € FV(A).
2. FV(A{j<B}) = (FV(A); U((FV(A)>; \ DU (FV(B) + (j — 1)) if j € FV(A).

PRrROOF: By simultaneous induction on A. Use the previous lemma for the case A = j and Remark
35.3, 4, 5 for the case A = AB.C. X

The following lemma on 7' corresponds to Lemma 19 on 7.
Lemma 39 Let A,BeT. If A—3 B then FV(B) C FV(A).
Corollary 40 Let A,B € T. If A —3 B then FV(B) C FV(A).

Pure Type Systems with de Bruijn indices 11

4.3 Rules of PTSs with de Bruijn indices

Definition 14 for PTSs with variable names changes when de Bruijn indices are used as follows:
A (de Bruijn) pseudo-context I" becomes a finite ordered sequence of de Bruijn terms. We
write it simply as I' = Aj,..., A,. Statements, subject and predicate remain unchanged, and
declarations disappear.
Definitions 15, 16 and 17 are the same for de Bruijn indices (except that 7 changes to T').
Now, we can give the definition of PTSs using de Bruijn indices:

Definition 41 The notion of type derivation, denoted I' Fxs A : B (or simply ' - A: B), in a
PTS whose specification is S = (S, A, R), is aziomatised by the axioms and rules of Figure 4.

(axiom) <>kec:s if c:seA
(start) I'FA:s
star AT F1:U2(A)
(weakening) I'trB:C TFA:s

& A TFU2B):U2(0)

Fl‘A:Sl A,Fl—B:SQ .
(product) TF (TAB) 5 if (si,s2,83) €R
(application) I'-F:(IIAB) I'HC:A
PP TFFC:B{1<C}

. VATFC:B TI'F(IAB):s
(abstraction) = 0 ey (A.B)
(conversion) I'-A:B TI'+FB':s B=3B

v TFA:B

Fig. 4. PTSs with de Bruijn indices

Remark that in the rules (start), (weakening), (product), (abstraction) the position of A with
respect to I is reversed with respect to its position in the corresponding rules of the classical
setting. However, we have chosen this presentation following the original work of type systems in
de Bruijn notation (cf. [1]).

Remark also the role played by the updating UZ in the rules (start), (weakening). This function
increases with 1 the de Bruijn indices which correspond to free variables and its occurrence in these
two rules is reasonable since the corresponding contexts have been augmented by the addition of
a new component.

Example 42
1.Fx:0 by axiom
2.xF1:x% by 1 and start
3.1,xF1:2 by 2 and start
4.1,1,xF2=U21):3=UZ(2) by 8 twice and weakening

The following lemma is the equivalent for de Bruijn indices, of Lemma 21.

12 Fairouz Kamareddine, and Alejandro Rios

Lemma 43 Let A;,..., A, F B:C then
1.FV(B),FV(C) C{1,...,n} 2. for 0<i<n—-1, FV(A,—) C{1,...,i}.

PRrOOF: Both items are proved by induction on the derivation.
1. For (start) and (weakening) use lemma 37. For (application) use lemma 38. The other rules
are immediate.
2. For (start) and (weakening) use 1. The other rules are immediate. <

5 The isomorphism

In the rest of this paper, we present the isomorphism between PTSs written using variable names
and PTSs written using de Bruijn indices. The method is as follows:

1. We translate each term A and each context I" written using variable names, into a term .. (A4)
and a context ¢(I") written with de Bruijn indices. We then prove that these translations
preserve f-reduction (if in 7, A —5 B then in T, ¢ j(A) —3 t[..1(B)) and type assignment
(ifin 7, '+ A:Bthenin T, ¢(I") F t[](A) : t[](B))

2. We define translations u[, j and u in the other direction and also prove preservation of (-
reduction and type assignment.

3. We prove that these translations are inverses of each other.

Notation 44

1. We write [z1,...,z,] for the ordered list of xy,...,T,,.
2. Fori >0, we write T for x1,...,z; and x; for x;,...,x;.

5.1 Translating 7 to T

Definition 45 (The translation t) For every term A € T such that FV(A) C {z1,...,2,} we
define t[, .. ,1(A) by induction on A as follows:

tlay,.on](€) =gef ¢ for ceC
t[x17___7wn](vi) =gef min{j such that v; = x;}
Note: min{j such that v; = x;} is interpreted as o de Bruijn index.
tar,.oen) (A B) =def Har,wn] (A)tay ... 0,] (B)
bar,enwn] (T2 2 BLA) Zacs Ty, 0] (B) Ha,an,..w,] (A)

Let I' =x1 : Ay, ...,xp : Ay be a legal context. We define:
t() =def ten_1,wr)(An)s taon_o,er) (A1), -+ 2y (A2), 21 (AL).

