
A Reection on Russell's Rami�edTypes and Kripke's Hierarchy ofTruthsFAIROUZ KAMAREDDINE, Department of Computing Science,University of Glasgow, 17 Lilybank Gardens, Glasgow G12 8QQ,Scotland. E-mail: fairouz@dcs.gla.ac.ukTWAN LAAN, Department of Mathematics and Computing Science,Eindhoven University of Technology, P.O. Box 513, 5600 MBEindhoven, The Netherlands. E-mail: laan@win.tue.nlAbstractBoth in Kripke's Theory of Truth ktt [8] and Russell's Rami�ed Type Theory rtt [16, 9] we areconfronted with some hierarchy. In rtt, we have a double hierarchy of orders and types. That is, theclass of propositions is divided into di�erent orders where a propositional function can only dependon objects of lower orders and types. Kripke on the other hand, has a ladder of languages wherethe truth of a proposition in language Ln can only be made in Lm where min. Kripke �nds a �xedpoint for his hierarchy (something Russell does not attempt to do). We investigate in this paper thesimilarities of both hierarchies: At level n of ktt the truth or falsehood of all order-n-propositions ofrtt can be established. Moreover, there are order-n-propositions that get a truth value at an earlierstage in ktt. Furthermore, we show that rtt is more restrictive than ktt, as some type restrictionsare not needed in ktt and more formulas can be expressed in the latter.Looking back at the double hierarchy of Russell, Ramsey [11], and Hilbert and Ackermann [7]considered the orders to cause the restrictiveness, and therefore removed them. This removal resultedin Church's Simple Type Theory stt [1]. We show however that orders in rtt correspond to levelsof truth in ktt. Hence, ktt can be regarded as the dual of stt where types have been removedand orders are maintained. As rtt is more restrictive than ktt, we can conclude that it is thecombination of types and orders that was the restrictive factor in rtt.Keywords: The Hierarchies of Types, orders and truth levels, Principia's Substitution, the restric-tiveness of combining types and orders1 IntroductionThe role of Type Theory in Logic and Mathematics has always been a restrictiveone. The need for restrictions was realised at the beginning of this century, whenBertrand Russell showed that Frege's Begri�sschrift [5], a formalisation of logic, wasinconsistent1. Russell considered self-application to be the cause of the contradictions,and hence excluded all possibilities of self-application in his Theory of Types [13, 16].As paradoxical sentences in Natural Language play a role similar to that of the para-doxes in Logic and Mathematics, Type Theory eliminated the paradoxical sentences(see for instance [10]). Paradoxes moreover have been classi�ed in two categories (see1An English translation of Russell's letter to Frege in which this inconsistency is described can be found in [6]195J. of the IGPL, Vol. 4 No. 2, pp. 195{213 1996 c IGPL



196 A Reection on Russell's Rami�ed Types and Kripke's Hierarchy of Truths[11]): the logical and the semantical. The famous Russell's paradox is logical whereasthe famous liar's paradox is semantical. The semantical paradoxes usually involve thetruth predicate T which gives the truth value of a proposition. Tarski [14] shows thattruth is unde�nable and that having the truth predicate inside the language leadsto contradictions. For this reason, he distinguishes between (object-) language andmeta-language and allows the truth predicate only at the meta-level. Now, to talkabout the truth of sentences in the meta-language, one needs a meta-meta-languageand so on. Kripke [8], however, considers Russell's Theory of Types and the Theory ofTruth by Tarski to be too restrictive for a proper formalisation of Natural Languageand presents a type-free theory where the truth predicate belongs to the language,in which nevertheless the known paradoxes do not occur. Kripke's idea is to followa certain hierarchy as with Russell but to take the �xed point of his hierarchy oflanguages to reach a language which has its own truth predicate.We start this paper by presenting an overview of both Russell's system (in Section2, using a formalisation presented in [9]) and Kripke's (in Section 3). In Section 4 wecarefully compare both theories. As Russell's system is said to be more restrictive thanKripke's, this comparison is carried out by coding Russell's expressions in Kripke'stheory. The stronger restrictions in the Rami�ed Type Theory can be seen clearly:at several parts in the de�nition of the embedding the reader will notice that sometype-theoretic properties of Russell's expressions are mentioned, but not used in thisde�nition. We show that the embedding is conservative, i.e. that truth in Russell'stheory and in Kripke's theory are the same, as far as formulas expressible in Russell's(more restrictive) system are concerned.2 The Rami�ed Theory of Types rttIn this section we give a short, formal description of Russell's Rami�ed Theory ofTypes (rtt). Our formalisation of Russell's theory is the �rst of its kind and isworth attention. This formalisation is both faithful to Russell's original informalpresentation and compatible with the present formulations of type theories. Thebasic aim of rtt is to exclude the logical paradoxes from logic by eliminating allself-references. An extended philosophical motivation for this theory can be found inPrincipia Mathematica [16], pages 38{55. We will not go into the full details of theformalisation of Russell's theory (these details can be found in [9], the presentationby Russell himself in Principia is informal).In Subsection 2.1 we introduce propositional functions, the logical formulas of the`naive' system of logic. In Subsection 2.2 we present a rule to assign a type tosome of these propositional functions. The propositional functions that lead to thelogical paradoxes are, of course, not typable. In Subsection 2.3 substitution for rttis discussed. This part is rather technical, but we need it in the proof of lemma 4.8,which is essential in the proof of one of our fundamental results (theorem 4.10). Thatis, lemma 4.8 helps us in showing that ktt can be regarded as a system based on rttof which the types and not the orders have been removed.



