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Abstract

It has long been argued that the notion of substitution in the λ-calculus needs to be made explicit.
This resulted in many calculi have been developed in which the computational steps of the substi-
tution operation involved in β-contractions have been atomised. In contrast to the great variety of
developments for making explicit formalisations of the Beta rule, less work has been done for giving
explicit definitions of the conditional Eta rule. In this paper constructive Eta rules are proposed for
both the λσ- and the λse-calculi of explicit substitutions. Our results can be summarised as follows:
1) we introduce constructive and explicit definitions of the Eta rule in the λσ- and the λse-calculi,
2) we prove that these definitions are correct and preserve basic properties such as subject reduction.
In particular, we show that the explicit definitions of the eta rules coincide with the Eta rule for pure
λ-terms and that moreover, their application is decidable in the sense that Eta redices are effectively
detected (and contracted). The formalisation of these Eta rules involves the development of specific
calculi for explicitly checking the condition of the proposed Eta rules while constructing the Eta
contractum.

Keywords: Lambda Calculus, Eta reduction, Explicit Substitutions, Subject Reduction

1 Introduction

Well-behaved calculi of explicit substitutions are a useful bridge between the formal
study of the λ-calculus and its real implementations. Since β-contractions depend
on the definition of the operation of substitution which in many papers is informally
given, most computational environments develop in an ad-hoc way an explicit notion
of substitution.

In the formal study of making substitutions explicit, several alternatives have been
proposed, most of which were concerned with essential properties such as the sim-
ulation of beta-reduction, confluence, noetherianity (of the associated substitution
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calculus), subject reduction, principal typing, preservation of strong normalisation,
etc. This is a non trivial task; for instance, the λσ-calculus [1] was reported to break
the last property after some years of its introduction [13]: this implies that infinite
derivations starting from well-typed λ-terms are possible in this calculus.

The λσ-calculus was enlarged with a non constructive Eta rule in [8], where by
constructive Eta rule we understand a definition of Eta which specifies how to al-
gorithmically detect and compute eta-redices and their eta-contracta. This enlarged
calculus was used in [7] for treating higher-order unification (HOU) problems. For the
λse (introduced in [11]), a similar extension is presented in [3]. When restricted to
well-typed terms normalised w.r.t. the associated substitution calculus, the presen-
tations of these rules preserve the subject reduction property (for short SR). Despite
the necessity to guarantee SR, in [7] and [3] this restriction was not given as part of
the definitions.

In this paper we formalise adequate unrestricted Eta rules in the simply typed
versions of λσ and λse. These definitions involve a constructive treatment of the
generation of the Eta-contracta while deciding simultaneously whether the Eta rule
is applicable; in other words, Eta redices are effectively detected and contracted si-
multaneously. For doing this, we introduce well-behaved rewriting calculi that are
applied to check the conditions of the Eta rules. The λσ-calculus is extended with a
set of substitutions ηj

i , used by the rewriting rules of the new calculus to detect free
occurrences and update free indices. The rewriting calculus is shown to be convergent
for a subset of this enlarged set of expressions, in which the original syntax of λσ is
included. Similarly, the λse-calculus is extended with an operator η, for detections
and updates, and the rewriting calculus is shown to be convergent for the whole en-
larged set of terms. Furthermore, we prove that the proposed constructive Eta rules
preserve SR.

Related works include the proposed implementations of Eta rules for λσ and λse,
presented in [5] and [2] respectively, that can be considered as informal versions of con-
structive Eta rules. Also, in [6] the η-contraction in the λυ-calculus is turned explicit
through an unconditional Eta rule and an extension of the associated substitution
calculus υ, and in [10] the η-expansion, rather than η-contraction, was formulated to
a general scheme for explicit substitution calculi. The η-expansion is relevant in HOU;
in fact, in Huet’s HOU method the “η-rule” is defined as the Eta expansion, which
makes the method more efficient. Nonetheless, in Huet’s method the η-expansion is
restricted and it is guided by the types of the terms, permitting the application of
many rewriting steps of Huet’s η-rule in a unique step. In contrast to the importance
of η-expansion in Huet’s method, the separate application of η-contraction is of prin-
cipal interest in HOU via explicit substitutions1, and it motivates the study of an
explicit η.

In Section 2, we present the motivation to formalise a constructive Eta rule in the

1The normalisation rule for unification in λσ, for instance, converts problems of the form a =?
λσ b into a′ =?

λσ b′,

where a′ and b′ are the long normal form of a and b respectively. For obtaining this kind of normal forms, firstly,

terms are βη-normalised (we use η-contraction!); secondly, these normal forms are converted to η-long normal forms.

This corresponds to η-expansions which are normally done in a unique step according to the type of the term.

An analogous situation occurs in λse. The practical evidence can be found in [5] where weak η-normal forms are

defined which avoids the complete construction of η-long normal forms. In this way the set of inference rules of

the HOU algorithm is modified as follows: the rule of the decomposition of applications is split in two specialised

dec-application rules based on adequate application of weak long/head normal forms; the rule of normalisation is

dropped but the (ηβ) normalisation is used as part of the rule of expansion of applications exp-app.
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λ-calculus in de Bruijn notation and we introduce the necessary background on the
λσ- and λse-calculi. Simply typed versions of both calculi are presented in Section
3. In Section 4, we enlarge λσ with a constructive Eta rule which is shown to be
well-defined and to preserve SR. In Section 5, the same is done for λse. In Section 6,
we conclude and present future work.

2 Background

We assume familiarity with the simply typed λ-calculus, TAλ (cf [9]) and its version
in de Bruijn’s notation. A standard rewriting notation as in [4] is adopted. Then,
for a rewriting system R, →R denotes the application of one of its rules and →r the
application of a specific rule r. The reflexive, transitive closure of R is denoted by
→∗

R, →+
R denotes its transitive closure and →i

R a number i of applications.

2.1 Motivation: non constructive definitions of η-reduction

The usual and non constructive definition of η-reduction given in the literature for
the λ-calculus in de Bruijn notation is given by the rewriting rule

λ.(a 1)→η b if b+ = a

where b+ denotes the lifting of b, where lifting is an operator which increases by one
the free indices in its argument b2. Although this definition of η-reduction appears
recurrently in the literature, it has the drawback that it does not specify how to build
b from a. This kind of non constructive definition of η has been adapted to several
variants of the λ-calculus as the two explicit substitutions calculi we treat here.

In order to give a constructive Eta rule for λ-terms (in de Bruijn notation), we use
a counterpart of the lifting operator, as is done in [14].

Definition 2.1 (i-dash)
Let a be a λ-term in de Bruijn notation. The i-dash of a, denoted as a−i, is given by

1. (a1 a2)
−i = (a−i

1 a−i
2 )

2. (λ.a1)
−i = λa

−(i+1)
1

3. n−i =







n− 1 , if n > i
undefined, if n = i
n , if n < i.

The dash of a term a is its 1-dash, denoted as a−. Provided a− is well-defined,
(a−)+ = a. This happens when a has no free occurrences of 1 . This gives rise to an
adequate definition of η-reduction:

Definition 2.2 (Constructive (Eta) for λ)
The constructive Eta rule for λ-terms in de Bruijn notation is given by

λ.(a 1 )→η a−, whenever a− is well defined (Eta)

Observe that the η-contractum is constructed at the same time the condition for
η-contraction is verified.

2For our purposes the updating operator for the λ-calculus in de Bruijn notation, denoted as U
j
i

(see [11]), is

unnecessary. This updating operator is used when formalising the Beta rule: in a Beta contraction of a redex of

the form (λ.a b), free de Bruijn indices in λ.a should be decremented and free indices of b may be incremented and

this is controlled by a meta-substitution and (the super and subscripts of) the updating operator ([11]). For the

Eta rule lifting is enough, since only incrementing indices by one is necessary. Lifting corresponds to U2
0 .
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2.2 The λσ-Calculus

The λσ-calculus is a first-order rewriting system, which makes substitutions explicit
by extending the language with two sorts of objects: terms and substitutions.

Definition 2.3 (Set Λσ of λσ-expressions)
The syntax of the λσ-calculus is given by the set Λσ of λσ-expressions, which contains
the following terms and substitutions:

Terms a ::=1 | (a a) |λ.a | a[s] Substitutions s ::= id | ↑ | a.s | s ◦ s

The intuitive semantics for substitution s is a set or a list of objects of the form
b/i indicating that the index i should be changed to the term b: s(i) = b. The
identity id represents the substitution {1 /1 , 2 /2 , . . . }, the shift ↑ represents the
substitution {i + 1 /i | ∀i} and ◦ represents the composition of substitutions. Thus,
the shift operator ↑ in the λσ corresponds to the lifting operator + (see [14]). Let
the substitution ↑ ◦ · · · ◦ ↑, which is the composition of n shift operators, be denoted
by ↑n and id be denoted by ↑0. Then, 1 [↑n] codifies the de Bruijn index n + 1. The
closure a[s] represents the application of the substitution s to a, which should give
the term a replacing all free occurrences of indices i in a by s(i); thus, i [s] should
give s(i). The cons of a in s, a.s, represents the substitution {a/1 , s(i)/i + 1 }. The
β-reduction of (λ.a b) in λσ leads to a[b.id]. Thus, in addition to the substitution
of the free occurrences of the index 1 by the corresponding term, free occurrences of
indices should be updated (decreased) because of the elimination of the abstractor.
Table 1 includes the rewriting system of the λσ-calculus augmented with an Eta rule
for η-reduction, as presented in [7].

