
Bridging de Bruijn Indices and

Variable Names in Explicit

Substitutions Calculi

FAIROUZ KAMAREDDINE, Department of Computing Science, 17

Lilybank Gardens, University of Glasgow, Glasgow G12 8QQ, Scotland.

E-mail: fairouz@dcs.gla.ac.uk

ALEJANDRO RÍOS, University of Buenos Aires, Cordoba 3571 11 A,

1188 Ciudad de Buenos Aires, Argentina.

E-mail: arios@cactus.fi.uba.ar

Abstract

Calculi of explicit substitutions have almost always been presented using de Bruijn indices with the
aim of avoiding α-conversion and being as close to machines as possible. De Bruijn indices however,

though very suitable for the machine, are difficult to human users. This is the reason for a renewed
interest in systems of explicit substitutions using variable names. We believe that the study of these

systems should not develop without being well-tied to existing work on explicit substitutions. The
aim of this paper is to establish a bridge between explicit substitutions using de Bruijn indices and

using variable names and to do so, we provide the λt-calculus: a λ-calculus à la de Bruijn which can
be translated into a λ-calculus with explicit substitutions written with variables names. We present

explicitly this translation and use it to obtain preservation of strong normalisation for λt. Moreover,
we show several properties of λt, including confluence on closed terms and efficiency to simulate

β-reduction. Furthermore, λt is a good example of a calculus written in the λs-style (cf. [19]) that
possesses the updating mechanism of the calculi à la λσ (cf. [1, 7, 26]).

Keywords : lambda calculus, variable names, de Bruijn indices, explicit substitutions

1 Introduction

The classical λ-calculus deals with substitution in an implicit way. This means that
the computations to perform substitution are usually described with operators which
do not belong to the language of the λ-calculus. There has however been an interest
in formalising substitution explicitly in order to provide a theoretical framework for
the implementation of functional programming languages. Several calculi including
new operators to denote substitution and new rules to handle these operators have
been proposed. Amongst these calculi we mention Cλξφ (cf. [10]); the calculi of
categorical combinators (cf. [8]); λσ, λσ⇑, λσSP (cf. [1, 7, 26]) referred to as the
λσ-family; ϕσBLT (cf. [18]); λυ (cf. [3]) and λζ (cf. [25]) which are descendants of
the λσ-family; λs (cf. [19]) and λse (cf. [22]).

All the calculi above mentioned are described in de Bruijn notation (cf. [9, 11]).
This formalism consists in replacing the usual variable names with natural numbers
which account for the bindings of the variables they stand for. This notation is useful

843L. J. of the IGPL, Vol. 6 No. 6, pp. 843–874 1998 c© Oxford University Press

844 Bridging de Bruijn Indices and Variable Names in Explicit Substitutions Calculi

because, while avoiding the problem of clashes of name variables, and therefore the
use of Barendregt’s convention and α-congruence, it provides term rewriting systems
instead of just abstract rewriting systems and therefore more rewriting tools are avail-
able to study them. The only inconvenience is that the terms written in de Bruijn
notation are more suitable to be read by a computing device than by humans.

Recently, a simple calculus with explicit substitutions, λx, has been introduced
and studied(cf. [27, 5, 6, 28, 4]). This calculus is written in the standard notation
with variable names and enjoys the property of Preservation of Strong Normalisation
(PSN). This property states that every term that is strongly normalising (i.e. does not
admit an infinite reduction path) in the classical λ-calculus is also strongly normalising
in the λx-calculus. The interest in studying such a property relies on its connection
with the strong normalisation of typed calculi and the fact that several calculi of
explicit substitutions do not enjoy it, as shown in [24]. As a matter of fact, of the
above mentioned calculi only λυ, λs and λζ have PSN.

The following question poses itself: is the λx-calculus equivalent to one of the already
known calculi in de Bruijn notation (say λsub)

1, and, if not, can we describe λx in
de Bruijn notation in a satisfactory manner? Trying to answer this question we
realized that λs, which intuitively2 was the best candidate for a de Bruijn version of
λx, was not the answer. Thus we were led to a new calculus, which we call λt, whose
formulation is slightly different from the formulation of λs and whose relationship
with λx can be, partly, explained. In particular, we find a function u that interprets
λt into λx preserving reductions. We point out the difficulty of reversing this process
in order to find an interpretation from λx into λt that preserves reductions and that
is the inverse of u.

Although the rules of λt and λs are similar, both calculi work quite differently:
while λs makes global updating when performing a substitution, the λt-calculus makes
partial updating so that the computation of the updating is already finished before
substitution. These partial updatings are started every time a substitution must
be applied to an abstraction. Since the calculi of the λσ-family, λυ and λζ also
introduce an updating operator when evaluating substitutions within abstractions,
the λt-calculus can be considered as a calculus written in the λs-style which works
with the updating mechanism of the λσ-calculi. The plan of this paper is as follows:

• In Section 2 we introduce the formal machinery and we present the λ-calculus with
variable names (ΛV ,→λ) and the λ-calculus with de Bruijn indices (Λ,→β). We
define the notion of equivalence (or isomorphism) between two reduction systems
and we show that (ΛV ,→λ) and (Λ,→β) are isomorphic in our sense. Finally,
we present the λs-, λσ- and λυ-calculi and note that the λσ-calculus results from
turning the meta-notions (meta-substitutions and meta-updating) of (Λ,→β) into
object notions.

• In Section 3, we present another formulation of the λ-calculus à la de Bruijn where
the meta-notions work in a different manner to those of (Λ,→β).

• In Section 4, we construct the λt-calculus from the new formulation (of Section 2)

1We take here equivalence to mean that there is a translation T1 from λx to λsub and another translation

T2 from λsub to λx such that T1 and T2 are inverses of one another and they both preserve the corresponding

reductions.

2Our intuition relied on the fact that both λx and λs possess an infinity of substitutions operators and that λx

is a “minimal” extension of the classical λ-calculus “as” λs is of the λ-calculus à la de Bruijn

2. PRELIMINARIES 845

of the λ-calculus à la de Bruijn and we show that the t-calculus is strongly nor-
malising and that the λt-calculus simulates β-reduction and is confluent (on closed
terms) using the “interpretation method” ([14, 7]).

• In Section 5, we make explicit the relationship between λt and λx, which happens
to be a sort of immersion, and we use this immersion to prove the PSN for λt
using the PSN of λx.

• In Section 6, we compare λt with λσ by providing an interpretation of the former
into the latter and argue about the impossibility of such an interpretation into
λυ. We also prove that λt is more efficient (there exist shorter reduction paths)
to simulate β-reduction than λυ.3

• In Section7, we discuss the problem of extending λt to a confluent calculus on
open terms (terms which may contain term variables) and show that the existence
of such an extension seems impossible. We conclude by explaining the problems
found when trying to establish a translation of λx into λt.

2 Preliminaries

We begin by presenting the notation and recalling the main notions concerning rewrit-
ing. Then we give a quick presentation of the λ-calculus à la de Bruijn. We recall af-
terwards the λx-calculus and its PSN property. We explicit the isomorphism between
the classical λ-calculus and its de Bruijn version. Finally, we recall the λs-calculus so
that the reader could compare it to the λt-calculus to be introduced in Section 4.

2.1 Rewriting

We begin by introducing the notation we shall use throughout this paper concerning
rewriting and we recall the definitions of the essential properties of the reduction
systems.

Definition 2.1 Let A be a set and R a binary relation on A , i.e. a subset of A×A .
We denote the fact (a, b) ∈ R by a→R b or a→ b when the context is clear enough.
We call reduction this relation and reduction system, the pair (A, R) . We denote
with

=
→R the reflexive closure of R , with →→R or just →→ the reflexive and transitive

closure of R and with →→+
R or just →→+ the transitive closure of R . When a→→ b

we say there exists a derivation from a to b . By a→→n b, we mean that the derivation
consists of n steps of reduction and call n the length of the derivation.

Definition 2.2 Let R be a reduction on A .

1. R is locally confluent or WCR (weakly Church-Rosser) when

∀a, b, c ∈ A ∃d ∈ A ((a → b ∧ a → c)⇒ (b →→ d ∧ c →→ d)) .

3λυ may appear to be more efficient than λσ. For example, (λ1(λ23))3 →β 3λ(3[↑]) can be simulated more

efficiently in λυ than in λσ. However, it is not always the case that simulation of β-reduction can be done in

shorter steps in λυ than in λσ. For example, for n ≥ 2, the reduction (λλ(2 2))1n → λ(2n
2
n) can be simulated in

λσ in n + 9 steps whereas in λυ, it can be simulated in 4n + 5 steps. Obviously, n + 9 < 4n for n ≥ 2. For more

details, see [21].

846 Bridging de Bruijn Indices and Variable Names in Explicit Substitutions Calculi

2. R is confluent or CR (Church-Rosser) when

∀a, b, c ∈ A ∃d ∈ A ((a →→ b ∧ a →→ c)⇒ (b →→ d ∧ c →→ d)) .

Definition 2.3 Let R be a reduction on A .
We say that a ∈ A is an R-normal form (R-nf for short) if there exists no b ∈ A

such that a→ b and we say that b has a normal form if there exists a nf a such that
b→→ a .

R is strongly normalising or SN if there is no infinite sequence (ai)i≥0 in A such
that ai → ai+1 for all i ≥ 0 .

Remark 2.4 Confluence of R guarantees unicity of R-normal forms and SN ensures
their existence. When there exists a unique R-normal form of a term a , it is denoted
by R(a) .

2.2 The classical λ-calculus in de Bruijn notation

We assume the reader familiar with de Bruijn notation. Let us just say here that
de Bruijn indices (or numbers) are used to make the bindings explicit: to find the λ
which binds a variable represented by the number n you must travel upwards in the
tree associated with the term and choose the nth λ you find. For instance, λx.λy.xy
is written using de Bruijn indices as λλ(21) and λx.λy.(x(λz.zx))y is written as
λλ(2(λ(13))1). Finally, to translate free variables, you must assume a fixed ordered
list of binders and prefix the term to be translated with this list. For instance, if the
list (written from left to right) is · · · , λz, λy, λx then the term λx.yz translates as
λ34 whereas λx.zy translates as λ43. The translations between both (classical and
de Bruijn) notations will be given explicitly in Section 2.4.

The interest in introducing de Bruijn indices is that they avoid clashes of variables
and therefore neither α-conversion nor Barendregt’s convention are needed. Here is
the λ-calculus à la de Bruijn.

Definition 2.5 We define Λ, the set of terms with de Bruijn indices, as follows:

Λ ::= IN | (ΛΛ) | (λΛ)

We use a, b, . . . to range over Λ and i, j, m, n, . . . to range over IN (positive natural
numbers). Throughout the whole article, a = b is used to mean that a and b are
syntactically identical.

We say that a reduction → is compatible on Λ when for all a, b, c ∈ Λ, we have
a→ b implies a c→ b c, c a→ c b and λa→ λb.

We assume the usual conventions about parentheses and avoid them when no con-
fusion occurs. Furthermore, they shall be omitted in the grammars to be defined
later.

In order to define β-reduction à la de Bruijn, we must define the substitution of a
variable n for a term b in a term a. Therefore, we must identify amongst the numbers
of the term a those that correspond to the variable n. Furthermore, we need to update
the term b (rename its variables) in order to preserve the correct bindings after the
replacement of the variable by b.

2. PRELIMINARIES 847

For example, translating (λxλy.zxy)(λx.yx) →β λu.z(λx.yx)u to de Bruijn nota-
tion we get (λλ521)(λ31) →β λ4(λ41)1. But if we simply replace 2 in λ521 by λ31
we get λ5(λ31)1, which is not correct. We needed to decrease 5 as one λ disappeared
and to increment the free variables of λ31 as they occur within the scope of one more
λ.

