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Abstract

This article discusses my work in the last few years on logical formalisms which have been shown to
be useful to various aspects of Natural and Programming Languages and for foundational formalisms.
In this period, I have been involved in two extensive programs:

1. The first program concerns languages which exhibit various ways of combining ezpressiveness with
logic. While I do not propose that any of these languages is ideal, I believe that they illustrate
the fruitfulness of bringing together ideas from distinct disciplines. Central to the program will be
Logic, \-calculus and Type Theory, which have played an important role not only in foundational
discussions, but also in applied formal semantics; specifically, the semantics of natural language
(NL) and of programming languages (pL). The general goal here has been to find expressive and
unifying theories which keep the earlier advantages but bring about new dimensions. This goal
moreover extends to finding a general framework which can be used to compare earlier theories
and to carry results from one theory to another without duplication of work. Issues that play
a great role in the general framework include full expressiveness and logic, intensionality versus
extensionality, polymorphism, internal definability of determiners and quantifiers, fixed point op-
erators and self-application, avoidance of Russell’s and Curry’s paradoxes, and property and truth
theories. This program comes from my ongoing work at and collaboration with Edinburgh where
the stimulating environment of logic, foundation and language has been invaluable.

2. From the point of view of notation and language, I aimed at studying typed and type-free for-
malisms and at investigating a A-notation which can be used to generalise the various existing
type theories, and to improve the computational power of the A-calculus by making substitution
explicit, by refining reduction, by introducing definitions to the syntax and by rewriting terms so
that their reduction can be made more efficient. This work comes from my ongoing collabora-
tion with Eindhoven, the centre of AUTOMATH, the theorem prover which have inspired much
research on language and formalisms.

I hope that by studying general formalisms from the outside and by going inside and unpacking the

notation, one can gain even much further insights than achieved so far.

1 Full expressiveness and logic

As is well-known, combining full type-free A-calculus with logic leads to contradiction.
The reason is that one can use R = A;.—zzx to derive RR = =(RR). This is known
as Russell’s paradox. Even when Russell’s paradox is avoided, one will still get a
problem when one tries to discuss the axioms and rules of the logic that is being used.
To be more precise, in any logic, one must state which of the following five concepts
hold:

e Modus Ponens (MP): From I' - E D E' and I' - E, deduce I' - E'.
e Deduction Theorem (DT): If T is a context, and TU{E} F E' then '+ E D E'.
e (-conversion (): (Az.E)E' = E[E'/x].
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e Equality (=): f E=FE' and '+ E then T' - E'.
o Start: If E € I' then I' - E.

Usually, in logic we assume all the above five concepts. If we do this however in a
theory which has our above syntax, then we get in trouble as follows:

Let L be an equality between two terms that can’t possibly be equal, such as
true = false,

Let a = Az.(zz D L). The following is a proof of L.

1 {aa}=aaD> L (B)

2 {aa}t aa Start

3 {aattFaaDd Ll 1+4+2+ (=)
4 {aa}b L MP+2+3
5 FaaD L DT +4

6 Faa 145+ (=)
7T FL MP+5+6

Hence Type Theory stepped in and played an important role in applied formal
semantics. In natural language semantics, where logic has been of more concern than
expressiveness, restrictive typing systems have been the norm. By contrast, program-
ming language semantics has tended to focus on expressiveness (and functions) rather
than logic, and hence depended on a less restrictive, or polymorphic, type systems.
For example, Milner’s functional language ML in [35] used a polymorphic type theory
(Curry’s A_, system).

In Type Theory there are attempts at unifying the various formalisms (see [5], [3]
and [25]) so that results can be carried across theories without duplication of work.
It is moreover elegant to have unique formulations of Type Theories. After all, such
unification will help to rid of the anarchy present as a result of so many different
formulations. In fact, the presence of the paradoxes lead to the emergence of many
Type Theories which vary in how they combine logic and expressiveness. Each such
theory has been used for some applications, yet the need has come to extend results
from one application to another. Hence, it is important to represent type theories in
one unique framework. This is difficult as the framework which formulates one theory
may be incompatible with the framework of the other. Unifying theories will result
in elegant formulations, in man-effort saving (as work will no longer be duplicated)
and in giving insight into the relations of one theory to another. This can improve
the applications of the various existing theories. We shall in this section describe the
theory T presented in [22] which acts as a unifying fomalisms for various existing
formalisms of natural and programming languages. For further details, the reader is
referred to [22].

1.1 The system T

T, was presented in [22] and was shown to be an extension of various other systems.
We will follow the line of Barendregt in [3], in constructing a tree which will have Tq
at its top. All the other systems have been shown to have useful applications related
to natural and programming languages. [36] for example, presents a polymorphic
system which can accommodate self-referential terms. [37] presents a system based
on linear logic but which attempts to add logical features to functional programming.
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[6] presents a type free theory and interprets a fragment of English in it. [15] provides
powerful tools for the formalisation of quantifiers and determiners, whereas [14] ex-
tends Milner’s language ML (see [34]) with higher order polymorphism and logic. [14]
moreover can be extended in a simple way to provide a type checker for the present
system. The system of [18] interprets an extended fragment of natural language where
self-reference and nominalisation are allowed. Martin-Lof’s type theory moreover in
[33] and Feferman’s Ty in [8], present systems which have been extensively used in PL.
Those systems too are related to the present one as we shall see below. T accommo-
dates most of the systems mentioned above, hence bringing in all the advantages. We
will use o and 7 for types (two special instances of which are e the type of objects,
p the type of propositions and ¢ the type of truths), u for metatypes and n,n:,72 to
range over both types and metatypes. (The reason why we use types and metatypes
is related to avoiding the paradoxes. This is explained briefly below and in detail in
[18].) We use ¢ for constants (a special instance of which is 1), z,y for expression
variables, v for type variables drawn from a countable set V. (We assume that type
variables and expression variables are disjoint.) «a,3 are used for arbitrary object
language expressions and , ), x for expressions which denote propositions. We use
I' s to mean that s is derivable within context I', and I'y s to mean that s is
derivable from the signature ¥ within context I'. - s and Fy s stand respectively for
) F s and 0 Fy s, where () is the empty context. The syntax of the various sorts of
expression can now be specified as follows:

Signatures X = 0| X, can

Contexts ' == 0|T,z0|T,a:t

Kinds K == type| c-type | metatype

Types o == vle|t|p]|{oT)

Metatypes p == (m1 — n2)

Ezpressions o == c|z|Axo.a|app(a,f) | Qa|Ya|alB) | —a|[aAf]

