
Uni�ation via the �se-Style ofExpliit SubstitutionsMAURICIO AYALA-RINC�ON1 , Departamento de Matem�atia,Universidade de Bras��lia, 70910-900 Bras��lia D.F., Brasil.E-mail: ayala�mat.unb.brFAIROUZ KAMAREDDINE , Department of Computing and EletrialEngineering, Heriot-Watt University, Riarton, Edinburgh EH14 4AS,Sotland. E-mail: fairouz�ee.hw.a.ukAbstratA uni�ation method based on the �se-style of expliit substitution is proposed. This methodtogether with appropriate translations, provide a Higher Order Uni�ation (HOU) proedure forthe pure �-alulus. Our method is inuened by the treatment introdued by Dowek, Hardin andKirhner using the ��-style of expliit substitution. Corretness and ompleteness properties of theproposed �se-uni�ation method are shown and its advantages, inherited from the qualities of the�se-alulus, are pointed out. Our method needs only one sort of objets: terms. And in ontrast tothe HOU approah based on the ��-alulus, it avoids the use of substitution objets. This makesour method loser to the syntax of the �-alulus. Furthermore, detetion of redies depends on thesearh for solutions of simple arithmeti onstraints whih makes our method more operational thanthe one based on the ��-style of expliit substitution.Keywords: Higher order uni�ation, expliit substitution, lambda-aluli.1 IntrodutionAfter Robinson's suessful introdution of his well-known �rst order Resolution Prin-iple based on substitution, uni�ation and resolution [41℄, muh work has been donein order to formalize these basi notions in other settings. Suh extensions are essentialfor amongst other things, automated dedution in higher order logis. Mehanizationsof seond order and full higher order uni�ation were initially formulated in [38℄ and[23℄. In [22℄ Huet suessfully formulated a pratial higher order uni�ation method,spei�ally for the typed �-alulus. Sine then several Higher Order Uni�ation(HOU) approahes have been developed and used in pratial languages and theo-rem provers suh as �prolog and Isabelle [35, 37℄. In most of these approahes, thenotion of substitution plays an important role. The importane of the notion of sub-stitution led to an explosion of work on making substitutions expliit in reent years[1, 7, 24, 26, 19, 9, 21℄. Moreover, a number of works have been devoted to establishingthe usefulness of expliit substitution to automated dedution and theorem proving[32, 34℄, to proof theory [43℄, to programming languages [29, 6, 8℄ and to HOU [16℄.The latter paper [16℄ shows that in the HOU framework, if substitution was made1Work arried out during a year study leave visit of this author at the ULTRA Group, CEE, Heriot-Watt Univer-sity, Edinburgh, Sotland. This leave was funded by CAPES (BEX0384/99-2) Brazilian Foundation and partiallysupported by EPSRC grant numbers GR/L36963 and GR/L15685.521L. J. of the IGPL, Vol. 9 No. 4, pp. 521{555 2001 Oxford University Press

522 Uni�ation via the �se-Style of Expliit Substitutionsexpliit, many bene�ts an be obtained in omputation. In partiular, [16℄ presenteda HOU method based on the ��-alulus whih was proved useful for dedution inthe typed �-alulus and subsequently generalized for treating higher order equationaluni�ation problems [30℄ and restrited for the ase of higher order patterns [17℄. Thenovelity of this method is that higher order uni�ation problems in the language ofthe pure �-alulus an be solved by �rst order uni�ation over the language of the��-alulus one they have been translated or pre-ooked into the language of the��-alulus. Then, solutions an be translated bak into the range of the pre-ookingtranslation and subsequently to solutions of the original problems. In this paper, wedevelop a uni�ation method based on the �se-style of expliit substitution whihjointly with adequate pre-ooking and bak translations between the languages of the�-alulus and the �se-alulus (f. [2℄) give a HOU proedure, whih takes advan-tage of the qualities of the �se alulus. In partiular, �se-uni�ation avoids the useof two di�erent sorts of objets as in the ��-alulus. Moreover, the deidability ofthe appliation of our uni�ation rules (i.e., the detetion of redies) depends on thesearh for natural solutions of simple arithmeti onstraints. Sine arithmeti dei-sion mehanisms are built-in in most of the omputational languages and automatedassistants systems, this makes �se-HOU more operational than the ��-HOU.1.1 Higher order uni�ationHigher order objets arise naturally in many �elds of omputer siene. For ex-ample, in the ontext of implementation of funtional languages it is neessary todevelop mehanisms for the treatment of higher order funtions. Take for instane,the rewriting system that spei�es the well-known map funtion, whih applies afuntion to all the elements of a list: map(f;nil) ! nil; map(f;ons(x; l)) !ons(f(x);map(f; l)), where nil and ons are the usual LISP empty list and on-strutor list funtion. Observe that f appears both as a variable and as a funtionalsymbol. From the point of view of �rst oder rewriting, it is not possible to manip-ulate this kind of objets; in fat, for simple rewrite based dedution proesses suhas one-step redution or ritial pair dedution, �rst order mathing and uni�ation,respetively, do not apply. The solution of these problems, at least in the rewritingontext, is the �-alulus. Rewriting ould be performed modulo the rules of the�-alulus or ombining spei�ations with the rules of the �-alulus.The funtion map is a typial example of a seond-order funtion, but funtions ofthird-order or above have pratial interest too. In [36℄, useful third- until sixth-orderfuntions were presented in the ontext of ombinator parsing.A simple example of a HOU problem is to searh for solutions for the equalityF (f(a)) = f(F (a)). The identity funtion fF=�x:xg is a solution, and so are thefuntions fF (x)=fn(x) j n 2 Ng.HOU is essential in higher order automated reasoning, where it has formed thebasis for generalizations of the Resolution Priniple in seond-order logi.Huet's work [22℄ was relevant beause he realized that to generalize Robinson's�rst order Resolution Priniple [41℄ to higher order theories, it is useful to verify theexistene of uni�ers without omputing them expliitly. Huet's algorithm is a semi-deision one that may never stop when the input uni�ation problem has no uni�ers,but when the problem has a solution it impliitly allows one to reover any uni�er

1. INTRODUCTION 523always. This ompleteness is an essential feature of Huet's algorithm. Uni�ation forseond-order logi was proved undeidable in general by Goldfarb [20℄. Goldfarb'sproof is based on a redution from Hilbert's Tenth Problem. This result shows thatthere are arbitrary higher order theories where uni�ation is undeidable, but thereexist partiular higher order languages of pratial interest that have a deidableuni�ation problem. In partiular, for the seond-order ase, uni�ation is deidable,when the language is restrited to monadi funtions [18℄. Another problem of HOUis that the notion of most general uni�er does not apply and that a more omplexnotion than omplete sets of uni�ers is neessary. Huet has shown that equations ofthe form (�x:F a) =? (�x:G b) (alled ex-ex) of third-order may not have minimalomplete sets of uni�ers and that there may exist an in�nite hain of uni�ers, onemore general than the other, without having a most general one (setion 4.1 in [39℄).For a very simple presentation of HOU see [42℄ and for a detailed introdution inthe ontext of delarative programming see [39℄.1.2 Contribution of this workThe ��-alulus [1℄ introdues two di�erent sets of entities, one for terms and one forsubstitutions. The �se-alulus [27℄ insists on remaining loser to the �-alulus anduses a philosophy started with de Bruijn in his system AUTOMATH and elaboratedextensively through the new item notation [25℄. The philosophy states that terms ofthe �-alulus are either appliation terms suh as a funtion applied to an argument,abstration terms suh as a funtion. Substitution or updating are made expliit initem notation, by introduing substitution terms and updating terms. The advantagesof this philosophy are listed in [25℄ and inlude remaining as lose as possible to thefamiliar �-alulus. Therefore, we propose to study HOU in the �se-style of expliitsubstitution, whih makes our approah loser to the syntax of the �-alulus thanthat of the ��-approah in that we avoid the use of two di�erent sorts of objets. Weestablish the following properties of �se-uni�ation:1. Corretness: If P and P 0 are uni�ation problems suh that P redues to P 0 thenevery uni�er of P 0 is a uni�er of P .2. Completeness: If P and P 0 are uni�ation problems suh that P redues to P 0then every uni�er of P is a uni�er of P 0.3. The searh for uni�ation redies and detetion of ex-ex (i.e. impliitly solvable)equations is simpler in our approah than in the ��-approah.In Setion 2, we introdue the basi mahinery. In Setion 3, we reall the ��- and �se-aluli and establish �se-normalisation properties needed for uni�ation. In Setion 4,we reall the uni�ation approah in the ��-alulus. In Setion 5, we present our�se-uni�ation method. In Setion 6, we provide some arithmeti properties of the�se-uni�ation rules. In setion 7, we disuss the appliation of our uni�ation methodfor higher order uni�ation and onlude.A preliminary version of this work was presented in [3℄.

524 Uni�ation via the �se-Style of Expliit Substitutions2 PreliminariesWe assume familiarity with �-alulus (f. [5℄) and the notion of term algebra T (F ;X)built on a (ountable) set of variables X and a set of operators F . Variables in X aredenoted by X;Y; ::: and for a term a 2 T (F ;X), var(a) denotes the set of variablesourring in a. In every alulus we onsider, we use a; b; ; : : : to range over terms.Additionally, we assume familiarity with basi notions of rewriting as presented in[4℄. In partiular, for a redution relation R over a set A, we denote with =!R thereexive losure of R , with !�R or just!� the reexive and transitive losureof R and with !+R or just !+ the transitive losure of R . When a!� b we saythat there exists a derivation from a to b . By a!n b, we mean that the derivationonsists of n steps of redution and all n the length of the derivation. Syntatialidentity is denoted by a = b. For a redution relation R over A, (A;!R), we usethe standard de�nitions of (loal) onuene or (weakly) Churh Rosser (W)CR,normal forms and strong and weak normalization/termination SN and WN.A valuation is a mapping from X to T (F ;X). The homeomorphi extension ofa valuation, �, from its domain X to the domain T (F ;X) is alled the graftingof �. As usual, valuations and their orresponding graftings are denoted by thesame Greek letter. The appliation of a valuation � or its orresponding graftingto a term a 2 T (F ;X) will be written in post�x notation a�. The domain of agrafting �, is de�ned by Dom(�) = fX j X� 6= X;X 2 Xg. Its range, is de�nedby Ran(�) = [X2Dom(�)var(X�). We let var(�) = Dom(�) [Ran(�). For expliitrepresentations of a valuation and its orresponding grafting �, we use the notation� = fX 7!X� j X 2 Dom(�)g. Note that the notion of grafting, usually alled �rstorder substitution, orresponds to simple syntati substitution without renaming.2.1 The �-alulus with namesIn this setion, we present the �-alulus with names emphasizing the role of uni�-ation variables and substitutions. Let V be a (ountable) set of variables (di�erentfrom the ones in X) denoted by lowerase last letters of the Roman alphabet x; y; :::.De�nition 2.1 Terms �(V), of the �-alulus with names are indutively de�nedby:a ::= x j (a a) j �x:a, where x 2 V .�x:a and (a b) are alled abstration and appliation terms, respetively.An abstration �x:a represents a funtion of parameter x, whose body is a. Itsappliation to an argument b, (�x:a b), returns the value of a, where the formalparameter x is replaed with the argument b. This replaement of formal parameterswith arguments is known as �-redution. In the �rst order ontext of the termalgebra T (f�x: j x 2 Vg [f()g;V) and its �rst order substitution or grafting,�-redution would be de�ned by (�x:a b)! afx 7!bg.But in this ontext some problems arise making it neessary to rename boundvariables, i.e. exeuting �-onversion. In fat, �rstly suppose � = fx 7! bg. Thereare no semanti di�erenes between the abstrations �x:x and �z :z; both abstrationsrepresent the identity funtion. But (�x:x)� = �x:b and (�z :z)� = �z :z are di�erent.Seondly, suppose � = fx 7! yg. (�y :x)� = �y:y and (�z :x)� = �z :y, thus a aptureis possible. Consequently, �-redution, should be de�ned in a way that takes are of

2. PRELIMINARIES 525renaming bound variables when neessary to avoid harmful apture of variables.Most of the literature on uni�ation and on the �-alulus onsiders substitutionas an atomi operation leaving impliit the omputational steps needed to e�etivelyperform omputational operations based on substitution suh as mathing and uni-�ation. In any real higher order dedutive system, the substitution required bybasi operations suh as �-redution should be implemented via smaller operations.Expliit substitution is an appropriate formalism for reasoning about the operationsinvolved in real implementations of substitution. Sine expliit substitution is loserto real implementations than to the lassi theory of the �-alulus, it provides amore aurate theoretial model to analyze essential properties of real systems (suhas termination, onuene, orretness, ompleteness, et.) as well as their time/spaeomplexity. For further details of the importane of expliit substitution see [29℄.We denote by �V (a) the �-onversion of a resulting by renaming the variables inV � V ourring at a 2 �(V) with fresh variables (i.e. variables not yet used).De�nition 2.2 Let V � V . The renaming appliation �V is de�ned by struturalindution on �(V) as follows:1) �V (x) = x2) �V ((a b)) = (�V (a) �V (b))3) �V (�x:a) = 8<: �x:�V (a); if x 62 V�y:(�V (a))fx 7!yg; if x 2 V where y is a fresh variableneither ourring in a nor in VNow we are able to de�ne the usual substitution operation.De�nition 2.3 For a valuation (over V) � = fx1 7!a1; : : : ; xn 7!ang, the substitu-tion extending �, written �ext, is de�ned by indution strutural as follows:1) �ext(x) = x� if x 2 V2) �ext((a b)) = (�ext(a) �ext(b))3) �ext(�x:a) = �z :�ext((�var(�)[fxg[fzg(a))fx=zg), where z is a fresh variable; i.e.,z 62 var (�) and z does not our in a.The substitution �ext is expliitly denoted by �ext = fx1=a1; : : : ; xn=ang.When no onfusion arises we use � to denote both a valuation � and its orre-sponding substitution. In this setion, in order to emphasize the di�erene betweenvaluations and substitutions, we use pre�xed notation �(a) for the appliation ofsubstitution � to term a while keeping a� for the appliation of grafting.The third item of De�nition 2.3 means that bound �-onversion or variable renam-ing should be performed before applying the substitution in the body of an abstra-tion. The grafting of a fresh variable avoids the possibility of apture. Again it isvery important to remark that the renaming appliation selets fresh variables thatare not used previously in the proess. Additionally, observe that sine fresh variablesare seleted randomly, the result of the appliation of a substitution an be oneivedas a lass of equivalene terms rather than only one.De�nition 2.4 �-redution is the rewriting relation de�ned by the rewrite rule (�)and �-redution is the rewriting relation de�ned by the rewrite rule (�), where:(�) (�x:a b)! fx=bgext(a) and (�) �x:(a x)! a; if x 62 Fvar(a)Uni�ation in �(V) di�ers from the one in the ontext of �rst order term algebras,beause bound variables in �(V) are not a�eted by uni�ation substitutions.