For incrementing the free variables we need a family of updating functions:

Definition 2.6 The updating functions U i
k : Λ→ Λ for k ≥ 0 and i ≥ 1 are defined

inductively as follows:

U i
k(ab) = U i

k(a)U i
k(b)

U i
k(λa) = λ(U i

k+1(a))
U i

k(n) =

{

n + i− 1 if n > k
n if n ≤ k .

The intuition behind U i
k is the following: k tests for free variables and i− 1 is the

value by which a variable, if free, must be incremented.
Now we define the family of meta-substitution functions:

Definition 2.7 The meta-substitutions at level i , for i ≥ 1 , of a term b ∈ Λ in a
term a ∈ Λ , denoted a{{i← b}} , is defined inductively on a as follows:

(a1a2){{i← b}} = (a1{{i← b}}) (a2{{i← b}})
(λa){{i← b}} = λ(a{{i + 1← b}})

n{{i← b}} =







n− 1 if n > i
U i

0(b) if n = i
n if n < i

Ultimately, the intention is to define (λa)b →β a{{1 ← b}} (see Definition 2.14
below). The first two equalities propagate the substitution through applications and
abstractions and the last one carries out the substitution of the intended variable
(when n = i) by the updated term. If the variable is not the intended one it must be
decreased by 1 if it is free (case n > i) because one λ has disappeared, whereas if it
is bound (case n < i) it must remain unaltered.

It is easy to check that (λ521){{1 ← (λ31)}} = λ4(λ41)1. This will mean that we
have (λλ521)(λ31)→β λ4(λ41)1, as expected.

The following lemmas establish the properties of the meta-substitutions and updat-
ing functions. The Meta-substitution and Distribution lemmas are crucial to prove
the confluence of λs. The proofs of Lemmas 2.8 - 2.13 are obtained by induction on
a. Furthermore, the proof of Lemma 2.10 requires Lemma 2.9 with p = 0; the proof
of Lemma 2.11 uses Lemmas 2.8 and 2.10 both with k = 0; finally, Lemma 2.12 with
p = 0 is needed to prove Lemma 2.13.

Lemma 2.8 For k < n ≤ k + i we have: U i
k(a) = U i+1

k (a){{n← b}} .

Lemma 2.9 For p ≤ k < j + p we have: U i
k(U j

p (a)) = U j+i−1
p (a) .

Lemma 2.10 For k + i ≤ n we have: U i
k(a){{n← b}} = U i

k(a{{n− i + 1← b}}) .

Lemma 2.11 (Meta-substitution lemma) For 1 ≤ i ≤ n we have:

a{{i← b}}{{n← c}} = a{{n + 1← c}}{{i← b{{n− i + 1← c}}}}

Lemma 2.12 For p + j ≤ k + 1 we have: U i
k(U j

p (a)) = U j
p (U i

k+1−j(a)) .

848 Bridging de Bruijn Indices and Variable Names in Explicit Substitutions Calculi

Lemma 2.13 (Distribution lemma) For n ≤ k + 1 we have:

U i
k(a{{n← b}}) = U i

k+1(a){{n← U i
k−n+1(b)}} .

Definition 2.14 The λ-calculus à la de Bruijn is the reduction system (Λ,→β) where
→β is the least compatible reduction on Λ generated by the single rule:

(β-rule) (λa) b→β a{{1← b}}

Finally, the following lemma ensures the good passage of the β-rule through the
meta-substitutions and the U i

k.

Lemma 2.15 Let a, b, c, d ∈ Λ.

1. If c→β d then U i
k(c)→β U i

k(d) .

2. If c→β d then a{{i← c}} →→β a{{i← d}} .

3. If a→β b then a{{i← c}} →β b{{i← c}} .

Proof. The first item is proved by induction on c. We just check the interesting case
which arises when c = c1c2 and the reduction takes place at the root, i.e. c1 = (λa),
c2 = b and d = a{{1← b}}:

U i
k((λa)b) = (λ(U i

k+1(a)))U i
k(b)→β U i

k+1(a){{1← U i
k(b)}}

L 2.13
= U i

k(a{{1← b}})

The second item is proved by induction on a using 1 above.
The third item is also proved by induction on a. For the case a = (λd)e and

b = d{{1← e}}, Lemma 2.11 is required.
This lemma was used in [19] to prove the confluence of λs. We shall only use in

this paper the first item. Nevertheless we have included here the complete version in
order that the reader could compare these results with the analogous results for the
new meta-substitutions and updatings which shall be introduced in section 3.

In order to define the set of free variables of a term in de Bruijn notation we need
first to define the following operations on sets of natural numbers.

Definition 2.16 Let N ⊂ IN and k ≥ 0. We define

1. N \ k = {n− k : n ∈ N, n > k} , N + k = {n + k : n ∈ N}

2. N>k = {n ∈ N : n > k} , N<k = {n ∈ N : n < k}

3. N≥k = {n ∈ N : n ≥ k} , N≤k = {n ∈ N : n ≤ k} .

The following properties of the operations defined above will be needed later and
their proofs are easy.

Remark 2.17 Let N, M ⊂ IN and k, k′ ≥ 0. We have

1. (N ∪M) \ k = (N \ k) ∪ (M \ k) , (N ∪M) + k = (N + k) ∪ (M + k).

2. (N \ k) \ k′ = N \ (k + k′).

3. N \ 1 = N>1 \ 1 , (N>k+1 \ 1) + 1 = (N>k+1 + 1) \ 1.

4. (N + k) \ 1 = N + (k − 1) if k ≥ 1.

5. (N \ 1)<k = (N<k+1) \ 1 , (N \ 1)≤k = (N≤k+1) \ 1.

6. (N \ 1)>k = (N>k+1) \ 1 , (N \ 1)≥k = (N≥k+1) \ 1.

We can define now the free variables of a term in Λ.

2. PRELIMINARIES 849

Definition 2.18 The set of free variables of a term in Λ is defined by induction as
follows:

FV (n) = {n}

FV (a b) = FV (a) ∪ FV (b)

FV (λa) = FV (a) \ 1

Lemma 2.19 For a ∈ Λ we have FV (U i
k(a)) \ k = (FV (a) \ k) + (i− 1).

Proof. Induction on a. Use Remark 2.17.1 for the case a = b c and Remark 2.17.2
for the case a = λb.

Lemma 2.20 For a, b ∈ Λ and j ≥ 1, the following hold:

1. FV (a{{j← b}}) = (FV (a))<j ∪ ((FV (a))>j \ 1) if j 6∈ FV (a).

2. FV (a{{j← b}}) = (FV (a))<j ∪ ((FV (a))>j \ 1)∪ (FV (b)+ (i− 1)) if j ∈ FV (a).

Proof. By simultaneous induction on a. Use the previous lemma for the case a = j

and Remark 2.17.4, 5, 6 for the case a = λb.

Lemma 2.21 If a→β b then FV (b) ⊆ FV (a).

Proof. By induction on a. The interesting case is when a is an application and the
contraction takes place at the root. The previous lemma settles this case.

2.3 The λ-calculus and the λx-calculus

We assume the reader familiar with the λ-calculus (cf. [2]) in classical notation. We
just recall the syntax of its terms and the definition of β-reduction.

Definition 2.22 Given a set of variables V = {vn : n ∈ IN} we define recursively the
set of terms ΛV as follows:

ΛV ::= V | ΛV ΛV | λV.ΛV

We use x, y, . . . (with or without subscripts) to range over V and A, B, . . . to range
over λV . We assume that different variable names stand for different variables.

We say that a reduction → is compatible on ΛV when for all A, B, C ∈ ΛV and
x ∈ V , we have A→ B implies AC → B C, C A→ C B and λx.A→ λx.B.

α-congruent terms (terms which only differ on the name of bound variables) are
identified and we use Barendregt’s variable convention (all the bound variables of all
the terms occurring in a certain mathematical context are chosen to be different from
the free variables and from the other bound variables), abbreviated VC. Despite the
use of VC, we shall sometimes stress the conditions on variables.

The classical notions of meta-substitution and α-congruence are defined as usual
(cf. [2]). The meta-substitution of B for x in A is denoted by A[x := B] and A ≡ B
means that A and B are α-congruent.

Definition 2.23 The λ-calculus is the reduction system (ΛV ,→λ), where →λ is the
least compatible reduction on ΛV generated by:

(β-rule) (λx.A)B → A[x := B]

850 Bridging de Bruijn Indices and Variable Names in Explicit Substitutions Calculi

The λx-calculus of [27] is a calculus of explicit substitutions where variable names
are used instead of de Bruijn numbers. Its set of rules is minimal and they mimick
the definition of the meta-substitution by orientating its equalities. We will present
below λx.

We begin by giving the syntax of the terms:

Definition 2.24 Given a set of variables V = {vn : n ∈ IN} we define recursively the
set of terms Λx as follows:

Λx ::= V | Λx Λx | λV.Λx | Λx σV Λx

We use x, y, . . . to range over V and A, B, . . . to range over Λx. We assume that
different variable names stand for different variables. We call the terms which do not
contain σ’s, pure terms and identify them with the terms of the classical λ-calculus.

We say that a reduction → is compatible on Λx when for all A, B, C ∈ Λx and
x ∈ V , we have A → B implies AC → B C, C A → C B, λx.A → λx.B, AσxC →
BσxC and CσxA→ CσxB.

Definition 2.25 The set of free variables of a term A, denoted FV (A), the meta-
substitution of B for x in a term A, denoted A[x := B], and the notion of α-
congruence between terms A and B, denoted A ≡ B are defined as usual, with the
respective extra clauses:

1. FV (CσxD) = (FV (C)− {x}) ∪ FV (D)

2. (CσxD)[x := E] = Cσx(D[x := E])
(CσxD)[y := E] = (C[y := E])σx(D[y := E]) with x 6∈ FV (E) or y 6∈ FV (C)

3. CσxD ≡ C[x := y]σyD

α-congruent terms are identified and we assume again Barendregt’s convention, but
we have to extend it to deal with the new σs. Variables now are bound by both σ’s
and λ’s and we assume that all the bound variables (by a λ or a σ) of all the terms
occurring in a certain mathematical context are chosen to be different from the free
variables and from the other bound variables.

Remark that, in order to make the notation lighter, we keep the same notation for
the original notions and the extended ones. The context will be always clear enough
to avoid confusions.

Definition 2.26 The λx-calculus is the reduction system (Λx,→λx), where →λx is
the least compatible reduction on Λx generated by the rules given below:

σ-generation (λx.A)B −→ Aσx B

σ-λ-transition (λy.A)σxB −→ λy.(AσxB) (*)

σ-app-transition (AB)σxC −→ (AσxC) (B σxC)

σ-var1 x σxA −→ A

σ-var2 y σxA −→ y if y 6= x

2. PRELIMINARIES 851

In (*) we have the condition x 6= y and y 6∈ FV (B), which can be assumed to hold
always due to VC.

We use λx to denote this set of rules. The calculus of substitutions associated with
the λx-calculus is the rewriting system whose rules are λx − {σ-generation} and we
call it x-calculus (in [5] it is called σ−).

The main result in [5] is the preservation of strong normalisation of the λx-calculus
with respect to classical λ-calculus:

Theorem 2.27 (PSN of λx) Every term which is strongly normalising in the clas-
sical λ-calculus is also strongly normalising in the λx-calculus.

