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.ukAbstra
tA uni�
ation method based on the �se-style of expli
it substitution is proposed. This methodtogether with appropriate translations, provide a Higher Order Uni�
ation (HOU) pro
edure forthe pure �-
al
ulus. Our method is in
uen
ed by the treatment introdu
ed by Dowek, Hardin andKir
hner using the ��-style of expli
it substitution. Corre
tness and 
ompleteness properties of theproposed �se-uni�
ation method are shown and its advantages, inherited from the qualities of the�se-
al
ulus, are pointed out. Our method needs only one sort of obje
ts: terms. And in 
ontrast tothe HOU approa
h based on the ��-
al
ulus, it avoids the use of substitution obje
ts. This makesour method 
loser to the syntax of the �-
al
ulus. Furthermore, dete
tion of redi
es depends on thesear
h for solutions of simple arithmeti
 
onstraints whi
h makes our method more operational thanthe one based on the ��-style of expli
it substitution.Keywords: Higher order uni�
ation, expli
it substitution, lambda-
al
uli.1 Introdu
tionAfter Robinson's su

essful introdu
tion of his well-known �rst order Resolution Prin-
iple based on substitution, uni�
ation and resolution [41℄, mu
h work has been donein order to formalize these basi
 notions in other settings. Su
h extensions are essentialfor amongst other things, automated dedu
tion in higher order logi
s. Me
hanizationsof se
ond order and full higher order uni�
ation were initially formulated in [38℄ and[23℄. In [22℄ Huet su

essfully formulated a pra
ti
al higher order uni�
ation method,spe
i�
ally for the typed �-
al
ulus. Sin
e then several Higher Order Uni�
ation(HOU) approa
hes have been developed and used in pra
ti
al languages and theo-rem provers su
h as �prolog and Isabelle [35, 37℄. In most of these approa
hes, thenotion of substitution plays an important role. The importan
e of the notion of sub-stitution led to an explosion of work on making substitutions expli
it in re
ent years[1, 7, 24, 26, 19, 9, 21℄. Moreover, a number of works have been devoted to establishingthe usefulness of expli
it substitution to automated dedu
tion and theorem proving[32, 34℄, to proof theory [43℄, to programming languages [29, 6, 8℄ and to HOU [16℄.The latter paper [16℄ shows that in the HOU framework, if substitution was made1Work 
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522 Uni�
ation via the �se-Style of Expli
it Substitutionsexpli
it, many bene�ts 
an be obtained in 
omputation. In parti
ular, [16℄ presenteda HOU method based on the ��-
al
ulus whi
h was proved useful for dedu
tion inthe typed �-
al
ulus and subsequently generalized for treating higher order equationaluni�
ation problems [30℄ and restri
ted for the 
ase of higher order patterns [17℄. Thenovelity of this method is that higher order uni�
ation problems in the language ofthe pure �-
al
ulus 
an be solved by �rst order uni�
ation over the language of the��-
al
ulus on
e they have been translated or pre-
ooked into the language of the��-
al
ulus. Then, solutions 
an be translated ba
k into the range of the pre-
ookingtranslation and subsequently to solutions of the original problems. In this paper, wedevelop a uni�
ation method based on the �se-style of expli
it substitution whi
hjointly with adequate pre-
ooking and ba
k translations between the languages of the�-
al
ulus and the �se-
al
ulus (
f. [2℄) give a HOU pro
edure, whi
h takes advan-tage of the qualities of the �se 
al
ulus. In parti
ular, �se-uni�
ation avoids the useof two di�erent sorts of obje
ts as in the ��-
al
ulus. Moreover, the de
idability ofthe appli
ation of our uni�
ation rules (i.e., the dete
tion of redi
es) depends on thesear
h for natural solutions of simple arithmeti
 