526 Uni�ation via the �se-Style of Expliit SubstitutionsNotie that our notion of substitution is not ompletely satisfatory beause theidea of fresh variables is impliit and depends on the history of the renaming proess.Uni�ation variables in the �-alulus are free variables. Thus free variables o-urring in terms of a uni�ation problem an be partitioned into true uni�ationvariables and onstants, that annot be bound by the uni�ers. Observe that on-stants, as free variables, annot be hanged by the �-redution proess. However,from the point of view of uni�ation, both onstants and bound variables an beonsidered to be of the same syntatial ategory, sine they annot belong to thedomain of uni�ers. To di�erentiate between uni�ation and onstant variables, wewill onsider uni�ation variables as meta-variables in a set X . Thus, �-alulus isde�ned as the term algebra over the set of operators f�x: j x 2 Vg [f()g [V andthe set of variables X . Uni�ation and onstant variables are written as upperase(X;Y; : : :) and lowerase (x; y; : : :) last letters of the Roman alphabet, respetively.De�nition 2.5 Terms �(V ;X), of the �-alulus with names are indutively de-�ned by: a ::= x j X j (a a) j �x:a where x 2 V and X 2 X .Now, substitution over X should be de�ned and substitution is modi�ed to inlude:Modi�ed De�nition 2.3 4) �ext(X) = X; if X 2 X .Grafting appears to be appropriate for the substitution of meta-variables sinebound variables (in V) remain unhanged when grafting variables in X . But theproblem of apture by abstrators remains when a meta-variable is replaed witha term ontaining onstants; for instane, onsider the grafting � = fX 7! xg andthe term �x:X . Then (�x:X)� = �x:x. Consequently, the notion of substitution formeta-variables should involve bound variable renaming.De�nition 2.6 Let � a valuation from X to �(V ;X). The substitution extending�, denoted by �ext is de�ned by indution on the struture of terms in �(V ;X) asfollows:1) �ext(X) = X�, if X 2 X ; 2) �ext(x) = x if x 2 V ; 3) �ext((a b)) = (�ext(a) �ext(b));4) �ext(�x:a) = �z :�ext((�var(�)[fxg[fzg(a))fx 7!zg), where z is a fresh variable.It an be easily heked that the non ommutativity problem of �- or �-redutionand grafting does not our with our previous notion of substitution.Lemma 2.7 �-redution as well as �-redution ommute with substitution.2.2 The �-alulus in de Bruijn notationIn the previous setion we have seen that the names of bound variables and theirorresponding abstrators play a semantially irrelevant role in the �-alulus. So anyterm in �(V) (or in �(V ;X)) an be seen as a syntatial representative of its obviousequivalene lass. Thus, one an onlude that the role that names of bound variablesand their orresponding abstrators play, when treating syntatially uni�ation inthe �-alulus, inreases the omplexity of the proess and reates onfusion.Consequently, avoiding names in the �-alulus is an e�etive way of larifyingthe meaning of �-terms and, for the uni�ation proess, of eliminating dummy andredundant renaming. N. de Bruijn developed a notation for the �-alulus where

2. PRELIMINARIES 527names of bound variables were replaed by indies [13, 15, 14℄. These indies relatebound variables to their orresponding abstrators.It is lear that the orrespondene between an ourrene of a bound variable and itsassoiated abstrator operator is uniquely determined by its depth, that is the numberof abstrators between them. Hene, � terms an be written in a term algebra overthe natural numbers N, representing depth indies, the appliation operator () anda sole abstrator operator �: ; i.e., T (f(); �: g [N).In de Bruijn's notation, the solution for indexing ourrenes of free variables isgiven by the reation of a referential aording to a �xed enumeration of the set ofvariables V , say x; y; z; : : : , and pre�xing all �-terms with : : : �z :�y:�x: .Example 2.8 Using the referential x; y; z; : : : the term�x:((�z :(x �x:(z x)) x) �x:(x y)) is rewritten as �:((�:(2 �:(2 1)) 1) �:(2 4)) and�x:((�z :(y �x:(y x)) y) �x:(z y)), whih has a multiple ourrene of free variables,as �:((�:(4 �:(5 1)) 3) �:(5 4)).Now we an de�ne the �-alulus in de Bruijn notation with meta-variables.De�nition 2.9 The set �dB(X) of �-terms in de Bruijn notation is de�ned in-dutively as:a ::= n j X j (a a) j �:a where X 2 X and n 2 N n f0g.We type de Bruijn indies as 1; 2; 3; : : : ; n; : : : , to distinguish them from sripts.An attempt to de�ne �-redution in the ontext of the �-alulus in de Bruijnnotation is (�:a b) ! f1=bga where f1=bga is the substitution of the index 1 in awith b. But it fails beause: �rstly, when eliminating the leading abstrator all indiesassoiated with free variable ourrenes in a should be deremented by one; seondly,when propagating the substitution f1=bg rossing abstrators through a the indiesof the substitution (initially 1) and of the free variables in b should be inremented.Consequently, we need new operators for deteting and inrementing and dere-menting free variables to de�ne a new notion of substitution.De�nition 2.10 Let a 2 �dB(X). The i-lift of a, denoted a+i is de�ned indutivelyas follows:1) X+i = X , for X 2 X 2) (a1 a2)+i = (a+i1 a+i2)3) (�:a1)+i = �:a+(i+1)1 4) n+i = � n+ 1; if n > in; if n � i for n 2 N :The lift of a term a is its 0-lift and is denoted briey as a+.De�nition 2.11 The appliation of the substitution with b at the depth n� 1; n 2N n f0g, denoted fn=bga, on a term a in �dB(X) is de�ned indutively as follows:1) fn=bgX = X , for X 2 X 2) fn=bg(a1 a2) = (fn=bga1 fn=bga2)3) fn=bg�:a1 = �:fn+ 1=b+ga1 4) fn=bgm =8<: m� 1; if m > nb; if m = nm; if m < n if m 2 N.Now we an de�ne �-redution in �dB(X).De�nition 2.12 �-redution in the �-alulus with de Bruijn indies is de�ned as(�:a b)! f1=bga.

528 Uni�ation via the �se-Style of Expliit SubstitutionsObserve that the rewriting system of the sole �-redution rule is left linear andnon overlapping (i.e. orthogonal). Consequently, the rewriting system de�ned over�dB(X) by the �-redution rule is CR.Turning to the �-redution rule, in the setting of the �-alulus with names, thisis de�ned as �x:(a x) ! a; if x 62 Fvar(a). In the language of �dB(X), the left sideof this rule is written as �:(a0 1), where a0 stands for the orresponding translationof a under some �xed referential of variables into the language of �dB(X). \a has nofree ourrenes of x" means, in �(X), that there are neither ourrenes in a0 of theindex 1 at height zero nor of the index 2 at height one nor of the index 3 at heighttwo et. This means, in general, that there exists a term b suh that b+ = a.De�nition 2.13 �-redution in the �-alulus with de Bruijn indies is: �:(a 1)!b if 9b b+ = a.De�nition 2.14 Let � = fX1 7! a1; : : : ; Xn 7! ang be a valuation from the set ofmeta-variables X to �dB(X). The orresponding substitution, also denoted �, isde�ned indutively by:1) �(m) = m for m 2 N 2) �(X) = X�, for X 2 X3) �(a1 a2) = (�(a1) �(a2)) 4) ��:a1 = �:�+(a1)where �+ denotes the substitution �+ = fX1=a+1 ; : : : ; xn=a+n g built from the graft-ing fX1 7!a+1 ; : : : ; xn 7!a+n g.3 Caluli �a la �� and �seIn this setion we present the ��- and �se-aluli and their typed versions and estab-lish properties of the �se-alulus needed for the uni�ation proess.3.1 The ��-alulusWe introdue the ��-alulus whih works on 2-sorted terms: (proper) terms andsubstitutions. We use s; t; : : : to range over the set of substitutions.De�nition 3.1 The ��-alulus is de�ned as the alulus of the rewriting system ��of Table 1 where terms a ::= 1 j X j (a a) j �a j a[s℄ and subs s ::= id j "j a:s j s Æ s:For every substitution s we de�ne the iteration of the omposition of s indutivelyas s1 = s and sn+1 = s Æ sn. We use the onvention s0 = id . Note that the only deBruijn index used is 1 , but we an ode n by the term 1["n�1℄ .The equational theory assoiated with the rewriting system �� de�nes a ongruenedenoted =��. The ongruene obtained by dropping Beta and Eta is denoted =�.When we restrit redution to these rules, we will use expressions suh as �-redution,�-normal form, et, with the obvious meaning.The rewriting system �� is loally onuent [1℄, CR on substitution-losed terms(i.e., terms without substitution variables) [40℄ and not CR on open terms (i.e., termswith term and substitution variables) [12, 11℄. The possible forms of a ��-term in ��-normal form were given in [40℄ as: 1. �:a, where a is a normal term; 2. a1 : : : ap: "n,where a1; : : : ; ap are normal terms and ap 6= n or 3. (a b1 : : : bn), where a is either 1,1["n℄, X or X [s℄ for s a substitution term di�erent from id in normal form.

3. CALCULI �A LA �� AND �SE 529Table 1. The �� Rewriting System of the ��-alulus(Beta) (�:a b) �! a [b � id℄(Id) a[id℄ �! a(VarCons) 1 [a � s℄ �! a(App) (a b)[s℄ �! (a [s℄) (b [s℄)(Abs) (�:a)[s℄ �! �:a [1 � (s Æ ")℄(Clos) (a [s℄)[t℄ �! a [s Æ t℄(IdL) id Æ s �! s(IdR) s Æ id �! s(ShiftCons) " Æ (a � s) �! s(Map) (a � s) Æ t �! a [t℄ � (s Æ t)(Ass) (s Æ t) Æ u �! s Æ (t Æ u)(VarShift) 1� " �! id(SCons) 1[s℄ � (" Æ s) �! s(Eta) �:(a 1) �! b if a =� b["℄In the �-alulus with names or de Bruijn indies, the rule Xfy=ag = X , where yis an element of V or a de Bruijn index, respetively, is neessary beause there is noway to suspend the substitution fy=ag until X is instantiated. In the ��-alulus, theappliation of this substitution an be delayed, sine the term X [s℄ does not redue toX . The fat that the appliation of a substitution to a meta-variable an be suspendeduntil the meta-variable is instantiated will be used to ode the substitution of variablesin X by \X -grafting" and expliit lifting. Consequently a notion of X -substitution inthe ��-alulus is unneessary. Observe that the ondition a =� b["℄ of the Eta ruleis stronger than the ondition a = b+ given in De�nition 2.13 as X = X+, but thereexists no term b suh that X =� b["℄. Note that ��-redution is ompatible with �rstorder substitution or grafting and hene X -grafting and ��-redution ommute.De�nition 3.2 (The ��dB-alulus) The syntax of the ��dB-alulus is that of the��-alulus where 1 is replaed by N. The set, ��dB , of rules of the ��dB-alulusis �� where (VarId) is replaed by the four rules: a[id℄ ! a, n+ 1[a � s℄ ! n[s℄,n["℄! n+ 1 and n[" Æs℄! n+ 1[s℄.Notie that the ��dB-alulus onsists of an in�nite set of rules that should betreated modulo linear arithmeti.3.2 The �s-alulusThe �s-alulus was introdued in [26℄ with the aim of providing a alulus thatpreserves strong normalization and has a onuent extension on open terms [27℄. Itavoids introduing two di�erent sets of entities and insists on remaining lose to thesyntax of the �-alulus. Next to � and appliation, substitution (�) and updating

530 Uni�ation via the �se-Style of Expliit Substitutions(') operators are introdued. A term ontaining neither � nor ' is alled a pure term.The �s-alulus is CR on losed terms, preserves strong normalisation, its substitutionalulus is SN, and it has a onuent extension on open terms, the �se-alulus. Thisalulus was originally introdued without the Eta rule that we onsider here.De�nition 3.3 Terms of the �s-alulus are given by:�s ::= N j �s�s j ��s j �s �i�s j 'ik�swhere i � 1 ; k � 0 : The set of rules �s is given in Table 2.Table 2. The Rewriting System of the �s-alulus with �-rule(�-generation) (�:a b) �! a �1 b(�-�-transition) (�:a)�ib �! �:(a �i+1 b)(�-app-transition) (a1 a2)�ib �! ((a1 �ib) (a2 �ib))(�-destrution) n�ib �! 8<: n� 1 if n > i'i0 b if n = in if n < i('-�-transition) 'ik(�:a) �! �:('ik+1 a)('-app-transition) 'ik(a1 a2) �! (('ik a1) ('ik a2))('-destrution) 'ik n �! � n+ i� 1 if n > kn if n � k(Eta) �:(a 1) �! b if a =s '20bThe equational theory assoiated to the rewriting system �s de�nes a ongruene=�s. The ongruene obtained by dropping �-generation and Eta is denoted by =s.In order to larify di�erenes between the ��-alulus and the �s-alulus, we showthe orrespondene between their Eta rules; i.e., the orrespondene between bothonditions b["℄ = a and '20b = a of their assoiated Eta rules.Lemma 3.4 Let n 2 N a de Bruijn index. Then for all k � 0 the s-normal form of'2kn and the �-normal form of n[1:1["℄:1["2℄: : : : :1["k�1℄: "k+1℄ are a de Bruijn indexand its orresponding ode in the language of the ��-alulus.Proof. If k = 0 then we have n["℄ = 1["n�1℄["℄ �! 1["n℄ = n+ 1 and '20n �! n+ 1else if k > 0, by applying rule los one, we have:1["n�1℄[1:1["℄:1["2℄: : : : :1["k�1℄: "k+1℄ �! 1["n�1 Æ(1:1["℄: : : : :1["k�1℄: "k+1)℄.Two ases should be onsidered noting that if n > k then '2kn �!'�destrution n+ 1and if n � k then '2kn �!'�destrution n.Subase 1: n � k. Then 1["n�1 Æ(1:1["℄: : : : :1["k�1℄: "k+1)℄ �!n�1ShiftCons1[1["n�1℄: : : : :1["k�1℄: "k+1℄ �!VarCons 1["n�1℄ = nSubase 2: n > k. Then 1["n�1 Æ(1:1["℄: : : : :1["k�1℄: "k+1)℄ �!kShiftCons1[1["n�1�k℄Æ "k+1℄ = 1["n℄ = n+ 1