2.4 Isomorphism between (ΛV ,→λ) and (Λ,→β)

It is well known that the classical λ-calculus and its de Bruijn version are isomorphic
rewriting systems. Nevertheless we explicit here the isomorphism, since we are going
to extend it later, and give the main lines of the proofs of the results we shall need.

We start by defining what we mean by isomorphism between two reduction systems
and then we show that (ΛV ,→λ) and (Λ,→β) are isomorphic in our sense.

Definition 2.28 We say that two reduction systems (A1, R1) and (A2, R2) are iso-
morphic if there exists two functions w : A1 → A2 and u : A2 → A1 such that:

1. ∀a1, b1 ∈ A1, a1 →R1
b1 ⇒ w(a1)→R2

w(b1).

2. ∀a2, b2 ∈ A2, a2 →R2
b2 ⇒ u(a2)→R1

u(b2).

3. w ◦ u = u ◦ w = Id where Id is the identity function.

As we need to use the set V in some order, we fix an enumeration of it:

Definition 2.29 Throughout the paper, we take {v1, . . . , vn, . . .} to be an enumeration
of V .

Definition 2.30 For every term A ∈ ΛV such that FV (A) ⊆ {x1, . . . , xn} we define,
by induction on A, w[x1,...,xn](A) as follows:

w[x1,...,xn](vi) = min{j : vi = xj}

w[x1,...,xn](BC) = w[x1,...,xn](B)w[x1,...,xn](C)

w[x1,...,xn](λx.B) = λw[x,x1,...,xn](B)

The notation [x1, . . . , xn] stands for the ordered list whose elements are x1, . . . , xn.

Remark that the previous definition is correct, i.e. that α-congruent terms have
the same image. This is a consequence of the following lemma.

Lemma 2.31 Let A ∈ ΛV such that FV (A) ⊆ {x1, . . . , xn} and let y 6∈ {x1, . . . , xn}.
Then w[x1,...,xn](A) = w[x1,...,xi−1,y,xi+1,...,xn](A[xi := y]).

Proof. Easy induction on A.
We define now a uniform w, i.e. not depending on the free variables of the term.

852 Bridging de Bruijn Indices and Variable Names in Explicit Substitutions Calculi

Definition 2.32 We define w : ΛV → Λ as the function given by w(A) = w[v1,...,vn](A)
where n is such that FV (A) ⊆ {v1, . . . , vn}.

The definition is correct in the following sense.

Lemma 2.33 Let A ∈ ΛV such that FV (A) ⊆ {x1, . . . , xn} and let y1, . . . , ym be
arbitrary variables. Then w[x1,...,xn,y1,...,ym](A) = w[x1,...,xn](A).

Proof. Easy induction on A.
We need to establish some lemmas before proving that w preserves reduction. These

lemmas state how the functions w[x1,...,xn] behave with the updating functions and
the meta-substitutions.

Lemma 2.34 Let A ∈ ΛV , k ≥ 0, i ≥ 1 and n ≥ k + i such that FV (A) ⊆
{x1, . . . , xn} \ {xk+1, . . . , xk+i−1}. Then w[x1,...,xn](A) = U i

k(w[x1,...,xk,xk+i,...,xn](A)).

Proof. By induction on A. The case A = a b only needs the inductive hypothesis
(IH). Therefore, we just study:

1. A = vm : Let j = min{i : vm = xi}. Then w[x1,...,xn](vm) = j. If:

j ≤ k we have w[x1,...,xn](A) = j = U i
k(j) = U i

k(w[x1,...,xk,xk+i,...,xn](A)).

j ≥ k+i we have w[x1,...,xn](A) = j = U i
k(j− i + 1) = U i

k(w[x1,...,xk,xk+i,...,xn](A)).

2. A = λx.B : We have w[x1,...,xn](A) = λw[x,x1,...,xn](B)
IH
=

λU i
k+1(w[x,x1,...,xk,xk+i,...,xn](B)) = U i

k(λ(w[x,x1,...,xk,xk+i,...,xn](B)) =
U i

k(w[x1,...,xk,xk+i,...,xn](A)).

Lemma 2.35 Let A, B ∈ ΛV such that the bound variables of B are not free in A
and let i ≥ 1, y1, . . . , yi−1 6∈ FV (A), y = y1, . . . , yi−1, x be distinct from y1, . . . , yi−1

and x not bound in B and take x = x1, . . . , xn.
Then w[y,x](B[x := A]) = (w[y,x,x](B)){{i← w[x](A)}}.

Proof. By induction on B. We just study the interesting cases:

1. B = z ∈ V : If z = x, then

w[y,x](B[x := A]) = w[y,x](A)
L 2.34

= U i
0(w[x](A)) = (w[y,x,x](B)){{i← w[x](A)}}

If {j : z = yj} 6= φ, let k = min{j : z = yj}. Then

w[y,x](B[x := A]) = k = (w[y,x,x](B)){{i← w[x](A)}}

If {j : z = xj} 6= φ, let k = min{j : z = xj}. We can assume xk 6= x since the case
z = x has already been considered. We have

w[y,x](B[x := A]) = k+i− 1 = k+i{{i← w[x](A)}} = (w[y,x,x](B)){{i← w[x](A)}}

2. B = λz.D : Remark that, since x is not bound in B, x 6= z. We have

w[y,x](B[x := A]) = λw[z,y,x](D[x := A])
IH
= λ(w[z,y,x,x](D)){{i + 1← w[x](A)}} =

(λw[z,y,x,x](D)){{i← w[x](A)}} = (w[y,x,x](B)){{i← w[x](A)}}

Remark that we were able to apply the IH because, by VC, z 6∈ FV (A).

2. PRELIMINARIES 853

Theorem 2.36 Let A, B ∈ ΛV , if A→λ B then w(A)→β w(B).

Proof. It is enough to show that if FV (A) ⊆ {x1, . . . , xn} then w[x1,...,xn](A) →β

w[x1,...,xn](B).
Remark that since FV (B) ⊆ FV (A) (cf. [2]), w[x1,...,xn](B) is well defined.
The proof is by induction on A. The interesting case is when A is an application

and the reduction takes place at the root.
Therefore, let A = (λx.D)E and B = D[x := E]. We have

w[x1,...,xn](A) = (λw[x,x1,...,xn](D))w[x1,...,xn](E)→β

(w[x,x1,...,xn](D)){{1← w[x1,...,xn](E)}}
L 2.35

= w[x1,...,xn](D[x := E]) = w[x1,...,xn](B)

Remark that the conditions on the variables of Lemma 2.35 hold thanks to VC.
We give now the inverse of w:

Definition 2.37 Let a ∈ Λ such that FV (a) ⊆ {1, . . . , n} and let x1, . . . , xn ∈ V .
We define u[x1,...,xn](a) by induction on a as follows:

u[x1,...,xn](i) = xi

u[x1,...,xn](a b) = u[x1,...,xn](a)u[x1,...,xn](b)

u[x1,...,xn](λb) = λx.u[x,x1,...,xn](b) with x 6∈ {x1, . . . , xn}

In order to check that Definition 2.37 is correct, we must verify that FV (a) ⊆
{1, . . . , n + 1} whenever FV (λa) ⊆ {1, . . . , n}, which is obvious, and also that the
definition of u[x1,...,xn] on abstractions does not depend on the choice of the variable
x. This proof is analogous to the proof of Lemma 5.4 and Lemma 5.5, which state
the results we need for an extension of u.

We remark that we have defined for each a ∈ Λ a translation into ΛV which depends
on n where n is such that FV (a) ⊆ {1, . . . , n}. We remove now this condition and
define a uniform translation on Λ.

Definition 2.38 We define u : Λ→ ΛV as the function given by u(a) = u[v1,...,vn](a)
where n is such that FV (a) ⊆ {1, . . . , n}.

The definition is correct thanks to Lemma 5.7 below, which generalizes the result
we need to an extension of u.

As we did for w we can also check that u preserves classical reduction and to
achieve this we must establish some lemmas which make the interaction of u with the
updating and meta-substitutions functions precise. Since these lemmas will not be
used later, we include them here for the sake of completeness and we just state them
without giving detailed proofs.

Lemma 2.39 Let a ∈ Λ, i ≥ 1, k ≥ 0 and n ≥ k + i such that FV (a) ⊆ {1, . . . , n−
i + 1}. Then u[x1,...,xn](U

i
k(a)) ≡ u[x1,...,xk,xk+i,...,xn](a).

Proof. By induction on a. As usual we study the two interesting cases:

1. a = m : If m ≤ k then u[x1,...,xn](U
i
k(a)) = xm = u[xn,...,xk+i,xk,...,x1](a).

If m > k then u[x1,...,xn](U
i
k(a)) = xm+i−1 = u[xn,...,xk+i,xk,...,x1](a).

854 Bridging de Bruijn Indices and Variable Names in Explicit Substitutions Calculi

2. a = λb : We can choose x to obtain:

u[x1,...,xn](U
i
k(a)) = λx.u[x,x1,...,xn](U

i
k+1(b))

IH
≡

λx.u[xn,...,xk+i,xk,...,x1,x](b) = u[xn,...,xk+i,xk,...,x1](a)

Lemma 2.40 Let a, b ∈ Λ and x1, . . . , xn, y1, . . . , yi−1, x distinct variables.
Then u[y1,...,yi−1,x1,...,xn](a{{i← b}}) ≡ (u[y1,...,yi−1,x,x1,...,xn](a))[x := u[x1,...,xn](b)].

Proof. By induction on a. Let us denote x = xn, . . . , x1 and y = yi−1, . . . , y1.
We study the two interesting cases:

1. a = j : If j < i then u[x,y](a{{i← b}}) = yj = (u[x,x,y](a))[x := u[x1,...,xn](b)].

If j > i then u[x,y](a{{i← b}}) = xj−i = (u[x,x,y](a))[x := u[x1,...,xn](b)].

If j = i then

u[x,y](a{{i← b}}) = u[x,y](U
i
0(b))

L 2.39
≡

u[x1,...,xn](b) = (u[x,x,y](a))[x := u[x1,...,xn](b)].

2. a = λd : We choose z 6= x to obtain:

u[x,y](a{{i← b}}) = λz.u[x,y,z](d{{i+ 1← b}})
IH
≡

λz.(u[x,x,y,z](d))[x := u[x1,...,xn](b)] =

(u[x,x,y](a))[x := u[x1,...,xn](b)]

Lemma 2.41 Let a, b ∈ Λ such that FV (a) ⊆ {1, . . . , n}. If a→β b then u[x1,...,xn](a)→β

u[x1,...,xn](b).

Proof. Remark that, since FV (b) ⊆ FV (a), as can easily be checked, u[x1,...,xn](b)
is well defined.

The proof of the lemma is by induction on a. The interesting case is when a is an
application and the reduction takes place at the root.

Therefore, let a = (λd)e and b = d{{1← e}}. We have

u[x1,...,xn](a) = (λx.u[x,x1,...,xn](d))u[x1,...,xn](e)→β

(u[x,x1,...,xn](d))[x := u[x1,...,xn](e)]
L 2.40
≡ u[x1,...,xn](e{{1← d}}) = u[x1,...,xn](b)

Theorem 2.42 Let a, b ∈ Λ, if a→β b then u(a)→λ u(b).

Proof. It is an immediate consequence of the previous lemma.
We must only check now that in some sense w ◦ u = Id and u ◦ w = Id. We begin

by studying w ◦ u, which as expected is exactly the identity.

Lemma 2.43 For every a ∈ Λ we have w(u(a)) = a.

2. PRELIMINARIES 855

Proof. It is enough to show that if FV (a) ⊆ {1, . . . , n} then w[x1,...,xn](u[x1,...,xn](a)) =
a.