onstraints. Sin
e arithmeti
 de
i-sion me
hanisms are built-in in most of the 
omputational languages and automatedassistants systems, this makes �se-HOU more operational than the ��-HOU.1.1 Higher order uni�
ationHigher order obje
ts arise naturally in many �elds of 
omputer s
ien
e. For ex-ample, in the 
ontext of implementation of fun
tional languages it is ne
essary todevelop me
hanisms for the treatment of higher order fun
tions. Take for instan
e,the rewriting system that spe
i�es the well-known map fun
tion, whi
h applies afun
tion to all the elements of a list: map(f;nil) ! nil; map(f;
ons(x; l)) !
ons(f(x);map(f; l)), where nil and 
ons are the usual LISP empty list and 
on-stru
tor list fun
tion. Observe that f appears both as a variable and as a fun
tionalsymbol. From the point of view of �rst oder rewriting, it is not possible to manip-ulate this kind of obje
ts; in fa
t, for simple rewrite based dedu
tion pro
esses su
has one-step redu
tion or 
riti
al pair dedu
tion, �rst order mat
hing and uni�
ation,respe
tively, do not apply. The solution of these problems, at least in the rewriting
ontext, is the �-
al
ulus. Rewriting 
ould be performed modulo the rules of the�-
al
ulus or 
ombining spe
i�
ations with the rules of the �-
al
ulus.The fun
tion map is a typi
al example of a se
ond-order fun
tion, but fun
tions ofthird-order or above have pra
ti
al interest too. In [36℄, useful third- until sixth-orderfun
tions were presented in the 
ontext of 
ombinator parsing.A simple example of a HOU problem is to sear
h for solutions for the equalityF (f(a)) = f(F (a)). The identity fun
tion fF=�x:xg is a solution, and so are thefun
tions fF (x)=fn(x) j n 2 Ng.HOU is essential in higher order automated reasoning, where it has formed thebasis for generalizations of the Resolution Prin
iple in se
ond-order logi
.Huet's work [22℄ was relevant be
ause he realized that to generalize Robinson's�rst order Resolution Prin
iple [41℄ to higher order theories, it is useful to verify theexisten
e of uni�ers without 
omputing them expli
itly. Huet's algorithm is a semi-de
ision one that may never stop when the input uni�
ation problem has no uni�ers,but when the problem has a solution it impli
itly allows one to re
over any uni�er



1. INTRODUCTION 523always. This 
ompleteness is an essential feature of Huet's algorithm. Uni�
ation forse
ond-order logi
 was proved unde
idable in general by Goldfarb [20℄. Goldfarb'sproof is based on a redu
tion from Hilbert's Tenth Problem. This result shows thatthere are arbitrary higher order theories where uni�
ation is unde
idable, but thereexist parti
ular higher order languages of pra
ti
al interest that have a de
idableuni�
ation problem. In parti
ular, for the se
ond-order 
ase, uni�
ation is de
idable,when the language is restri
ted to monadi
 fun
tions [18℄. Another problem of HOUis that the notion of most general uni�er does not apply and that a more 
omplexnotion than 
omplete sets of uni�ers is ne
essary. Huet has shown that equations ofthe form (�x:F a) =? (�x:G b) (
alled 
ex-
ex) of third-order may not have minimal
omplete sets of uni�ers and that there may exist an in�nite 
hain of uni�ers, onemore general than the other, without having a most general one (se
tion 4.1 in [39℄).For a very simple presentation of HOU see [42℄ and for a detailed introdu
tion inthe 
ontext of de
larative programming see [39℄.1.2 Contribution of this workThe ��-
al
ulus [1℄ introdu
es two di�erent sets of entities, one for terms and one forsubstitutions. The �se-
al
ulus [27℄ insists on remaining 
loser to the �-
al
ulus anduses a philosophy started with de Bruijn in his system AUTOMATH and elaboratedextensively through the new item notation [25℄. The philosophy states that terms ofthe �-
al
ulus are either appli
ation terms su
h as a fun
tion applied to an argument,abstra
tion terms su
h as a fun
tion. Substitution or updating are made expli
it initem notation, by introdu
ing substitution terms and updating terms. The advantagesof this philosophy are listed in [25℄ and in
lude remaining as 
lose as possible to thefamiliar �-
al
ulus. Therefore, we propose to study HOU in the �se-style of expli
itsubstitution, whi
h makes our approa
h 
loser to the syntax of the �-
al
ulus thanthat of the ��-approa
h in that we avoid the use of two di�erent sorts of obje
ts. Weestablish the following properties of �se-uni�
ation:1. Corre
tness: If P and P 0 are uni�
ation problems su
h that P redu
es to P 0 thenevery uni�er of P 0 is a uni�er of P .2. Completeness: If P and P 0 are uni�
ation problems su
h that P redu
es to P 0then every uni�er of P is a uni�er of P 0.3. The sear
h for uni�
ation redi
es and dete
tion of 
ex-
ex (i.e. impli
itly solvable)equations is simpler in our approa
h than in the ��-approa
h.In Se
tion 2, we introdu
e the basi
 ma
hinery. In Se
tion 3, we re
all the ��- and �se-
al
uli and establish �se-normalisation properties needed for uni�
ation. In Se
tion 4,we re
all the uni�
ation approa
h in the ��-
al
ulus. In Se
tion 5, we present our�se-uni�
ation method. In Se
tion 6, we provide some arithmeti
 properties of the�se-uni�
ation rules. In se
tion 7, we dis
uss the appli
ation of our uni�
ation methodfor higher order uni�
ation and 
on
lude.A preliminary version of this work was presented in [3℄.



