
Important Issues in FoundationalFormalismsFAIROUZ KAMAREDDINE, Department of Computing Science,University of Glasgow, Glasgow G12 8QQ, UK. E-mail:fairouz@dcs.gla.ac.ukAbstractThis article discusses my work in the last few years on logical formalisms which have been shown tobe useful to various aspects of Natural and Programming Languages and for foundational formalisms.In this period, I have been involved in two extensive programs:1. The �rst program concerns languages which exhibit various ways of combining expressiveness withlogic. While I do not propose that any of these languages is ideal, I believe that they illustratethe fruitfulness of bringing together ideas from distinct disciplines. Central to the program will beLogic, �-calculus and Type Theory, which have played an important role not only in foundationaldiscussions, but also in applied formal semantics; speci�cally, the semantics of natural language(nl) and of programming languages (pl). The general goal here has been to �nd expressive andunifying theories which keep the earlier advantages but bring about new dimensions. This goalmoreover extends to �nding a general framework which can be used to compare earlier theoriesand to carry results from one theory to another without duplication of work. Issues that playa great role in the general framework include full expressiveness and logic, intensionality versusextensionality, polymorphism, internal de�nability of determiners and quanti�ers, �xed point op-erators and self-application, avoidance of Russell's and Curry's paradoxes, and property and truththeories. This program comes from my ongoing work at and collaboration with Edinburgh wherethe stimulating environment of logic, foundation and language has been invaluable.2. From the point of view of notation and language, I aimed at studying typed and type-free for-malisms and at investigating a �-notation which can be used to generalise the various existingtype theories, and to improve the computational power of the �-calculus by making substitutionexplicit, by re�ning reduction, by introducing de�nitions to the syntax and by rewriting terms sothat their reduction can be made more e�cient. This work comes from my ongoing collabora-tion with Eindhoven, the centre of AUTOMATH, the theorem prover which have inspired muchresearch on language and formalisms.I hope that by studying general formalisms from the outside and by going inside and unpacking thenotation, one can gain even much further insights than achieved so far.1 Full expressiveness and logicAs is well-known, combining full type-free �-calculus with logic leads to contradiction.The reason is that one can use R � �x::xx to derive RR = :(RR). This is knownas Russell's paradox. Even when Russell's paradox is avoided, one will still get aproblem when one tries to discuss the axioms and rules of the logic that is being used.To be more precise, in any logic, one must state which of the following �ve conceptshold:� Modus Ponens (MP): From � ` E � E0 and � ` E, deduce � ` E0.� Deduction Theorem (DT): If � is a context, and � [ fEg ` E0 then � ` E � E0.� �-conversion (�): (�x:E)E0 = E[E0=x].291Bull. of the IGPL, Vol. 3 No. 2,3, pp. 291{317 1995 c
 IGPL



292 Important Issues in Foundational Formalisms� Equality (=): If E = E0 and � ` E then � ` E0.� Start: If E 2 � then � ` E.Usually, in logic we assume all the above �ve concepts. If we do this however in atheory which has our above syntax, then we get in trouble as follows:Let ? be an equality between two terms that can't possibly be equal, such astrue = false,Let a = �x:(xx � ?). The following is a proof of ?.1 faag = aa � ? (�)2 faag ` aa Start3 faag ` aa � ? 1 + 2 + (=)4 faag ` ? MP + 2 + 35 ` aa � ? DT + 46 ` aa 1 + 5 + (=)7 ` ? MP + 5 + 6Hence Type Theory stepped in and played an important role in applied formalsemantics. In natural language semantics, where logic has been of more concern thanexpressiveness, restrictive typing systems have been the norm. By contrast, program-ming language semantics has tended to focus on expressiveness (and functions) ratherthan logic, and hence depended on a less restrictive, or polymorphic, type systems.For example, Milner's functional language ML in [35] used a polymorphic type theory(Curry's �! system).In Type Theory there are attempts at unifying the various formalisms (see [5], [3]and [25]) so that results can be carried across theories without duplication of work.It is moreover elegant to have unique formulations of Type Theories. After all, suchuni�cation will help to rid of the anarchy present as a result of so many di�erentformulations. In fact, the presence of the paradoxes lead to the emergence of manyType Theories which vary in how they combine logic and expressiveness. Each suchtheory has been used for some applications, yet the need has come to extend resultsfrom one application to another. Hence, it is important to represent type theories inone unique framework. This is di�cult as the framework which formulates one theorymay be incompatible with the framework of the other. Unifying theories will resultin elegant formulations, in man-e�ort saving (as work will no longer be duplicated)and in giving insight into the relations of one theory to another. This can improvethe applications of the various existing theories. We shall in this section describe thetheory T
 presented in [22] which acts as a unifying fomalisms for various existingformalisms of natural and programming languages. For further details, the reader isreferred to [22].1.1 The system T
T
 was presented in [22] and was shown to be an extension of various other systems.We will follow the line of Barendregt in [3], in constructing a tree which will have T
at its top. All the other systems have been shown to have useful applications relatedto natural and programming languages. [36] for example, presents a polymorphicsystem which can accommodate self-referential terms. [37] presents a system basedon linear logic but which attempts to add logical features to functional programming.



1. FULL EXPRESSIVENESS AND LOGIC 293[6] presents a type free theory and interprets a fragment of English in it. [15] providespowerful tools for the formalisation of quanti�ers and determiners, whereas [14] ex-tends Milner's language ML (see [34]) with higher order polymorphism and logic. [14]moreover can be extended in a simple way to provide a type checker for the presentsystem. The system of [18] interprets an extended fragment of natural language whereself-reference and nominalisation are allowed. Martin-L�of's type theory moreover in[33] and Feferman's T0 in [8], present systems which have been extensively used in pl.Those systems too are related to the present one as we shall see below. T
 accommo-dates most of the systems mentioned above, hence bringing in all the advantages. Wewill use � and � for types (two special instances of which are e the type of objects,p the type of propositions and t the type of truths), � for metatypes and �; �1; �2 torange over both types and metatypes. (The reason why we use types and metatypesis related to avoiding the paradoxes. This is explained brie
y below and in detail in[18].) We use c for constants (a special instance of which is ?), x; y for expressionvariables, v for type variables drawn from a countable set V . (We assume that typevariables and expression variables are disjoint.) �; � are used for arbitrary objectlanguage expressions and ';  ; � for expressions which denote propositions. We use� ` s to mean that s is derivable within context �, and �`� s to mean that s isderivable from the signature � within context �. ` s and `� s stand respectively for; ` s and ; `� s, where ; is the empty context. The syntax of the various sorts ofexpression can now be speci�ed as follows:Signatures � ::= ; j �; c:�Contexts � ::= ; j �; x:� j �; �: tKinds K ::= type j c-type j metatypeTypes � ::= v j e j t j p j h�; �iMetatypes � ::= (�1 ! �2)Expressions � ::= c j x j �x:�:� j app(�; �) j 
� j [� j �(�) j :� j [� ^ �]j [� _ �] j [� � �] j [� = �] j 8x:�:� j 9x:�:�All the above expressions � should be obvious except for 
� and [� which we explainas follows. 
� is to be understood as saying that � is a proposition. In [15], it wasneeded to make the construction of logic inside the type free �-calculus non paradox-ical. Although the system in this paper is in fact typed, we will see in Section 1.1.3that it contains the system TH of [15] which is type free. Moreover, the typing systemwill avoid Russell's paradox with the help of the notion of circular types which will bede�ned further on in this section. So it might seem that 
 is only cosmetic. This isnot so however. We will below de�ne a property theory and this will need the 
 oper-ator. There will of course be a relation between the two ways of avoiding the paradox(i.e. the one presented here and that presented in [15]). It may be questioned whywe have three kinds: types, ctypes and metatypes. In particular, why we need bothtypes and metatypes and what is the di�erence between h�; �i and (� ! �). First,for types we have the non-problematic types as he; ei and he; pi and the circular typeswhich lead to the problems as hhe; pi; pi (see the rule: c-type base). Abstraction overthese circular types is what leads to paradoxes. For example, if R � �x:<e;p>::(xx)then RR = :(RR) and RR is of type p, which is a contradiction. This is the reasonwhy in the rule (�) in de�nition 1.2, we forbid abstracting over circular types. Hence,as << e; p >; p > is circular, R above is not allowed. As for metatypes, they play