This is done by induction on a. The usual two interesting cases are:

a = i : Since x1, . . . , xn are distinct variables, we have: w[x1,...,xn](u[x1,...,xn](a)) =
w[x1,...,xn](u[x1,...,xn](i)) = w[x1,...,xn](xi) = i = a.

a = λb : We have: w[x1,...,xn](u[x1,...,xn](a)) = w[x1,...,xn](λx.u[x,x1,...,xn](b) =

λw[x,x1,...,xn](u[x,x1,...,xn](b))
IH
= λb.

As expected, we will not be able to obtain u[x1,...,xn](w[x1,...,xn](A)) = A, but we
have α-equivalence: u[x1,...,xn](w[x1,...,xn](A)) ≡ A.

Lemma 2.44 For every A ∈ ΛV we have u(w(A)) ≡ A.

Proof. It is enough to show that if FV (A) ⊆ {x1, . . . , xn} and x1, . . . , xn are distinct
variables, then u[x1,...,xn](w[x1,...,xn](A)) ≡ A. We do this by induction on A. The
usual two interesting cases are:

A = xi : Since x1, . . . , xn are distinct variables, we have:

u[x1,...,xn](w[x1,...,xn](A)) = u[x1,...,xn](w[x1,...,xn](xi)) = u[x1,...,xn](i) = xi = A

A = λx.B : By VC we can assume x distinct from x1, . . . , xn. We have:

u[x1,...,xn](w[x1,...,xn](A)) = u[x1,...,xn](λw[x,x1,...,xn](B) =

λx.u[x,x1,...,xn](w[x,x1,...,xn](B))
IH
≡ λx.B

The following corollary is an immediate consequence of the two previous lemmas.

Corollary 2.45 The classical λ-calculus (ΛV ,→λ) and the λ-calculus à la de Bruijn
(Λ,→β) are isomorphic.

Theorem 2.46 The λ-calculus à la de Bruijn is confluent.

Proof. The confluence of the classical λ-calculus (cf. [2] Thm. 3.2.8) is transportable,
via the isomorphism, to the λ-calculus à la de Bruijn.

A proof which does not use the mentioned isomorphism is given in [26] (Corollary
3.6) as a corollary of a more general result concerning the λσ-calculus.

2.5 The λs-calculus

We recall here the λs-calculus and remind the origin of its rules. We shall follow the
same intuition to formulate the rules of the λt-calculus.

The idea is to handle explicitly the meta-operators defined in Definitions 2.6 and
2.7. Therefore, the syntax of the λs-calculus is obtained by adding to the syntax of
the λ-calculus à la de Bruijn two families of operators :

856 Bridging de Bruijn Indices and Variable Names in Explicit Substitutions Calculi

• { σi}i≥1 : this family is meant to denote the explicit substitution operators. Each
σi is an infix operator of arity 2 and a σib has as intuitive meaning the term a
where all free occurrences of the variable corresponding to the de Bruijn number
i are replaced by the term b.

• {ϕi
k}k≥0 i≥1 : this family is meant to denote the updating functions necessary

when working with de Bruijn numbers to fix the variables of the term to be
replaced.

Definition 2.47 The set of terms of the λs-calculus, denoted Λs , is given as follows:

Λs ::= IN | ΛsΛs | λΛs | Λs σiΛs | ϕi
kΛs where i ≥ 1 , k ≥ 0 .

We take a, b, c to range over Λs. A term containing neither σ’s nor ϕ’s is called a
pure term.

The λs-calculus should carry out, besides β-reduction, the computations of updat-
ing and substitution explicitly. For that reason it contains, besides the rule mimicking
the β-rule (σ-generation), a set of rules which are the equations in Definitions 2.6 and
2.7 orientated from left to right.

Definition 2.48 The λs-calculus is the reduction system (Λs,→λs), where →λs is
the least compatible reduction on Λs generated by the rules given below:

σ-generation (λa) b −→ a σ1 b

σ-λ-transition (λa)σib −→ λ(a σi+1 b)

σ-app-transition (a1 a2)σib −→ (a1 σib) (a2 σib)

σ-destruction n σib −→







n− 1 if n > i
ϕi

0 b if n = i
n if n < i

ϕ-λ-transition ϕi
k(λa) −→ λ(ϕi

k+1 a)

ϕ-app-transition ϕi
k(a1 a2) −→ (ϕi

k a1) (ϕi
k a2)

ϕ-destruction ϕi
k n −→

{

n + i− 1 if n > k
n if n ≤ k

We use λs to denote this set of rules. The calculus of substitutions associated with
the λs-calculus is the rewriting system whose rules are λs − {σ-generation} and we
call it s-calculus.

The main results concerning the λs-calculus are (see [19] for proofs):

Theorem 2.49 The λs-calculus is confluent on Λs.

Theorem 2.50 (PSN of λs) Every λ-term which is strongly normalising in the clas-
sical λ-calculus is also strongly normalising in the λs-calculus.

2. PRELIMINARIES 857

2.6 The λσ- and λυ-calculi

We recall now the terms and rules of λσ and λυ, so that the reader not familiar with
them could refer to this subsection before reading Section 6. For the motivations and
properties of λσ see [1, 7, 26] and for λυ refer to [3].

Definition 2.51 The syntax of the λσ-calculus is given by:

Terms Λσt ::= 1 | ΛσtΛσt | λΛσt | Λσt[Λσs]
Substitutions Λσs ::= id | ↑ | Λσt ·Λσs | Λσs ◦ Λσs

The set, denoted λσ, of rules of the λσ-calculus is the following:

(Beta) (λa) b −→ a [b · id]

(VarId) 1 [id] −→ 1

(VarCons) 1 [a · s] −→ a

(App) (a b)[s] −→ (a [s]) (b [s])

(Abs) (λa)[s] −→ λ(a [1 · (s ◦ ↑)])

(Clos) (a [s])[t] −→ a [s ◦ t]

(IdL) id ◦ s −→ s

(ShiftId) ↑ ◦ id −→ ↑

(ShiftCons) ↑ ◦ (a · s) −→ s

(Map) (a · s) ◦ t −→ a [t] · (s ◦ t)

(Ass) (s1 ◦ s2) ◦ s3 −→ s1 ◦ (s2 ◦ s3)

The set of rules of the σ-calculus is λσ−{(Beta)} . We let a, b, c, . . . range over Λσt

and s, t, . . . range over Λσs. For s ∈ Λσs, we define s0 = id, s1 = s and sn+1 = s◦sn.

Definition 2.52 The syntax of the λυ-calculus is given by:

Terms Λυt ::= IN | ΛυtΛυt | λΛυt | Λυt[Λυs]
Substitutions Λυs ::=↑ | ⇑ (Λυs) | Λυt/

The set, denoted λυ, of rules of the λυ-calculus is the following:

(Beta) (λa) b −→ a [b/]

(App) (a b)[s] −→ (a [s]) (b [s])

(Abs) (λa)[s] −→ λ(a [⇑ (s)])

(FVar) 1 [a/] −→ a

(RVar) n + 1 [a/] −→ n

(FVarLift) 1 [⇑ (s)] −→ 1

(RVarLift) n + 1 [⇑ (s)] −→ n[s][↑]

(VarShift) n[↑] −→ n + 1

858 Bridging de Bruijn Indices and Variable Names in Explicit Substitutions Calculi

We let a, b, c, . . . range over Λυt and s, t, . . . range over Λυs. For a ∈ Λυt and s ∈ Λυs,
we define ⇑0 (s) = s, a[s]0 = a, ⇑i (s) =⇑ (⇑ . . . (⇑ (s) . . .)) and a[s]i = a[s][s] . . . [s]
(i times).

3 Another presentation of the λ-calculus à la de Bruijn

In Definition 2.7 we have defined i{{i ← b}} = U i
0(b), but there is another choice:

instead of updating b when performing the substitution we can make partial updatings
of b, each time the substitution operator traverses a λ in order to have a term already
updated and simplify the equality by introducing a new meta-substitution [[←]] such
that i[[i← b]] = b. Of course this simplification is only apparent since the definition
of the substitution applied to an abstraction will become more involved. With these
ideas in mind we propose the following definitions:

Definition 3.1 The new updating functions Vk : Λ → Λ for k ≥ 0 are defined
inductively as follows (compare with Definition 2.6):

Vk(ab) = Vk(a)Vk(b)

Vk(λa) = λ(Vk+1(a))
Vk(n) =

{

n + 1 if n > k
n if n ≤ k .

Definition 3.2 The new meta-substitutions at level i , for i ≥ 1 , of a term b ∈ Λ
in a term a ∈ Λ , denoted a[[i ← b]], are defined inductively on a by (compare with
Definition 2.7):

a1a2[[i← b]] = (a1[[i← b]])(a2[[i← b]])

(λa)[[i← b]] = λ(a[[i+ 1← V0(b)]])
n[[i← b]] =







n− 1 if n > i
b if n = i
n if n < i .

Before studying the properties of these new functions let us establish the relation-
ship between them and the old ones.

Notation 3.3 We denote the ith iteration of Vk with itself by V i
k , i.e. V i

k (a) =
Vk(. . . (Vka) . . .) (i times). By convention, V 0

k (a) = a.

Note that, in Definition 2.7 we have defined i{{i ← b}} = U i
0(b), but now, with

Definition 3.2, i[[i← b]] = b because we have already performed (in partial steps) the
substitution. In order to connect those two notions of substitutions, we needed the
above notation (another reason for the above notation was necessitated by the proofs
of the various lemmas below):4

Lemma 3.4 For a, b ∈ Λ, i ≥ 1 and k ≥ 0 we have:

1. U i
k(a) = V i−1

k (a).

2. a{{i← b}} = a[[i← V i−1
0 (b)]].

Proof. Easy induction on the structure of a.

4Note that when one reaches a leaf i, {{ ←}} necessitates an immediate updating by i whereas [[←]] requires no

updating because updating occurred at each level of descent into the tree. This explains Lemma 3.4.

3. ANOTHER PRESENTATION OF THE λ-CALCULUS À LA DE BRUIJN 859

Remark 3.5 As a particular case of Lemma 3.4.2 we have a{{1 ← b}} = a[[1 ← b]]
and hence we can describe β-reduction using the new meta-substitution functions as:

(β-rule) (λa) b→β a[[1← b]]

Unfortunately Lemma 3.4 cannot be used to prove all the properties we need to
establish for the new updating and meta-substitutions functions by exploiting the
properties we already know for the old functions. Nevertheless, it will work for some
of them.

Lemma 3.6 For k ≥ 0 we have Vk(V k
0 (c)) = V k+1

0 (c).

Proof. By Lemma 2.9, U2
k (Uk+1

0 (c)) = Uk+2
0 (c). Now, use Lemma 3.4.1.

The following lemma, though related to Lemma 2.8, cannot be deduced directly
from it, as we did for the previous lemma.

Lemma 3.7 For i, k ≥ 0, we have V i
k (a) = V i+1

k (a)[[i+ k + 1← V k
0 (b)]].

Proof. By induction on the structure of a.
Again, the next lemma, though related to Lemma 2.10, cannot be deduced from it.

Lemma 3.8 For n > k, we have Vk(a[[n← V k
0 (c)]]) = Vk(a)[[n+ 1← V k+1

0 (c)]].

Proof. By induction on the structure of a and using Lemma 3.6 for the case a = n.
We are ready to prove now the Meta-substitution Lemma for this new meta-

substitution.

