
Higher-Order Unification: A structural

relation between Huet’s method and the one

based on explicit substitutions ?

Flávio L. C. de Moura a,∗, Mauricio Ayala-Rincón b,1,
Fairouz Kamareddine c

aDepartamento de Ciência da Computação, Universidade de Braśılia, Braśılia
D.F., Brasil

bDepartamento de Matemática, Universidade de Braśılia, Braśılia D.F., Brasil
cSchool of Mathematical and Computer Sciences, Heriot-Watt University,

Edinburgh, Scotland

Abstract

We compare two different styles of Higher-Order Unification (HOU): the classical
HOU algorithm of Huet for the simply typed λ-calculus and HOU based on the
λσ-calculus of explicit substitutions. For doing so, first, the original Huet algorithm
for the simply typed λ-calculus with names is adapted to the language of the λ-
calculus in de Bruijn’s notation, since this is the notation used by the λσ-calculus.
Afterwards, we introduce a new structural notation called unification tree, which
eases the presentation of the subgoals generated by Huet’s algorithm and its be-
haviour. The unification tree notation will be important for the comparison between
Huet’s algorithm and unification in the λσ-calculus whose derivations are presented
into a structure called derivation tree. We prove that there exists an important
structural correspondence between Huet’s HOU and the λσ-HOU method: for each
(sub-)problem in the unification tree there exists a counterpart in the derivation
tree. This allows us to conclude that the λσ-HOU is a generalization of Huet’s algo-
rithm and that solutions computed by the latter are always computed by the former
method.

Key words: Higher-Order Unification, Calculi of Explicit Substitutions.

? Work supported by CNPq grant 471791/2004-0∗ Corresponding author. Supported by Brazilian CAPES Foundation.
Email addresses: flavio@cic.unb.br (Flávio L. C. de Moura), ayala@unb.br

(Mauricio Ayala-Rincón), fairouz@macs.hw.ac.uk (Fairouz Kamareddine).
1 Partially supported by Brazilian CNPq Council.

Preprint submitted to Elsevier December 1, 2006

1 Introduction

More than thirty years ago, G. Huet (Hue75; Hue02) gave the most successful
and largely used Higher-Order Unification (HOU) algorithm. HOU is unde-
cidable (Gol81), Huet’s algorithm is in fact a semi-decision procedure because
it always finds the solutions to unifiable problems but may loop if the prob-
lem does not have a solution. The kernel of Huet’s algorithm consists of two
procedures called SIMPL and MATCH used for dealing with the so called
rigid-rigid, and flexible-rigid equations, respectively, and its practical success
is based on the observation that flexible-flexible equations always have solu-
tions and consequently (for deciding whether a problem is or is not unifiable)
it is not necessary to explicitly present all possible unifiers. Huet’s algorithm
behaves well in practice, and as a consequence, many of the modern computa-
tional systems which use HOU, such as λProlog and Isabelle/HOL, are based
on this algorithm. In addition, this algorithm has been extended to several
higher-order equational theories (Dow01) and specialised to treat reducts of
practical interest such as the case of higher-order patterns (Nip91).

The most promising alternative for treating HOU problems is based on ex-
plicit substitutions calculi and was developed over the λσ-calculus almost ten
years ago (DHK00). This alternative method has been shown to be of gen-
eral applicability for other calculi of explicit substitutions like the λse-calculus
(ARK01). Calculi of explicit substitutions are essentially formal mechanisms
attempting to solve an important drawback of the λ-calculus: the implicit-
ness of substitution, that is the basic operation on which the computational
functionality of the λ-calculus is founded. The formal basis of some program-
ming languages is founded on explicit substitutions; for instance, λProlog is
founded on the suspension calculus of explicit substitutions. As a matter of
fact, real programming languages are based on some ad-hoc (and mostly ob-
scure) explicit implementation of the substitution operation. When substitu-
tion is made explicit, it allows one to include HOU mechanisms at a lower
level; that is, directly over the associated language of explicit substitutions
instead of implementing HOU mechanisms, as usual, as strategies in a higher
level of the implementation based on Huet’s algorithm. The importance of a
precise knowledge of the style of explicit substitutions used in the implemen-
tation of programming languages has been made evident recently in (LNQ04).
In that work, the efficiency of different implementations of λProlog over the
system Teyjus was tested for several programs. Simple changes in the way
explicit substitutions are treated over the suspension calculus were shown to
imply great changes in the performance of the language.

Essentially, HOU via calculi of explicit substitutions consists of, firstly, trans-
lating HOU problems presented in the language of the simply typed λ-calculus
(in de Bruijn’s notation) to the language of the explicit substitutions calculus;

2

Precooking

Precooking−1

Unification Problem

Solutions

Solutions

Unification rules

Back translation

HOU-Problem

Language of the λ-calculus

substitution

Language of the explicit

substitutions calculus.
grafting

Figure 1. HOU via calculi of Explicit substitutions.

this process is known as a precooking translation. Afterwards, precooked prob-
lems are resolved as first-order unification problems modulo the equational
theory which defines the calculus of explicit substitutions and, finally, the so-
lutions are translated back to the language of the original problem (see Fig. 1,
that has been taken from (ARK03)). Therefore, the main advantage of the use
of explicit substitutions to solve HOU problems is that the substitution oper-
ation becomes a first order substitution (called grafting) and the higher-order
substitutions which are solutions of the original problem can be obtained by
applying the inverse of the precooking translation to the generated graftings,
i.e., to the solutions of the precooked version of the original problem.

In (DHK00), it has been noted that the λσ-HOU algorithm is a generalisation
of Huet’s method. In this paper, we refine this result by establishing a struc-
tural relation between sub-problems in the λ-calculus and in the λσ-calculus in
the following way: we introduce a new notation called unification tree which
clarifies the presentation of Huet’s algorithm and eases the presentation of
subgoals generated by Huet’s algorithm because each step of the algorithm is
represented by an arc in the tree. This notation is independent of the grammar
used and can be used for both λ-calculi with names or in de Bruijn’s notation.
In a similar way, applications of the unification procedure in the simply typed
λσ-calculus are represented as trees, called derivation trees.

We prove that for a given unification problem P in the simply typed λ-calculus
in de Bruijn’s notation, each subgoal (or derived problem) generated in the
unification tree of P has a counterpart in the derivation tree of its precook-
ing translation PF in the λσ-calculus, i.e., there exists a structural relation
between the unification tree of P and the derivation tree of PF . From this,
we establish a relation between the solutions of derived problems of P and
derived problems of PF .

3

In section 2 we present the simply typed λ-calculus with names, Huet’s al-
gorithm and the unification tree notation. In section 3 we define the simply
typed λ-calculus and we introduce Huet’s algorithm in de Bruijn’s notation.
A detailed description of Huet’s algorithm is given and the relevant aspects
that differ from the presentation with names are emphasised with examples. In
section 4 we briefly present the λσ-HOU method and we formalise the relation
between unification in the simply typed λ-calculus and in the simply typed
λσ-calculus by relating unification trees and derivation trees. Some of the
presented examples were generated with the system SUBSEXPL (MAK06).
Finally, in the last section, we conclude and give directions for future work.

2 Background

Since the λ-calculus with names is clearer and easier for humans than the
λ-calculus in de Bruijn’s notation, we start the next subsection with a gen-
eral presentation of the simply typed λ-calculus with names and of Huet’s
algorithm. For this presentation we use standard notations and suppose fa-
miliarity with basic notions on rewriting theory (BN98), type theory (Hin97)
and λ-calculus (Bar84).

2.1 Simply typed λ-calculus with Names

We assume two infinite denumerable sets V (of variables) and X (of meta-
variables). We let x, y, z, . . . range over V and X,Y, Z, . . . range over X . The
λ-terms (firstly without types) are built inductively defined by:

a ::= x | X | a a | λx.a

We use a, b, c, d, e, u, . . . to range over λ-terms.

Remark 1 Parenthesis are used to avoid ambiguities and we assume that
applications are left associative; i.e., (a1 a2 . . . an) means ((. . . (a1 a2) . . .) an)
and, abstractions are right associative, i.e., λx1λx2 . . . λxn .u is interpreted as
λx1 .(λx2 .(. . . (λxn .u) . . .)). Moreover, an application has higher priority than
an abstraction. In this way, λx.a b means λx.(a b).

Remark 2 The separation of constants and bound variables on one side and
meta-variables (also known as unification variables) on the other side is im-
portant to distinguish between the substitutions generated by β-reductions and
those generated by the unification procedure. In fact, bound variables and con-
stants are not concerned with the unification process and the meta-variables
will play the role of the unification variables.

4

In the λ-calculus with names, terms are interpreted modulo α-conversion,
which means that the names of bound variables used in abstractions are ir-
relevant. For example, λx.x z and λy.y z represent the same λ-term. Free and
bound occurrences are defined as usual; for instance, in the term (λy.y z) y,
z and the second occurrence of y are free while the first occurrence of y is
bound.

The basic operations of the λ-calculus are β-reduction and η-reduction 2 . The
former implements the applications of functional terms over arguments and
the latter represents functional equivalence. These operations are “implicitly”
defined by:

(λx.a) b → a{x/b} (β)

λx.a x → a, if x does not occur free in a. (η)

In (β), “a{x/b}” represents the term obtained from a by substituting all its
free occurrences of x by b. Implicitness of the definition of β-reduction is a con-
sequence of this pseudo-definition of substitution. And this is the main draw-
back of the λ-calculus, when it has to be used for concrete implementations. In
fact, for implementing the λ-calculus one has to decide how to implement sub-
stitutions and this is done usually by ad-hoc mechanisms, which are adjusted
during the implementation process. Calculi of explicit substitutions attack this
problem by formalizing, in different styles, the notion of substitution, which
make these formalisms close to concrete implementations.

η-reduction stands for functional equivalence and this can be understood by
noticing that, whenever it applies, for any term b, it holds that a b and
(λx.a x) b coincide since (λx.a x) b →β (a x){x/b} = a b.

Notations used for rewriting concepts of the λ-calculus with names as well
as for any other rewriting system in this work are the standard ones from
rewriting theory (see (BN98; Hin97)). Let a be a λ-term, a β-redex in a is a
sub-term of a which is an instance of the left hand side of the β-reduction
rule. The right hand side of an instance of the β-reduction rule is called a
β-contractum. Supposing the term obtained by replacing in a the β-redex by
its contractum is the term b, we write a →β b. A term without β-redexes
is said to be in β-normal form or β-nf for short. The inverse of the binary
relation →β is denoted by β← and its reflexive transitive closure by →∗

β. The
symmetric closure of →β which is the relation →β ∪β← is denoted by ↔β and
its reflexive transitive closure, called β-conversion, by =β. A β-nf of a term a
is a term b such that b is a β-nf and a →∗

β b. Similarly, we define η-redexes,
η-contractum, the notations →η, η-conversion, η-nf, etc. Also for the relation
→β ∪ →η, denoted as →βη, the same notations are used.

2 We will use the word “reduction” for both the β and η rewriting rules (usually
called β- and η-contraction) and the rewriting relation generated from these rules.

5

It is well known that the adequate environment for higher-order unification
is the simply typed λ-calculus. In the following we present the simply typed
version of the λ-calculus with names. We assume that there exists an infinite
set T of type variables (atomic types). Types are inductively defined by:

A ::= K | A → A

where K ranges over the set T. We say that A is the target type of the type
A1 → . . . → An → A, where n ≥ 0. We follow the Church approach for typing
terms. In this approach, differently to the approach of Curry (also known as
type assignment theory), typed λ-terms are inductively defined by:

a ::= x | X | a a | λx:A.a

A type assignment is an expression of the form a : A, where a is a λ-term
and A is a type. Type contexts, or just contexts, are used to store the type
information of the constants occurring in a term and are defined as finite sets
of type assignments. We use Γ, ∆, . . . to denote contexts. A context Γ is said
to be consistent if each variable in Γ has no more than one assignment. We
assume contexts to be consistent and use the following typing rules:

(var)
Γ ∪ {x : A} ` x : A

if Γ ∪ {x : A} is consistent.

(meta)
Γ ` X : A

where Γ is any context.

(app)
Γ ` a : A → B Γ ` b : A

Γ ` (a b) : B

(lambda)
(Γ− x) ∪ {x : A} ` a : B

Γ ` (λx:A.a) : A → B
if Γ is consistent with x : A

The type judgement Γ ` a : A is said to be derivable if it can be deduced
from the above typing rules. In the rule (lambda), the notation Γ− x means
that the assignment to x in Γ (if it exists) is removed and, the condition “Γ
is consistent with x : A” means that either Γ contains x : A or Γ contains no
assignment to x at all. In the former case, we say that x is discharged from Γ
and in the latter case that x is discharged vacuously from Γ. Note that this
typing system allows weakening.

The rule (meta) implies that the type of a meta-variable is independent from
the context, which is necessary for placing repetitions of meta-variables at dif-
ferent levels of abstraction in λ-terms. For instance, consider the type judge-
ment ` λz:A→(A→A)→A.z Y λx:A.Y : (A → (A → A) → A) → A. This judge-
ment is derivable from the above typing rules after applying the (meta) rule
twice for obtaining the judgements ` Y : A and x : A ` Y : A.

6

A λ-term a is called well typed if and only if there exists a context Γ and a
type A, such that Γ ` a : A is derivable. It is well known that the λ-calculus
restricted to well typed terms is closed under sub-terms and βη-reduction.
Moreover, it is strongly terminating, which means that every βη-reduction
starting from a well typed λ-term is finite.

2.2 Huet’s Algorithm

In the next paragraphs we give a general overview of Huet’s algorithm (Hue75).
Roughly speaking, Huet’s algorithm is a semi-decision procedure for unifica-
tion in the simply typed λ-calculus. It is a semi-decision algorithm because
it always finds solutions to unifiable unification problems but may loop if the
unification problem has no solution. We start with some relevant definitions.

Definition 3 (Structure of nfs) If a is well typed and in β-nf, then it has
the form:

λx1:A1 . . . λxn:An .h e1 . . . ep

where n, p ≥ 0, h is a constant, a bound variable or a meta-variable, called
the head of a, and e1, . . . , ep are λ-terms in β-nf, called the arguments of h.
We call λx1:A1 , . . . , λxn:An the external abstractors of a and λx1:A1 . . . λxn:An .h
its heading.

Definition 4 A λ-term in β-nf is rigid if its head is a constant or a bound
variable. Otherwise, the term is flexible, i.e., if its head is a meta-variable.

Definition 5 (η-long nf (Hin97)) A well typed λ-term a in β-nf is in η-
long normal form, written η-lnf, if every variable occurrence in a is followed by
the longest sequence of arguments allowed by its type; i.e., if each component
of the form (u e1 . . . ep) with p ≥ 0 that is not in function position has an
atomic type.

From now on, we write “λ-terms” to mean “well typed λ-terms” and, we
assume that terms are always in η-lnf.

Definition 6 (Unification Problem) A unification problem P in the sim-
ply typed λ-calculus is a conjunction of equations of the form a =? b, where a
and b are two λ-terms of the same type, all terms of the problem in the same
context, say Γ. In this case, we say that P is well typed in context Γ. The
equation a =? b is called rigid-rigid (resp. flexible-flexible) if both a and b are
rigid (resp. flexible) terms, and flexible-rigid if a is flexible and b is rigid or
vice-versa. An equation of the form a =? a is called trivial.