Remark that Definition 45 is a good definition thanks to Lemma 21.
Lemma 46 Let A € T such that FV(A) C {x1,...,zn}. Then FV (t,, ..1(4)) C{1,...,n}.
PRrROOF: By induction on A. X

We need to establish some lemmas before proving the preservation of type assignment. These
lemmas state how the translation behaves with the updating functions, the substitutions, the
[B-contractions and S-equivalence.

Lemma 47 Let A € 7'; k>0,i>1andn > k+1i such that xg41,...,Tpri—1 € FV(A).
Then tie,, .. 2,)(A) = U1 ..o ,znpiveman] (A)-

Pure Type Systems with de Bruijn indices 13

ProOOF: By induction on A. The case A = ¢ € C is immediate, the case A = B C just need the
IH, the cases A = Az : B.C' and A = IIz : B.C are similar. Therefore, we just study:
A=vp : Let j =min{i: vy, =;}. Then t;,, . 1(vn) =J.

If j <k we have tf,, 0. 1(4) = j = Ui(4) = U(tar,.an,zipin.ea] (A))-

Ifj>k+iwehavety . (4)=7j=Ui(f—i+1)=U(ti,,...coanpiren](A))-

A=)\33.: B.C : We have t[$17.“’$7}](14) = >‘t[$1,...7wn](B)'t[w7w17...,$n](c) H
)‘Ulz(t[xh---,wk,Zk+i,---,xn](B))'Ulz+1 (t[wl,---7$k7$k+i7---,xn](C)) =
U]i(At[zl7...,1:k,1:k+i,...7zn](B)'t[zl,...7zk,1:k+i7...,1:n](C)) = U]z(t[ml,...7zk7zk+i7...,$n](A)) X

Lemma 48 Let A, B € T such that the bound variables of B are not free in A and take §'~' and
" for i > 1 and n > 0. Let x be a variable not bound in B and distinct from yi,...,y;—1 and
assume yi,...,Yi-1 ¢ FV(A). Then tgi-1 zn(Blz := A]) = (tgi-1 5 72 (B)) {1tz (4)}-

PROOF: By induction on B. We just study the interesting cases:
B =z eV : We consider three cases:
If z = , then i1 guy(Blz := A]) = trgi-1 gny(A4) "2
Ud (01 (4)) = (g o) (B)HE i) (A}
If{j:z=y;} #0,let k =min{j: z =y;}. Then
tyi-1,z0(Blz := A]) =k = (tgi1 5 70 (B) {1tz (4)}
If{j:2z=u1;} #0,let k =min{j : z = z;}. We can assume z;, # since the case z = z has
already been considered. We have
tyi-1a(Blz = A]) =k +i-1=k+ifictm (A} = (tgi1 0 B){itE (A}
B =Xz :D.E: Remark that, since z is not bound in B, z # 2. We have

trgi-1 gy (Bl := A]) = Mgi-1 o) (Dl 1= Aty gi-1 3oy (Blz := A]) &
AMtgi—1,07) (D)Lt (A}t g1 oz (ED{L + Ltz (A)) =
(Abgi=1 470 (D) bs gim1 o zn) (B) {1 =t (A) = (Bgir o) (B)) {1 21z (A) }
Remark that we were able to apply the IH, because z ¢ FV (A), since we assumed that the bound
variables of B are not free in A. X

Lemma 49 Let A,B € T such that FV(A) C {z1,...x,} and A -3 B.
Then t[xl,...,zn](A)] t[zl,...,xn](B)-

PRrROOF: Remark that Lemma 19 guarantees the good definition of t[xl,...,xn](B)-
The proof is by induction on A. The interesting case is when A is an application and the reduction
takes place at the root.
Therefore, let A = (Az : D.C)E and B = C[z := E]. We have
t[zl,...7wn](A) = (At[mh...,mn](D)'t[m,wl,...,wn](C))t[wl,...7wn](E) -3
L48

(t[z,azh...,azn](c)){{l<_t[1:17...,1:n](E)} = t[zh...,zn](c[x = E]) = t[zh...,azn](B) X
Corollary 50 Let A,B € T such that FV(A) C {z1,...x,} and A —»3 B.