2. THE RAMIFIED THEORY OF TYPES RTT 1972.1 Propositional functionsIn this section we shall describe the set of propositions and propositional functionswhich Whitehead and Russell use in Principia. We give a modernised, formal de�ni-tion which corresponds to the description in Principia.At the basis of the system of our formalization there is� an in�nite set A of individual-symbols;� an in�nite set V of variables;� an in�nite set R of relation-symbols together with a map a : R ! IN+ (indicatingthe arity of each relation-symbol).0-ary relations are not explicitly used in Principia but could be added without prob-lems. Since functions are relations in Principia, we will not introduce a special set offunction symbols.We assume that fa1; a2; : : :g � A; fx; x1; x2; : : : ; y; y1; : : : ; z; z1; : : :g � V;fR; R1; : : : ; S; S1; : : :g � R. We will use the letters x; y; z; x1; : : : as meta-variablesover V, and R;R1; : : : as meta-variables over R. Note that variables are written intypewriter style and that meta-variables are written in italics: x denotes one, �xedobject in V whilst x denotes an arbitrary object of V.We assume that there is an order (e.g. alphabetical) on the collection V, and writexhy if the variable x is ordered before the variable y. In particular, we assume thatxhx1h: : : hyhy1h: : : hzhz1h: : :We also have the logical symbols _, : and 8 in our alphabet, and the non-logicalsymbols: parentheses and the comma.Definition 2.1 (Propositional functions)We de�ne a collection F of propositional functions, and for each element f of F wesimultaneously de�ne the collection fv(f) of free variables of f :1. If R 2 R and i1; : : : ; ia(R) 2 A [ V then R(i1; : : : ; ia(R)) 2 F .fv(R(i1; : : : ; ia(R))) def= fi1; : : : ; ia(R)g \ V;2. If z 2 V, n 2 IN and k1; : : : ; kn 2 A [ V [ F , then z(k1; : : : ; kn) 2 F .fv(z(k1; : : : ; kn)) def= fz; k1; : : : ; kng \ V.If n = 0, we write z() so as to distinguish the propositional function z() from thevariable z;23. If f; g 2 F then f _ g 2 F and :f 2 F . fv(f _ g) def= fv(f) [ fv(g); fv(:f) def=fv(f);4. If f 2 F and x 2 fv(f) then 8x[f ] 2 F . fv(8x[f ]) = fv(f) n fxg.5. All propositional functions can be constructed by using the rules 1, 2, 3 and 4above.We use the letters f; g; h as meta-variables over F .2It is important to note that a variable is not a propositional function. See for instance [12], Chapter viii: `Thevariable', p. 94 of the 7th impression.



198 A Reection on Russell's Rami�ed Types and Kripke's Hierarchy of TruthsConvention 2.2[Variable convention] We make the usual convention that a variable x in a proposi-tional function f that is bound by the quanti�er 8 does not occur as a free variablein f . Moreover, di�erent bound variables in f have di�erent names.A propositional function f must be seen as a proposition in which some parts (thefree variables) have been left undetermined. It will turn into a proposition as soon aswe assign values to all the free variables occurring in it. In this light, a propositioncan be seen as a degenerated propositional function (with 0 free variables).It will be clear now what the intuition behind propositional function of the formR(i1; : : : ; ia(R)), f _ g, :f and 8x[f ] is. The intuition behind propositional functionsof the second kind is not so obvious. z(k1; : : : ; kn) is a propositional function of higherorder: z is a variable for a propositional function with n free variables; the argumentlist k1; : : : ; kn indicates what should be substituted3 for these free variables as soon asone assigns such a propositional function to z.Notice that there are propositional functions of the form z(k1; : : : ; kn) (where z 2 V)but that expressions of the form f(k1; : : : ; kn), where f 2 F , are not propositionalfunctions. Even substituting f for z in z(k1; : : : ; kn) does not lead to f(k1; : : : ; kn),as the notion of substitution in rtt will appear to be quite di�erent from the usualnotion of substitution in �rst order logic (see Subsection 2.3 for more details).Example 2.3Here are some higher-order propositional functions from ordinary mathematics.� The propositional functions z(x) and z(y) in the de�nition of Leibniz-equality:8z[z(x)$ z(y)]� The propositional functions z(0), z(x) and z(y) in the formulation of completeinduction: [z(0)! (8x8y[z(x)! (S(x; y)! z(y))])]! 8x[z(x)]� z() in the formulation of the law of the excluded middle:8z[z() _ :z()]2.2 Rami�ed typesNot all propositional functions should be allowed in our language. For instance, theexpression :x(x) is a perfectly legal element of F , nevertheless, it is the propositionalfunction that makes it possible to derive the Russell Paradox. Therefore, types areintroduced.Definition 2.4 (Rami�ed types)1. �0 is a rami�ed type (0 is called the order of this type);3In the Principia, it is not made clear how we should carry out such substitutions. We must depend on ourintuition and on the way in which substitution is used in the Principia. Nevertheless, it is hard and elaborate togive a proper de�nition of substitution. We present a short overview of this de�nition in Subsection 2.3; for amotivation of this de�nition and its relation to �-reduction in the �-calculus the reader should consult [9].



2. THE RAMIFIED THEORY OF TYPES RTT 1992. If t1; : : : ; tn are rami�ed types of orders a1; : : : ; an respectively, andaimax(a1; : : : ; an), then (t1; : : : ; tn)a is a rami�ed type of order a;3. All rami�ed types can be constructed using the rules 1 and 2.�0 represents the type of the individuals, and one can think of (t1; : : : ; tn)a as beingthe type of the propositional functions with n free variables, say x1; : : : ; xn, such thatif we assign values k1 of type t1 to x1, . . . , kn of type tn to xn, then we obtain aproposition. The type ()a stands for the type of propositions of order a.Russell strictly divides his propositional functions in orders. For instance, both8p[p() _ :p()] and R(a) are propositions, but they are of di�erent level: The earlierone presumes a full collection of propositions, hence (according to Russell) it cannotbelong to the same collection of propositions as the propositions p over which itquanti�es (among which R(a)). This made Russell decide to let 8p[p()_:p()] belongto a type of a higher order (level) than the order of R(a).This can already be seen in the de�nition of rami�ed types: (t1; : : : ; tn)a can onlybe a type if a is strictly greater than each of the orders of the tis.Definition 2.5Let x1; : : : ; xn be a list of distinct variables, and t1; : : : ; tn be a list of rami�ed types.We call x1:t1; : : : ; xn:tn a context and call fx1; : : : ; xng its domain.We write � ` f : t to express that f 2 F has type t in context �, and extendthe variable convention to contexts: If x is bound in f , then x does not occur in thedomain of �.We use �;� to range over contexts and t1; t2; : : : to range over types.We now present a set of typing rules for rtt. These rules are derived from andequivalent to the rules in [9], which are as close as possible to Russell's original ideas.We change our notation for propositional functions slightly: Instead of 8x[f ] we write8x:t[f ], where t is some rami�ed type.Definition 2.6 (Typing rules for rtt)� If c 2 A, then � ` c : �0 for any context �;� If f 2 F , and x1h: : : hxn are the free variables of f , and t1; : : : ; tn are types suchthat xi:ti 2 �, then � ` f : (t1; : : : ; tn)a if and only if{ If f � R(i1; : : : ; ia(R)) then ti = �0 for all i, and a = 1 (if ni0) or a = 0 (ifn = 0);{ If f � z(k1; : : : ; km) then there are u1; : : : ; um such that z:(u1; : : : ; um)a�1 2 �,and � ` ki:ui for all ki 2 A [ F , and ki:ui 2 � for all ki 2 V;{ If f � f1_ f2 then there are ua11 ; ua22 such that � ` fi : uaii and a = max(a1; a2);if f � :f 0 then � ` f 0 : (t1; : : : ; tn)a.{ If f � 8x:t0[f 0] then there is j such that �; x:t0 ` f 0 : (t1; : : : ; tj�1; t0; tj; : : : ; tn)a.Example 2.7:x(x) is not typable in any context �.Assume, we would have � ` :x(x) : t.Then t must be of the form (u)a, with x:u 2 �, as :x(x) has one free variable.This implies � ` x(x) : (u)a, hence by Unicity of Types below, u � (u0)a�1, withx : u0 2 �.As � is a context, we have u � u0, hence u � (u)a�1, which is impossible.