The requirement for a general unique context in unification problems arises
from the necessity to give the same assignments for constant names occurring

7

in different equations of the unification problem, as seen by the following
example.

Example 7 Let Γ = {x : A, f : A → A}. Consider the unification problem:

X(f x) =? f x ∧X(f x) =? f(X x).

Notice that the type judgements Γ ` x : A, Γ ` f : A → A and Γ ` X : A → A
are derivable. Consequently, all terms involved in the equations of this problem
have type A in context Γ.

HOU is undecidable (Gol81), nevertheless Huet (Hue75) developed a semi-
decision algorithm that finds a solution if it exists and may loop if it does
not. This semi-decision algorithm, known as Huet’s algorithm, is based on
two procedures called SIMPL and MATCH. The procedure SIMPL is used for
simplifying rigid-rigid equations while the procedure MATCH incrementally
generates substitutions for flexible-rigid equations that will compose the solu-
tions of the original problem. Flexible-flexible equations always have solutions
and, by this reason Huet’s algorithm does not need to deal with them. This
is why Huet’s algorithm is also known as a pre-unification algorithm. In the
following we give some intuition on how it works.

Let Γ be a context and P a unification problem well typed in context Γ. The
first step of Huet’s algorithm is a simplification step, i.e., an application of
SIMPL that consists in “breaking” rigid-rigid equations (that have the same
heads) into “smaller equations” that need to be solved. For instance, suppose
that P is a unification problem containing the following rigid-rigid equation
well typed in context Γ:

λx1:A1 . . . λxn:An .h1 e1
1 . . . e1

p =? λy1:A1 . . . λyn:An .h2 e2
1 . . . e2

p (1)

where n, p ≥ 0, e1
1 . . . e1

p, e
2
1 . . . e2

p are terms in η-lnf, and h1 and h2 represent
either the same constant (in which case h1 = h2) or the same bound variable,
i.e., h1 = xi and h2 = yi, for some 1 ≤ i ≤ n (see Example 8). Notice that the
number of external abstractors in (1) must be the same because by definition,
the terms in the left and right hand side of the equation have the same type
and are in η-lnf. An application of SIMPL to P will replace the equation (1)
by the following conjunction of equations:

λx1:A1 . . . λxn:An .e1
1 =? λy1:A1 . . . λyn:An .e2

1

∧ . . .∧ (2)

λx1:A1 . . . λxn:An .e1
p =? λy1:A1 . . . λyn:An .e2

p

which are well typed in context Γ.

The application of SIMPL to rigid-rigid equations with different heads returns
a failure status because the current problem is not unifiable. This simplifica-

8

tion step is repeated for all rigid-rigid equations of the current unification
problem and, as a consequence, a simplified problem contains only flexible-
rigid and/or flexible-flexible equations. Trivial equations are automatically
eliminated during the whole process.

Example 8 Let Γ = {w : A, u : A → B, v : A → A} be a context, X a
meta-variable of type A → B and consider the unification problem composed
by the sole rigid-rigid equation λy:B→B.y (X w) =? λx:B→B.x (u (v w)) which
is well typed in context Γ. An application of SIMPL to this problem generates
the following simplified unification problem λy:B→B.X w =? λx:B→B.u (v w)
which is well typed in context Γ.

For each simplified unification problem containing at least one flexible-rigid
equation, Huet’s algorithm calls the procedure MATCH that receives as input
a flexible-rigid equation and returns a finite set Σ of substitutions for the
head of the flexible term of the given equation. The substitutions generated
by MATCH are based on two rules called imitation and projection. To explain
how these rules work, let Γ be a context, and consider the following flexible-
rigid equation:

λx1:A1 . . . λxn:An .X e1
1 . . . e1

p1
=? λy1:A1 . . . λyn:An .h e2

1 . . . e2
p2

(3)

well typed in context Γ, where:
• n, p1, p2 ≥ 0;
• X is a meta-variable of type B1 → . . . → Bp1 → A (A atomic);
• h is either a bound variable or a constant of type C1 → . . . → Cp2 → A (A
atomic);
• if p1 6= 0 then e1

i is a λ-term in η-lnf of type Bi for all 1 ≤ i ≤ p1;
• if p2 6= 0 then e2

j is a λ-term in η-lnf of type Cj for all 1 ≤ j ≤ p2.

2.2.1 Imitation Rule.

The imitation rule generates a substitution that replaces X, the head of the
flexible term, by another term whose head corresponds to the head of the
rigid term of the current equation, i.e., by a term with head h (consider the
equation (3)). In this sense it tries to imitate the term on the right hand side
of the equation. Imitation is possible only if the head of the rigid term of
the considered equation is a constant due to the fact that variable capture is
forbidden in the λ-calculus. Then, if h is a constant, the imitation substitution
generated is given by:

X/λz1:B1 . . . λzp1 :Bp1
.h (H1 z1 . . . zp1) . . . (Hp2 z1 . . . zp1) (4)

where, if p2 > 0 then Hi is a fresh meta-variable of type B1 → . . . → Bp1 → Ci

for each 1 ≤ i ≤ p2. Of course, if h has an atomic type, i.e., if p2 = 0 then

9

no meta-variable is introduced by the previous substitution and, the imitation
substitution is given by X/λz1:B1 . . . λzp1 :Bp1

.h.

Example 9 Consider the flexible-rigid equation generated in Example 8. An
imitation substitution is possible because the head u of the rigid term is a
constant. This imitation substitution is given by X/λz:A.u (H1 z) where H1 is
a fresh meta-variable of type A → A. Note that the above substitution is not
a solution of the original problem but, it is part of a possible solution. In fact,
substitutions generated by Huet’s algorithm are incrementally generated in the
sense that each application of MATCH determines part of the solution. At the
end of the unification process, the composition of all the substitutions along a
success branch will contain a solution of the original problem (see Fig. 2).

2.2.2 Projection Rule.

A projection is a substitution generated when the head h of the rigid term is
either a bound variable or a constant. A projection means that the head X
of the flexible term is “projected” over its arguments. Considering equation
(3), X can be projected over the arguments that have the same target type
as X. Since X has of type B1 → . . . → Bp1 → A, suppose that e1

i has type
Bi = D1 → . . . → Dq → A for some i = 1, . . . , p1 and where q ≥ 0. In this case,
the projection substitution is given by X/λz1:B1 . . . λzp1 :Bp1

.zi (H1 z1 . . . zp1) . . .
(Hq z1 . . . zp1) where, if q > 0 then Hj is a fresh meta-variables of type B1 →
. . . → Bp1 → Cj for all 1 ≤ j ≤ q.

As a last remark, notice that there exists at most one possible imitation and p1

possible projections for a given flexible-rigid equation. In case no substitution
is generated, i.e., if Σ is the empty set then Huet’s algorithm stops reporting
a failure status because the current unification problem (and therefore the
original unification problem) is not unifiable.

Example 10 Consider again the flexible-rigid equation generated in Example
8. In this case, no projection is possible because the target type of X is B and
the target type of its sole argument w is A.

Calls of SIMPL and MATCH are synchronised by the main procedure of Huet’s
algorithm. The main procedure receives a unification problem and, if it con-
tains a rigid-rigid equation, it calls SIMPL. In case the original problem does
not contain a rigid-rigid equation or after a possible application of SIMPL to
it, the main procedure will look for a flexible-rigid equation in the current
problem. If such an equation exists, the procedure MATCH is applied to this
equation. Otherwise, it is a conjunction of flexible-flexible equations and, in
this case, the algorithm stops and reports a success status. After an applica-
tion of MATCH, either terminals or new unification problems are generated
and in the latter case, this process is repeated for each of the new generated

10

H1/λz:A.z

Fail

H2/λz:A.w H2/λz:A.z

Success Success

λy:B→B .H2 w =? λx:B→B .w

H1/λz:A.v (H2 z)

λy:B→B .X w =? λx:B→B .u (v w)

λy:B→B .H1 w =? λx:B→B .v w

X/λz:A.u (H1 z)

Figure 2. A Matching Tree

unification problems.

Since HOU is undecidable, there exist unification problems for which Huet’s
algorithm does not terminate (cf. (Hue75)). The application of Huet’s algo-
rithm can be seen into a tree structure, called matching tree, presented in
(Hue75). The matching tree is a tree whose nodes are labelled with simplified
unification problems or terminals (Success or Fail) and linked to a finite num-
ber of successors by arcs labelled with substitutions. The next example shows
a matching tree for the problem presented in Example 8.

Example 11 A matching tree for the problem presented in Example 8 is given
in Fig. 2. The root of the tree contains the simplified version of the original
problem and the arc starting in it corresponds to an imitation substitution
generated after an application of MATCH. The following node contains the
simplified problem obtained after the application of this substitution. A new
application of MATCH to this new unification problem generates two substitu-
tions: an imitation that leads to two success nodes and, a projection that leads
to a fail node. The solutions of the original problem are obtained by composing
the substitutions generated along a success node. In this case, the solutions are
given by X/λz:A.u (v w) and X/λz:A.u (v z).

Example 12 (Continuing example 7) Notice that the sole solution of the uni-
fication problem X(f x) =? f x ∧X(f x) =? f(X x) is the identity function:
X/λz:A.z. The solutions for the second equation include the identity function
and all compositions of f : X/λz:A.f z,X/λz:A.f(f z), X/λz:A.f(f(f z)), . . .

11

Pε

σ1 σ2 σr

P ε

PrP1 P2

σ11
σ12

P rP2P1

P11 P12 P1s

SIMPL(P1) SIMPL(P2)

SIMPL(Pε)

SIMPL(Pr)

σ1s

Figure 3. A Unification Tree

2.3 Unification Tree Notation

In this subsection, we introduce the unification tree notation for giving a sys-
tematic presentation of Huet’s algorithm over the simply typed λ-calculus.
Using this structure we can exhibit the connection between the two main pro-
cedures of Huet’s algorithm naturally. This clarifies the description and sim-
plifies the comparison between explicit substitutions based HOU procedures
and Huet’s method.

The unification tree notation derives from Huet’s matching tree (Hue75) by
adding new arcs for applications of SIMPL and labels for the unification prob-
lems and substitutions. These labels provide information about the position
of the unification problems and of the substitutions in the unification tree (see
Fig. 3).

A unification tree A(P) for a given unification problem P is built as follows:

(1) Label P with the subscript ε (the empty position), i.e., Pε. This subscript
means that this problem is in the root of the unification tree.

(2) For a node labelled with Pα, its child node is written Pα whenever it is
obtained by an application of SIMPL. This step is represented by a curly
line in the unification tree since the subscript remains the same after a
simplification step.

(3) For a node labelled with Pα containing the flexible-rigid equation eq, call
σα1, σα2, . . . , σαk (k > 0) the substitutions generated by an application of
MATCH to eq. The children nodes of Pα, written Pα1, . . . , Pαk are defined
by Pαi := Pασαi, for all 1 ≤ i ≤ k.

Using this notation, it is straightforward to see for instance that, for a given

12

higher-order unification problem P , a substitution with label σ12315 is gener-
ated (by an application of MATCH) from a unification problem with label
P1231. The solutions of unification problems can be easily computed by com-
posing the generated substitutions from the root of the unification tree to a
success leaf. For instance, if P1223 is a success node but P122 is not, then the
substitution solution corresponding to this success path is given by the com-
position σ1σ12σ122σ1223. In subsection 3.2, we describe Huet’s algorithm in de
Bruijn’s notation using unification tree notation.

3 The Simply Typed λ-calculus and Huet’s Algorithm with de
Bruijn’s indexes

3.1 Simply Typed λ-calculus in de Bruijn’s Notation

In this subsection, we present the simply typed λ-calculus in de Bruijn’s nota-
tion (dB72). The philosophy of de Bruijn’s notation is based on the fact that
the link between a bound variable and the corresponding λ in a term, which
binds this x (we also say that x is bound by λx), could also be indicated by
the binding height of an occurrence. To do so, bound variables and constants
are represented by positive integers called de Bruijn indexes, which range over
N = {1, 2, . . .} and free variables (or meta-variables) are represented by cap-
ital letters X,Y, Z, . . ., which range over the set X . Meta-variables were not
used in the original presentation of de Bruijn, but this separation of variables
in two different classes is important for two reasons. First, for a better under-
standing of the unification methods presented here because we keep a clear
distinction between the substitutions generated by the unification procedure
and the ones generated by β-reductions, and second because we continue with
a grammar for terms that is similar to the one used in the presentation of the
λ-calculus with names (see section 2.2) which permits a better comprehension
of the similarities and differences between the two approaches.

Rewriting λ-terms with names to de Bruijn’s notation is an easy task. Con-
sider, for instance, the closed term λxλyλz.x (y z) z. Translating this term to
de Bruijn’s notation consists in replacing each variable by the number that
corresponds to the height of the abstractor that binds it:

λxλyλz.x (y z) z λλλ.3 (2 1) 1
conversion to
de Bruijn notation.

Contexts for the λ-calculus in de Bruijn’s notation are represented by a list
of types. In the presentation with names, contexts were just finite sets of
assignments. They now need to be ordered because constants, that we also

13

call free de Bruijn indexes, refer to a specific position in the context.

Well typed λ-terms in the λ-calculus with names can be translated to de
Bruijn’s notation by fixing a referential containing its constants. So, suppose
we want to write a = λxyz.y (X u z) v in the referential u, v. To do so, we con-
sider the term a in the scope of the abstractors λvλu, i.e., λvuxyz.y (X u z) v
which gives λλλ.2 (X 4 1) 5. Note that, using the referential v, u we get
λλλ.2 (X 5 1) 4. In general, to convert a λ-term with names to its counter-
part in de Bruijn notation we need to create a referential containing all its
free variables and, as shown in the above example, different referentials lead
to different de Bruijn λ-terms. Notice that meta-variables remain unchanged
during this translation. For typed terms, such a referential corresponds to an
“ordered” context.

Definition 13 The set of untyped λ-terms in de Bruijn’s notation is defined
inductively by:

a ::= n | X | a a | λ.a where n ∈ N and X ∈ X .

We define the syntax of simply typed λ-calculus in de Bruijn’s notation by:

Types A ::= K | A → A where K ∈ T.

Contexts Γ ::= nil | A · Γ
Terms a ::= n | X | a a | λA.a where n ∈ N and X ∈ X .

We write ΛdB(X) for the set of simply typed λ-terms in de Bruijn’s notation.
The typing rules are as follows:

(var)
A · Γ ` 1 : A

(var+)
Γ ` n : B

A · Γ ` n + 1 : B

(lambda)
A · Γ ` a : B

Γ ` λA.a : A → B
(app)

Γ ` a : A → B Γ ` b : A

Γ ` (a b) : B

In addition, to each meta-variable X we associate a unique type A and, we
assume that for each type there exists an infinite number of meta-variables
with that type. We add the following type rule for meta-variables:

(meta)
Γ ` X : A

where Γ is any context.

As in the λ-calculus with names, the type of meta-variables is independent
from its context. Nevertheless, the type of λ-terms (that contain constants)
depends on the context. In addition, if a is a λ-term, we write aΓ

A as a short
hand for the type judgement Γ ` a : A.