3. CALCULI �A LA �� AND �SE 531Lemma 3.5 Let �:a be an abstration over the language of �dB. Then we have:for k � 0, (�:a)[1:1["℄: : : : :1["k�1℄: "k+1℄ �-redues into �:(a[1:1["℄: : : : :1["k℄: "k+2℄).Proof. If k = 0 then �:a["℄ �!Abs �:a[1: "2℄. If k > 0 then�:a[1:1["℄: : : : :1["k�1℄: "k+1℄ �!Abs �:a[1:((1:1["℄: : : : :1["k�1℄: "k+1)Æ ")℄ �!kMap�:a[1:(1["℄:1["℄["℄: : : : :1["k�1℄["℄: "k+1 Æ ")℄ �!k�1Clos �:a[1:1["℄: : : : :1["k℄: "k+2℄.The orrespondene between b["℄ and '20b is the ase k = 0 of the following lemma.Lemma 3.6 Let a 2 �dB and a0 its translation in the ��-alulus, where all indiesn 2 N ourring at a are replaed with 1["n�1℄. Then, for all k � 0, the �-normalform of a0[1:1["℄: : : : :1["k�1℄: "k+1℄ is the translation of the s-normal form of '2ka.Proof. This is proved by indution on the struture of terms.Firstly, observe that it holds for a = n 2 N beause of Lemma 3.4.Seondly, suppose it holds for all k � 0 for terms a and b. Then for the appliation(a b) we have '2k(a b) �!'�app�transition ('2ka '2kb) and (a b)[1:1["℄: : : : :1["k�1℄: "k+1℄ �!App (a[1:1["℄: : : : :1["k�1℄: "k+1℄ b[1:1["℄: : : : :1["k�1℄: "k+1℄).Finally, suppose it holds for all k � 0 and for a term a. Thus by Lemma 3.5 wehave (�:a)[1:1["℄: : : : :1["k�1℄: "k+1℄ �!� �:(a[1:1["℄: : : : :1["k℄: "k+2℄) and '2k�:a �!�:'2k+1a. By the indution hypothesis the lemma holds for the orresponding normalforms of '2k+1a and a[1:1["℄: : : : :1["k℄: "k+2℄. Hene, it holds for the abstration.The previous lemma an be easily extended for terms a 2 �dB(X). In fat, observethat for a meta-variable X 2 X at a position i 2 O(a), the orresponding subterms ofthe �- and s-normal forms of a["℄ and '20a are of the form X [1:1["℄: : : : :1["k�1℄: "k+1℄and '2kX , respetively, when the height of the ourrene of X at position i is k.3.3 The �se-alulusWe introdue the open terms and the rules that extend �s to obtain the �se-alulus.De�nition 3.7 The set of open terms, noted �sop is given as follows:�sop ::= X jN j�sop�sop j��sop j�sop �j�sop j'ik�sop where j; i � 1 ; k � 0and X stands for a set of variables, over whih X , Y , ... range. Closures, pure termsand ompatibility are de�ned as for �s.Working with open terms one loses onuene as shown by the following example:((�X)Y)�11! (X�1Y)�11 ((�X)Y)�11! ((�X)�11)(Y �11)and (X�1Y)�11 and ((�X)�11)(Y �11) have no ommon redut. This example showsthat even the WCR property is lost. But the solution lies in the properties of meta-substitutions and updating funtions of the �-alulus in de Bruijn notation [27℄.These properties are equalities whih an be given a suitable orientation and the newrules, thus obtained, added to �s give origin to a rewriting system whih is WCR.De�nition 3.8 The set of rules �se is obtained by adding the rules given in Table3 to the set �s in Table 2. The �se-alulus is the redution system (�sop;!�se)where !�se is the least ompatible redution on �sop generated by the set of rules�se. The alulus of substitutions assoiated with the �se-alulus is therewriting system generated by the set of rules se = �se �f�-generation;Etag and we

532 Uni�ation via the �se-Style of Expliit SubstitutionsTable 3. The Rewriting System of the �se-alulus without rules in Table 2(�-�-transition) (a �ib)�j �! (a �j+1) �i (b �j�i+1) if i � j(�-'-transition 1) ('ik a)�j b �! 'i�1k a if k < j < k + i(�-'-transition 2) ('ik a)�j b �! 'ik(a �j�i+1 b) if k + i � j('-�-transition) 'ik(a �j b) �! ('ik+1 a)�j ('ik+1�j b) if j � k + 1('-'-transition 1) 'ik ('jl a) �! 'jl ('ik+1�j a) if l + j � k('-'-transition 2) 'ik ('jl a) �! 'j+i�1l a if l � k < l + jall it se-alulus. Additionally, ondition of the Eta rule should be hanged with'20b =se a.We an desribe operators of the �se-alulus over the signature of a �rst ordersorted term algebra T�se(X) built on X , the set of variables of sort term and itssubsort nat�term:n : ! nat; 8n 2 N n f0g() : term� term ! term�: : term ! term�i : term� term ! term; 8i 2 N n f0g'ik : term ! term; 8i 2 N; k 2 N n f0gNotie that for the ��-alulus we need two sorts: term and substitution [16℄.The set of variables of sort term in a term a 2 T�se(X) is denoted by T var(a).Proposition 3.9 X -grafting and �se-redution ommute.Theorem 3.10 ([27℄) �WN and CR of se: The se-alulus is WN and CR.� Simulation of �-redution: Let a; b 2 �, if a!� b then a!��se b .� CR of �se: The �se-alulus is CR on open terms.� Soundness: Let a; b 2 � , if a!��se b then a!�� b .The haraterization of the se-normal forms is given by the following theorem:Theorem 3.11 ([27℄) A term a 2 �sop is an se-normal form if and only if one of thefollowing holds:1. a 2 X [N;2. a = (b), where b; are se-normal forms;3. a = �:b, where b is an se-normal form;4. a = b�j, where is an se-normal form and b is an se-normal form of one of thefollowing forms: (a) X , (b) d�ie, with j < i or () 'ikd, with j � k;5. a = 'ikb, where b is an se-normal form of one of the following forms:(a) X , (b) �jd, with j > k + 1 or () 'jl , with k < l;

3. CALCULI �A LA �� AND �SE 533Proof. We verify the non existene of redies from the rules of the se-alulus. The�rst three ases are obviously normalized forms. For the fourth ase we should analyse,possible redies from the �-rules (i.e., rules whose name begin with �). Analyzingeah of the orresponding subases we have: a) no �-rule applies; b) the sole possibleredex is from the �-�-transition rule, that does not apply beause of the restrition onthe sripts;) both �-'-transition rules 1 and 2 do not apply beause of the restritionon sripts. For the �fth ase we should analyse, possible redies from the '-rules (i.e.,rules whose name begin with '). We have the following subases: a) obviously wehave a normal form; b) the sole possible redex is the one from the '-�-transition rule,that does not applies beause of the restrition on sripts;) both andidate rules,the '-'-transition ones do not apply beause of the restrition on sripts.As orollary we obtain a haraterization of �se-normal forms.Corollary 3.12 (�se-normal forms) A term a 2 �sop is a �se-normal form if andonly if one of the following holds:1. a 2 X [N;2. a = (b), where b; are �se-normal forms and b is not an abstration �:d;3. a = �:b, where b is a �se-normal form exluding appliations of the form (1)suh that there exists d with '20d =se ;4. a = b�j, where is a �se-normal form and b is an �se-normal form of one of thefollowing forms: (a) X , (b) d�ie, with j < i or () 'ikd, with j � k;5. a = 'ikb, where b is a �se-normal form of one of the following forms:(a) X , (b) �jd, with j > k + 1 or () 'jl , with k < l;Proof. Items 2 and 3 result from adapting the proof of Theorem 3.10 to avoid rediesof the �-generation and Eta rules of the �se-alulus.3.4 Typed �-aluliWe reall that environments in de Bruijn setting are simply lists of types and in thease of the ��-alulus, substitutions reeive environments as types. We introdue thefollowing notation onerning environments. If � is the environment �1:�2: : : : :�n:nil ,then ��i denotes the environment �i:�i+1: : : : :�n:nil ; analogously, ��i stands for�1: : : : :�i, et. The rewrite rules of the orresponding typed aluli are exatly thesame (exept that rules involving abstrations are now typed). In all these aluli, weassume types and environments built by types A j A! B and envirs � nil j A:�.Here are the typing rules for the simply typed �-alulus in de Bruijn notation:De�nition 3.13 The syntax of simply typed �-alulus in de Bruijn notationis de�ned by:The set of terms terms a :== n j (a b) j �A:aThe typing system, alled L1, and given by the following rules:(L1-var) A:� ` 1 : A (L1-�) A:� ` b : B� ` �A:b : A! B(L1-varn) � ` n : BA;� ` n+ 1 : B (L1-app) � ` b : A! B � ` a : A� ` (b a) : B

534 Uni�ation via the �se-Style of Expliit SubstitutionsObserve that typing and grafting are not ompatible.Example 3.14 Consider the environment � = A:(A ! A) ! (B ! A) ! A:nil anda variable X of type A. Let us show that � ` ((2 �A:X) �B :X) : A. Firstly, 2 istyped:(varn) (var)(A! A)! (B ! A)! A:nil ` 1 : (A! A)! (B ! A)! AA:(A! A)! (B ! A)! A:nil ` 2 : (A! A)! (B ! A)! AAfterwards, the neessary abstrations are typed:(�) A:� ` X : A� ` �A:X : A! A (�) B:� ` X : A� ` �B :X : B ! AFinally, (app) � ` 2 : (A! A)! (B ! A)! A � ` �A:X : A! A(app)� ` (2 �A:X) : (B ! A)! A � ` �B :X : B ! A� ` ((2 �A:X) �B :X) : AObserve that applying the grafting fX=1g to the term ((2 �A:X) �B :X) we obtainthe term ((2 �A:1) �B :1), whih is not well-typed.The next proposition establishes ompatibility between substitution and typing.Proposition 3.15 ([16℄) Take a variable X of type B and an environment �. If� ` a : A and � ` b : B then � ` fX=bga : A.Proof. By indution on the struture of terms. Firstly, if a = X , then A = B.Seondly, if a = n then fX=bga = n. Thirdly, if a = (a1 a2) then we have that� ` a2 : A1 and � ` a1 : A1 ! A and by the app typing rule � ` (a1 a2) : A; byindution hypothesis � ` fX=bga2 : A1 and � ` fX=bga1 : A1 ! A whih implies� ` fX=bg(a1 a2) : A. Finally, if a is an abstration of the form �C :a1 then Ashould be of the form C ! D and C:� ` a1 : D. By de�nition of substitutionfX=bg�C:a1 = �C :fX=b+ga1. Observe that if we an prove that C:� ` b+ : Bthen, sine C:� ` X : B, we an suppose indutively that C:� ` fX=b+ga1 : D andsubsequently, by applying the � typing rule, we an onlude that � ` �C :fX=b+ga1 :C ! D. To prove that if � ` b : B then C:� ` b+ : B we prove by indution on thestruture of terms that the following more general aÆrmation holds:if Ci: : : : :C1:� ` b : B then Ci: : : : :C1:C:� ` b+i : BFirstly, if b = X then b+i = X . Seondly, if b = n then if n > i then n+i = n+ 1and the type of n and of n+ 1 in the environments Ci: : : : :C1:� and Ci: : : : :C1:C:�,respetively, oinide (in fat, it is the one of n� i in the environment �). Else,if n � i then n+i = n. Thirdly, if b is an appliation of the form (b1 b2) then(b1 b2)+i = (b+i1 b+i2) and by the indution hypothesis we have Ci: : : : :C1:C:� `b+i1 E ! B and Ci: : : : :C1:C:� ` b+i2 E, for some type E, whih enables us to onludethat Ci: : : : :C1:C:� ` (b+i1 b+i2) : B. Finally, if b is an abstration of the form�E :b1 then B = E ! F and E:Ci: : : : :C1:� ` b1 : F . By indution hypothesisE:Ci: : : : :C1:C:� ` b+i1 : F and onsequently Ci: : : : :C1:C:� ` �E :b+i1 : E ! F .We reall now the typing rules for �s and �se.