294 Important Issues in Foundational Formalismsanother role. Namely, they give the type of a lifting function. Here, let us recallthat we live in a domain where all types are subsumed by e. Hence, for example, anexpression of type he; ei is also an expression of type e. Hence, we are taking a similarline to that of Bealer in [4] where everything is an object and app applies an objectto another. Now, sometimes we need to lift an object to a real function, so that ifthe object � was of type he; ei, the function [� will be of metatype e! e, and where([�)(�) = app(�; �). This is necessary when we want to claim that our approachdoesn't restrict itself to Bealer's claim that one only needs objects, nor to Chierchia'sclaim that one needs both objects and functions. We have a 
exible account whereone can use the one or the other. Moreover, we have two ways of forming predicativeexpressions: via � (which forms a predicative expression denoting an object) and via[ (which forms a predicative expression denoting a function). There are also two waysof applying a predicative expression to an argument: via app, which takes a predica-tive expression denoting an object and via real functional application, which takes apredicative expression denoting a function. These two ways of forming predicativeexpressions and of saturating them are related, as we shall see below.Judgements ` � sig � is a signature`� � context � is a context�`� � K � has kind K�`� ��� type � is contained in type ��`� ��� type � is equivalent to type ��`� �:� � has type �Note that the � relation between types is the symmetric closure of � below.Valid Signature (null sig ) ` ; sigThe empty relation is a signature.(: sig) ` � sig `� � K` �; c:� sig if c 62 dom (�)Valid Context (null context ) ` � sig`� ; context(: context) `� � context �`� � type`� �; x:� context if x 62 dom (�)(: truthcontext) `� � context`� �; ':t context if ' 62 dom (�)There is a containment relation � (in fact, a partial order) which is imposed on thetypes. When ��� , we say that � is contained in, or is a subtype of, � . ��� meansthat any expression which is of type � is also of type � ; moreover, any object in the



1. FULL EXPRESSIVENESS AND LOGIC 295model which belongs to the domain D� associated with � also belongs to the domainD� associated with � . The most salient containments in our system are the following:t � p � e� � eh�; �i � �We assume here three notions of kinds: types such as he; pi, metatypes such as (e! p)and c-types (or circular types) as in hhe; pi; pi. It is basically the c-types which causethe paradox and therefore we will restrict abstraction to the non circular types:Kinds, Types and Metatypes(base types) `� � context v 2 V�`� v type`� � context�`� e type`� � context�`� t type`� � context�`� p type(complex types) �`� � type �`� � type�`� h�; �i type(c-types base) �`� � type �`� ��p �`� ��p�`� hh�; �i; �i c-type(c-types 1) �`� � c-type �`� � type�`� h�; � i c-type(c-types 2) �`� � c-type �`� � type�`� h� ; �i c-typeLemma 1.1If h� ; �i is not a c-type, then neither � nor � is a c-type.�, which plays an important role in polymorphism is governed by the following con-ditions:Containment (e�) �`� � type�`� ��e(p�) `� � context�`� t�p(Dom�) �`� �1 type �`� �2 type�`� h�1; �2i��1



296 Important Issues in Foundational Formalisms(Ran�) �`� � type �`� �1��2�`� h�; �1i�h�; �2i(Id�) �`� � type�`� ���(Trans�) �`� ��� �`� ����`� ���(Anti�) �`� ��� �`� ����`� � � �Definition 1.2 (Type Inference for T
)(Base) `� � context�`� �:� where �:� 2 �(Contain) �`� ��� �`� �:��`� �:�(�) �; x:�`� �:� � 6 `� h�; �i c-type�`� (�x:�:�):h�; �i(app) �`� �:h�; �i �`� �:��`� app(�; �):�(Funct) �`� �:(� ! �) �`� �:��`� �(�):�([I) �`� �:he; �i�`� [�:(e! �) where � is p or e(
I) �`� ':p�`� 
':t(
E) �`� 
' : t�`� ' : p(= prop) �`� �:� �`� �:�0�`� [� = �]:p (note � and �0. This gives more propositions)(= E) �`� [� = �]:t �`� �:��`� �:�



1. FULL EXPRESSIVENESS AND LOGIC 297(:prop) �`� ':p�`� :':p(:I) �`� ':p �; ':t`� ?:t�`� :':t(:E) �;:':t`� ?:t �`� ':p�`� ':t(^prop) �`� ':p �`�  :p�`� [' ^  ]:p(^I) �`� ':t �`�  :t�`� [' ^  ]:t(^E) �`� [' ^  ]:t�`� ':t �`� [' ^  ]:t�`�  :t(_prop) �`� ':p �`�  :p�`� [' _  ]:p(_I) �`� ':t �`�  :p�`� [' _  ]:t �`� ':p �`�  :t�`� [' _  ]:t(_E) �; ':t`� �:t �;  :t`� �:t �`� [' _  ]:t�`� �:t(� prop) �`�  :p �`� ':p�`� [' �  ]:p(� I) �; ':t`�  :t �`� ':p�`� [' �  ]:t(� E) �`� ':t �`� [' �  ]:t�`�  :t(8prop) �; x:�`� ':p�`� 8x:�:':p(8I) �; x:�`� ':t�`� 8x:�:':t where x is not free in ' or any assumptions in �



298 Important Issues in Foundational Formalisms(8E) �`� 8x:�:':t �`� �:��`� '[�=x]:t(9prop) �; x:�`� ':p�`� 9x:�:':p(9I) �; x:�`� '[�=x]:t�`� 9x:�:':t(9E) �`� 9x:�:':t �; '[�=x]:t`�  :t�`�  :t(�) �`� [(�x:�:�) = (�y:�:�[y=x])]:t; where y is not free in �:(�) �`� [app(�x:�:�; a) = �[a=x]]:t;(
) �`� [�1 = �2]:t �`� [�1 = �2]:t�`� [app(�1; �1) = app(�2; �2)]:t(�) �`� �:��`� [� = �]:t(�) �`� [�1 = �2]:t �`� [�1 = �3]:t�`� [�2 = �3]:t(�) �`� [app(�1; x) = app(�2; x)]:t�`� [�1 = �2]:t where x is not free in �1; �2 or any assumptions in �:1.1.1 Interpreting �, the type-free �-calculus in T
The type free �-calculus (� for short) has � ::= xj(�1�2)j(�x:�1) for terms. We canembed the type free �-calculus in our system T
 via the embedding function J�:Definition 1.3We de�ne an embedding function J� : � 7! T
, which embeds � in T
 as follows:� J�(x) = x� J�(�1�2) = app(J�(�1);J�(�2))� J�(�x:�1) = �x : v:J�(�1) where v is a fresh type variable. This is to avoid anytype variable clashes inside terms.Note that we use free(�) for the set of the free variables of �.Lemma 1.4For any expression � and variable x, x 2 free(�) i� x 2 free(J�(�)).Proof. By an easy induction on � in �.



1. FULL EXPRESSIVENESS AND LOGIC 299Lemma 1.5J�(�[�0=x]) = J�(�)[J�(�0)=x].Proof. By an easy induction on � in �.As we consider the pure type-free �-calculus (i.e. no constants are used), we can ignoresignatures in this subsection. Hence, we drop the subscript � from � `� �:�.Lemma 1.6For any term � 2 �; 9�, uni�cation function �, � such that � ` �(J�(�)):�.Proof. This is long, but straightforward by induction on the terms in �.The following is an example which illustrates this lemma:Example 1.7Here we see how this lemma applies to �x:xx. We know that J�(�x:xx) = �x:v1:app(x; x).Now, if we take �(v1) = hv1; v2i and the empty context, then we can show that` �(�x:v1:app(x; x)):hhv1; v2i:v2i as follows:(note that �(�x:v1:app(x; x)) = �x:hv1; v2i:app(x; x)1: x:hv1; v2i ` x:hv1; v2i (Base)2: x:hv1; v2i ` hv1; v2i� v1 (Dom�)3: x:hv1; v2i ` x:v1 1; 2; (Contain)4: x:hv1; v2i ` app(x; x):v2 1; 3; (App)5: ` �x:hv1; v2i:app(x; x):hhv1; v2i; v2i 4; (�)� moreover assumes the usual �, � and � axioms.Lemma 1.8If � ` � = �0 then there exists �, � such that � ` [�(J�(�)) = �(J�(�0))] : t.Proof. By an easy induction on the derivation of � = �0 in �.Hence we have the full type free �-calculus in T
. With this interpretation, we arefree now to write some of our expressions as type free terms. That is, a term of theform �x:� is an acceptable term of our theory, even though it doesn't occur in thesyntax given for expressions.1.1.2 Interpreting the system �L in T
The types in �L (see [20]) are exactly those of T
, but �L does not have any metatypes.The ordering on the types is exactly the same in both systems. All the typing rulesof �L are also typing rules of T
. Moreover, the expressions of �L are as follows:� ::= x j app(�; �) j �x:�:� j :� j [� ^ �] j [� � �] j 8x:�:� j � = �In fact, all the expressions of �L are also expressions of T
. Hence, the translationfunction from �L to T
, J�L is simply the identity function.Now, as all the expressions, types, type ordering and type inference rules of �L areincluded in T
, then the following lemma is easily provable:Lemma 1.9If in �L, we prove � ` �:� then in T
, we prove � ` J�L(�):�.Corollary 1.10If in �L, we prove � ` �:p then in T
, we prove � ` J�L(�):p.



300 Important Issues in Foundational Formalisms1.1.3 Interpreting the system TH in T
The system TH of [15] has the following syntax of terms:(1.1) � ::= x j �x:� j �� j 
� j [� ^ �] j [� _ �] j [� � �] j [� = �] j 8x:� j 9x:�We interpret the �rst three terms exactly as we interpreted the type free �-calculus.We interpret the terms [� op �] where op is =;^;_ or � by [JT H(�) op JT H(�)]where JT H(�) is the interpretation of � in T
. We interpret 
� by 
(JT H(�)), 8x:�and 9x:� similarly to the interpretation of �x:�. For example, JT H(8x:�) = 8x:v:�where v is a fresh type variable.Lemma 1.11If TH ` � then 9� such that in T
, we can prove � ` JT H(�) : t.Proof. By an easy induction on the derivation of TH ` �.1.1.4 Interpreting the system L�in T
The system L� of [18] has the same signature and contexts as T
. Kinds however inL� are di�erent. They include, like the system here, types and metatypes. c-typeshowever are replaced by three other types, le-, fp- and wb-types. The idea is that fp-types play a similar role to c-types. That is, they are both circular. le- and wb-typeshowever, are there to avoid negative judgements in the type inference rule (�). Thatis, instead of adding the condition 6` � c-type we add the condition ` � wb-type,meaning that � is a well behaved type and that abstracting to the type � will not leadto contradiction. le-types were an intermediate step between fp-types and wb-types.That is not the end of the story. In fact, the typing system obtained in [18] is ratherdi�erent from that of this paper. We can understand the di�erence by giving twotypes which are comparable in one and not in the other.Example 1.12In T
, hp; ei � p but in [18], there is a lemma which says that if h�1; �2i � � theneither � = e or � is a complex type. Hence, it is not the case that hp; ei � p in [18].Moreover, in [18], as p � e then he; ei � hp; ei which is not derivable in T
.The syntax of expressions of L� is as follows:(1.2) � ::= c j x j �x:�:� j app(�; �) j �(�) j :� j [� j [� ^ �] j [� _ �] j [� � �]j [� = �] j 8x:�:� j 9x:�:�TH and L� are related. In fact, L�c (which is L� without constants) can be inter-preted in TH as follows: we take variables to variables, �x:�:� to �x:�, app(�; �) and�(�) to ��, [� to �, :� to :� and [� op �] to the obvious interpretation.Lemma 1.13If � `L� ':p then � `TH 
'.Proof. By an easy induction on � `L� ':p.