14

Definition 14 (Extension of contexts(DHK00)) Let n ≥ 0, A1, . . . , An

be types and Γ and ∆ be two contexts. We say that Γ is an extension of ∆ if
it has the form Γ = A1 · . . . · An ·∆. It is a strict extension if n 6= 0.

The β-reduction for λ-terms in de Bruijn’s notation is given by:

(λA.a) b → a{1/b} (β)

We say that a λ-term a, in de Bruijn’s notation, is in β-normal form (β-nf for
short) if a does not have a sub-term of the form (λA.b) c. This definition of
β-reduction requires specific rules for propagating the substitution {1/b} over
the term a. This is done by the following definition:

Definition 15 Let n, a, b be well typed λ-terms in de Bruijn’s notation such
that n and a are two λ-terms with the same type. The substitution of a for n
in b, written b{n/a}, is defined by induction over the structure of b as follows:

(a) X{n/a} = X. (b) m{n/a} =

m, if m < n;

a, if m = n;

m− 1, if m > n.

(c) (c d){n/a} = c{n/a} d{n/a} (d) (λA.c){n/a} = λA.c{n + 1/a+}

This definition of a (higher-order) substitution is specific for β-reduction: in
fact, in item (b), if m > n then m{n/a} is equal to m− 1 because this sub-
stitution subsumes that a λ disappeared after an application of a β-reduction
and, hence all the constants of the current term need to be decremented by one
because now they are under the scope of one less abstractor. When the sub-
stitution {n/a} is propagated inside an abstraction, the term a+ is generated.
It is called the lift of a and is given by the following definition:

Definition 16 (The lift(DHK00)) Let a ∈ ΛdB(X), i ≥ 0. The term a+,
called the lift of a, is defined by a+ = a+0, where a+i is inductively defined by:

(a) X+i = X, for X ∈ X ; (b) n+i =

n + 1, if n > i;

n, if n ≤ i;

(c) (a b)+i = a+i b+i; (d) (λA.a)+i = λA.a+(i+1).

Notice that we have defined β-reduction as well as the notion of higher-order
substitution for β-reduction without the decoration with types and contexts.
Nevertheless, since we are interested in higher-order unification, it is important
to keep in mind how this information is manipulated. The decorated version
of β-reduction is given by:

(λA.aA·Γ
B) bΓ

A → aA·Γ
B {1A·Γ

A /bΓ
A} (β)

15

This definition says that each free occurrence of 1A·Γ
A in aA·Γ

B must be replaced
by bΓ

A, and that is the reason why 1A·Γ
A and aA·Γ

B must have the same context.
One important point about a substitution generated by β-reductions is that
it always has the form {n/b} where n and b are terms of the same type but
with different contexts. In fact, the free occurrences of the de Bruijn index n
in the term a are in the scope of the abstractor that will be removed after the
application of the (β), but the term b is not in the scope of this abstractor. In
what follows, we present the decorated version of definitions 15 and 16.

Remark 17 Let ∆ be a context and let A, B, A1, . . . , An be types. The dec-
orated version of Definition 15 is given in what follows. Assuming that the
considered substitution was originated by a β-redex whose abstractor was of
type A1, we have that:

(a) XAn·...·A1·∆
A {nAn·...·A1·∆

A1
/aAn·...·A2·∆

A1
}=XAn·...·A2·∆

A , i.e., meta-variables are not
affected by the substitutions generated by β-reduction, but the context of the
resulting term is given by the context of the term a given in the substitution.

(b) It is divided in three sub-cases:
· If m < n then m represents a bound de Bruijn index and must remain

unchanged:

mAn·...·A1·∆
A {nAn·...·A1·∆

A1
/aAn·...·A2·∆

A1
} = mAn·...·A2·∆

A

· If m = n then

nAn·...·A1·∆
A1

{nAn·...·A1·∆
A1

/aAn·...·A2·∆
A1

} = aAn·...·A2·∆
A1

· If m > n then the de Bruijn index m represents a constant whose scope
contains one less abstractor (the one that originated the β-reduction was
eliminated) and, then the first element of the context (whose type is exactly
the type of the eliminated abstractor) is removed:

mAn·...·A1·∆
A {nAn·...·A1·∆

A1
/aAn·...·A2·∆

A1
} = m− 1An·...·A2·∆

A

(c) Trivial
(d) After propagating a substitution inside an abstractor of a term, the index n

that defines the substitution and the term in the substitution as well as their
contexts need to be updated:

((λB.bB·An·...·A1·∆
A)An·...·A1·∆

B→A {nAn·...·A1·∆
A1

/aAn·...·A2·∆
A1

})An·...·A2·∆
B→A =

(λB.(bB·An·...·A1·∆
A {n + 1B·An·...·A1·∆

A1
/(a+)B·An·...·A2·∆

A1
}))An·...·A2·∆

B→A .
In this way, the lift increases the context of the terms in the substitutions

with the type of the abstractor that binds them.

The lift of Definition 16 is motivated by item (d) above. In fact, the lift of a
term is necessary only when a substitution is propagated inside an abstraction
whose type is essential to determine the resulting context. In the following,

16

we assume that B is the type of the abstraction that originated the lift. The
decorated version of the lift is given by:

(a) For all i ≥ 0, ((XA1·...·Ai·∆
A)+i)A1·...·Ai·B·∆

A = XA1·...·Ai·B·∆
A .

(b) We analyse each case separately:
· If n > i then the index n represents a constant that is in the scope of

i abstractors and which has now been inserted (by the substitution) in
the scope of a new abstractor of type B. Therefore it needs to be updated
and, its context must contain the type information concerning this new
abstractor:

((nA1·...·Ai·∆
An

)+i)A1·...·Ai·B·∆
An

= n + 1A1·...·Ai·B·∆
An

· If n ≤ i then n represents a bound variable and must remain unchanged
but the resulting context depends on the lift:

((nA1·...·Ai·∆
An

)+i)A1·...·Ai·B·∆
An

= nA1·...·Ai·B·∆
An

(c) Trivial.
(d) To propagate a lift inside an abstraction, it is necessary to include the type

of the abstraction that originated the lift:

(((λA.aA·A1·...·Ai·∆
C)A1·...·Ai·∆

A→C)+i)A1·...·Ai·B·∆
A→C =

(λA.(ai+1)A·A1·...·Ai·B·∆
C)A1·...·Ai·B·∆

A→C .

Whenever it is possible we avoid the decorated notation for the sake of clarity.

The η-reduction for the λ-calculus in de Bruijn’s notation is defined as follows:

λA.a 1 → b if a = b+ (η)

and its version decorated with types and contexts is given by:

λA.aA·Γ
B 1A·Γ

A → bΓ
B if aA·Γ

B = ((bΓ
B)+)A·Γ

B (η)

The above definition of η-reduction tries to capture the operational semantics
of the η-reduction of the λ-calculus with names, but in fact it fails because it
does not show how to construct the term b from a. However, implementations
of the η-reduction based on detection of occurrences of the index 1 in a are
adequate (AMK05).

As mentioned before, the separation of the free variables (meta-variables) on
one side and the bound variables and constants (de Bruijn indexes) on the
other side allow us to distinguish between the substitutions generated by β-
reductions from the ones generated by the unification procedure. The next
definition formalises the notion of substitution generated by the unification
procedure, i.e., substitutions for meta-variables:

17

Definition 18 Let θ be a valuation (i.e., a function) from X to ΛdB(X). The
substitution θ′ extending the valuation θ is defined by:

(a) Xθ′ = Xθ (b) nθ′ = n

(c) (a b)θ′ = aθ′ bθ′ (d) (λA.a)θ′ = λA.(aθ′+)

where θ′+ := {X1/a
+
1 , . . . , Xn/a

+
n } when θ′ = {X1/a1, . . . , Xn/an}.

The main difference between the substitution generated by β-reduction and
the one generated by the unification procedure is that the latter always re-
places a meta-variable for a term, say X/a, where X and a are λ-terms with
the same type and context. Here again, contexts need to be updated when
propagated over abstractions: for instance, the decorated version of item (d)
is given by (λB.cB·∆

C){XΓ
A/aΓ

A} = λB.(cB·∆
C {XB·Γ

A /(a+)B·Γ
A }).

The next example clarifies the process of propagating substitutions and the
notion of lifting.

Example 19 Let Γ = (A → A) → A be a context and, X be a meta-
variable of type (A → A) → A in context Γ. In this example, we show
how the substitution {XΓ

(A→A)→A/1Γ
(A→A)→A} can be propagated over the λ-

term λA→A.(X λA.(X 2)) that has type (A → A) → A in context Γ. Due to
lack of space, we only decorate the sub-terms that are relevant while propagat-
ing the substitution:
(λA→A.(X λA.(X 2)))Γ

(A→A)→A{XΓ
(A→A)→A/1Γ

(A→A)→A} =

λA→A.(X λA.(X 2))A→A·Γ
A {XA→A·Γ

(A→A)→A/2A→A·Γ
(A→A)→A} =

λA→A.(2A→A·Γ
(A→A)→A (λA.(X 2))A→A·Γ

A→A {XA→A·Γ
(A→A)→A/2A→A·Γ

(A→A)→A}) =

λA→A.(2A→A·Γ
(A→A)→A λA.(X 2)A·A→A·Γ

A {XA·A→A·Γ
(A→A)→A/3A·A→A·Γ

(A→A)→A}) =

λA→A.(2A→A·Γ
(A→A)→A λA.(3A·A→A·Γ

(A→A)→A 2A·A→A·Γ
A→A)).

In this example, the lift was used twice: once in the second line (top-down)
and once in the fourth line.

In the following we define the updating functions that are used in the definition
of η-long normal forms for λ-terms in de Bruijn’s notation.

Definition 20 The updating functions U i
k : ΛdB(X) → ΛdB(X), for k ≥ 0

and i ≥ 1 are defined inductively by:

(a) U i
k(X) = X, for X ∈ X (b) U i

k(a b) = U i
k(a) U i

k(b)

(c) U i
k(λA.a) = λA.U i

k+1(a) (d) U i
k(n) =

n + i− 1, if n > k

n, if n ≤ k

In the λ-calculus, η-long forms play an important role. Definition 21 and
Proposition 23 were adapted from (DHK00):

18

Definition 21 (η-long nf) Let a ∈ ΛdB(X) be a λ-term in de Bruijn’s no-
tation of type A1 → . . . → Am → B (B atomic) in context Γ and in β-nf. The
η-long normal form (or η-lnf for short) a′ of a, is inductively defined by:

• if a = λA.b then a′ = λA.b′.
• if a = n b1 . . . bq, with q ≥ 0, then a′ = λA1 . . . λAm .n + m c1 . . . cq m′ . . . 1′,

where c1, . . . , cq are the η-lnf of the β-nf of Um+1
0 (b1), . . . , U

m+1
0 (bq), resp.

• if a = X b1 . . . bq, with q ≥ 0, then a′ = λA1 . . . λAm .X c1 . . . cq m′ . . . 1′,
where c1, . . . , cq are the η-lnf of the β-nf of Um+1

0 (b1), . . . , U
m+1
0 (bq), resp.

The next definition is needed to prove that the definition of η-lnf is well
founded.

Definition 22 The size |a| of a λ-term a ∈ ΛdB(X) is inductively defined by:

• if a = n or a = X then |a| = 1;
• if a = b c then |a| = 1 + |b|+ |c|;
• if a = λA.b then |a| = 1 + |b|.

Proposition 23 The definition of η-lnf for λ-terms in de Bruijn’s notation
is well founded.

PROOF. The proof is by induction based on the lexicographic order on the
triple consisting of the number of occurrences of meta-variables, the size of
the λ-term and the size of its type. The size of a type is defined as usual:
if A is atomic then |A| = 1 and if B and C are types then |B → C| =
max(1 + |B|, |C|).

In the case a = λA.b we have that the number of meta-variables remain un-
changed and the size of the term decreases. When a = n b1 . . . bq and q = 0
the number of meta-variables and the size of the term remain unchanged but
the size of the type decreases. If q 6= 0 then the number of meta-variables
remains unchanged and the size of the term decreases. When a = X b1 . . . bq

the number of meta-variables decreases. 2

Example 24 Consider the type judgement A → A·nil ` 1 : A → A. The η-lnf
of the de Bruijn index 1 in this type judgement, in a first step, corresponds to
the η-lnf of A → A · nil ` λA.2 1′ : A → A. But the η-lnf of a de Bruijn index
of an atomic type is the index itself, and therefore, the η-lnf of the original
term is given by A → A · nil ` λA.2 1 : A → A.

Example 25 A more interesting case is to calculate the η-lnf of (A → A) →
A · nil ` 1 : (A → A) → A. According to the definition it corresponds to the
η-lnf of (A → A) → A · nil ` λA→A.2 1′ : (A → A) → A. Now the problem is
reduced to calculating the η-lnf of the λ-term 1′ that has type A → A in context

19

A → A · (A → A) → A · nil. Following the previous example, we have that the
η-lnf of A → A · (A → A) → A · nil ` 1′ : A → A is given by A → A · (A →
A) → A · nil ` λA.2 1 : A → A. Therefore, we have that the η-lnf of the
original term is given by (A → A) → A ·nil ` λA→A.2 λA.2 1 : (A → A) → A.

3.2 Huet’s algorithm in de Bruijn’s notation

The definitions of normal forms, flexible and rigid terms for de Bruijn’s no-
tation are a straightforward adaptation from those given in subsection 2.2.
For the definition of a unification problem in de Bruijn notation one needs to
observe that contexts now have order; they are represented by lists of types.
In order to convert a unification problem from the λ-calculus with names to
the λ-calculus in de Bruijn notation one needs to set an order for contexts.
This can be done in many different ways, and in the following we explain how
we perform this transformation through an example:

Example 26 Let Γ = {x : A, y : B, z : A → B} be a context, X a meta-
variable of type A → B and PΛ be the unification problem given by:

λu:A.X u =? λu:A.y ∧X x =? z x

which is well typed in Γ. In order to convert PΛ to de Bruijn’s notation, we
need first to convert the context Γ into a list of types. To do so, we simply
get the types of all the elements in Γ in any order and build a list with these
types (for simplicity we keep the name Γ for the resulting context): Γ = A ·B ·
A → B · nil. Note that in a certain sense, the generated context corresponds
to the referential cited in Section 3.1 that allows us to convert terms with
free variables. In this way, the unification problem PΛ in de Bruijn notation,
written PΛdB

, is given by: λA.X 1 =? λA.3 ∧X 1 =? 3 1.

In the next subsections we present the procedures SIMPL and MATCH of
Huet’s algorithm in de Bruijn’s notation using the unification tree notation.

3.2.1 The procedure SIMPL

It receives as argument a unification problem Pα containing at least one rigid-
rigid equation (otherwise it is already a simplified problem) and returns either
a terminal (Success or Fail) or an equivalent (simplified) unification problem,
written Pα, containing at least one flexible-rigid equation. In the following we
give a description of SIMPL.

Procedure SIMPL

INPUT: A unification problem Pα with at least one rigid-rigid equation.

20

OUTPUT: Either a terminal (Success or a Fail) or an equivalent unification
problem Pα without rigid-rigid equations and containing at least one flexible-
rigid equation.