Table 1. The rewriting system for the λσ-calculus

(λ.a b) −→ a[b.id] (Beta)
(a b)[s] −→ (a[s] b[s]) (App)
1 [a.s] −→ a (V arCons)
a[id] −→ a (Id)
(λ.a)[s] −→ λ.(a[1 .(s ◦↑)]) (Abs)
(a[s])[t] −→ a[s ◦ t] (Clos)
id ◦ s −→ s (IdL)
↑◦ (a.s) −→ s (ShiftCons)
(s1 ◦ s2) ◦ s3 −→ s1 ◦ (s2 ◦ s3) (AssEnv)
(a.s) ◦ t −→ a[t].(s ◦ t) (MapEnv)
s ◦ id −→ s (IdR)
1 .↑ −→ id (V arShift)
1 [s].(↑◦ s) −→ s (Scons)
λ.(a 1 ) −→ b if a =σ b[↑] (Eta)

Without (Eta), this system is equivalent to the one given in [1] originally. The
associated substitution calculus, denoted as σ, is the one induced by all the rules
except (Beta) and (Eta), and its equality is denoted as =σ .



ES Calculi with One Step Eta-reduction Decided Explicitly 5

Definition 2.4 (σ-normal form)
Given a λσ-expression b, we let σ(b) denote its σ-normal form.

Normalised λσ-terms with respect to the σ-calculus, σ-nf for short, are terms whose
closure subterms a[s] are of the form 1 [↑n], where n ∈ N

∗ = N\{0}. All other subterms
are of the form 1 , λ.a or (a b).

2.3 The λse-Calculus

In contrast to the λσ-calculus, the λse-calculus, given in [11], has a sole sort of objects
and introduces two operators σ and ϕ, for substitution and updating.

Definition 2.5 (Set Λs of λse-terms)
The syntax of the λse-calculus, is given by the set Λs which contains the following
λse-terms where n, i, j ∈ N

∗ and k ∈ N:
Terms a ::= n | (a a) |λ.a | a σia |ϕj

k a

Here, a σib represents the term {i /b}a; i.e., the substitution of the free occurrences
of i in a by b, updating the free indices in a. The term ϕj

k a represents j−1 applications

of the k-lift to a; i.e., a+k(j−1)

. Table 2 gives the rules of the λse-calculus augmented
with the rule (Eta), as introduced in [3].

Table 2. The rewriting system of the λse-calculus
(λ.a b) −→ a σ1b (σ-generation)
(λ.a)σib −→ λ.(a σi+1b) (σ-λ-transition)
(a1 a2)σib −→ ((a1 σib) (a2 σib)) (σ-app-transition)

n σib −→







n− 1 if n > i
ϕi

0 b if n = i
n if n < i

(σ-destruction)

ϕi
k (λ.a) −→ λ.(ϕi

k+1 a) (ϕ-λ-transition)
ϕi

k (a1 a2) −→ ((ϕi
k a1) (ϕi

k a2)) (ϕ-app-transition)

ϕi
k n −→

{

n + i− 1 if n > k
n if n ≤ k

(ϕ-destruction)

(a1 σia2)σjb −→ (a1 σj+1b)σi(a2 σj−i+1b) if i ≤ j (σ-σ-transition)

(ϕi
k a)σjb −→ ϕi−1

k a if k < j < k + i (σ-ϕ-transition 1)
(ϕi

k a)σjb −→ ϕi
k (a σj−i+1b) if k + i ≤ j (σ-ϕ-transition 2)

ϕi
k (a σjb) −→ (ϕi

k+1 a)σj(ϕi
k+1−j b) if j ≤ k + 1 (ϕ-σ-transition)

ϕi
k (ϕj

l a) −→ ϕj
l (ϕi

k+1−j a) if l + j ≤ k (ϕ-ϕ-transition 1)

ϕi
k (ϕj

l a) −→ ϕj+i−1
l a if l ≤ k < l + j (ϕ-ϕ-transition 2)

λ.(a 1 ) −→ b if a =se
ϕ2

0 b (Eta)

=se
denotes the equality for the associated substitution calculus, denoted as

se, induced by all the rules except (σ-generation) and (Eta).

Definition 2.6 (se-normal form)
Given a λse-term b, we let se(b) denote its se-normal form.
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3 Simple Type Systems

In this paper we work only with simple type systems in the so-called Curry-style or
implicit typing, where in terms of the form λ.a we do not specify the type of the
bound index ( 1 ).

Definition 3.1 (Simple types, Contexts)
The syntax of the simple types and contexts is given by:

Types A ::= K |A→ A Contexts Γ ::= nil |A.Γ

K ranges over type variables. A type assignment system S is a set of rules
which allows some terms of a given system to be associated with a type. A context
gives the necessary information used by S rules to associate a type to a term. In the
simply typed λ-calculus [9], the typeable terms are strongly normalising. For a term
a, Γ ⊢ a : A denotes that a has type A in context Γ. The contexts for λ-terms in de
Bruijn notation are sequences of types.

Notation 3.2 (Γ<i, Γ>i)
Let Γ = A1. · · · .An.nil and i ∈N. Then we use Γ<i to denote A1. · · · .Ai−1 and we
use Γ>i to denote Ai+1. · · · .An.nil. We define Γ≤i and Γ≥i similarly. Note that
Γ≤0.Γ = Γ<0.Γ = Γ.

Given a type system S, the Subject Reduction Property states that any com-
putation allowed on terms does not change its type.

3.1 Simply Typed λσ

The typed version of λσ is presented in Curry style, instead of the Church style given
in [7]. Thus, the syntax of λσ-terms and the rules are the same as the untyped version.

The typing rules of the λσ-calculus provide types for objects of sort term as well as
for objects of sort substitution. An object of sort substitution, due to its semantics,
can be viewed as a list of terms. Consequently, its type is a context. The notation
s ⊲ Γ denotes that the object s of sort substitution has type Γ.

Definition 3.3 (The System TAλσ)
TAλσ is given by the following typing rules:

(var) A.Γ ⊢ 1 : A (lambda)
A.Γ ⊢ b : B

Γ ⊢ λ.b : A→ B

(app)
Γ ⊢ a : A→ B Γ ⊢ b : A

Γ ⊢ (a b) : B
(clos)

Γ ⊢ s ⊲ Γ′ Γ′ ⊢ a : A

Γ ⊢ a[s] : A

(id) Γ ⊢ id ⊲ Γ (shift) A.Γ ⊢ ↑ ⊲Γ

(cons)
Γ ⊢ a : A Γ ⊢ s ⊲ Γ′

Γ ⊢ a.s ⊲ A.Γ′
(comp)

Γ ⊢ s′′ ⊲ Γ′′ Γ′′ ⊢ s′ ⊲ Γ′

Γ ⊢ s′ ◦ s′′ ⊲ Γ′

Observe that the name of the typing rules begin with lower-case letters, while the
rewriting rules with upper-case letters. We have verified that this version of λσ in
Curry style has the same properties as the version of λσ in Church style given in [7].
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For instance, confluence (CR) and weak normalisation property (WN) hold for this
version. Furthermore, σ is noetherian and CR.

It is known that SR holds for the simply typed λσ without the rule (Eta).

Theorem 3.4 (SR for λσ without the Eta rule [1])
If Γ ⊢TAλσ

a : A and a →λσ a′, then Γ ⊢TAλσ
a′ : A. Analogously, if Γ ⊢TAλσ

s ⊲ Γ′

and s→λσ s′, then Γ ⊢TAλσ
s′ ⊲ Γ′.

3.2 Simply Typed λse

Definition 3.5 (The System TAλse
)

TAλse
is given by the following typing rules.

(Var) A.Γ ⊢ 1 : A (Varn)
Γ ⊢ n : B

A.Γ ⊢ n + 1 : B

(Lambda)
A.Γ ⊢ b : B

Γ ⊢ λ.b : A→ B
(App)

Γ ⊢ a : A→ B Γ ⊢ b : A

Γ ⊢ (a b) : B

(Sigma)
Γ≥i ⊢ b : B Γ<i.B.Γ≥i ⊢ a : A

Γ ⊢ a σib : A
(Phi)

Γ≤k.Γ≥k+i ⊢ a : A

Γ ⊢ ϕi
k a : A

As for λσ, the typed version of λse is presented in Curry style. We have verified that
the Curry style version has CR and WN as does the Church style version of [3].

For the simply typed λse without the rule (Eta), SR holds.

Theorem 3.6 (SR for λse without the Eta rule [12])
If Γ ⊢Tλse

a : A and a→λse
a′, then Γ ⊢Tλse

a′ : A.

4 The λσ-Calculus with a constructive Eta rule

The conditional rule cη introduced in [8] has the same form as the rule (Eta) in Table
1. In [8] there is no restriction of cη application despite the fact that an attempt
to extend the rule to any λσ-term was explicitly expressed: “The ground λσ-terms
in σ-nf are exactly the λ-terms so we may apply the η-reduction of λ-calculus to
those terms. We want to extend this relation to the whole set of λσ-terms”. The
λσ-calculus defined in [7] has the same rules as presented in Table 1, and inherits the
Eta rule as defined in [8]. Observe that in [7] some properties about λσ, defined as
{(Beta), (Eta)}∪ σ, refer to papers where λσ is defined without an Eta rule. Indeed,
without the restriction that both a and b must be in σ-nf, this rule (Eta) is not
deterministic and SR may be violated as we illustrate below.