[[@aVv@]]|[aDf]]a=0]|YVroa|3zoa

All the above expressions « should be obvious except for Qa and “a which we explain
as follows. Qa is to be understood as saying that a is a proposition. In [15], it was
needed to make the construction of logic inside the type free A-calculus non paradox-
ical. Although the system in this paper is in fact typed, we will see in Section 1.1.3
that it contains the system Ty of [15] which is type free. Moreover, the typing system
will avoid Russell’s paradox with the help of the notion of circular types which will be
defined further on in this section. So it might seem that 2 is only cosmetic. This is
not so however. We will below define a property theory and this will need the 2 oper-
ator. There will of course be a relation between the two ways of avoiding the paradox
(i.e. the one presented here and that presented in [15]). It may be questioned why
we have three kinds: types, ctypes and metatypes. In particular, why we need both
types and metatypes and what is the difference between (o, 7) and (0 — 7). First,
for types we have the non-problematic types as (e, e) and (e, p) and the circular types
which lead to the problems as ({(e,p),p) (see the rule: c-type base). Abstraction over
these circular types is what leads to paradoxes. For example, if R = Ag.ce p>.0(22)
then RR = —(RR) and RR is of type p, which is a contradiction. This is the reason
why in the rule (\) in definition 1.2, we forbid abstracting over circular types. Hence,
as << e,p >,p > is circular, R above is not allowed. As for metatypes, they play
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another role. Namely, they give the type of a lifting function. Here, let us recall
that we live in a domain where all types are subsumed by e. Hence, for example, an
expression of type (e, e) is also an expression of type e. Hence, we are taking a similar
line to that of Bealer in [4] where everything is an object and app applies an object
to another. Now, sometimes we need to lift an object to a real function, so that if
the object a was of type (e, e}, the function Ya will be of metatype e — e, and where
(“a)(8) = app(a,B). This is necessary when we want to claim that our approach
doesn’t restrict itself to Bealer’s claim that one only needs objects, nor to Chierchia’s
claim that one needs both objects and functions. We have a flexible account where
one can use the one or the other. Moreover, we have two ways of forming predicative
expressions: via A (which forms a predicative expression denoting an object) and via
U (which forms a predicative expression denoting a function). There are also two ways
of applying a predicative expression to an argument: via app, which takes a predica-
tive expression denoting an object and via real functional application, which takes a
predicative expression denoting a function. These two ways of forming predicative
expressions and of saturating them are related, as we shall see below.

Judgements
FX sig Y is a signature
Fx I' context I' is a context
I'Fs 0 K o has kind K
Ity o<1 type o is contained in type T
Ity o7 type o is equivalent to type T
I'ts a:o « has type o

Note that the = relation between types is the symmetric closure of < below.

Valid Signature

Il si _—
(null sig ) "0 sig
The empty relation is a signature.
. FX sig Fvo K .
: d Y
(: sig) F X, co sig ifeg dom (%)
Valid Context
FX sig

1 text -
(null - context ) Fv 0 context

Fv T text '+ t
» I' contex: ¥ O type ifod dom (D)

: context
( ) Fs ', z:0 context

Fv I context

(: truthcontext) if ¢ & dom ()

Fs I, o:t context

There is a containment relation < (in fact, a partial order) which is imposed on the
types. When o<1, we say that o is contained in, or is a subtype of, T. 0=T means
that any expression which is of type o is also of type 7; moreover, any object in the
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model which belongs to the domain Dy associated with o also belongs to the domain
D7 associated with 7. The most salient containments in our system are the following:

t = p =X e
o < e
(o,7) 2 o

We assume here three notions of kinds: types such as (e, p), metatypes such as (e — p)
and c-types (or circular types) as in ((e, p}, p). It is basically the c-types which cause
the paradox and therefore we will restrict abstraction to the non circular types:

Kinds, Types and Metatypes

Fy. ' context veV
ks v type

(base types)

Fx I' context
'y e type
Fv I’ context
'y t type
Fv I context
I's p type

'ty o type 'ty 7 type

lex t
(complex types) T (o.7) tupe

'ty o type I'Fy 7=<p I'ks p=p
(c-types base)
I'ts (o, 7),p) c-type
(c-types 1) 'y 7 c-type 'ty o type
up Iky (o,7) c-type
(c-types 2) 'ty 7 c-type 'ty o type

Iky (r,0) c-type
LEMMA 1.1
If (r,0) is not a c-type, then neither 7 nor o is a c-type.

=, which plays an important role in polymorphism is governed by the following con-
ditions:

Containment
I+
(e<) s o type
FI—Z Uje
Fs I’ context
(p=) —
[t t=p
'ty o1 type ks oy type

(Dom=)

Ik (o1, 02) =0
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(Ran<) 'ty o type I'ty <1y
- FI_E <0'7T1>j<0'77-2>
I'ks o type
Id< —_

(1d=) I'ty 0=<0
(Trans<) I'ty o<1 'k 7=p
- I'ks 0=p

. FI—E o=T F"Z T=0
Anti< — —
( " Z_) IFyo 1

DEFINITION 1.2 (TYPE INFERENCE FOR Tq)

Fs T text
(Base) Eﬂ_;% where a:o € T

'ty o<1 T'ts aio

(Contain) -

I, z:obs a:T L Fx (o,7) c-type

(\) Ity (Az:0.0): (0, T)

Ity ax(o, ) ks B:o
Ity app(e, B):7

(app)

'ty a:(oc — 1) I'ks B:o
Iy a(f):T

(Funct)

Cky aile, o)

1) Iky Ya:(e — o)

where o is p or e

Ity o
Q7 —_—
( ) FI—Z Q(p:t

ks Qe it
(QE) s S
ke @:p
ks aco ks B0’

Iky [a=0]p

(= prop) (note o and ¢’. This gives more propositions)

Iky [a = f]:t Iy aco

(= B) 'ty Bio
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Iy gip
—pro, =T
(mprop)  F -
(=1) I'ks pip I pitky Lt
I'Fy —:t
[ —pitky L:t I'ks pip
-FE
(~F) ks ot
(Aprop) Ik ¢mp Iy ¢ip
Ity [p AY]p
(AD) ks ot ks it
'y [(p A Q,ZJ]:t
(AE) ks [ A ]t ks [o A )it
FI—Z (p:t F"Z ’l/JZt
(Vprop) Ik ¢p Iy ¢ip
Ity [pVylp
(\/I) F"Z (p:t F"Z ’(/)Zp F"Z @:p FI—Z ’(/)2t
ks [o V]t ks [p VY]t
(VE) L, pitks xit [, ¢ty xit Tky [@ V 9]t
ks x:t
Ihs ¢:p Iy ¢p
D prop
( ) Iks [p D 9lp
1) L, pitks ¢t I'ky @ip
s [(p D) ’I/J]Zt
(> E) s it ks [ DY)t
Dky it
[ z:oky ¢ip
(Vprop) I'ky, Vzio.pp
I z:obys pit
(VI) TITE P here @ is not free in  or any assumptions in T’

I'ky, Vzio.p:t
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ks Vaio.p:it Tty aio

(VE) ks pla/z):t

[ z:oky @i

3
(3prop) by Jz:0.0:p

L, z:oby pla/]:t

(30 I'ky dxio.p:t

Cky, Azi0.0:t L, pla/z]:thy it

(3E) Thy, ¢t

() Tty [(Az:0o.a) = (Ay:0.afy/z])]:t, where y is not free in a.