Lemma 3.9 (New Meta-substitution Lemma) If 1 ≤ i ≤ n, we have

a[[i← b]][[n← V i−1
0 (c)]] = a[[n+ 1← V i

0 (c)]][[i← b[[n← V i−1
0 (c)]]]]

Proof. By induction on a. Lemma 3.8 is necessary for the case a = λd and Lemma
3.7 settles the case a = n + 1.

Finally, the following lemma ensures the good passage of the β-rule through the
new meta-substitutions and updatings. It is crucial for the proof of the confluence of
λt.

Lemma 3.10 Let a, b, c, d ∈ Λ.

1. If c→β d then Vk(c)→β Vk(d) .

2. If c→β d then a[[i← c]]→→β a[[i← d]] .

3. If a→β b then a[[i← c]]→β b[[i← c]] .

Proof. 1. It is a consequence of Lemma 3.4.1 and Lemma 2.15.1

2. Induction on a using 1 above.

3. Induction on a. The interesting case is a = (λd)e and b = d[[1← e]]:

((λd)e)[[i← c]] = (λ(d[[i+ 1← V0(c)]]))(e[[i← c]])→β

(d[[i+ 1← V0(c)]])[[1← e[[i← c]]]]
L 3.9
= (d[[1← e]])[[i← c]]

860 Bridging de Bruijn Indices and Variable Names in Explicit Substitutions Calculi

4 The λt-calculus

Now, we shall handle explicitly the new meta-operators defined in Definitions 3.1 and
3.2. Therefore, the syntax of the λt-calculus is obtained by adding to the syntax of
the λ-calculus à la de Bruijn two families of operators :

• { ςi}i≥1 : this family is meant to denote the explicit substitution operators. Each
ςi is an infix operator of arity 2 and a ςib has as intuitive meaning the term a
where all free occurrences of the variable corresponding to the de Bruijn number
i are to be replaced by the already updated term b.

• {θk}k≥0 : this family is meant to denote the new updating functions.

Definition 4.1 The set of terms of the λt-calculus, denoted Λt , is given as follows:

Λt ::= IN | ΛtΛt | λΛt | Λt ςiΛt | θkΛt where i ≥ 1 , k ≥ 0 .

We take a, b, c to range over Λt. A term containing neither ς’s nor θ’s is called a pure
term. By θi

ka for i ≥ 1, we mean θk(θk(. . . (θka))) (i θk-operators) and θ0
ka means a.

The λt-calculus should carry out, as the λs-calculus, besides β-reduction, the com-
putations of updating and substitution explicitly. For that reason we include, besides
the rule mimicking the β-rule (ς-generation), a set of rules which are the equations in
the Definitions 3.1 and 3.2 orientated from left to right.

Definition 4.2 The λt-calculus is the reduction system (Λt,→λt), where →λt is the
least compatible reduction on Λt generated by the rules given below:

ς-generation (λa) b −→ a ς1 b

ς-λ-transition (λa) ςib −→ λ(a ςi+1 θ0(b))

ς-app-transition (a1 a2) ςib −→ (a1 ςib) (a2 ςib)

ς-destruction n ςib −→







n− 1 if n > i
b if n = i
n if n < i

θ-λ-transition θk(λa) −→ λ(θk+1 a)

θ-app-transition θk(a1 a2) −→ (θk a1) (θk a2)

θ-destruction θk n −→

{

n + 1 if n > k
n if n ≤ k

We use λt to denote this set of rules. The calculus of substitutions associated with the
λt-calculus is the rewriting system whose rules are λt− {ς-generation} and we call it
t-calculus. We will use obvious abbreviations of these rules when → is used. E.g. we
write →ς−gen.

The main difference between λt and λs can be summarized as follows: the λt-
calculus generates a partial updating when a substitution is evaluated on an abstrac-
tion (i.e. introduces an operator θ0 in the ς-λ-transition rule) whereas the λs-calculus

4. THE λT -CALCULUS 861

produces a global updating when performing substitutions (i.e. introduces a ϕi
0 op-

erator in the σ-destruction rule, case n = i).
The λt-calculus shares this mechanism of partial updatings with the λσ-calculi and

their descendants λυ and λζ since all of them introduce an updating operator in their
substitution-abstraction-transition rule (see rule (Abs) in both λσ and λυ above).

We shall prove now the confluence of the λt-calculus. First we must establish some
results concerning the associated calculus of substitutions t.

Theorem 4.3 (SN and confluence of t) The t-calculus is SN and confluent on Λt.
Hence, every term a has a unique t-normal form denoted t(a).

Proof. Let us define recursively two weight functions W1 and W2:

W1(n) = 2 W2(n) = 1
W1(a b) = W1(a) + W1(b) W2(a b) = W2(a) + W2(b) + 1
W1(λa) = W1(a) + 2 W2(λa) = W2(a) + 1
W1(θka) = W1(a) W2(θka) = 2W2(a)
W1(a ςib) = W1(a)(W1(b)) W2(a ςib) = W2(a)(W2(b) + 1)

It is easy to check that for every rule a → b in t we have W1(a) ≥ W1(b) and,
furthermore, if the rule is ς-λ-transition then W1(a) > W1(b).

On the other hand, for every rule a → b in t − {ς-λ-transition} we have W2(a) >
W2(b).

Therefore, one can show by induction on a that whenever a→ b in t, (W1(a), W2(a))
>lex (W1(b), W2(b)), where >lex is the lexicographical order in IN × IN. Hence the
t-calculus is SN.

Since there are no critical pairs, the theorem of Knuth-Bendix (cf. [17, 15]) applies
trivially to yield the local confluence of the t-calculus.

Finally, Newman’s lemma, which states that every strongly normalising and locally
confluent relation is confluent (cf. [2], Proposition 3.1.25), provides the confluence of
the t-calculus.

Lemma 4.4 The set of t-normal forms is exactly Λ.

Proof. Check first by induction on a that a ςib and θka are not normal forms. Then
check by induction on a that if a is a t-nf then a ∈ Λ. Conclude by observing that
every term in Λ is a t-nf.

Lemma 4.5 For all a, b ∈ Λt we have:

t(a b) = t(a)t(b) , t(λa) = λ(t(a)) , t(θka) = Vk(t(a)) , t(a ςib) = t(a)[[i← t(b)]] .

Proof. The first and second equalities are immediate since there are no t-rules whose
left-hand side is an application or an abstraction.

Prove the third equality for terms in t-nf, i.e. use an inductive argument on c ∈ Λ to
show t(θkc) = Vk(t(c)). Let now a ∈ Λt, t(θka) = t(θkt(a)) = Vk(t(t(a))) = Vk(t(a)).
Prove the fourth claim similarly using the third one.

We give now the key result that allows us to use the Interpretation Method in order
to get the confluence of the λt-calculus: the good passage of the ς-generation rule to
the t-normal forms.

Lemma 4.6 Let a, b ∈ Λt , if a→ς−gen b then t(a)→→β t(b) .

862 Bridging de Bruijn Indices and Variable Names in Explicit Substitutions Calculi

Proof. Induction on a. We just study the interesting cases.

a = c d : If the reduction takes place within c or d just use the IH. The interesting
case is when c = λe and hence b = e ς1d:

t((λe)d) = (λt(e))(t(d)) →β t(e)[[1← t(d)]]
L 4.5
= t(e ς1d)

a = c ςid : If the reduction takes place within c, i.e. c→ς−gen e and b = e ςid, then

t(c ςid)
L 4.5
= t(c)[[i← t(d)]]

IH & L 3.10.3
→→β t(e)[[i← t(d)]]

L 4.5
= t(e ςid)

If the reduction takes place within d, lemma 3.10.2 applies.

a = θkc : The reduction must take place within c. Use Lemma 4.5 and Lemma
3.10.1.

Now, the following corollaries are immediate.

Corollary 4.7 Let a, b ∈ Λt , if a→→λt b then t(a)→→β t(b) .

Corollary 4.8 (Soundness) Let a, b ∈ Λ , if a→→λt b then a→→β b .

This last corollary says that the λt-calculus is correct with respect to the classical
λ-calculus, i.e. derivations of pure terms ending with pure terms can also be derived
in the classical λ-calculus.

Finally, before proving confluence, we verify that the λt-calculus is powerful enough
to simulate β-reduction.

Lemma 4.9 (Simulation of β-reduction) Let a, b ∈ Λ, if a→β b then a→→λt b .

Proof. Induction on a. As usual the interesting case is when a = (λc)d and b =
c[[1← d]]:

(λc)d→ς−gen cς1d→→t t(cς1d)
L4.5
= t(c)[[1← t(d)]]

c,d∈Λ
= c[[1← d]]

Theorem 4.10 (Confluence of λt) The λt-calculus is confluent on Λt.

Proof. We interpret the λt-calculus into the λ-calculus via t-normalisation. We have:

a
�

�
�

��

�
�

�
��

λt

@
@

@
@R

@
@

@
@R

λt

b

c

--t

--t

--t
t(a)

t(b)

t(c)

�
�

�
��

�
�

�
��

β

@
@

@
@R

@
@

@
@R

β

@
@

@
@R

@
@

@
@R

β

�
�

�
��

�
�

�
��

β

dThm. 2.46

The existence of the arrows t(a)→→β t(b) and t(a)→→β t(c) is guaranteed by Corollary
4.7. We can close the diagram thanks to the confluence of the λ-calculus and finally
Lemma 4.9 ensures t(b)→→λt d and t(c)→→λt d proving thus CR for the λt-calculus.

5. INTERPRETATION OF λT INTO λX 863

5 Interpretation of λt into λx

The function that interprets λt into λx is an extension of the function u : Λ → ΛV

(cf. Definition 2.38). Here we stop to explain the work of Rose in his thesis [28].
In [28], Rose provides a translation from λυ to λx which he shows to satisfy similar
propertiels s to those of Theorem 5.9 below. Rose uses that translation to deduce
PSN of λυ from PSN of λx. He then abstracts a sufficient condition on such a
translation, called explicit naming, which guarantees PSN. He uses this abstraction
result to give the proofs of PSN of λs and λχ of [23] directly from the proof of PSN
for λx. We follow a similar line here where we give a translation of λt into λx (which
preserves reduction) and we use this translation to show PSN of λt from PSN of
λx. The difference between our approach and that of [28] lies in the manipulation of
the variable lists used to define the interpretation into λx. In the case of [28], those
variable lists are used to interpret λs which has different substitution and updating
mechanisms than λt. Hence, it is inevitable that the manipulation of the variable lists
be different in both approaches. It should also be noted that there is another approach
([16]) that interprets substitution calculi with de Bruijn indices in the classical λ-
calculus (without substitutions) and which inevitably manipulates variable lists but
in a manner different to that of this paper and of [28].

In order to proceed, we must extend the notion of free variable.
Again, in the following (Definitions 5.1, 5.2 and 5.6), in order to keep the notation

lighter, we use the same notation for the original notions and the extended ones. The
context will be always clear enough to avoid confusions.

Definition 5.1 The set of free variables of a term in Λt is defined by extending Def-
inition 2.18 as follows:

FV (θka) = FV (a)≤k ∪ (FV (a)>k + 1)

FV (a ςib) = FV (a)<i ∪ (FV (a)>i \ 1) ∪ FV (b)

Definition 5.2 Let d ∈ Λt such that FV (d) ⊆ {1, . . . , n} and let x1, . . . , xn ∈ V . We
define u[x1,...,xn](d) by extending Definition 2.37 as follows:

u[x1,...,xn](a ςib) =

{

u[x1,...,xi−1,x,xi,...,xn](a)σxu[x1,...,xn](b) if n ≥ i, x 6∈ {x1, . . . , xn}
u[x1,...,xn](a)σxu[x1,...,xn](b) if n < i, x 6∈ {x1, . . . , xn}

u[x1,...,xn](θka) =











u[x1,...,xk,xk+2,...,xn](a) if n > k + 1

u[x1,...,xk](a) if n = k + 1

u[x1,...,xn](a) if n < k + 1

Note that for the case a ςib where n ≥ i, x is inserted between xi−1 and xi (not xi+1).