Then t[xl,...,zn](A)] t[zl,...,xn](B)-

Lemma 51 Let A € T such that FV(A) C {x1,...,xn} and let y1, ..., ym such that for every i,
1 <i<m, either y; § FV(A) ory; = x; for some j,1<j<n.
Then t[zl,...,xn,yl,...,ym](A) = t[zl,...,xn](A)-

PRrROOF: Easy induction on A. X

Lemma 52 Let A, B € T such that FV(A)U FV(B) C {z1,...,2,} and A =3 B.
Then t[zl,...,xn](A) =5 t[m,...,zn](B)-

Proor: By induction on the number k of f-contractions and S-expansions in A =3 B.
If £ = 0 the lemma is obvious. There are two possibilities for & > 0:

14 Fairouz Kamareddine, and Alejandro Rios

A=3C =g B: If FV(C) C{x1,...,zn} apply IH and Lemma 49.
Otherwise let {y1,...,ym} = FV(C)\ {z1,...,z,}. Then

IH L 49
t[wl,---yxmyu---,ym](A) =B t[wl,---vxmyu---,ym](C) —8 t[wl,---vxmyu---,ym](B)

And we conclude by the previous lemma.
B =5 C =5 A: By Lemma 19, FV(C) C FV(B). Now, IH and Lemma 49 settle this case. g

Now we are ready to state and prove the preservation of type assignment by ¢:

Theorem 53 Let ' =1 : Ay, ..., &, : Ay such that '+ A : B.
Then t(F) = t[xn,...,zl](A) : t[wn,---,m](B)'

PROOF: By induction on the derivation I' - A : B. If A : B is an axiom the theorem follows

immediately. Let us study the last rule in the derivation I'+ A : B.

(start) : Let I' = xy : Ay,...,xy 1 Ay f I' B A ¢ s then, by IH, ¢(I') & t,, .. 0,](4) : s and
hence, applying (start), ti,, . 0.)(A),t(I") F1: Ug (b, ...z (A))- Since, by definition, t(I, z :
A) =ty 0 (A),t(1) and t, 4, . 0,j(x) = 1, we must only check that tr, ., . .,(4) =
Ug (t{zn,....w11(A)), but this is an instance of Lemma 47, and we are done.

(weakening) : As in the previous item, Lemma 47 solves this case.

(application) : In this case use Lemma 48.

(abstraction) and (product) : Just use the IH.

(conversion) : Lemma 52 settles this case.

5.2 Translating T to T

Definition 54 (The translation u) Let A € T such that FV(A) C {1,...,n} andletz1,... ,zy
be distinct variables of V.. We define uf,,, .. .,)(A) by induction on A:

“[zn,---,m](=gef ¢ for ceC

u[zn,...,am](i =def Ti

U,z] (AB) =def Ue,...a1] (A)Ua00] (B)

U] (TBA) =dep Tx U, 0](B) Ulp, ... 2,2)(A) withz & {x1,..., 25}

Remark that Definition 54 is correct since FV (rB.A)C{1,...,n} implies FV(A) C {1,...,n+
1}. Furthermore, the definition for abstractions and products does not depend on the choice of
the variable « thanks to the following remark.

Remark 55 Let B,C € T such that FV(AB.C)) C {1,...,n}, let z1,...,z, distinct variables and
x, y variables such that z, y & {x1,...,x,}.
Then mx : U[wm___7zl](B).U[zn7___7w17w](0) =Ty U[zm_wzl](B).U[zm___why](C).

PROOF: It is enough to show that u, . 2, 2](C)[T = Y] = U[s,,. ... 4 (C), which is a particular
case of the following lemma. X

Lemma 56 Let B € T such that FV(B) C {1,...,n+m+ 1}, and let the variables 1, ..., xy,
21,05 2m, T and y be all distinct . Then (Ufy, . 22,202] (BT = Y] = U, 2y yzmsnza] (B)-

ProOOF: By induction on B. The only interesting case is when B = AA.C. Let u[£n7$7£m](3) =
Aw : U[wavgm](A).U[ﬁmw’gm’w](C). Let U[Envyvgm](B) = \v: U[ﬁvyvgm](A).U[EM%EMW] (C

Remark that we can assume that w # y. In fact, if w = y we can choose z such that z # y and
also distinct from zq,...,Zn, 21,...,2m, £, and we have

IH
u[gn@&m](B) =)\z: u[gn@&m](A).u[gn@&m’w](C')[w =z] = Az u[gnm&m](A).u[gww&myz](C').