200 A Reection on Russell's Rami�ed Types and Kripke's Hierarchy of TruthsAn important result is the following (a proof can be found in [9]):Theorem 2.8 (Unicity of types)If � ` f : t and � ` f : u then t � u.2.3 Substitution in rttSubstitution in rtt is not simply a syntactic operation of replacing a variable by anobject, as is usual in �rst-order logic. This can be understood if we read the interpreta-tion of the propositional function z(k1; : : : ; km). Substituting a propositional functionf for the variable z should have as a result f , in which k1; : : : ; km are substitutedfor the free variables in f . So a substitution may result in a new substitution (andwe may wonder whether this process will ever terminate). Below, we give a formalde�nition of substitution in rtt (needed in the proof of the Substitution lemma 4.8).For examples and an extended motivation of the de�nition the reader may consult[9].Definition 2.9Let f 2 F , � ` f : t, k1; : : : ; km 2 A [ V [ F and x1; : : : ; xn 2 V such that� If ki 2 A then xi:�0 2 �;� If ki 2 V then there is t such that both ki:t 2 � and xi:t 2 �;� If ki 2 F then there is t such that � ` ki:t and xi:t 2 �.We de�ne f [x1; : : : ; xm:=k1; : : : ; km], the (simultaneous) substitution of k1; : : : ; kmfor x1; : : : ; xm in f (shorthand f [xi:=ki] if no confusion arises) by a double inductionon the order and structure of f :� f � R(i1; : : : ; ia(R)). De�ne i0j def= � k` if ij � x`ij if ij 62 fx1; : : : ; xmgf [xi:=ki] def= R(i01; : : : ; i0a(R)).� f � z(h1; : : : ; hn). We distinguish two cases:1. z 62 fx1; : : : ; xmg. De�ne h0j def= � k` if hj � x`hj if hj 62 fx1; : : : ; xmgf [xi:=ki] def= z(h01; : : : ; h0n).2. z 2 fx1; : : : ; xmg, assume z � xp. De�ne h0j def= � k` if hj � x`hj if hj 62 fx1; : : : ; xmgNotice that, as z, xp and kp have the same type, kp is a propositional func-tion with n free variables, say y1h: : : hyn. Now: f [xi:=ki] def= kp[y1; : : : ; yn:=h01;: : : ; h0n]. Note that the object on the right is a correct substitution (with respectto the types of the yj and the h0j) and has already been de�ned, as kp has thesame order as z, which is exactly one less than the order of z(h1; : : : ; hn).� f � f1 _ f2. Then f [xi:=ki] def= f1[xi:=ki] _ f2[xi:=ki].� f � :f 0. Then f [xi:=ki] def= :f 0[xi:=ki].� f � 8x:t[f 0]. Then f [xi:=ki] def= 8x:t[f 0[xi:=ki]] (we assume that x 62 fx1; : : : ; xmg).



2. THE RAMIFIED THEORY OF TYPES RTT 201Substitution in rtt is quite di�erent from usual notions of substitution in, for exam-ple, �rst order logic or �-calculus. For a good understanding of the rest of this articleit is essential to see these di�erences.There is no de�nition of substitution in Principia. The above de�nition is based onwhat happens in Principia when a substitution seems to take place. The hardest partof the de�nition is a substitution of the form z(h1; : : : ; hn)[x1; : : : ; xm:=k1; : : : ; km]where z is among the xi: say, z � xp. We can assume that kp is a propositionalfunction with n free variables, say, y1h: : : hyn.According to the de�nition, we �rst carry out the substitutions that have nothingto do with z (the de�nition of the h0js). This part is similar to a usual �rst-ordersubstitution.Now we must substitute kp for z in z(h01; : : : ; h0n). The intuition on the propo-sitional function z(h01; : : : ; h0n), that was explained at the end of Subsection 2.1,prescribes that the arguments h01; : : : ; h0n must be substituted for the free variablesy1; : : : ; yn of kp, as soon as kp is substituted for z. This leads to a new substitutionkp[y1; : : : ; yn:=h01; : : : ; h0n]. As the order of kp is lower than the order of z(h1; : : : ; hp),we may assume that the �nal result of this new substitution has already been de�ned.To understand the notion better it may be helpful to treat the substitutionz(h1; : : : ; hn)[xi:=ki] �rst as if it was a usual, �rst order substitution, and writedown kp(h01; : : : ; h0n) as an informal, intermediate result. Then the substitution of theh0j for the yj in kp can be seen as the contraction of the n �-redexes in the �-term(�y1 � � �yn:kp)h01 � � �h0n. Notice, however, that kp(h01; : : : ; h0n) is not a propositionalfunction (see the explanation in Subsection 2.1). More on the relation between sub-stitution in rtt and �-reduction in �-calculus can be found in [9].We give some examples of rtt-style substitutions in order to make the reader morefamiliar with this notion.Example 2.10� R(x1; x2)[x1:=a1] = R(a1; x2). On �rst order level, rtt-substitution is the same asin �rst order logic.� z(R(x); y)[x:=a] = z(R(x); y). Note that x is not a free variable of z(R(x); y)! Thesubstitution does not `continue' in the arguments of z(R(x); y): z(R(x); y)[x:=a] 6=z(R(x)[x:=a]; y).� z(a)[z:=R(x)] = R(x)[x:=a] = R(a).� z1(R(x))[z1:=z2(a)] = z2(a)[z2:=R(x)] = R(x)[x:=a] = R(a).� z1(x2; R(x1))[x2; z1:=a; z2(y)] = z2(y)[y; z2:=a; R(x1)] = R(x1)[x1:=a] = R(a). Thereader might want to make some informal, intermediate steps in this substitution(as explained above): z1(x2; R(x1))[x2; z1:=a; z2(y)] �rst leads to(z2(y))(a; R(x1)) as an intermediate result, and then to z2(y)[y; z2:=a; R(x1)].Similarly, this new substitution �rst leads to (R(x1))(a)[z2:=R(x1)] and then toR(x1)[x1:=a].We will need the following results about substitutions. They are proved in [9].Lemma 2.11The order of f is greater than or equal to the order of the substitution f [xi:=ki].Lemma 2.12fv(f [xi:=gi]) = (fv(f) n fx1; : : : ; xng) [ fgijgi 2 V and xi 2 fv(f)g.