(8) Tky [app(Az:i0.0,a) = afa/z]]:t,

( ) F"Z [041 = az]tt FI—Z [61 = ﬂz]:t
7 ks [app(ar, B1) = app(as, B2)]:t
'y azo
() Thy [a=alit
F"g [041 = Oéz]:t F"E [Oél = Oé3]:t

(€)

Iy [app(as, z) = app(az, o)t
(C) : F"g [041 = Oéz]it

FI—Z [042 = ag]tt

where z is not free in a1, a2 or any assumptions in r.

1.1.1 Interpreting A, the type-free A-calculus in T,

The type free A-calculus (A for short) has « := z|(ajas)|(Az.a;) for terms. We can
embed the type free A-calculus in our system T, via the embedding function 7,:

DEFINITION 1.3
We define an embedding function 7, : A — T, which embeds A in T, as follows:

[ ] j* (,’L‘) =X

o Ji(aras) = app(Ji(au), J«(az))

o J.(Ax.an) = Az : v.J.(aq) where v is a fresh type variable. This is to avoid any
type variable clashes inside terms.

Note that we use free(a) for the set of the free variables of «.

LEMMA 1.4
For any expression « and variable z, z € free(a) iff x € free(J.(a)).

PRrROOF. By an easy induction on « in A. [ |
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LemMMA 1.5
J«(ald! [z]) = Te(a)Tu () /].
PROOF. By an easy induction on « in A. [ |

As we consider the pure type-free A-calculus (i.e. no constants are used), we can ignore
signatures in this subsection. Hence, we drop the subscript ¥ from I' Fy a:o.

LemMMA 1.6
For any term « € A, dl", unification function 6, o such that I' F 6(7.(«)):0.

ProoF. This is long, but straightforward by induction on the terms in A. [ |

The following is an example which illustrates this lemma:

EXAMPLE 1.7

Here we see how this lemma applies to Az.zz. We know that 7, (Az.zx) = Az:v;.app(z, ).
Now, if we take 6(v1) = (vi,v2) and the empty context, then we can show that

F O(Az:v1.app(x, z)):{({v1,va).v2) as follows:

(note that O(Az:vy.app(x, x)) = Az:(v1, v2).app(x, )

1. z:(vp,v) F x:(vy,ve) (Base)

2. z:(v,v2) F (v,v2)=X vy (Dom=x)

3. z:(v,v2) F oz 1,2, (Contain)
4. z:{vi,ve) F  app(x,x):ve 1,3, (App)

5. FooAz:(vr,va).app(z, ©):({v1, v2),v2) 4, (N)

A moreover assumes the usual «a, # and n axioms.

LEMMA 1.8
If A+ a = then there exists I, 8 such that ' F [8(7.(a)) = 6(T«(a'))] : t.

PROOF. By an easy induction on the derivation of & = ' in A. [ |

Hence we have the full type free A-calculus in T. With this interpretation, we are
free now to write some of our expressions as type free terms. That is, a term of the
form Az.« is an acceptable term of our theory, even though it doesn’t occur in the
syntax given for expressions.

1.1.2 Interpreting the system Ay in T§

The typesin Az, (see [20]) are exactly those of Tq, but Az, does not have any metatypes.
The ordering on the types is exactly the same in both systems. All the typing rules
of A\, are also typing rules of T. Moreover, the expressions of A\, are as follows:

axz=z|app(a, B) | Axioa | —a | [aAf] | [aDf]|Vroa|a=0

In fact, all the expressions of Aj, are also expressions of T. Hence, the translation
function from Ay, to T, J», is simply the identity function.

Now, as all the expressions, types, type ordering and type inference rules of Ar, are
included in T, then the following lemma is easily provable:

LEMMA 1.9
If in Ar, we prove I' F a:o then in T, we prove I' - 7y, (a):0.

COROLLARY 1.10
If in Ar, we prove I' - a:p then in T, we prove I' - 7y, (a):p.
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1.1.3 Interpreting the system 1% in Ty
The system Ty of [15] has the following syntax of terms:

(1.1) az=z|Azalaf | Qa|laAf]|[aVvh]|[aDf]|la=0]]|Ve.a|Iz.a

We interpret the first three terms exactly as we interpreted the type free A-calculus.
We interpret the terms [a op (] where op is =, A,V or D by [Jru(a) op TJr1(6)]
where J7 () is the interpretation of « in T. We interpret Qa by Q(J7x (), V.«
and Jz.« similarly to the interpretation of Az.«. For example, J73 (Vr.a) = Vv«
where v is a fresh type variable.

LEMMA 1.11
If Ty F « then 3T such that in Tq, we can prove I' b Jr4(a) : t.

PROOF. By an easy induction on the derivation of Ty F a. [ |

1.1.4 Interpreting the system L£<in T

The system £ of [18] has the same signature and contexts as Tq. Kinds however in
L < are different. They include, like the system here, types and metatypes. c-types
however are replaced by three other types, le-, fp- and wb-types. The idea is that fp-
types play a similar role to c-types. That is, they are both circular. le- and wb-types
however, are there to avoid negative judgements in the type inference rule (A). That
is, instead of adding the condition I/ o c-type we add the condition F o wb-type,
meaning that o is a well behaved type and that abstracting to the type ¢ will not lead
to contradiction. le-types were an intermediate step between fp-types and wb-types.
That is not the end of the story. In fact, the typing system obtained in [18] is rather
different from that of this paper. We can understand the difference by giving two
types which are comparable in one and not in the other.

ExaMPLE 1.12

In Tq, (p,e) < p but in [18], there is a lemma which says that if (r,7) < o then

either 0 = e or o is a complex type. Hence, it is not the case that (p,e) < p in [18].
Moreover, in [18], as p < e then (e,e) < (p,e) which is not derivable in Tg.

The syntax of expressions of £~ is as follows:

1y as=c |zlmoa | wpep) a@) | alval @) |lav s>
) | [@ = 0] |Vzi0.a | Fzi0.0

Ty and L are related. In fact, £<° (which is £~ without constants) can be inter-
preted in Tp as follows: we take variables to variables, Az:o.« to Az.a, app(«, B) and
a(fB) to af, Ya to a, ma to —~a and [a op (] to the obvious interpretation.

LEMMA 1.13
Ity |-£_< w:p then ¥ Fr, Qp.

PROOF. By an easy induction on S bp_, @p. [ |
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1.1.5 Interpreting the system Ly in Tq

The types in Ly [14] are exactly those of T, but L) does not have any metatypes.
The ordering on the types is exactly the same in both systems. All the typing rules
of Ly are also typing rules of T,. Moreover, the expressions of Ly are as follows:

(1.3) az=z|af|Ar.a|Arc.a|Qa|-a|laAf]]|[aDf]]|Vroa|Vra

In fact, all the expressions of L are also expressions of T, (look at the interpretation
of the type free terms as done previously).

Now, as all the expressions, types, type ordering and type inference rules of Ly are
included in Tgq, then the following lemma is easily provable (proof similar to that of
lemma 1.9):

LEMMA 1.14
Ifin Ly, T F a:o then in T, I' F J,, (a):0.

