
Pure Type Systems with de Bruijn indi
es ?Fairouz Kamareddine1, and Alejandro R��os21 Computing and Ele
tri
al Engineering, Heriot-Watt Univ., Ri

arton, Edinburgh EH14 4AS, S
otland,fairouz�
ee.hw.a
.uk2 Department of Computer S
ien
e, University of Buenos Aires, Pabell�on I - Ciudad Universitaria(1428) Buenos Aires, Argentina, rios�d
.uba.arAbstra
t. Nowadays, type theory has many appli
ations and is used in many di�erentdis
iplines. Within
omputer s
ien
e, logi
 and mathemati
s, there are many di�erent typesystems. They serve several purposes, and are formulated in various ways. A general frame-work
alled Pure Type Systems (PTSs for short) has been introdu
ed independently byTerlouw and Berardi in 1988 and 1989, in order to provide a uni�ed formalism in whi
hmany type systems
an be represented. In parti
ular, PTSs allow the representation of thesimple theory of types, the polymophi
 theory of types, the dependent theory of types andvarious other well-known type systems su
h as the Edinburgh Logi
al Frameworks LF andthe Automath system.Pure Type Systems are usually presented using variable names. In this arti
le, we present aformulation of PTSs with de Bruijn indi
es. De Bruijn indi
es [6℄ avoid the problems
ausedby variable names during the implementation of type systems. We show that PTSs withvariable names and PTSs with de Bruijn indi
es are isomorphi
. This isomorphism enablesus to answer questions about PTSs with de Bruijn indi
es in
luding
on
uen
e, termination(strong normalisation) and safety (subje
t redu
tion).1 Introdu
tionThe explosion of new type theories and their appli
ations in the twentieth
entury is fas
inating.This is not surprising sin
e type theory is
onsidered as an important foundation for logi
, theformalisation of mathemati
s and the design and implementation of theorem proving and pro-gramming languages. Of
ourse, for every new type theory many questions need to be answeredbefore that theory
an be useful for some appli
ations. Of these questions, we mention issueslike termination and safety. For example, in programming terms, safety
an be des
ribed as theproperty that spe
i�es that if a program has a
ertain type and if this program is evaluated to a
ertain value (or another program), then this result itself has the same type. Termination
an bedes
ribed by the property that if a program is typable, then this program terminates (does notloop).Some of these properties are hard to establish and it is hen
e desirable to generalise proofsfrom one system to the other if at all possible. Hen
e, a general framework in whi
h di�erenttype systems
an be des
ribed may turn out to be useful for providing general
riteria and results
on
erning the various systems. A general framework also helps
omparing the di�erent systems.In 1988 and 1989, a general framework was given independently by Terlouw and Berardi in [5,21℄ whi
h
lassi�es di�erent known type theories. This framework is known as the Pure TypeSystems (PTSs for short) framework. In [4℄, a des
ription of PTSs and of a
ube of eight di�erentsystems that are all PTSs
an be found. Important type systems that are PTSs in
lude Chur
h'ssimply typed �-
al
ulus [7℄ and the
al
ulus of
onstru
tions [8, 9℄ whi
h are also systems of theBarendregt
ube [4℄.As to how types are written within the terms, there are basi
ally two type dis
iplines: theimpli
it and the expli
it. The impli
it style, also known as typing �a la Curry, does not annotatevariables with types. For example, the identity fun
tion is written as in the type-free
ase, as? This work was supported by EPSRC grants GR/K25014, GR/L36963 and GR/L15685. We are gratefulfor the anonymous referees for their thorough reading and valuable
omments.

2 Fairouz Kamareddine, and Alejandro R��os�x:x. The type of terms however is found using the typing rules of the system in use. The expli
itstyle, also known as typing �a la Chur
h, does annotate variables and the identity fun
tion may bewritten as �x : Bool:x to represent identity over booleans. PTSs are based on typing �a la Chur
hand this is the dis
ipline we
onsider in this paper.So far, we know that there are two type dis
iplines of whi
h we
onsider the expli
itly typeddis
ipline, and that there are various type systems many of whi
h fall under the PTSs frameworkwhi
h we study in this paper. Besides the questions of what is the type system under
onsiderationand what is the type dis
ipline, there is another important question, namely: what is the variabledis
ipline assumed by the system. There are many dis
iplines
on
erned with variables:{ The use of named variables as is usually assumed in many books of the �-
al
ulus and typetheory. For example (ignoring types) �x:x represents the identity fun
tion. In the named vari-able dis
ipline, substitution
an be a
umbersome operation due to variable manipulation andrenaming. There are some approa
hes used to avoid either the problem or variables themselves.We mention next some of these methods that are used in the formalisation of �-
al
ulus andtype theory and in the implementation of programming languages and theorem provers.{ The use of
ombinatory logi
 whi
h is equivalent to the �-
al
ulus but does not use variablenames. For example, in
ombinatory logi
, the identity fun
tion �x:x is written as I where Iaredu
es to a. In fa
t, every term is a
ombinator and no variables need to be introdu
ed. It ishowever less intuitive to understand what the
ombinators are doing espe
ially in really largeterms. Combinators looked very promising in the 1970s and 1980s when Turner developed thelanguage Miranda and when Hughes developed the notion of super-
ombinators. We will notstudy
ombinators in this arti
le. The interested reader
an refer to [11℄.{ The use of de Bruijn indi
es whi
h avoid
lashes of variable names and therefore neither �-
onversion nor Barendregt's
onvention are needed. The identity fun
tion will be written as�:1 using de Bruijn indi
es. The 1 refers to the number of �s before rea
hing the binding �.De Bruijn indi
es are explained in detail in Se
tion 4.1. De Bruijn indi
es are extensively usedin the implementation of programming languages and theorem provers.{ There are many other approa
hes to avoid the problem of named variables in type theory. Forexample, there is the higher order abstra
t syntax approa
h [19℄ whi
h avoids formalising therenaming of variables in order to prevent unintended
apture during substitution. There is alsoanother approa
h due to Coquand and used in formalisations of PTSs in LEGO [16℄ wherefree variables are synta
ti
ally distinguished from bound ones and where expli
it �-
onversionof named variables is not ne
essary in the theory of redu
tion,
onversion and typing.There are advantages and disadvantages to ea
h of the above mentioned approa
hes. Thispaper is not about what is the best approa
h to represent variables in type theory. The lasttwo de
ades has seen mu
h progress in this �eld with more work
arried out on higher orderabstra
t syntax, or on defending the use of named variables (and the variable
onvention), or ondefending the need for newer dis
iplines of variables. Our paper is
on
erned with writing PTSs(whi
h are usually written using variable names) using de Bruijn indi
es whi
h seems to be themost used formulation in many implementations of type theory and theorem proving. Translationsbetween variable names and de Bruijn indi
es have re
eived attention in the past for the lambda
al
ulus [20, 14℄, but never before has there been a formulation of PTSs using de Bruijn indi
es.Now that we have settled the type dis
ipline to expli
it, the type systems to PTSs and thevariable dis
ipline to de Bruijn indi
es, we propose to write PTSs using de Bruijn indi
es. Allthe desirable properties of PTSs (su
h as termination and safety) have been established for PTSswith variable names and there does not yet exist a formulation of PTSs with de Bruijn indi
es forwhi
h the desirable properties have been established.We believe that as far as possible, important theoreti
al properties like termination and safetyshould be established before a system
an be the basis of an implementation. In this paper, wewill give su
h a formulation of PTSs with de Bruijn indi
es and we show that our formulation isisomorphi
 to the formulation with variable names. This isomorphism will be used to establishthat our formulation of PTSs with de Bruijn indi
es satis�es the properties mentioned above.The dire
t result of our work is that on one hand, one
an now �nd a formulation of PTSs with