1. FULL EXPRESSIVENESS AND LOGIC 3011.1.5 Interpreting the system L� in T
The types in L� [14] are exactly those of T
, but L� does not have any metatypes.The ordering on the types is exactly the same in both systems. All the typing rulesof L� are also typing rules of T
. Moreover, the expressions of L� are as follows:(1.3) � ::= x j �� j �x:� j �x:�:� j 
� j :� j [� ^ �] j [� � �] j 8x:�:� j 8x:�In fact, all the expressions of L� are also expressions of T
 (look at the interpretationof the type free terms as done previously).Now, as all the expressions, types, type ordering and type inference rules of L� areincluded in T
, then the following lemma is easily provable (proof similar to that oflemma 1.9):Lemma 1.14If in L�, � ` �:� then in T
, � ` JL�(�):�.Corollary 1.15If in L�, � ` �:p then in T
, � ` JL�(�):p.1.1.6 Interpreting the Chierchia-Turner system� could be divided into two parts where we replace equality by an asymmetric relation!!:1. Contraction (�x:�)�0!!�[�0=x]2. Expansion �[�0=x]!!(�x:�)�0Contraction causes no problems but expansion does in the presence of negation. Thisis what guided Turner and Chierchia in developing their theory PT1 [6]. We nowshow this can be interpreted in T
. The construction of types (sorts) in PT1 is verystraightforward.Definition 1.16 (Sorts)The basic sorts of PT1 are e; u; nf and i. These stand for individuals, urelements,nominalized functions and information units, respectively. The only complex sort is(e! e).Definition 1.17 (Syntax of PT1)The syntax of PT1 is as follows: For any sort �, letME� be the meaningful expressionsof sort �. If � = e; i; u or nf , then V ar� is a denumerable set of variables of sort �.If � is any sort, Con� is a set of constants of sort �. The expressions of each sort arede�ned as follows:i: V ar� ; Con� �ME�ii: If � 2MEe and x 2 V are; then �x:� 2ME(e!e)iii: If � 2MEnf ; then [� 2ME(e!e)iv: If � 2ME(e!e); then \� 2MEnfv: If � 2ME(e!e) and � 2MEe; then �(�) 2MEevi: MEi �MEu;MEu;MEnf �MEevii: If � 2MEe; then y � 2MEiviii: If  ; ' 2MEi; �; �0 2MEe; and x 2 V ar� ; for any sort �; then� = �0;: ;  _ ';  ^ ';8x: ; 9x: ;  � ';  $ ' are all in MEi



302 Important Issues in Foundational FormalismsNote that y� asserts the truth of �, such that if � 2 MEi then y� is its truth valuebut if � 62MEi then y� will be false.Definition 1.18 (Axioms of PT1)The axioms of the theory are as follows:(1) (�x:�)�0 = �[�0=x](2) i. y , where  is a tautologyii.  � y ; where  is atomic, i.e. of the form �(�)iii. y �  iv. (8x: y  ) � y(8x: )v. (y ^ y( � ')) � y'vi. y(: y  )$ y y : That is, one can go from  to y if  is an information unit (i.e. a proposition) andis atomic.Now let us interpret PT1 in T
. First we start by interpreting the sorts into ourkinds. For this we introduce the function � : Sorts 7! Kind [ fu0g such that:�(e) = e�(i) = p�(u) = u0�(nf) = he; ei�(e! e) = e! eThe sort u strictly corresponds to our type e minus the type he; ei. Since we have noway of proving that there is such a type in T
, we postulate u0 which represents u.This will not a�ect our discussion below, and hence we shall proceed.We introduce for each expression � of PT1 the relevant environment of �, env(�)as follows:1: env(�) = (�:�(�)) if � 2 var� [ Con�2: env(�x:�) = env(�) if � 2MEe and x 2 V are3: env([�) = env(�) if � 2MEnf4: env(\�) = env(�) if � 2MEe!e5: env(�(�)) = env(�) [ env(�) if � 2MEe!e and � 2MEe6: env(y�) = env(�) if � 2MEe7: env(� = �) = env(�) [ env(�) if �; �0 2MEe8: env(: ) = env( ) if  2MEi9: env( op ') = env( ) [ env(') if  ; ' 2MEi; op = ^;_;�;$10: env(Qx: ) = env( ) if  2MEi; x 2 V ar� and Q = 8; 9What if env(�) and env(�0) overlap? That is, what if env(�) contains (x:e) andenv(�0) contains (x:p)? If this is the case, we can solve it by taking (x:p) to be thecommon element. This should not occur however if we assume that the variables andconstants of each sort are disjoint from those of any other sort. We now introduce amapping Tr which takes expressions of PT1 and returns expressions in T
. This is



1. FULL EXPRESSIVENESS AND LOGIC 303de�ned as follows:1: Tr(�) = � if � 2 var� [ Con�2: Tr(�x:�) = [(�x:e:Tr(�)) if � 2MEe and x 2 V are3: Tr([�) = [Tr(�) if � 2MEnf4: Tr(\�) = �x:e:app(Tr(�); x) if � 2MEe!e5: Tr(�(�)) = Tr(�)(Tr(�)) if � 2MEe!e and � 2MEe6: Tr(y�) = � Tr(�) ifTr(�):pc1 = c2 otherwise if � 2MEe; c1; c2 di�erent constants7: Tr(� = �0) = Tr(�) = Tr(�0) if �; �0 2MEe8: Tr(: ) = :Tr( ) if  2MEi9: Tr( op ') = Tr( ) op Tr(') if  ; ' 2MEi; op = ^;_;�10: Tr( $ ') = (Tr( ), Tr(')) if  ; ' 2MEi;  , '111: Tr(op x: ) = op x:�:Tr( ) if  2MEi; x 2 V ar� and op = 8; 9Note that Tr(y�) is always of type p. This is the reason why we couldn't take Tr(y�)to be T (�) � 
(Tr(�)) � �. Note moreover that for any expression � of PT1, it isdecidable whether Tr(�) is a proposition or not; i.e. it is decidable whether 
(Tr(�)):tor not. This can be seen by the following lemma.Lemma 1.19For any expression � of PT1, if � 2MEe then env(�) `� Tr(�):p is decidable and if� 2MEe!e then for any a 2MEe, env(�) `� Tr(�(a)):p is decidable.Proof. By a double induction on � in PT1.Lemma 1.20If � 2ME� where � is an expression of PT1, then env(�) `� Tr(�):�(�).Proof. By an easy induction on � in PT1. Work with the assumption of the existenceof u0 which denotes u and which satis�es its inclusion relationships.Lemma 1.21The axioms of PT1 are all valid in T
.Proof. This is easy, by going through de�nition 1.18.The above shows that PT1 of [6] can be considered as a subtheory of T
.1.1.7 T-treeNow collecting the results, we draw the picture which relates all these various theories.We add Milner's ML as it has been shown in [14] to be interpretable in L�.1i.e. ( � ') ^ (' �  ).
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 is the system of [22].� is the type free �-calculus.PT1 is the Chierchia-Turner system of [6].TH is the system of [15].�L is the system of [20].P is the system of Parsons in [36]L� is the system of [18].L� is the system of [14].ML is Milner's ML system of [35].2 Property theoriesOur interest in property theory stems from the fact that properties and propositionsare strongly related and provide the logical part of the system (whereas type theoryis going to provide the expressive part of the system). Our domain of properties willsatisfy important closure properties which will make the logic simple to reason with.Moreover, properties will play an important role in predicatives which can be lookedat in the Fregean sense or in the sense of Bealer. Our approach furthermore, permitsus to distinguish between predication and abstraction. To talk about such predicativeexpressions, we introduce in our language T
 the operator � (see [15]), understanding�� to mean that � is a property. � is de�ned as �� =df 8x:
(app(�; x)). That is,something is a property i� whenever it applies to an object, the result is a proposition.We construct further properties in the following way:1. � [ �0 =df �x:(app(�; x) _ app(�0; x))2. � \ �0 =df �x:(app(�; x) ^ app(�0; x))3. � =df �x::app(�; x)4. �! �0 =df �x:8y(app(�; y) � app(�0; app(x; y))5. � =df �x:(x = x)6. � =df �x::(x = x)Lemma 2.1The following are provable1. ` ��:t2. ` �� :t