WHILE there exists a rigid-rigid equation in Pα, say:

λA1 . . . λAn .h1 e1
1 . . . e1

p1
=? λA1 . . . λAn .h2 e2

1 . . . e2
p2
∧ P ′ (5)

where n, p1, p2 ≥ 0 and h1 and h2 are de Bruijn indexes DO

If h1 and h2 are different de Bruijn indexes then stop and report a failure
status. Otherwise, replace the equation (5) (in which p1 = p2 because the
terms have the same type) by the conjunction

λA1 . . . λAn .e1
1 =? λA1 . . . λAn .e2

1 ∧ . . . ∧ λA1 . . . λAn .e1
p1

=? λA1 . . . λAn .e2
p1

in Pα and call Pα the resulting problem.
DONE.
IF there exists a flexible-rigid equation in Pα THEN return Pα ELSE stop and
report a success status.

3.2.2 The Procedure MATCH

The procedure MATCH takes a flexible-rigid equation as input and returns a
finite set of substitutions, Σ. As explained for the notation with names, it is
based on the imitation and projection rules detailed in the following.

3.2.3 The Imitation Rule.

Consider the following flexible-rigid equation well typed in context Γ:

λA1 . . . λAn .X e1
1 . . . e1

p1
=? λA1 . . . λAn .h e2

1 . . . e2
p2

(6)

where:

• n, p1, p2 ≥ 0;
• X is a meta-variable of type B1 → . . . → Bp1 → A (A atomic);
• h is a de Bruijn index of type C1 → . . . → Cp2 → A (A atomic);
• if p1 6= 0 then e1

i is a λ-term in η-lnf of type Bi for all 1 ≤ i ≤ p1;
• if p2 6= 0 then e2

j is a λ-term in η-lnf of type Cj for all 1 ≤ j ≤ p2.

In order to avoid variable capture, an imitation substitution is generated only
if h is a constant, i.e., h > n. In this case, the imitation substitution is given
by:

X/λB1 . . . λBp1
.p1 + h− n (X1 p1 . . . 1) . . . (Xp2 p1 . . . 1)

21

where Xi is a fresh meta-variable of type B1 → . . . → Bp1 → Ci in context Γ,
for all 1 ≤ i ≤ p2.

3.2.4 The Projection Rule.

For each argument of X (in equation (6)) that have the same target type
as X, a projection is generated. In this way, if e1

i has a type of the form
Bi = D1 → . . . → Dq → A, for some 1 ≤ i ≤ p1, then the generated
projection substitution is given by:

X/λB1 . . . λBp1
.p1 − i + 1 (H1 p1 . . . 1) . . . (Hq p1 . . . 1)

where Hj is a fresh meta-variable of type B1 → . . . → Bp1 → Dj for all
1 ≤ j ≤ q.

In the following we give an algorithmic description of the procedure MATCH.

Procedure MATCH

INPUT: A flexible-rigid equation eq.
OUTPUT: A set Σ of substitutions for the head of the flexible term.

(1) Apply the imitation and the projection rules to eq non-deterministically
and call Σ the set of generated substitutions.

3.2.5 The Main Procedure

The main procedure of Huet’s algorithm non-deterministically and succes-
sively calls the procedures SIMPL and MATCH.

Main Procedure

INPUT: A unification problem Pε.
OUTPUT: A success status if the original problem is unifiable or a failure status
if the original problem is not unifiable. The algorithm may not terminate in
the latter case.

(1) If Pi1...ik contains a rigid-rigid equation then apply SIMPL and go to the
next step, else if it contains a flexible-rigid equation then rename Pi1...ik

to P i1...ik and go to the next step, else go to step 4.
(2) Let eq be a flexible-rigid equation in P i1...ik . Apply MATCH to eq and

call Σi1...ik the generated set of substitutions and go to step 3.
(3) If Σi1...ik is the empty set then stop and report a failure status, else let

Σi1...ik = {σi1...ik1, . . . , σi1...ikr} where r > 0 and, for each substitution

22

solid lines denote projection steps

dashed lines denote imitation steps

Pε : λB→B .1(X 3) =? λB→B .1(2(4 3))

SIMPL

P ε : λB→B .X 3 =? λB→B .2(4 3)

σ1 = {X/λA.2(X1 1)}

SIMPL

P 1 : λB→B .X1 3 =? λB→B .4 3

P 11 : λB→B .X2 3 =? λB→B .3

SIMPL

σ112 = {X2/λA.3}σ111 = {X2/λA.1}

σ11 = {X1/λA.4(X2 1)}

P11 : λB→B .4(X2 3) =? λB→B .4 3

σ12 = {X1/λA.1}

P12 : λB→B .3 =? λB→B .4 3

SIMPL

P 12: Fail

P1 : λB→B .2(X1 3) =? λB→B .2(4 3)

P111: Success P112: Success

Figure 4. Unification tree example.

σi1...ikj ∈ Σi1...ik call Pi1...ikj := Pi1...ikσi1...ikj the new unification problem
and go to step 1.

(4) Stop and report a success status. The corresponding solution assuming
that the current node is at position i1 . . . ik is given by the composition:
σi1σi1i2 . . . σi1i2...ik−1

σi1i2...ik

Example 27 Consider the unification problem given in Example 8. First of
all, we need to rewrite its terms in de Bruijn’s notation. To do so, we choose
the referential u : A → B,w : A, v : A → A. This referential corresponds to
the context Γ = A → B · A · A → A · nil. As explained in Section 3.1 this
corresponds to considering the terms of the equation:

λy:B→B.y (X w) =? λx:B→B.x (u (v w))

under the scope of the abstractors λv:A→Aλw:Aλu:A→B and we get:

λB→B.1(X 3) =? λB→B.1(2(4 3))

is well typed in context Γ.

Figure 4 shows a unification tree generated for this problem. The solutions
are given by the compositions of the substitutions through a path whose leaf
is a success node, i.e., this node corresponds to a problem containing at most

23

a finite number of flexible-flexible equations. Note that, after composing, the
terms need to be normalised. For instance, one can compute the composition
σ1σ11σ112 by first applying the usual composition of substitutions:

{X/λA.2((λA.5((λA.1) 1)) 1), X1/λA.4((λA.1) 1), X2/λA.1}

and then applying β-reduction:

{X/λA.2(4 1), X1/λA.4 1, X2/λA.1}.

In the same way, one computes the substitution:

σ1σ11σ112 = {X/λA.2(4 3), X1/λA.4 3, X2/λA.3}.

The solutions to the original problem are given by the substitutions for the
meta-variables that appear in it: X/λA.2(4 3) and X/λA.2(4 1).

4 The Relation between HOU in the λ-calculus and in the λσ-
calculus

In this section, we relate, HOU à la Huet and HOU in the λσ-calculus. In
(DHK00), Dowek, Hardin and Kirchner prove that a unification problem in
the simply typed λ-calculus has a solution if and only if its precooked image
has a solution. In this paper we go a step further and show that, for each
derived problem Pα of a given problem P , there exists a derived problem P ∗

B

of the precooked image of P that preserves solutions in the following sense: if
the substitution σ is a solution to Pα then the grafting σF is a solution to P ∗

B.
We start with a brief presentation of the λσ-calculus.

4.1 The λσ-calculus

The λ-calculus is based on a notion of substitution that belongs to a meta-
language. Such a notion is necessary because the substitution process adopts
renaming of bound variables in order to avoid variable capture. A natural
solution to define a substitution which belongs to the language itself is to ex-
tend the language of the λ-calculus by incorporating explicit operators for the
substitution. The first mechanism that “explicited” the substitution operation
was the λσ-calculus (ACCL91) that we briefly present in the following.

24

Definition 28 The syntax of the simply typed λσ-calculus is given by:

Types A ::= K | A → A where K ∈ T
Contexts Γ ::= nil | A · Γ
Terms a ::= 1 | X | a a | λA.a | a[s] where X ∈ X
Substitutions s ::= id | ↑ | a · s | s ◦ s

The set of well typed λσ-terms with meta-variables is denoted by Λλσ(X).
Substitutions are lists of terms in the λσ-calculus and hence the type of a
substitution must be a list of types, i.e., a context. If s is a substitution and Γ
and ∆ are contexts then we write Γ ` s . ∆ to represent that the substitution
s has type ∆ in context Γ. The typing rules for the λσ-calculus are as follows:

(var)
A · Γ ` 1 : A

(lambda)
A · Γ ` a : B

Γ ` λA.a : A → B

(app)
Γ ` a : A → B Γ ` b : A

Γ ` (a b) : B
(clos)

Γ ` s . Γ′ Γ′ ` a : A

Γ ` a[s] : A

(id)
Γ ` id . Γ

(shift)
A · Γ `↑ .Γ

(cons)
Γ ` a : A Γ ` s . Γ′

Γ ` a · s . A · Γ′ (comp)
Γ ` s′′ . Γ′′ Γ′′ ` s′ . Γ′

Γ ` s′ ◦ s′′ . Γ′

In addition, to each meta-variable X we associate a unique type TX and a
unique context ΓX . We add the following type rule for meta-variables:

(meta)
ΓX ` X : TX

In contrast to the (meta) rule of the simply typed λ-calculus (in de Bruijn’s
notation), the (meta) rule for the λσ-calculus shows that the types of λσ-terms
are not independent from the contexts. This is necessary because unification
in the λσ-calculus uses grafting instead of substitution; and we would like
grafting and typing to be compatible in the λσ-calculus. This restriction over
meta-variables avoids, for example, the replacement of the two occurrences of
X in the λσ-term (X λA.X) by the same λσ-term (see Remark 36 for further
details).

The rewriting rules of the λσ-calculus are given in Table 1.

In this calculus, when a substitution s is applied to a term a we internalise this
as a[s]. Simultaneous substitutions are represented as lists of terms with the
usual operator cons (written as “·”) and an operator for the empty list (writ-
ten id which represents the identity substitution) and the operator ↑ which

25

(Beta) (λ.a) b −→ a[b · id]

(App) (a b)[s] −→ a[s] b[s]

(Abs) (λ.a)[s] −→ λ.a[1 · (s◦ ↑)]

(Clos) (a[s])[t] −→ a[s ◦ t]

(VarCons) 1[a · s] −→ a

(Id) a[id] −→ a

(Assoc) (s ◦ t) ◦ u −→ s ◦ (t ◦ u)

(Map) (a · s) ◦ t −→ a[t] · (s ◦ t)

(IdL) id ◦ s −→ s

(IdR) s ◦ id −→ s

(ShiftCons) ↑ ◦(a · s) −→ s

(VarShift) 1· ↑ −→ id

(SCons) 1[s] · (↑ ◦s) −→ s

(Eta) λ.a 1 −→ b if a =σ b[↑]
Table 1
The λσ-rewriting system with η-conversion

represents the infinite substitution 2 · 3 · The notation ↑n is a shorthand
for the composition ↑ ◦(↑ ◦ . . . ◦ ↑)︸ ︷︷ ︸

n times

. Although the λσ-calculus codifies the de

Bruijn index n as 1[↑n−1], for the sake of clarity, we will follow (DHK00) in
not adopting such a codification.

The notion of normal form for λσ-expressions is given in what follows:

Proposition 29 (λσ-normal form(Rı́o93)) Any λσ-term in normal form
is of one of the following forms:

(1) λA.a, where a is in normal form.
(2) a b1 . . . bq, where a and bi are in normal form and a is either 1, 1[↑n], X

or X[s] where s is a substitution in nf and different from id.
(3) a1 · . . . · ap· ↑n, where a1, . . . , ap are λσ-terms in nf and ap 6= n.

λσ-terms in η-lnf are given in what follows:

Definition 30 (η-lnf (DHK00)) Let a be a λσ-term of type A1 → . . . →
An → B in context Γ and in λσ-nf. The η-lnf of a, written as a′, is given by:

26

(1) If a = λA.b then a′ = λA.b′.
(2) If a = k b1 . . . bq then a′ = λA1 . . . λAn .k + n c1 . . . cq n′ . . . 1′, where ci is

the η-lnf of the normal form of bi[↑n].
(3) If a = X[s] b1 . . . bq then a′ = λA1 . . . λAn .X[s′] c1 . . . cq n′ . . . 1′, where ci

is the η-lnf of the normal form of bi[↑n] and if s = d1 · . . . · dr· ↑k then
s′ = e1 · . . . · er· ↑k+n where ei is the η-lnf of the nf of di[↑n].

Remark 31 Definition 30 is shown to be well founded in (DHK00), from
where we should note that “in the λσ-calculus, the reduction of an η-redex
may create a σ-redex. For instance, the term X[λA.(2 1)· ↑] reduces to X[1· ↑]
then to X[id] then to X. Thus to compute the η-lnf we need to reduce all the
redexes (including the η ones) before expanding the term.”

4.2 Unification in the λσ-calculus

A unification problem in the λσ-calculus is written as a disjunction of existen-
tially quantified conjunctions of the form

∨
j∈J ∃−→w j

∧
i∈Ij

aj
i =?

λσ bj
i where aj

i

and bj
i are λσ-terms of the same type and well typed in the same context Γj

i . In
order to follow the typing discipline given by the (meta) rule of the λσ-typing
system (see Definition 28), for each meta-variable all its occurrences in the
unification problem must be typed with the same type in the same context.
If |J | = 1 then the unification problem is called a unification system.

In the unification method over the λσ-calculus, the solutions are given by the
solved forms which are defined as follows:

Definition 32 (λσ-solved form(DHK00)) A unification system P is in
λσ-solved form if it is a conjunction of nontrivial equations of the following
forms:

• Solved: X =?
λσ a, where the meta-variable X does not appear anywhere else

in P and a is in η-lnf. Such an equation is said to be solved in P and the
variable X is also said to be solved.

• Flexible-flexible: X[a1 · . . . · ap· ↑n] =?
λσ Y [b1 · . . . · bq· ↑m], where

X[a1 · . . . · ap· ↑n] and Y [b1 · . . . · bq· ↑m] are in η-lnf and the equation is not
solved.

Since we are interested in relating a unification algorithm in the simply typed
λ-calculus and one in the λσ-calculus, it is important to know how to trans-
late unification problems from one language to the other. In Example 26 we
explained how a unification problem from the λ-calculus with names can be
converted to de Bruijn’s notation; and the conversion from de Bruijn’notation
to the language of the simply typed λσ-calculus is done by the precooking
translation defined as follows:

27

Definition 33 (Precooking (DHK00)) The precooking translates terms
in ΛdB(X) to Λλσ(X) converts a terms a ∈ ΛdB(X) such that Γ ` a : A in the
λσ-term aF = f(a, 0) where f(a, n), for all n ≥ 0, is given by:

(a) f((λB.a), n) = λB(f(a, n + 1)) (b) f(k, n) = 1[↑k−1]

(c) f(a b, n) = f(a, n) f(b, n) (d) f(X, n) = X[↑n]

In addition, to all occurrences of each meta-variable X of type B in a we
associate the same type B and the context Γ in aF .

Note that the precooking defined above is injective and hence its inverse is
well defined. This remark will be important when unification solutions in the
language of the λσ-calculus need to be translated back to the language of the
simply typed λ-calculus. Of course, some λσ-terms cannot be translated back
to the language of the simply typed λ-calculus by the inverse of the precooking
translation. In addition, the precooking is a type preserving function as stated
by the next proposition:

Proposition 34 (Context and type preservation(DHK00))
If Γ ` a : A in ΛdB(X), then Γ ` aF : A in the Λλσ(X).