Pure Type Systems with de Bruijn indi
es 3de Bruijn indi
es for whi
h desirable properties have been proved, and on the other hand, ourformulation
an be dire
tly implemented be
ause it is written with de Bruijn indi
es whi
h do notlead to the problemati
 features that result from variable names.This paper is divided as follows: In Se
tion 2 we introdu
e the formal ma
hinery needed. InSe
tion 3 we re
all the Pure Type Systems with variable names as presented in [4℄ and some of theirproperties. In Se
tion 4 we introdu
e the Pure Type Systems with de Bruijn indi
es and prove someproperties
on
erning free variables. In Se
tion 5 we establish the isomorphisms between PTS'sand their de Bruijn versions. In Se
tion 6 we use the isomorphism to establish the properties ofPTSs with de Bruijn indi
es.2 Formal Ma
hineryWe assume familiarity with the �-
al
ulus as in [3℄. In this se
tion, we will introdu
e some ma-
hinery that will be used in the rest of this paper.De�nition 1 (Redu
tion Notations) Let S be a set and R a binary relation on S . We denoteR by !R and
all it a redu
tion notion. We use the following notations and de�nitions:1. !!R or just !! is the re
exive and transitive
losure of !R . When A !!R B we say thereexists an R-redu
tion sequen
e from A to B .2. =R is the re
exive, symmetri
 and transitive
losure of!R. That is, =R is the least equivalen
erelation
ontaining !R.3. = is synta
ti
 identity, and A = B means A and B are synta
ti
ally identi
al.4. A 2 S is an R-normal form (R-nf for short) if there is no B 2 S su
h that A!R B.5. We say that B is an R-normal form of A or A has B as R-normal form if B is an R-normalform and A =R B.Expressions
an be evaluated in di�erent orders. For example, we
ould evaluate 2+3+4 byevaluating (2+3)+4 or 2+(3+4). We would like to get the same result either way. The followingde�nition helps us des
ribe this phenomenon:De�nition 2 (Con
uen
e and Chur
h Rosser) Let R be a notion of redu
tion on S . Wesay that R is
on
uent (or Chur
h Rosser CR) if !!R satis�es the property:8A;B;C 2 S 9D 2 S : (A !!R B ^ A !!R C)) (B !!R D ^ C !!R D) :Theorem 3 Let R be a notion of redu
tion that is CR. The following holds:{ Let A =R B then� there is a C su
h that A!!R C and B !!R C.1� if B is in R-normal form, then A!!R B.� either A and B do not have R-normal forms or A and B have the same R-normal form.� if A and B are in R-normal forms then A = B.{ If A has R-normal forms B and C, then B = C. Hen
e, we speak of the R-normal form of Aand denote it by R(A).A se
ond very important
on
ern of redu
tion (or rewrite) notions is that of termination. Weare interested in knowing if our rewriting of a parti
ular expression will terminate or will goinde�nitely. For example, the rule n ! n + 1 applied to 1 will not terminate. Termination is a
ru
ial property for implementation purposes. If an expression does not always terminate, perhapsit
an terminate with some
areful ordering of rules. Those expressions that will never terminateare disastrous for
omputation. The following de�nition introdu
es notions related to termination:De�nition 4 (Normalisation) Let R be a redu
tion notion on S . We say that:1 Sometimes, this is referred to as the
on
uen
e property. We have however identi�ed Chur
h Rosserand Con
uen
e.

4 Fairouz Kamareddine, and Alejandro R��os{ A is R strongly normalising if there are no in�nite R-redu
tion sequen
es starting at A.{ R is strongly normalising (SN) if there is no in�nite sequen
e (Ai)i�0 in S su
h that Ai !RAi+1 for all i � 0 . I.e. every A in S is R strongly normalising.{ R is weakly normalising (WN) if every A 2 S has an R-normal form.When no
onfusion
an arise, R is omitted and we speak simply of normal forms or normalisation.Strong normalisation implies weak normalisation and therefore the existen
e of normal forms.3 Pure Type Systems with variable namesIn this se
tion, we will review PTSs with variable names and some of their properties.3.1 Syntax and Rules of PTSs with variable namesDe�nition 5 The set of pseudo-terms T , is generated by the grammar:T ::= V j C j (T T) j (�V : T :T) j (�V : T :T), where V is the in�nite set of variables fv1; v2; v3; : : : gand C a set of
onstants over whi
h,
;
1; : : : range and
ontaining two spe
ial sorts � and 2. Weuse A;B; : : : to range over T and x; y; z; : : : to range over V.De�nition 6 (Notational
onvention) We use the following notational
onventions:1. Throughout, we take � to represent either � or �.2. Fun
tional appli
ation asso
iates to the left. So ABC denotes ((AB)C).3. The body or s
ope of a � is anything that
omes after it. So, instead of (�v : A:(A1A2 : : : An)),we write �v : A:A1A2 : : : An.4. A sequen
e of �'s is
ompressed to one, so for example, �x : A y : B z : C:t denotes�x : A:(�y : B:(�z : C:t)).Therefore, appli
ation has priority over abstra
tion: �x : A:yz means �x : A:(yz) and not (�x : A:y)z.� is a variable binder, just like 8 in logi
. Hen
e we de�ne free and bound variables.De�nition 7 (Free and Bound variables) For a term C, the set of free variables FV (C), andthe set of bound variables BV (C), are de�ned indu
tively as follows:FV (v) =def fvg BV (v) =def ; ; is the empty setFV (
) =def ; BV (
) =def ;FV (�v : A:B) =def (FV (B) n fvg) [FV (A) BV (�v : A:B) =def BV (A) [BV (B) [fvgFV (AB) =def FV (A) [FV (B) BV (AB) =def BV (A) [BV (B)An o

urren
e of a variable v in a term is free if it is not within the s
ope of a �v : A:, otherwise itis bound. A
losed term is a term in whi
h all variables are bound. We write A[x := B℄ to denotethe term where all the free o

urren
es of x in A have been repla
ed by B.An important notion for rewriting relations is that of
ompatibility:De�nition 8 (Compatibility for PTSs) We say that a binary relation R on a PTS is
om-patible i� for all terms A;B, and variable v, the following holds:(A;B) 2 R(AC;BC) 2 R (a1) (A;B) 2 R(CA;CB) 2 R (a2)(A;B) 2 R(�v : C:A; �v : C:B) 2 R (b1) (A;B) 2 R(�v : A:C; �v : B:C) 2 R (b2)�-redu
tion identi�es terms up to variable renaming:

Pure Type Systems with de Bruijn indi
es 5De�nition 9 (Alpha redu
tion) �-redu
tion !� is de�ned to be the least
ompatible relationgenerated by the axiom:(�) �v : A:B !� �v0 : A:B[v := v0℄ where v0 62 FV (B)Now one
an follow De�nition 1 to de�ne =� (�-equivalen
es), !!�, et
.As usually done with
al
uli with named variables we will identify �-equivalent terms and we willnot use a spe
ial notation to di�erentiate terms and
lasses of terms. However, when we want tostress the fa
t that two terms, say A and B are � equivalent but may not be identi
al we willeventually write A =� B instead of A = B. Furthermore, we assume the Barendregt variable
onvention whi
h is formally stated as follows:Convention 10 (V C: Barendregt's Convention) Names of bound variables will always be
hosen su
h that they di�er from the free ones in a term. Moreover, di�erent �'s have di�er-ent variables as subs
ript. Hen
e, we will not have (�x : A:x)x, but (�y : A:y)x instead.Lemma 11 (Substitution for variable names) Let A;B;C 2 T , x; y 2 V. For x 6= y andx 62 FV (C), we have that: A[x := B℄[y := C℄ = A[y := C℄[x := B[y := C℄℄.De�nition 12 (Beta redu
tion) �-redu
tion!� is the least
ompatible relation on T generatedby (�) (�x : A:B)C ! B[x := C℄Here is a lemma about the intera
tion of �-redu
tion and substitution. Note that in the �rst
ase,!� is mapped into!!� . The reason being that x may o

ur n times (for n � 0) as a free variablein A and hen
e the redu
tion will be repeated following the number of o

urren
es of x.Lemma 13 Let A;B;C;D 2 T .1. If C !� D then A[x := C℄!!� A[x := D℄ .2. If A!� B then A[x := C℄!� B[x := C℄ .Proof: By indu
tion on the stru
ture of A for 1, on the generation of A!� B for 2. �Now, we de�ne some ma
hinery needed for typing:De�nition 141. A statement is of the form A : B with A;B 2 T . We
all A the subje
t and B the predi
ateof A : B.2. A de
laration is of the form x : A with A 2 T and x 2 V.3. A pseudo-
ontext is a �nite ordered sequen
e of de
larations, all with distin
t subje
ts. We use�;�; � 0; �1; �2; : : : to range over pseudo-
ontexts. The empty
ontext is denoted by either <>or nothing at all if no
onfusion
an arise.4. If � = x1 : A1; : : : ; xn : An then �; x : B = x1 : A1; : : : ; xn : An; x : B and dom(�) = fx1; : : : ; xng.De�nition 15 A type assignment relation is a relation between pseudo-
ontexts and pairs ofpseudo-terms written as � ` A : B. The rules of type assignment establish whi
h judgments� ` A : B
an be derived. A judgement � ` A : B states that A : B
an be derived from thepseudo-
ontext � .De�nition 16 Let � be a pseudo-
ontext and ` be a type assignment relation.1. � is
alled legal if 9A;B 2 T su
h that � ` A : B.2. A 2 T is
alled a � -term if 9B 2 T su
h that � ` A : B or � ` B : A.We take � -terms = fA 2 T su
h that 9B 2 T and � ` A : B _ � ` B : Ag.3. A 2 T is
alled legal if 9� su
h that A 2 � -terms.