COROLLARY 1.15
Ifin Ly, T F azp then in T, ' F T, (@):p.

1.1.6 Interpreting the Chierchia-Turner system

[ could be divided into two parts where we replace equality by an asymmetric relation
— >

1. Contraction (Az.a)a' —=—ald' /z]
2. Expansion ald [z]——(Az.a)d

Contraction causes no problems but expansion does in the presence of negation. This
is what guided Turner and Chierchia in developing their theory PT; [6]. We now
show this can be interpreted in Tq. The construction of types (sorts) in PT} is very
straightforward.

DEFINITION 1.16 (SORTS)

The basic sorts of PT; are e,u,nf and i. These stand for individuals, urelements,
nominalized functions and information units, respectively. The only complex sort is
(e = e).

DEFINITION 1.17 (SYNTAX OF PT})

The syntax of PTj is as follows: For any sort o, let M E, be the meaningful expressions
of sort . If 0 = e,i,u or nf, then Var, is a denumerable set of variables of sort o.
If o is any sort, Con, is a set of constants of sort ¢. The expressions of each sort are
defined as follows:

i. Vary,,Con, C ME,
it. Ifa€ ME, and x € Var,, then Av.a € ME_,.)
iit. If o€ ME,f, then Ya € ME(e%e)
iv. Ifa€ME.,,.), then "a € ME,
v. Ifa€MEe,. and 3 € ME,, then a(8) € ME,
vi. ME;CME,;ME,, ME,; C ME,
vii. Ifae ME,, then ta € ME;
viti. Ify,p € ME;,a,a' € ME,, and x € Var,, for any sort o, then
a=a, Y, YV Ap Ve, Izap, ) D p, 1 <> ¢ are all in ME;
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Note that fa asserts the truth of «, such that if @« € M E; then to is its truth value
but if @ & M E; then fa will be false.

DEFINITION 1.18 (AXI0MS OF PT})
The axioms of the theory are as follows:

(1) (Az.0)d' = afd [z]
(2) i. TY, where 9 is a tautology
ii. ¥ D t1, where ¢ is atomic, i.e. of the form £(«)
iii. v D@
iv. (V. T ¢) D 1(Va.9)
v. (1Y AT D 9)) D e
vi. t(= 1) & 71

That is, one can go from ¥ to {1 if ¢ is an information unit (i.e. a proposition) and
is atomic.

Now let us interpret P73 in Tq. First we start by interpreting the sorts into our
kinds. For this we introduce the function 7 : Sorts — Kind U {u'} such that:

7(e) = e

7(0) =p
T(u) = u
(nf) = (ee)
Te—>e) = e—e

The sort u strictly corresponds to our type e minus the type (e, e). Since we have no
way of proving that there is such a type in T, we postulate ' which represents w.
This will not affect our discussion below, and hence we shall proceed.

We introduce for each expression o of PT} the relevant environment of «, env(a)
as follows:

1.  env(a) = (a:7(0)) if @ € var, U Con,

2. env(Ar.q) = env(a) ifa € ME, and © € Var,

3. env(Ya) = env(a) itae ME,;

4.  env("a) = env(a) ifae ME._,.

5. env(a(f)) = emw(a)Uenv(B) ifae ME.,.and §€ ME,

6. env(ta) = env(a) ifa e ME,

7. enw(a=p) = enw(a)Uenv(f) ifa,a € ME,

8. env(—) = env(v) ifp € ME;

9. env(opy) = env)Uenv(p) if,p€ ME;, op=A,V,D, ¢

10. env(Qz.yp) = env(v) ifypye ME;,x € Var, and Q =V,3

What if env(a) and env(a’) overlap? That is, what if env(a) contains (z:e) and
env(a') contains (z:p)? If this is the case, we can solve it by taking (z:p) to be the
common element. This should not occur however if we assume that the variables and
constants of each sort are disjoint from those of any other sort. We now introduce a
mapping Tr which takes expressions of PT; and returns expressions in 7. This is



1. FULL EXPRESSIVENESS AND LOGIC 303

defined as follows:

1 Tr(«) = « if a € var, U Con,

2 Tr(A\z.«) = Y(z:e. Tr(a)) if « € ME, and © € Var,

3 Tr(“a) = YTr(a) ifa € ME,

4. Tr("a) = Az:e.app(Tr(a),x) ifae ME,_,.

5 Tr(a(B)) = Tr(a)(Tr(B)) ifa e ME.,. and 3 € ME,

6 Tr(tar) = { Tr(_oz) if Tr(a)':p if « € ME,,c,cy different constants
c1 = ¢y otherwise

7. Trla=d) = Tr(a)= Trd) if a,a' € ME,

8. Tr(—w) = —Tr(y) if Y € ME;

9. Tr(opyp) = Tr(y) op Tr(p) if Y, € ME;,op =N,V,D

0. T ep) = (Tr) & T(p) if 4, € ME; 1) ¢ o'

11. Tr(op z.vp) = op x:0.Tr(y) if e ME;,;z € Var, and op=VY,3

Note that Tr(fa) is always of type p. This is the reason why we couldn’t take Tr(fa)

to be T'(a) = Q(Tr{a)) D a. Note moreover that for any expression « of PTj, it is
decidable whether Tr(«) is a proposition or not; i.e. it is decidable whether Q( Tr(«)):t
or not. This can be seen by the following lemma.

LEMMA 1.19

For any expression a of PTh, if a € M E, then env(a) by Tr(a):p is decidable and if
a € ME,_,, then for any a € ME,, env(a) Fx Tr(a(a)):p is decidable.

PRrROOF. By a double induction on « in PT}. [ |

LemMmA 1.20
If « € ME, where « is an expression of PT, then env(a) Fx Tr(a):7(o).

PROOF. By an easy induction on « in PT;. Work with the assumption of the existence
of ' which denotes u and which satisfies its inclusion relationships. [ |

LEMMA 1.21
The axioms of PT; are all valid in T§,.

ProoF. This is easy, by going through definition 1.18. | |

The above shows that PT; of [6] can be considered as a subtheory of Tg.

1.1.7 T-tree

Now collecting the results, we draw the picture which relates all these various theories.
We add Milner’s ML as it has been shown in [14] to be interpretable in L.

Liee. (¥ D @) A (p D ¥).
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Tq is the system of [22].

A is the type free A-calculus.

PT; is the Chierchia-Turner system of [6].
Ty is the system of [15].

AL is the system of [20].

P is the system of Parsons in [36]

L~ is the system of [18].

Ly is the system of [14].

ML is Milner’s ML system of [35].