The next example shows how the unification problem presented in Example
26 is converted to the λσ-calculus according to the precooking translation.

Example 35 Consider the unification problem PΛdB
presented in Example 26.

Applying the precooking translation to the terms of PΛdB
, we get the unification

problem λA.X[↑] 1 =? λA.3 ∧ X 1 =? 3 1 which is well typed in context
Γ = A ·B ·A → B · nil. Observe that contexts remain unchanged and the sole
difference between PΛdB

and its precooking translation is that the occurrence
of the meta-variable X in the first equation now appears as X[↑] meaning that
it is in the scope of one abstractor.

Now we are ready to point out the fundamental importance of the precooking
translation and how it deals with the differences of the (meta) rules in the
λ-calculus and in the λσ-calculus.

Remark 36 In this remark, we want to emphasise an important difference
between the (meta) rule of the λ-calculus in de Bruijn’s notation and the one
of the λσ-calculus. In the λ-calculus in de Bruijn’s notation the types of meta-
variables are independent from the contexts. In fact, we can type the same
meta-variable in different levels of abstraction: for instance, for a given context
Γ, the λ-term X λA.(X λA.1) is well typed in Γ, where X is a meta-variable

28

of type (A → A) → A. The type of this term can be deduced as follows:

£

¡
A ·A · (A → A) → A · nil ` 1 : A

(var)

A · (A → A) → A · nil ` λA.1 : A → A
(lambda)

A · (A → A) → A · nil ` (X λA.1) : A
(app)

(A → A) → A · nil ` λA.(X λA.1) : A → A
(lambda)

(A → A) → A · nil ` X λA.(X λA.1) : A
(app)

where ¡ corresponds to:

A · (A → A) → A · nil ` X : (A → A) → A
(meta)

and £ corresponds to:

(A → A) → A · nil ` X : (A → A) → A
(meta)

Nevertheless, seen as a λσ-term, X λA.(X λA.1) is not well typed; although
it is well-formed! In fact, in the type derivation above we need to use (meta)
twice for the meta-variable X under different contexts which is allowed in the
λ-calculus but not in the λσ-calculus. In the λσ-calculus each meta-variable
has a unique context and hence, we cannot type the same meta-variable at
different levels of abstraction. This means that in the λσ-calculus the type of
meta-variables depends on the context. This seems to be a severe restriction
but this is necessary because in the λσ-calculus one uses grafting instead of
substitution and, for instance, the application of the grafting {X 7→ 1} to
the λσ-term X λA.(X λA.1) leads to 1 λA.(1 λA.1) which is not correct due
to variable capture. The precooking translation is the key idea to solve this
problem. In fact, the term that corresponds to X λA.(X λA.1) in the λσ-
calculus is its precooked version given by X λA.(X[↑] λA.1) and which is well
typed in the λσ-calculus:

£

¡
A ·A · (A → A) → A · nil ` 1 : A

(var)

A · (A → A) → A · nil ` λA.1 : A → A
(lambda)

A · (A → A) → A · nil ` (X[↑] λA.1) : A
(app)

(A → A) → A · nil ` λA.(X[↑] λA.1) : A → A
(lambda)

(A → A) → A · nil ` X λA.(X[↑] λA.1) : A
(app)

where £ corresponds to:

(A → A) → A · nil ` X : (A → A) → A
(meta)

29

and ¡ corresponds to:

¢ (A → A) → A · nil ` X : (A → A) → A
(meta)

A · (A → A) → A · nil ` X[↑] : (A → A) → A
(clos)

where ¢ corresponds to:

A · (A → A) → A · nil `↑ ¤(A → A) → A · nil
(shift)

This example shows that the precooking translation performs the adequate
adjustments to λσ-terms which allow the use of grafting instead of substitution.

The unification rules for the λσ-calculus are given in Table 2 which is taken
from (DHK00). This set of rules is called Unif and is assumed to be applied in
a “fair” way: this means that applications of Exp-λ (the rule that introduces
fresh meta-variables with simpler types) are always followed by applications of
Replace to avoid infinite applications of Exp-λ. In fact, since an application
of Exp-λ adds a new flexible-flexible equation and does not change anything
else in the current problem, it could be applied ad infinitum.

A derivation tree is a tree that represents an application of the λσ-HOU
method. Formally, it is a tree with a unification system labelling its nodes.
Moreover, the arcs that link the nodes are labelled with the unification rules
presented in Table 2. Disjunctions of unification systems are represented as
“or” branches as usual in tree descriptions. Figure 5 gives an example of a
derivation tree.

Example 37 Consider again the context Γ = A → B · A · A → A · nil and
the unification problem λB→B.1(X 3) =? λB→B.1(2(4 3)). A unification tree
for this problem is given in Figure 4. Applying the precooking, we get:

λB→B.1(X[↑] 3) =?
λσ λB→B.1(2(4 3)) (7)

which is well typed in context Γ. A derivation tree for this system is presented
in Figures 5, 6, 7, 9 and 8. Note that this derivation tree and the unification
tree of Figure 4 have a similar structure: both have exactly one fail node and
two success nodes. The solutions to equation (7) are given by the graftings
{X 7→ λA.(2(4 1))} and {X 7→ λA.(2(4 3))} that correspond, respectively, to
the substitutions {X/λA.2(4 1)} and {X/λA.2(4 3)} given in Example 27.

30

Dec-λ
P ∧ λA.e1 =?

λσ λA.e2

P ∧ e1 =?
λσ e2

Dec-App
P ∧ (n e1

1 . . . e1
p) =?

λσ (n e2
1 . . . e2

p)
P ∧ e1

1 =?
λσ e2

1 ∧ . . . ∧ e1
p =?

λσ e2
p

Dec-Fail
P ∧ (n e1

1 . . . e1
p1

) =?
λσ (m e2

1 . . . e2
p2

)
Fail

, if m 6= n.

Exp-λ
P

∃(A · Γ ` Y : B), P ∧X =?
λσ λA.Y

if (Γ ` X : A → B) ∈ T Var(P), Y 6∈ T Var(P),

and X is not a solved variable.

Exp-App P∧X[a1·...·ap·↑n]=?
λσ(m b1...bq)

P∧X[a1·...·ap·↑n]=?
λσ

(m b1...bq)∧
∨

r∈Rp∪Ri

∃H1...∃Hk:X=?
λσ

(r H1...Hk)

if X has an atomic type and is not solved;

where H1, . . . ,Hk are fresh variables of appropriate types,

not occurring in P , with the contexts ΓHi = ΓX ,

Rp is the subset of {1, . . . , p} such that (r H1 . . .Hk) has the

right type, Ri =if m ≥ n + 1 then {m− n + p} else ∅.

Normalise
P ∧ e1 =?

λσ e2

P ∧ e′1 =?
λσ e′2

if e1 or e2 is not in η-lnf.

where e′1 (resp. e′2) is the η-lnf of e1 (resp. e2)

if e1 (resp. e2) is not a solved variable and

e1 (resp. e2) otherwise.

Replace
P ∧X =?

λσ t

{X 7→ t}(P) ∧X =?
λσ t

if X ∈ T Var(P), X 6∈ T Var(t) and

if t is a meta-variable then t ∈ T Var(P).

Table 2
Unification Rules for the λσ-calculus (DHK00)

4.3 A Structural Relation Between HOU in the λ-calculus and in the λσ-
calculus

Here we establish a relation between HOU in the λ-calculus and in the λσ-
calculus that refines a result established by Dowek, Hardin and Kirchner in
(DHK00). We start with the definition of the pseudo-precooking that extends
the usual notion of precooking by combining it with some unification rules.

31

Exp-App

T2

T4T3

(2 H1)[3· ↑] =?
λσ

2(4 3) ∧X =?
λσ

λA.2 H1 ∧ Y =?
λσ

(2 H1)

(2 H1[3· ↑]) =?
λσ

(2(4 3)) ∧X =?
λσ

λA.2 H1 ∧ Y =?
λσ

(2 H1)

λB→B .1(X[↑] 3) =?
λσ

λB→B .1(2(4 3))

1(X[↑] 3) =?
λσ

1(2(4 3))

X[↑] 3 =?
λσ

2(4 3)

X[↑] 3 =?
λσ

2(4 3) ∧X =?
λσ

λA.Y

Dec-λ

Dec-App

Exp-λ

Replace

(λA.Y)[↑] 3 =?
λσ

2(4 3) ∧X =?
λσ

λA.Y

Normalise

Y [3· ↑] =?
λσ

2(4 3) ∧X =?
λσ

λA.Y

Exp-App

Y [3· ↑] =?
λσ

2(4 3) ∧X =?
λσ

λA.Y ∧ Y =?
λσ

(2 H1)

Replace

Normalise

Dec-App

H1[3· ↑] =?
λσ

(4 3) ∧X =?
λσ

λA.2 H1 ∧ Y =?
λσ

(2 H1)

Exp-AppExp-App

T1

Figure 5. Example 37: Derivation Tree of λB→B.1(X 3) =? λB→B.1(2(4 3))

Definition 38 (Pseudo-Precooking) The pseudo-precooking translates
any term a such that Γ ` a : A, from ΛdB(X) to Λλσ(X) into the term
a = p(a, 0), where p(a′, n) is recursively defined for any sub-term a′ of a within
the scope of n ≥ 0 abstractors in a by:

32

H1[3· ↑] =?
λσ (4 3) ∧X =?

λσ λA.2 H1 ∧ Y =?
λσ (2 H1) ∧H1 =?

λσ 1

1[3· ↑] =?
λσ (4 3) ∧X =?

λσ λA.2 1 ∧ Y =?
λσ (2 1) ∧H1 =?

λσ 1

3 =?
λσ (4 3) ∧X =?

λσ λA.2 1 ∧ Y =?
λσ (2 1) ∧H1 =?

λσ 1

Replace

Normalise

Fail

Dec-Fail

Figure 6. Example 37: subtree T1 of Fig. 5
H1[3· ↑] =?

λσ (4 3) ∧X =?
λσ λA.2 H1 ∧ Y =?

λσ (2 H1) ∧H1 =?
λσ (4 H2)

Replace

Normalise

(4 H2)[3· ↑] =?
λσ (4 3) ∧X =?

λσ λA.2 (4 H2) ∧ Y =?
λσ (2 (4 H2)) ∧H1 =?

λσ (4 H2)

(4 H2[3· ↑]) =?
λσ (4 3) ∧X =?

λσ λA.2 (4 H2) ∧ Y =?
λσ (2 (4 H2)) ∧H1 =?

λσ (4 H2)

Dec-App

H2[3· ↑] =?
λσ 3 ∧X =?

λσ λA.2 (4 H2) ∧ Y =?
λσ (2 (4 H2)) ∧H1 =?

λσ (4 H2)

Figure 7. Example 37: subtree T2 of Fig. 5

• If a′ = λA1 . . . λAm .b then p(λA1 . . . λAm .b, n) = λA1 . . . λAm .p(b, n + m);
• If a′ = (k a1 . . . am) then p(k a1 . . . am, n) = 1[↑k−1] p(a1, n) . . . p(am, n);
• If a′ = (X a1 . . . am) then, supposing that Bn · . . . ·B1 · Γ ` a′ : A′, we have:

- if m ≥ 1, then p(a′, n) = Y [p(am, n) · . . . · p(a1, n)· ↑n], where for all
1 ≤ i ≤ m, Bn · . . . · B1 · Γ ` ai : Ai and Y is a fresh meta-variable with
type A′ and context Am · . . . · A1 · Γ.

- if m = 0, then p(a′, n) = X[↑n], and the new type judgement for X is
Γ ` X : A′.

The pseudo-precooking is a function that takes a well typed λ-term a in β-
normal form and returns a well typed λσ-term a. Intuitively, a can be obtained
from aF after normalisation w.r.t. the rules Exp-λ, Replace and Normalise
applied to the unification equation that contains aF . This intuition is for-
malised by Lemma 41.

33

H2[3· ↑] =?
λσ 3 ∧X =?

λσ λA.2 (4 H2) ∧ Y =?
λσ (2 (4 H2)) ∧H1 =?

λσ (4 H2) ∧H2 =?
λσ 3

Replace

3[3· ↑] =?
λσ 3 ∧X =?

λσ λA.2 (4 3) ∧ Y =?
λσ (2 (4 3)) ∧H1 =?

λσ (4 3) ∧H2 =?
λσ 3

Normalise

X =?
λσ λA.2 (4 3) ∧ Y =?

λσ (2 (4 3)) ∧H1 =?
λσ (4 3) ∧H2 =?

λσ 3

Success

Figure 8. The subtree T4 of Fig. 5.

H2[3· ↑] =?
λσ 3 ∧X =?

λσ λA.2 (4 H2) ∧ Y =?
λσ (2 (4 H2)) ∧H1 =?

λσ (4 H2) ∧H2 =?
λσ 1

1[3· ↑] =?
λσ 3 ∧X =?

λσ λA.2 (4 1) ∧ Y =?
λσ (2 (4 1)) ∧H1 =?

λσ (4 1) ∧H2 =?
λσ 1

X =?
λσ λA.2 (4 1) ∧ Y =?

λσ (2 (4 1)) ∧H1 =?
λσ (4 1) ∧H2 =?

λσ 1

Normalise

Replace

Success

Figure 9. Example 37: subtree T3 of Fig. 5

Example 39 In the unification tree of Fig. 4, take the derived problem P ε:

λB→B.X 3 =? λB→B.2(4 3) (8)

whose pseudo-precooking translation is given by λB→B.Z[3· ↑] =?
λσ λB→B.2(4 3)

which can be found in Fig. 5 after the first application of Normalise up to
the renaming of meta-variables and without the external abstractors. In fact,
external abstractors are usually removed by applications of Dec-λ at the be-
ginning of the derivation.

This pseudo-precooking translation can be obtained from the precooking trans-

34

Anti-Exp-λ
P

∃Y (P ∧X =?
λσ (Y [↑] 1))

if X ∈ V ar(P) such that ΓX = A · Γ′X
where Y ∈ X , Y 6∈ V ar(P) and

Ty = A → TX , ΓY = Γ′X

Anti-Dec-λ
P ∧ a =?

λσ b

P ∧ λA.a =?
λσ λA.b

if a =?
λσ b is well typed in context ∆ = A ·∆′.

Table 3
Back

lation of equation (8) as follows:

λB→B.X[↑] 3 =?
λσ λB→B.2(4 3)

λB→B.X[↑] 3 =?
λσ λB→B.2(4 3) ∧X =?

λσ λA.Z
Exp-λ

λB→B.(λA.Z)[↑] 3 =?
λσ 2(4 3) ∧X =?

λσ λB→B.λA.Z
Replace

λB→B.Z[3· ↑] =?
λσ λB→B.2(4 3) ∧X =?

λσ λA.Z
Normalise

Notice that applications of Exp-λ introduce new equations, but these new
equations are ignored by the pseudo-precooking because we are interested
only in the structure of particular equations obtained in the λσ-calculus; the
information “lost” from these equations is, in some sense, stored in the context
of the equation and can be recovered after the application of the strategy Back
defined in Table 3 (cf. (DHK00)). The strategy Back in a certain way undoes
the work done by the rules Exp-λ and Dec-λ.