Suppose the application of (Eta) in Table 1 is restricted to terms where a is a
σ-nf. If furthermore b is not restricted to be in σ-nf, then using the σ-equality in the
condition given by the definition of (Eta), one has infinite possibilities of reduction
since, for any c[↑]=σ a and any λσ-substitution s, we have 1 [c.s][↑]=σ a. For instance,
λ.(2 1 ) −→Eta 1 [ 1 .(λ.(1 1 ). ↑)], where 2 abbreviates 1 [↑]. But the substitution
(λ.(1 1 ).↑) is not typeable because λ.( 1 1 ) is not typeable in the simply typed λ-
calculus. Thus, without restrictions on both a and b this rule violates not only SR,
but even the preservation of typeability.

Furthermore, a typed version of Eta without any restriction on the term b gives
non noetherianity. To obtain the type version of Eta we include “ If Γ ⊢ a : A then
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Γ ⊢ b[↑] : A” to the side condition for the (Eta) rule in Table 1. Let Γ ⊢ λ.(a 1 ) : B,
where Γ is not nil. If there is b, where a =σ b[↑] (take for example a = 1 [↑], b = 1 )
and Γ ⊢ b : B, then Γ ⊢ 2 [(λ.(a 1 )).b. ↑] : B. Consequently, λ.(a 1 ) can be reduced
by the typed Eta rule to 2 [(λ.(a 1 )).b.↑], allowing an infinite reduction.

In addition, supposing a and b are restricted to be σ-normal, notice that adding
restrictions such as b is well-typed is not enough for guaranteeing that the com-
putations for deciding the Eta condition must preserve SR. In fact, the reduction
λ(2 1 ) −→η 1 can be decided by inferring that 1[↑] =σ 2 by a σ-conversion that goes
through ill-typed terms: 1[↑] =σ 2[λ(1 1 ). ↑] =σ 2. Consequently, in order to have a
constructive and implementable definition of Eta one needs to explicitly define how
the satisfiability of the rule’s condition should be decided.

4.1 A calculus for explicitly checking the Eta condition in λσ

The definition of Eta for the λσ-calculus in Table 1 is inherited from the usual non
constructive definition of η-reduction given in the literature for the λ-calculus in de
Bruijn notation as presented in the motivation of section 2. In fact the condition of
the rule Eta suggests searching for some term b such that b[↑] =σ a instead of building
b from a.

For a constructive definition of η-reduction in λσ some relevant aspects have to be
considered. Given a potential η-redex λ(a 1 ) where a is a σ-nf, then for a dummy
symbol ⋄, σ(a[⋄.↑]) would answer whether the term is an η-redex marking any free
occurrence of 1 in a with ⋄. Then one would have

λ.(a 1 ) −→ a[⋄.id] if a is σ−nf and σ(a[⋄ .↑]) ∈ Λσ (Eta1)

Since a σ-normalisation is necessary to verify the condition for η-reduction, one would
also have

λ.(a 1 ) −→ b if a is σ−nf and b ≡ σ(a[⋄.id]) ∈ Λσ (Eta2)

In the conditional rule (Eta2), the η-contractum is constructed at the same time the
condition for reduction is verified, as is done for the pure λ-calculus in the Bruijn
notation [14]. Thus, η-contraction is done in one step whereas the verification of the
condition for reduction and the construction of the η-contractum are made explicit.

The extension of (Eta2) to any λσ-term has to be made carefully. The implemen-
tation of such an extension is presented in [2], using the syntax of the λσ-calculus
enlarged with ⋄, which belongs to the sort of terms. While constructing b, an attempt
to avoid reductions not related to the η-contraction, is made by a restriction on the
application of σ-rules to substitutions with occurrences of ⋄. A verification of whether
⋄ occurs in the normal form of a[⋄.id] with respect to this restricted calculus is carried
out, to decide whether it is the η-contractum. However, some rules do not have any
restriction on their application, otherwise some “rubbish” would remain after normal-
isation. For instance, here is an example taken from [2]:
( 1 [↑2])[⋄.id] −→Clos 1 [↑2◦(⋄.id)] −→AssEnv 1 [↑◦(↑◦(⋄.id))] −→ShiftCons 1 [↑ ◦ id],
where (IdR) is needed giving 1 [↑◦ id] −→IdR 1 [↑].

Allowing unrestricted applications of this rule permits reductions of similar redices
which are not related to η-reduction.
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Table 3. ηλσ: the rewriting system for η-reduction in λσ

(a b)[ηi
j ] −→ (a[ηi

j ] b[ηi
j ]) if i = j (η-App)

1 [ηi
j ] −→

{

1 [↑i−j ] if 1 < j < i
1 if 1 < j = i

(η-VarCons)

(λ.a)[ηi
j ] −→ λ.(a[ηi+1

j+1]) if i = j (η-Abs)

(a[t])[ηi
j ] −→ a[t◦ηi

j] if i = j (η-Clos)

a[ηi
0] −→

{

a if i = 1
a[↑i−1] otherwise

(η-Id)

(s1 ◦ s2) ◦ ηi
j −→ s1 ◦ (s2 ◦ ηi

j) (η-AssEnv)

↑◦ ηi
j −→

{

↑i if j = 0
ηi

j−1 otherwise
(η-ShiftCons)

(a.s) ◦ ηi
j −→ a[ηi

j ].(s ◦ ηi
j) if i = j (η-MapEnv)

Our approach at expliciting the Eta-contracta building while deciding the condition
for Eta-reduction consists in extending the syntax and the rules of the λσ-calculus.
First, the syntax of the λσ-calculus is enlarged with the symbol ηi

j , for i ∈ N
∗ and

j ∈ N, which belongs to the sort of substitutions. The symbol ηi
j encapsulates the

mechanism of the substitution used in [2].

Definition 4.1 (Set Λση)
For i ∈ N

∗ and j ∈ N, Λση is the set generated by

Terms a ::=1 | (a a) |λ.a | a[s] Substitutions s ::= id | ↑ | a.s | s ◦ s | ηj
i

Second, we introduce extra rules that deal with the new symbols ηi
j constructively

expliciting Eta reduction. In Table 3 we introduce the rewriting system ηλσ used
to detect free occurrences of 1. Here, ηλσ is used for detecting free occurrences of
1 in a starting from the term a[η1

1 ] and reducing it to an ηλσ-normal form. The
substitution η1

1 corresponds to the substitution ⋄.id. Then, ηi
0 corresponds to ↑i−1,

ηi
1 corresponds to ⋄.↑i−1 and ηi

j corresponds to (n . · · · . i− 1 .⋄ .↑i−1), where 1<j≤ i,

n = i−(j−1) and ⋄ is the jth term . Analogously to σ, the rewriting rules of ηλσ

propagate the substitution ηi
j into the structure of λσ-terms. Verification of rule

applicability is done by arithmetic constraints on η subscripts and superscripts. For
instance, the former reduction becomes ( 1 [↑2])[η1

1 ] −→η-Clos 1 [↑2 ◦ η1
1 ] −→η-AssEnv

1 [↑◦(↑◦ η1
1)]−→η-ShiftCons 1 [↑◦ η1

0 ]−→η-Id 1 [↑].
Our aim is to generalise rule (Eta2), cutting down the restriction of applicability

only to terms in σ-nf. In order to do that, we propagate the substitution ηi
i into the

term structure until it finds a closure a[t]. Then, the detection of free occurrences of i
is done on substitution t. Since by the semantics of λσ-substitutions s can be viewed
as a list of terms, s will be said to have a free occurrence of i if any of these terms
has a free occurrence of i . In other words, the construction of the η-contractum is
aborted if σ(a[t]) may have a free occurrence of i . This approach avoids the analysis
of whether the σ-nf would actually have any free occurrence of i , which could demand
the same amount of work in computation steps as the σ-normalisation itself.
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Example 4.2

Let a = 3 [id] = (1[↑2])[id]. Then, for a[η1
1 ] by (η-Clos), one has

(3 [id])[η1
1 ]→ 3 [id ◦ η1

1 ]

which is an ηλσ-normal form.
Observe that when deciding whether λ.(3 [id] 1) is an η-redex, stopping the prop-

agation of the symbol η1
1 is correct. This is the case since the closure 3[id] has in

fact occurrences of 1: id which correspond to the substitution 1.2.3 . . .. Reaching an
ηλσ-normal form of 3 [id ◦ η1

1 ] that is not a pure λσ-term is the way to detect these
occurrences. Otherwise, the process cannot be considered clean (as explained in [2])
because in principle, rules not involved directly in the η-contraction are applied.

In order to define a new (Eta) rule using ηλσ to verify the condition for reduction,
we need to prove some basic properties for this rewriting system.

Observe that ηλσ is not confluent over Λση. For ( 1 [η2
2 ])η

1
1 one has

1 [η1
1 ]← ( 1 [η2

2 ])[η1
1 ]→ 1 [η2

2 ◦ η1
1 ]

and both 1 [η1
1 ] and 1 [η2

2 ◦ η1
1 ] are ηλσ-nf. Thus, we need to prove that there are

no such subterms during the verification of free occurrence and we need to choose a
proper subset of Λση where ηλσ is confluent.

Lemma 4.3

Let a[ηi
i ] →

+
ηλσ

c, where a is a λσ-term. For any subexpression c′ of c, if c′ = b[ηi′

j ],

then b is a λσ-term and if c′ = s ◦ ηi′

j , then s is a λσ-substitution.