3. CALCULI �A LA �� AND �SE 535De�nition 3.16 The syntax of simply typed �s- and �se-alulus is given by:The set of terms terms a :== n j X j (a b) j �A:a j a�ib j 'ika; 8n; k � 0; 8i � 1The typing system Ls1, given by the rules Ls1-var, Ls1-varn, Ls1-� and Ls1-app whih are exatly the same as L1-var, L1-varn, L1-� and L1-app, respetively,and the new rules:(Ls1-�) ��i ` b : B �<i:B:��i ` a : A� ` a �ib : A(Ls1-Mtv) �X ` X : AX(Ls1-') ��k:��k+i ` a : A� ` 'ika : A(Ls1-Mtv) is added to type open terms and is taken to mean: for every metavariableX , there exists an environment �X and a type AX suh that the rule holds. In orderto obtain ompatibility between typing and grafting, to eah meta-variable X weassoiate a unique type AX and a unique environment �X . We assume for eah pair(�; A) an in�nite set of variables X suh that �X = � and AX = A.Now we present the simply typed ��-alulus.De�nition 3.17 The syntax of simply typed ��-alulus is given by the sets ofterms and substitutions: terms a :== 1 j X j (a b) j �A:a j a[s℄ and subs s :==id j " j a:s j s Æ s and the rules L�1-var, L�1-� and L�1-app whih are exatly thesame as L1-var, L1-� and L1-app, respetively, together with the new rules:(L�1-los) � ` s . �0 �0 ` a : A� ` a[s℄ : A (L�1-id) E ` id . �(L�1-ons) � ` a : A � ` s . �0� ` a : A � s . A;�0 (L�1-shift) A:� `" .�(L�1-omp) � ` s00 . �00 �00 ` s0 . �0� ` s0 Æ s00 . �0 (L�1-Mtv) �X ` X : AXThe redution rules of both the typed ��-alulus and the typed �se-alulus arede�ned by adding to the rules in �� and in �se the neessary typing information.De�nition 3.18 (Typed ��-alulus) The typed ��-alulus is de�ned by therewrite rules of the rewriting system �� (Table 1) hanging the rules that involveabstrations as in Table 4. The resulting rewriting system is also alled ��.Table 4. The Beta, Abs and Eta rules of the typed ��-alulus(Beta) (�A:a b) �! a [b � id℄(Abs) (�A:a)[s℄ �! �A:a [1 � (s Æ ")℄(Eta) �A:(a 1) �! b if a =� b["℄The typed version of � has the same properties as the untyped one.

536 Uni�ation via the �se-Style of Expliit SubstitutionsProposition 3.19 (Grafting and typing are ompatible [16℄) IfX is a variableand b a term suh that �X ` b : Ax then:1. 8 environment � and term a suh that � ` a : A, we have: � ` afX=bg : A.2. 8 environments �;�0 and substitution s suh that � ` s .�0, we have:� ` sfX=bg .�0.Proof. By simultaneous indution on the struture of typing derivation of � ` a : Aand � ` s .�0.Sine a unique environment and a unique type are assoiated to every meta-variable,terms as ((Y X) X ["℄) and ((Y �A:X) X) annot be typed in any environment.Proposition 3.20 ([40℄) The typed ��-alulus is WN and CR.De�nition 3.21 (�-long normal forms in ��) Let a be a ��-term of type A1 !: : : ! An ! B in the environment � and in ��-normal form. The �-long normalform of a, written a0, is de�ned by:1. if a = �C :b then a0 = �C :b02. if a = (k b1 : : : bp) then a0 = �A1 : : : �An(k+ n 1 : : : p n0 : : : 10), where i is the�-long normal form of the normal form of bi["n℄3. if a = (X [s℄ b1 : : : bp) then a0 = �A1 : : : �An(X [s0℄ 1 : : : p n0 : : : 10), where i is the�-long normal form of bi["n℄ and if s = d1 : : : dq: "k then s0 = e1 : : : eq : "k+n whereei is the �-long normal form of di["n℄De�nition 3.21 has been proven orret and well-founded in [16℄. The long normalform of a ��-term is de�ned as the �-long normal form of its ��-normal form. Twoterms are ��-equivalent if and only if they have the same long normal form [16℄.De�nition 3.22 (Typed �se-alulus) The typed �se-alulus is de�ned by therewrite rules of the rewriting system �se (rules in Tables 2 and 3) hanging the rulesthat involve abstrations as in Table 5. The resulting rewriting system is also alled�se.Table 5. The generation, transition and Eta rules of the typed �se-alulus(�-generation) (�A:a b) �! a �1 b(�-�-transition) (�A:a)�ib �! �A:(a �i+1 b)('-�-transition) 'ik(�A:a) �! �A:('ik+1 a)(Eta) �A:(a 1) �! b if a =se '20bWe reall now the main results onerning typed �s and �se:Theorem 3.23 ([26℄) 1. Subjet Redution of �s: If � ` a : A and a !�s bthen � ` b : A.2. SN of �s: Every well typed term is SN in the simply typed �s-alulus.3. Subjet Redution of �se: If � ` a : A and a!�se b then � ` b : A.

3. CALCULI �A LA �� AND �SE 537The haraterization of �-long normal forms in �se, to be introdued, is neessaryto simplify our set of uni�ation rules. Essentially this is the way to guarantee thatmeta-variables of funtional type A! B are instantiated with typed �se-terms of theform �A:a.De�nition 3.24 (�-long normal form in �se) Let a be a �se-term of type A1 !: : : ! An ! B in the environment � and in �se-normal form. The �-long normalform of a, written a0, is de�ned by:1. if a = �C :b then a0 = �C :b02. if a = (b1 : : : bp) then a0 = �A1 : : : �An(1 : : : p n0 : : : 10), where i is the �-longnormal form of the normal form of 'n+10 bi3. if a = b�i then a0 = �A1 : : : �An(d0�i+ne0 n0 : : : 10), where d0; e0 are the �-longnormal forms of the normal forms of 'n+10 b and 'n+10 , respetively4. if a = 'ikb then a0 = �A1 : : : �An('ik0 n0 : : : 10), where 0 is the �-long normal formof the normal form of 'n+10 bLemma 3.25 De�nition 3.24 of �-long normal form is orret and well-founded.Proof. In the �rst ase the number of ourrenes of meta-variables is preservedand the size of the term is stritly dereasing. In the seond ase, if p = 0 the typeis stritly dereasing and if p 6= 0 the number of ourrenes of meta-variables isdereasing and the size of the term is stritly dereasing. In ase 3 the number ofourrenes of meta-variables is stritly dereasing.De�nition 3.26 The long normal form of a �se-term is the �-long normal form ofits ��-normal form.In �� the redution of an �-redex may reate �-redies as in X [�:(2 1): "℄ �!EtaX [1: "℄ �!VarShift X [id ℄ �!Id X . Hene, to ompute the long normal form, allredies, inluding the �-redies, should be redued before expanding the term. Thatis not the ase for the �se-alulus. In fat, by heking rule by rule, one an easilyverify that no �-redution may generate new se-redies. Then one ould replae inthe previous de�nition �� with �. But the use of �-redution, being it unessential atall, makes the uni�ation proess more eÆient as it is explained after introdutionof the �se-uni�ation rules (De�nition 5.2).As in the ��-alulus, two �se-terms are ��-equivalent if and only if they havethe same long normal form. Subsequently we present haraterizations of �se-normalterms whose main operators are either � or ' (i.e., of type 3. and 4. in Corollary 3.12).This is essential in order to simplify our presentation of the uni�ation rules and ofFlex-Flex equations. Our haraterization is similar to that of [27℄ and is obtained byobserving when arithmeti restritions for the appliation of the transition rules ofthe �se-alulus do not hold. For instane, in order to apply a '-'-transition rule toredue a term of the form 'ik('jl a), we need either l + j � k or l � k < l + j as suha rule does not apply if l + j > k and (l > k or k < l + j) or, equivalently, if l > k.Note that there are no other rules to redue, at root position, a term of this form.Observe �rstly that by the �se rewrite rules left arguments of the � operator or ar-guments of ' operators at �se-normal terms are neither appliations nor abstrationsnor de Bruijn indies. For instane, 'ji (a b) ! ('ika 'ikb), (a b)�i ! (a�i b�i).Then the sole possibility is to have as a left argument a meta-variable. Thus one has to

538 Uni�ation via the �se-Style of Expliit Substitutionsonsider terms alternating sequenes of operators ' and � whose left innermost argu-ment is a meta variable; onsider, for instane, the term (('j3i3 (('j1i1X)�i2 �))�i4 �)�i5 �,where right arguments of the operator � are denoted by \�".De�nition 3.27 Consider a �se-normal term t whose leading operator is either � or 'and whose left innermost meta-variable is X . Denote by jkik the operator at positionk following the sequene of operators ' and �, onsidering only left arguments ofthe � operators, in the order innermost outermost. Additionally, if jkik orrespondsto an operator ' then jk and ik denote its super and subsripts, respetively and if jkik orresponds to an operator � then jk = 0 and ik denotes its supersript. Letak denote the orresponding right argument of the kth operator if jkik = �ik andthe empty argument if jkik = 'jkik . The skeleton of t, written sk(t), is de�ned as: jpip : : : j1i1 (X; a1; : : : ; ap).Example 3.28 Let (('j3i3 (('j1i1X)�i2a))�i4b)�i5 be a �se-normal term. Then its rep-resentation as a skeleton is given by 0i5 0i4 j3i3 0i2 j1i1 (X; a; b;).In the sequel, for a �se-normal term whose leading operator is either ' or � we willeventually abuse its skeleton representation sk(t). Thus, for instane, for a �se-terma we an write a!� sk(t) representing a!� t or a =se sk(t) representing a =se t.Lemma 3.29 Let t be a �se-normal term whose leading operator is either � or ' andwhose skeleton is jpip : : : j1i1 (X; a1; : : : ; ap). Suessive sripts ik and ik+1 satisfy thefollowing:1. ik > ik+1 if both k and k+1 are either � operators or ' operators;2. ik � ik+1 if k and k+1 are ' and � operators, respetively;3. ik > ik+1 + 1 if k and k+1 are � and ' operators, respetively.Proof. By simple analysis of the arithmeti onstraints at the �se rewrite rules.4 Uni�ation in the ��-alulusIn this setion we reall higher order uni�ation in the ��-alulus as originally intro-dued in [16℄. Another approah of higher order uni�ation by expliit substitutionwas presented by Lesanne, Benaissa and Briaud in [31℄ and based on the ��-alulusof [7℄. The ��-alulus preserves strong normalization but its onuene is restritedto losed terms. [31℄ informally suggests to lose terms before uni�ation is realized.The problem to be onsidered is how to solve equational systems on typed ��-terms (i.e., in �(X ;Y)) modulo the equational theory of ��. Equational systems arerestrited to be on substitution-losed terms, beause of the fat that �� is CR onterms without substitution variables, but non CR on open terms (i.e., when substitu-tion variables are admitted). Sine the main goal is to provide a mehanism to solveuni�ation problems in the �-alulus this restrition is not relevant.De�nition 4.1 Let T (F ;X) be a term algebra over a set of funtion symbols F anda ountable set of variables X and let A be an F-algebra. An hF ;X ;Ai-uni�ationproblem, for short uni�ation problem, is a �rst order formula without universalquanti�er nor negation whose atoms are of the form F;T and s =?A t, where both

4. UNIFICATION IN THE ��-CALCULUS 539s; t 2 T (F ;X). Uni�ation problems will be written as disjuntions of existentiallyquanti�ed onjuntions of atomi equational uni�ation problemsD = _j2J 9 ~wj î2Ij si =?A tiWhen there is a sole disjuntor, the uni�ation problem is alled a uni�ation sys-tem. The variables in the set ~w in a uni�ation system P = 9~wVi2I si =?A ti arealled bound and denoted Bvar(P), while those ourring in si's and ti's are alledfree and denoted Fvar(P). T and F stand for the empty onjuntion and disjuntion,respetively. The empty disjuntion, orresponds to an unsatis�able problem.De�nition 4.2 A uni�er of an hF ;X ;Ai-uni�ation system 9~wVi2I si =?A ti is agrafting � where A j= 9~wVi2I si�n~w = ti�n~w and �n~w denotes the restrition of � tothe domain X n ~w.A uni�er of an hF ;X ;Ai-uni�ation problem, _j2J9 ~wj ^i2Ij si =?A ti, is a grafting �that uni�es at least one of the uni�ation systems involved.For simpliity, all referenes to the term algebra T (F ;X) and to the algebra A areomitted, when they are lear from the ontext. When the algebra A onsidered isthe quotient algebra over T (F ;X) de�ned by the ongruene assoiated with a set ofequations E, i.e. A = T (F ;X)=E, then we denote =?A by =?E . The set of uni�ers ofa uni�ation problem, D, or system, P , is denoted by UA(D) or UA(P), respetively.De�nition 4.3 Let �; � be grafting valuations from X into T (F ;X) and A be analgebra over T (F ;X). � is more general modulo A than �, denoted � �A �, if 9 suh that A j= � = �.�A indues a quasi ordering over the set of grafting valuations. When neessary, werestrit � �A � to a set Y � X writing � �YA �.De�nition 4.4 Let D be an hF ;X ;Ai-uni�ation problem. A omplete set ofuni�ers of D is a set of grafting valuations, denoted by CUA(D), suh that:1. CUA(D) � UA(D) (Corretness)2. 8� 2 UA(D)9� 2 CUA(D) suh that � �var(D)A � (Completeness)3. 8� 2 CUA(D), Ran(�) \ Dom(�) = ; (Idempoteny)A omplete set of most general uni�ers of D, denoted by CMGUA(D), is aomplete set of uni�ers that additionally satis�es:4. 8�; � 2 CMGUA(D) � �var(D)A �; � = � (Minimality)[16℄ presents a set of rewrite rule shemata that simplify uni�ation problems inorder to obtain the set of uni�ers. The simplest are the boolean simpli�ation rules.De�nition 4.5 The boolean simpli�ation rules for uni�ation problems are thoseof Table 6 modulo assoiativity and ommutativity of the boolean onjuntion anddisjuntion. In that table P;Q;R stand for uni�ation problems, e for an equationand s; t for terms.Basi deomposition rules for uni�ation (to be de�ned after speializing uni�ationnotions to ��-terms) should be applied modulo boolean simpli�ation rules.