2 Property theories

Our interest in property theory stems from the fact that properties and propositions
are strongly related and provide the logical part of the system (whereas type theory
is going to provide the expressive part of the system). Our domain of properties will
satisfy important closure properties which will make the logic simple to reason with.
Moreover, properties will play an important role in predicatives which can be looked
at in the Fregean sense or in the sense of Bealer. Our approach furthermore, permits
us to distinguish between predication and abstraction. To talk about such predicative
expressions, we introduce in our language Tq, the operator A (see [15]), understanding
Aa to mean that « is a property. A is defined as Aa =4 Vz.Q(app(a,z)). That is,
something is a property iff whenever it applies to an object, the result is a proposition.
We construct further properties in the following way:

1.aUa' =4 Ax.(app(a, x) V app(d/, x))

2. ana =g Ax.(app(a,z) A app(a, x))

3. @ =g A\x.mapp(a, )

4. a = o =4 AzVy(app(a,y) D app(d, app(z,y))
5.0 =4 Az.(z = x)

6. © =4 Av.~(z = x)

LemmA 2.1
The following are provable

1.F AO:t
2. FAGt
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3. F{Aait,Adit} F AU a')it

4. {Aact, Ad:t} F Alana'):t

5. F {Aa:t} - Aa:t

6. F {Aa:t,Ad":t} F Ala — o'):t
The following lemma shows that the internal logic (which occurs inside the A, such
as Azr.p D ¢ and Az.p give Az.1p) and the external logic (which occurs outside and
is the usual one), can be unified. That is, the logic of our propositions and the logic

of our properties are the same. Computationally, this means that logical connectives
can be pushed inside the A-operator.

LEMMA 2.2
The following are provable

1. [app(Az.c, B) A app(Ax.a', B) = app(Az.(a A '), B)]:t

2. [app(Az.~a, B) = —app(Az.a, B)]:t

3. [app(Az., B) V app(Az.o, B) = app(Az.(a V '), B)]:t

4. [app(a, B) = —app(c, B)]:t

5. [app(an o', B) = app(a, B) Aapp(a’, B)]:t

6. [app(a U o, B) = app(a, B) V app(c’, B)]:t

7. [app((@), B) = ~—app(a, B)):t

8. {Aait, Ad':t} F [app((a U '), B) & app((@), B) A app((a), B)]:t
9. {Aa:t, Aa':t} F [app(@U o', B) = app(@, B) V app(a’, B)]:t

10. {Aa:t, Ad':t} + [app(@n o' B) & app((aU '), B)]:t

11. {app(e, B):t} F [app(@, B)]:t

12. If Tty Qa:t then Ty [Vy.app(Az.a, ) D app(Az.V.ya, o')]:t
13. If Ty Qa:t then [Fy.app(Az.a, o) D app(Az.Jy.a, o')]:t

—_

Now we discuss what would happen to the lemmas above if we change the functional
application of the A-calculus by a more intensional application, call it pred. That is,
from app(a,z) = app(B,y), we can deduce nothing about the relationship between
a and # and x and y. pred on the other hand, will satisfy the condition that if
pred(a,a) = pred(8,b) then a = 8 and a = b. So let us introduce pred such that

2.1) pred(a, z):t app(a, x):t Q(pred(a, x)):t Qapp(a, z)):t
' app(a, ©):t pred(a, z):t Qapp(a, x)):t Q(pred(a, x)):t

(2.2) [Vz(pred(a, x) = pred(8, z))]:t = [a = (]t

(2.3) [pred(a,a) = pred(B,b)]):t = [(a =B Aa =Db)]:t

LEMMA 2.3

If ks (Aa):t then Tkys V. (app(w, ) < pred(a, ©))]:t.
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3 Definability of determiners and quantifiers in T

We define the two determiners every’ and a’ in our framework:

every' =g A\v.\y.Vz(zz = yz)

a' =g Az Ny 3z(xz A y2)
The characteristic property of every’, C, is defined by: P, C P, =4 Vz(Piz — Px).

LEMMA 3.1
C is a transitive, reflexive and equisymmetric relation on properties.

LemMmA 3.2
If P, and P» are properties then Q(every' P, P») and every' Py P> = P, C P».

We define P, N Py =4 32(P1z A Psz).

LEMMA 3.3
If P, and P, are properties then Q(a' P, P,) and o' PP, = P, N! P;.

Outside the collection of properties, we cannot draw useful conclusions about every’
because we cannot decide the propositionhood of an arbitrary formula in which —
is the main connective. This is not a disadvantage as we only want every’ to have
meaning when we are working with properties. Moreover, we cannot define the type
of every’ or of determiners inside our formal language. That is if we define Quant and
Det as follows

Quant t =g Vz(Az — Q(tz))

Det ¢t =qr Vz(Az — Quant (tz)).

then there is no way to prove that Det and Quant always return propositions when
applied to terms, because Vo (Az — Quant (tx)) and Vo (Az — Q(tx)) are not propo-
sitions for any t. In fact even if ¢ is a property, we still do not have a guarantee that
Det t and Quant ¢ are propositions, due to the fact that Az is not a proposition. This
is not serious as there is no particular reason for wanting determiners and quantifiers
to be determinate. We can prove many desirable features of our determiners, so why
insist on determinability?

Having determiners such as every’, a’ is one thing; being able to deduce that
every’, a’ are determiners is something else. Le. can we prove that Det(every’),
Det(a’), etc..? Take for every’, Az.\y.Vz[zz — yz]|. To show that Det(every’) we
have to show that Vx(Az — Vy(Ay — H(every'zy))). But to be able to show the
implication we need to have Q(Az), and Q(Ay), which we cannot assume. For this
we need an extension for implication as follows:

We always have that if {a} F b then {Qa} F a — b (our version of the deduction
theorem). We need that if {Qa} - b then F Qa — b. Can we assert this rule? That
is:

)

(%) If {Qa} b then F Qa — b.

LemMmA 3.4
Det(every’), Det(a’), if (*) holds. (See [15] for the proof.)
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Here we are concerned with some characteristics of determiners that can be proven
in our theory. We start with the first theorem that asserts that the result of applying
a quantifier to a property results in a proposition.

LEMMA 3.5
(1)  {Quant(Q), DP} F Q(QP)
(17)  {Quant(a), Quant(b)} F Quant(a N b)
(131) {Quant(a), Quant(b)} F Quant(a U b)
(tv)  {Quant(a)} F Quant(a®) where a° is the complement of a
(v)  {every' P, Py, every PyPs} + every' Py Ps

4 Intensionality and extensionality

It is often observed that sentence accent, as an indicator of focus, can affect the
interpretation of sentences, or at least the contexts in which they are appropriate.
Thus

(4.1) Felix ate THE PIE

(with accent on the pie) is felicitous as an answer to the (perhaps only implicit)
question What did Felixz do? or Who did Feliz ate?. By contrast,

(4.2) FELIX ate the pie

answers the question Who ate the pie?

[31] has suggested that the information structure of such sentences should be rep-
resented by separating sentence meaning into a pair consisting of a focus part and a
background part, where ‘the background is of a type that can be applied to the focus’.
Moreover, [31], following [11], has proposed that even if there is no focus-sensitive op-
erator (such as only), the focus should be ‘bound’ by an illocutionary operator that
expresses the sentence mood. Suppose, for example, that ASSERT is the assertion
operator. Then (4.1) will receive the following representation:

(4.3) ASSERT((Az.eat(feliz, z), the-pie))

One question which this proposal raises is whether ‘free’ focus constructions such as
(4.1) and (4.2) can ever occur in embedded constructions. Thus consider the following
examples:

(4.4) Sandy was surprised that Felix ate THE PIE.
(4.5) Sandy was surprised that FELIX ate the pie.