Proof. By induction on the number n of reduction steps. For n = 1, a straight-
forward analysis of the rules gives the result. Suppose the statement is true for some
n. Let a[ηi

i ] →
n+1 c and b be the expression such that a →n b and b → c. By the

induction hypothesis (IH), one has that for any subexpression b′ of b, if b′ = d[ηi′

j ],

then d is a λσ-term and if b′ = s ◦ ηi′

j , then s is a λσ-substitution. Then, we have to
analyse the last rule applied on b:

• If b→ c by (η-App), one has that one occurrence of (b1 b2)[η
i
i ] in b is replaced by

(b1[η
i
i ] b2[η

i
i ]), where b1 and b2 are λσ-terms. Thus, the result holds for c. A similar

argument can be used if the last rule applied is (η-Abs), (η-Clos), (η-AssEnv) or
(η-MapEnv).

• If b→ c by either (η-VarCons) or (η-Id), then one occurrence of ηi
j in b is destroyed.

Thus, the result holds for c.

• Let b → c by (η-ShiftCons). If the redex in b is of the form ↑ ◦ ηi′

0 , then the
occurrence of ηi′

0 is destroyed. Otherwise, ↑ ◦ ηi′

j is replaced by ηi′

j−1. If u ◦ ηi′

j−1

is a subexpression of c, then u is a λσ-substitution, otherwise we would have
a[ηi

i ]→
i d, for i < n, where (u ◦↑) ◦ ηi′

j is a subexpression of d and (u ◦↑) is not a

λσ-substitution. If d[ηi′

j−1] is a subexpression of c, then d is a λσ-term, otherwise

we would have a[ηi
i ] →

i e, for i < n, where either (d[↑])[ηi′

j ] or (d[↑ ◦ u])[ηi′

j′ ], for
j′ > j, is a subexpression of e and neither d[↑] nor d[↑◦ u] is a λσ-term. �

Since we observed that ηλσ is not confluent over Λση, in what follows, we will
introduce the sub-language I of terms of Λση over which ηλσ is confluent. The sub-
language I will be used to decide η-redices.
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Definition 4.4 (Set I)
Let I ⊂ Λση be the set of expressions (subterms and substitutions) obtained as the
closure, under the rules of ηλσ, of the set of all a[ηi

i ], where a is a λσ-term. In
particular, an ηλσ-normal form of c ∈ I is denoted as ηλσ(c).

In order to show that ηλσ effectively decides and contracts η-redices, we need to
show its confluence and termination on I. The next lemma establishes confluence of
ηλσ on I.

Lemma 4.5

ηλσ is confluent on I.

Proof. Note that ηλσ is left-linear. The critical pairs for ηλσ arise when one has
redices of the form (a[ηi

j ])[η
i′

i′ ] or (s◦ηi
j)◦η

i′

j′ . However, by Lemma 4.3, these redices do
not occur in any c ∈ I. Hence, ηλσ is non-overlapping for I. Thus, by orthogonality,
ηλσ is confluent. �

The proof of ηλσ termination on I needs the following definition and lemmas.

Definition 4.6

Let a be a λσ-expression. Define ‖ · ‖ : Λσ → N by:

‖(a b)‖ = ‖a‖+ ‖b‖ ‖1 ‖ = 0
‖λ.a‖ = ‖a‖ ‖id‖ = 0
‖a[s]‖ = ‖a‖+ ‖s‖ ‖ ↑ ‖ = 0
‖s ◦ t‖ = ‖s‖+ ‖t‖ ‖a.t‖ = 1 + ‖a‖+ ‖t‖

Lemma 4.7

Let j ≤ i, where i ∈ N
∗ and j ∈ N, and let s be a λσ-substitution such that ‖s‖ = 0.

Then, (s ◦ ηi
j) →

∗
ηλσ

s′, where s′ is a normal form w.r.t. ηλσ and is either a λσ-

substitution or a substitution with occurrence of ηi
j′ , where j′ ≤ j. Particularly, if

s′ = ηi
j′ , then j′ < j.

Proof. By induction on the structure of s.

1) s = id: (id ◦ ηi
j) is a normal form w.r.t. ηλσ.

2) s =↑: By (η-ShiftCons) one has that (↑◦ ηi
j) reduces to ↑i or to ηi

j−1.

3) s = u◦t: By (η-AssEnv) one has that (u◦t)◦ηi
j → u◦(t◦ηi

j). By IH, (t◦ηi
j)→

∗ t′,

where t′ is a λσ-substitution or a substitution with an occurrence of ηi
j′ , for j′ ≤ j.

If t′ = ηi
j′ , then one has the result by IH on u ◦ t′. Otherwise, u ◦ t′ is a normal

form w.r.t. ηλσ . �

Lemma 4.8

Let i ∈ N
∗, and a be a λσ-term such that ‖a‖ = 0. Then, a[ηi

i ] →
∗
ηλσ

a′, where a′ is
a normal form w.r.t. ηλσ .

Proof. By induction on the structure of a. Normal forms are w.r.t. ηλσ .

1) a = 1 : If i = 1, then 1 [η1
1 ] is a normal form. Otherwise, by (η-VarCons),

1 [ηi
i ]→ 1 .

2) a = (b c): By (η-App), (b c)[ηi
i ] → (b[ηi

i ] c[ηi
i ]). By IH, the result holds for b[ηi

i]
and c[ηi

i].
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3) a = λ.b: By (η-Abs), (λ.b)[ηi
i ]→ λ.(b[ηi+1

i+1 ]). By IH, the result holds for b[ηi+1
i+1 ].

4) a = b[s]: By (η-Clos), (b[s])[ηi
i ]→ b[s ◦ ηi

i]. One has ‖b[s]‖ = ‖b‖+ ‖s‖ = 0. Then,
by Lemma 4.7, (s◦ηi

i)→
∗ s′ where s′ is a normal form. If s′ = ηi

i′ and i′ 6= 1 then,
by Lemma 4.7, i′ < i, so only the rules (η-VarCons) and (η-Id) can be applied to
a[s′], giving a normal form. Otherwise, a[s′] is a normal form. �

Lemma 4.9

Let i ∈ N
∗, and let a be a λσ-term. Then, ηλσ is terminating for a[ηi

i ].

Proof. By induction on the structure of a with subinduction on ‖·‖, having Lemmas
4.7 and 4.8 as induction base (IB). Normal forms are w.r.t. ηλσ.

1) a = 1 : Since ‖ 1 ‖ = 0, by Lemma 4.8 the result holds.

2) a = (b c): By (η-App), (b c)[ηi
i ]→ (b[ηi

i ] c[ηi
i ]). By IH on the structure, the result

holds for b[ηi
i ] and c[ηi

i ].

3) a = λ.b: By (η-Abs), (λ.b)[ηi
i ] → λ.(b[ηi+1

i+1 ]). By IH on the structure, the result

holds for b[ηi+1
i+1 ].

4) a = b[s]: By (η-Clos), (b[s])[ηi
i ] → b[s ◦ ηi

i ]. If ‖b[s]‖ = 0, then by Lemma 4.8 the
result holds. Otherwise:
- If ‖s‖ = 0, then Lemma 4.7 can be applied. Then b[s ◦ ηi

i] →
∗ b[s′], where s′ is

a normal form
- Otherwise, s = c.t or s = u ◦ t. If s = c.t, then by (η-MapEnv) one has
that b[(c.t) ◦ ηi

i ] → b[c[ηi
i].(t ◦ ηi

i)]. As ‖c‖, ‖t‖ < ‖s‖, by IH on ‖ · ‖ one has
c[ηi

i ] →
∗ c′ and (t ◦ ηi

i) →
∗ t′, where c′ and t′ are normal forms. Observe that

b[c′.t′] is also a normal form. If s = u ◦ t, then by (η-AssEnv) one has that
b[(u ◦ t) ◦ ηi

i] → b[u ◦ (t ◦ ηi
i)]. If ‖u‖, ‖t‖ > 0, the result holds by IH on ‖ · ‖.

Otherwise, at least one of the substitutions has ‖ · ‖ greater than 0. Using
induction on the structure of the substitution s, where ‖s‖ > 0, the result holds.
Then, one has that b[u ◦ (t◦ ηi

i)]→
∗ b[s′], where s′ is a normal form as described

in Lemma 4.7

Thus, for ‖b[s]‖ > 0, either b[s′] is a normal form or the only applicable rules are
(η-VarCons) and (η-Id), which gives a normal form. �

Finally, here is the termination of ηλσ on I.

Lemma 4.10

ηλσ is terminating for I.

Proof. By Lemma 4.9 the result holds. Otherwise, one would have a subexpression
of b, where a[ηi

i] →
∗ b for some λσ-term a and some i ∈ N

∗, with a non terminating
reduction. �

Using ηλσ we can define the eta rule (Eta) as follows.

Definition 4.11 (Constructive (Eta) for λσ)
Let a be a λσ-term. The rule (Eta) is given by

λ.(a 1 )→ ηλσ(a[η1
1 ]), if ηλσ(a[η1

1 ]) is a λσ-term. (Eta)

With this definition, a =σ b[↑] where b = ηλσ(a[η1
1 ]). Thus, “b” is obtained from a in

a deterministic way. The next lemma establishes the correctness of the side condition
of the above definition of Eta.
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Lemma 4.12

Let i ∈ N
∗ and a be a λσ-term in σ-normal form. Then the term ηλσ(a[ηi

i ]) is
a λσ-term, whenever a has no free occurrences of i . In this case, one has that
ηλσ(a[ηi

i ]) corresponds to a, with all the free indices greater than i decremented by
one. Otherwise, ηλσ(a[ηi

i ]) /∈ Λσ.