The next proposition shows that the pseudo-precooking translation preserves
the types and contexts of the terms.

Proposition 40 Let B1, . . . , Bn (n ≥ 0) be types, ∆ a context and a a λ-
term in ΛdB(X) which is well typed in ∆. If a′ is a sub-term of a such that
Bn · . . . ·B1 ·∆ ` a′ : A then Bn · . . . ·B1 ·∆ ` p(a′, n) : A.

PROOF. The proof is by induction on the structure of a′:

• If a′ is a de Bruijn index or an application the result is straightforward.
• If a′ = λB.b is a term of type B → C then assume that Bn · . . . · B1 ·∆ `

λB.b : B → C, and hence B · Bn · . . . · B1 · ∆ ` b : C. By the induction
hypothesis (IH) we have that B ·Bn · . . . ·B1 ·∆ ` p(b, n + 1) : C. After one
application of (lambda) we get that Bn · . . . ·B1 ·∆ ` λB.p(b, n+1) : B → C

35

which is equivalent to Bn · . . . ·B1 ·∆ ` p(λB.b, n) : B → C.
• If a′ = (X a1 . . . am), where X is a meta-variable of type A1 → . . . → Am →

A then assume that Bn · . . . · B1 · ∆ ` (X a1 . . . am) : A. By IH we have
that, for all 1 ≤ i ≤ m: Bn · . . . · B1 · ∆ ` p(ai, n) : Ai. Let Y be a fresh
meta-variable of type A and context Am · . . . ·A1 ·∆. Consider the derivation:

¡ Am · . . . · A1 ·∆ ` Y : A
(meta)

Bn · . . . ·B1 ·∆ ` Y [p(am, n) · . . . · p(a1, n)· ↑n] : A
(clos)

where ¡ corresponds to:

...

Bn · . . . ·B1 ·∆ ` p(a1, n) : A1

(IH)
Bn · . . . ·B1 ·∆ `↑n ¤∆

(shift)

Bn · . . . ·B1 ·∆ ` p(a1, n)· ↑n ¤A1 ·∆
(cons)

...
(cons)

Bn · . . . ·B1 ·∆ ` p(am, n) · . . . · p(a1, n)· ↑n ¤Am · . . . · A1 ·∆
(clos)

2

The following lemma formalises a relation between the pseudo-precooking and
the precooking translation that will be important for the stepwise comparison
presented afterwards.

Lemma 41 Let P be a unification problem in the simply typed λ-calculus, PF

its precooking translation and P its pseudo-precooking translation. Then the
normalisation of PF w.r.t. the rules Exp-λ, Replace and Normalise results
in P up to renaming of meta-variables. Conversely, the normalisation of P
w.r.t. the rules Anti-Exp-λ, Replace and Normalise results in PF up to
renaming of meta-variables.

PROOF. As usual we assume that the terms in P are in η-lnf. If P contains
only meta-variables of atomic type then the result follows vacuously. Suppose
X is a meta-variable of type A1 → . . . → Am → A (A atomic and m ≥ 1)
that occurs in P . Since terms are assumed to be in η-lnf, we have that all
occurrences of X in P are in sub-terms of the form:

(X a1 . . . am). (9)

36

The precooking translation of the sub-term (9) is given by:

(X[↑n] f(a1, n) . . . f(am, n)) (10)

for some n ≥ 0 that represents the number of abstractors binding X.

After m applications of the strategy Exp-λ and Replace followed by an
application of Normalise to PF , the sub-term (10) assumes the form:

Y [f(am, n)′ · . . . · f(a1, n)′· ↑n] (11)

where Y is a fresh meta-variable with the type of the term (10) and the sub-
terms f(ai, n)′ (1 ≤ i ≤ m) are recursively obtained from f(ai, n) by replacing
all its sub-term of the form (10) by (11). Repeating this process for each
meta-variable of functional type that occurs in P we get a new unification
problem normalised w.r.t. the rules Exp-λ, Replace and Normalise and
where every sub-term of the form (10) was replaced by a sub-term of the form
(11); the resulting unification problem corresponds, from the definition of the
pseudo-precooking translation, to P up to renaming of meta-variables.

Conversely, the pseudo-precooking translation of the sub-term (9) is given by:

Y [p(am, n) · . . . · p(a1, n)· ↑n] (12)

where n ≥ 0 and Y is a fresh meta-variable of type A and context Am·. . .·A1·∆,
for some ∆. After m applications of the strategy Anti-Exp-λ and Replace
followed by an application of Normalise the sub-term (12) assumes the form:

Z[↑n] p(a1, n)′ . . . p(am, n)′ (13)

where Z is a fresh meta-variable of type A1 → . . . Am → A and context ∆;
the sub-terms p(ai, n)′ (1 ≤ i ≤ m)′ are obtained from p(ai, n) by replacing
all its sub-terms of the form (12) by (13). Repeating this process for each
meta-variable of functional type that occurs in P we get a new unification
problem normalised w.r.t. the rules Anti-Exp-λ, Replace and Normalise
and where every sub-term of the form (12) is replaced by a sub-term of the
form (13); the resulting unification problem corresponds, from the definition
of the precooking translation, to PF up to renaming of meta-variables. 2

The next lemma shows formally how unification problems in the λ-calculus
are related to unification systems in the λσ-calculus.

Lemma 42 Let Γ be a context, P be a unification problem in ΛdB(X) which
is well typed in Γ and A(P) a unification tree of P . For each derived problem
Pα occurring in A(P), there exists a unification system P ∗ derived from PF

37

via Unif such that, for each equation in Pα of the form:

λA1 . . . λAn .h1 e1
1 . . . e1

p1
=? λA1 . . . λAn .h2 e2

1 . . . e2
p2

(14)

well typed in context Γ, where n, p1, p2 ≥ 0 and h1 and h2 are either a de Bruijn
index or a meta-variable, there is an equation in P ∗ of one of the following
forms:

• if h1 is a meta-variable and h2 is a de Bruijn index:

Y [p(e1
p1

, n) · . . . · p(e1
1, n)·↑n] =?

λσ h2 p(e2
1, n) . . . p(e2

p2
, n) (15)

where Y is a fresh meta-variable of atomic type.
• if h1 and h2 are de Bruijn indexes:

h1 p(e1
1, n) . . . p(e1

p1
, n) =?

λσ h2 p(e2
1, n) . . . p(e2

p2
, n) (16)

• if h1 and h2 are meta-variables:

Y [p(e1
p1

, n) · . . . · p(e1
1, n)·↑n] =?

λσ Z[p(e2
p2

, n) · . . . · p(e2
1, n)· ↑n] (17)

where Y and Z are meta-variables of atomic type.

The equations (16), (15) and (17) are well typed in context An · . . . · A1 · Γ.

In addition, all the equations introduced by applications of λσ-unification rules
become solved after an application of Replace.

PROOF. The proof is by induction on the length of the derivation that
generates Pα. If α = ε then for each equation eq in P , eqF is in PF and, if
Pε contains only flexible-flexible equations, we take P ∗ to be the unification
system obtained from PF by normalisation w.r.t. the rules Exp-λ, Replace
and Normalise. If Pε contains flexible-rigid or rigid-rigid equations then we
consider each case separately:

• Pε contains a flexible-rigid equation: In this case, Pε contains equation (14)
in which h1 = X and h2 is a de Bruijn index. Then PF contains the equation:

λA1 . . . λAn .X[↑n] f(e1
1, n) . . . f(e1

p1
, n) =?

λσ λA1 . . . λAn .h2 f(e2
1, n) . . . f(e2

p2
, n)
(18)

According to Lemma 41, after normalising the equation (18) w.r.t the rules
Exp-λ, Replace and Normalise we get:

λA1 . . . λAn .Y [p(e1
p1

, n) · . . . · p(e1
1, n)· ↑n] =?

λσ λA1 . . . λAn .h2 p(e2
1, n) . . . p(e2

p2
, n)

and equation (15) is obtained after n applications of the rule Dec-λ.

38

• Pε contains a rigid-rigid equation: In this case, Pε contains equation (14) in
which h1 and h2 are de Bruijn indexes. Then PF contains the equation:

λA1 . . . λAn .h1 f(e1
1, n) . . . f(e1

p1
, n) =?

λσ λA1 . . . λAn .h2 f(e2
1, n) . . . f(e2

p2
, n)

(19)
From Lemma 41 the normalisation of equation (19) w.r.t. the rules Exp-λ,
Replace and Normalise generates the following equation:

λA1 . . . λAn .h1 p(e1
1, n) . . . p(e1

p1
, n) =?

λσ λA1 . . . λAn .h2 p(e2
1, n) . . . p(e2

p2
, n)

and equation (16) is obtained after n applications of the rule Dec-λ. Appli-
cations of Exp-λ introduce new equations of the form X =?

λσ λA.Y . After an
application of Replace every occurrence of X in the current unification sys-
tem will be replaced by λA.Y and the equation X =?

λσ λA.Y becomes solved.
In this way, all introduced equations get solved after a replacement.

For the induction step, let Pα be a unification problem in A(P) with α 6= ε and
let P ∗ be the unification system obtained from PF according to this lemma;
we need to find a unification system, say P ∗∗, derived from P ∗ that satisfies
this lemma for a problem derived from Pα in one step. We consider the two
possible steps separately:

• The unification problem derived from Pα is obtained after an application of
SIMPL:

In this case, the unification problem derived from Pα is Pα according to the
definition of unification trees. In order to apply the procedure SIMPL to Pα,
Pα should contain (at least) one rigid-rigid equation of the form:

λB1 . . . λBm .k f 1
1 . . . f 1

p =? λB1 . . . λBm .k f 2
1 . . . f 2

p (20)

well typed in context Γ and where m ≥ 0 and p > 0. After the decomposition,
equation (20) is replaced by a conjunction of the form:

λB1 . . . λBm .f 1
1 =? λB1 . . . λBm .f 2

1 ∧ . . . ∧ λB1 . . . λBm .f 1
p =? λB1 . . . λBm .f 2

p

whose equations are well typed in context Γ and all the other equations remain
unchanged. If there exist rigid-rigid equations among the equations in this
conjunction (or others that were already in Pα) the decomposition step is
recursively applied to them. This way, this process finishes with a unification
problem Pα containing only flexible-rigid and/or flexible-flexible equations.

For the equations generated during the application of SIMPL the unification
system P ∗∗ is built as follows:

• Suppose Pα contains a flexible-flexible equation. If this flexible-flexible equa-
tion was already in Pα then we are done. If some new equation generated
by the decomposition of equation (20) is rigid-rigid then the argument that

39

follows can be applied recursively to these new equations. Therefore, with-
out loss of generality we assume that the new flexible-flexible equation is
given by:

λB1 . . . λBm .f 1
1 =? λB1 . . . λBm .f 2

1

well typed in context Γ. By hypothesis, there exists a derivation of PF that
generates the problem P ∗ that contains the equation:

k p(f 1
1 ,m) . . . p(f 1

p ,m) =?
λσ k p(f 2

1 ,m) . . . p(f 2
p ,m) (21)

which is well typed in context Bm · . . . · B1 · Γ. The decomposition of
equation (21) is done by an application of the rule Dec-App that gener-
ates the unification system P ∗∗ which contains the flexible-flexible equation
p(f 1

1 ,m) =?
λσ p(f 2

1 ,m) that is well typed in context Bm · . . . ·B1 · Γ.
• Suppose Pα contains a flexible-rigid equation. If this flexible-rigid equation

was already in Pα then we are done. If some equation generated by the
decomposition of equation (20) is rigid-rigid then the argument that follows
can be applied recursively to these equations. Therefore without loss of
generality we suppose that the flexible-rigid equation in Pα is given by:

λB1 . . . λBm .f 1
p =? λB1 . . . λBm .f 2

p (22)

which is well typed in context Γ. Moreover, we assume that:

f 1
p = λC1 . . . λCw .H1 g1

1 . . . g1
q1

f 2
p = λC1 . . . λCw .h g2

1 . . . g2
q2

(23)

where H1 is a meta-variable and gi
j (1 ≤ i ≤ 2; 1 ≤ j ≤ qi) are terms all

well typed in context Bm · . . . ·B1 · Γ.
The equation (22) can be written as:

λA1 . . . λAn .H1 g1
1 . . . g1

q1
=? λA1 . . . λAn .h g2

1 . . . g2
q2

where Ai =

Bi , for 1 ≤ i ≤ m;

Ci−m , for m < i ≤ n(= m + w).

By hypothesis, there exists a derivation from PF that generates a uni-
fication system P ∗ containing the rigid-rigid equation (21), and after an
application of the rule Dec-App, we get a unification system containing
the equation:

p(f 1
p ,m) =?

λσ p(f 2
p ,m). (24)

From the definition of the pseudo-precooking translation and from the as-
sumption (23), we conclude that equation (24) has the form:
λC1 . . . λCw .Y [p(g1

q1
,m + w) · . . . · p(g1

1,m + w)· ↑m+w] =?
λσ

λC1 . . . λCw .h p(g2
1,m+w) . . . p(g2

q2
,m+w) and after w applications of Dec-

λ we get the unification system P ∗∗ that contains the desired equation well

40

PFPε

λA1
. . . λAn

.e1
1 =? λA1

. . . λAn
.e2

1

λA1
. . . λAn

.k e1
1 . . . e1

p

=? λA1
. . . λAn

.k e2
1 . . . e2

p

SIMPL

∧ . . .∧
λA1

. . . λAn
.e1

p =? λA1
. . . λAn

.e2
p

P α

Pα

Dec-App

P∗

P∗∗

λ-calculus λσ-calculus

(k p(e1
1, n) . . . p(e1

p, n)) =?
λσ

(k p(e2
1, n) . . . p(e2

p, n))

p(e1
1, n) =?

λσ p(e2
1, n) ∧ . . .∧

p(e1
p, n) =?

λσ p(e2
p, n)

Figure 10. A Simplification Step

typed in context Cw · . . . ·C1 ·Bm · . . . ·B1 ·Γ (see Fig. 10). Notice that during
the simplification step in the λσ-calculus no new equation is introduced.

• The unification problem derived from Pα is obtained after an application of
MATCH:

Let Pαr (r > 0) be a unification problem generated after this application of
MATCH. The problem Pαr must contain at least one equation of the form
flexible-rigid or rigid-rigid (that may be trivial) because after an imitation
step a rigid-rigid equation is generated and, after a projection the generated
equation is either flexible-rigid or rigid-rigid.

Assume that Pα contains (at least) one flexible-rigid equation of the form:

λA1 . . . λAn .X e1
1 . . . e1

p1
=? λA1 . . . λAn .h e2

1 . . . e2
p2

(25)

well typed in context Γ and where:

• n, p1, p2 ≥ 0;
• X is a meta-variable with type B1 → . . . → Bp1 → A with A atomic;
• h is a de Bruijn index with type C1 → . . . → Cp2 → A with A atomic;
• If p1 > 0 then e1

i are λ-terms in η-lnf with type Bi for all 1 ≤ i ≤ p1;
• If p2 > 0 then e2

j are λ-terms in η-lnf with type Cj, for all 1 ≤ j ≤ p2.