Intuitively, these two sentences can have different truth conditions. Suppose, for
example, that Felix is known to be both a glutton and a gourmand. Given the
alternative delicacies available, it may surprise Sandy that Felix chose the pie to
eat. Yet knowing that the pie did in fact get eaten, Sandy may not be surprised
that it was Felix that did the eating. If this is correct, then it seems unlikely that
the partitioning of meaning into focus and background can be entirely separated out
from propositional content.
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The relation pred which we introduced appears to give us an appropriate amount
of structure within propositions. By comprehension, we know that the following
equations hold:

(4.6) app(Az.eat(felix, x), the-pie) =
eat(feliz, the-pie) =
app(Ay.eat(y, the-pie), feliz)

However, pred does not support these identities:
(4.7) pred(\z.eat(feliz, x), the-pie) # pred(Ay.eat(y, the-pie), feliz)

Obviously, there is an additional pragmatic burden being supported by information
structure. Nevertheless, it seems clear that the apparatus we have defined gives the
right kind of fine-grainedness at the propositional level to support the distinctions
which need to be drawn.

In fact, the problem of identifying app(A\z.eat(feliz,z),the-pie) with
app(Ay.eat(y, the-pie), feliz) is a problem of intensionality. Our account does not
face this problem as we have another predicate supported by our logic which is in-
tensional. So even though pred(\z.eat(feliz,z), the-pie) has the same truth value as
pred(\y.eat(y, the-pie), feliz), they are not equal. This problem is similar to another
one of Bealer and Aczel in [2] which is as follows:

Rajneeshee = Az.follows(z, Rajneesh)
Fondalee = Az.follows(JaneFonda, x)
app(Rajneeshee, Jane Fonda) follows(JaneFonda, Rajneesh)
app(Fondalee, Rajneesh) follows(JaneFonda, Rajneesh)
Therefore app(Rajneeshee, JaneFonda) = app(Fondalee, Rajneesh)

This conclusion might be questioned since someone could believe that Rajneeshee
holds of Fonda, without believing that Fondalee holds of Rajneesh. The solution here
is to use pred instead of app. So we obtain that pred(Rajneeshee, JaneFonda) is
equivalent in truth value to pred(Fondalee, Rajneesh) but not equal to it. This is
another example of the suitability of our framework for intensional and finely-grained
contexts.

5 Polymorphism

Types or levels are not necessary in the avoidance of the paradox. The Foundation
Axiom FA was included in ZF despite the fact that it was shown that antifoundation
axioms are consistent with ZF (see [1] for such a discussion). In fact, it is the Axiom
of Separation which avoids the paradox. Moreover, the claim in the foundation of
NL has been concentrating on abandoning well foundedness. It has been put forward
that non well foundedness and type freeness are necessary for NL. [21], for example,
provides a unified account of plurals and singulars by using the concept of non well
foundedness and type freeness and [18] uses the notion of type freeness to give a more
general interpretation of NL.

The fact that we ask for the full expressive power of the type free A-calculus does
not mean that types are not useful. In fact when we ask for a type free set theory, or a
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set theory where the definition of a set may be impredicative, we don’t go and forget
completely about sets. In type free theories, one asks for the furthest expressive power,
where we can live with self reference and impredicativity but without paradoxes. The
better such an expressive system is, the more we are moving towards type freeness.
It is enough to remember that up to the discovery of the paradoxes, the most ideal
system was of course type free. Due to the paradoxes, alas this type free paradise had
to be abandoned. Types found an attractive place in the history of foundation and
in most areas of applications of logic. However, types are useful yet we must have as
much type freeness as possible. In fact we may not want to be inflexible from the start
if we could afford to be flexible. Type free theories are very elegant and simple, so we
can have a clear picture of how much we have and how the paradox is avoided. Then
the detail of constructing types if followed will produce all the polymorphic higher
order types that are needed. So a lot of unnecessary details (like constructing types)
are left till later which will make it easier to prove results about the strength of the
system and the expressive power. Also from the point of view of computation, type
free theories could be regarded as first order theories and hence are computionally
more tractable than typed theories. Completeness also holds for first order logics
but has to be forced for higher order ones. Hence what we are arguing for is the
use of type freeness followed by the construction of flexible polymorphic types. It
is also the case that the self referentiality of language requires type freeness. So we
can talk about a property having itself as a property. For example, the property of
those things equal to themselves is equal to itself. We can talk about more involved
self-referential properties such as the property of properties that apply to themselves,
the set of functions which given an argument x, apply the function Az.f(zz) to itself.

5.1  Promiscuity and polymorphism

From a pretheoretic point of view, natural language expressions clearly enjoy a great
deal of combinatorial flexibility. A familiar example is the conjunctive and which
places very few constraints on the category of its arguments, except perhaps that
they be of the same category. Similarly, many verbs can combine with a range of
different complements:

(5.1) a.Lee proved that 13 was a prime number.
b.Lee proved the proposition that 13 was a prime number.
c. Lee proved his claim.
d.Lee proved it.

Such combinatorial flexibility deserves a name: let us call it functional promiscuity,
following the lead of [12]. How should we model functional promiscuity? We could
take the approach favoured by [4], and claim that natural language is entirely type
free; or else we could say that there are some type restrictions, but that the type
system has enough slop in it to allow the requisite amount of promiscuity.

Although Bealer’s approach certainly deserves to be explored, it seems to be com-
mitted to the view that syntactic categories in natural language are entirely arbitrary,
in that they have no semantic import. It seems implausible that we can analyse nat-
ural languages in an economical manner while completely eschewing syntactic cate-
gories. Yet it also seems implausible that, say, the distinction between noun phrases
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and sentences is completely unmotivated from a semantic point of view. Yet if we
concede that syntactic categories do have some correlation with semantic domains,
then we are essentially admitting types after all.

Let us assume, then, that types are an appropriate tool in the task of analysing
natural languages. Then we might still jump in one of two ways in the face of data
like (5.1). We could conclude that each of the complements shown in (5.1) is of the
same type, in which case we would be forced to the conclusion that words like it, this
and something have multiple types. Alternatively, we might suppose that it has just
the type of singular NPs, as distinct from the type of propositions, in which case we
have to conclude that prove is polymorphically typed.

As Parsons ([36]) shows, some amount of polymorphism is also entailed on the
approach where noun phrases like the proposition are analysed as having the same
type as subordinate clauses such as that 13 was a prime number. For then we see
that, for example, about must be polymorphic:

(5.2) a.Kim talked about the proposition.
b.Kim talked about Sandy.

[20] gives a detailed account of Parsons’ approach and interprets it in a theory Ap
which we showed earlier to be a subtheory of T. Hence Parsons account can also be
looked at as a subtheory of Tf,.