524 Uni�
ation via the �se-Style of Expli
it Substitutions2 PreliminariesWe assume familiarity with �-
al
ulus (
f. [5℄) and the notion of term algebra T (F ;X )built on a (
ountable) set of variables X and a set of operators F . Variables in X aredenoted by X;Y; ::: and for a term a 2 T (F ;X ), var(a) denotes the set of variableso

urring in a. In every 
al
ulus we 
onsider, we use a; b; 
; : : : to range over terms.Additionally, we assume familiarity with basi
 notions of rewriting as presented in[4℄. In parti
ular, for a redu
tion relation R over a set A, we denote with =!R there
exive 
losure of R , with !�R or just!� the re
exive and transitive 
losureof R and with !+R or just !+ the transitive 
losure of R . When a!� b we saythat there exists a derivation from a to b . By a!n b, we mean that the derivation
onsists of n steps of redu
tion and 
all n the length of the derivation. Synta
ti
alidentity is denoted by a = b. For a redu
tion relation R over A, (A;!R), we usethe standard de�nitions of (lo
al) 
on
uen
e or (weakly) Chur
h Rosser (W)CR,normal forms and strong and weak normalization/termination SN and WN.A valuation is a mapping from X to T (F ;X ). The homeomorphi
 extension ofa valuation, �, from its domain X to the domain T (F ;X ) is 
alled the graftingof �. As usual, valuations and their 
orresponding graftings are denoted by thesame Greek letter. The appli
ation of a valuation � or its 
orresponding graftingto a term a 2 T (F ;X ) will be written in post�x notation a�. The domain of agrafting �, is de�ned by Dom(�) = fX j X� 6= X;X 2 Xg. Its range, is de�nedby Ran(�) = [X2Dom(�)var(X�). We let var(�) = Dom(�) [ Ran(�). For expli
itrepresentations of a valuation and its 
orresponding grafting �, we use the notation� = fX 7!X� j X 2 Dom(�)g. Note that the notion of grafting, usually 
alled �rstorder substitution, 
orresponds to simple synta
ti
 substitution without renaming.2.1 The �-
al
ulus with namesIn this se
tion, we present the �-
al
ulus with names emphasizing the role of uni�-
ation variables and substitutions. Let V be a (
ountable) set of variables (di�erentfrom the ones in X ) denoted by lower
ase last letters of the Roman alphabet x; y; :::.De�nition 2.1 Terms �(V), of the �-
al
ulus with names are indu
tively de�nedby:a ::= x j (a a) j �x:a, where x 2 V .�x:a and (a b) are 
alled abstra
tion and appli
ation terms, respe
tively.An abstra
tion �x:a represents a fun
tion of parameter x, whose body is a. Itsappli
ation to an argument b, (�x:a b), returns the value of a, where the formalparameter x is repla
ed with the argument b. This repla
ement of formal parameterswith arguments is known as �-redu
tion. In the �rst order 
ontext of the termalgebra T (f�x: j x 2 Vg [ f( )g;V) and its �rst order substitution or grafting,�-redu
tion would be de�ned by (�x:a b)! afx 7!bg.But in this 
ontext some problems arise making it ne
essary to rename boundvariables, i.e. exe
uting �-
onversion. In fa
t, �rstly suppose � = fx 7! bg. Thereare no semanti
 di�eren
es between the abstra
tions �x:x and �z :z; both abstra
tionsrepresent the identity fun
tion. But (�x:x)� = �x:b and (�z :z)� = �z :z are di�erent.Se
ondly, suppose � = fx 7! yg. (�y :x)� = �y:y and (�z :x)� = �z :y, thus a 
aptureis possible. Consequently, �-redu
tion, should be de�ned in a way that takes 
are of