In order to check that Definition 5.2 is correct, the following remark, whose proof
is easy, is needed.

Remark 5.3 Let a, b ∈ Λt.

1. If FV (λa) ⊆ {1, . . . , n} then FV (a) ⊆ {1, . . . , n + 1}.

2. If FV (a ςib) ⊆ {1, . . . , n} then FV (b) ⊆ {1, . . . , n} and

if n ≥ i then FV (a) ⊆ {1, . . . , n + 1} else FV (a) ⊆ {1, . . . , n}.

864 Bridging de Bruijn Indices and Variable Names in Explicit Substitutions Calculi

3. If FV (θka) ⊆ {1, . . . , n} then

if n ≥ k + 1 then FV (a) ⊆ {1, . . . , n− 1} else FV (a) ⊆ {1, . . . , n}.

Furthermore, the definition of u for abstractions and substitutions does not depend
on the choice of the variable x thanks to the following lemma.

Lemma 5.4 Let a, b ∈ Λt such that FV (a) ⊆ {1, . . . , n+1} and let x1, . . . , xn distinct
variables and x, y variables such that x, y 6∈ {x1, . . . , xn}.
Then λx.u[x,x1,...,xn](a) ≡ λy.u[y,x1,...,xn](a) and
u[x1,...,xi−1,x,xi,...,xn](a)σxb ≡ u[x1,...,xi−1,y,xi,...,xn](a)σyb.

Proof. It is an immediate consequence of the following lemma.

Lemma 5.5 Let b ∈ Λ such that FV (b) ⊆ {1, . . . , n + m + 1}, and let the variables
x1, . . . , xn, z1, . . . , zm, x and y be all distinct.
Then (u[z1,...,zm,x,x1,...,xn](b))[x := y] ≡ u[z1,...,zm,y,x1,...,xn](b).

Proof. By induction on b. The two interesting cases are b = λa and b = a ςic. Since
the treatment of the second is analogous to the first one, we just study b = λa.

Let us denote x = x1, . . . , xn and z = z1, . . . , zm.
Let u[z,x,x](b) = λw.u[w,z,x,x](a). Let u[z,y,x](b) = λv.u[v,z,y,x](a).
Remark that we can assume that w 6= y. In fact, if w = y we can choose z such

that z 6= y and also distinct from x1, . . . , xn, z1, . . . , zm, x, and we have

u[z,x,x](b) ≡ λz.u[w,z,x,x](a)[w := z]
IH
≡ λz.u[z,z,x,x](a)

Therefore, since w 6= y, we have

(u[z,x,x](b))[x := y] = (λw.u[w,z,x,x](a))[x := y] = λw.u[w,z,x,x](a)[x := y]
IH
≡

λw.u[w,z,y,x](a) ≡ λv.u[w,z,y,x](a)[w := v]
IH
≡ λv.u[v,z,y,x](a) = u[z,y,x](b)

Definition 5.6 We define u : Λt→ Λx as the function given by u(a) = u[v1,...,vn](a)
where n is such that FV (a) ⊆ {1, . . . , n}.

The definition is correct thanks to the following lemma.

Lemma 5.7 If a ∈ Λt, FV (a) ⊆ {1, . . . , n} and m > n then u[v1,...,vn](a) ≡ u[v1,...,vm](a).

Proof. Easy induction on a.
Remark that u is not one-to-one. Indeed, u cannot tell the difference between terms

and their updatings, when they are t-equivalent. For instance, u(θ11) = v1 = u(1).

Lemma 5.8 Let a, b ∈ Λt, if a→λt b then FV (b) ⊆ FV (a).

Proof. By induction on a. If the reduction is internal the conclusion follows imme-
diately from the IH. If the reduction is at the root, we must check that for every rule
a→ b we have FV (b) ⊆ FV (a). This is easily done using Remark 2.17.

Theorem 5.9 Let a, b ∈ Λt.

5. INTERPRETATION OF λT INTO λX 865

1. If a→t b then u(a)
=
→x u(b).

2. If a→→t b then u(a)→→x u(b).

3. If a→ς−gen b then u(a)→λx u(b).

Proof. To prove the first item we prove that if a→t b and FV (a) ⊆ {1, . . . , n} then
u[x1,...,xn](a)

=
→x u[x1,...,xn](b).

Remark first that Lemma 5.8 guarantees the correct definition of u[x1,...,xn](b).
The proof is by induction on a. If the reduction is internal, the IH is enough to

settle the lemma. We must check now that for every rule a →t b the lemma holds.
As an example we study the rule ς-λ-transition:

If, for instance, n ≥ i we have:

u[x1,...,xn]((λa) ςib) = u[x1,...,xi−1,x,xi,...,xn](λa)σxu[x1,...,xn](b) =

(λy.u[y,x1,...,xi−1,x,xi,...,xn](a))σxu[x1,...,xn](b) =

(λy.u[y,x1,...,xi−1,x,xi,...,xn](a))σxu[y,x1,...,xn](θ0b)→

λy.(u[y,x1,...,xi−1,x,xi,...,xn](a)σxu[y,x1,...,xn](θ0b)) =

λy.u[y,x1,...,xn](aςi+1(θ0b)) = u[x1,...,xn](λ(aςi+1(θ0b)))

It is this case that shows why the rule σ-λ-transition of the λs-calculus had to be
changed into the rule ς-λ-transition of the λt-calculus if reduction was to be preserved.

Remark also that the θ-rules are the ones that leave the translations unchanged,
i.e. if a→θ−rule b then u[x1,...,xn](a) = u[x1,...,xn](b).

The second item is obtained by proving that if a →→t b then u[x1,...,xn](a) →→x

u[x1,...,xn](b) by induction on the length of the derivation using the first item.
For the third item, we prove that if a→ς−gen b then u[x1,...,xn](a)→λx u[x1,...,xn](b)

by induction on a. The interesting case arises when the reduction takes place at the
root:

If n > 0 we have:

u[x1,...,xn]((λa)b) = (λx.u[x,x1,...,xn](a))u[x1,...,xn](b)→

u[x,x1,...,xn](a)σxu[x1,...,xn](b) = u[x1,...,xn](aς1b)

If n = 0 we have:

u[]((λa)b) = (λx.u[x](a))u[](b)→ u[x](a)σxu[](b)
(1)
= u[](a)σxu[](b) = u[](aς1b)

where equality (1) holds because of Lemma 5.7 (with n = 0 and m = 1) and the fact
that FV (a) = φ (since FV (aς1b) = φ, Remark 5.3 yields FV (a) = φ).

5.1 λt preserves strong normalisation

Using Theorem 5.9 and the PSN of λx, we can show the PSN of λt. In order to do that
we must use the fact that u, when restricted to pure terms, is an isomorphism. As a
matter of fact, a weaker hypothesis than the existence of an isomorphism is enough,
namely that u, when restricted to pure terms, admits a left inverse which preserves
reduction. This was proved in subsection 2.4.

866 Bridging de Bruijn Indices and Variable Names in Explicit Substitutions Calculi

Theorem 5.10 (PSN of λt) Every λ-term which is strongly normalising in the λ-
calculus à la de Bruijn is also strongly normalising in the λt-calculus.

Proof. Since a ∈ λ-SN, Theorem 2.36 and Lemma 2.43 guarantee that u(a) is
strongly normalising in the classical sense. The Preservation Theorem for λx (see
Theorem 2.27) ensures u(a) ∈ λx-SN.

If we assume a 6∈ λt-SN, let

a→λt a1 →λt . . .→λt an →λt . . .

be an infinite derivation. Since the t-calculus is SN (see Theorem 4.3), this derivation
must contain an infinity of ς-generations:

a→→t a′
1 →ς−gen a′

2 →→t . . .→→t a′
2n+1 →ς−gen a′

2n+2 →→t . . .

Now, by Theorem 5.9.2 and 5.9.3, we have:

u(a)→→x u(a′
1)→λx u(a′

2)→→x . . .→→x u(a′
2n+1)→λx u(a′

2n+2)→→x . . .

and this contradicts the fact that u(a) ∈ λx-SN. Therefore, a ∈ λt-SN.

6 Comparison with λσ and λυ

The λt calculus can be interpreted into the λσ calculus using a similar translation as
the one presented in [19] to interpret the λs-calculus into λσ. However, in the case
of the λt-calculus the interpretation works better: now λt-derivations are preserved
(only s-derivations and not λs derivations were preserved by the translation in [19].)

In order to give the translation into the λσ-calculus we give the following two
definitions.

Definition 6.1 For k ≥ 0 we define sk as follows: s0 =↑ and sk = 1·2·. . .·k· ↑k+1 .

Definition 6.2 Let b ∈ Λσt , we define a family of substitutions (bk)k≥1 as follows:
b1 = b · id b2 = 1 · b · ↑ . . . bi+1 = 1 · 2 · . . . · i · b · ↑i . . .

Using the rules (Map), (Clos), (Ass) and (IdL) it is easy to verify that:

Remark 6.3 1 · (bi◦ ↑)→→σ (b[↑])i+1 and 1 · (sk◦ ↑)→→σ sk+1.

Definition 6.4 The translation function T : Λs→ Λσt is defined by:
T (n) = n T (a b) = T (a)T (b) T (a ςib) = T (a)[T (b)i] T (λa) = λ(T (a))
T (θka) = T (a)[sk]

Theorem 6.5 If a→λt b then T (a)
+
→→λσ T (b).

Proof. Induction on a. We just check, as an example, the case a = n ςic when the
reduction takes place at the root:

T (n ςic) = n[T (c)i]
+
→→σ







n− 1 = T (n− 1) if n > i
T (c) if n = i
n = T (n) if n < i

6. COMPARISON WITH λσ AND λυ 867

Even if λt is interpreted in λσ more faithfully than λs (the σ-generation rule trans-
lates (cf. [19]) into a λσ-equivalence rather than a derivation), no reasonable transla-
tion of λt into λυ seems possible. The reason is that the operators of λυ are not able
to express, for instance, the λσ-substitution 12 = 1 · 1 · ↑. Remark that in [19] 12 was
defined as 1 · 1[↑] · ↑, and this λσ-substitution is available in the λυ syntax as ⇑(1/).

The rest of this section will be devoted to compare the length of the derivations
which simulate β-reduction in λt and λυ. We choose now λυ instead of λσ because
λσ is incomparable to any of the calculi λυ, λt and λs as we have shown in [21]. On
the other hand, here we show that λt is more efficient than λυ. In other words, we are
going to prove that β-simulation in λt (one step ς-generation followed by t-derivation
to normal form) is more efficient than β-simulation in λυ (one step Beta, written →B

followed by υ-derivation to normal form).
We begin by introducing a set of terms Λθ on which induction will be used to define

a function that computes the length of certain derivations. We are mainly interested
in pure terms, which are contained in Λθ, but the introduction of Λθ is necessary since
it provides a strong induction hypothesis to prove the auxiliary results needed.

Definition 6.6 Λθ ::= IN | ΛθΛθ | λΛθ | θkΛθ , where k ≥ 0. The length of terms
in Λθ is defined by:
Lθ(n) = 1 Lθ(ab) = Lθ(a) + Lθ(b) + 1 Lθ(λa) = Lθ(θka) = Lθ(a) + 1 .
By induction on a ∈ Λθ we mean induction on Lθ(a).