2. PROPERTY THEORIES 3053. ` f��:t;��0:tg ` �(� [ �0):t4. f��:t;��0:tg ` �(� \ �0):t5. ` f��:tg ` ��:t6. ` f��:t;��0:tg ` �(�! �0):tThe following lemma shows that the internal logic (which occurs inside the �, suchas �x:' �  and �x:' give �x: ) and the external logic (which occurs outside andis the usual one), can be uni�ed. That is, the logic of our propositions and the logicof our properties are the same. Computationally, this means that logical connectivescan be pushed inside the �-operator.Lemma 2.2The following are provable1. [app(�x:�; �) ^ app(�x:�0; �) = app(�x:(� ^ �0); �)]:t2. [app(�x::�; �) = :app(�x:�; �)]:t3. [app(�x:�; �) _ app(�x:�0; �) = app(�x:(� _ �0); �)]:t4. [app(�; �) = :app(�; �)]:t5. [app(� \ �0; �) = app(�; �) ^ app(�0; �)]:t6. [app(� [ �0; �) = app(�; �) _ app(�0; �)]:t7. [app((�); �) = ::app(�; �)]:t8. f��:t;��0:tg ` [app((� [ �0); �), app((�); �) ^ app((�0); �)]:t9. f��:t;��0:tg ` [app(� [ �0; �) = app(�; �) _ app(�0; �)]:t10. f��:t;��0:tg ` [app(� \ �0�), app((� [ �0); �)]:t11. fapp(�; �):tg ` [app(�; �)]:t12. If �`� 
�:t then �`� [8y:app(�x:�; �0) � app(�x:8:y�; �0)]:t13. If �`� 
�:t then [9y:app(�x:�; �0) � app(�x:9y:�; �0)]:tNow we discuss what would happen to the lemmas above if we change the functionalapplication of the �-calculus by a more intensional application, call it pred. That is,from app(�; x) = app(�; y), we can deduce nothing about the relationship between� and � and x and y. pred on the other hand, will satisfy the condition that ifpred(�; a) = pred(�; b) then � = � and a = b. So let us introduce pred such thatpred(�; x):tapp(�; x):t app(�; x):tpred(�; x):t 
(pred(�; x)):t
(app(�; x)):t 
(app(�; x)):t
(pred(�; x)):t(2.1) [8x(pred(�; x) = pred(�; x))]:t) [� = �]:t(2.2) [pred(�; a) = pred(�; b)]:t) [(� = � ^ a = b)]:t(2.3)Lemma 2.3If �`� (��):t then �`� [8x:(app(�; x), pred(�; x))]:t.



306 Important Issues in Foundational Formalisms3 De�nability of determiners and quanti�ers in T
We de�ne the two determiners every' and a' in our framework:every0 =df �x:�y:8z(xz ! yz)a0 =df �x:�y:9z(xz ^ yz)The characteristic property of every', �, is de�ned by: P1 � P2 =df 8x(P1x! P2x).Lemma 3.1� is a transitive, re
exive and equisymmetric relation on properties.Lemma 3.2If P1 and P2 are properties then 
(every0P1P2) and every0P1P2 = P1 � P2.We de�ne P1 \1 P2 =df 9z(P1z ^ P2z).Lemma 3.3If P1 and P2 are properties then 
(a0P1P2) and a0P1P2 = P1 \1 P2.Outside the collection of properties, we cannot draw useful conclusions about every'because we cannot decide the propositionhood of an arbitrary formula in which !is the main connective. This is not a disadvantage as we only want every' to havemeaning when we are working with properties. Moreover, we cannot de�ne the typeof every' or of determiners inside our formal language. That is if we de�ne Quant andDet as follows Quant t =df 8x(�x! 
(tx))Det t =df 8x(�x! Quant (tx)):then there is no way to prove that Det and Quant always return propositions whenapplied to terms, because 8x(�x! Quant (tx)) and 8x(�x! 
(tx)) are not propo-sitions for any t. In fact even if t is a property, we still do not have a guarantee thatDet t and Quant t are propositions, due to the fact that �x is not a proposition. Thisis not serious as there is no particular reason for wanting determiners and quanti�ersto be determinate. We can prove many desirable features of our determiners, so whyinsist on determinability?Having determiners such as every', a' is one thing; being able to deduce thatevery', a' are determiners is something else. I.e. can we prove that Det(every'),Det(a'), etc..? Take for every', �x:�y:8z[xz ! yz]. To show that Det(every') wehave to show that 8x(�x ! 8y(�y ! H(every0xy))). But to be able to show theimplication we need to have 
(�x), and 
(�y), which we cannot assume. For thiswe need an extension for implication as follows:We always have that if fag ` b then f
ag ` a ! b (our version of the deductiontheorem). We need that if f
ag ` b then ` 
a ! b. Can we assert this rule? Thatis: (�) If f
ag ` b then ` 
a! b:Lemma 3.4Det(every'), Det(a'), if (*) holds. (See [15] for the proof.)



4. INTENSIONALITY AND EXTENSIONALITY 307Here we are concerned with some characteristics of determiners that can be provenin our theory. We start with the �rst theorem that asserts that the result of applyinga quanti�er to a property results in a proposition.Lemma 3.5(i) fQuant(Q); DPg ` 
(QP )(ii) fQuant(a); Quant(b)g ` Quant(a \ b)(iii) fQuant(a); Quant(b)g ` Quant(a [ b)(iv) fQuant(a)g ` Quant(ac) where ac is the complement of a(v) fevery0P1P2; every0P2P3g ` every0P1P34 Intensionality and extensionalityIt is often observed that sentence accent, as an indicator of focus, can a�ect theinterpretation of sentences, or at least the contexts in which they are appropriate.Thus(4.1) Felix ate the pie(with accent on the pie) is felicitous as an answer to the (perhaps only implicit)question What did Felix do? or Who did Felix ate?. By contrast,(4.2) Felix ate the pieanswers the question Who ate the pie?[31] has suggested that the information structure of such sentences should be rep-resented by separating sentence meaning into a pair consisting of a focus part and abackground part, where `the background is of a type that can be applied to the focus'.Moreover, [31], following [11], has proposed that even if there is no focus-sensitive op-erator (such as only), the focus should be `bound' by an illocutionary operator thatexpresses the sentence mood. Suppose, for example, that assert is the assertionoperator. Then (4.1) will receive the following representation:(4.3) assert(h�x:eat(felix; x); the-piei)One question which this proposal raises is whether `free' focus constructions such as(4.1) and (4.2) can ever occur in embedded constructions. Thus consider the followingexamples:(4.4) Sandy was surprised that Felix ate the pie.(4.5) Sandy was surprised that Felix ate the pie.Intuitively, these two sentences can have di�erent truth conditions. Suppose, forexample, that Felix is known to be both a glutton and a gourmand. Given thealternative delicacies available, it may surprise Sandy that Felix chose the pie toeat. Yet knowing that the pie did in fact get eaten, Sandy may not be surprisedthat it was Felix that did the eating. If this is correct, then it seems unlikely thatthe partitioning of meaning into focus and background can be entirely separated outfrom propositional content.