6 Fairouz Kamareddine, and Alejandro R��osThe next de�nition will introdu
e a generalised family of type systems
alled Pure Type Systems(or PTSs). A PTS
an be distinguished from another by:{ The set of sorts S whi
h is a subset of the
onstants C. The two most used sorts are � and 2.A : �
an be read as A is a type. A : 2
an be read as A is a kind.{ The set of axioms A of the form
 : s whi
h type spe
ial
onstants. � : 2 is an example of su
han axiom.{ A set of rules R whi
h restri
t type formation as to allow/disallow notions like polymorphim,dependent types, et
.De�nition 17 The spe
i�
ation of a PTS is a triple S = (S;A;R), where S is a subset of C,
alled the sorts. A is a set of axioms of the form
 : s with
 2 C and s 2 S and R is a set of rulesof the form (s1; s2; s3) with s1; s2; s3 2 S.De�nition 18 The notion of type derivation, denoted � `�S A : B (or simply � ` A : B), in aPTS whose spe
i�
ation is S = (S;A;R), is axiomatised by the axioms and rules of Figure 1.
(axiom) <>`
 : s if
 : s 2 A(start) � ` A : s�; x : A ` x : A if x 62 dom(�)(weakening) � ` B : C � ` A : s�; x : A ` B : C if x 62 dom(�)(produ
t) � ` A : s1 �; x : A ` B : s2� ` (�x : A:B) : s3 if (s1; s2; s3) 2 R(appli
ation) � ` F : (�x : A:B) � ` C : A� ` F C : B[x := C℄(abstra
tion) �; x : A ` C : B � ` (�x : A:B) : s� ` (�x : A:C) : (�x : A:B)(
onversion) � ` A : B � ` B0 : s B =� B0� ` A : B0Fig. 1. PTSs with variables namesEa
h of the eight systems of the
ube is obtained by taking S = f�;2g, A = f� : 2g, and R to be aset of rules of the form (s1; s2; s2) for s1; s2 2 f�;2g. This means that for the
ube, the only possible(s1; s2; s2) rules in the set R are elements of the set: f(�; �; �); (�;2;2); (2; �; �); (2;2;2)g. Thebasi
 system is the one where (s1; s2; s2) = (�; �; �) is the only possible
hoi
e. All other systemshave this version of the formation rules, plus one or more other
ombinations of (�;2;2), (2; �; �)and (2;2;2) for (s1; s2; s2). See Figures 2 and 3. See also Page 192 of [4℄.Note that as in the
ube there are only two sorts, � and 2, and as ea
h set R must
ontain(�; �; �), there are only eight possible di�erent systems for the Cube. An important aspe
t of theCube is that it provides a fa
torisation of the expressive power of the Cal
ulus of Constru
tionsinto three features: polymorphism, type
onstru
tors, and dependent types:{ (�; �; �) is the basi
 rule that forms types. All type systems of the Cube have this rule.

Pure Type Systems with de Bruijn indi
es 7�! (�; �; �)�2 (�; �; �) (2; �; �)�P (�; �; �) (�;2;2)�P2 (�; �; �) (2; �; �) (�;2;2)�! (�; �; �) (2;2;2)�! (�; �; �) (2; �; �) (2;2;2)�P! (�; �; �) (�;2;2) (2;2;2)�P! = �C (�; �; �) (2; �; �) (�;2;2) (2;2;2)Fig. 2. Di�erent type formation
ondition
t t
t t

-
-6 6t t

t t
-
-6 6

�����
�����

�����
�����

�!
�2

�P
�P2�! �P!

�! �C
Fig. 3. The
ube{ (2; �; �) is the rule that takes
are of polymorphism. Girard's System (also known as �2) isthe weakest system on the Cube that features this rule.{ (2;2;2) takes
are of type
onstru
tors. The system �! is the weakest system on the Cubethat features this rule.{ (�;2;2) takes
are of term dependent types. The system �P is the weakest system on theCube that features this rule.Many other well-known type systems, like Automath [18℄, LF [10℄, and ML [17℄
an be moreor less related to one of the systems of the Barendregt Cube.3.2 Properties of PTSs with variable namesNow, we list some of the properties of PTSs with variable names (see [4℄ for proofs). In Se
tion 6,we will establish these properties for PTSs with de Bruijn indi
es.Lemma 19 Let A;B 2 T . If A!� B then FV (B) � FV (A).Theorem 20 (The Chur
h Rosser Theorem for PTSs with variable names) If A!!� Band A!!� C then there exists D su
h that B !!� D and C !!� D.Lemma 21 (Free variable lemma) Let � = x1 : A1; : : : ; xn : An su
h that� ` B : C. The following hold (proof is by indu
tion on the derivation � ` B : C):1. FV (B); FV (C) � fx1; : : : ; xng.2. FV (Ai) � fx1; : : : ; xi�1g for 1 � i � n.Theorem 22 (Subje
t Redu
tion (SR) for PTSs with variable names)If � ` A : B and A!!� A0 then � ` A0 : B.The next de�nition introdu
es the notion of singly sorted PTSs, whi
h impose that the spe
ial
onstants have unique sorts as types and whi
h imply the uni
ity of types.

8 Fairouz Kamareddine, and Alejandro R��osDe�nition 23 Let �S = �(S;A;R) be a given PTS. �S is
alled singly sorted if:1. (
 : s1); (
 : s2) 2 A implies s1 = s2.2. (s1; s2; s3); (s1; s2; s03) 2 R implies s3 = s03.Lemma 24 (Uni
ity of types for singly sorted PTSs with variable names) In any singlysorted PTS, the following holds:1. If � ` A : B1 and � ` A : B2 then B1 =� B2.2. If � ` A : B and � ` A0 : B0 then A =� A0 implies B =� B0.3. If � ` B : s, B =� B0 and � ` A0 : B0, then � ` B0 : s.Theorem 25 (Strong normalisation for the systems of the
ube) Every legal term of the
ube with variable names is strongly normalising.4 Pure Type Systems with de Bruijn indi
es4.1 SyntaxDe Bruijn noted that due to the fa
t that terms like �x : z:x and �y : z:y are the \same", one
an�nd a �-notation modulo �-
onversion. That is, following de Bruijn, one
an abandon variablesand use indi
es instead. The idea of de Bruijn indi
es is to remove all the variables of the �'s andto repla
e their o

urren
es in the body of the term by the number whi
h represents how many�'s one has to
ross before one rea
hes the � binding the parti
ular o

urren
e at hand.In the presen
e of free variables, a free variable list whi
h orders the variables must be assumed.For example, assume we take x; y; z; u; v; : : : to be the free variable list where x
omes before ywhi
h is before z, et
. Then, in order to write terms using de Bruijn indi
es, we use the samepro
edure above for all the bound variables. For a free variable however, say z, we
ount as far aspossible the �'s in whose s
ope z is, and then we
ontinue
ounting in the free variable list usingthe order assumed. The following exampli�es this situation:Example 261. �x : z:x is repla
ed by �3:1. That is, x is removed, and the x of the body x is repla
ed by 1 toindi
ate the � it refers to.2. �x : y:xz and (�x : z:xz)y translate respe
tively into �2:14 and (�3:14)2.Now we are ready to de�ne PTSs with de Bruijn indi
es.De�nition 27 We de�ne T , the set of pseudo-terms with de Bruijn indi
es, by the syntax:T ::= IN j C j (T T) j (�T:T) j (�T:T), where C is a set of
onstants over whi
h
;
1; : : : range.We use A;B; : : : to range over T and m;n; : : : to range over IN (positive natural numbers).We assume
onventions 1, 2, and an analogous to 3 of De�nition 6 and their
onsequen
es.The de�nition of
ompatibility (De�nition 8) is
hanged for de Bruijn indi
es by repla
ing (b1)and (b2) by the following:(A;B) 2 R(�A:C; �B:C) 2 R (b01) (A;B) 2 R(�C:A; �C:B) 2 R (b02)4.2 Updating, Substitution and Redu
tionIn order to de�ne �-redu
tion, we must de�ne the substitution of a variable by a term B in a termA. Therefore, we must identify amongst the numbers of a term A those that
orrespond to thevariable that is being substituted for and we need to update the term to be substituted in orderto preserve the
orre
t bindings of its variables.

Pure Type Systems with de Bruijn indi
es 9Example 28 Translating (�x : v:�y : v:zxy)(�x : v:yx) !� �u : v:z(�x : v:yx)u into de Bruijnindi
es, one gets (�5:�6:521)(�5:31) !� �5:4(�6:41)1. But, how
an we
arry the �-redu
tionwithout translating the result from variable names? The body of �5:�6:521 is �6:521 and the variablebound by the �rst � of �5:�6:521 is the 2. Hen
e, we need to repla
e in �6:521 the 2 by �5:31. Butif we simply repla
e 2 in �6:521 by �5:31 we get �6:5(�5:31)1, whi
h is not
orre
t. We needed tode
rease 5 as one � disappeared and to in
rement the free variables of �5:31 as they o

ur withinthe s
ope of one more �. Doing all this will lead to the �nal result �5:4(�6:41)1.In order to de�ne �-redu
tion (�C:A)B !�? using de Bruijn indi
es. We must:(a) �nd in A the o

urren
es n1; : : : nk of the variable bound by the � of �C:A.(b) de
rease the free variables of A to re
e
t the disappearan
e of the � from �A.(
) repla
e the o