Therefore, since w # y, we have
(u[§7w7gm](3))[$ =yl = (Aw: u[zn@,zm](A)'u[zn,z,gww](c))[x =y] =

IH
Aw : u[ﬁmx&m](A)[a: = y].u[ﬁmw,ém,w](C)[:U =yl = Aw: u[ﬁn7y,£m](A).u[£n,y7ém7w])=

IH
Av “[£n7y7&m](A)'u[zn,yyzww](c)[w =0] = M u[zn,yyzm](A)'u[zn,yyzmw] (€)= u[zn,yyzm](B) El

Pure Type Systems with de Bruijn indices 15

Definition 57 Let I' = Ay, ..., A, be a legal context. We define:
u(l) =y : u[](An),vg : u[vl](An,l), ce, Ut U[vl,...,vn_l](Al)

Definition 57 is correct thanks to Lemma 43.

As in the previous subsection, we must establish some lemmas in order to prove that u pre-
serves type assignement. These lemmas clarify the interaction of u with the updating functions,
substitutions, S-contractions and [B-equivalence.

Lemma 58 Let A€ T,i>1,k>0andn >k+i such that FV(A) C{1,...,n—i+1}. Then
u[zn,ml](U]z(A)) = u[mn,...,mk+i7wk7...7w1](A)'

ProOOF: By induction on A. As usual we study the two interesting cases:
A=m: If m <k then “[xn,...,,zl](Uli(A)) =2, = u[wn7___7mk+i,wk7___7w1](A).
If m >k then u,, .. »,](Ui(A)) = Tmyic1 = yg
A= XB.C': We can choose z to obtain:
U] (UR(A)) = A2) (UR(B)) (U (€)) F

z: u[zn7---7$k+i7$k7---,ﬂv1](B)'u[xn7---790k+i796k7---7$1730](C) = u[wnv---yzk+i7$k7---vw1](A) X

T yeees Tl isThye s ®1] (A)

Lemma 59 Let A, B€T and x1,...,Tpn, Y1,---,Yi—1, T distinct variables.
Then u[azn,..wzhyifl,..wyl](A{{i(_B}) = (u[zn7...,1:17z7yi,1,...,y1](A))[x = u[a:m...,zl](B)]'

PrOOF: By induction on A. We study the two interesting cases:
A=3: If j <ithen u[ﬁmgi_l](A{{i(—B}}) =y; = (u[ﬁn%&_l](A))[x = u[wm___m](B)].
If j > i then u[ﬁnvy,—,l](A{i%B}) =2j_; = (u[x ﬁvyi,l](A))[m = u[wm___m](B)].

If j =i then uyy , (Afi<BY) =uy, , (U5B) "L

Uil (B) = (U, oy (At = gy, o) (B)]
A=AD.C : We choose z # x to obtain:
u, g (A{iBY) =Xz 1wy (DEieBY .y , o(Cfi+1<B}) £
Ao (U, (D[= U o) BNty 0y (O = U, (B)] =
(g, g, ()l =z, 0] (B)] 2

Lemma 60 Let A,B € T such that FV(A) C{l,...n} and A =3 B.
Then ujg,,....0,1(A) =5 Ua,,....21)(B)-

PRrROOF: Remark that Lemma 39 guarantees the good definition of u[xm___m](B).

The proof is by induction on A. The interesting case is when A is an application and the reduction
takes place at the root.

Therefore, let A = (AD.C)E and B = C{1+ E}. We have

Ua,er] (A) = (AT 2 U, 00] (D) s, 01,2] (O))Uay ..20) (B) =5
L59
(u[wn,...whw](c))[x = u[mn,...7w1](E)] = u[wm...,wl](c{{l(_E}) = u[wn,...@l](B) X

Corollary 61 Let A,B € T such that FV(A) C{l,...n} and A —»3 B.
Then u[zn,---,m](A) —»B U[wm__”zl](B).

Lemma 62 Let A € T such that FV(A) C {1,...,n} and let m > n.
Then u[zm7...7z1](A) = u[zn,...7zl](A)'

PRrROOF: Easy induction on A. X

Lemma 63 Let A, B € T such that FV(A) UFV(B) C{1,...,n} and A =4 B.
Then u[zn,---,m](A) =8 U[wm__”zl](B).