308 Important Issues in Foundational FormalismsThe relation pred which we introduced appears to give us an appropriate amountof structure within propositions. By comprehension, we know that the followingequations hold:(4.6) app(�x:eat(felix; x); the-pie) =eat(felix; the-pie) =app(�y:eat(y; the-pie); felix)However, pred does not support these identities:(4.7) pred(�x:eat(felix; x); the-pie) 6= pred(�y:eat(y; the-pie); felix)Obviously, there is an additional pragmatic burden being supported by informationstructure. Nevertheless, it seems clear that the apparatus we have de�ned gives theright kind of �ne-grainedness at the propositional level to support the distinctionswhich need to be drawn.In fact, the problem of identifying app(�x:eat(felix; x); the-pie) withapp(�y:eat(y; the-pie); felix) is a problem of intensionality. Our account does notface this problem as we have another predicate supported by our logic which is in-tensional. So even though pred(�x:eat(felix; x); the-pie) has the same truth value aspred(�y:eat(y; the-pie); felix), they are not equal. This problem is similar to anotherone of Bealer and Aczel in [2] which is as follows:Rajneeshee = �x:follows(x;Rajneesh)Fondalee = �x:follows(JaneFonda; x)app(Rajneeshee; JaneFonda) = follows(JaneFonda;Rajneesh)app(Fondalee;Rajneesh) = follows(JaneFonda;Rajneesh)Therefore app(Rajneeshee; JaneFonda) = app(Fondalee;Rajneesh)This conclusion might be questioned since someone could believe that Rajneesheeholds of Fonda, without believing that Fondalee holds of Rajneesh. The solution hereis to use pred instead of app. So we obtain that pred(Rajneeshee; JaneFonda) isequivalent in truth value to pred(Fondalee;Rajneesh) but not equal to it. This isanother example of the suitability of our framework for intensional and �nely-grainedcontexts.5 PolymorphismTypes or levels are not necessary in the avoidance of the paradox. The FoundationAxiom FA was included in ZF despite the fact that it was shown that antifoundationaxioms are consistent with ZF (see [1] for such a discussion). In fact, it is the Axiomof Separation which avoids the paradox. Moreover, the claim in the foundation ofNL has been concentrating on abandoning well foundedness. It has been put forwardthat non well foundedness and type freeness are necessary for NL. [21], for example,provides a uni�ed account of plurals and singulars by using the concept of non wellfoundedness and type freeness and [18] uses the notion of type freeness to give a moregeneral interpretation of NL.The fact that we ask for the full expressive power of the type free �-calculus doesnot mean that types are not useful. In fact when we ask for a type free set theory, or a



5. POLYMORPHISM 309set theory where the de�nition of a set may be impredicative, we don't go and forgetcompletely about sets. In type free theories, one asks for the furthest expressive power,where we can live with self reference and impredicativity but without paradoxes. Thebetter such an expressive system is, the more we are moving towards type freeness.It is enough to remember that up to the discovery of the paradoxes, the most idealsystem was of course type free. Due to the paradoxes, alas this type free paradise hadto be abandoned. Types found an attractive place in the history of foundation andin most areas of applications of logic. However, types are useful yet we must have asmuch type freeness as possible. In fact we may not want to be in
exible from the startif we could a�ord to be 
exible. Type free theories are very elegant and simple, so wecan have a clear picture of how much we have and how the paradox is avoided. Thenthe detail of constructing types if followed will produce all the polymorphic higherorder types that are needed. So a lot of unnecessary details (like constructing types)are left till later which will make it easier to prove results about the strength of thesystem and the expressive power. Also from the point of view of computation, typefree theories could be regarded as �rst order theories and hence are computionallymore tractable than typed theories. Completeness also holds for �rst order logicsbut has to be forced for higher order ones. Hence what we are arguing for is theuse of type freeness followed by the construction of 
exible polymorphic types. Itis also the case that the self referentiality of language requires type freeness. So wecan talk about a property having itself as a property. For example, the property ofthose things equal to themselves is equal to itself. We can talk about more involvedself-referential properties such as the property of properties that apply to themselves,the set of functions which given an argument x, apply the function �x:f(xx) to itself.5.1 Promiscuity and polymorphismFrom a pretheoretic point of view, natural language expressions clearly enjoy a greatdeal of combinatorial 
exibility. A familiar example is the conjunctive and whichplaces very few constraints on the category of its arguments, except perhaps thatthey be of the same category. Similarly, many verbs can combine with a range ofdi�erent complements:(5.1) a.Lee proved that 13 was a prime number.b.Lee proved the proposition that 13 was a prime number.c. Lee proved his claim.d.Lee proved it.Such combinatorial 
exibility deserves a name: let us call it functional promiscuity,following the lead of [12]. How should we model functional promiscuity? We couldtake the approach favoured by [4], and claim that natural language is entirely typefree; or else we could say that there are some type restrictions, but that the typesystem has enough slop in it to allow the requisite amount of promiscuity.Although Bealer's approach certainly deserves to be explored, it seems to be com-mitted to the view that syntactic categories in natural language are entirely arbitrary,in that they have no semantic import. It seems implausible that we can analyse nat-ural languages in an economical manner while completely eschewing syntactic cate-gories. Yet it also seems implausible that, say, the distinction between noun phrases



310 Important Issues in Foundational Formalismsand sentences is completely unmotivated from a semantic point of view. Yet if weconcede that syntactic categories do have some correlation with semantic domains,then we are essentially admitting types after all.Let us assume, then, that types are an appropriate tool in the task of analysingnatural languages. Then we might still jump in one of two ways in the face of datalike (5.1). We could conclude that each of the complements shown in (5.1) is of thesame type, in which case we would be forced to the conclusion that words like it, thisand something have multiple types. Alternatively, we might suppose that it has justthe type of singular NPs, as distinct from the type of propositions, in which case wehave to conclude that prove is polymorphically typed.As Parsons ([36]) shows, some amount of polymorphism is also entailed on theapproach where noun phrases like the proposition are analysed as having the sametype as subordinate clauses such as that 13 was a prime number. For then we seethat, for example, about must be polymorphic:(5.2) a.Kim talked about the proposition.b.Kim talked about Sandy.[20] gives a detailed account of Parsons' approach and interprets it in a theory �Lwhich we showed earlier to be a subtheory of T
. Hence Parsons account can also belooked at as a subtheory of T
.5.2 Fixed points, self application and a programming example�-calculus is at the heart of the denotational semantics of programming languages.Programming languages moreover range between the strictly and in
exibly typedlanguages (such as Pascal where you can only apply functions to a certain type) andthe polymorphically typed ones such as Milner's ML. Even the polymorphically typedlanguages are not polymorphic enough. In fact, the programming discipline whichpraises polymorphism non stop and which claims to be o�ering highly polymorphiclanguages, namely functional programming, has not yet provided a language whichcan make sense of the type of a �xed point operator, or any function which involvesself application. This is somewhat anomalous, as functional languages are claimedto be based on the �-calculus (and in particular on the type free or the polymorphic�-calculus). Now in these �-calculus, the �xed point operators and self applicationplay a very important role. Without them, we could not show that the solution tothe recursive equations exists. So isn't it strange that the most important items suchas self application and the �xed point operators cannot be typechecked in functionallanguages? After all they are the items which show us what the computable/noncomputable functions are. They are the items which solve the recursive equations,and they are the items which inform us about the looping/nonlooping programs.Furthermore, Milner's ML is based on the language �!Curry which cannot typecheck�x:xx nor Y . The polymorphism of ML which is based on �!Curry is not strongenough. The polymorphism introduced in this paper however, is strong enough totype check items involving self application. We shall illustrate this below.Example 5.1The translation of �f:(�x:f(xx))(�x:f(xx)) in T
 has type hhv2; v2i; v2i. Before weshow this, let us write A for �x:hhv1; v2i; v2i:app(f; app(x; x)) and write B for