Proof. The proof is by induction on the structure of a. Normal forms are w.r.t.
ηλσ.

• a = 1 : if i = 1, then 1 [η1
1 ] is a normal form. If i > 1, then by (η-VarCons) one

obtains 1 [ηi
i ]→ 1 .

• a = 1 [↑n]: by (η-Clos), ( 1 [↑n])[ηi
i ]→ 1 [↑n ◦ ηi

i].
– If n < i− 1, then by (η-AssEnv) and (η-ShiftCons) one obtains, for i − n > 1,

1 [↑n ◦ ηi
i]→

2n 1 [ηi
i−n]. So, by (η-VarCons), 1 [ηi

i−n]→ 1 [↑i−(i−n)] = 1 [↑n].
– If n = i−1, then i > 1. By (η-AssEnv) and (η-ShiftCons), 1 [↑n ◦ ηi

i]→
2n 1 [ηi

1].
– If n = i, then by (η-AssEnv) and (η-ShiftCons), 1 [↑n ◦ ηi

i]→
2i 1 [ηi

0]. Then, by
(η-Id), if i = 1 one has 1 [η1

0 ]→ 1 , otherwise one has 1 [ηi
0]→ 1 [↑i−1].

– If n > i, then by (η-AssEnv) and (η-ShiftCons), 1 [↑n ◦ ηi
i ] →

2i 1 [↑n−i ◦ ηi
0].

Then, by (η-AssEnv) and (η-ShiftCons), 1 [↑n−i ◦ ηi
0]→

2 1 [↑n−i−1 ◦↑i].

• a = (b c): by (η-App) one has (b c)[ηi
i ]→ (b[ηi

i ] c[ηi
i ]). By the induction hypoth-

esis (IH), if either b or c have free occurrences of i , then either ηλσ(b[ηi
i]) /∈ Λσ or

ηλσ(c[ηi
i ]) /∈ Λσ. Otherwise, ηλσ(b[ηi

i ]) and ηλσ(c[ηi
i ]) are λσ-terms of the desired

form.

• a = λ.b: by (η-Abs), (λ.b)[ηi
i ] → λ.(b[ηi+1

i+1 ]). By IH, ηλσ(b[ηi+1
i+1 ]) /∈ Λσ if there

are free occurrences of i + 1 , else, ηλσ(b[ηi+1
i+1 ]) is the desired λσ-term. �

Taking i = 1 in the previous lemma, one has that for σ-normalised λσ-terms, the
rule (Eta) correctly implements η-reduction.

Observe that, if a σ-normal form term a has a free occurrence of i , then ηλσ(a[ηi
i ])

has an occurrence of ηi
j , where j ≤ i. Then, we can extend the definition of free index

to λσ-substitutions s by: if ηλσ(s ◦ ηi
i) has an occurrence of ηi

j , where j ≤ i, then s is
said to have a free occurrence of i . Using this extension, we can present the following
formal definition of free occurrences.

Definition 4.13

Let a be a λσ-term. If ηλσ(a[ηi
i ]) is not a λσ-term, we say that a has a free occur-

rence of i .

4.2 The constructive Eta rule for λσ preserves SR

Notice that the rules of the system ηλσ are similar to those of the σ-calculus, with
a substitution ηi

j having a particular semantics. To verify if ηλσ has the subject

reduction property we have to give a type inference rule for ηi
j which is related to its

semantics.

Definition 4.14 (Typing judgement (eta) for ηi
j)

Let j≤ i, where j∈N and i∈N
∗. Then, given a context Γ, one has that

(eta) Γ<i.Γ>i⊢ηi
j ⊲Γ>(i−j)
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Note that for i = j we have Γ>(i−j) = Γ>0 = Γ. From this definition, one has a rule
for inferring the type of ηi

j , that depends on the given context and has a semantics
which is related to this context only.

Lemma 4.15

Let a be a λσ-term, such that Γ ⊢ a : A. If a has no free occurrences of i and
a[ηi

i]→
∗
ηλσ

a′, then Γ<i.Γ>i ⊢ a′ : A. Particularly, Γ<i.Γ>i ⊢ ηλσ(a[ηi
i ]) : A.

Proof. By inspection of the system rules, one by one, we have the following:

• (η-App): Let Γ⊢(b c)[ηi
i ] :A. By (clos) one has that Γ⊢ηi

i⊲Γ′ and Γ′⊢(b c) :A.

By (app) one has that Γ′⊢b :B→A and Γ′⊢c :B. By (clos) one has Γ⊢b[ηi
i ] :B→A

and Γ⊢c[ηi
i] :B. Thus, by (app), Γ⊢(b[ηi

i] c[ηi
i ]) :A.

• (η-VarCons): Let Γ ⊢ 1 [ηi
j ] : A. By (clos) one has that Γ ⊢ ηi

j ⊲ Γ′ and
Γ′ ⊢ 1 : A. By (eta) one has Γ′ = (Γ<i.D.Γ≥i)>(i−j). There are two cases:
– If 1 < i = j, then Γ′ = Γ<i.D.Γ≥i. By (var) one has that Γ<i = A.Γ′′. Thus,

by (var), Γ ⊢ 1 : A.
– If 1 < j < i, let Γ=A1.A2. · · · .Ai−1.Γ≥i. Then Γ′ =A(i−j)+1. · · · .Ai−1.D.Γ≥i,

where (i − j) + 1 ≤ i − 1. By (var) one has that A(i−j)+1 = A. By (shift)

and (comp) one has Γ ⊢↑(i−j) ⊲A(i−j)+1. · · · .Ai−1.Γ≥i. By (var) one has that

A(i−j)+1. · · · .Ai−1.Γ≥i ⊢ 1 : A(i−j)+1 = A. Thus, by (clos), Γ ⊢ 1 [↑(i−j)] : A.

(η-Abs): Let Γ⊢(λ.b)[ηi
i ] :A. By (clos) one has Γ⊢ηi

i⊲Γ′ and Γ′⊢λ.b :A. By (eta)
one has Γ′=Γ<i.D.Γ≥i for some type D. By (lambda) one has C.Γ<i.D.Γ≥i⊢b :B,
where A=C→B. By (eta) one has that C.Γ⊢ηi+1

i+1 ⊲C.Γ<i.D.Γ≥i and, by (clos),

C.Γ⊢b[ηi+1
i+1 ] :B. Thus, by (lambda), Γ⊢λ.(b[ηi+1

i+1 ]) :A.

• (η-Clos): Let Γ ⊢ (b[s])[ηi
i ] : A. By (clos) one has that Γ ⊢ ηi

i ⊲ Γ′ and Γ′ ⊢
b[s] : A. By (clos) one has Γ′ ⊢ s ⊲ Γ′′ and Γ′′ ⊢ b : A. By (comp) one has that
Γ ⊢ s ◦ ηi

i ⊲ Γ′′. Thus, by (clos), Γ ⊢ b[s ◦ ηi
i ] : A.

• (η-Id): Let Γ ⊢ a[ηi
0] : A. By (clos) one has that Γ ⊢ ηi

0 ⊲ Γ′ and Γ′ ⊢ a : A. By
(eta), Γ′ = (Γ<i.D.Γ≥i)>i = Γ≥i. There are two cases:
– If i = 1, then Γ≥1 = Γ. Thus Γ ⊢ a : A.
– If i > 1, then by (shift) and (comp) one has that Γ ⊢↑i−1 ⊲Γ≥i. Thus, by

(clos), Γ ⊢ a[↑i−1] : A.

(η-AssEnv): Let Γ ⊢ (u ◦ v) ◦ ηi
j ⊲ Γ′. By (comp) one has that Γ ⊢ ηi

j ⊲ Γ′′ and
Γ′′ ⊢ u ◦ v ⊲ Γ′. By (comp) one has Γ′′ ⊢ v ⊲ Γ′′′ and Γ′′′ ⊢ u ⊲ Γ′. Then, by
(comp), one has that Γ ⊢ v ◦ ηi

j ⊲ Γ′′′. Thus, by (comp), Γ ⊢ u ◦ (v ◦ ηi
j) ⊲ Γ′.

• (η-ShiftCons): Let Γ ⊢↑ ◦ ηi
j ⊲ Γ′. By (comp) one has that Γ ⊢ ηi

j ⊲ Γ′′ and
Γ′′ ⊢↑ ⊲Γ′. By (shift) one has Γ′′ = C.Γ′ and, by (eta), Γ′′ = (Γ<i.D.Γ≥i)>(i−j).
– If j = 0, then C.Γ′ = Γ≥i. Thus, by (shift) and (comp), Γ ⊢↑i ⊲Γ>i = Γ′.
– Otherwise, (Γ<i.D.Γ≥i)>i−(j−1) = ((Γ<i.D.Γ≥i)>(i−j))>1 = (C.Γ′)>1 = Γ′.

Thus, by (eta), Γ ⊢ ηi
j−1 ⊲ Γ′.