Proor: By induction on the number of S-contractions and S-expansions in A =3 B. The proof is
analogous to the proof of Lemma 52 and uses Lemma 62. X

16 Fairouz Kamareddine, and Alejandro Rios

Here is now the preservation of type assignment by wu:
Theorem 64 If '+ A: B then u(I') F “[vl,...7vn](A) : “[vl,...7vn](B)'

ProOF: By induction on the derivation I"' - A : B. If A : B is an axiom the theorem follows

immediately. Let us study the last rule in the derivation I'+ A : B.

(start) : Let I' = Ay,...,Ap. f I' = A @ s then, by IH, u(I') F upy, .. 4,)(A) : s and hence,
applying (start), u(I'),vnt1 @ Ufp,,...0.](A) F Vny1 : Uy, 0,](A). Since, by Definition 57,
w(A, 1) = u(l),vnq1 : Upy,,..0,](A) and upy, .. 0.,,](1) = vpg1, We must only check that
u[vly,,,wn“](Ug(A)) = U[y,,...v,](A4), but this is an instance of Lemma 58, and we are done.

(weakening) : As in the previous item, Lemma 58 solves this case.

(application) : For this case use Lemma 59.

(abstraction) and (product) : Just use the IH.

(conversion) : Lemma 63 settles this case. =

5.3 t and u are inverses

We must check that the compositions of ¢ and u are the identity. We begin by studying ¢ ou, which
as expected is exactly the identity. We prove first the following lemma:

Lemma 65 Let A € T such that FV(A) C {1,...,n} and let z1,...,z, be distinct variables.
Then tiy, . . 2.1 (U, ... (A4) = A.

PRrROOF: By induction on A. The usual two interesting cases are:
A=1: Since x1,...,z, are distinct variables, we have:
taryan] W, 2] (A) =ty an] (W, o) (1) =ty e (@) =1=A
A=AB.C : We have: t[m,...,xn](u[xn,...,m](A)) = t[m,---,zn](/\w : U[wm__”zl](B).U[wn7___7w17w](0)) =
IH
)‘t[m,...,zn](u[zn,...,m](B))-t[ac,m,...,zn](u[zn,...,m,x](c)) = AB.C
X

We use Fr for type derivations in PTSs with de Bruijn indices, and F+ for type derivations in
PTSs with variable names.

Definition 66 (Derivations that are exactly the same) We say that two derivations I’ -
A:Band I+ A" : B' are exactly the same if ' =1, A=A’ and B = B'.

Proposition 67 Let I' = Ay,..., A, such that I' - A : B. Then the derivations I' Fp A : B and
t(w(D)) b1t o) Wor,0n] (A)) 5 Hon0] (Woy ... 00] (B)) are ezactly the same.

PROOF: Remark that t(u(I")) = t(vi : uf)(An), ve : U, (An=1), -+ Un : Uy, 0,_,](A1)) =

t[vn_h___ﬂ,l](u[v17___7vn_1](A1)), o ,t[vl](u[vl](An,l)),t[](u[](An)) LS p Using again Lemma 65 we
are done. %4

We study now uot. We cannot expect to have exactly the identity now, since when we translate
de Bruijn derivations we choose the variables in the declarations of the context in a determined
way: vy, vg, etc. Therefore we are going to end up with a derivation which differs from the original
one in the choice of these variables. We say that these derivations are equivalent and this notion
of equivalence is defined precisely as follows:

Definition 68 (Equivalent derivations) For any context I' and any term A € T we define
wA, for m € {II,\} by induction on the length of the context as follows:

<> . A=qp A and n([x: B).A=g4ep nlmx : B.A

We say that the derivations ' 7 A: B and I'' =7 A’ : B’ are equivalent when A\IA =, A\I"". A’
and [II".B =, IIT".B'.

Pure Type Systems with de Bruijn indices 17

Lemma 69 Let A € T such that FV(A) C {z1,...,2,} and z1,...,x, are distinct variables.
Then u[wn,...,m](t[m,...,zn](A)) =, A.