202 A Reection on Russell's Rami�ed Types and Kripke's Hierarchy of Truths2.4 Logical truth for rtt in Tarski's styleWith substitution properly de�ned, we can give a de�nition of logical truth in Tarski-style for rtt:Definition 2.13 (Logical truth for rtt)Let f 2 F and assume fv(f) = ?. We de�ne rtt j= f :� If (a1; : : : ; am) 2 R then rtt j= R(a1; : : : ; am), for all individuals a1; : : : ; am.� If rtt j= f1 or rtt j= f2 then rtt j= f1 _ f2.� If not rtt j= f , then rtt j= :f .� If f � 8x:t[h] and for all g of type t, rtt j= h[x:=g]4, then rtt j= 8x:t[h].Remark 2.14At �rst sight, the reader might expect a clause for the case f � z(k1; : : : ; km) inthe above de�nition. However, fv(z(k1; : : : ; km)) � fzg, so fv(z(k1; : : : ; km)) 6= ?.Propositional functions of the form z(k1; : : : ; km) only occur in the above de�nition ina form in which the variable z has been bound by a quanti�er. As was noted earlier(in Subsection 2.1) expressions of the form f(k1; : : : ; kn), where f is a propositionalfunction, do not exist in rtt.Remark 2.15This de�nition of logical truth is quite informal. For example, the �rst clause `If(a1; : : : ; am) 2 R then rtt j= R(a1; : : : ; am)' requires the symbol R to be alreadyfully interpreted and to denote a relation independently of any Tarskian assignmentfunction. This is faithful to Russell, for whom the Tarskian notion of an uninterpretedformal language was quite alien.3 Kripke's Theory of Truth kttIn this section, we shortly describe Kripke's Theory of Truth ktt (see [8]). Kripkeexpresses higher-order formulaswithin a �rst-order language, using the fact that manyinteresting languages are rich enough to express their own syntax (for instance, via aG�odel Numbering).Let us assume a �rst-order language L, with variables ranging over a domain D,and primitive predicates interpreted by (totally de�ned) relations on D. Let us alsoassume two subsets S1 and S2 of D such that S1 \ S2 = ?. Kripke extends L toL(S1; S2) by adding a monadic predicate T. The main idea is to interpret T as a`truth predicate'. S1 contains the elements d of D for which T(d) holds (so it containsthe (codes of) formulas which we consider to be `true'); S2 contains those d 2 D forwhich :T(d) holds (hence it contains the (codes of) formulas which we consider to be`false'). We do not demand that S1 [ S2 = D, hence T is a partial predicate over D.Definition 3.1 (Logical truth for ktt)Let L be a �rst-order language over a domainD with R as set of primitive predicates.4FV(h[x:=g]) = ? by lemma 2.12



3. KRIPKE'S THEORY OF TRUTH KTT 203Let f be a sentence in L. We de�ne L j= f as follows5:f L j= f L j= :fR(d1; : : : ; dm) (d1; : : : ; dm) 2 R (d1; : : : ; dm) 62 Rg1 ^ g2 L j= g1 and L j= g2 L j= (:g1) _ (:g2)g1 _ g2 L j= g1 or L j= g2 L j= (:g1) ^ (:g2)8x[g] L j= g[x:=d] for all d 2 D L j= 9x[:g]9x[g] L j= g[x:=d] for some d 2 D L j= 8x[:g]::g L j= g L j= :gHere, R 2 R; d; d1; : : : ; dm 2 D, and g; g1; g2 are formulas of L. Now let S1; S2 � Dsuch that S1 \ S2 = ?. ktt � L(S1; S2) is the �rst order language over D withR[fTg as the set of primitive predicates (T 62 R). We extend the de�nition of L j= fto ktt j= f by putting ktt j= T(d) i� d 2 S1 and ktt j= :T(d) i� d 2 S2.It is important (and easy) to notice that the extension of L to L(S1; S2) is conservative:Lemma 3.2Let L be a �rst order language over a domainD, let S1; S2 � D such that S1\S2 = ?,and assume that f is a sentence in L. Then L j= f if and only if L(S1; S2) j= f .Now Kripke uses T as a predicate expressing truth by de�ning a hierarchy of languages.This hierarchy has much in commonwith Russell's hierarchy of orders. L was assumedto be able to express its own syntax, hence so is L(S1; S2), for any S1; S2. Notice thatthe sentences of L(S1; S2) do not depend on the sets S1 and S2, so we can take oneG�odel Numbering hi, being a map from the formulas of L(S1; S2) to D. The Kripke-hierarchy of languages is de�ned by presenting a hierarchy of pairs of sets (S1; S2):Definition 3.3For any ordinal � we de�ne a pair of sets (S�;1; S�;2) and a language ktt�.� S0;1 def= ?; S0;2 def= ?; ktt0 def= L(S0;1; S0;2).� If S�;1, S�;2 and ktt� have been de�ned, then we de�ne:S�+1;1 def= fhfijf is a sentence and ktt� j= fgS�+1;2 def= fhfijf is a sentence and ktt� j= :fg [[ fd 2 Djd 6� hfi for all sentences f of ktt�gktt�+1 def= L(S�+1;1; S�+1;2)� If � is a limit ordinal and S�;1, S�;2 and ktt� have been de�ned for all �h�, thenS�;i def= [�h�S�;iktt� def= L(S�;1; S�;2)5Notice that even though this de�nition is di�erent from Tarski's de�nition, especially with respect to thede�nition of L j= :f , it is easy to prove the equivalence of both de�nitions. This is because all primitive predicatesof L are totally de�ned. We took this de�nition however as we need to extend it for the partial predicate T.