540 Uni�ation via the �se-Style of Expliit SubstitutionsTable 6. The Boolean simpli�ation rules for uni�ation problems(Trivial) P ^ s =? s ! P(AndIdem) P ^ e ^ e ! P ^ e(OrIdem) P _ e _ e ! P _ e(SimpAndT) P ^ T ! P(SimpAndF) P _ F ! F(SimpOrT) P _ T ! T(SimpOrF) P _ F ! P(Distrib) P ^ (Q _ R) ! (P ^Q) _ (P ^ R)(Propag) 9~z(P _Q) ! 9~zP _ 9~zQ(ElimQE) 9zP ! P , if z 62 var (P)(ElimBV) 9z z =? t ^ P ! P , if z 62 var (P) [var (t)De�nition 4.6 A ��-uni�ation problem P is a uni�ation problem in the algebraT��(X) modulo the equational theory of ��. An equation of suh a problem isdenoted a =?�� b, where a and b are substitution-losed ��-terms of the same sort.An equation of the form a =?�� a is alled trivial. For a uni�ation problem P ,T var(P) denotes the set of variables of sort term and U��(P) denotes the set of alluni�ers of P .De�nition 4.7 The ��-uni�ation rules for typed ��-uni�ation problems aregiven in Table 7.Sine �� is CR and WN, the searh an be restrited to �-long normal solutionsthat are graftings of the form fX=�:ag or fX=(n a1 : : : ap)g and fX=(Z[s℄a1 : : : ap)g,when the type of X is funtional respetively atomi. The rules Normalize and De-�,use the fat that �� is CR and WN to normalize equations of the form �:a =?�� �:binto equations of the form a0 =?�� b0. The rule Exp-� generates the grafting fX=�:Y gfor a variable X of type A! B, where Y is a new variable of type B.Example 4.8 Consider the uni�ation problem (X 1) =?�� 1, whereX has type A!A. The rule Exp-� takes a new variable Y of type A and by the grafting fX=�A:Y gthe problem is transformed into (�:Y 1) =?�� 1 that �-redues to Y [1:id℄ =?�� 1.Sine Y has an atomi type A, a normal solution an only be a grafting of the formfY=(n a1 : : : ap)g or fY=(Z[s℄a1 : : : ap)g. Grafting valuations of the seond form arenot solutions beause normal forms of terms of the form (Z[s℄a1 : : : ap)[1:id℄ annotbe 1. Then all solutions should be of the �rst form. Performing the orrespondinggrafting fY=(n Y1 : : : Yp)g, where Y1; : : : ; Yp are new variables. Observe that n anonly be 1 or 2 (equivalently, 1["℄), beause in the other ase the head in the redution of(n a1 : : : ap)[1:id℄ is n�1. For terms with heads 1 and 2 we have: (1 a1 : : : ap)[1:id℄!�(1 a1[1:id℄ : : : ap[1:id℄) and (1["℄ a1 : : : ap)[1:id℄ !� (1["℄[1:id℄ a1[1:id℄ : : : ap[1:id℄) !(1[" Æ(1:id)℄ a1[1:id℄ : : : ap[1:id℄)!� (1 a1[1:id℄ : : : ap[1:id℄).For an equation of the formX [a1 : : : ap: "n℄ =?�� (m b1 : : : bq), whereX has an atomitype A, solutions an only be grafting valuations of the form fX=(r 1 : : : k)g, wherer 2 f1; : : : ; pg [fm� n+ pg. Exp-App advanes in diretion towards this solution.

4. UNIFICATION IN THE ��-CALCULUS 541Table 7. The ��-uni�ation rules(De-�) P ^ �A:a =?�� �A:b ! P ^ a =?�� b(De-App) P ^ (n a1 : : : ap) =?�� (n b1 : : : bp) ! P Vi=1::p ai =?�� bi(App-Fail) P ^ (n a1 : : : ap) =?�� (m b1 : : : bq) ! F if n 6= m(Exp-�) P ! 9(Y where A:� ` Y : B); P ^X =?�� �A:Yif (� ` X : A ! B) 2 T var (P); Y 62 T var(P), and X is anunsolved variable(Exp-App) P ^X [a1 : : : ap: "n℄ =?�� (m b1 : : : bq) !P ^X [a1 : : : ap: "n℄ =?�� (m b1 : : : bq) ^Wr2Rp[Ri 9H1; : : : ; Hk; X =?�� (r H1 : : : Hk)� if X has an atomi type and is not solved� H1; : : : ; Hk are variables of appropriate types, not ourring inP and the environments �Hi = �X� Rp � f1; : : : ; pg suh that (r H1 : : :Hk) has the right type� Ri = fm� n+ pg if m � n+ 1 else ;(Replae) P ^X =?�� a ! fX=agP ^X =?�� aif X 2 T var (P); X 62 T var (a) and a 2 X) a 2 T var(P)(Normalize) P ^ a =?�� b ! P ^ a0 =?�� b0if a or b is not in long normal form,a0 = � the long normal form of a if a is an unsolved variablea otherwiseb0 is de�ned from b similarly to a0 from a.During the uni�ation proess the rule Replae simply propagates, to the urrentuni�ation problem, the grafting fX=ag orresponding to equations X =?�� a previ-ously added by the appliation of the other uni�ation rules.De�nition 4.9 A uni�ation system P is a ��-solved form if all its meta-variablesare of atomi type and it is a onjuntion of non trivial equations of the followingforms:(Solved) X =?�� a, where the variable X does not our anywhere else in P anda is in long normal form. Both X and X =?�� a are said to be solved in P .(Flex-Flex) non solved equations of the form X [a1 : : : ap: "n℄ =?��Y [a01 : : : a0p0 : "n0 ℄, where X [a1 : : : ap: "n℄ and Y [a01 : : : a0p0 : "n0 ℄ are long normalterms with X and Y of atomi type.In the previous de�nition some of the sripts p; p0; n; n0 may be zero.Example 4.10 Consider the equation X =?�� Y [X: "℄. This is a ex-ex equation,but the variable X is unsolved sine it ours in the right-hand side of the equation.Observe that the left-hand side an be written as X [id℄. The same holds for X ["3℄ =?�� Y [1: "℄.Sine solved forms appearing in a system P de�ne straightforwardly the bindingbetween the variables that do not appear anywhere else in P and the terms (in long

542 Uni�ation via the �se-Style of Expliit Substitutionsnormal form), proving that ex-ex equations have uni�ers one obtains that any��-solved form has ��-uni�ers.[16℄ showed that: dedution by the ��-uni�ation rules of a well typed equationgives rise only to well typed equations, T and F; solved problems are normalized forthe ��-uni�ation rules; a onjuntion of equations irreduible by the ��-uni�ationrules is a solved system; and the ��-uni�ation rules are orret and omplete.5 Uni�ation in the �se-alulusThe main harateristis of the typed ��-alulus needed in the development of theuni�ation method of the previous setion are its weak normalization and onuene(Proposition 3.20) and its haraterization of normal forms (De�nition 3.21).De�nition 5.1 A �se-uni�ation problem P is a uni�ation problem in the algebraT�se(X) modulo the equational theory presented by �se. An equation of suh aproblem is denoted a =?�se b, where a and b are two �se-terms of the same sort. Anequation is alled trivial when of the form a =?�se a. The set of meta-variables in auni�ation problem P is denoted T var (P). The set of all uni�ers of a problem P isdenoted U�se(P).De�nition 5.2 The �se-uni�ation rules for typed �se-uni�ation problems aregiven in Table 8.Here is how the �se-uni�ation rules of Table 8 simplify �se-uni�ation problems:Sine �se is CR and WN, the searh an be restrited to �-long normal solutionsthat are graftings binding funtional variables into �-long normal terms of the form�:a and atomi variables into �-long normal terms of the form (k b1 : : : bp) or a�ib or'ika, where in the �rst ase k ould be omitted and p ould be zero. Use of the �rule is important to redue the number of ases (or uni�ation rules) to be onsideredwhen de�ning the uni�ation algorithm, but as for the ��-alulus, one an developa HOU method based on the �-onversion alone [16℄. This is not surprising sinethe original Huet's algorithm was developed only for the �-onversion. The rulesNormalize and De-�, use the fat that �se is CR and WN to normalize equations ofthe form �:a =?�se �:b in equations of the form a0 =?�se b0.During the uni�ation proess the rule Replae simply propagates, to the urrentproblem, the grafting fX=ag orresponding to equations X =?�se a previously addedby the appliation of the other uni�ation rules.The rule Exp-� generates the grafting fX=�:Y g for a variable X of type A ! B,where Y is a new variable of type B.Equations of the form (n a1 : : : ap) =?�se (m b1 : : : bq) are transformed by the rulesDe-App and App-Fail into the empty disjuntion when n 6= m (as there are no solu-tion), or into the onjuntion Vi=1::p ai =?�se bi, when n = m (note that terms of theform (n a1 : : : ap) inlude those where n is omitted or p = 0).Example 5.3 Consider the uni�ation problem (�:(�:(X 2) 1) Y) =?�se (�:(Z 1) U)where X;Y; Z and U are meta-variables.Then (�:(�:(X 2) 1) Y) !� (�:(X�11 2�11) Y) !� (�:(X�11 1) Y) !�((X�11)�1Y 1�1Y) !� ((X�2Y)�1(1�1Y) '10Y) ! ((X�2Y)�1('10Y) '10Y) and

5. UNIFICATION IN THE �SE-CALCULUS 543Table 8. The �se-uni�ation rules(De-�) P ^ �A:a =?�se �A:b ! P ^ a =?�se b(De-App) P ^ (n a1 : : : ap) =?�se (n b1 : : : bp) ! P Vi=1::p ai =?�se bi(App-Fail) P ^ (n a1 : : : ap) =?�se (m b1 : : : bq) ! F if n 6= m(De-') P ^ 'ika =?�se 'ikb ! P ^ a =?�se b, where 'ika; 'ikb arelong-normal terms.(Exp-�) P ! 9(Y where A:� ` Y : B); P ^X =?�se �A:Yif (� ` X : A ! B) 2 T var(P); Y 62 T var (P), and X is aunsolved variable(Exp-App) P ^ jpip : : : j1i1 (X; a1; : : : ; ap) =?�se (m b1 : : : bq) !P ^ jpip : : : j1i1 (X; a1; : : : ; ap) =?�se (m b1 : : : bq) ^Wr2Rp[Ri 9H1; : : : ; Hk; X =?�se (r H1 : : : Hk)� if jpip : : : j1i1 (X; a1; : : : ; ap) is the skeleton of a �se-normal term� X has an atomi type and is not solved� H1; : : : ; Hk are variables of appropriate types, not ourring inP , with the environments �Hi = �X� Rp � fi1; : : : ; ipg of supersripts of the � operator suh that(r H1 : : : Hk) has the right type Ri = � Spj=0fqg if q > ik+1; otherwiseand q = m+ p� k �Ppl=k+1 jl; i0 =1; ip+1 = 0(Replae) P ^X =?�se a ! fX=agP ^X =?�se aif X 2 T var (P); X 62 T var (a) and a 2 X) a 2 T var(P)(Normalize) P ^ a =?�se b ! P ^ a0 =?�se b0if a or b is not in long normal form,a0 = � the long normal form of a if a is an unsolved variablea otherwiseb0 is de�ned from b similarly to a0 from a.(�:(Z 1) U)!� (Z�1U 1�1U)! (Z�1U '10U). Hene:(�:(�:(X 2) 1) Y) =?�se (�:(Z 1) U) !Normalize((X�2Y)�1('10Y) '10Y) =?�se (Z�1U '10U) !De�App(X�2Y)�1('10Y) =?�se Z�1U ^ '10Y =?�se '10U !De�'(X�2Y)�1('10Y) =?�se Z�1U ^ Y =?�se UObserve that solutions of Y =?�se U are graftings of the form fY=V; U=V g. Ad-ditionally, a variety of solutions an be given for (X�2Y)�1('10Y) =?�se Z�1Y : takefX=ng; thus if n � 2, fZ=n� 1g.Note that the equations of this example orrespond to those of ��-uni�ation:(�:(�:(X 2) 1) Y) =?�� (�:(Z 1) U) !Normalize (X [Y:Y:id℄ Y) =?�� (Z[U:id℄ U),an be deomposed into X [Y:Y:id℄ =?�� Z[U:id℄ ^ Y =?�� U . Note that sine X andZ are meta-variables of funtional type, X [Y:Y:id℄ =?�� Z[U:id℄ is not ex-ex.In the ��-alulus, the uni�ation rule Exp-App advanes in diretion towards so-lutions for equations of the form X [a1 : : : ap: "n℄ =?�se (m b1 : : : bq), where X is anunsolved variable of an atomi type, say A. Solutions are grafting valuations of the

544 Uni�ation via the �se-Style of Expliit Substitutionsform fX=(r 1 : : : k)g, where r 2 f1; : : : ; pg [fm� n+ pg. The �se-uni�ation ruleExp-App develops the analogous role for uni�ation problems over the �se-alulus.It is important to note that expliit use of �se-normal forms in the uni�ation ruleExp-App is not essential. It is done however, with the sole objetive of simplifying thease analysis presented in the de�nition of the rule and thus in its ompleteness proof.In fat, this an be dropped from the general presentation of the �se-uni�ation pro-edure and be subsequently inorporated as an eÆient uni�ation strategy, wherebefore applying the Exp-App rule, uni�ation problems are normalized. Normaliza-tion before applying other uni�ation rules is usually proposed in any uni�ationstrategy inluding the ��-uni�ation approah in [16℄. This is a onsequene of thefundamental ommutation theorem between substitution and redution in �-alulus.Now, we give important properties for the �se-uni�ation rules (De�nition 5.2).Lemma 5.4 (Well-typedness) Dedution by the �se-uni�ation rules of a well typedequation gives rise only to well typed equations, T and F.Proof. By analyzing, rule by rule, the types of the resulting transformed equation.� Normalize: this is onsequene of the fat that the rewriting system �se is welltyped and of the orretness of the de�nition of long normal forms.� De-�: if �A:a =?�se �A:b is well typed then the types of a and b oinide.� App-Fail: obvious.� De-App, De-': if (n a1 : : : ap) =?�se (n b1 : : : bp) is well typed then so is (a1 : : : ap)=?�se (b1 : : : bp). Without loss of generality we an suppose that ai and bi arenormalized onluding that the equations ai =?�se bi are well typed. Well typingof the uni�ation rule De-' is proved similarly.� Exp-�: by de�nition of the rule, sine X : � ` A! B and Y : A:� ` B then bythe typing rule L1-�, �A:Y : � ` A! B. Hene, X =?�se �A:Y is well typed.� Exp-App: we present a simple sketh of the indutive proof on q and p. We omitthe ase in whih m ours and onsider a simple equation of the form X�ib =?�se(b1 b2) where X is an atomi meta-variable. We have �<i:B:��i ` X : A and��i ` a : B and by the typing rule Ls1-�, for some environment � and typesA and B, � ` X�ib : A. By assumption X�ib =?�se (b1 b2) is well typed thus� ` (b1 b2) : A. By the typing rule Ls1-App we have some type C suh that� ` b1 : C ! A and � ` b2 : C. Then by assumption of the Exp-App uni�ationrule, variables H1; H2 an be appropriately seleted suh that � ` H1 : C ! Aand � ` H2 : C. Hene the equation X =?�se (H1 H2) is well typed. The proofis �nished by analyzing ombined ases of suessive � and ' operators and byompleting in the straightforward form the indutive reasoning.� Replae: well typing of equations is preserved beause, as P ^ X =?�se a welltyped, by replaing X with a in P , types are not hanged. This is a onsequeneof the ompatibility between grafting and typing.Example 5.5We present three di�erent uni�ation problems and orresponding equa-tions, to be treated with the Exp-App ��- and �se-uni�ation rules, whih result fromthe appliation of both uni�ation methods. The reader is invited to omplete theomputations.