5. POLYMORPHISM 311�x:hv1; v2i:app(f; app(x; x)). Now, the magical part of the program which takes thetype of f to be hv2; v2i and the type of x to be hhv1; v2i; v2i is a very important partof [14] and there is no room to discuss it here. But let us see how, when the types off and x are chosen, the type checker deduces the type of the translation of Y .(i) f : hv2; v2i assumption(ii) x : hhv1; v2i; v2i assumption(iii) hv1; v2i; v2i � hv1; v2i (Dom �)(iv) x : hv1; v2i (ii); (iii); (Contain)(v) app(x; x) : v2 (ii); (iv); (app)(vi) app(f; app(x; x)) : v2 (i); (v); (app)(vii) �x:hhv1; v2i; v2i:app(f; app(x; x)) : hhhv1; v2i; v2i; v2i (ii) : : : (vi); (�)(viii) hhhv1; v2i; v2i; v2i � hhv1; v2i; v2i (Dom �)(ix) �x:hv1; v2i:app(f; app(x; x)) : hhv1; v2i; v2i (vii); (viii); (Contain)(x) app(A;B) : v2 (iii); (ix); (app)(xi) �f :hv2; v2i:app(A;B) : hhv2; v2i; v2i (i) : : : (x); (�)The type of Y is really what it should be. Not only that, but functional languagestook polymorphism on their shoulders and avoided logic due to the reason that logicand strong polymorphism together lead to paradoxes. Now we have showed thatour system supports a higher polymorphism than functional languages but it alsocontains logic as we've seen before. In fact this system has been used to extendML with polymorphism and logic in [14]. And even though the system allows termssuch as �x:xx and type check them, all terms which are paradoxical are not typedand the system displays the message that their type is circular. So Russell's andCurry's sentences cannot be type checked and we are told that they are circular. Ofcourse here, one may wonder if the paradox is really avoided, and may give as anexample � � �y:(�x:y(xx)) which is typechecked to hhv2; v2i; hhv2; v2i; v2ii, and theninstantiate it to :� which would be of type hhp; pi; pi. This does not hold howeverbecause hhp; pi; pi is circular and the system does not accept such instantiation.Now, let us say a few words about the computable tractability of the type systemT
. This question is particularly important as we have a rich set of types and asthe subsumption relation may lead to complex (and non-terminating) type checkers.We have no problems however with T
. The reason being that the system of [14] isthe same system as this paper except that there, we did not have metatypes. Now,subsumption does not play any role in metatypes. So computable tractability (whichis a characteristic of the system of [14] and of its type checker) transforms easily toT
. In fact, one can take the implementation we have for [14] and extend it with justthe rules for metatypes and we obtain an automatic type checker for T
. Finally, letus list some terms and say how the type checker of [14] treats them and type checkthem. This is relevant for this paper as if we write a type checker for T
, then it willbehave exactly the type checker behaves for [14] except of course that there are nometatypes. Hence, on types we are the same. Note that if a term contains �x wherex is not explicitly typed (as in the �rst term below) then the type checker will �ndthe type itself.



312 Important Issues in Foundational FormalismsExpressions Types1 �x:x hv0; v0i2 �x : e:x he; ei3 �x:app(x; x) hhv0; v1i; v1i4 app((�x:app(x; x)); (�x:app(x; x))) v15 �x : p:app(x; x) hp; v0i6 �x : he; pi:app(x; x) error: hhe; pi; pi is c-type7 8x : hv0; v1i:app(x; y) p8 8x : e:x error, not a proposition9 8x : he; v1i:app(x; y) p10 8x:app(x; x) p11 �x : hv0; v1i:app(x; y) hhv0; v1i; v1i12 �x::app(x; x) error, c-typeHere don't be alarmed by the type of the sentences 7-10. These are sentences whichinvolve 8 and hence their type should be p. When the system can't make the type p,it returns an error message as in sentence 8.6 The item notationThe work described in the previous section extends to various other applicationsthat I have not described in this paper due to lack of space. The second programhowever that I have been involved with is related to a new notation (the item notation)in
uenced by the AUTHOMATH of de Bruijn. The results that we have obtainedin the last four years are very nice and are summarized in our literature below. Ofthese results, I will brie
y describe some points. First let me explain what is the itemnotation.The item notation is very simple. It follows the AUTHOMATH by writing theargument before the function. The di�erence however is that parenthesis in a termare grouped di�erently than in usual lambda calculus or in AUTHOMATH. The bestto describe the item notation is to give the translation from classical lambda calculusto item notation based one. So that, if I translates classical terms into our notation,then I(AB) is written as (I(B)�)I(A) and I(�x:A:B) is written as (I(A)�x)I(B).Both (A�) and (A�x) are called items.6.1 Explicit substitutionSubstitution is the most basic operation of the �-calculus. Manipulation of �-termsdepends on substitution. The �- and �-axioms are given in terms of substitution.What substitution are we talking about? Substitution in the �-calculus is usuallyde�ned (up to some variation) as t[x := t0]. So what is happening in t[x := t0]?We are replacing all free occurrences of x in t by t0, but without any disastrous sidee�ects such as binding occurrences of variables which were originally free. Take forexample xx[x := y]. This will result in yy. (�y:u:xy)[x := y] will result in �z:u:yz.So this process of substitution works �ne. It is a metalevel process however. That is,this substitution takes t; x; t0 and returns a �nal result t[x := t0]. The various stagesof moving from the t; x; t0 to t[x := t0] are lost and nothing matters but the result.