(η-MapEnv): Let Γ ⊢ (b.t) ◦ ηi
i ⊲ Γ′. By (comp) one has that Γ ⊢ ηi

i ⊲ Γ′′ and
Γ′′ ⊢ b.t ⊲ Γ′. By (cons) one has Γ′′ ⊢ b : B and Γ′′ ⊢ t ⊲ Γ′′′, where Γ′ = B.Γ′′′.
By (clos) one has that Γ ⊢ b[ηi

i ] : B and, by (comp), Γ ⊢ t ◦ ηi
i ⊲ Γ′′′. Thus, by

(cons), Γ ⊢ b[ηi
i ].(t ◦ ηi

i) ⊲ Γ′. �

Theorem 4.16 (SR for the constructive (Eta) in λσ)
If Γ ⊢ λ.(a 1 ) : A and λ.(a 1 )→Eta b, then Γ ⊢ b : A.
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Proof. Suppose that Γ ⊢ λ.(a 1 ) : A. By (lambda), B.Γ ⊢ (a 1 ) : C, where
A = B → C. By (app), B.Γ ⊢ a : D → C and B.Γ ⊢ 1 : D. By (var), D = B, thus
B.Γ ⊢ a : B → C = A. One has b = ηλσ(a[η1

1 ]), where a has no free occurrence of 1 .
Thus, by Lemma 4.15 with i = 1, Γ ⊢ b : A. �

5 The λse-Calculus with a constructive Eta rule

Recall that in Table 2 we gave the definition of (Eta) for λse inherited from the usual
definition based on lifting as presented in the motivation of section 2. Similarly to the
λσ-calculus, when no restrictions are given on terms, derivations of ill-typed terms
may happen. For instance, let Γ ⊢ i : B and Γ ⊢ n : A, where n < i. Assume
Γ≥i ⊢ N : C, where C 6= A. By (σ-destruction), nσiN → n. Note that n σiN
is not typeable. Thus, λ(n + 1 1) → nσiN , because ϕ2

0(nσiN) → ϕ2
0(n) → n + 1

(n + 1 =se
ϕ2

0(nσiN)).

5.1 A calculus for explicitly checking the Eta condition in λse

In order to give a constructive and explicit definition of Eta, one should define the
free occurrences of i in a λse-term. The following calculus detects whether there are
free occurrences of a specific index in a term.

Definition 5.1

Let m, n ∈ N
∗. The Calculus of detection of Occurrences of Free Indices in

λse, denoted as COFI, is given by the following rules, where ∨ denotes the classic
disjunction.

〈ϕi
k a, n〉

〈a, n− i + 1〉
, (if n ≥ k + i)

〈m , n〉

False
, (if m 6= n)

〈λ.a, n〉

〈a, n + 1〉

〈a σib, n〉

〈a, n〉
, (if n < i)

〈a σib, n〉

〈a, n + 1〉 ∨ 〈b, n− i + 1〉
, (if n ≥ i)

〈n , n〉

True

〈ϕi
k a, n〉

〈a, n〉
, (if n ≤ k)

〈ϕi
k a, n〉

False
, (if k < n < k + i)

〈(a b), n〉

〈a, n〉 ∨ 〈b, n〉

With this definition, the free occurrences of indices in λse can be formalised.

Definition 5.2 (Free indices in λse)
If 〈a, i〉 ⊢COFI True, we say a has a free occurrence of i .

Observe that Definition 5.2 formalises the notion of free occurrence of indices in λ-
terms in de Bruijn notation and extends it to any λse-term. The following lemma
states the relation between free occurrences in λse-terms and in the corresponding
terms in se-nf.

Lemma 5.3 (Free occurrences in se-nf)
Let a and b be λse-terms, in se-normal form. The following hold:

1. For i ≤ k, se(ϕ
j
ka) has a free occurrence of i iff a has a free occurrence of i.

2. For k < i < k + j, se(ϕ
j
ka) has no free occurrences of i.
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3. For i ≥ k + j, se(ϕ
j
ka) has a free occurrence of i iff a has a free occurrence of

i− j + 1.

4. For i < j, se(a σjb) has a free occurrence of i iff a has a free occurrence of i.

5. For i ≥ j, se(a σjb) has a free occurrence of i iff either a has a free occurrence of
i + 1 or (a has a free occurrence of j and b has a free occurrence of i− j + 1).

Proof. All the proofs are by induction on the structure of a.

1. • a = n : by (ϕ-destruction), ϕj
kn → n. Thus, se(ϕ

j
kn) has a free occurrence of i

iff n = i.
• a = (c d): by (ϕ-app-transition), ϕj

k(c d) → (ϕj
kc ϕj

kd). By IH, se(ϕ
j
kc) has a

free occurrence of i iff c has a free occurrence of i. Analogously for se(ϕ
j
kd) and

d. Note that se(ϕ
j
ka) = (se(ϕ

j
kc) se(ϕ

j
kd)). Thus, se(ϕ

j
ka) has a free occurrence

of i iff either c or d has a free occurrence of i.
• a = λ.c: by (ϕ-λ-transition), ϕj

k(λ.c) → λ.(ϕj
k+1c). Since i + 1 ≤ k + 1, by

IH, se(ϕ
j
k+1c) has a free occurrence of i + 1 iff c has a free occurrence of i + 1.

Hence, se(ϕ
j
k+1a) has a free occurrence of i iff a has a free occurrence of i.

2. • a = n : If n ≤ k, then by (ϕ-destruction) one has ϕj
kn → n, where n ≤ k < i.

If n > k, then by (ϕ-destruction) one has ϕj
kn → n + j − 1, where n + j − 1 >

k + j − 1 ≥ i. Thus n + j − 1 > i.
• a = (c d): by (ϕ-app-transition), ϕj

k(c d) → (ϕj
kc ϕj

kd). Thus, by IH, neither

se(ϕ
j
kc) nor se(ϕ

j
kd) has a free occurrence of i.

• a = λ.c: by (ϕ-λ-transition), ϕj
k(λ.c)→ λ.(ϕj

k+1c). k + 1 < i + 1 < (k + 1) + j,

thus, by IH, se(ϕ
j
kc) has no free occurrences of i + 1. Hence, se(ϕ

j
k+1a) has no

free occurrences of i.

3. • a = n : If n ≤ k, then by (ϕ-destruction), ϕj
kn → n, where i ≥ k + j > k ≥ n.

If n > k, then by (ϕ-destruction), ϕj
kn → n + j − 1. Thus, se(ϕ

j
kn) has a free

occurrence of i iff n = i− j + 1.
• a = (c d): by (ϕ-app-transition), ϕj

k(c d) → (ϕj
kc ϕj

kd). By IH, se(ϕ
j
ka) =

(se(ϕ
j
kc) se(ϕ

j
kd)) has a free occurrence of i iff either c or d has a free occurrence

of i− j + 1.

• a = λ.c: by (ϕ-λ-transition), ϕj
k(λ.c) → λ.(ϕj

k+1c). Since i + 1 ≥ (k + 1) + j,

by IH, se(ϕ
j
k+1c) has a free occurrence of i + 1 iff c has a free occurrence of

(i + 1)− j + 1. Hence, se(ϕ
j
k+1a) has a free occurrence of i iff a has a free

occurrence of i− j + 1.

4. • a = n : If n < j, then by (σ-destruction), nσjb→ n. Thus, se(n σjb) has a free
occurrence of i iff n = i. If n = j, then by (σ-destruction), nσjb→ ϕj

0 b. Since

0 = k < i < k + j, by item 2, se(ϕ
j
0 b) has no free occurrences of i . If n > j,

then by (σ-destruction), n σjb→ n− 1, where n− 1 ≥ j > i.
• a = (c d): by (σ-app-transition), (c d)σjb → ((c σjb) (d σjb)). Thus, by IH,

se(a σjb) = (se(c σjb) se(d σjb)) has a free occurrence of i iff either c or d has a
free occurrence of i.
• a = λ.c: by (σ-λ-transition), (λ.c)σjb → λ.(c σj+1b). Since i + 1 < j + 1, by

IH, se(c σj+1b) has a free occurrence of i + 1 iff c has a free occurrence of i + 1.
Hence, se(a σj+1b) has a free occurrence of i iff a has a free occurrence of i.
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5. • a = n : If n < j, then by (σ-destruction), nσjb→ n, where n < j ≤ i. If n = j,
then by (σ-destruction), n σjb → ϕj

0 b. Since i ≥ k + j where k = 0, by item

3, se(ϕ
j
0 b) has free occurrence of i iff b has a free occurrence of i− j + 1 . If

n > j, then by (σ-destruction) one has n σjb → n− 1. Thus, se(n σjb) has a
free occurrence of i iff n = i + 1. Observe that i + 1 > i ≥ j.

• a = (c d): by (σ-app-transition), (c d)σjb → ((c σjb) (d σjb)). Thus, by IH,
se(a σjb) = (se(c σjb) se(d σjb)) has a free occurrence of i iff either c or d has
a free occurrence of i + 1 or either c or d has a free occurrence of j and b has a
free occurrence of i− j + 1.

• a = λ.c: by (σ-λ-transition), (λ.c)σjb → λ.(c σj+1b). Since i + 1 ≥ j + 1, thus,
by IH, se(c σj+1b) has a free occurrence of i + 1 iff c has a free occurrence of
(i + 1) + 1 or c has a free occurrence of j + 1 and b has a free occurrence of

(i + 1)− (j + 1) + 1 = i− j + 1 . Consequently, se(a σj+1b) has a free occur-
rence of i if, and only if, a has a free occurrence of i + 1 or a has a free occurrence
of j and b has a free occurrence of i− j + 1 . �

The next lemma shows that whenever an index occurs freely in se(a) then it might
occurs freely in a.

Lemma 5.4

If se(a) has a free occurrence of i , then 〈a, i〉 ⊢COFI True.

Proof. By induction on the structure of a.

• a = n : If n = i, then 〈n, i〉 ⊢ True

• a = (b c): we have 〈(b c), i〉 ⊢ 〈b, i〉 ∨ 〈c, i〉. By IH, if se(b) has a free occurrence
of i , then 〈b, i〉 ⊢ True. Analogously for se(c). Thus if se(b) or se(c) have a free
occurrence of i , then 〈(b c), i〉 ⊢ True. Note that se(b c) = (se(b) se(c)).