204 A Reection on Russell's Rami�ed Types and Kripke's Hierarchy of TruthsLemma 3.4 (Conservation of knowledge)If �h� then S�;1 � S�;1 and S�;2 � S�;2.We can see the construction of the languages ktt� as a process of obtaining knowl-edge. At the initial stage, ktt0, T(d) is not de�ned for any d 2 D. There is noknowledge at all.Applying the de�nition of truth given for ktt0, we obtain knowledge: Some sentencesf can be judged true (ktt0 j= f ; we store the code of f in S1;1), some other sen-tences g can be judged false (ktt0 j= :g; the code of g is stored in S1;2). It is notpossible to judge all sentences. For instance, neither ktt0 j= 8x[T(x)_ :T(x)] norktt0 j= :8x[T(x)_ :T(x)] hold, so h8x[T(x)_ :T(x)]i neither belongs to S1;1, nor toS1;2.The knowledge we obtained is expressed by the predicate T in ktt1. In ktt1 weknow more about T than in ktt0. Hence more sentences can be judged true or false;we store their codes in S2;1 and S2;2 respectively. The lemma on Conservation ofKnowledge 3.4 guarantees that this process only extends our knowledge, i.e.:� Sentences that were judged to be true at level ktt1 remain true at level ktt2;� Sentences that were judged to be false at level ktt1 remain false at level ktt2.By iterating this process we arrive at the levels ktt3;ktt4; : : : ;ktt!;ktt!+1; : : :.This limit does terminate however in that it has a �xed point.4 Rtt in kttBoth in rtt and in ktt we are confronted with a hierarchy. Russell constructs ahierarchy by dividing propositions and propositional functions into di�erent orders,taking care that a propositional function f can only depend on objects of a lowerorder than the order of f .Kripke does not make this distinction beforehand. He has only one truth-predicate(T), but decisions about truth of propositions are split into di�erent levels: At the �rstlevel only decisions about propositions that do not involve T are made, at the secondlevel decisions about propositions involving T for codes of �rst-level propositions aremade, and so on.In Subsection 4.1 we investigate the similarity between both hierarchies, by de-scribing rtt within ktt. In Subsection 4.2 we investigate in which way rtt is morerestrictive with respect to self-reference than ktt.4.1 rtt embedded in kttTo embed rtt in a �rst order language L, we have to cope with two technical problems:� We need to encode the notion of and the manipulation with (higher-order) propo-sitional functions into a �rst-order language. The manipulation is especially im-portant with respect to substitution, which in the higher-order situation is muchmore complicated than in the �rst order case (cf. the de�nition of substitution2.9).� In Russell's theory, it is possible (and, due to the hierarchy of orders, in factonly possible) to quantify over only a part of all propositions. This makes it



4. RTT IN KTT 205impossible to translate, for instance, the proposition 8p:()1[p() _ :p()] directlyby 8x[T(x) _ :T(x)], as the quanti�er in the latter also quanti�es over (codes of)higher-order propositions.As we do not want contexts to be involved in this coding, we assume that each variablein V has (implicitly) a superscript t, indicating its type. This makes it possible todo without contexts, as the types of the variables are now clear from the function inwhich they occur. For reasons of clarity, we will not write this superscript explicitly,as long as no confusion arises.We propose the following solutions to the problems sketched above (we �rst givethe de�nition and afterwards explain our thoughts behind it):Definition 4.1Let ktt be the language L with domain D = A, extended with for each rami�edtype t a monadic predicate Typt, for each n 2 IN a (n+1)-ary function Appn, and themonadic predicate T (T will play the same role as in Section 3). We code the typablepropositional functions f of F to formulas f in the language ktt. We do this byinduction on the structure of f .� If f � R(i1; : : : ; ia(R)), then f is present in the original language L and we takef def= f .� If f � z(k1; : : : ; km), write Ki � hkii for ki 2 F , and Ki � ki for ki 2 A [ V.De�ne f def= T(Appm(z;K1; : : : ;Km)).� If f � f1 _ f2, then f def= f1 _ f2.� If f � :f 0, then f def= :f 0.� If f � 8x : u[f 0], then f def= 8x[:Typu(x) _ f 0].We now give a formal interpretation to the newly introduced predicates Typt andAppn.Definition 4.2For all rami�ed types t 6= �0, let Typt def= fhfijf 2 F and f : tg and Typ�0 def= D.Assume: n 2 IN, f 2 F is of type (t1; : : : ; tn) and has free variables x1h: : : hxn.Assume also: for i = 1; : : : ; n, ki : ti and either di = ki (if ti = �0) or di = hkii (ifti 6= �0). We de�ne:Appn(hf i; d1; : : : ; dn) def= hf [x1; : : : ; xn:=k1; : : : ; kn]i:From now on, we will interpret the function symbol Appn as the function Appn, andthe relation symbol Typt as the relation Typt.We make some remarks with respect to these de�nitions.Remark 4.3It is clear that the newly introduced functions Appn are used for carrying out sub-stitutions, thus solving the �rst of the technical problems stated at the beginning ofthis subsection. The predicates Typt solve the second problem, as can be seen in thede�nition of 8x[f ].