urren
es n1; : : : nk in A by updated versions of B whi
h take into a

ount thatfree variables in B may appear within the s
ope of extra �s in A.It will take some work to do this. Let us, in order to simplify things say that the �-rule is(�CA)B !� Aff1 Bgg and let us de�ne Aff1 Bgg in a way that all the work of (a)� (
) aboveis
arried out. We need
ounters des
ribed informally as follows:1. We start traversing A (here �6:521) with a unique
ounter initialised at 1.2. When arriving at an appli
ation node, we
reate a
opy of the
ounter in order to have one
ounter for ea
h bran
h.3. When arriving at an abstra
tion node, we in
rement the
ounter.4. When arriving at a leaf (i.e. a number):(a) If it is superior to the
ounter, we de
rease the number by 1, be
ause there will be one �less between this number and the � that binds it.(b) If the number is equal to the
ounter, say n, it must be repla
ed by B whi
h will be foundnow under n� 1 �'s. We must therefore adjust the numbers of B so that we
an modifythe binding relations inside B. For this we use a family of fun
tions that we
all updatingfun
tions.(
) If the number is inferior to the value of the
ounter, then it is bound by a � whi
h is insideA, and hen
e the number must not be modi�ed.Let us de�ne the updating fun
tions.De�nition 29 The updating fun
tions U ik : T ! T for k � 0 and i � 1 are de�ned indu
tivelyas follows:U ik(
) =
 for
 2 CU ik(�A:B) = �U ik(A):(U ik+1(B))U ik(AB) = U ik(A)U ik(B) U ik(n) = �n+ i� 1 if n > kn if n � k :The intuition behind U ik is the following: k tests for free variables and i � 1 is the value bywhi
h a variable, if free, must be in
remented.Now we de�ne the family of substitution fun
tions:De�nition 30 The substitutions at level i , for i � 1 , of a term B 2 T in a term A 2 T ,denoted Affi Bgg , are de�ned indu
tively on A as follows:
ffi Bgg =
 for
 2 C(A1A2)ffi Bgg = (A1ffi Bgg) (A2ffi Bgg)(�A:C)ffi Bgg = �Affi Bgg:(Cffi+ 1 Bgg) nffi Bgg = 8<:n� 1 if n > iU i0(B) if n = in if n < i :The se
ond and third equalities propagate the substitution through appli
ations and abstra
tionsand the �rst one
arries out the substitution of the intended variable (when n = i) by the updatedterm. If the variable is not the intended one it must be de
reased by 1 if it is free (
ase n > i)be
ause one � has disappeared, whereas if it is bound (
ase n < i) it must remain unaltered.The next lemma establishes the properties of the substitutions and updating fun
tions. Theproof of this lemma is obtained by indu
tion on A and similar to the type-free
ase in [13℄.

10 Fairouz Kamareddine, and Alejandro R��osLemma 311. [Substitution lemma℄ For 1 � i � n we have:Affi Bggffn Cgg = Affn+ 1 Cggffi Bffn� i+ 1 Cgggg.2. [Distribution lemma℄ For n � k + 1 we have: U ik(Affn Bgg) = U ik+1(A)ffn U ik�n+1(B)gg :Case 1 is the version of Lemma 11 using de Bruijn indi
es.De�nition 32 (Beta redu
tion) �-redu
tion is the least
ompatible redu
tion on T generatedby: (�) (�A:C)B !� Cff1 BggRemark that we use !� to denote both, �-redu
tion on T and �-redu
tion on T . The
ontextwill always be
lear enough to determine the intended redu
tion.Finally, here is the version of Lemma 13 for de Bruijn indi
es. Note that we need not only toensure the good passage of the �-rule through the substitutions but also through the U ik.Lemma 33 Let A; B; C; D 2 T .1. If C !� D then i) U ik(C)!� U ik(D) and ii)Affi Cgg !!� Affi Dgg .2. If A!� B then Affi Cgg !� Bffi Cgg .Proof: 1. Case i) is by indu
tion on C using Lemma 31.2. Case ii) is by indu
tion on A usingi). 2. Is by indu
tion on A using Lemma 31.1. �We now de�ne the set of free variables of a term with de Bruijn indi
es. We need �rst to de�nethe following operations on sets of natural numbers.De�nition 34 Let N � IN and k � 0. We de�ne:1: N n k = fn� k : n 2 N;n > kg 2: N + k = fn+ k : n 2 Ng3: N>k = fn 2 N : n > kg 4: N<k = fn 2 N : n < kgThe following properties of the above operations will be needed later and their proofs are easy.Remark 35 Let N; M � IN and k; k0 � 0. We have1: (N [M) n k = (N n k) [(M n k) 2: (N n k) n k0 = N n (k + k0)3: (N + k) n 1 = N + (k � 1) if k � 1 4: (N n 1)<k = (N<k+1) n 15: (N n 1)>k = (N>k+1) n 1In the de�nition of free variables we give now, only the di�eren
e n is needed. The otheroperations will be useful later.De�nition 36 The set of free variables of a term with de Bruijn indi
es is de�ned by indu
tionas follows: FV (
) =def ; for
 2 C FV (AB) =def FV (A) [FV (B)FV (n) =def fng FV (�A:C) =def FV (A) [(FV (C) n 1)Lemma 37 For A 2 T we have FV (U ik(A)) n k = (FV (A) n k) + (i� 1).Proof: Indu
tion on A. Use Remark 35.1 for the
ase A = BC and Remark 35.2 for the
aseA = �B:C. �Lemma 38 For A; B 2 T and j � 1, the following hold:1. FV (Affj Bgg) = (FV (A))<j [((FV (A))>j n 1) if j 62 FV (A).2. FV (Affj Bgg) = (FV (A))<j [((FV (A))>j n 1) [(FV (B) + (j � 1)) if j 2 FV (A).Proof: By simultaneous indu
tion on A. Use the previous lemma for the
ase A = j and Remark35.3, 4, 5 for the
ase A = �B:C. �The following lemma on T
orresponds to Lemma 19 on T .Lemma 39 Let A;B 2 T . If A!� B then FV (B) � FV (A).Corollary 40 Let A;B 2 T . If A!!� B then FV (B) � FV (A).

Pure Type Systems with de Bruijn indi
es 114.3 Rules of PTSs with de Bruijn indi
esDe�nition 14 for PTSs with variable names
hanges when de Bruijn indi
es are used as follows:A (de Bruijn) pseudo-
ontext � be
omes a �nite ordered sequen
e of de Bruijn terms. Wewrite it simply as � = A1; : : : ; An. Statements, subje
t and predi
ate remain un
hanged, andde
larations disappear.De�nitions 15, 16 and 17 are the same for de Bruijn indi
es (ex
ept that T
hanges to T).Now, we
an give the de�nition of PTSs using de Bruijn indi
es:De�nition 41 The notion of type derivation, denoted � `�S A : B (or simply � ` A : B), in aPTS whose spe
i�
ation is S = (S;A;R), is axiomatised by the axioms and rules of Figure 4.
(axiom) <>`
 : s if
 : s 2 A(start) � ` A : sA;� ` 1 : U20 (A)(weakening) � ` B : C � ` A : sA; � ` U20 (B) : U20 (C)(produ
t) � ` A : s1 A;� ` B : s2� ` (�A:B) : s3 if (s1; s2; s3) 2 R(appli
ation) � ` F : (�A:B) � ` C : A� ` F C : Bff1 Cgg(abstra
tion) A;� ` C : B � ` (�A:B) : s� ` (�A:C) : (�A:B)(
onversion) � ` A : B � ` B0 : s B =� B0� ` A : B0Fig. 4. PTSs with de Bruijn indi
esRemark that in the rules (start), (weakening), (produ
t), (abstra
tion) the position of A withrespe
t to � is reversed with respe
t to its position in the
orresponding rules of the
lassi
alsetting. However, we have
hosen this presentation following the original work of type systems inde Bruijn notation (
f. [1℄).Remark also the role played by the updating U20 in the rules (start), (weakening). This fun
tionin
reases with 1 the de Bruijn indi
es whi
h
orrespond to free variables and its o

urren
e in thesetwo rules is reasonable sin
e the
orresponding
ontexts have been augmented by the addition ofa new
omponent.Example 421: ` � : 2 by axiom2: � ` 1 : � by 1 and start3: 1; � ` 1 : 2 by 2 and start4: 1; 1; � ` 2 = U20 (1) : 3 = U20 (2) by 3 twi
e and weakeningThe following lemma is the equivalent for de Bruijn indi
es, of Lemma 21.