Remark 6.7 Let a ∈ Λθ and k ≥ 0, then Lθ(a) ≥ Lθ(t(θka)).

Proof. By induction on a. The interesting case is when a = θmb. By IH we have
Lθ(b) ≥ Lθ(t(θmb)) and since Lθ(a) > Lθ(b), we apply again the IH (now to t(θmb)) to
obtain Lθ(t(θmb)) ≥ Lθ(t(θk(t(θmb)))) = Lθ(t(θk(θmb))). Hence, Lθ(a) ≥ Lθ(t(θka)).

The next remark will be used frequently without explicit mention.

Remark 6.8 If a ∈ Λθ and a→t b then b ∈ Λθ.

Proof. Easy induction on a.

Definition 6.9 We define M : Λθ → IN by induction as follows:

M(n) = 1 M(ab) = M(a) + M(b) + 1
M(λa) = M(a) + 1 M(θka) = M(t(θka)) + M(a)

Remark that the definition is correct thanks to Remark 6.7.

Lemma 6.10 For a ∈ Λθ, every t-derivation of θka to its t-normal form has length
M(a).

Proof. By induction on the weight P (a) = (W1(a), W2(a)) used to prove SN for the
t-calculus (see proof of Theorem 4.3). The basic case (a = n) is immediate, since all
the derivations of θkn to its nf have length 1. We proceed now by a case analysis. We
just treat the case a = bc since the argument is similar for the other cases.

Let us consider a derivation D of θk(bc) to its nf.
If the first step is internal, say b→ b′, we know by IH (P (b′c) < P (bc)) that every

derivation of θk(b′c) to its nf has length M(b′c) = M(b′) + M(c) + 1. But IH (now

868 Bridging de Bruijn Indices and Variable Names in Explicit Substitutions Calculi

applied to b (P (b) < P (bc)) and b′ (P (b′) < P (bc)) and the fact that θkb→ θkb′) also
gives M(b′) = M(b)− 1. Hence M(b′c) = M(b) + M(c) = M(bc)− 1. Therefore, the
length of D is M(bc).

If the first step is θk(bc) → θk(b)θk(c), since there are no rules in t which contract
an application, every derivation of θk(b)θk(c) to its nf, has length (IH applied to b
and c) M(b) + M(c) = M(bc)− 1. Therefore, the length of D is again M(bc).

Corollary 6.11 For a ∈ Λθ, all the t-derivations of θi
ka to its t-normal form have

the same length, namely (i− 1)M(t(a)) + M(a).

Proof. Prove first by induction on a ∈ Λθ, using Remark 6.7, that M(t(a)) =
M(t(θka)), then use this result to prove, by induction on j ≥ 1 that M(t(a)) =
M(t(θj

ka)). Use now Definition 6.9 and the two previous results to show, by induc-
tion on l ≥ 1, that M(θl

k(a)) = lM(t(a)) + M(a). Finally, use Lemma 6.10 and the
last result with l = i− 1 to prove the corollary. Remark that it is in this proof that
the hypothesis a ∈ Λθ is essential and hence the necessity of Definition 6.6.

Now we are going to prove the corresponding results for λυ. Since the proofs are
analogous, we just state the results.

Definition 6.12 Λ↑ ::= IN | Λ↑Λ↑ | λΛ↑ | Λ↑[⇑
k (↑)] , where k ≥ 0. The length of

terms in Λ↑ is given by: L↑(n) = 1 L↑(ab) = L↑(a) + L↑(b) + 1 L↑(λa) = L↑(a[⇑k

(↑)]) = L↑(a) + 1 .

Remark 6.13 Let a ∈ Λ↑ and k ≥ 0, then L↑(a) ≥ L↑(υ(a[⇑k (↑)])).

Remark 6.14 If a ∈ Λ↑ and a→υ b then b ∈ Λ↑.

Definition 6.15 For k ≥ 0, we define Mk : Λθ → IN as follows:

Mk(ab) = Mk(a) + Mk(b) + 1
Mk(λa) = Mk+1(a) + 1
Mk(a[⇑p (↑)]) = Mk(υ(a[⇑p (↑)])) + Mp(a)

Mk(n) =

{

2k + 1 if n > k
2n− 1 if n ≤ k

Lemma 6.16 For a ∈ Λ↑, all the υ-derivations of a[⇑k (↑)] to its υ-nf have length
Mk(a).

Proof. By induction on the weight used to show SN for the υ-calculus (cf. [3]) and
case analysis.

Corollary 6.17 For a ∈ Λ↑, all the υ-derivations of a[⇑k (↑)]i to its υ-normal form
have the same length, namely (i− 1)Mk(υ(a)) + Mk(a).

Definition 6.18 Let a, b ∈ Λ and i ≥ 0, we define Pi(a, b) by induction on a:

Pi(n, b) =







2i + 1 if n > i + 1
2n− 1 if n < i + 1
i(1 + M0(b)) + 1 if n = i + 1

Pi(cd, b) = Pi(c, b) + Pi(d, b) + 1

Pi(λc, b) = Pi+1(c, b) + 1

Lemma 6.19 Let a, b ∈ Λ and i ≥ 0, all the υ-derivations of a[⇑i (b/)] to its υ-nf
have the same length, namely Pi(a, b).

7. ABOUT EXTENSIONS ON OPEN TERMS 869

Proof. Easy induction on a ∈ Λ. Remark that for a = n there is only one derivation
whose length is easy to compute. When n = i + 1, use Corollary 6.17.

Lemma 6.20 Let a, b ∈ Λ and i ≥ 0, there exists a derivation of aςi+1(θi
0b) to its

t-nf whose length is less than or equal to Pi(a, b).

Proof. By induction on a reducing always at the root. For the case a = i + 1 use
the fact that M0(b) ≥M(b) (induction on b ∈ Λ) and Corollary 6.11.

Theorem 6.21 β-simulation is more efficient in λt than in λυ.

Proof. We prove that for every a ∈ Λ and every λυ-derivation a →B b →→m
υ υ(b)

there exists n ≤m such that a→ς−gen c→→n
t t(c) by induction on a.

The interesting case is a = (λd)e→B d[e/]→→m υ(d[e/]). By Lemma 6.19 we know
that m = P0(d, e) and Lemma 6.20 gives a derivation d ς1e →→n

t t(d ς1e) such that
n ≤ P0(d, e).

Remark that there are an infinity of cases for which the inequality is strict. For
instance, let us consider the term (λλ . . . λn)a with m λ’s and n > m > 1. It is easy
to check, using the function Pm−1 defined above that 3m− 2 reductions are needed
to simulate β-reduction in λυ, whereas only m + 1 reductions are sufficient in λt.
Remark that for m > n the number of reductions needed in λυ is also strictly greater
than the number needed in λt.

7 About extensions on open terms

We end our work by pointing out the difficulties that arise when trying to extend λt
to a confluent calculus on open terms.

Let us recall that such an extension was successful for λs and gave rise to the
confluent calculus λse (cf. [22]).

Definition 7.1 The set of open terms, denoted Λtop , is given as follows:

Λtop ::= V | IN | ΛtopΛtop | λΛtop | Λtop ςiΛtop | θkΛtop where i ≥ 1 , k ≥ 0

and where V stands for a set of variables, over which X, Y , ... range. We take a, b, c
to range over Λtop. Furthermore, pure terms and compatibility are defined as for Λt.

Working with open terms one loses confluence as shown by the following counterex-
ample:

((λX)Y)ς11→ (Xς1Y)ς11 ((λX)Y)ς11→ ((λX)ς11)(Y ς11)

and (Xς1Y)ς11 and ((λX)ς11)(Y ς11) have no common reduct. Moreover, the above
example shows that even local confluence is lost.

When studying the same counterexample for λs, we found that, since the term
((λX)σ11)(Y σ11) →→ (Xσ21)σ1(Y σ11), the solution to the problem was at hand if
one had in mind the properties of meta-substitutions and updating functions of the λ-
calculus in the Bruijn notation (cf. Lemmas 2.8 - 2.13). These properties are equalities
which can be given a suitable orientation and the new rules, thus obtained, added to
λs give origin to a rewriting system which happens to be locally confluent (cf. [20]).
For instance, the rule corresponding to the Meta-substitution lemma (Lemma 2.11)
is the σ-σ-transition rule given below.

870 Bridging de Bruijn Indices and Variable Names in Explicit Substitutions Calculi

σ-σ-transition (a σib)σj c −→ (a σj+1 c) σi (b σj−i+1 c) if i ≤ j

The addition of this rule solves the critical pair for λs, since now we have that:
(Xσ1Y)σ11→ (Xσ21)σ1(Y σ11).

Following the same method we can try an orientation of the equality given in Lemma
3.9 to find our ς-ς-transition rule:

ς-ς-transition (a ςib) ςj θi−1
0 c −→ (a ςj+1 θi

0c) ςi (b ςj θi−1
0 c) if i ≤ j

Remark that in the σ-σ-transition rule no updating operator appears. The presence
of updating operators in the ς-ς-transition rule gives rise to undesirable critical pairs.
For instance:

(a ςib) ςj θi−1
0 (λd)→ (a ςj+1 θi

0(λd)) ςi (b ςj θi−1
0 (λd))

(a ςib) ςj θi−1
0 (λd)→ (a ςib) ςj λ(θi−1

1 d)

Since these critical pairs cannot be solved without creating new ones, we try another
approach to our problem: consider a generalization of the ς-ς-transition rule that
avoids the occurrence of the θ operator in the left hand side:

new ς-ς-transition (a ςib) ςj c −→ (a ςj+1 θ0c) ςi (b ςj−i+1 c) if i ≤ j

But this rule is not correct. Indeed, it is easy to check that with it, one can derive
(3ς23)ς21→→ 2 while if only ς-destruction is used the derivation is (3ς23)ς21→→ 1.

Therefore, the λt-calculus does not seem to possess a reasonable extension on open
terms. We do not consider this as a negative property of λt. After all, λυ does not
have a confluent extension on open terms. Moreover, there has never been given a
confluent extension of substitution calculi using variable names, although it seems
that some progress is being made in this area through a calculus proposed by Laing
and Rose that has been shown to be locally confluent and whose confluence is expected
by its inventors.

8 Conclusion

Even if the λt-calculus cannot be extended to a confluent extension on open terms (of
the calculi mentioned in the Introduction, only the λs-calculus, the λσ⇑-calculus and
the λζ-calculus enjoy this property; furthermore, λσ⇑ and λζ are themselves confluent
on open terms), it happens to be an interesting calculus for three reasons:

1. It can be related to λx, as we have shown in this paper, via a translation which is
an extension of the classical isomorphism between the classical λ-calculus and its
de Bruijn version.

2. While being a calculus à la λs, it works with partial updatings and this is a feature
that characterizes the λσ-calculi, the λυ-calculus and the λζ-calculus. Therefore,
it offers a new perspective between the λs- and the λσ-style.

3. It simulates β-reduction more efficiently than λυ.

One of the questions we raised in the Introduction is still unanswered, namely if the
λx-calculus is isomorphic to a calculus in de Bruijn notation which could be described
in a satisfactory manner. Our attempts to show that there is an interpretation in the

8. CONCLUSION 871

other direction have failed and we conclude this paper by pointing out the problems
that arise when trying to define such an interpretation, i.e. a translation of λx into
λt.