PrOOF: By induction on A. The usual two interesting cases are:

A=ux;: Since z1,...,z, are distinct variables, we have:
u[wm...,m](t[m,...,mn](A)) = u[mn,...7w1](t[w17...7wn]($i)) = U[zn,...@l](i) =x;=A
A= Xx:B.b: By VC we can assume z distinct from zy, ..., z,. We have:
Uy ,..oo1] Fren] (A) = U2) M) (B) a2 (B) =
AT U) (e en) (B) e, ey 2) (e ey, e (D) gi Az : B.b =

Proposition 70 Let ' =z, : Ay,...,z, : A, and A, B € T. The derivations
I'tr A B and u(t(D)) F1 w00 Gan,..21] (A) 2 ULy vn] (Fam,....e0] (B)) are equivalent in the
sense of Definition 68.

PRrOOF: By induction on the length of I'. For I' = () we use Lemma 69. Therefore let us assume
that the proposition holds for I' = z, : Ay,...,z, : A, and let us prove it for the context
Iixni 0 Apta.

Hence, we must establish the following a-congruences:

)\U,(t([', Tp+41 - An+1))'u[v1,...7vn+1](t[wn+17...7w1](A)) =«)\(F, Tn41 - An+1).A

Hu(t(I, vpy An+1))-u[v1,...,vn+1](t[xn+1,...,x1](B)) =o (I 2p41 2 Apyr).B

We prove the first one. Note that w(t(I, Tpy1 0 Ant1)) = w(t()), Vot Uy, o0 Fener] (Ant1))-
Therefore,)\U,(t([', Tp+1 : An+1))'u[vly---7vn+1](t[$n+17~~~,$1](A)) =

Au(t(I7)). Ao g1 :U[vh---,vn](t[xn,...,m](An+1))-u[v1,...,vn+1](t[zn+1,...,z1](A)) =

Au(t(D) -ty] M o] (A1) B g 2] () =

IH
Au(t(F))'u[v1,...7vn](t[mm...@l]()\xn-i-l : An+1-A)) =,
AF.AZL“n+1 : An+1.A =)\(F, Tp41 * AnJrl).A X

The following two lemmas establish that both ¢ and u preserve strong normalisation in the
following sense:

Lemma 71 Let A € T such that FV(A) C {x1,...,xn}. If A is strongly normalising then so is
t[am,...,acn](A)'

PROOF: Assume that t[,, . ..j(A) is not SN. Le., there is an infinite sequence of A;, i > 1
such that [, ,.)(A) —p A1 —p As.... By Lemma 46, FV ([, . .,(4)) € {1,...,n} and
hence by Lemma 39, FV(4;) C {1,...,n} for i > 1. By Lemma 60, u[y, . 2|(t[1,....2.](4) —5
U[zn,...@l](t[zl,...7zn](Al)) —8 (U[zm...,zl](t[zl,...7zn](A2)) By Lemma 69, A =3 A1 =3 As...
and hence A is not SN. This is absurd. X

Lemma 72 Let A € T such that FV(A) C {1,...,n}. If A is strongly normalising then so is
U[zn,...,xl](A)'

PRrROOF: Similar to the proof of Lemma 71 X

6 Properties of PTSs with de Bruijn indices

In this section, we will establish the properties of the PTSs with variable names listed in Section 3.2
for our formulation of the PTSs with de Bruijn indices. First, note that Lemmas 19 and 21 have
already been established for de Bruijn indices in Lemmas 39 and 43 respectively. Theorems 20, 22
and 25 will be established as Theorems 73, 74 and 76 below and Lemma 24 will be established as
Lemma 75 below. First, note that the definition of singly sorted PTSs (Definition 23) is unchanged
for de Bruijn indices. Moreover, the notion singly sorted does not get lost during translation
between variable names and de Bruijn indices.

18 Fairouz Kamareddine, and Alejandro Rios

Theorem 73 (The Church Rosser Theorem for PTSs with de Bruijn indices) In any PTS
with de Bruin indices we have:
if A—»3 B and A —»3 C then there exists D such that B —3 D and C' =3 D.

PROOF: Assume FV(A) C {1,...,n} andlet z1,...,z, be distinct variables of V. By Corollary 61,
“[zn,---,m](A) —»3 u[mn7___7x1](B) and “[zn,---,m](A) —»3 u[xm___m](C’). Hence, by Theorem 20,
3D such that up,, . .,)|(B) s D and u[,, . .,)(C) —»s D. Note that FV(u, . ..1(B)) C
{z1,...,2n} and FV (u,, . .. +,1(C)) € {z1,...,2,} and hence by Corollary 50 we have:

t[ﬂ’ly---ﬁn](U’[Immyﬂil](B)) -3 t[$1,...7zn](D) and t[z17...7zn](u[azn7...,1:1](C))] t[zh...,mn](D)- Then;
Corollary 40 sorts out the free variable condition for Lemma 65, and the latter gives B —»g
t[zl,...,xn](D) and C —»3 t[m,...,zn](D)- X

Theorem 74 (Subject Reduction SR, for PTSs with de Bruijn indices)
IfI't7 A:B and A -3 A’ then I' Fr A' : B.