5. UNIFICATION IN THE �SE-CALCULUS 5451. Consider the problem (�:(�:(X 2) 1) Y) =? (�:(�:V 1) U). Related equationsto be treated by applying the orresponding Exp-App uni�ation rules are:(X [Y:Y:id℄ Y) =?�� V [U:U:id℄ and ((X�2Y)�1('10Y) '10Y) =?�se (V �2U)�1('10U).Solutions are reahed after applying Exp-App uni�ation rules with V =?�� (V1 V2)and V =?�se (V1 V2), where V1; V2 are new variables.2. From the problem �:(�:(Y 1) �:(X 1)) =? �:(�:V �:W) we reah the equations:(Y [�:(X 1):id℄ �:(X 1)) =?�� V [�:W:id℄ and (Y �1�:(X 1) �:('11 1)) =?�seV �1�:W After applying the orresponding Exp-App rules, with V =?�� (V1 V2)and V =?�se (V1 V2), new equations appear: �:(X 1) =?�� V2[�:(X 1):id℄ and�:('11X 1) =?�se V2�1�:(X 1). Solutions result by seleting the ase V2 =? 1.3. Consider the problem (�:(X �:W) 1) =? (�:(Z �:(U 1)) V). Related equationsto be treated by the appliation of Exp-App uni�ation rules are:W [1:1["℄: "℄ =?�� (U [1:V ["℄: "℄ 1) andW�21 =?�se (U�2V 1). Solutions are foundafter applying Exp-App uni�ation rules with W =? (W1 W2).Before formalizing ex-ex equations in �se, we give an example where the appliationof Exp-� and Exp-App is essential. Solutions are those of the ex-ex equations.Example 5.6 (Continuing Example 5.3 and 5.5 1.)Consider the problem (�:(�:(X 2) 1) Y) =?�� (�:(Z 1) U), where now we makeonsiderations about the types of meta-variables. Let Y and U be of type A and Xand Z be of type A! A. In the ��-uni�ation setting:(�:(�:(X 2) 1) Y) =?�� (�:(Z 1) U) !Exp��;Replae(�:(�:(X 2) 1) Y) =?�� (�:(�:V 1) U) ^ Z =?�� �:V !Normalize(X [Y:Y:id℄ Y) =?�� V [U:U:id℄ ^ Z =?�� �:Vwhere V is a new meta-variable of type A. The interesting step in the whole proessis the appliation of the Exp-App ��-uni�ation rule to the �rst equation, whih, byase analysis, ould transform this into the searh for solutions of (X [Y:Y:id℄ Y) =?��V [U:U:id℄ ^ V =?�� (V1 V2) that by Replae and Normalize gives (X [Y:Y:id℄ Y)=?�� (V1[U:U:id℄ V2[U:U:id℄) ^ V =?�� (V1 V2) and, �nally, by deomposition andReplae gives the uni�ation problem: X [V2[U:U:id℄:V2[U:U:id℄:id℄ =?�� V1[U:U:id℄ ^Y =?�� V2[U:U:id℄ ^ V =?�� (V1 V2). Note that both X and V1 are of type A !A. Then by, �rstly, applying twie Exp-� introduing new equations X =?�� �:X 0and V1 =?�� �:V 01 , where X 0 and V 01 are fresh atomi meta-variables; afterwards,by applying twie Replae and, �nally, by applying Normalize and De-� we obtainX 0[1:V2[U ["℄:U ["℄: "℄:V2[U ["℄:U ["℄: "℄: "℄ =?�� V 01 [1:U ["℄:U ["℄: "℄ ^ Y =?�� V2[U:U:id℄^ V =?�� (V1 V2) ^ X =?�� �:X 0 ^ V1 =?�� �:V 01 . The ex-ex equation has:fX=�:X1; Z=�:(�:X1 2); Y=X2; U=X2g and fX=�:X1; Z=�:(�:X1 1); Y=X2; U=X2g asthe obvious solutions. In the �se-setting (taking P1 = Z =?�se �:V ^ V =?�se (V1 V2)):(�:(�:(X 2) 1) Y) =?�se (�:(Z 1) U) !Exp��;Replae(�:(�:(X 2) 1) Y) =?�se (�:(�:V 1) U) ^ Z =?�se �:V !Normalize((X�2Y)�1('10Y) '10Y) =?�se (V �2U)�1('10U) ^ Z =?�se �:V !Exp�App((X�2Y)�1('10Y) '10Y) =?�se (V �2U)�1('10U) ^ P1 !Replae((X�2Y)�1('10Y) '10Y) =?�se ((V1 V2)�2U)�1('10U) ^ P1 !Normalize((X�2Y)�1('10Y) '10Y) =?�se ((V1�2U)�1('10U) (V2�2U)�1('10U)) ^ P1 !De�App(X�2Y)�1('10Y) =?�se (V1�2U)�1('10U) ^ '10Y =?�se (V2�2U)�1('10U) ^ P1As for the the �� ase, applying twie Exp-� and Replae and then Normalize andDe-� we obtain

546 Uni�ation via the �se-Style of Expliit Substitutions(X 0�3Y)�2('10Y) =?�se (V 01�3U)�2('10U) ^ '10Y =?�se (V2�2U)�1('10U) ^X =?�se �:X 0 ^ V1 =?�se �:V 01 .From the �rst ex-ex equation we obtain, by simple deomposition, the partialsolution fX=�:X1; Z=�:(�:X1 V2); Y=X2; U=X2g. To obtain a omplete solution itremains to resolve the ex-ex equation '10X2 =?�se (V2�2X2)�1('10X2). Observe that(1�2X2)�1('10X2)! 1�1('10X2)! '10('10X2)! '10X2 and also (2�2X2)�1('10X2)!('20X2)�1('10X2) ! '10X2. This, analogously to the �� setting, gives the solutionsfX=�:X1; Z=�:(�:X1 1); Y=X2; U=X2g and fX=�:X1; Z=�:(�:X1 2); Y=X2; U=X2g.De�nition 5.7 A uni�ation system P is a �se-solved form if all its meta-variablesare of atomi type and it is a onjuntion of non trivial equations of the followingforms:(Solved) X =?�se a, where the variable X does not our anywhere else in P anda is in long normal form. Both X and X =?�se a are said to be solved in P .(Flex-Flex) unsolved equations between long normal terms whose leading op-erator are � or ' whih an be represented as equations between their skele-ton: jpip : : : j1i1 (X; a1; : : : ; ap) =?�se lqkq : : : l1k1(Y; b1; : : : ; bq) with X;Y of atomitype.Remark 5.8 Consider a �se-normal term whose leading operator is either � or 'and with skeleton sk() = jpip : : : j1i1 (X; a1; : : : ; ap). By binding X with n, n > i1,one obtains as a onsequene of lemma 3.29, the normal form t!� n+Ppk=1 jk � p.We illustrate the situation with three simple ases of searhing for solutions of ex-exequations.Firstly, (� � � ((X�i1a1)�i2a2) � � �)�ipap =?�se (� � � ((Y �j1b1)�j2b2) � � �)�jq bq alwayshas solutions sine both its sides are �se-normal terms and hene the sequenesi1; : : : ; ip and j1; : : : ; jq are stritly dereasing. Solutions are bindings fX=n+ pgand fY=n+ qg, with n > i1; j1.Seondly, sine the left-side of (� � � ((X�i1a1)�i2a2) � � �)�ipap =?�se 'jqkq � � �'j1k1Y is a�se-normal term, the sequene k1; : : : ; kq is stritly dereasing. Now selet n;m suhthat n > i1, m > k1 and n� p = m+Pql=1 jl � q, and the bindings fX=ng, fY=mg.Thirdly, for 'ipkp � � �'i1k1X =?�se 'jqlq � � �'j1l1 Y selet, for instane, bindings fX=ng,fY=mg, suh that n > k1;m > l1 and n+Ppr=1 ir � p = m+Pqr=1 jr � q.Moreover, observe that by seleting graftings of the form fX=(H1 : : : Hl)g (whereH1; : : : ; Hl are meta-variables of appropriate types) the term with skeleton sk()is split into appliations of terms with idential skeletons and left innermost meta-variables H1; : : : ; Hm suh that: jpip : : : j1i1 ((H1 : : : Hk); a1; : : : ; ap) !�(jpip : : : j1i1 (H1; a1; : : : ; ap); : : : ; jpip : : : j1i1 (Hk; a1; : : : ; ap)).Let onsider for instane, (('j3i3 (('j1i1 (H1: : :Hl))�i2 �))�i4 �)�i5 � !�((('j3i3 (('j1i1H1)�i2 �))�i4 �)�i5 � : : : (('j3i3 (('j1i1Hl)�i2 �))�i4 �)�i5 �).Lemma 5.9 Any �se-solved form has �se-uni�ers.Proof. For simpliity we omit the analysis of types. Sine solved forms appearing ina system P de�ne straightforwardly bindings between variables that do not appearanywhere else in P or in terms (in long normal form), it is only neessary to provethat ex-ex equations have uni�ers.

5. UNIFICATION IN THE �SE-CALCULUS 547Let P be a system in �se-solved form inluding a ex-ex equation of the form jpip : : : j1i1 (X; a1; : : : ; ap) =?�se lqkq : : : l1k1(Y; b1; : : : ; bq). This equation always hassolutions. Selet for example bindings fX=n; Y=mg suh that n > i1;m > l1 andn+Ppr=1 jr � p = m+Pqr=1 lr � q (see previous Remark 5.8).Lemma 5.10 Solved problems are normalized for the �se-uni�ation rules and, on-versely, if a system is a onjuntion of equations that annot be redued by the�se-uni�ation rules then it is solved.Proof. It is easy to verify, rule by rule, that solved and ex-ex equations annot betransformed by the �se-uni�ation rules. So solved forms (or problems) are in normalform for the �se-uni�ation rules. Conversely, suppose P is a non solved system, thenP ontains an equation a =?�se b that is neither solved nor ex-ex. If either a or bare not in long normal form then the rule Normalize applies . If the equation is of theform X =?�se b, where X ours in other position at P , then the rule Replae applies.The remaining ases, where both a and b are long normal terms, are subsequentlylisted using the haraterization of �se-normal forms at Corollary 3.12.Observe �rstly that if a is of the form �:a0 then, sine b is a long normal term, thesole possibility to have a well typed equation is if b is of the form �:b0 in whih aserule De-� applies.Seondly, suppose that a is of the form (k a1 : : : ap). Then if b is of the form(l b1 : : : bq) then either De-App or App-Fail applies (remember here that both k andl ould be omitted and p and q ould be zero). If b has a leading operator � or 'then rule Exp-App applies.Finally, the remaining ases of equations between terms with main operators � and' are either ex-ex or an be redued with rule De-'.De�nition 5.11 Let P and P 0 be �se-uni�ation problems, let \rule" denote thename of a �se-uni�ation rule and \!rule" its orresponding dedution relation overuni�ation problems. By orretness and ompleteness of rule we understand thefollowing:� P !rule P 0 implies U�se (P 0) � U�se(P) (orretness)� P !rule P 0 implies U�se (P) � U�se(P 0) (ompleteness)Theorem 5.12 (Corretness and Completeness) The �se-rules are orret andomplete.Proof. Firstly, we verify the orretness of all rules.� De-�: is orret sine grafting is a ongruene on �se-terms.� App-Fail: is orret beause of trivial inlusion of the empty set.� De-App, De-': are orret beause grafting is a ongruene on �se-terms.� Exp-�, Exp-App: are orret beause of the properties of the �se rewriting system.� Replae: observe that this rule orresponds to the seletion of bindings in the �rstorder uni�ation algorithm and its orretness is similarly proved.� Normalize: is orret sine normalization orresponds to simpli�ation of termsbetween the same equivalene lass in the �se-alulus.Seondly, we verify the ompleteness of the rules.