We consider the imitation and projection substitutions separately:

(a) Imitation: An imitation is possible only if the head of the rigid term is a
constant, i.e., when h > n. In this case, the imitation substitution is given by:

X/λB1 . . . λBp1
.h− n + p1 (H1 p1 . . . 1) . . . (Hp2 p1 . . . 1)

where the Hi’s are fresh meta-variables with types B1 → . . . → Bp1 → Ci for
all 1 ≤ i ≤ p2. After an application of this substitution to equation (25) we

41

PFPε

Pαk

P∗

P∗∗

λ-calculus λσ-calculus

Pα λA1
. . . λAn

.X e1
1 . . . e1

p1

Imit

λA1
. . . λAn

.h (H1 e1
1 . . . e1

p1
) . . .

where ¡ corresponds to one application of Exp-App

followed by applications of Replace and Normalize.

Y [p(e1
p1

, n) · . . . · p(e1
1, n)· ↑n]

=?
λσ (h p(e2

1, n) . . . p(e2
p2

, n))

¡
(h W1[p(e1

p1
, n) · . . . · p(e1

1, n)· ↑n] . . .

Wp2 [p(e1
p1

, n) · . . . · p(e1
1, n)· ↑n]) =?

λσ

(h p(e2
1, n) . . . p(e2

p2
, n))

=? λA1
. . . λAn

.h e2
1 . . . e2

p2

(Hp2 e1
1. . .e1

p1
) =? λA1

. . . λAn
.h e2

1. . .e2
p2

Figure 11. The imitation step

get the unification problem Pαr that contains the following equation:

λA1 . . . λAn .h (H1 e1
1 . . . e1

p1
) . . . (Hp2 e1

1 . . . e1
p1

) =? λA1 . . . λAn .h e2
1 . . . e2

p2

well typed in context Γ. Notice that in Pαr all occurrences of X were replaced
by λB1 . . . λBp1

.h− n + p1 (H1 p1 . . . 1) . . . (Hp2 p1 . . . 1).

By hypothesis, there exists a derivation from PF that generates the system P ∗

that contains the equation:

Y [p(e1
p1

, n) · . . . · p(e1
1, n)· ↑n] =?

λσ h p(e2
1, n) . . . p(e2

p2
, n) (26)

which is well typed in context An · . . . ·A1 ·Γ. Since h > n, after an application
of Exp-App an equation of the following form is generated:

Y =?
λσ h− n + p1 W1 . . .Wp2

where the Wj’s are fresh meta-variables with type Cj, for all 1 ≤ j ≤ p2.

After an application of Replace and then Normalise to the current system,
we get a new system containing the equation:

h W1[p(e1
p1

, n) · . . . · p(e1
1, n)· ↑n] . . .Wp2 [p(e1

p1
, n) · . . . · p(e1

1, n)· ↑n] =?
λσ

h p(e2
1, n) . . . p(e2

p2
, n) which is well typed in the context An · . . . ·A1 ·Γ. Notice

that all occurrences of Y were replaced by the term h− n + p1 W1 . . .Wp2 and
hence the equation Y =?

λσ h− n + p1 W1 . . . Wp2 introduced by the applica-
tion of Exp-App is solved in the current system which we take to be P ∗∗.
The general scheme is shown in Fig. 11. There exists only one case when an
equation is eliminated during this process: if the de Bruijn index h has an
atomic type (because in this case no meta-variable is introduced and a trivial
equation is generated). But if this is the case, then a trivial equation is also
generated from equation (26) and the lemma holds.

42

(b) Projection: In this case, the head X of the flexible term is projected over
each of its arguments whose target type is equal to the target type of X.
Suppose, without loss of generality, that X is projected over its l-th argument
(1 ≤ l ≤ p1), i.e., suppose that e1

l has type of the form D1 → . . . → Dq →
A (q ≥ 0). The projection of X over its l-th argument is given by:

X/λB1 . . . λBp1
.p1 − l + 1 (H1 p1 . . . 1) . . . (Hq p1 . . . 1)

where the Hi’s are fresh meta-variables of type B1 → . . . → Bp1 → Di for all
1 ≤ i ≤ q. After an application of this substitution, we get a problem that
contains the following equation:

λA1 . . . λAn .e1
l (H1 e1

1 . . . e1
p1

) . . . (Hq e1
1 . . . e1

p1
) =? λA1 . . . λAn .h e2

1 . . . e2
p2

(27)

which is well typed in context Γ (see Fig. 12). We consider 2 sub-cases:

(b.1) The head of the term e1
l is a de Bruijn index: Since e1

l is in η-lnf, we may
assume without loss of generality, that e1

l is of the form λD1 . . . λDq .k f1 . . . fs

(s ≥ 0). After a normalisation step we get the unification problem Pαr that
contains one of the following equations according to the value of k:

• k > q: λA1 . . . λAn .k − q f 1
1 . . . f 1

s =? λA1 . . . λAn .h e2
1 . . . e2

p2

• k ≤ q: λA1 . . . λAn .Hq−k+1 e1
1 . . . e1

p1
f 1

1 . . . f 1
s =? λA1 . . . λAn .h e2

1 . . . e2
p2

both equations well typed in context Γ and where, for all 1 ≤ i ≤ s, f 1
i is

obtained from fi after replacing all free occurrences of 1, . . . , q, respectively
by (Hq e1

1 . . . e1
p1

), . . . , (H1 e1
1 . . . e1

p1
).

By hypothesis, there exists a derivation of PF that generates a unification
system P ∗ containing the equation (26). The precooking translation preserves
types and, hence the target type of p(e1

l , n) coincides with the type of Y and,
an application of Exp-App generates an equation of the form:

Y =?
λσ (p1 − l + 1 W1 . . . Wq)

where the Wi’s are fresh meta-variables of type Di for all 1 ≤ i ≤ q. After
an application of Replace and Normalise, we get a system containing the
equation:

p(e1
l , n) W1[p(e1

p1
, n) · . . . · p(e1

1, n)· ↑n] . . .Wq[p(e1
p1

, n) · . . . · p(e1
1, n)· ↑n] =?

λσ

h p(e2
1, n) . . . p(e2

p2
, n)

(28)
well typed in context An · . . . · A1 · Γ and the introduced equation Y =?

λσ

(p1 − l + 1 W1 . . .Wq) becomes solved. Since p(e1
l , n) = λD1 . . . λDq .k p(f1, n +

q) . . . p(fs, n+q), the left-hand side of equation (28) reduces as follows accord-
ing to the value of k:

• k > q:
(λD1 . . . λDq .k p(f1, n + q) . . . p(fs, n + q)) W1[p(e1

p1
, n) · . . . · p(e1

1, n)· ↑n] . . .

43

Wq[p(e1
p1

, n) · . . . · p(e1
1, n)· ↑n] →∗

λσ k − q p(f1, n+q)[Wq[p(e1
p1

, n) ·. . .·
p(e1

1, n)·↑n] ·. . .·W1[p(e1
p1

, n) ·. . .· p(e1
1, n)·↑n] ·id] . . . p(fs, n + q)[Wq[p(e1

p1
, n) ·

. . . · p(e1
1, n)· ↑n] · . . . ·W1[p(e1

p1
, n) · . . . · p(e1

1, n)· ↑n] · id].

The sub-terms p(fj, n + q)[Wq[p(e1
p1

, n) · . . . · p(e1
1, n)· ↑n] · . . . · W1[p(e1

p1
, n) ·

. . . · p(e1
1, n)· ↑n] · id] (1 ≤ j ≤ s) are interpreted as follows: during the normal-

isation all the free occurrences of de Bruijn indexes 1, . . . , q are respectively
replaced by Wq[p(e1

p1
, n) · . . . · p(e1

1, n)· ↑n], . . . , Wq[p(e1
p1

, n) · . . . · p(e1
1, n)· ↑n],

and the meta-variables of fj were initially in the scope of n + q abstrac-
tors but now in the scope of only n of them because q of these abstrac-
tors were removed (by applications of (Beta)) to generate the substitution
[Wq[p(e1

p1
, n) · . . . ·p(e1

1, n)· ↑n] · . . . ·W1[p(e1
p1

, n) · . . . ·p(e1
1, n)· ↑n] · id]. This fact

can be expressed through a simple example as follows: if X is a meta-variable
that is in the scope of n + q abstractors then it appears as X[↑n+q] and when
it is applied to a substitution containing q terms, i.e., a substitution of the
form [a1 · . . . · aq · id] then we get X[↑n+q][a1 · . . . · aq · id] →∗

σ X[↑n] which
means that the q abstractors that were originally binding X were removed to
generate the substitution [a1 · . . . · aq · id] and hence X is now in the scope of
only n abstractors. In this way the terms p(f 1

j , n) (1 ≤ j ≤ s) correspond to
p(fj, n+q)[Wq[p(e1

p1
, n) · . . . ·p(e1

1, n)· ↑n] · . . . ·W1[p(e1
p1

, n) · . . . ·p(e1
1, n)· ↑n] · id]

and we get the desired equation:
k − q p(f 1

1 , n) . . . p(f 1
s , n) =?

λσ h p(e2
1, n) . . . p(e2

p2
, n).

• k ≤ q:

(λD1 . . . λDq .k p(f1, n + q) . . . p(fs, n + q)) W1[p(e1
p1

, n) · . . . · p(e1
1, n)· ↑n] . . .

Wq[p(e1
p1

, n) · . . . · p(e1
1, n)· ↑n] →∗

λσ

Wq−k+1[p(e1
p1

, n) ·. . .· p(e1
1, n)·↑n] p(f1, n + q)[Wq[p(e1

p1
, n) ·. . .· p(e1

1, n)·↑n] ·. . .·
W1[p(e1

p1
, n)·. . .·p(e1

1, n)· ↑n]·id] . . . p(fs, n+q)[Wq[p(e1
p1

, n)·. . .·p(e1
1, n)· ↑n]·. . . ·

W1[p(e1
p1

, n) · . . . · p(e1
1, n)· ↑n] · id].

As in the previous case, for all 1 ≤ j ≤ s, the sub-term:

p(fj, n + q)[Wq[p(e1
p1

, n) ·. . .· p(e1
1, n)·↑n] ·. . .·W1[p(e1

p1
, n) · . . . · p(e1

1, n)· ↑n] · id]

reduces to p(f 1
j , n) and we get the equation:

Wq−k+1[p(e1
p1

, n)·. . .·p(e1
1, n)·↑n] p(f 1

1 , n) . . . p(f 1
s , n) =?

λσ h p(e2
1, n) . . . p(e2

p2
, n).

Without loss of generality suppose the type of the meta-variable Wq−k+1 is
given by F1 → . . . → Fs → A. An application of the rule Exp-λ to the current
unification system generates an equation of the form Wq−k+1 =?

λσ λF1 .X1,
where X1 is a fresh meta-variable of type F2 → . . . → Fs → A. An application
of the rule Replace generates the equation:

(λF1 .X1)[p(e1
p1

, n)·. . .·p(e1
1, n)·↑n] p(f 1

1 , n) . . . p(f 1
s , n) =?

λσ h p(e2
1, n) . . . p(e2

p2
, n)

44

PFPε

Pαk

P∗

P∗∗

λ-calculus λσ-calculus

Pα λA1
. . . λAn

.X e1
1 . . . e1

p1

Imit

λA1
. . . λAn

.h (H1 e1
1 . . . e1

p1
) . . .

where ¡ corresponds to one application of Exp-App

followed by applications of Replace and Normalize.

Y [p(e1
p1

, n) · . . . · p(e1
1, n)· ↑n]

=?
λσ (h p(e2

1, n) . . . p(e2
p2

, n))

¡

=? λA1
. . . λAn

.h e2
1 . . . e2

p2

(Hp2 e1
1. . .e1

p1
) =? λA1

. . . λAn
.h e2

1. . .e2
p2

(h p(e2
1, n) . . . p(e2

p2
, n))

p(e1
l , n) W1[p(e1

p1
, n) ·. . .· p(e1

1, n)·↑n]. . .

Wq [p(e1
p1

, n) · . . . · p(e1
1, n)· ↑n]) =?

λσ

Figure 12. The projection step

which can be normalised to

X1[p(f 1
1 , n) · p(e1

p1
, n) ·. . .· p(e1

1, n)·↑n] p(f 1
2 , n) . . . p(f 1

s , n) =?
λσ

h p(e2
1, n) . . . p(e2

p2
, n).

Repeating the strategy Exp-λ, Replace and Normalise p− 1 times, we get
the desired equation:

W [p(f 1
s , n) · . . . · p(f 1

1 , n) · p(e1
p1

, n) ·. . .· p(e1
1, n)·↑n] =?

λσ h p(e2
1, n) . . . p(e2

p2
, n)

where W is a fresh meta-variable of type A.

(b.2) The head of the term e1
l is a meta-variable: In this case e1

l is of the form
λD1 . . . λDq .Z f1 . . . fs and normalising equation (27) we get the unification
problem Pαk which contains the equation:

λA1 . . . λAn .Z f 1
1 . . . f 1

s =? λA1 . . . λAn .h e2
1 . . . e2

p2

well typed in context Γ and, as in the previous case f 1
j is obtained from fj by

replacing all occurrences of 1, . . . , q, respectively by the terms (Hq e1
1 . . . e1

p1
),

. . . , (H1 e1
1 . . . e1

p1
). By hypothesis, there exists a unification system P ∗, derived

from PF and containing equation (26) and after applications of Exp-App,
Replace and Normalise we get a new system which contains equation (28).
Since p(e1

l , n) = λD1 . . . λDq .Z[↑n+q] p(f1, n + q) . . . p(fs, n + q), we have that
the left hand side of the equation (28) assumes the form:

(λD1 . . . λDq .Z[↑n+q] p(f1, n+q) . . . p(fs, n+q))W1[p(e1
p1

, n)·. . .·p(e1
1, n)· ↑n] . . .

Wq[p(e1
p1

, n) · . . . · p(e1
1, n)· ↑n] →∗

λσ

Z[↑n] p(f1, n+q)[Wq[p(e1
p1

, n)·. . .·p(e1
1, n)· ↑n]·. . .·W1[p(e1

p1
, n)·. . .·p(e1

1, n)· ↑n]·
id] . . . p(fs, n+q)[Wq[p(e1

p1
, n)·. . .·p(e1

1, n)· ↑n]·. . .·W1[p(e1
p1

, n)·. . .·p(e1
1, n)· ↑n]·

id]. As in case (b.1), for all 1 ≤ j ≤ s, the sub-term p(fj, n + q)[Wq[p(e1
p1

, n) ·

45

. . . · p(e1
1, n)· ↑n] · . . . ·W1[p(e1

p1
, n) · . . . · p(e1

1, n)· ↑n] · id] reduces to p(f 1
j , n) and

we get the equation:

Z[↑n] p(f 1
1 , n) . . . p(f 1

s , n) =?
λσ h p(e2

1, n) . . . p(e2
p2

, n)

which after being normalised w.r.t. the rules Exp-λ, Replace and Normalise
assumes the desired form:

U [p(f 1
s , n) · . . . · p(f 1

1 , n)· ↑n] =?
λσ h p(e2

1, n) . . . p(e2
p2

, n)

which is well typed in context An · . . . · A1 · Γ and, where U is a fresh meta-
variable of type A. 2

In Lemma 42, we established a relation between the structure of the equations
of the subgoals generated during the unification process in the simply typed
λ-calculus in de Bruijn’s notation and the precooked translation of these sub-
goals (or derived problems) in the simply typed λσ-calculus. This lemma is
the key point for relating the solutions and the subtrees generated during the
unification process. In fact, the next proposition shows that if A(P) is a uni-
fication tree of a given unification problem P , then for each sub-tree of A(P)
there exists a sub-tree of the derivation tree of PF with the same number of
success and fail nodes. Moreover, the precooked version of derived problems
of P can be obtained as derived problems of PF .