PrROOF: First, we use Theorem 64 and Lemma 60 to obtain the conditions of Theorem 22 in 7.
Then, we use Theorem 53 and Proposition 67 to obtain SR in 7. X

Lemma 75 (Unicity of types for singly sorted PTSs with de Bruijn indices)
In any singly sorted PTS, the following holds:

1.IfI'tp A:By and I' -7 A : By then By = Bs.
2.IfT'tr A:Band I'tp A" : B' then A =3 A" implies B =3 B'.
3. If'te B:S,B=g B and 'tr A" : B', then ' -7 B’ : S.

PRrROOF: We will only show 1. The other two cases are similar. Assume that I' -7 A : By and I
A': By. Then, by Theorem 64, u(I') b7 g, .. 0)(A) : U, .2 (B1) and w(I) b7 u, .](4)
Ula,,...o;](B2). By Lemma 24 we get up,, . .,1(B1) =5 Ug,,.. 2,(B2). Finally, by Lemma 52,
t[zl,...7zn](U[zm...,zl](Bl)) =3 t[$1,...7zn](u[wn7...7wl](B2)) and we use Lemma 65 to get B; =g B>. X

Theorem 76 (Strong normalisation for the systems of the cube) Every legal term of the
cube with de Bruijn indices is strongly normalising.

PrOOF: Let I' k7 A : B and let us show that A and B are SN. By Theorem 64, u(I") Fr
Ul ,....01](A) T Ulg, .21 (B). Hence, u,, . 2,)(A) and uf,, . .,)(B) are SN by Theorem 25. Now
by Lemma 71, t(z, . 0.](Ue,,..e;](4)) and tp, 2.1(Ue,....e;](B)) are SN and so by Lemma 65,
A and B are SN and we are done. X

7 Conclusions

Although type theory and the A-calculus are vital for the foundations and implementation of
programming languages, they are usually written using variable names which are problematic
to implement. For this reason, during implementations, variable names are replaced by notions
such as combinators, de Bruijn indices, graphs, and so on. PTSs like other type systems have
been introduced using variable names. This paper provides a formulation of PTSs using de Bruijn
indices and establishes an isomorphism between this formulation and the one with variable names.
This isomorphism is then used to establish the properties of PTSs with de Bruijn indices.

As we said above, de Bruijn indices are usually used in implementations of type theory and
of the A-calculus. However, when proving properties of these implementations, it is important to
know what are the properties of the systems written with de Bruijn indices and used during the
implementation. This is the reason for the interest in establishing results such as confluence for
the type-free A-calculus with de Bruijn indices and its isomorphism to the type-free A-calculus
with variable names. Another example we give for this is the formulation of some typed A-calculi
with de Bruijn indices in order to build systems of explicit substitutions (e.g., see [1]). As far as
we know, our work is the first formulation of PTSs with de Bruijn indices. For this formulation,

Pure Type Systems with de Bruijn indices 19

we establish its isomorphism to PTSs with variable names, and its desirable properties such as
confluence, subject reduction, unicity of types and strong normalisation (when appropriate), etc.

Of course this formulation opens the door to future work where extensions of type theory can
be written using either named variables or de Bruijn’s indices. We have already for instance started
writing generalised reductions using de Bruijn indices (cf. [15]) and this enabled us to combine
generalised reduction with explicit substitutions to obtain a system where there is more control
in delaying computations. Explicit substitutions is another area where avoiding a-conversion is
desirable because the main goal of explicit substitutions is to improve and control computations.
De Bruijn’s indices are one way of avoiding a-conversion and hence our work on formulating PTSs
with de Bruijn indices opens the door to extensions of these PTSs with explicit substitutions in a
useful way for implementations. There is yet no extensions of PTSs (containing all the systems of
the cube) with explicit substitutions using de Bruijn indices and satisfying the desirable properties.
We are investigating this point at the moment.