548 Uni�ation via the �se-Style of Expliit Substitutions� De-�: let � be a �se-uni�er of an equation of the form �:a =?�se �:b. Thus�:�(a) =?�se �:�(b) and sine no �se-rule ould be applied at root position of theseterms then �(a) =?�se �(b).� De-App: suppose that � is a �se-uni�er of (n a1 : : : ap) =?�se (n b1 : : : bp). Thus,beause of onuene and weakly terminating properties of the �se rewritingsystem we have: �(n a1 : : : ap) =?�se �(n b1 : : : bp) i� (n �(a1) : : : �(ap)) =?�se(n �(b1) : : : �(bp)) i� for all 1 � i � p, �(ai) =?�se �(bi). This means that � isa uni�er of a1 =?�se b1 ^ : : : ^ ap =?�se bp.� De-': analogous to the former ase.� App-Fail: it follows from the sequene of logial equivalenes in the proof ofompleteness of rule De-App that if n 6= m then there are no �se-uni�er of(n a1 : : : ap) =?�se (m b1 : : : bp).� Exp-�: Let � be a �se-uni�er of P and X 2 T var (P) suh that X : � ` A! B.Thus �(X) = a : A ! B and we an assume that a is of the form �A:b withb : B. De�ne �0 suh that for all Z 2 Dom(�), �0(Z) = �(Z) and �(Y) = b for anew variable Y 62 Dom(�) of type B. Then �0 is a �se-uni�er of P ^X =?�se �A:Y .Consequently � is a �se-uni�er of 9(Y : A:� ` B); P ^X =?�se �A:Y .� Exp-App: onsider P ^ jpip : : : j1i1 (X; a1; : : : ; ap) =?�se (m b1 : : : bq) and supposethat � is a �se-uni�er of this uni�ation problem.Then �(X) = (r 1 : : : s) and the interesting equation in the uni�ation problembeomes (m b01 : : : b0q) =?�se jpip : : : j1i1 ((r 1 : : : s); a01; : : : ; a0p) !� (m b01 : : : b0q) =?�se(jpip : : : j1i1 (r; a01; : : : ; a0p) jpip : : : j1i1 (1; a01; : : : ; a0p) : : : jpip : : : j1i1 (s; a01; : : : ; a0p)).Sine jpip : : : j1i1 (X; a1; : : : ; ap) is the skeleton of a �se-normal term then the se-quene i1; : : : ; ip is dereasing, being possible ik = ik+1 only when both the kthand k+1th 's orrespond to ' operators. We have two simple ases to onsider:either r di�erent from all ik suh that jkik orresponds to a � operator or r = ikfor some k suh that jkik = �ik .In the �rst ase, let i0 =1 and ip+1 = 0 and suppose that ik+1 < r � ik for some0 � k � p suh that either k = p or jkik orresponds to a � operator. Then jpip : : : j1i1 (r; a01; : : : ; a0p) !� jpip : : : jk+1ik+1 (r; a0k+1; : : : ; a0p) !� r + Ppl=k+1 jl �(p� k). Observe that this oinides with the de�nition of Ri in rule Exp-App;in fat, if r = m�Ppl=k+1 jl + p � k and ik+1 < m �Ppl=k+1 jl + p� k � i� kfor k = p or ik+1 orresponding to a supersript of an operator � in the skeletonthen jpip : : : j1i1 (r; a01; : : : ; a0p)!� m.If r = ik for some 1 � j � p orresponding to a � operator, then we havethe following redution: jpip : : : j1i1 (r; a01; : : : ; a0p) !� jpip : : : jkik (r; a0k; : : : ; a0p) ! jpip : : : jk+1ik+1 ('ik0 a0k; : : : ; a0p) !� 'ik�p+k+Ppl=k+1 jl0 a0k.Thus, in the �rst ase the equation beomes(m b01: : :b0q) =?�se (m jpip : : : j1i1 (1; a01; : : : ; a0p) : : : jpip : : : j1i1 (s; a01; : : : ; a0p))and in the seond, (m b01: : :b0q) =?�se('ik�p+k+Ppl=k+1 jl0 a0k jpip : : : j1i1 (1; a01; : : : ; a0p) : : : jpip : : : j1i1 (s; a01; : : : ; a0p))

6. ARITHMETIC PROPERTIES OF THE �SE-UNIFICATION RULES 549In both ases � is learly solution of 9H1; : : : ; Hk; X =?�se (rH1 : : : Hk), seletingH1; : : : ; Hk appropriately and, onsequently, it is solution of the original problemand Wr2Rp[Ri 9H1; : : : ; Hk; X =?�se (r H1 : : :Hk).� Replae: its ompleteness is similarly proved to the �rst order ase.� Normalize: as for orretness its ompleteness is onsequene of the fat thatnormalization orresponds to simpli�ation of terms between the same equivalenelass in the �se-alulus.6 Arithmeti properties of the �se-uni�ation rulesThe arithmeti onstraint that naturally has resulted when de�ning the Exp-App �se-uni�ation rule is more expressive than the one of the �� HOU setting. This, jointlywith an eÆient arithmeti dedutive method, speed up the veri�ation of possiblesplittings and the searh for solutions in the orresponding ase analysis.For the ��-alulus, the equation X [a1 : : : ap: "n℄ =?�� (m b1 : : : bq) has for solutions(rH1 : : : Hk), where r � p+ n = m. In fat, 1["r�1℄[a1 : : : ap: "n℄ !� 1["r�1�p+n℄.In [16℄ the ��-alulus is presented using only the de Bruijn index 1. Thus thedetetion of the previous kind of solutions is very ineÆient. In fat, observe thatsine "n abbreviates (n� 1)-ompositions of ", �nding the �rst omponent 1["r�1℄ ofthese possible solutions an be done only after realizing a proess of enumeration ofthe p ai omponents and the (n � 1) " of n � 1["n�1℄. Sine �se-terms are writtenusing all the natural indies, one an state that searhing for redies of the uni�ationrules and determining solved and ex-ex equations in our uni�ation setting aremore eÆient than in the language of the ��-alulus.We show that the �rst numeri omponents of bindings for a meta-variable Xof solutions of equations of the form jpkp : : : j1k1(X; a1; : : : ; ap) =?�se (m b1 : : : bq) aredetermined in a unique way.Lemma 6.1 Let n > k1, m � kp and take a skeleton jpkp : : : j1k1(X; a1; : : : ; ap) of a�se-normal term. jpkp : : : j1k1(n; a1; : : : ; ap)!� n�p+Ppr=1 jr > n�(k1�kp+1) � m.Proof. Firstly, observe that sine k1; : : : ; kp is a dereasing sequene, we have n >k1 � : : : � kp � m and thus k1 � kp < n�m whih implies m � n� (k1 � kp + 1).Seondly, observe that Ppr=1 jr � 0. Thus the sole possibility to have n � p +Ppr=1 jr � n� (k1 � kp + 1) is being p� 1 � k1 � kp. We onsider two ases:If p � 1 = k1 � kp then jpkp : : : j1k1(n; a1; : : : ; ap) !� n � p +Ppr=1 jr � n � p =n�(k1�kp+1) � m. Moreover, observe that if there exists some operator ', say jiki inthe sequene of the skeleton, thenPpr=1 jr � ji > 0 whih implies n�p+Ppr=1 jr > m.If the sequene onsists only of � operators, thenm < kp and also n�p+Ppr=1 jr > m.If p� 1 > k1 � kp then there exists at least one 1 � i < p suh that jiki = 'jiki and ji+1ki+1 = �ki+1 being ki = ki+1. Thus ji+1ki+1 jiki(n; ai; ai+1)! ji+1ki+1(n+ ji�1; ai+1)!n+ji+ji+1�2 � n�(ki�ki+1). For eah of these subsequenes we have the analogoussituation, obtaining for the whole sequene n�p+Ppr=1 jr > n� (k1�kp+1) � m.Lemma 6.2 (Uniity) Take a skeleton jpkp : : : j1k1(X; a1; : : : ; ap) of a �se-normalterm and the equation jpkp : : : j1k1(X; a1; : : : ; ap) =?�se (m b1 : : : bq). The �rst numerial

550 Uni�ation via the �se-Style of Expliit Substitutionsomponent of bindings for the meta-variable X of solutions of this equations areunique.Proof. Observe �rstly the possible ases for bindings fX=(n : : :)g:n � kp: jpkp : : : j1k1(n; a1; : : : ; ap) !� jpkp(n; ap). Sine ase n = kpthus jpkp = 'jpkp , we have jpkp(n; ap)! n.ki+1 < n � ki: jpkp : : : j1k1(n; a1; : : : ; ap) !� jpkp : : : jiki(n; ai; : : : ; ap). Sinease n = ki we have jiki = 'jiki , then in bothases: n = ki and n < ki, jpkp : : : jiki(n; ai; : : : ; ap) ! jpkp : : : ji+1ki+1(n; ai+1; : : : ; ap)!� n� (p� i) +Ppr=i+1 jr.k1 < n: jpkp : : : j1k1(n; a1; : : : ; ap)!� n� p+Ppr=1 jr.We analyse the more general ase of naturals between subsripts k. Selet ki+1 <n1 � ki and kl+1 < n2 � kl, for i > l. Then jpkp : : : j1k1(n1; a1; : : : ; ap) !� n1 � (p�i) +Ppr=i+1 jr and jpkp : : : j1k1(n2; a1; : : : ; ap)!� n2 � (p� l) +Ppr=l+1 jr.Sine k1; : : : ; kp is a dereasing sequene we have n1 < n2. By previous lemma: jiki : : : jl+1kl+1 : : : j1k1(n2; a1; : : : ; ai) !� jiki : : : jl+1kl+1(n2; al+1; : : : ; ai) !� n2� (i� l)+Pir=l+1 jr > n1. Then n2 � (p� l) +Ppr=l+1 jr > n1 � (p� i) +Ppr=i+1 jr.When searhing for solutions of jpkp : : : j1k1(X; a1; : : : ; ap) =?�se (m b1 : : : bq), oneshould selet a binding for X to an appliation whose �rst omponent is a naturalnumber n suh that for some i ki+1 < n � ki and n� (p� i) +Ppr=i+1 jr = m. Thisorresponds to searhing for solutions of an integer linear problem.By analyzing the intrinsi implementation tehniques involved in our method andthat of the ��-HOU of [10℄, we have observed that pre-ooked �-terms in the �se-alulus have linear deorations on the size of the �-terms and the magnitude of theirde Bruijn indies, while in �� these deorations are quadrati. We don't make anyonsideration about use of eÆient data strutures. For a reasonable implementationof the ��-HOU approah, a variation of the ��-alulus whih inludes all de Bruijnindies, as the ��dB one, should be used. Additionally, variations of this alulus, asthe left-linear �L-alulus [33℄, are adequate for implementations sine they enodethe in�nite rules of the ��dB in a �rst-lass substitution. From the theoretial pointof view, our approah is the �rst one to treat this problem in a natural way, beauseof the simple syntax of the �se-alulus, where all de Bruijn indies are inluded.But it is not the sole use of all de Bruijn indies that makes the �se approah moreeÆient. Another problem in the deoration of substitution objets of the ��-alulusis that they are deorated with two environments that are lists of types. While themain marks in the deoration of a term objet are a sole environment and its type.This makes deorations of �se-terms smaller than those of ��-terms. Moreover, thesize of deorated �-terms enlarges in an inadequate way when normalizing via the��-alulus, beause there exist rules in the ��-alulus, that are expensive as theyenlarge the number of substitution objets to be marked in deorated terms.

7. FUTURE WORK AND CONCLUSION 5517 Future Work and ConlusionAs pointed out in [16℄, the use of expliit substitution enables one to translate higherorder uni�ation problems into �rst order ones. This leads to simpler developmentand analysis of HOU methods. The proposed uni�ation method and its furtherdevelopments are relevant beause of the neessity of analyzing, developing and im-plementing HOU proedures to improve the performane and expressiveness of urrenthigher order dedutive systems. Moreover, we think that our work is important dueto the neessity of omparing the advantages and appropriateness of both the �se-and ��-style of expliit substitution in a pratial and relevant setting inrementingin this way the theoreti knowledge about the properties of the involved aluli.Advantages of the here proposed uni�ation method, with respet to the one formu-lated by Dowek, Hardin and Kirhner in [16℄, are mainly onsequenes of the inherentdi�erenes between the ��- and �se-styles of expliit substitution.1. In �se-uni�ation we remain lose to �-alulus as we don't use more than onekind of objets: term objets. We don't use substitution objets as is done in ��-uni�ation. From this point of view, we think that our approah is semantially learbeause the prinipal intention of any uni�ation via expliit substitution in someversion of �-alulus is, of ourse, to solve uni�ation problems in pure �-alulus.2. Beause of the fat that for both methods, the Normalize uni�ation rule dependson the subjaent properties of the �se and �� rewrite rules, orrespondingly, and thatthe underlying redution proesses based on the �se- and ��-aluli are inomparable(see for instane [28℄), one annot say that �se-uni�ation is more (or less) eÆientthan the uni�ation setting proposed in [16℄. But at least one an state that searhingfor redies of the uni�ation rules (and determining solved and ex-ex equations) ismore eÆient, sine �se terms are written using natural indies. Of ourse, in thepraxis, this problem an be easily solved in the �� setting by overloading the notationn to represent the orresponding ��-term (1["n�1℄) inorporating to the uni�ationmehanism the neessary built-in linear arithmeti dedutive method.3. We think that the arithmeti onstraint that naturally results when de�ning theExp-App uni�ation rule in the �se setting is more expressive than the one of the ��.This, jointly with an eÆient arithmeti dedutive method, speed up the veri�ationof possible splittings and the searh for solutions in the orresponding ase analysis.In order to obtain a HOU proedure useful in pratie, an eÆient and ompleteuni�ation strategy was developed in [2℄. In [16℄ the rules for uni�ation of ��-termsare related to HOU on the pure �-alulus by the pre-ooking and bak translations.This was also done for the �se-alulus in [2℄.In the sequel we present in an informal way one example of how to apply ouruni�ation method to HOU problems in the �-alulus.Observe that unifying two terms a and b in the �-alulus onsists in �nding asubstitution � suh that �(a) =�� �(b). But in �-alulus, �� and �se, substitutionis di�erent from the �rst order one or grafting, as was shown in Setion 2. Thususing the notation of substitution in De�nitions 2.11 and 2.14 a uni�er in �-alulusof the problem �:X =?�� �:2 is not a term t = �X suh that �:t =?�� �:2 but a termt = �X suh that �(�:X) = �:�+(X) = �:2 as fX=tg�:X = �:fX=t+gX = �:t+and not �:t. This observation an be extended to any uni�er and by translatingappropriately �-terms a; b 2 �dB(X), the HOU problem a =?�� b an be redued to