Now the question is how to extend the functions w[x1,...,xn] given in Definition 2.30.
Therefore we must define w[x1,...,xn](aσxb). Since

w[x1,...,xn]((λx.a)b) = (λw[x,x1,...,xn](a))(w[x1,...,xn](b))→ w[x,x1,...,xn](a)ς1w[x1,...,xn](b)

and since we want the w[x1,...,xn]’s to preserve reduction we are tempted to define

w[x1,...,xn](aσxb) = w[x,x1,...,xn](a)ς1w[x1,...,xn](b)

But this definition is not good enough to preserve other rules, for instance

w[x1,...,xn]((λx.a)σyb) = (λw[x,y,x1,...,xn](a))ς1w[x1,...,xn](b)

→ λ(w[x,y,x1,...,xn](a)ς2θ0(w[x1,...,xn](b)))

whereas
w[x1,...,xn](λx.(aσyb)) = λ(w[y,x,x1,...,xn](a)ς2w[x,x1,...,xn](b))

and we see that the variables y and x are now in inverted positions.
We realize that our w[x1,...,xn]’s should “know” how many λ’s have been crossed

and act accordingly, i.e. placing the variable of the substitution in the right place.
In order to achieve this we could introduce families of translations wi

[x1,...,xn], with

i ≥ 0, and the translation we are trying to define should be w0
[x1,...,xn]. Therefore we

propose to define (we restrict the definition to abstraction and substitution since the
difficulty already appears with these rules):

wi
[x1,...,xn](λx.a) = λwi+1

[x,x1,...,xn](a)

wi
[x1,...,xn](aσxb) = wi+1

[x1,...,xi,x,xi+1,...,xn](a)ςi+1wi
[x1,...,xn](b)

The reader can easily check that with this definition reduction is now preserved for the
σ-λ-transition rule of the λx-calculus (assuming that a lemma analogous to Lemma
2.34 should hold for the operators θk). But unfortunately the σ-generation rule is the
one that fails now.

Therefore the question of the existence of an extension of w preserving reduction
remains open. Furthermore, it is not clear what calculus of explicit substitutions à
la de Bruijn could be isomorphic to λx. It may be that we have to go the other way
round: find a calculus of explicit substitutions using variable names which could be
proved isomorphic to one in de Bruijn notation. This is under investigation.

Furthermore, we mention that work on the connections between variable names
and de Bruijn indices in the context of explicit substitution calculi is a topic that
is attracting new interest amongst the community of researchers working on explicit
substitutions. In particular, we mention the work of Pierre Lescanne on explicit
substitutions and explicit alpha conversion [23]. This work is complementary to ours
and we believe that both our work and that of Lescanne may lead to theories of explicit
substitutions that have the advantages desired from the point of view of controlling
substitutions and of being simple for human users to work with.

872 Bridging de Bruijn Indices and Variable Names in Explicit Substitutions Calculi

Finally, it might be questioned why we proposed another calculus of explicit substi-
tutions (λt) if it does not satisfy more properties than previous calculi. For example,
λt does not seem to possess a confluent extension on open terms whereas λs and λσ
do. Here we reply that as the area of explicit substitutions still has many open prob-
lems, research that enables relating different lines in the area is necessary to increase
our understanding in the subject and this may lead to more collaborations between
researchers that belong to different schools of substitutions. For example, λs and λυ
were the first calculi of explicit substitutions that satisfy PSN. λx was introduced by
Rose in [27] and was shown in [6] to satisfy the same properties of λυ and λs (namely
simulation of β-reduction, confluence on closed terms and PSN). Work on λs was
taken further and it was shown that λs has a confluent extension on open terms. Up
to now, this is not the case for either λx or λυ (although it is the case for λσ, but λσ
does not satisfy PSN). Recently, a calculus was proposed in [12] that is confluent on
closed terms, satisfies PSN and also allows composition of substitutions (λs, λx, λυ
do not allow composition of substitutions, λse and λσ do but they do not enjoy PSN
as was shown by Melliès in [24] for λσ and Guillome in [13] for λse). The calculus of
[12] however has not been extended to a confluent calculus on open terms. With all
this progress and all the remaining open problems, it is vital to bridge the different
approaches of explicit substitutions. λt attempts to build such a bridge.

1. λt is a calculus à la λs yet it works with partial updating à la λσ and λυ. In fact,
we showed in Theorem 6.5 that λt can be interpreted in λσ more faithfully than
λs can be interpreted in λσ in the sense that the σ-generation of λs translates
into a λσ-equivalence rather than a derivation.

2. Another point worth investigating in the future is the efficiency of the simulation
of β-reduction. In [21] we show that λυ and λσ are incomparable in the sense that
some β-simulations are shorter in λυ and others are shorter in λσ. λt on the other
hand, has been shown in this article to simulate β-reduction more efficiently than
λυ. We believe that similar arguments can be used to investigate the efficiency of
different calculi.

3. The problem of finding an isomorphism between calculi of explicit substitutions
with names and with de Bruijn indices remains, but λt has clarified where the
problem occurs in finding the isomorphism as we have explained above. It remains
a puzzle whether an isomorphism (as defined in our paper) exists between the
named versus the de Bruijn versions of explicit substitution calculi. The finding
of such an isomorphism will be a very useful step because calculi with variable
names are more user-friendly than those with de Bruijn indices.

4. As explained before, most calculi of explicit substitutions (old and new) perform
updating partially. Furthermore, the λs-style of substitution differs from the λσ-
style, not only in the partial versus total updating, but also in the fact that λs
does not allow two sorts of expressions (terms and substitutions). For this reason,
it is useful to find a calculus of explicit substitutions with one sort of expressions
(terms) and which updates partially like λσ. λt is such a calculus.

5. λt is also interesting because it highlights the problem of extending a calculus à
la λs but with partial updating into a confluent extension on open terms. We
have not shown in this paper the impossibility of such an extension, but Bruno
Guillome is studying it and it seems unlikely that such an extension exists (follow-

8. CONCLUSION 873

ing Guillome). Here, we point out that a negative result is not necessarily a bad
result. A negative result often clarifies the picture and rules out some possibilities.

6. Both calculi à la λσ (e.g. λσ, λυ, λσ⇑, λζ) and à la λs (e.g. λs, λse and λt) have
failed so far in being a calculus that satisfies a certain collection of properties.
Research on finding such a calculus, has benefitted greatly from previous failures.
λt (and not λs) has been the basis of a new calculus λw that is being studied by
Kamareddine and Wells as a candidate to being a calculus with the collection of
desirable properties. The new calculus λw is much more complex than either λs
and λt and only a further study and comparison of the various calculi can clarify
why this complexity had to be assumed.

Based on these reasons, we believe that λt is interesting and deserves attention because
it is one-step further in clarifying the status at which we stand and in pointing out
further directions.

Acknowledgements

This work was carried out under EPSRC grants GR/K25014 and GR/L36963.

References

[1] M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy. Explicit Substitutions. Journal of Functional

Programming, 1(4):375–416, 1991.

[2] H. Barendregt. The Lambda Calculus : Its Syntax and Semantics. North Holland, 1984.

[3] Z. Benaissa, D. Briaud, P. Lescanne, and J. Rouyer-Degli. λυ, a calculus of explicit substitutions

which preserves strong normalisation. Personal communication, 1995.

[4] R. Bloo and H. Geuvers. Explicit Substitution: on the Edge of Strong Normalisation . Theoretical

Computer Science, 1998. To appear.

[5] R. Bloo. Preservation of Termination for Explicit Substitutions. PhD thesis, Technical Univer-

sity of Eindhoven, 1997.

[6] R. Bloo and K. H. Rose. Preservation of Strong Normalisation in Named Lambda Calculi with
Explicit Substitution and Garbage Collection in Proceedings of CSN’95. Computing Science in

the Nederlands, 1995.

[7] P.-L. Curien, T. Hardin, and J.-J. Lévy. Confluence properties of weak and strong calculi of

explicit substitutions. Technical Report RR 1617, INRIA, Rocquencourt, 1992.

[8] P.-L. Curien. Categorical Combinators, Sequential Algorithms and Functional Programming.

Pitman, 1986. Revised edition : Birkhäuser (1993).

[9] N. G. de Bruijn. Lambda-Calculus notation with nameless dummies, a tool for automatic
formula manipulation, with application to the Church-Rosser Theorem. Indag. Mat., 34(5):381–

392, 1972.

[10] N. G. de Bruijn. A namefree lambda calculus with facilities for internal definition of expres-

sions and segments. Technical Report TH-Report 78-WSK-03, Department of Mathematics,
Eindhoven University of Technology, 1978.

[11] N. G. de Bruijn. Lambda-Calculus notation with namefree formulas involving symbols that
represent reference transforming mappings. Indag. Mat., 40:348–356, 1978.

[12] Ferreira, Kesner, and Puel. λ-calculi with explicit substitutions and composition which preserve

β-strong normalisation. ALP, 1996.

[13] B. Guillome. The λse does not preserve strong normalisation. Private Communications, Novem-

ber 1997.

[14] T. Hardin. Confluence Results for the Pure Strong Categorical Logic CCL : λ-calculi as Sub-

systems of CCL. Theoretical Computer Science, 65(2):291–342, 1989.

874 Bridging de Bruijn Indices and Variable Names in Explicit Substitutions Calculi

[15] G. Huet. Confluent Reductions: Abstract Properties and Applications to Term Rewriting Sys-

tems. Journal of the Association for Computing Machinery, 27:797–821, October 1980.

[16] F. Kamareddine. The Soundness of Explicit Substitutions with Nameless Variables. Interna-

tional Journal of Foundations of Computer Science, to appear.

[17] D. Knuth and P. Bendix. Simple Word Problems in Universal Algebras. In J. Leech, editor,
Computational Problems in Abstract Algebra, pages 263–297. Pergamon Press, 1970.

[18] F. Kamareddine and R. P. Nederpelt. On stepwise explicit substitution. International Journal

of Foundations of Computer Science, 4(3):197–240, 1993.

[19] F. Kamareddine and A. Ŕıos. A λ-calculus à la de Bruijn with explicit substitutions. Proceedings
of PLILP’95. Lecture Notes in Computer Science, 982:45–62, 1995.

[20] F. Kamareddine and A. Ŕıos. The λs-calculus: its typed and its extended versions. Technical

report, Department of Computing Science, University of Glasgow, 1995.

[21] F. Kamareddine and A. Ŕıos. Efficiency of lambda-calculi with Explicit Substitutions. Technical

Report TR-1996-3, University of Glasgow, 1996.

[22] F. Kamareddine and A. Ŕıos. Extending a λ-calculus with explicit substitution which preserves

strong normalisation into a confluent calculus on open terms. Functional Programming, 7(4):395–
420, 1997.

[23] P. Lescanne and J. Rouyer-Degli. Explicit substitutions with de bruijn’s levels. Proceedings

6th Conference on Rewriting Techniques and Applications, Lecture Notes in Computer Science,
914:294–308, 1995.

[24] P.-A. Melliès. Typed λ-calculi with explicit substitutions may not terminate in Proceedings of
TLCA’95. Lecture Notes in Computer Science, 902, 1995.

[25] C. A. Muñoz Hurtado. Confluence and preservation of strong normalisation in an explicit

substitutions calculus. Proceeddings of LICS’96, pages 440–447, 1996.

[26] A. Ŕıos. Contribution à l’étude des λ-calculs avec substitutions explicites. PhD thesis, Université

de Paris 7, 1993.

[27] K.H. Rose. Explicit cyclic substitutions. Semantics Note D-166, DIKU, Universitetsparken 1,

DK-2100 København Ø, Denmark, March 1993.

[28] K.H. Rose. Operational Reduction Models for Functional Programming Languages. PhD thesis,
DIKU (University of Copenhagen), 1996. Rapport Nr 96/1, ISSN 0107-8283.

Received 8 September 1997. Revised 30 April 1998