5.2 Fixed points, self application and a programming example

A-calculus is at the heart of the denotational semantics of programming languages.
Programming languages moreover range between the strictly and inflexibly typed
languages (such as Pascal where you can only apply functions to a certain type) and
the polymorphically typed ones such as Milner’s ML. Even the polymorphically typed
languages are not polymorphic enough. In fact, the programming discipline which
praises polymorphism non stop and which claims to be offering highly polymorphic
languages, namely functional programming, has not yet provided a language which
can make sense of the type of a fixed point operator, or any function which involves
self application. This is somewhat anomalous, as functional languages are claimed
to be based on the A-calculus (and in particular on the type free or the polymorphic
A-calculus). Now in these A-calculus, the fixed point operators and self application
play a very important role. Without them, we could not show that the solution to
the recursive equations exists. So isn’t it strange that the most important items such
as self application and the fixed point operators cannot be typechecked in functional
languages? After all they are the items which show us what the computable/non
computable functions are. They are the items which solve the recursive equations,
and they are the items which inform us about the looping/nonlooping programs.
Furthermore, Milner’s ML is based on the language A_,cyrry Which cannot typecheck
Az.zz nor Y. The polymorphism of ML which is based on A_,cyrry is not strong
enough. The polymorphism introduced in this paper however, is strong enough to
type check items involving self application. We shall illustrate this below.

EXAMPLE 5.1
The translation of \f.(Az.f(zxz))(A\x.f(zxz)) in To has type ({ve,v2),v2). Before we
show this, let us write A for Az:((v1,vs), ve).app(f, app(x,x)) and write B for
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Az:(vy,v2).app(f,app(z, x)). Now, the magical part of the program which takes the
type of f to be {va,v2) and the type of & to be ({v1,v2),v2) is a very important part
of [14] and there is no room to discuss it here. But let us see how, when the types of
f and x are chosen, the type checker deduces the type of the translation of Y.

f i (va,v2) assumption
x : ({vg,v2),v2) assumption
( Dom <)

i1), (#i1), (Contain)
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) Az (v, v2),v2).app(f, app(x, x)) : (((v1,v2),v2),v2) (i
i) (((v1,02),v2),v2) < ((v1,02),02) (D

Az:(vr,v2).app(f, app(w,x)) : ((v1,v2),v2) (
z)  app(A,B): v, (
i) Afi{vz,v2).app(A, B) : ((v2,v2),v2) (

The type of Y is really what it should be. Not only that, but functional languages
took polymorphism on their shoulders and avoided logic due to the reason that logic
and strong polymorphism together lead to paradoxes. Now we have showed that
our system supports a higher polymorphism than functional languages but it also
contains logic as we’ve seen before. In fact this system has been used to extend
ML with polymorphism and logic in [14]. And even though the system allows terms
such as Az.zz and type check them, all terms which are paradoxical are not typed
and the system displays the message that their type is circular. So Russell’s and
Curry’s sentences cannot be type checked and we are told that they are circular. Of
course here, one may wonder if the paradox is really avoided, and may give as an
example o = Ay.(Az.y(zx)) which is typechecked to ((ve,v2), ({(v2,v2),v2)), and then
instantiate it to —« which would be of type ((p,p),p). This does not hold however
because ((p,p),p) is circular and the system does not accept such instantiation.

Now, let us say a few words about the computable tractability of the type system
Tq. This question is particularly important as we have a rich set of types and as
the subsumption relation may lead to complex (and non-terminating) type checkers.
We have no problems however with Tp. The reason being that the system of [14] is
the same system as this paper except that there, we did not have metatypes. Now,
subsumption does not play any role in metatypes. So computable tractability (which
is a characteristic of the system of [14] and of its type checker) transforms easily to
Tq. In fact, one can take the implementation we have for [14] and extend it with just
the rules for metatypes and we obtain an automatic type checker for Tq,. Finally, let
us list some terms and say how the type checker of [14] treats them and type check
them. This is relevant for this paper as if we write a type checker for T, then it will
behave exactly the type checker behaves for [14] except of course that there are no
metatypes. Hence, on types we are the same. Note that if a term contains Az where
x is not explicitly typed (as in the first term below) then the type checker will find
the type itself.



312 Important Issues in Foundational Formalisms

| | Expressions | Types
1 | Az.x (vo,vo)
2 | Azr:ex (e, e)
3 /\az.app(a:,a:) <<U07U1>7U1>
4 | app((Az.app(z,x)), (Az.app(z,z))) | v1
5 | Az :p.app(z, ) {p, vo)
6 | \z:{(e,p).app(x,x) error: ({e,p),p) is c-type
7 | Va: {vg,v1).app(x,y) D
8 | Vx:ex error, not a proposition
9 | Va:(e,v1).app(z,y) p
10 | Vz.app(z,x) p
11 | Az : (vg,v1).app(x,y) ({vg,v1),v1)
12 | Az.—app(z,x) error, c-type

Here don’t be alarmed by the type of the sentences 7-10. These are sentences which
involve V and hence their type should be p. When the system can’t make the type p,
it returns an error message as in sentence 8.

6 The item notation

The work described in the previous section extends to various other applications
that I have not described in this paper due to lack of space. The second program
however that I have been involved with is related to a new notation (the item notation)
influenced by the AUTHOMATH of de Bruijn. The results that we have obtained
in the last four years are very nice and are summarized in our literature below. Of
these results, I will briefly describe some points. First let me explain what is the item
notation.

The item notation is very simple. It follows the AUTHOMATH by writing the
argument before the function. The difference however is that parenthesis in a term
are grouped differently than in usual lambda calculus or in AUTHOMATH. The best
to describe the item notation is to give the translation from classical lambda calculus
to item notation based one. So that, if 7 translates classical terms into our notation,
then Z(AB) is written as (Z(B)d)Z(A) and Z(Ag.4.B) is written as (Z(A)A.)Z(B).
Both (Ad) and (A);) are called items.

6.1 FEzxplicit substitution

Substitution is the most basic operation of the A-calculus. Manipulation of A-terms
depends on substitution. The a- and B-axioms are given in terms of substitution.
What substitution are we talking about? Substitution in the A-calculus is usually
defined (up to some variation) as t[z := t']. So what is happening in t[z := t]?
We are replacing all free occurrences of x in ¢ by ¢', but without any disastrous side
effects such as binding occurrences of variables which were originally free. Take for
example zz[z := y]. This will result in yy. (Ay.w.zy)[z = y] will result in A..,.yz.
So this process of substitution works fine. It is a metalevel process however. That is,
this substitution takes ¢,z,t" and returns a final result ¢[z := ¢']. The various stages
of moving from the ¢, z,t' to t[z := t'] are lost and nothing matters but the result.
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This works fine for many applications but fails in areas which are now becoming vital
in Computer Science. In functional programming for example, there is an interest in
partial evaluation. That is, given zz[z := y], we may not be interested in having yy as
the result of zz[z := y] but rather only yz[z := y]. In other words, we only substitute
one occurrence of z by y and continue the substitution later. This issue of being
able to follow substitution and decide how much to do and how much to postpone,
has become a major one in functional language implementation. However, in order
to have this spreading control over substitution and to be able to manipulate those
partially substituted terms, we must render the latter from being a metalevel notion
to an object level notion. It turns out that our new notation will enable such rendering
efficiently and will enable the representation of various forms of substitution: local,
global, implicit and explicit.