• a = λ.b: we have 〈λ.b, i〉 ⊢ 〈b, i + 1〉. By IH, if se(b) has a free occurrence of
i + 1 , then 〈b, i + 1〉 ⊢ True. Thus, if se(a) = λ.se(b) has a free occurrence of i ,
then 〈a, i〉 ⊢ True.

• a = b σjc:

– if i < j, then 〈b σjc, i〉 ⊢ 〈b, i〉. By Lemma 5.3.4, if se(b σjc) has a free occurrence
of i , then se(b) has a free occurrence of i . Thus, by IH, 〈b, i〉 ⊢ True

– If i ≥ j, then 〈b σjc, i〉 ⊢ 〈b, i + 1〉 ∨ 〈c, i− j + 1〉. By Lemma 5.3.5, if se(b σjc)
has a free occurrence of i , then se(b) has a free occurrence of i + 1 or (se(b) has
a free occurrence of j and se(c) has a free occurrence of i− j + 1 ). Thus, by
IH, 〈a, i〉 ⊢ True. Observe that even if se(b) has no free occurrences of j , 〈a, i〉
is still assigned True.

• a = ϕ
j
k b:

– if i ≤ k, then 〈ϕj
k b, i〉 ⊢ 〈b, i〉. By Lemma 5.3.1, if se(ϕ

j
k b) has a free occurrence

of i , then se(b) has a free occurrence of i. Thus, by IH, 〈b, i〉 ⊢ True.

– If k < i < k + j, then 〈ϕj
k b, i〉 ⊢ False. By Lemma 5.3.2, se(ϕ

j
k b) has no free

occurrences of i .

– If i ≥ k + j, then 〈ϕj
k b, i〉 ⊢ 〈b, i − j + 1〉. By Lemma 5.3.3, if se(ϕ

j
k b) has a

free occurrence of i , then se(b) has a free occurrence of i− j + 1 . Thus, by IH,
〈b, i− j + 1〉 ⊢ True. �
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When a is a se-nf, the inverse is true.

Lemma 5.5

If a is a se-nf and 〈a, i〉 ⊢COFI True, then a has a free occurrence of i .

Proof. Analogue of the proof of Lemma 5.4. �

The rewriting system for checking η-redices in λse, denoted as ηλse
, is given in

Table 4. Note that the language of λse is enlarged with the symbol η.

Table 4. ηλse
: the rewriting system for η-reduction in λse

(a b) ηi −→ (a ηi b ηi) (η-app-transition)
(λ.a) ηi −→ λ.a ηi+1 (η-λ-transition)

n ηi −→

{

n if n < i
n− 1 if n > i

(η-destruction)

(a σjb) ηi −→ (a ηi)σj−1b if i < j (η-σ-transition 1)
(a σjb) ηi −→ (a ηi+1)σj(b ηi−j+1) if i ≥ j (η-σ-transition 2)

(ϕj
k a) ηi −→ ϕj

k−1 (a ηi) if i ≤ k (η-ϕ-transition 1)

(ϕj
k a) ηi −→ ϕj−1

k a if k < i < k + j (η-ϕ-transition 2)

(ϕj
k a) ηi −→ ϕj

k (a ηi−j+1) if i > k and i ≥ k + j (η-ϕ-transition 3)

Observe that the ηλse
-rules have a similar structure to the rules of the detection

of free indices of Definition 5.1, with a simple adaptation for checking and updating
the free indices via the η-destruction rule, and for computing the correct updating of
indices via the five transition rules for the σ and ϕ operators.

The position of an occurrence of the symbol η in a term a is denoted as a sequence of
naturals in {1, 2} and defined as follows: η occurs at position ε (the empty sequence)
in aηi; if η occurs at position I in a′ and a is of the form (a′ b), λ.a′, (a′ σjb) or (ϕj

k a′),
then η occurs at position 1.I in a, and if a is of the form (b a′) or (b σja′), then η
occurs at position 2.I in a, and if a is of the form a′ηl, then η occurs at position I in
a (and also at position ε). A position I is said to be bigger than position J , whenever
the sequence I is a prefix of the sequence J . Notice that the occurrences of η in a
term a are a multiset of sequences; for example supposing a and b are λse-terms, a
term of the form (aηlηm (ϕj

k bηn))ηr has a multiset of occurrences of η of the form
{{ε, 1, 1, 2.1}}.

The next lemma establishes the convergence of ηλse
. Its proof is quite simple.

Compare and contrast with the case for ηλσ where we only established convergence
for a sub-language I and where the proof was much more involved.

Lemma 5.6

ηλse
is terminating, confluent and convergent

Proof. ηλse
is easily checked to be terminating and confluent. For the former,

let a be a term and consider the multiset of positions of occurrences of the symbol
η in a. Notice that one application of any of the rules of ηλse

results in a term
with its multiset of positions of occurrences of the symbol η smaller than the original
one. For the later, notice that ηλse

is left linear and there is no possible overlapping
between left-hand sides of the rules; thus, by orthogonality, confluence holds. The
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ηλse
normalisation of aηi can be conceived simply as a propagation of the symbol η

between the finite structure of a. �

One has the following property of ηλse
which guarantees reductions for λse-terms.

Lemma 5.7

If 〈a, i〉 ⊢COFI False, then ηλse
(a ηi) has no occurrences of the operator η.

Proof. By induction on the structure of a.

• a = n : from 〈n , i〉 ⊢ False one has that n 6= i. If n < i, then nηi → n . If n > i,
then n ηi → n− 1 .

• a = (b c): one has that (b c) ηi → (b ηi c ηi). From 〈(b c), i〉 ⊢ False one has
that 〈b, i〉 ⊢ False and 〈c, i〉 ⊢ False. Thus, by IH, neither ηλse

(b ηi) nor ηλse
(c ηi)

have occurrences of η.

• a = λ.b: one has (λ.b) ηi → λ.b ηi+1. From 〈λ.b, i〉 ⊢ False one has that 〈b, i+1〉 ⊢
False. Thus, by IH, one has that ηλse

(b ηi+1) has no occurrences of η.

• a = b σjc: one has 〈b σjc, i〉 ⊢ False.
– If i < j, then (b σjc) ηi → (b ηi)σj−1c and 〈b, i〉 ⊢ False. By IH, ηλse

(b ηi) has
no occurrences of η.

– If i ≥ j, then (b σjc) ηi → (b ηi+1)σj(c ηi−j+1), 〈b, i + 1〉 ⊢ False and 〈c, i −
j + 1〉 ⊢ False. Thus, by IH, neither ηλse

(b ηi+1) nor ηλse
(c ηi−j+1) have occur-

rences of η.

• a = ϕ
j
k b: one has that 〈ϕj

k b, i〉 ⊢ False.

– If i ≤ k, then (ϕj
k b) ηi → ϕj

k−1 (b ηi) and 〈b, i〉 ⊢ False. By IH, ηλse
(b ηi) has

no occurrences of η.
– If k < i < k + j, then (ϕj

k b) ηi → ϕj−1
k b and since b is a λse-term, it has no

occurrences of η.
– If i ≥ k + j, then (ϕj

k b) ηi → ϕj
k (b ηi−j+1) and 〈b, i − j + 1〉 ⊢ False. By IH,

ηλse
(b ηi−j+1) has no occurrences of η. �

Now it is possible to give the following definition of (Eta).

Definition 5.8 (Constructive (Eta) for λse)
Let a be a λse-term. The rule (Eta) is given by

λ.(a 1 )→ ηλse
(a η1) if 〈a, 1〉 ⊢COFI False (Eta)

By Lemma 5.7, the condition 〈a, 1〉 ⊢COFI False guarantees that ηλse
(a η1) is a

λse-term. It follows an example of η-reduction.

Example 5.9

Let b = λ.(λ.((1 σ22 ) (ϕ2
0 2 )) 1 ). Let a = λ.((1 σ22 ) (ϕ2

0 2 )). One has 〈a, 1〉 ⊢COFI

False. Then b is an η-redex. By the rules of Table 4 we have the following derivation

aη1 −→ λ.
(

((1σ22 ) (ϕ2
0 2 ))η2

)

(η-λ-transition)

−→ λ.
(

(1σ22 )η2 (ϕ2
0 2 )η2

)

(η-app-transition)

−→ λ.
(

((1 η3)σ2(2 η1)) (ϕ2
0 2 )η2

)

(η-σ-transition 2)

−→ λ.
(

(1σ2(2 η1)) (ϕ2
0 2 )η2

)

(η-destruction)

−→ λ.
(

(1σ21 ) (ϕ2
0 2 )η2

)

(η-destruction)

−→ λ.
(

(1σ21 ) ϕ2
0 (2 η1)

)

(η-ϕ-transition 3)

−→ λ.
(

(1σ21 ) ϕ2
0 1

)

(η-destruction)
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Then, by (Eta) defined above, b→ λ.
(

(1σ21 ) ϕ2
0 1

)

.

The next lemma is necessary to state that the Definition 5.8 coincides with η-
contraction for λ-terms in de Bruijn notation.

Lemma 5.10

If a is a term in se-nf and 〈a, i〉 ⊢COFI False, then b = ηλse
(a ηi) is a λ-term in de

Bruijn notation such that ϕ2
i−1b→

∗
se

a.

Proof.