206 A Reection on Russell's Rami�ed Types and Kripke's Hierarchy of TruthsRemark 4.4Notice that we did not de�ne the functions Appn on the full domainDn+1. We couldhave done that, but will not need Appn on other elements ofDn+1 than de�ned above.Remark 4.5At this point, our work is related to (but independent of) Paul Gilmore's work onNaDSet 1. NaDSet 1 is a theory of generalized abstraction which makes n-ary predica-tion a primitive of the system, with the unary truth predicate being trivially de�nableupon this basis. For a useful connection between ktt and NaDSet 1, see [4].Remark 4.6The extensions suggested above are of a mere technical character. Therefore, we thinkthat we can still speak of an embedding of rtt within ktt.Notation 4.7To keep notations uniform, we sometimes want to speak about hxi when we onlyintend to mention x, for x 2 V, and about hai when only meaning a, for a 2 A.Hence, we formally de�ne: hxi def= x and hai def= a for all x 2 V and all x 2 A.Below, we work in two systems: rtt and ktt. These systems have a di�erentnotion of substitution, though they use the same notation for expressing substitution.From the context, however, it will always be clear which kind of substitution is meant.The language ktt above is similar to that presented in Section 3, and we constructktt� for each ordinal � as described in that section. We need the following lemma:Lemma 4.8 (Substitution lemma)Assume g is a propositional function of order m and g[x:=k] is a proposition of ordern. If kttn j= g[x:=k] then kttm j= g[x:=hki].Proof. We make the proof a little easier by proving that if: If g is a propositionalfunction of order m and g[x1; : : : ; xp:=k1; : : : ; kp] is a proposition of order n, then 1and 2 hold where1. kttn j= g[x1; : : : ; xp:=k1; : : : ; kp] implies kttm j= g[x1; : : : ; xp:=hk1i; : : : ; hkpi]2. kttn j= :g[x1; : : : ; xp:=k1; : : : ; kp] implies kttm j= :g[x1; : : : ; xp:=hk1i; : : : ; hkpi]We write g[xi:=ki] as a shorthand for g[x1; : : : ; xp:=k1; : : : ; kp] as long as no confusionarises, and use similar abbreviations for other substitutions. The proof is by inductionon the structure of g.� g � R(i1; : : : ; ia(R)). Then, by de�nition of g[xi:=ki], g[xi:=ki] � g[xi:=hkii]. Asn � m, the lemma follows by the lemma on Conservation of Knowledge 3.4.� g � z(h1; : : : ; hq). If z 62 fx1; : : : ; xpg then again g[xi:=ki] � g[xi:=hkii]6 andagain the lemma follows from n � m and the lemmaon Conservation of Knowledge3.4.The interesting case is when g � z(h1; : : : ; hq) and z 2 fx1; : : : ; xpg. To keepnotations clear, we assume p = 1 and z = x1. The reader may verify that thecase pi1 only complicates notation, not the proof. We only show 1 as 2 is similar.Assume kttn j= g[xi:=ki].6This is because in this case, no higher order substitutions occur, and the notion of rtt-substitution coincideswith ordinary, �rst order substitution.



4. RTT IN KTT 207As k1 and z have the same type, k1 has q free variables, say y1h: : : hyq , and byde�nition of substitution in rtt, z(h1; : : : ; hq)[x1:=k1] � k1[yi:=hi]. Notice thatz and k1 have the same order (m�1), and that n, the order of k1[yi:=hi], is atmost the order of k1 (lemma 2.11). This means: n � m � 1. Using lemma 3.4:kttm�1 j= k1[yi:=hi].By the de�nition of T we have: kttm j= T�Dk1[yi:=hi]E� : We are now donebecause: g[x1:=hk1i] � z(h1; : : : ; hq)[z:=hk1i]� T(Appq(z; hh1i; : : : ; hhqi))[z:=hk1i]� T(Appq(hk1i; hh1i; : : : ; hhqi))� T�Dk1[yi:=hi]E�� g � g1 _ g2.First, assume kttn j= g[xi:=ki]. As g[xi:=ki] � g1[xi:=ki] _ g2[xi:=ki], there isj such that kttn j= gj[xi:=ki]. By the induction hypothesis, there is j such thatkttm j= gj[xi:=hkii], as the order of gj is � m. Hence kttm j= g1[xi:=hkii] _g2[xi:=hkii], so we are done.Now assume kttn j= :g[xi:=ki]. This means: kttn j= :(g1[xi:=ki]_ g2[xi:=ki]).Hence kttn j= :gj[xi:=ki] for j = 1; 2, and by the induction hypothesis, thismeans (again the order of the gjs are � m) kttm j= :gj[xi:=hkii] for j = 1; 2,hencekttm j= :g1[xi:=hkii] ^ :g2[xi:=hkii].So kttm j= :(g1[xi:=hkii] _ g2[xi:=hkii]), and kttm j= (:(g1 _ g2))[xi:=hkii].� g � :g0.If kttn j= g[xi:=ki] then use the induction hypothesis for g0.If kttn j= :g[xi:=ki] then kttn j= g0[xi:=ki], so by induction kttm j= g0[xi:=hkii],so kttm j= ::g0[xi:=hkii].� g � 8x:t[g0].If kttn j= g[xi:=ki], then for all d such that Typt(d), kttn j= g0[xi:=ki][x:=d],hence for all these d, kttm j= g0[xi:=hkii][x:=d], so kttm j= 8x[g0[xi:=hkii]], andkttm j= g[xi:=hkii].If kttn j= :g[xi:=ki] then there is d 2 D such that Typt(d) and kttn j=:g0[xi:=ki][x:=d], hence kttm j= :g0[xi:=hkii][x:=d], and kttm j= 9x[:g0[xi:=hkii]].Hence kttm j= 9x[:g0[xi:=hkii]] and kttm j= :8x[g0[xi:=hkii]].Remark 4.9We have actually proven a stronger fact: Assume g is a propositional function of orderm and g[x:=k] is a proposition of order n. If kttn j= g[x:=k] then kttp j= g[x:=hki],where p = min(m;n+1). This tells us more about the role of the predicate T: Althougha substitution may lower the order of a propositional function by more than one, onlyone application of the T-predicate is involved (hence only one level in the hierarchyof truths). However, in the theorem below we only need the (weaker) form in whichwe presented the substitution lemma originally.