6. THE ITEM NOTATION 313This works �ne for many applications but fails in areas which are now becoming vitalin Computer Science. In functional programming for example, there is an interest inpartial evaluation. That is, given xx[x := y], we may not be interested in having yy asthe result of xx[x := y] but rather only yx[x := y]. In other words, we only substituteone occurrence of x by y and continue the substitution later. This issue of beingable to follow substitution and decide how much to do and how much to postpone,has become a major one in functional language implementation. However, in orderto have this spreading control over substitution and to be able to manipulate thosepartially substituted terms, we must render the latter from being a metalevel notionto an object level notion. It turns out that our new notation will enable such renderinge�ciently and will enable the representation of various forms of substitution: local,global, implicit and explicit.[19] introduces substitution which is object level but which can evaluate �-termsfully obtaining the result of the metalevel substitution. More precisely, we introducethe process of stepwise substitution, which is meant to re�ne reduction procedures.Since substitution is the fundamental operation in �-reduction, being in its turn themost important relation in lambda calculus, we are in the heart of the matter. Thestepwise substitution is embedded in the calculus, thus giving rise to what is nowadayscalled explicit substitution. It is meant as the �nal re�nement of �-reduction, whichhas { to our knowledge { not been studied before to this extent. This substitutionrelation, being the formalization of a process of stepwise substitution, leads to a nat-ural distinction between a global and a local approach. With global substitutionwe mean the intended replacement of a whole class of bound variables (all bound bythe same abstraction-�) by a given term; for local substitution we have only oneof these occurrences in view. Both kinds of substitution play a role in mathematicalapplications, global substitution in the case of function application and local substitu-tion for the `unfolding' of a particular instance of a de�ned name. We discuss severalversions of stepwise substitution and the corresponding reductions. We also extendthe usual notion of �-reduction, an extension which is an evident consequence of localsubstitution. The framework for the description of terms, as explained before, is veryadequate for this matter.6.2 Generalising reduction and term reshu�ingExample 6.1In the classical term t � ((�x7:X4 :(�x6:X3 :�x5:X1!X2 :x5x4)x3)x2)x1, we have the fol-lowing redexes (the fact that neither x6 nor x7 appear as free variables in their re-spective scopes does not matter here; this is just to keep the example simple andclear):1. (�x6:X3 :�x5:X1!X2 :x5x4)x32. (�x7:X4 :(�x6:X3 :�x5:X1!X2 :x5x4)x3)x2In item notation t becomes (x1�)(x2�)(X4�x7)(x3�)(X3�x6)((X1 ! X2)�x5)(x4�)x5.Here, the two classical redexes correspond to ��-pairs as follows:1. (�x6:X3 :�x5:X1!X2 :x5x4)x3 corresponds to (x3�)(X3�x6). ((X1 ! X2)�x5)(x4�)x5is ignored as it is easily retrievable in item notation. It is the maximal subterm oft to the right of (X3�x6).



314 Important Issues in Foundational Formalisms2. (�x7:X4 :(�x6:X3 :�x5:X1!X2 :x5x4)x3)x2 corresponds to (x2�)(X4�x7).Again (x3�)(X3�x6)((X1 ! X2)�x5)(x4�)x5 is ignored for the same reason asabove.There is however a third redex which is not immediately visible in the classical term;namely, (�x5:X1!X2 :x5x4)x1. Such a redex will only be visible after we have con-tracted the above two redexes (we will not discuss the order here). In fact, assumewe contract the second redex in the �rst step, and the �rst redex in the second step.I.e. ((�x7:X4 :(�x6:X3 :�x5:X1!X2 :x5x4)x3)x2)x1 !�((�x6:X3 :�x5:X1!X2 :x5x4)x3)x1 !�(�x5:X1!X2 :x5x4)x1 !� x1x4Now, even though all these three redexes are needed in order to get the normal formof t, only the �rst two were visible in the classical term at �rst sight. The thirdcould only be seen once we had contracted the �rst two redexes. In item nota-tion, the third redex (�x5:X1!X2 :x5x4)x1 is visible as it corresponds to the matching(x1�)((X1 ! X2)�x5) where (x1�) and ((X1 ! X2)�x5) are separated by the segment(x2�)(X4�x7)(x3�)(X3�x6). Hence, by extending the notion of a redex from being a�-item adjacent to a �-item, to being a matching pair of �- and �-items, we can makemore redexes visible. This extension furthermore is simple, as in (t1�)s(��v), we saythat (t1�) and (��v) match if s has the same structure as a matching composite ofopening and closing brackets, each �-item corresponding to an opening bracket andeach �-item corresponding to a closing bracket. For example, in t above, (x1�) and((X1 ! X2)�x5) match as (x2�)(X4�x7)(x3�)(X3�x6) has the bracketing structure[ ][ ] (see Figure 1 which is drawn ignoring types just for the sake of argument). With
(x1�) (x2�) (�x7) (x3�) (�x6) (�x5) (x4�) x5Fig. 1. Redexes in item notationthis extension of redexes, we re�ne �-reduction in two di�erent ways:1. By changing (�) from (t1�)(��v)t2 !� t2[v := t1] to (t1�)s(��v)t2 ;� s(t2[v :=t1]) if (t1�) and (��v) match.2. By reshu�ing terms so that matching �'s and �'s occur adjacently. Hence Figure 1will be redrawn as in Figure 2.[26] shows that ;;� (the re
exive transitive closure of ;�) is a generalisation of!!�.We then show that �! with ;;� satis�es all the desirable typing properties.[27] extends the Barendregt cube with this generalised reduction and shows that allthe above properties hold for this extension. Moreover, [26] shows that term reshuf-
ing is correct. In particular, we show that �! accommodated with term reshu�ingTS, satis�es the following:
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(c�) (P�x) (b�) (Q�y) (d�) (R�z) (a�) zFig. 2. Term reshu�ing in item notation1. Reshu�ing a term, moves all �'s next to their matching �'s.2. Reshu�ing terms preserves !� . That is, if t;� t0 then there exists t00 such thatTS(t)!� t00 and TS(t0) � TS(t00).3. Reshu�ing terms preserves types. That is, if � ` t : � then � ` TS(t) : �.6.3 Extending theories with de�nitionsIn many type theories and lambda calculi, there is no possibility to introduce de�-nitions which are abbreviations for large expressions and which can be used severaltimes in a program or a proof. This possibility is essential for practical use, and indeedimplementations of Pure Type Systems such as Coq ([7]), Lego ([32]) and HOL ([10])do provide this possibility. But what are de�nitions and why are they attractive?De�nitions are name abbreviating expressions and occur in contexts where we reasonabout terms.Example 6.2Let id = (�x:A:x) : A ! A in (�y:A!A:id)id de�nes id to be (�x:A:x) in a complexexpression in which id occurs two times.The intended meaning of a de�nition is that the de�niendum x can be substitutedby the de�niens a in the expression b. In a sense, an expression let x : A be a in bis similar to (�x:A:b)a. It is not intended however to substitute all the occurrencesof x in b by a. Nor is it intended that the de�nition be a part of our term. Rather,the de�nition will live in the environment (or context) in which we evaluate or reasonabout the expression.One of the advantages of the de�nition let x : A be a in b over (�x:A:b)a is that itis convenient to have the freedom of substituting only some of the occurrences of anexpression in a given formula. Another advantage is that de�ning x to be a in b canbe used to type b. [27] introduces de�nitions to Barendregt's cube and shows thatChurch Rosser, Subject Reduction, Unicity of Typing and Strong Normalisation allhold for this extension.AcknowledgementsI am grateful for the useful comments of Richard Oehrle and Aarne Ranta.
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