12 Fairouz Kamareddine, and Alejandro R��osLemma 43 Let A1; : : : ; An ` B : C then1: FV (B); FV (C) � f1; : : : ; ng 2: for 0 � i � n� 1, FV (An�i) � f1; : : : ; ig.Proof: Both items are proved by indu
tion on the derivation.1. For (start) and (weakening) use lemma 37. For (appli
ation) use lemma 38. The other rulesare immediate.2. For (start) and (weakening) use 1. The other rules are immediate. �5 The isomorphismIn the rest of this paper, we present the isomorphism between PTSs written using variable namesand PTSs written using de Bruijn indi
es. The method is as follows:1. We translate ea
h term A and ea
h
ontext � written using variable names, into a term t[::: ℄(A)and a
ontext t(�) written with de Bruijn indi
es. We then prove that these translationspreserve �-redu
tion (if in T , A !� B then in T , t[::: ℄(A) !� t[::: ℄(B)) and type assignment(if in T , � ` A : B then in T , t(�) ` t[::: ℄(A) : t[::: ℄(B)).2. We de�ne translations u[::: ℄ and u in the other dire
tion and also prove preservation of �-redu
tion and type assignment.3. We prove that these translations are inverses of ea
h other.Notation 441. We write [x1; : : : ; xn℄ for the ordered list of x1; : : : ; xn.2. For i � 0, we write xi for x1; : : : ; xi and xi for xi; : : : ; x1.5.1 Translating T to TDe�nition 45 (The translation t) For every term A 2 T su
h that FV (A) � fx1; : : : ; xng wede�ne t[x1;:::;xn℄(A) by indu
tion on A as follows:t[x1;:::;xn℄(
) =def
 for
 2 Ct[x1;:::;xn℄(vi) =def minfj su
h that vi = xjgNote: minfj su
h that vi = xjg is interpreted as a de Bruijn index.t[x1;:::;xn℄(AB) =def t[x1;:::;xn℄(A)t[x1;:::;xn℄(B)t[x1;:::;xn℄(�x : B:A) =def �t[x1;:::;xn℄(B):t[x;x1;:::;xn℄(A)Let � = x1 : A1; : : : ; xn : An be a legal
ontext. We de�ne:t(�) =def t[xn�1;:::;x1℄(An); t[xn�2;:::;x1℄(An�1); : : : ; t[x1℄(A2); t[℄(A1).Remark that De�nition 45 is a good de�nition thanks to Lemma 21.Lemma 46 Let A 2 T su
h that FV (A) � fx1; : : : ; xng. Then FV (t[x1;:::;xn℄(A)) � f1; : : : ; ng.Proof: By indu
tion on A. �We need to establish some lemmas before proving the preservation of type assignment. Theselemmas state how the translation behaves with the updating fun
tions, the substitutions, the�-
ontra
tions and �-equivalen
e.Lemma 47 Let A 2 T , k � 0, i � 1 and n � k + i su
h that xk+1; : : : ; xk+i�1 62 FV (A).Then t[x1;:::;xn℄(A) = U ik(t[x1;:::;xk;xk+i;:::;xn℄(A)).

Pure Type Systems with de Bruijn indi
es 13Proof: By indu
tion on A. The
ase A =
 2 C is immediate, the
ase A = BC just need theIH, the
ases A = �x : B:C and A = �x : B:C are similar. Therefore, we just study:A = vm : Let j = minfi : vm = xig. Then t[x1;:::;xn℄(vm) = j.If j � k we have t[x1;:::;xn℄(A) = j = U ik(j) = U ik(t[x1;:::;xk;xk+i;:::;xn℄(A)).If j � k + i we have t[x1;:::;xn℄(A) = j = U ik(j � i+ 1) = U ik(t[x1;:::;xk;xk+i;:::;xn℄(A)).A = �x : B:C : We have t[x1;:::;xn℄(A) = �t[x1;:::;xn℄(B):t[x;x1;:::;xn℄(C) IH=�U ik(t[x1;:::;xk;xk+i;:::;xn℄(B)):U ik+1(t[x1;:::;xk;xk+i;:::;xn℄(C)) =U ik(�t[x1;:::;xk;xk+i;:::;xn℄(B):t[x1;:::;xk;xk+i;:::;xn℄(C)) = U ik(t[x1;:::;xk;xk+i;:::;xn℄(A)) �Lemma 48 Let A; B 2 T su
h that the bound variables of B are not free in A and take yi�1 andxn for i � 1 and n � 0. Let x be a variable not bound in B and distin
t from y1; : : : ; yi�1 andassume y1; : : : ; yi�1 62 FV (A). Then t[yi�1;xn℄(B[x := A℄) = (t[yi�1;x;xn℄(B))ffi t[xn℄(A)gg.Proof: By indu
tion on B. We just study the interesting
ases:B = z 2 V : We
onsider three
ases:If z = x, then t[yi�1;xn℄(B[x := A℄) = t[yi�1;xn℄(A) L 47=U i0(t[xn℄(A)) = (t[yi�1;x;xn℄(B))ffi t[xn℄(A)ggIf fj : z = yjg 6= ;, let k = minfj : z = yjg. Thent[yi�1;xn℄(B[x := A℄) = k = (t[yi�1;x;xn℄(B))ffi t[xn℄(A)ggIf fj : z = xjg 6= ;, let k = minfj : z = xjg. We
an assume xk 6= x sin
e the
ase z = x hasalready been
onsidered. We havet[yi�1;xn℄(B[x := A℄) = k+ i� 1 = k+ iffi t[xn℄(A)gg = (t[yi�1;x;xn℄(B))ffi t[xn℄(A)ggB = �z : D:E : Remark that, sin
e x is not bound in B, x 6= z. We havet[yi�1;xn℄(B[x := A℄) = �t[yi�1;xn℄(D[x := A℄):t[z;yi�1;xn℄(E[x := A℄) IH=�(t[yi�1;x;xn℄(D))ffi t[xn℄(A)gg:(t[z;yi�1;x;xn℄(E))ffi+ 1 t[xn℄(A)gg =(�t[yi�1;x;xn℄(D):t[z;yi�1;x;xn℄(E))ffi t[xn℄(A)gg = (t[yi�1;x;xn℄(B))ffi t[xn℄(A)ggRemark that we were able to apply the IH, be
ause z 62 FV (A), sin
e we assumed that the boundvariables of B are not free in A. �Lemma 49 Let A;B 2 T su
h that FV (A) � fx1; : : : xng and A!� B.Then t[x1;:::;xn℄(A)!� t[x1;:::;xn℄(B).Proof: Remark that Lemma 19 guarantees the good de�nition of t[x1;:::;xn℄(B).The proof is by indu
tion on A. The interesting
ase is when A is an appli
ation and the redu
tiontakes pla
e at the root.Therefore, let A = (�x : D:C)E and B = C[x := E℄. We havet[x1;:::;xn℄(A) = (�t[x1;:::;xn℄(D):t[x;x1;:::;xn℄(C))t[x1;:::;xn℄(E)!�(t[x;x1;:::;xn℄(C))ff1 t[x1;:::;xn℄(E)gg L 48= t[x1;:::;xn℄(C[x := E℄) = t[x1;:::;xn℄(B) �Corollary 50 Let A;B 2 T su
h that FV (A) � fx1; : : : xng and A!!� B.Then t[x1;:::;xn℄(A)!!� t[x1;:::;xn℄(B).Lemma 51 Let A 2 T su
h that FV (A) � fx1; : : : ; xng and let y1; : : : ; ym su
h that for every i,1 � i � m, either yi 62 FV (A) or yi = xj for some j, 1 � j � n.Then t[x1;:::;xn;y1;:::;ym℄(A) = t[x1;:::;xn℄(A).Proof: Easy indu
tion on A. �Lemma 52 Let A; B 2 T su
h that FV (A) [FV (B) � fx1; : : : ; xng and A =� B.Then t[x1;:::;xn℄(A) =� t[x1;:::;xn℄(B).Proof: By indu
tion on the number k of �-
ontra
tions and �-expansions in A =� B.If k = 0 the lemma is obvious. There are two possibilities for k > 0:

14 Fairouz Kamareddine, and Alejandro R��osA =� C !� B : If FV (C) � fx1; : : : ; xng apply IH and Lemma 49.Otherwise let fy1; : : : ; ymg = FV (C) n fx1; : : : ; xng. Thent[x1;:::;xn;y1;:::;ym℄(A) IH=� t[x1;:::;xn;y1;:::;ym℄(C) L 49!� t[x1;:::;xn;y1;:::;ym℄(B)And we
on
lude by the previous lemma.B !� C =� A : By Lemma 19, FV (C) � FV (B). Now, IH and Lemma 49 settle this
ase. �Now we are ready to state and prove the preservation of type assignment by t:Theorem 53 Let � = x1 : A1; : : : ; xn : An su
h that � ` A : B.Then t(�) ` t[xn;:::;x1℄(A) : t[xn;:::;x1℄(B).Proof: By indu
tion on the derivation � ` A : B. If A : B is an axiom the theorem followsimmediately. Let us study the last rule in the derivation � ` A : B.(start) : Let � = x1 : A1; : : : ; xn : An. If � ` A : s then, by IH, t(�) ` t[xn;:::;x1℄(A) : s andhen
e, applying (start), t[xn;:::;x1℄(A); t(�) ` 1 : U20 (t[xn;:::;x1℄(A)). Sin
e, by de�nition, t(�; x :A) = t[xn;:::;x1℄(A); t(�) and t[x;xn;:::;x1℄(x) = 1, we must only
he
k that t[x;xn;:::;x1℄(A) =U20 (t[xn;:::;x1℄(A)), but this is an instan
e of Lemma 47, and we are done.(weakening) : As in the previous item, Lemma 47 solves this
ase.(appli
ation) : In this
ase use Lemma 48.(abstra
tion) and (produ
t) : Just use the IH.(
onversion) : Lemma 52 settles this
ase. �5.2 Translating T to TDe�nition 54 (The translation u) Let A 2 T su
h that FV (A) � f1; : : : ; ng and let x1; : : : ; xnbe distin
t variables of V . We de�ne u[xn;:::;x1℄(A) by indu
tion on A:u[xn;:::;x1℄(
) =def
 for
 2 Cu[xn;:::;x1℄(i) =def xiu[xn;:::;x1℄(AB) =def u[xn;:::;x1℄(A)u[xn;:::;x1℄(B)u[xn;:::;x1℄(�B:A) =def �x : u[xn;:::;x1℄(B):u[xn;:::;x1;x℄(A) with x 62 fx1; : : : ; xngRemark that De�nition 54 is
orre
t sin
e FV (�B:A)�f1; : : : ; ng implies FV (A) � f1; : : : ; n+1g. Furthermore, the de�nition for abstra
tions and produ
ts does not depend on the
hoi
e ofthe variable x thanks to the following remark.Remark 55 Let B;C 2 T su
h that FV (�B:C) � f1; : : : ; ng, let x1; : : : ; xn distin
t variables andx; y variables su
h that x; y 62 fx1; : : : ; xng.Then �x : u[xn;:::;x1℄(B):u[xn;:::;x1;x℄(C) = �y : u[xn;:::;x1℄(B):u[xn;:::;x1;y℄(C).Proof: It is enough to show that u[xn;:::;x1;x℄(C)[x := y℄ = u[xn;:::;x1;y℄(C), whi
h is a parti
ular
ase of the following lemma. �Lemma 56 Let B 2 T su
h that FV (B) � f1; : : : ; n+m + 1g, and let the variables x1; : : : ; xn,z1; : : : ; zm, x and y be all distin
t . Then (u[xn;:::;x1;x;zm;:::;z1℄(B))[x := y℄ = u[xn;:::;x1;y;zm;:::;z1℄(B).Proof: By indu
tion on B. The only interesting
ase is when B = �A:C. Let u[xn;x;zm℄(B) =�w : u[xn;x;zm℄(A):u[xn;x;zm;w℄(C). Let u[xn;y;zm℄(B) = �v : u[xn;y;zm℄(A):u[xn;y;zm;v℄(C).Remark that we
an assume that w 6= y. In fa
t, if w = y we
an
hoose z su
h that z 6= y andalso distin
t from x1; : : : ; xn, z1; : : : ; zm, x, and we haveu[xn;x;zm℄(B) = �z : u[xn;x;zm℄(A):u[xn;x;zm;w℄(C)[w := z℄ IH= �z : u[xn;x;zm℄(A):u[xn;x;zm;z℄(C).Therefore, sin
e w 6= y, we have(u[x;x;zm℄(B))[x := y℄ = (�w : u[xn;x;zm℄(A):u[xn;x;zm;w℄(C))[x := y℄ =�w : u[xn;x;zm℄(A)[x := y℄:u[xn;x;zm;w℄(C)[x := y℄ IH= �w : u[xn;y;zm℄(A):u[xn;y;zm;w℄(C) =�v : u[xn;y;zm℄(A):u[xn;y;zm;w℄(C)[w := v℄ IH= �v : u[xn;y;zm℄(A):u[xn;y;zm;v℄(C) = u[xn;y;zm℄(B) �

Pure Type Systems with de Bruijn indi
es 15De�nition 57 Let � = A1; : : : ; An be a legal
ontext. We de�ne:u(�) = v1 : u[℄(An); v2 : u[v1℄(An�1); : : : ; vn : u[v1;:::;vn�1℄(A1)De�nition 57 is
orre
t thanks to Lemma 43.As in the previous subse
tion, we must establish some lemmas in order to prove that u pre-serves type assignement. These lemmas
larify the intera
tion of u with the updating fun
tions,substitutions, �-
ontra
tions and �-equivalen
e.Lemma 58 Let A 2 T , i � 1, k � 0 and n � k + i su
h that FV (A) � f1; : : : ; n� i+ 1g. Thenu[xn;:::;x1℄(U ik(A)) = u[xn;:::;xk+i;xk;:::;x1℄(A).Proof: By indu
tion on A. As usual we study the two interesting
ases:A = m : If m � k then u[xn;:::;x1℄(U ik(A)) = xm = u[xn;:::;xk+i;xk;:::;x1℄(A).If m > k then u[xn;:::;x1℄(U ik(A)) = xm+i�1 = u[xn;:::;xk+i;xk;:::;x1℄(A).A = �B:C : We
an
hoose x to obtain:u[xn;:::;x1℄(U ik(A)) = �x : u[xn;:::;x1℄(U ik(B)):u[xn;:::;x1;x℄(U ik+1(C)) IH=�x : u[xn;:::;xk+i;xk;:::;x1℄(B):u[xn;:::;xk+i;xk;:::;x1;x℄(C) = u[xn;:::;xk+i;xk;:::;x1℄(A) �Lemma 59 Let A; B 2 T and x1; : : : ; xn, y1; : : : ; yi�1, x distin
t variables.Then u[xn;:::;x1;yi�1;:::;y1℄(Affi Bgg) = (u[xn;:::;x1;x;yi�1;:::;y1℄(A))[x := u[xn;:::;x1℄(B)℄.Proof: By indu
tion on A. We study the two interesting
ases:A = j : If j < i then u[xn;yi�1℄(Affi Bgg) = yj = (u[xn;x;yi�1℄(A))[x := u[xn;:::;x1℄(B)℄.If j > i then u[xn;yi�1℄(Affi Bgg) = xj�i = (u[xn;x;yi�1℄(A))[x := u[xn;:::;x1℄(B)℄.If j = i then u[xn;yi�1℄(Affi Bgg) = u[xn;yi�1℄(U i0(B)) L 58=u[xn;:::;x1℄(B) = (u[xn;x;yi�1℄(A))[x := u[xn;:::;x1℄(B)℄:A = �D:C : We
hoose z 6= x to obtain:u[xn;y℄(Affi Bgg) = �z : u[xn;yi�1℄(Dffi Bgg):u[xn;yi�1;z℄(Cffi+ 1 Bgg) IH=�z : (u[xn;x;yi�1℄(D))[x := u[xn;:::;x1℄(B)℄:(u[xn;x;yi�1;z℄(C))[x := u[xn;:::;x1℄(B)℄ =(u[xn;x;yi�1℄(A))[x := u[xn;:::;x1℄(B)℄ �Lemma 60 Let A;B 2 T su
h that FV (A) � f1; : : : ng and A!� B.Then u[xn;:::;x1℄(A)!� u[xn;:::;x1℄(B).Proof: Remark that Lemma 39 guarantees the good de�nition of u[xn;:::;x1℄(B).The proof is by indu
tion on A. The interesting
ase is when A is an appli
ation and the redu
tiontakes pla
e at the root.Therefore, let A = (�D:C)E and B = Cff1 Egg. We haveu[xn;:::;x1℄(A) = (�x : u[xn;:::;x1℄(D):u[xn;:::;x1;x℄(C))u[xn;:::;x1℄(E)!�(u[xn;:::;x1;x℄(C))[x := u[xn;:::;x1℄(E)℄ L 59= u[xn;:::;x1℄(Cff1 Egg) = u[xn;:::;x1℄(B) �Corollary 61 Let A;B 2 T su
h that FV (A) � f1; : : : ng and A!!� B.Then u[xn;:::;x1℄(A)!!� u[xn;:::;x1℄(B).Lemma 62 Let A 2 T su
h that FV (A) � f1; : : : ; ng and let m � n.Then u[xm;:::;x1℄(A) = u[xn;:::;x1℄(A).Proof: Easy indu
tion on A. �Lemma 63 Let A; B 2 T su
h that FV (A) [FV (B) � f1; : : : ; ng and A =� B.Then u[xn;:::;x1℄(A) =� u[xn;:::;x1℄(B).Proof: By indu
tion on the number of �-
ontra
tions and �-expansions in A =� B. The proof isanalogous to the proof of Lemma 52 and uses Lemma 62. �

16 Fairouz Kamareddine, and Alejandro R��osHere is now the preservation of type assignment by u:Theorem 64 If � ` A : B then u(�) ` u[v1;:::;vn℄(A) : u[v1;:::;vn℄(B).Proof: By indu
tion on the derivation � ` A : B. If A : B is an axiom the theorem followsimmediately. Let us study the last rule in the derivation � ` A : B.(start) : Let � = A1; : : : ; An. If � ` A : s then, by IH, u(�) ` u[v1;:::;vn℄(A) : s and hen
e,applying (start), u(�); vn+1 : u[v1;:::;vn℄(A) ` vn+1 : u[v1;:::;vn℄(A). Sin
e, by De�nition 57,u(A;�) = u(�); vn+1 : u[v1;:::;vn℄(A) and u[v1;:::;vn+1℄(1) = vn+1, we must only
he
k thatu[v1;:::;vn+1℄(U20 (A)) = u[v1;:::;vn℄(A), but this is an instan
e of Lemma 58, and we are done.(weakening) : As in the previous item, Lemma 58 solves this
ase.(appli
ation) : For this
ase use Lemma 59.(abstra
tion) and (produ
t) : Just use the IH.(
onversion) : Lemma 63 settles this
ase. �5.3 t and u are inversesWe must
he
k that the
ompositions of t and u are the identity. We begin by studying tÆu, whi
has expe
ted is exa
tly the identity. We prove �rst the following lemma:Lemma 65 Let A 2 T su
h that FV (A) � f1; : : : ; ng and let x1; : : : ; xn be distin
t variables.Then t[x1;:::;xn℄(u[xn;:::;x1℄(A)) = A.Proof: By indu
tion on A. The usual two interesting
ases are:A = i : Sin
e x1; : : : ; xn are distin
t variables, we have:t[x1;:::;xn℄(u[xn;:::;x1℄(A)) = t[x1;:::;xn℄(u[xn;:::;x1℄(i)) = t[x1;:::;xn℄(xi) = i = AA = �B:C : We have: t[x1;:::;xn℄(u[xn;:::;x1℄(A)) = t[x1;:::;xn℄(�x : u[xn;:::;x1℄(B):u[xn;:::;x1;x℄(C)) =�t[x1;:::;xn℄(u[xn;:::;x1℄(B)):t[x;x1;:::;xn℄(u[xn;:::;x1;x℄(C)) IH= �B:C �We use `T for type derivations in PTSs with de Bruijn indi
es, and `T for type derivations inPTSs with variable names.De�nition 66 (Derivations that are exa
tly the same) We say that two derivations � `A : B and � 0 ` A0 : B0 are exa
tly the same if � = � , A = A0 and B = B0.Proposition 67 Let � = A1; : : : ; An su
h that � ` A : B. Then the derivations � `T A : B andt(u(�)) `T t[vn;:::;v1℄(u[v1;:::;vn℄(A)) : t[vn;:::;v1℄(u[v1;:::;vn℄(B)) are exa
tly the same.Proof: Remark that t(u(�)) = t(v1 : u[℄(An); v2 : u[v1℄(An�1); : : : ; vn : u[v1;:::;vn�1℄(A1)) =t[vn�1;:::;v1℄(u[v1;:::;vn�1℄(A1)); : : : ; t[v1℄(u[v1℄(An�1)); t[℄(u[℄(An)) L 65= � . Using again Lemma 65 weare done. �We study now uÆt. We
annot expe
t to have exa
tly the identity now, sin
e when we translatede Bruijn derivations we
hoose the variables in the de
larations of the
ontext in a determinedway: v1, v2, et
. Therefore we are going to end up with a derivation whi
h di�ers from the originalone in the
hoi
e of these variables. We say that these derivations are equivalent and this notionof equivalen
e is de�ned pre
isely as follows:De�nition 68 (Equivalent derivations) For any
ontext � and any term A 2 T we de�ne��:A, for � 2 f�;�g by indu
tion on the length of the
ontext as follows:� <> :A =def A and �(�; x : B):A =def ��:�x : B:AWe say that the derivations � `T A : B and � 0 `T A0 : B0 are equivalent when ��:A =� �� 0:A0and ��:B =� �� 0:B0.

Pure Type Systems with de Bruijn indi
es 17Lemma 69 Let A 2 T su
h that FV (A) � fx1; : : : ; xng and x1; : : : ; xn are distin
t variables.Then u[xn;:::;x1℄(t[x1;:::;xn℄(A)) =� A.Proof: By indu
tion on A. The usual two interesting
ases are:A = xi : Sin
e x1; : : : ; xn are distin
t variables, we have:u[xn;:::;x1℄(t[x1;:::;xn℄(A)) = u[xn;:::;x1℄(t[x1;:::;xn℄(xi)) = u[xn;:::;x1℄(i) = xi = AA = �x : B:b : By VC we
an assume x distin
t from x1; : : : ; xn. We have:u[xn;:::;x1℄(t[x1;:::;xn℄(A)) = u[xn;:::;x1℄(�t[x1;:::;xn℄(B):t[x;x1;:::;xn℄(b) =�x : u[xn;:::;x1℄(t[x1;:::;xn℄(B)):u[xn;:::;x1;x℄(t[x;x1;:::;xn℄(b)) IH=� �x : B:b �Proposition 70 Let � = x1 : A1; : : : ; xn : An and A; B 2 T . The derivations� `T A : B and u(t(�)) `T u[v1;:::;vn℄(t[xn;:::;x1℄(A)) : u[v1;:::;vn℄(t[xn;:::;x1℄(B)) are equivalent in thesense of De�nition 68.Proof: By indu
tion on the length of � . For � = ; we use Lemma 69. Therefore let us assumethat the proposition holds for � = x1 : A1; : : : ; xn : An and let us prove it for the
ontext�; xn+1 : An+1.Hen
e, we must establish the following �-
ongruen
es:�u(t(�; xn+1 : An+1)):u[v1;:::;vn+1℄(t[xn+1;:::;x1℄(A)) =� �(�; xn+1 : An+1):A�u(t(�; xn+1 : An+1)):u[v1;:::;vn+1℄(t[xn+1;:::;x1℄(B)) =� �(�; xn+1 : An+1):BWe prove the �rst one. Note that u(t(�; xn+1 : An+1)) = u(t(�)); vn+1 : u[v1;:::;vn℄(t[xn;:::;x1℄(An+1)).Therefore, �u(t(�; xn+1 : An+1)):u[v1;:::;vn+1℄(t[xn+1;:::;x1℄(A)) =�u(t(�)):�vn+1 : u[v1;:::;vn℄(t[xn;:::;x1℄(An+1)):u[v1;:::;vn+1℄(t[xn+1;:::;x1℄(A)) =�u(t(�)):u[v1;:::;vn℄(�t[xn;:::;x1℄(An+1):t[xn+1;:::;x1℄(A)) =�u(t(�)):u[v1;:::;vn℄(t[xn;:::;x1℄(�xn+1 : An+1:A)) IH=���:�xn+1 : An+1:A = �(�; xn+1 : An+1):A �The following two lemmas establish that both t and u preserve strong normalisation in thefollowing sense:Lemma 71 Let A 2 T su
h that FV (A) � fx1; : : : ; xng. If A is strongly normalising then so ist[x1;:::;xn℄(A).Proof: Assume that t[x1;:::;xn℄(A) is not SN. I.e., there is an in�nite sequen
e of Ai, i � 1su
h that t[x1;:::;xn℄(A) !� A1 !� A2 : : : . By Lemma 46, FV (t[x1;:::;xn℄(A)) � f1; : : : ; ng andhen
e by Lemma 39, FV (Ai) � f1; : : : ; ng for i � 1. By Lemma 60, u[xn;:::;x1℄(t[x1;:::;xn℄(A)) !�u[xn;:::;x1℄(t[x1;:::;xn℄(A1)) !� (u[xn;:::;x1℄(t[x1;:::;xn℄(A2)) : : : . By Lemma 69, A !� A1 !� A2 : : :and hen
e A is not SN. This is absurd. �Lemma 72 Let A 2 T su
h that FV (A) � f1; : : : ; ng. If A is strongly normalising then so isu[xn;:::;x1℄(A).Proof: Similar to the proof of Lemma 71 �6 Properties of PTSs with de Bruijn indi
esIn this se
tion, we will establish the properties of the PTSs with variable names listed in Se
tion 3.2for our formulation of the PTSs with de Bruijn indi
es. First, note that Lemmas 19 and 21 havealready been established for de Bruijn indi
es in Lemmas 39 and 43 respe
tively. Theorems 20, 22and 25 will be established as Theorems 73, 74 and 76 below and Lemma 24 will be established asLemma 75 below. First, note that the de�nition of singly sorted PTSs (De�nition 23) is un
hangedfor de Bruijn indi
es. Moreover, the notion singly sorted does not get lost during translationbetween variable names and de Bruijn indi
es.