208 A Reection on Russell's Rami�ed Types and Kripke's Hierarchy of TruthsTheorem 4.10Let f : ()n 2 F . Then: rtt j= f if and only if kttn j= f :Proof. [(] Due to the use of : in the de�nition of kttn j= f , we prove a little bitmore:� If rtt j= f then kttn j= f ;� If rtt j= :f then kttn j= :f .These claims are proved simultaneously by induction on the de�nition of rtt j= f .� f � R(d1; : : : ; da(R)) for a R 2 R and some d1; : : : ; da(R) 2 D. Then f � f .As rtt j= f , we know that (d1; : : : ; da(R)) 2 R, hence kttn j= f . The proof issimilar for :f .� f � g1 _ g2. Then the orders of the gis are either equal to, or smaller than n.First assume rtt j= f . Then we know that rtt j= gi for i = 1 or i = 2. By theinduction hypothesis (and Conservation of Knowledge, if the order of gi is hn),kttn j= gi, As f � g1 _ g2, kttn j= f .Now assume rtt j= :f . Then it is not true that rtt j= f , so it is not truethat rtt j= gi for i = 1 or i = 2. So rtt j= :gi for i = 1; 2. By theinduction hypothesis (and, again, possibly Conservation of Knowledge), we havekttn j= :gi, hence, kttn j= :gi for i = 1; 2. So kttn j= :g1 ^ :g2,and henceso kttn j= :f .� f � :g. If rtt j= f then use IH on g to get kttn j= :g, hence kttn j= f .If rtt j= :f , then rtt j= g, so by induction kttn j= g, so kttn j= ::g, sokttn j= :f .� f � 8x:t[g]. Notice that g has order n.If rtt j= f then for all k:t, rtt j= g[x:=k]. By the induction hypothesis, weknow that for all k : t, kttmk j= g[x:=k], where mk is the order of g[x:=k].By the substitution lemma 4.8 we have: For all k : t, kttn j= g[x:=hki]. Hence,for all d 2 D, kttn j= :Typt(d) _ g[x:=d]. Hence kttn j= 8x : t[g].The argument for rtt j= :f is similar.[)] This is easy now. Assume, for the sake of the argument, not rtt j= f . Thenrtt j= :f , hence kttn j= :f and kttn j= f , which is a contradiction.This theorem clearly shows the relation between the orders in rtt and the levelsof truth in ktt. The heart of the proof of theorem 4.10 is in the proof of casez(h1; : : : ; hq) of the substitution lemma 4.8. This is the only place in the proof wherethe properties of the predicate T are used. It is understandable that these propertiesmust be used at exactly this place when we look at the de�nition of propositionalfunctions and the typing rules for propositional functions. Exactly the possibilityof constructing a propositional function of the form z(h1; : : : ; hq) makes it possibleto arrive at higher-order propositional functions and higher-order propositions. Soexactly at this spot, Kripke's predicate T must appear, in order to raise one level inktt as well.Corollary 4.11Rtt j= f if and only if ktt! j= f .We cannot improve the result of theorem 4.10 in general: There are propositions fof order n in rtt whose code is provable at level kttn in ktt, but not at any lowerlevel.



4. RTT IN KTT 209Theorem 4.12Let ni0, and let fn be the nth-order-proposition 8p:()n�1[p() _ :p()]. Then:kttm j= fn if and only if m � n:Proof. [(] follows from theorem 4.10 and lemma 3.4. [)] is by induction on n.Observe that fn � 8p[:Typ()n�1(p) _ (T(App0(p)) _ :T(App0(p)))]:� n = 1. Let g be any proposition of order 0 in rtt. Then ktt0 j= Typ()0(g) butas T is completely unde�ned at level 0, ktt0 6j= T(App0(g)) _ :T(App0(g)). Hence,ktt0 6j= f1.� Assume the theorem has been proved for all n0hn. Assume mhn and kttm j= fn.By de�nition of j=, we have: kttm j= T(App0(hfn�1i))_:T(App0(hfn�1i)), and forreasons of consistency: kttm j= T(App0(hfn�1i)), hence kttm j= T(fn�1), so, bythe de�nition of T: kttm�1 j= fn�1, which contradicts the induction hypothesis,as m� 1hn� 1.There are, however, propositions f of order n in rtt for which kttm j= f or kttm j=:f can already be established for mhn.Example 4.13Consider a proposition g � g1_ g2 where g1 is a true proposition of order m and g2 isany proposition of order n. As g1 is true in rtt, we have kttm j= g1, and thereforekttm j= g.4.2 The restrictiveness of Russell's theoryWe illustrate the di�erent approaches of Russell and Kripke by an example given byKripke himself.Example 4.14Let D, R, L, S�;i and ktt� be as in Section 3 where R contains two monadicpredicates V and W which are collections of (codes of) utterances of persons V andW. Now de�ne P � 8x[:W(x)_ :T(x)]Q � 8x[:V(x)_ :T(x)](informally, P denotes: All utterances of W are false, and Q denotes: All utterancesof V are false). Now distinguish two situations. In both situations, we want toknow whether P and Q become true or false when passing through the hierarchy oflanguages ktt0, ktt1,. . . . Or, more formally, whether there is � such that hVi andhWi belong to S�;1 [ S�;2.1. V = fhP ig and W = fhQig (notice that V and W are just subsets of D).In this case, P is logically equivalent to :T(hQi) and Q is logically equivalent to:T(hP i). As a consequence we have: if hQi 2 S�;i then hP i 2 S�;3�i for some�h�, and if hP i 2 S�;i then hQi 2 S�;3�i for some �h�. Hence hP i; hQi 62 S�i , forall �; i, so neither the truth of P nor the truth of Q will ever be established.



210 A Reection on Russell's Rami�ed Types and Kripke's Hierarchy of Truths2. In the situation above, the only utterance of V was that anything said by W isfalse, and vice versa. In that case, it is also intuitively clear that it is impossibleto say anything about the truth of P or Q. Now we change the situation. Weassume that R also contains a third monadic predicate R, and that d is an elementof R. We rede�ne W: W def= fhQi; hR(d)ig:This has drastical consequences. As ktt0 j= R(d), hR(d)i 2 S1;1, so ktt1 j=T(hR(d)i), hence ktt1 j= :P . Therefore, hP i 2 S2;2, so ktt2 j= :T(hPi), hence:ktt2 j= :Pktt2 j= QThe fact that W utters a true sentence makes it possible to conclude at level 1that P is false, irrespective of the fact that W has also uttered another sentenceQ, of which we can't establish the truth at level 1. The falsehood of P makes itpossible to decide about Q at the next level, so the falsehood of P and the truthof Q could have been established at level 2.In Russell's terminology it wouldn't be possible to write expressions like P and Qat all: They are excluded beforehand, as P involves Q, therefore has to be of higherorder than Q, and Q involves P , therefore has to be of higher order than P .This indicates an important di�erence between rtt and ktt: Kripke allows muchmore expressions to be written down. In some situations these expressions will neverobtain any truth-value (like P and Q in the �rst example), but in other situations(so: with other de�nitions of the primitive predicates) the same expressions will get atruth-value. Kripke concludes: `it would be fruitless to look for an intrinsic criterionthat will enable us to sieve out { as meaningless, or ill-formed { those sentences whichlead to paradox' .Example 4.15Another, more formal, example of a proposition f in ktt for which there is no g 2 Fwith g � f is the proposition f def= 8x[T(x) _ :T(x)]:Assume, for the sake of the argument, that g � f . Let m be the order of g. Thenkttm j= f or kttm j= :f . This implies kttm j= T(fm) _ :T(fm), where fm is as intheorem 4.12. By de�nition of T this means kttm�1 j= fm or kttm�1 j= :fm, bothcontradicting theorem 4.12.5 Orders and typesrtt is based on a double hierarchy: One of types and one of orders. This doublehierarchy is too restrictive. It is possible to develop Logic and Mathematics withinrtt, but for instance the proof of the Supremum Theorem, which is fundamental inreal analysis, cannot be given. The origin of the problem is the use of the so-calledpredicative and impredicative propositional functions.Definition 5.1Let f 2 F be typable in rtt. Assume f has free variables x1; : : : ; xn of ordersm1; : : : ;mn respectively. f is called predicative if its order is equal to max(m1; : : : ;mn)+1; if its order is greater then f is called impredicative.