Proposition 43 Let P be a unification problem in ΛdB(X) which is well typed
in a context Γ and, A(P) a unification tree of P . For each problem Pα in A(P),
there exists a unification system P ∗, derived from PF using Unif, such that:

(1) if Pα contains a branch that leads to a success node, then there exists a
derivation of P ∗ that leads to a solved form;

(2) if Pα contains a branch that leads to a fail node, then there exists a
derivation of P ∗ that leads to a fail node;

(3) if Pα is formed by the equations eq1, . . . , eqs that are well typed in context
Γ, then there exists a unification system P ∗

B, derived from P ∗ using the
strategy Back, which contains the equations eq1F

, . . . , eqsF
well typed in

context Γ, up to renaming of meta-variables. Moreover, any other equa-
tion in P ∗

B is either flexible-flexible or solved.

PROOF.

(1) Suppose Pα contains a branch with a success node Pαγ (which contains
only flexible-flexible equations). From Lemma 42 there exists a unification
system P ∗ derived from PF that contains only flexible-flexible and solved
equations and hence P ∗ is a success node.

46

(2) Suppose that Pα contains a branch that leads to a fail node Pαγ. There
are two possible cases: either Pαγ contains a rigid-rigid equation with
different heads (fail with SIMPL) or it contains a flexible-rigid equation
in which no imitation or projection is possible (fail with MATCH). In the
former case, from Lemma 42 there exists a unification system P ∗ derived
from PF that contains a rigid-rigid equation with different heads and
hence P ∗ is a fail node. In the later case, there exists a unification system
P ∗ derived from PF that contains a flexible-rigid equation such that the
application of Exp-App does not generate new equations because the
pseudo-precooking preserves types (cf Proposition 40). Therefore, P ∗ is
a fail node in this case as well.

(3) Suppose that Pα = eq1 ∧ . . . ∧ eqs (s > 0). It is enough to prove that,
for an arbitrary equation eqj (1 ≤ j ≤ s) of Pα, we can obtain eqjF

from
the unification system P ∗ given by Lemma 42 via the strategy Back. In
fact, the strategy Back does not propagate changes to other equations
because it does not involve substitution. The proof is divided according
to the structure of the equation eqj:

• eqj is a flexible-rigid equation: In this case, eqj has the form:

λA1 . . . λAn .X e1
1 . . . e1

p1
=? λA1 . . . λAn .h e2

1 . . . e2
p2

(29)

which is well typed in context Γ, where n, p1, p2 ≥ 0, X is a meta-variable
of type B1 → . . . → Bp1 → A (A is atomic). By Lemma 42, there exists
a unification system P ∗ derived from PF which contains an equation of
the form:

Y [p(e1
p1

, n) · . . . · p(e1
1, n)· ↑n] =?

λσ h p(e2
1, n) . . . p(e2

p2
, n) (30)

which is well typed in context An · . . . ·A1 ·Γ, where Y is a meta-variable
of type A. The context of Y is given by Bp1 · . . . ·B1 ·Γ. Applying Lemma
41 to the terms of equation (30) we get a new equation of the form:

W [↑n] f(e1
1, n) . . . f(e1

p1
, n) =?

λσ h f(e2
1, n) . . . f(e2

p2
, n) (31)

where W is a meta-variable of type B1 → . . . → Bp1 → A and con-
text Γ>n, by normalisation w.r.t. the rules Anti-Exp-λ, Replace and
Normalise. The equation (31) is well typed in context An · . . . · A1 · Γ
and hence, after n application of the rule Anti-Dec-λ we get eqjF

up to
renaming of meta-variables.
• eqj is a rigid-rigid equation: In this case, eqj has the form:

λA1 . . . λAn .k e1
1 . . . e1

p1
=? λA1 . . . λAn .h e2

1 . . . e2
p2

which is well typed in context Γ. By Lemma 42, there exists a unification
system P ∗ derived from PF which contains an equation of the form:

k p(e1
1, n) . . . p(e1

p1
, n) =? h p(e2

1, n) . . . p(e2
p2

, n) (32)

47

which is well typed in context An · . . . · A1 · Γ. Applying Lemma 41 to
the terms of equation (32) we get a unification system which contains an
equation of the form:

k f(e1
1, n) . . . f(e1

p1
, n) =? h f(e2

1, n) . . . f(e2
p2

, n)

which is well typed in context An · . . . ·A1 · Γ and after n applications of
the rule Anti-Dec-λ we get the desired equation eqjF

up to renaming of
meta-variables.
• eqj is a flexible-flexible equation: In this case, eqj has the form:

λA1 . . . λAn .X e1
1 . . . e1

p1
=? λA1 . . . λAn .Y e2

1 . . . e2
p2

which is well typed in context Γ, where X is a meta-variable of type
B1 → . . . → Bp1 → A (A is atomic). According to Lemma 42, there exists
a unification system P ∗ derived from PF which contains the equation:

Z[p(e1
p1

, n) · . . . · p(e1
1, n)· ↑n] =?

λσ W [p(e2
p2

, n) · . . . · p(e2
1, n)· ↑n] (33)

which is well typed in context An · . . . A1 · Γ, where Z and W are meta-
variables of type A. Applying Lemma 41 to the terms of equation (33)
we get a unification system which contains an equation of the form:

Z[↑n] f(e1
1, n) . . . f(e1

p1
, n) =?

λσ W [↑n] f(e2
1, n) . . . f(e2

p2
, n)

which is well typed in context An · . . . · A1 · Γ. After n applications of
the rule Anti-Dec-λ we get the desired equation eqjF

up to renaming of
meta-variables.

During the unification process in the λσ-calculus, new equations are intro-
duced after applications of Exp-λ, Exp-App or Anti-Exp-λ. These equa-
tions are of the form X =?

λσ a, where X is a meta-variable and a is a term
without occurrences of X. After an application of Replace every occurrence
of X in the unification system will be replaced by a and this equation becomes
solved. It will remain solved during the whole process because no rule applies
to X, although the term a can change. 2

The next example illustrates the contents of Proposition 43.

Example 44 Let P be the unification problem given in Example 27 and a
unification tree A(P) of P given in Fig. 4. Consider, for instance, the subgoal:

P 1 = {λB→B.X1 3 =? λB→B.4 3}

which is well typed in context Γ = {A → B · A · A → A · nil} and whose
corresponding subtree contains one fail node and two success nodes. The proof

48

of Lemma 42 is constructive and leads us to the unification system:

P ∗ = {H1[3· ↑] =?
λσ 4 3 ∧X =?

λσ λA.2 H1 ∧ Y =?
λσ 2 H1}

whose corresponding subtree also contains one fail node and two success nodes
(see Fig. 5). Applying the strategy Back to P ∗ we get the unification system:

P ∗
B = {λB→B.N [↑] 3 =?

λσ λB→B.4 3 ∧ X =?
λσ λA.2 (N [↑] 1) ∧

Y =?
λσ 2 (N [↑] 1) ∧H1 =?

λσ N [↑] 1}

where the equation:

λB→B.N [↑] 3 =?
λσ λB→B.4 3

corresponds to the precooking translation of the equation:

λB→B.X1 3 =? λB→B.4 3

up to the renaming of meta-variables and all the other equations are solved.
The solution σ of P 1 is given by σ = {X1/λA.4 1, X1/λA.4 3}. It is easy to
check that the grafting σF = {N 7→ λA.4 1, N 7→ λA.4 3} obtained from σ,
after renaming X1 to N , is a solution to P ∗

B.

Corollary 45 Let P be a unification problem in the simply typed λ-calculus
and A(P) a unification tree of P . For each unification problem Pα in A(P)
with solution σ there exists a unification system P ∗

B derived from PF using the
strategies Unif and Back that has σF as solution after an adequate renaming
of meta-variables.

PROOF. Let Γ be a context and Pα be a unification problem in A(P) which
is well typed in context Γ. From Proposition 43, we know that there exists a
derivation from PF using Unif and Back that generates a unification system
P ∗

B that contains all the equations in PαF
up to renaming of meta-variables.

Moreover, all the other equations in P ∗
B are solved and, hence the grafting σF ,

after an adequate renaming of meta-variables, is a solution to P ∗
B according to

Proposition 3.3 of (DHK00). Figure 13 shows the general scheme that relates
unification in the λ-calculus and in the λσ-calculus. 2

By Corollary 45 one concludes that unification in the simply typed λσ-calculus
is a generalisation of Huet’s algorithm since every solution for a unification
system computed in the λσ is also computed by Huet’s algorithm.

49

Pε PF

Pα
Back

SUCCESS

P ∗
P ∗B

Solved Form

Unif

λ-calculus λσ-calculus

Figure 13. General Unification Scheme in the λ- and λσ-calculus

5 Conclusions and Future Work

In a stepwise fashion, we compared two different styles of HOU: the classical
HOU for the simply typed λ-calculus of Huet (Hue75) and HOU via the simply
typed λσ-calculus (DHK00). The contributions of this paper are:

• We enriched the matching trees of Huet’s method by introducing a new
structural notation called unification tree. This notation was essential to
provide a precise presentation of the derivations of Huet’s algorithm and,
constituted an important tool for establishing the structural correspondence
between HOU à la Huet and HOU via explicit substitutions.

• Although it is a straightforward translation of Huet’s HOU algorithm, we
explicitly introduced Huet’s HOU algorithm for the simply typed λ-calculus
in de Bruijn’s notation. This was done in order to simplify the comparison
between Huet’s HOU algorithm and the λσ-HOU method, since the latter
uses de Bruijn’s notation.

• Both the simply typed λ-calculus with names and in de Bruijn’s notation
include meta-variables. Although the use of meta-variables is not essential
for the unification methods treated here, its use simplifies their presentation
and allows us to keep a clear difference between substitutions generated by
applications of β-reductions and substitutions generated by the unification
rules. The difference between typing meta-variables in the λ-calculus and
in the λσ-calculus was emphasised through examples since the unification
mechanism in the former uses (higher-order) substitution while the latter
uses grafting (first-order substitution).

• Unification derivations in the simply typed λσ-calculus were presented in a
tree structure notation called derivation tree which jointly with the unifi-
cation tree structure permits a better visualisation of the relations between
unification derivations in both methods.

• By using these structures, we proved that Huet’s HOU and the λσ-HOU

50

preserve an important structural relation between (sub-)problems: For a
given unification problem P in the simply typed λ-calculus, we have that
for each (sub-)problem of P in a unification tree A(P) of P , there exists a
counterpart in a derivation tree of PF . This allows us to conclude that the
λσ-HOU is a generalisation of Huet’s algorithm and that solutions computed
by the latter are always computed by the former method.

We believe that this structural comparison is important to provide a better
understanding of HOU methods based on explicit substitutions and to shed
some light on questions related to practical and implementational issues as
well as on the whole of explicit substitutions in higher-order unification.

Natural extensions of this work include considering an optimised implemen-
tation of the λσ-HOU algorithm based on the ideas behind the notion of the
pseudo-precooking that in fact combines the precooking with some unifica-
tion rules. In addition, these ideas can be extended to other styles of explicit
substitutions like the λse-calculus and the suspension calculus.

Acknowledgements

We would like to thank the careful reading, constructive corrections and de-
tailed suggestions of one of the referees.

References

[ACCL91] M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy. Explicit Sub-
stitutions. J. of Func. Programming, 1(4):375–416, 1991.

[ARK01] M. Ayala-Rincón and F. Kamareddine. Unification via the λse-
Style of Explicit Substitution. The Logical Journal of the Interest
Group in Pure and Applied Logics, 9(4):489–523, 2001.

[ARK03] M. Ayala-Rincón and F. Kamareddine. On Applying the λse-Style
of Unification for Simply-Typed Higher Order Unification in the
Pure lambda Calculus. Matemática Contemporânea - WoLLIC
2001 selected papers, 24:1–22, 2003.

[AMK05] M. Ayala-Rincón, F.L.C. de Moura and F. Kamareddine. Com-
paring and Implementing Calculi of Explicit Substitutions with
Eta-Reduction Annals of Pure and Applied Logic - WoLLIC 2002
selected papers, 134(1):5–41, 2005.

[Bar84] H. P. Barendregt. The Lambda Calculus : Its Syntax and Semantics
(revised edition). North Holland, 1984.

[BN98] F. Baader and T. Nipkow. Term Rewriting and All That. CUP,
1998.

51

[dB72] N.G. de Bruijn. Lambda-Calculus Notation with Nameless Dum-
mies, a Tool for Automatic Formula Manipulation, with Applica-
tion to the Church-Rosser Theorem. Indag. Mat., 34(5):381–392,
1972.

[DHK00] G. Dowek, T. Hardin, and C. Kirchner. Higher-order unification via
explicit substitutions. Inf. and Computation, 157:183–235, 2000.

[Dow01] G. Dowek. Higher-Order Unification and Matching. In A. Robin-
son and A. Voronkov, editors, Handbook of Automated Reasoning,
volume II, chapter 16, pages 1009–1062. MIT P. & Elsevier, 2001.

[Gol81] W. Goldfarb. The Undecidability of the Second-Order Unification
Problem. TCS, 13(2):225–230, 1981.

[Hin97] J. R. Hindley. Basic Simple Type Theory. Number 42 in Cambridge
Tracts in Theoretical Computer Science. CUP, 1997.

[Hue75] G. Huet. A Unification Algorithm for Typed λ-Calculus. TCS,
1:27–57, 1975.

[Hue02] G. Huet. Higher Order Unification 30 Years Later. In V. A.
Carreño, C. A. Muñoz and S. Tahar editors, Theorem Proving in
Higher Order Logics - TPHOLs 2002, volume 2410 of LNCS, pages
3–12. Springer, 2002.

[LNQ04] C. Liang, G. Nadathur, and X. Qi. Choices in Representation and
Reduction Strategies for Lambda Terms in Intesional Contexts.
Journal of Automated Reasoning, 33(2):89–132, 2004.

[MAK06] F.L.C. de Moura, M. Ayala-Rincón and F. Kamareddine. SUB-
SEXPL: a Tool for Simulating and Comparing Explicit Substitu-
tions Calculi. Special Issue on Implementation of Logics, Journal
of Applied Non-Classical Logics, 16(1-2):119-150, 2006.

[Nip91] T. Nipkow. Higher-Order Critical Pairs. Proc. 6th IEEE Symp.
Logic in Computer Science, 342–349, 1991.

[Rı́o93] A. Rı́os. Contributions à l’étude de λ-calculs avec des substitutions
explicites. Thèse de doctorat, Université Paris VII, 1993.

52