[19] introduces substitution which is object level but which can evaluate A-terms
fully obtaining the result of the metalevel substitution. More precisely, we introduce
the process of stepwise substitution, which is meant to refine reduction procedures.
Since substitution is the fundamental operation in f-reduction, being in its turn the
most important relation in lambda calculus, we are in the heart of the matter. The
stepwise substitution is embedded in the calculus, thus giving rise to what is nowadays
called explicit substitution. It is meant as the final refinement of B-reduction, which
has — to our knowledge — not been studied before to this extent. This substitution
relation, being the formalization of a process of stepwise substitution, leads to a nat-
ural distinction between a global and a local approach. With global substitution
we mean the intended replacement of a whole class of bound variables (all bound by
the same abstraction-A) by a given term; for local substitution we have only one
of these occurrences in view. Both kinds of substitution play a role in mathematical
applications, global substitution in the case of function application and local substitu-
tion for the ‘unfolding’ of a particular instance of a defined name. We discuss several
versions of stepwise substitution and the corresponding reductions. We also extend
the usual notion of B-reduction, an extension which is an evident consequence of local
substitution. The framework for the description of terms, as explained before, is very
adequate for this matter.

6.2 Generalising reduction and term reshuffling

EXAMPLE 6.1

In the classical term ¢ = ((Agr:x,-(Azg:Xs-Azg: X, — X0 -T52L4)T3)T2)T1, we have the fol-
lowing redexes (the fact that neither zg nor z7 appear as free variables in their re-
spective scopes does not matter here; this is just to keep the example simple and
clear):

]-' (A.ts:Xg 'A.ts:Xl —X2 .375.’1;4).’1:3
2' (A$7:X4 '(A.ts:Xg -/\wS:XlaXQ .1/'51]4).’1:3)372
In item notation t becomes (216)(x20)(XaAs,)(230)(X3Aee) (X1 = X2) Az, ) (xad)xs.
Here, the two classical redexes correspond to d\-pairs as follows:
1. (Mg Xs-Aws: X, — X5 -T5Z4)T3 corresponds to (230)(XsAg,). (X1 — Xo)Azy)(z40)zs5
is ignored as it is easily retrievable in item notation. It is the maximal subterm of
t to the right of (X3Az,).
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2. (Azrixs-(Azg:Xs-Aws: X, X5 -T5Ta ) T3 ) T2 corresponds to (z20)(XqAz,)-
Again (230)(X3Az)((X1 — X2)Az,)(x40)xs is ignored for the same reason as
above.

There is however a third redex which is not immediately visible in the classical term;
namely, (Azy.x,—x,-Z5Z4)T1. Such a redex will only be visible after we have con-
tracted the above two redexes (we will not discuss the order here). In fact, assume
we contract the second redex in the first step, and the first redex in the second step.
Le.

((>‘171X4'(>‘161X3'>‘15:X1—>X2 ..’L'5£U4)£L'3)2132)$1 —pB

((>\16:X3->\z5:X1—)X2 -$5$4)$3)$1 _>/8

()\15:X1—>X2-335~754)$1 —3 T1X4
Now, even though all these three redexes are needed in order to get the normal form
of t, only the first two were visible in the classical term at first sight. The third
could only be seen once we had contracted the first two redexes. In item nota-
tion, the third redex (Ag;.x, X, T5%4)x; is visible as it corresponds to the matching
(210)((X1 = X2)As;) where (z10) and ((X1 — X2)A,,) are separated by the segment
(220)(XaXs, ) (230)(X3Ms). Hence, by extending the notion of a redex from being a
d-item adjacent to a A-item, to being a matching pair of §- and A-items, we can make
more redexes visible. This extension furthermore is simple, as in (£10)35(pA, ), we say
that (¢10) and (pA,) match if § has the same structure as a matching composite of
opening and closing brackets, each d-item corresponding to an opening bracket and
each \-item corresponding to a closing bracket. For example, in ¢ above, (x14) and
(X1 — X2)Az;) match as (z20)(XaAs,)(230)(X3Az,) has the bracketing structure
[1[] (see Figure 1 which is drawn ignoring types just for the sake of argument). With

(210) (220) (Aar) (230) (Awg) (Aas) (240) @5

F1G. 1. Redexes in item notation

this extension of redexes, we refine S-reduction in two different ways:

1. By changing (8) from (¢19)(pA.)ta =g t2[v := t1] to (t10)5(pAs)t2 ~3 S(ta]v =
t1]) if (t10) and (pA,) match.

2. By reshuffling terms so that matching ¢’s and A’s occur adjacently. Hence Figure 1
will be redrawn as in Figure 2.

[26] shows that ~» g (the reflexive transitive closure of ~g) is a generalisation of —» 3.
We then show that A_, with ~»4 satisfies all the desirable typing properties.

[27] extends the Barendregt cube with this generalised reduction and shows that all
the above properties hold for this extension. Moreover, [26] shows that term reshuf-
fling is correct. In particular, we show that A_, accommodated with term reshuffling
TS, satisfies the following:
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HaEnl

(cd) (PA:) (06) (QAy) (d0) (RA:) (ad) =

Fia. 2. Term reshuffling in item notation

1. Reshuffling a term, moves all §’s next to their matching \’s.

2. Reshuffling terms preserves — 3. That is, if ¢ ~» 3 t' then there exists ¢" such that
TS(t) »pt" and TS(t') = TS(t").

3. Reshuffling terms preserves types. That is, if '+ ¢ : p then '+ T'S(¢) : p.

6.3 Extending theories with definitions

In many type theories and lambda calculi, there is no possibility to introduce defi-
nitions which are abbreviations for large expressions and which can be used several
times in a program or a proof. This possibility is essential for practical use, and indeed
implementations of Pure Type Systems such as Coq ([7]), Lego ([32]) and HOL ([10])
do provide this possibility. But what are definitions and why are they attractive?
Definitions are name abbreviating expressions and occur in contexts where we reason
about terms.

EXAMPLE 6.2
Letid = (Agia.x) : A — Ain (Apasa.id)id defines id to be (Az.4.2) in a complex
expression in which id occurs two times.

The intended meaning of a definition is that the definiendum z can be substituted
by the definiens a in the expression b. In a sense, an expression let  : A be a in b
is similar to (Az.a.b)a. It is not intended however to substitute all the occurrences
of z in b by a. Nor is it intended that the definition be a part of our term. Rather,
the definition will live in the environment (or context) in which we evaluate or reason
about the expression.

One of the advantages of the definition let z : A be a in b over (A;.4.b)a is that it
is convenient to have the freedom of substituting only some of the occurrences of an
expression in a given formula. Another advantage is that defining 2 to be a in b can
be used to type b. [27] introduces definitions to Barendregt’s cube and shows that
Church Rosser, Subject Reduction, Unicity of Typing and Strong Normalisation all
hold for this extension.
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