552 Uni�ation via the �se-Style of Expliit Substitutionsequational uni�ation. In [16℄ a translation alled pre-ooking from �dB(X) terms intothe language of �� is given suh that searhing for solutions of the orresponding ��-uni�ation problem orresponds to searhing for solutions of the higher order problema =?�� b. In the next example, we illustrate informally the analogous situation in �se.Example 7.1 Consider the higher order uni�ation problem �:(X 2) =?�� �:2, where2 and X are of type A and A! A, respetively. Observe that applying a substitutionsolution � to the �dB(X)-term �:(X 2) gives �(�:(X 2)) = �:(�+(X) 2). Then inthe �se-alulus we are searhing for a grafting �0 suh that �0(�:('20(X) 2)) =�se �:2.Correspondingly, in the ��-alulus the term �:(X 2) is translated or pre-ooked into�:(X ["℄ 2). Then we should searh for uni�ers for the problem �:('20(X) 2) =?�se �:2.Now we apply the �se-uni�ation rules to �:('20(X) 2) =?�se �:2.('20(X) 2) =?�se 2 !De��9Y ('20(X) 2) =?�se 2 ^X =?�se �:Y !Exp��9Y ('20(�:Y) 2) =?�se 2 ^X =?�se �:Y !Replae9Y ('21Y)�12 =?�se 2 ^X =?�se �:Y !Norm:(9Y ('21Y)�12 =?�se 2 ^X =?�se �:Y) ^ (Y =?�se 1 _ Y =?�se 2) !Exp�app(('211)�12 =?�se 2 ^X =?�se �:1) _ (('212)�12 =?�se 2 ^X =?�se �:2) !Replae(2 =?�se 2 ^X =?�se �:1) _ (2 =?�se 2 ^X =?�se �:2) !Norm:In this way substitution solutions fX=�:1g and fX=�:2g are found.To omplete the analysis observe that by de�nition of substitution (De�nitions 2.11,2.14) and �-redution in �dB(X): fX=�:1g(�:(X 2)) = �:(fX=(�:1)+g(X) 2) =�:(�:1+1 2) = �:(�:1 2) =� �:2 and fX=�:2g(�:(X 2)) = �:(fX=(�:2)+g(X) 2) =�:(�:2+1 2) = �:(�:3 2) =� �:f1=2g(3) = �:2.In general, before uni�ation, a �-term a should be translated into the �se-term a0resulting by simultaneously replaing eah ourrene of a meta-variableX at positioni in a with 'k+10 X , where k is the number of abstrators between the root position ofa, ", and position i. If k = 0 then the ourrene of X remains unhanged.Example 7.2We turn bak to the HOU problem given in the introdution: F (f(a)) =?f(F (a)). In the language of �dB(X) this problem an be seen as (X (2 1)) =?��(2 (X 1)), where both X and 2 are of type A ! A and 1 is of type A. Ob-serve that sine there are no �s in the problem, the equation remains unhanged:(X (2 1)) =?�se (2 (X 1)).For simpliity we omit existential quanti�ers. Here are the �se-uni�ation steps onthis problem (Y is of type A):(X (2 1)) =?�se (2 (X 1)) ^X =?�se �:Y !Exp��(�:Y (2 1)) =?�se (2 (�:Y 1)) ^X =?�se �:Y !ReplaeY �1(2 1) =?�se (2 Y �11) ^X =?�se �:Y !Norm:Y �1(2 1) =?�se (2 Y �11) ^X =?�se �:Y ^ (Y =?�se 1 _ Y =?�se (3 H1))Observe that other possible ases do not produe solved forms. By Replae andNormalize we obtain ((2 1) =?�se (2 1) ^ X =?�se �:1) _ ((2 H1�1(2 1)) =?�se(2 (2 H1�11)) ^ X =?�se �:(3 H1)), from where we have the �rst solved systemorresponding to the identity solution: fX=�:1g.Other solutions an be obtained from the equational system (2 H1�1(2 1)) =?�se(2 (2 H1�11)) ^X =?�se �:(3 H1). In fat, by De-App and Exp-App we obtain:H1�1(2 1) =?�se (2 H1�11) ^X =?�se �:(3 H1) ^ (H1 =?�se 1 _H1 =?�se (3 H2))

7. FUTURE WORK AND CONCLUSION 553Again other possible ases do not produe solved forms. By Replae and Normalize weobtain ((2 1) =?�se (2 1)^X =?�se �:(3 1)) _ ((2 H2�1(2 1)) =?�se (2 (2 H2�11))^X =?�se �:(3 (3 H2))), from where we have the seond solved system orrespondingto the grafting solution: fX=�:(3 1)g. Observe that this orresponds to the solutionF = f ; in fat, observe that by replaing X with �:(3 1) in the original uni�ationproblem we obtain (�:(3 1) (2 1)) =?�se (2 (�:(3 1) 1)), from where it is lear thatde Bruijn indies 3 and 2 orrespond to the same operator. Additionally, note that(�:(3 1) (2 1)) !� (2 (2 1)) and (2 (�:(3 1) 1)) !� (2 (2 1)).Subsequently, by similarly applying De-App, Exp-App, Replae and Normalize tothe equational system ((2 H2�1(2 1)) =?�se (2 (2 H2�11)) ^X =?�se �:(3 (3 H2)))we obtain the third solved system giving the grafting solution fX=�:(3 (3 1))g or-responding to the solution F = ff . The uni�ation proess ontinues in�nitely pro-duing solved systems orresponding to the grafting solutions fX=�:(3 (3 (3 1)))g(i.e. F = fff), fX=�:(3 (3 (3 (3 1))))g (i.e. F = ffff), et.In [10℄ it was shown that for an eÆient implementation of ��-HOU, the use ofterms deorated with their orresponding types and environments is useful. For in-stane, observe that for applying uni�ation rules suh as Exp-App and Exp-�, it isneessary to know the types and the environments of subterms of the urrent uni�-ation problem. In relation with that implementation, where repeated exeution of atype-heking algorithm is avoided by deorating terms, �se-HOU has the lear ad-vantage of having less expensive deorations than those of ��-HOU. This is the asebeause deorations of substitution objets are more expensive than those of termobjets.Referenes[1℄ M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. L�evy. Expliit Substitutions. Journal of FuntionalProgramming, 1(4):375{416, 1991.[2℄ M. Ayala-Rin�on and F. Kamareddine. Strategies for Simply-Typed Higher Order Uni�ationvia �se-Style of Expliit Substitution. In R. Kennaway, editor, Third International Workshopon Expliit Substitutions Theory and Appliations to Programs and Proofs (WESTAPP 2000),pages 3{17, Norwih, England, 2000.[3℄ M. Ayala-Rin�on and F. Kamareddine. Uni�ation via �se-Style of Expliit Substitution. InSeond International Conferene on Priniples and Pratie of Delarative Programming, pages163{174, Montreal, Canada, 2000.[4℄ F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press, 1998.[5℄ H. Barendregt. The Lambda Calulus : Its Syntax and Semantis (revised edition). NorthHolland, 1984.[6℄ Z.-el-A. Benaissa. Les aluls de substitutions expliites omme fondement de l'implantationdes langages fontionnels. PhD thesis, Univ. Henri Poinare, Nany, 1997.[7℄ Z.-el-A. Benaissa, D. Briaud, P. Lesanne, and J. Rouyer-Degli. ��, a Calulus of Expliit Sub-stitutions whih Preserves Strong Normalization. Journal of Funtional Programming, 6(5):699{722, 1996.[8℄ Z.-el-A. Benaissa, P. Lesanne, and K. H. Rose. Modeling Sharing and Reursion for WeakRedution Strategies using Expliit Substitution. In Programming Languages: Implementations,Logis and Programs PLILP'96, volume 1140 of Leture Notes on Computer Siene, pages 393{407. Springer, 1996.[9℄ R. Bloo. Preservation of Termination for Expliit Substitution. PhD thesis, Department ofMathematis and Computing Siene, Eindhoven University of Tehnology, 1997.

554 Uni�ation via the �se-Style of Expliit Substitutions[10℄ P. Borovansk�y. Implementation of Higher-Order Uni�ation Based on Calulus of Expliit Sub-stitutions. In M. Barto�sek, J. Staudek, and J. Wiedermann, editors, Proeedings of the SOF-SEM'95: Theory and Pratie of Informatis, volume 1012 of Leture Notes on ComputerSiene, pages 363{368. Springer Verlag, 1995.[11℄ P.-L. Curien, T. Hardin, and J.-J. L�evy. Conuene Properties of Weak and Strong Caluli ofExpliit Substitutions. Tehnial Report RR 1617, INRIA, Roquenourt, 1992.[12℄ P.-L. Curien, T. Hardin, and J.-J. L�evy. Conuene Properties of Weak and Strong Caluli ofExpliit Substitutions. Journal of the ACM, 43(2):362{397, 1996. Also as Rapport de ReherheINRIA 1617, 1992.[13℄ N. G. de Bruijn. Lambda-Calulus Notation with Nameless Dummies, a Tool for AutomatiFormula Manipulation, with Appliation to the Churh-Rosser Theorem. Indag. Mat., 34(5):381{392, 1972.[14℄ N. G. de Bruijn. A Namefree Lambda Calulus with Failities for Internal De�nition of Expres-sions and Segments. Tehnial Report TH-Report 78-WSK-03, Department of Mathematis,Eindhoven University of Tehnology, 1978.[15℄ N. G. de Bruijn. Lambda-Calulus Notation with Namefree Formulas Involving Symbols thatRepresent Referene Transforming Mappings. Indag. Mat., 40:348{356, 1978.[16℄ G. Dowek, T. Hardin, and C. Kirhner. Higher-order Uni�ation via Expliit Substitutions.Information and Computation, 157(1/2):183{235, 2000.[17℄ G. Dowek, T. Hardin, C. Kirhner, and F. Pfenning. Uni�ation via Expliit Substitutions: TheCase of Higher-Order Patterns. Rapport de Reherhe 3591, INRIA, Deember 1998.[18℄ W. Farmer. A Uni�ation Algorithm for Seond-Order Monadi Terms. Annals of Pure andApplied Logi, 39:131{174, 1988.[19℄ M. C. F. Ferreira, D. Kesner, and L. Puel. Lambda-Caluli with Expliit Substitutions andComposition whih Preserve Beta-Strong Normalisation. In Algebrai and Logi Programming,ALP'96, volume 1139 of LNCS, pages 284{298. Springer, 1996.[20℄ W. Goldfarb. The Undeidability of the Seond-Order Uni�ation Problem. Theoretial Com-puter Siene, 13(2):225{230, 1981.[21℄ B. Guillaume. Un alul des substitutions ave etiquettes. PhD thesis, Universit�e de Savoie,Chamb�ery, 1999.[22℄ G. P. Huet. A Uni�ation Algorithm for Typed �-Calulus. Theoretial Computer Siene,1:27{57, 1975.[23℄ D. Jensen and T. Pietrzykowski. Mehanizing !-order type theory through uni�ation. TehnialReport CS-73-16, Dept. of Applied Analysis and Computer Siene, University of Waterloo, 1973.[24℄ F. Kamareddine and R. P. Nederpelt. On stepwise expliit substitution. International Journalof Foundations of Computer Siene, 4(3):197{240, 1993.[25℄ F. Kamareddine and R. P. Nederpelt. A useful �-notation. Theoretial Computer Siene,155:85{109, 1996.[26℄ F. Kamareddine and A. R��os. A �-alulus �a la de Bruijn with Expliit Substitutions. In Pro.of PLILP'95, volume 982 of LNCS, pages 45{62. Springer, 1995.[27℄ F. Kamareddine and A. R��os. Extending a �-alulus with Expliit Substitution whih Pre-serves Strong Normalisation into a Conuent Calulus on Open Terms. Journal of FuntionalProgramming, 7:395{420, 1997.[28℄ F. Kamareddine and A. R��os. Relating the ��- and �s-Styles of Expliit Substitutions. Journalof Logi and Computation, 10(3):349{380, 2000.[29℄ F. Kamareddine, A. R��os, and J.B. Wells. Caluli of Generalised �-redution and expliit substi-tution: Type Free and Simply Typed Versions. Journal of Funtional and Logi Programming,1998(Artile 5):1{44, 1998.[30℄ C. Kirhner and C. Ringeissen. Higher-order Equational Uni�ation via Expliit Substitutions.In Pro. Algebrai and Logi Programming, volume 1298 of LNCS, pages 61{75. Springer, 1997.[31℄ P. Lesanne, Z.-el-A. Benaissa, and D. Briaud. Caluli of Expliit Substitutions: New Results.Presented at the International Shool on Type Theory and Term Rewriting, Glasgow University,1996.[32℄ L. Magnusson. The implementation of ALF - a proof editor based on Martin L�of's Type Theorywith expliit substitutions. PhD thesis, Chalmers, 1995.

7. FUTURE WORK AND CONCLUSION 555[33℄ C. Mu~noz. A left-linear variant of ��. In Pro. International Conferene PLILP/ALP/HOA'97,volume 1298 of LNCS, pages 224{234, Southampton (England), September 1997. Springer.[34℄ C. Mu~noz. Un alul de substitutions pour la repr�esentation de preuves partielles en th�eoriede types. PhD thesis, Universit�e Paris 7, 1997. English version in Rapport de reherhe INRIARR-3309, 1997.[35℄ G. Nadathur and D. S. Wilson. A representation of lambda terms suitable for operations ontheir intentions. Proeedings of the 1990 ACM Conferene on Lisp and Funtional Programming,pages 341{348, 1990.[36℄ C. Okasaki. FUNCTIONAL PEARL Even Higher-Order Funtions for Parsing or Why WouldAnyone Ever Want to Use a Sixth-Order Funtion? Journal of Funtional Programming,8(2):195{199, Marh 1999.[37℄ L. Paulson. Isabelle: The next 700 Theorem Provers. Logi and Computer Siene, pages361{386, 1990.[38℄ T. Pietrzykowski. A omplete mehanization of seond order logi. Journal of the ACM,20(2):333{364, 1971.[39℄ C. Prehofer. Progress in Theoretial Computer Siene. In R. V. Book, editor, Solving Higher-Order Equations: From Logi to Programming. Birkh�auser, 1997.[40℄ A. R��os. Contribution �a l'�etude des �-aluls ave substitutions expliites. PhD thesis, Universit�ede Paris 7, 1993.[41℄ J. A. Robinson. A Mahine-oriented Logi Based on the Resolution Priniple. Journal of theACM, 12(1):23{41, January 1965.[42℄ W. Snyder and J. Gallier. Higher-Order Uni�ation Revisited: Complete Sets of Transforma-tions. Journal of Symboli Computation, 8:101{140, 1989.[43℄ R. Vestergaard and J. B. Wells. Cut rules and expliit substitutions. In Seond Int'l Workshopon Expliit Substitutions: Theory and Appliations to Programs and Proofs, pages 14{27, 1999.Trento, Italy.Reeived 30 June 2000, revised 3 May 2001