• a = n : from 〈n , i〉 ⊢ False one has that n 6= i. If n < i, then n ηi → n and, by
(ϕ-destruction), ϕ2

i−1 n → n . If n > i, then nηi → n− 1 and, by (ϕ-destruction),
ϕ2

i−1 n− 1 → (n− 1) + 2− 1 = n .

• a = (a1 a2): one has that both a1 and a2 are in se-nf and from 〈(a1 a2), i〉 ⊢
False one has 〈a1, i〉 ⊢ False and 〈a2, i〉 ⊢ False. By (η-app-transition) one
has (a1 a2) ηi → (a1η

i a2η
i), thus, by IH, b1 = ηλse

(a1η
i) and b2 = ηλse

(a2η
i)

are λ-terms in de Bruijn notation such that ϕ2
i−1b1 →

∗
se

a1 and ϕ2
i−1b2 →

∗
se

a2,
respectively. Since b = ηλse

(a ηi
i) = (b1 b2) and ϕ2

i−1b → (ϕ2
i−1b1 ϕ2

i−1b2) by
(ϕ-app-transition), the result holds for a and b.

• a = λ.a′: from 〈λ.a′, i〉 ⊢ False one has that 〈a′, i + 1〉 ⊢ False and, by rule
(η-λ-transition), (λ.a′) ηi → λ.a′ηi+1. Thus, by IH, one has that b′ = ηλse

(a′ηi+1)
is a λ-term in de Bruijn notation such that ϕ2

i b
′ →∗

se
a′. Since b = ηλse

(a ηi
i) = λ.b′

and ϕ2
i−1(λ.b′)→ λ.ϕ2

i b
′ by (ϕ-λ-transition), the results holds for a and b.

�

By the operational semantics of the updating operator of the λse, the se-nf of the
term ϕ2

i−1b is the same as b but incrementing all de Bruijn indices greater than i
by one. Thus, taking i = 1, the lemma above states that the (Eta) rule given in
Definition 5.8 coincides with the η-reduction for λ-calculus in de Bruijn notation.

5.2 The constructive Eta rule for λse preserves SR

The following property of ηλse
, related to types, is necessary in order to prove SR for

the proposed rule (Eta).

Lemma 5.11

If Γ⊢a :A and 〈a, i〉⊢COFI False, then Γ<i.Γ>i⊢ηλse
(a ηi) :A.

Proof. By induction on the structure of a. We write N(a) for the ηλse
-nf of a.

• a = n : Let Γ ⊢ n : A. By 〈n , i〉 ⊢COFI False, n 6= i. If n < i, by (η-
destruction), n ηi → n and Γ<i.Γ>i ⊢ n : A. If n > i, by (η-destruction),
n ηi → n− 1 and by (Varn), Γ>i ⊢ n− i : A and hence by i − 1 applications of
(Varn), Γ<i.Γ>i ⊢ n− 1 : A

• a = (b c): Let Γ ⊢ (b c) : A. By the rule (η-app-transition) one has N((b c) ηi)
= (N(b ηi) N(c ηi)). By the rule (App), Γ ⊢ b : B → A and Γ ⊢ c : B. By
IH, Γ<i.Γ>i ⊢ N(b ηi) : B → A and Γ<i.Γ>i ⊢ N(c ηi) : B. Thus, by (App),
Γ<i.Γ>i ⊢ (N(b ηi) N(c ηi)) : A.
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• a = λ.b: Let Γ ⊢ λ.b : A. By (η-λ-transition), N((λ.b) ηi) = λ.N(b ηi+1). By
(Lambda), B.Γ ⊢ b : C, where A = B → C. By IH, B.Γ<i.Γ>i ⊢ N(b ηi+1) : C.
By (Lambda), Γ<i.Γ>i ⊢ λ.N(b ηi+1) : A.

• a = b σjc: Let Γ ⊢ b σjc : A. By (Sigma), Γ≥j ⊢ c : B and Γ<j .B.Γ≥j ⊢ b : A.
– If i < j, by (η-σ-transition 1), N((b σjc) ηi) = (N(b ηi))σj−1c. Then by IH, one

has Γ<i.(Γ<j)>i.B.Γ≥j ⊢ N(b ηi) : A. By (Sigma), Γ<i.Γ>i ⊢ N(b ηi)σj−1c : A.
– If i ≥ j, by (η-σ-transition 2), N((b σjc) ηi) = N(b ηi+1)σjN(c ηi−j+1). By IH,

Γ<j .B.(Γ≥j)<i−j+1.Γ>i ⊢ N(b ηi+1) : A and (Γ≥j)<i−j+1.Γ>i ⊢ N(c ηi−j+1) :
B. By (Sigma) Γ<i.Γ>i ⊢ N(b ηi+1)σjN(c ηi−j+1) : A.

• a = ϕ
j
k b: Let Γ ⊢ ϕj

k b : A. By (Phi), Γ≤k.Γ≥k+j ⊢ b : A.

– If i ≤ k, by (η-ϕ-transition 1), N((ϕj
k b) ηi) = ϕj

k−1 N(b ηi). Consequently by IH,

Γ<i.(Γ≤k)>i.Γ≥k+j ⊢ N(b ηi) : A. Thus, by (Phi), Γ<i.Γ>i ⊢ ϕj
k−1 N(b ηi) : A.

– If k < i < k + j, by (η-ϕ-transition 2), N((ϕj
k b) ηi) = ϕj−1

k b. Thus, by (Phi),

Γ<i.Γ>i ⊢ ϕj−1
k b : A.

– If k < i and k + j ≤ i, by (η-ϕ-transition 3), N((ϕj
k b) ηi) = ϕj

k N(b ηi−j+1). By
IH, one has that Γ≤k.(Γ≥k+j)<i−j+1−k.Γ>i ⊢ N(b ηi−j+1) : A. And finally, by

(Phi), Γ<i.Γ>i ⊢ ϕj
k N(b ηi−j+1) : A. �

Theorem 5.12 (SR for the constructive (Eta) in λse)
If Γ ⊢ λ.(a 1 ) : A and λ.(a 1 )→Eta b, then Γ ⊢ b : A.

Proof. Suppose that Γ ⊢ λ.(a 1 ) : A. By (Lambda) one has that B.Γ ⊢ (a 1 ) : C,
where A = B → C. By (App) and (Var) one has that B.Γ ⊢ a : B → C = A and
B.Γ ⊢ 1 : B. By hypothesis 〈a, 1〉 ⊢COFI False and b = ηλse

(a η1). Consequently, by
case i = 1 of Lemma 5.11, one obtains Γ ⊢ b : A. �

When the λse-term a of the Eta rule has no free occurrences of 1 , deciding the
applicability of the Eta rule and building the η-contractum are practically equivalent
processes. Then, a straightforward adaptation of the calculus ηλse

will do both tasks:
detecting the presence of free occurrences of 1 in a and, in the negative case, simul-
taneously building the corresponding η-contractum. This is possible by changing the
η-destruction rule in Table 4 to

n ηi −→







n if n < i
error if n = i
n− 1 if n > i

(η-destruction2)

The new system η′
λse

, allows the following definition of Eta which does both tasks
simultaneously.

λ.(a 1 )→ η′
λse

(a η1) if η′
λse

(a η1) is a λse-term (Eta2)

In implementations, (Eta2) is more adequate than the first new version of (Eta)
which duplicates work.

6 Conclusions and Future Work

We defined constructive explicit Eta rules for the λσ- and the λse-calculi which pre-
serve subject reduction. These formalisations involve the presentation of specific
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sub-calculi, given as well-behaved rewriting systems, for verifying the condition of
Eta in each of these two calculi explicitly. The proposed definitions work in such a
way that the construction of the Eta-contractum is given, while the condition of the
rule is being checked. Thus, our formalisation is directly implementable from the
constructive definition of the Eta rules for the simply-typed version of these calculi.
In addition to turning decidable the definitions of Eta in [8, 7] and [3], our work
contributes to making the informal implementations of the rules suggested in [5] and
[2] more precise. In contrast to the rule Eta introduced in [8] for λσ ([3] for λse), our
constructive definition can be applied to non σ-normal forms (non se-nf respectively)
in such a way that the rules Beta and Eta are put on an equal footing. One could
look at explicit substitutions as an active ingredient to distinguish between local and
global β-reduction (and hence as giving a form of explicit β-reduction). Our work
goes a step further in making explicit reduction and we present systems in which both
β- and η-reductions are explicit.

As future work, it is interesting to compare the efficiency of the implementations
of the suggested Eta rules in both calculi.

Funding

This work was partially supported by the Fundação de Apoio à Pesquisa do Distrito
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[5] P. Borovanský. Implementation of Higher-Order Unification Based on Calculus of Explicit Sub-
stitutions. Volume 1012 of Lecture Notes in Computer Science, pages 363–368. 1995.

[6] D. Briaud. An explicit Eta rewrite rule. In Typed lambda calculi and applications, volume 902
of Lecture Notes in Computer Science, pages 94–108. 1995.

[7] G. Dowek, T. Hardin, and C. Kirchner. Higher-order Unification via Explicit Substitutions.
Information and Computation, 157(1/2):183–235, 2000.

[8] T. Hardin. Eta-conversion for the languages of explicit substitutions. In Algebraic and logic

programming, volume 632 of Lecture Notes in Computer Science, pages 306–321. 1992.

[9] J. R. Hindley. Basic Simple Type Theory. Number 42 in Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press, 1997.

[10] D. Kesner. Confluence of extensional and non-extensional λ-calculi with explicit substitutions.
Theoretical Computer Science, 238(1-2):183–220, 2000.
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