18 Fairouz Kamareddine, and Alejandro R��osTheorem 73 (The Chur
h Rosser Theorem for PTSs with de Bruijn indi
es) In any PTSwith de Bruijn indi
es we have:if A!!� B and A!!� C then there exists D su
h that B !!� D and C !!� D.Proof: Assume FV (A) � f1; : : : ; ng and let x1; : : : ; xn be distin
t variables of V . By Corollary 61,u[xn;:::;x1℄(A) !!� u[xn;:::;x1℄(B) and u[xn;:::;x1℄(A) !!� u[xn;:::;x1℄(C). Hen
e, by Theorem 20,9D su
h that u[xn;:::;x1℄(B) !!� D and u[xn;:::;x1℄(C) !!� D. Note that FV (u[xn;:::;x1℄(B)) �fx1; : : : ; xng and FV (u[xn;:::;x1℄(C)) � fx1; : : : ; xng and hen
e by Corollary 50 we have:t[x1;:::;xn℄(u[xn;:::;x1℄(B)) !!� t[x1;:::;xn℄(D) and t[x1;:::;xn℄(u[xn;:::;x1℄(C)) !!� t[x1;:::;xn℄(D). Then,Corollary 40 sorts out the free variable
ondition for Lemma 65, and the latter gives B !!�t[x1;:::;xn℄(D) and C !!� t[x1;:::;xn℄(D). �Theorem 74 (Subje
t Redu
tion SR, for PTSs with de Bruijn indi
es)If � `T A : B and A!!� A0 then � `T A0 : B.Proof: First, we use Theorem 64 and Lemma 60 to obtain the
onditions of Theorem 22 in T .Then, we use Theorem 53 and Proposition 67 to obtain SR in T . �Lemma 75 (Uni
ity of types for singly sorted PTSs with de Bruijn indi
es)In any singly sorted PTS, the following holds:1. If � `T A : B1 and � `T A : B2 then B1 =� B2.2. If � `T A : B and � `T A0 : B0 then A =� A0 implies B =� B0.3. If � `T B : S, B =� B0 and � `T A0 : B0, then � `T B0 : S.Proof:We will only show 1. The other two
ases are similar. Assume that � `T A : B1 and � `TA : B2. Then, by Theorem 64, u(�) `T u[xn;:::;x1℄(A) : u[xn;:::;x1℄(B1) and u(�) `T u[xn;:::;x1℄(A) :u[xn;:::;x1℄(B2). By Lemma 24 we get u[xn;:::;x1℄(B1) =� u[xn;:::;x1℄(B2). Finally, by Lemma 52,t[x1;:::;xn℄(u[xn;:::;x1℄(B1)) =� t[x1;:::;xn℄(u[xn;:::;x1℄(B2)) and we use Lemma 65 to get B1 =� B2. �Theorem 76 (Strong normalisation for the systems of the
ube) Every legal term of the
ube with de Bruijn indi
es is strongly normalising.Proof: Let � `T A : B and let us show that A and B are SN. By Theorem 64, u(�) `Tu[xn;:::;x1℄(A) : u[xn;:::;x1℄(B). Hen
e, u[xn;:::;x1℄(A) and u[xn;:::;x1℄(B) are SN by Theorem 25. Nowby Lemma 71, t[x1;:::;xn℄(u[xn;:::;x1℄(A)) and t[x1;:::;xn℄(u[xn;:::;x1℄(B)) are SN and so by Lemma 65,A and B are SN and we are done. �7 Con
lusionsAlthough type theory and the �-
al
ulus are vital for the foundations and implementation ofprogramming languages, they are usually written using variable names whi
h are problemati
to implement. For this reason, during implementations, variable names are repla
ed by notionssu
h as
ombinators, de Bruijn indi
es, graphs, and so on. PTSs like other type systems havebeen introdu
ed using variable names. This paper provides a formulation of PTSs using de Bruijnindi
es and establishes an isomorphism between this formulation and the one with variable names.This isomorphism is then used to establish the properties of PTSs with de Bruijn indi
es.As we said above, de Bruijn indi
es are usually used in implementations of type theory andof the �-
al
ulus. However, when proving properties of these implementations, it is important toknow what are the properties of the systems written with de Bruijn indi
es and used during theimplementation. This is the reason for the interest in establishing results su
h as
on
uen
e forthe type-free �-
al
ulus with de Bruijn indi
es and its isomorphism to the type-free �-
al
uluswith variable names. Another example we give for this is the formulation of some typed �-
al
uliwith de Bruijn indi
es in order to build systems of expli
it substitutions (e.g., see [1℄). As far aswe know, our work is the �rst formulation of PTSs with de Bruijn indi
es. For this formulation,

Pure Type Systems with de Bruijn indi
es 19we establish its isomorphism to PTSs with variable names, and its desirable properties su
h as
on
uen
e, subje
t redu
tion, uni
ity of types and strong normalisation (when appropriate), et
.Of
ourse this formulation opens the door to future work where extensions of type theory
anbe written using either named variables or de Bruijn's indi
es. We have already for instan
e startedwriting generalised redu
tions using de Bruijn indi
es (
f. [15℄) and this enabled us to
ombinegeneralised redu
tion with expli
it substitutions to obtain a system where there is more
ontrolin delaying
omputations. Expli
it substitutions is another area where avoiding �-
onversion isdesirable be
ause the main goal of expli
it substitutions is to improve and
ontrol
omputations.De Bruijn's indi
es are one way of avoiding �-
onversion and hen
e our work on formulating PTSswith de Bruijn indi
es opens the door to extensions of these PTSs with expli
it substitutions in auseful way for implementations. There is yet no extensions of PTSs (
ontaining all the systems ofthe
ube) with expli
it substitutions using de Bruijn indi
es and satisfying the desirable properties.We are investigating this point at the moment.Another useful extension of PTSs is adding de�nitions (or let expressions) and/or�-redu
tions[12℄ or other forms of generalised redu
tions [15℄. We have worked these extensions for variablenames and we plan to
ondu
t this work for de Bruijn indi
es.Finally, in this paper, we rewrote PTSs using de Bruijn indi
es. It is interesting to do the sameusing
ombinators and/or other dis
iplines of treating/avoiding variables whi
h has not yet beenused in PTSs. Our next goal is to investigate PTSs with
ombinators.Referen
es1. M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. L�evy. Expli
it substitutions. Journal of Fun
tionalProgramming, 1(4):375{416, 1991.2. S. Abramsky, Dov M. Gabbay, and T.S.E. Maibaum, editors. Handbook of Logi
 in Computer S
ien
e,Volume 2: Ba
kground: Computational Stru
tures. Oxford University Press, 1992.3. H.P. Barendregt. The Lambda Cal
ulus: its Syntax and Semanti
s. Studies in Logi
 and the Founda-tions of Mathemati
s 103. North-Holland, Amsterdam, revised edition, 1984.4. H.P. Barendregt. Lambda
al
uli with types. In [2℄, pages 117{309. Oxford University Press, 1992.5. S. Berardi. Towards a mathemati
al analysis of the Coquand-Huet
al
ulus of
onstru
tions and theother systems in Barendregt's
ube. Te
hni
al report, Dept. of Computer S
ien
e, Carnegie-MellonUniversity and Dipartimento Matemati
a, Universita di Torino, 1988.6. N.G. de Bruijn. Lambda
al
ulus notation with nameless dummies, a tool for automati
 formulamanipulation with appli
ation to the
hur
h rosser theorem. In Pro
eedings of the Koninklijke Neder-landse A
ademie van Wetens
happen. Mathemati
al S
ien
es, 1972. Volume 75; also in [18℄, ChapterC2.7. A. Chur
h. A formulation of the simple theory of types. The Journal of Symboli
 Logi
, 5:56{68,1940.8. T. Coquand. Une th�eorie des
onstru
tions. PhD thesis, Universit�e Paris VII, Th�ese de troisi�eme
y
le, 1985.9. T. Coquand and G. Huet. The
al
ulus of
onstru
tions. Information and Computation, 76:95{120,1988.10. R. Harper, F. Honsell, and G. Plotkin. A framework for de�ning logi
s. In Pro
eedings Se
ondSymposium on Logi
 in Computer S
ien
e, pages 194{204, Washington D.C., 1987. IEEE.11. J.R. Hindley and J.P. Seldin. Introdu
tion to Combinators and �-
al
ulus, volume 1 of London Math-emati
al So
iety Student Texts. Cambridge University Press, 1986.12. F. Kamareddine, R. Bloo, and R.P. Nederpelt. On �-
onversion in the �-
ube and the
ombinationwith abbreviations. Annals of Pure and Applied Logi
s, 97:27{45, 1999.13. F. Kamareddine and A. R��os. A �-
al
ulus �a la de Bruijn with expli
it substitutions. Pro
eedingsof 7th international symposium on Programming Languages: Implementations, Logi
s and Programs,PLILP'95. Le
ture Notes in Computer S
ien
e 982, pages 45{62, 1995.14. F. Kamareddine and A. R��os. Bridging de Bruijn indi
es and variable names in expli
it subst itutions
al
uli. The Logi
 Journal of the Interest Group of Pure and Applied Logi
, IGPL, 6(6):843{874,1998.15. F. Kamareddine, A. R��os, and J.B. Wells. Cal
uli of Generalised �-redu
tion and expli
it substitution:Type Free and Simply Typed Versions. Journal of Fun
tional and Logi
 Programming, 1998(Arti
le5):1{44, 1998.

20 Fairouz Kamareddine, and Alejandro R��os16. J. M
Kinna and R. Polla
k. Pure type systems formalised. In M. Bezem and J.-F. Groote, editors,Pro
eedings of the International Conferen
e on Typed Lambda Cal
uli and Appli
ations, TLCA'93,pages 289{305, 1993.17. R. Milner, M. Tofte, and R. Harper. De�nition of Standard ML. MIT Press, Cambridge (Mas-sa
husetts)/London, 1990.18. R.P. Nederpelt, J.H. Geuvers, and R.C. de Vrijer, editors. Sele
ted Papers on Automath. Studies inLogi
 and the Foundations of Mathemati
s 133. North-Holland, Amsterdam, 1994.19. F. Pfenning. A proof of the
hur
h rosser theorem and its representation in a logi
al framework.Te
hni
al Report CMU-CS-92-186, Carnegie Mellon University, 1992.20. K.H. Rose. Operational Redu
tion Models for Fun
tional Programming Languages. PhD thesis, Uni-versity of Copenhagen, 1996.21. J. Terlouw. Een nadere bewijstheoretis
he analyse van GSTT's. Te
hni
al report, Department ofComputer S
ien
e, University of Nijmegen, 1989.