2. PRELIMINARIES 525renaming bound variables when ne
essary to avoid harmful 
apture of variables.Most of the literature on uni�
ation and on the �-
al
ulus 
onsiders substitutionas an atomi
 operation leaving impli
it the 
omputational steps needed to e�e
tivelyperform 
omputational operations based on substitution su
h as mat
hing and uni-�
ation. In any real higher order dedu
tive system, the substitution required bybasi
 operations su
h as �-redu
tion should be implemented via smaller operations.Expli
it substitution is an appropriate formalism for reasoning about the operationsinvolved in real implementations of substitution. Sin
e expli
it substitution is 
loserto real implementations than to the 
lassi
 theory of the �-
al
ulus, it provides amore a

urate theoreti
al model to analyze essential properties of real systems (su
has termination, 
on
uen
e, 
orre
tness, 
ompleteness, et
.) as well as their time/spa
e
omplexity. For further details of the importan
e of expli
it substitution see [29℄.We denote by �V (a) the �-
onversion of a resulting by renaming the variables inV � V o

urring at a 2 �(V) with fresh variables (i.e. variables not yet used).De�nition 2.2 Let V � V . The renaming appli
ation �V is de�ned by stru
turalindu
tion on �(V) as follows:1) �V (x) = x2) �V ((a b)) = (�V (a) �V (b))3) �V (�x:a) = 8<: �x:�V (a); if x 62 V�y:(�V (a))fx 7!yg; if x 2 V where y is a fresh variableneither o

urring in a nor in VNow we are able to de�ne the usual substitution operation.De�nition 2.3 For a valuation (over V) � = fx1 7!a1; : : : ; xn 7!ang, the substitu-tion extending �, written �ext, is de�ned by indu
tion stru
tural as follows:1) �ext(x) = x� if x 2 V2) �ext((a b)) = (�ext(a) �ext(b))3) �ext(�x:a) = �z :�ext((�var(�)[fxg[fzg(a))fx=zg), where z is a fresh variable; i.e.,z 62 var (�) and z does not o

ur in a.The substitution �ext is expli
itly denoted by �ext = fx1=a1; : : : ; xn=ang.When no 
onfusion arises we use � to denote both a valuation � and its 
orre-sponding substitution. In this se
tion, in order to emphasize the di�eren
e betweenvaluations and substitutions, we use pre�xed notation �(a) for the appli
ation ofsubstitution � to term a while keeping a� for the appli
ation of grafting.The third item of De�nition 2.3 means that bound �-
onversion or variable renam-ing should be performed before applying the substitution in the body of an abstra
-tion. The grafting of a fresh variable avoids the possibility of 
apture. Again it isvery important to remark that the renaming appli
ation sele
ts fresh variables thatare not used previously in the pro
ess. Additionally, observe that sin
e fresh variablesare sele
ted randomly, the result of the appli
ation of a substitution 
an be 
on
eivedas a 
lass of equivalen
e terms rather than only one.De�nition 2.4 �-redu
tion is the rewriting relation de�ned by the rewrite rule (�)and �-redu
tion is the rewriting relation de�ned by the rewrite rule (�), where:(�) (�x:a b)! fx=bgext(a) and (�) �x:(a x)! a; if x 62 Fvar(a)Uni�
ation in �(V) di�ers from the one in the 
ontext of �rst order term algebras,be
ause bound variables in �(V) are not a�e
ted by uni�
ation substitutions.