Another useful extension of PTSs is adding definitions (or let expressions) and/or II-reductions
[12] or other forms of generalised reductions [15]. We have worked these extensions for variable
names and we plan to conduct this work for de Bruijn indices.

Finally, in this paper, we rewrote PTSs using de Bruijn indices. It is interesting to do the same
using combinators and/or other disciplines of treating/avoiding variables which has not yet been
used in PTSs. Our next goal is to investigate PTSs with combinators.

References

1. M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy. Explicit substitutions. Journal of Functional
Programming, 1(4):375-416, 1991.

2. S. Abramsky, Dov M. Gabbay, and T.S.E. Maibaum, editors. Handbook of Logic in Computer Science,
Volume 2: Background: Computational Structures. Oxford University Press, 1992.

3. H.P. Barendregt. The Lambda Calculus: its Syntar and Semantics. Studies in Logic and the Founda-
tions of Mathematics 103. North-Holland, Amsterdam, revised edition, 1984.

4. H.P. Barendregt. Lambda calculi with types. In [2], pages 117-309. Oxford University Press, 1992.

5. S. Berardi. Towards a mathematical analysis of the Coquand-Huet calculus of constructions and the
other systems in Barendregt’s cube. Technical report, Dept. of Computer Science, Carnegie-Mellon
University and Dipartimento Matematica, Universita di Torino, 1988.

6. N.G. de Bruijn. Lambda calculus notation with nameless dummies, a tool for automatic formula
manipulation with application to the church rosser theorem. In Proceedings of the Koninklijke Neder-
landse Academie van Wetenschappen. Mathematical Sciences, 1972. Volume 75; also in [18], Chapter
C2.

7. A. Church. A formulation of the simple theory of types. The Journal of Symbolic Logic, 5:56-68,
1940.

8. T. Coquand. Une théorie des constructions. PhD thesis, Université Paris VII, These de troisieme
cycle, 1985.

9. T. Coquand and G. Huet. The calculus of constructions. Information and Computation, 76:95—-120,
1988.

10. R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. In Proceedings Second
Symposium on Logic in Computer Science, pages 194-204, Washington D.C., 1987. IEEE.

11. J.R. Hindley and J.P. Seldin. Introduction to Combinators and X-calculus, volume 1 of London Math-
ematical Society Student Texts. Cambridge University Press, 1986.

12. F. Kamareddine, R. Bloo, and R.P. Nederpelt. On m-conversion in the A-cube and the combination
with abbreviations. Annals of Pure and Applied Logics, 97:27-45, 1999.

13. F. Kamareddine and A. Rios. A A-calculus & la de Bruijn with explicit substitutions. Proceedings
of 7th international symposium on Programming Languages: Implementations, Logics and Programs,
PLILP’95. Lecture Notes in Computer Science 982, pages 4562, 1995.

14. F. Kamareddine and A. Rios. Bridging de Bruijn indices and variable names in explicit subst itutions
calculi. The Logic Journal of the Interest Group of Pure and Applied Logic, IGPL, 6(6):843-874,
1998.

15. F. Kamareddine, A. Rios, and J.B. Wells. Calculi of Generalised -reduction and explicit substitution:
Type Free and Simply Typed Versions. Journal of Functional and Logic Programming, 1998(Article
5):1-44, 1998.

20

16

17.

18.

19.

20.

21.

Fairouz Kamareddine, and Alejandro Rios

J. McKinna and R. Pollack. Pure type systems formalised. In M. Bezem and J.-F. Groote, editors,
Proceedings of the International Conference on Typed Lambda Calculi and Applications, TLCA’93,
pages 289-305, 1993.

R. Milner, M. Tofte, and R. Harper. Definition of Standard ML. MIT Press, Cambridge (Mas-
sachusetts)/London, 1990.

R.P. Nederpelt, J.H. Geuvers, and R.C. de Vrijer, editors. Selected Papers on Automath. Studies in
Logic and the Foundations of Mathematics 133. North-Holland, Amsterdam, 1994.

F. Pfenning. A proof of the church rosser theorem and its representation in a logical framework.
Technical Report CMU-CS-92-186, Carnegie Mellon University, 1992.

K.H. Rose. Operational Reduction Models for Functional Programming Languages. PhD thesis, Uni-
versity of Copenhagen, 1996.

J. Terlouw. Een nadere bewijstheoretische analyse van GSTT’s. Technical report, Department of
Computer Science, University of Nijmegen, 1989.