6. CONCLUSION 211As the impredicative propositional functions cause problems, the `Axiom of Reducibil-ity' is proposed in `Principia Mathematica' (1910{1912). This axiom is as follows:For each f 2 F there is a predicative g 2 F that is logically equivalent to fThis axiom has been controversial from the moment it was introduced. Russell himselfadmits that `it has a purely pragmatic justi�cation: it leads to the desired results,and to no others. But clearly it is not the sort of axiom with which we can restcontent.' Though serious e�orts have been made to develop Mathematics within rtt(for instance by Weyl [15]), this has not become the usual practice. In 1925, Ramsey[11] shows that, by making distinction between language and meta-language, theorders can be removed from the system without re-introducing any known paradox.Hilbert and Ackermann [7] present a similar idea. With this remark the type-theoreticfoundations for the Simple Theory of Types stt, introduced by Church [1] in 1940,were laid, and orders have remained out of the important modern type systems uptill now.It is therefore interesting to notice the relation between orders in rtt and levels oftruth in ktt, as formulated in theorem 4.10. It shows that Kripke's system can beregarded as a system based on rtt, of which not the orders, but the types have beenremoved. In this way, ktt can be seen as a system that is dual to stt.ktt, however, has a more subtle approach than many type theories as it does notexclude any, possibly `paradoxical', expression from the syntax, which is the usualtype-theoretic approach. If an expression is paradoxical, it will not get a truth valueat any level � of the hierarchy of Truths. Whether an expression is paradoxical ornot does not only depend on its syntactic structure, but also on the domain D (seeexample 4.14). So paradoxes are only excluded at the level of semantics.The discussion above shows that the orders of rtt are not to be blamed for therestrictiveness of rtt. ktt is a system which contains orders but has only few re-strictions towards self-application.It is the combination of orders and types that makes rtt restrictive.6 Conclusion6.1 ResultsWe presented a formalisation of Russell's Rami�ed Theory of Types rtt which isfaithful to both Russell's original informal presentation and the present formulationsof type theories.We used this formalisation to compare rtt with Kripke's Theory of Truth ktt. Weestablished the relation between Russell's hierarchy of orders and Kripke's hierarchyof truth-levels. In particular we showed that1. A proposition of rtt of order n is true if and only if it is true at level n in Kripke'sTruth Hierarchy (theorem 4.10).2. The truth of some propositions of order n of rtt cannot be established in kttat a level of truth hierarchy smaller than n (theorem 4.12). Yet for some otherpropositions, it can be established at an earlier level (example 4.13).We also saw that Russell's theory has many restrictions. On the one hand, all propo-sitional functions of rtt can be coded in Kripke's Truth Theory; on the other hand



212 A Reection on Russell's Rami�ed Types and Kripke's Hierarchy of Truthsthere are formulas of Kripke's theory that cannot be expressed in rtt, respectingboth hierarchies.We conclude, as so often has been concluded in Logic, in Mathematics and inNatural Language, that Russell's Theory of Types is too restrictive. However, theusual objections against rtt in Logic and Mathematics is the use of orders. AfterRamsey [11] and Hilbert and Ackerman [7] had given motivations for leaving out theseorders, they have hardly been used anywhere in logic or mathematics (though Weyl[15] has tried to give a build-up of mathematics within rtt).Here the situation is completely di�erent. Orders in rtt and truth-levels in kttgo hand in hand; on the other hand the types do not appear any more in ktt. Thisestablishes ktt as the dual to stt (Church's Simple Type Theory) which removesthe orders from rtt.As far as we know, our contribution is the �rst statement of a formal correspon-dence between �nite levels of truth in Kripkean Theory of Truth (ktt) and ordersof quanti�cation in Russell's Rami�ed Type Theory (rtt). Our conclusion is that,contra Ramsey, it is the restriction of the mixture of orders and types on predicationrather than order restriction on quanti�cation alone that accounts for the very re-strictive nature of rtt. This is important and takes an added signi�cance when seenin the context of the logicisation of second order arithmetic in a type free �rst orderlogic utilizing Kripke{Gilmore models which realises the hope of Russell's earlier typefree substitutional theory.6.2 Future workKripke's theory has a trans�nite hierarchy of orders whereas Russell did not investi-gate such trans�nity. It would be interesting hence to see how far one can build typesin Russell's theory and what properties would hold at such level.We concluded that some order-n-properties of rtt get their truth-value only at leveln of ktt whilst others get it already at an earlier level. This divides propositions intotwo classes and an accurate description of these classes may be interesting.As to the question of Kripke being more liberal in that any well-formed sentencecan be expressed but its truth value may not be calculated (think of the paradox-ical sentences), one may compare this approach to the implicit typing of Curry'sType Theory ctt [2, 3] where self-referential sentences may be expressed but are nottypable. Hence, even though we said that ktt is the dual of stt, it may be the twin-brother of ctt where only truth or falsehood of typable terms can be determined. Weare currently investigating this issue.AcknowledgementsWe would like to thank Rob Nederpelt and the anonymous referees for their construc-tive comments on an earlier version of this paper.This work has been partially supported by EPSRC grant GR/K 25014.Laan is supported by the Co-operation Centre Tilburg and Eindhoven Universities.He is grateful to the Department of Computing Science, University of Glasgow, fortheir hospitality, and to the Dutch Foundation for Scienti�c Research (NWO), fortheir �nancial support, during the preparation of this article.
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