526 Uni�
ation via the �se-Style of Expli
it SubstitutionsNoti
e that our notion of substitution is not 
ompletely satisfa
tory be
ause theidea of fresh variables is impli
it and depends on the history of the renaming pro
ess.Uni�
ation variables in the �-
al
ulus are free variables. Thus free variables o
-
urring in terms of a uni�
ation problem 
an be partitioned into true uni�
ationvariables and 
onstants, that 
annot be bound by the uni�ers. Observe that 
on-stants, as free variables, 
annot be 
hanged by the �-redu
tion pro
ess. However,from the point of view of uni�
ation, both 
onstants and bound variables 
an be
onsidered to be of the same synta
ti
al 
ategory, sin
e they 
annot belong to thedomain of uni�ers. To di�erentiate between uni�
ation and 
onstant variables, wewill 
onsider uni�
ation variables as meta-variables in a set X . Thus, �-
al
ulus isde�ned as the term algebra over the set of operators f�x: j x 2 Vg [ f( )g [ V andthe set of variables X . Uni�
ation and 
onstant variables are written as upper
ase(X;Y; : : : ) and lower
ase (x; y; : : : ) last letters of the Roman alphabet, respe
tively.De�nition 2.5 Terms �(V ;X ), of the �-
al
ulus with names are indu
tively de-�ned by: a ::= x j X j (a a) j �x:a where x 2 V and X 2 X .Now, substitution over X should be de�ned and substitution is modi�ed to in
lude:Modi�ed De�nition 2.3 4) �ext(X) = X; if X 2 X .Grafting appears to be appropriate for the substitution of meta-variables sin
ebound variables (in V) remain un
hanged when grafting variables in X . But theproblem of 
apture by abstra
tors remains when a meta-variable is repla
ed witha term 
ontaining 
onstants; for instan
e, 
onsider the grafting � = fX 7! xg andthe term �x:X . Then (�x:X)� = �x:x. Consequently, the notion of substitution formeta-variables should involve bound variable renaming.De�nition 2.6 Let � a valuation from X to �(V ;X ). The substitution extending�, denoted by �ext is de�ned by indu
tion on the stru
ture of terms in �(V ;X ) asfollows:1) �ext(X) = X�, if X 2 X ; 2) �ext(x) = x if x 2 V ; 3) �ext((a b)) = (�ext(a) �ext(b));4) �ext(�x:a) = �z :�ext((�var(�)[fxg[fzg(a))fx 7!zg), where z is a fresh variable.It 
an be easily 
he
ked that the non 
ommutativity problem of �- or �-redu
tionand grafting does not o

ur with our previous notion of substitution.Lemma 2.7 �-redu
tion as well as �-redu
tion 
ommute with substitution.2.2 The �-
al
ulus in de Bruijn notationIn the previous se
tion we have seen that the names of bound variables and their
orresponding abstra
tors play a semanti
ally irrelevant role in the �-
al
ulus. So anyterm in �(V) (or in �(V ;X )) 
an be seen as a synta
ti
al representative of its obviousequivalen
e 
lass. Thus, one 
an 
on
lude that the role that names of bound variablesand their 
orresponding abstra
tors play, when treating synta
ti
ally uni�
ation inthe �-
al
ulus, in
reases the 
omplexity of the pro
ess and 
reates 
onfusion.Consequently, avoiding names in the �-
al
ulus is an e�e
tive way of 
larifyingthe meaning of �-terms and, for the uni�
ation pro
ess, of eliminating dummy andredundant renaming. N. de Bruijn developed a notation for the �-
al
ulus where



2. PRELIMINARIES 527names of bound variables were repla
ed by indi
es [13, 15, 14℄. These indi
es relatebound variables to their 
orresponding abstra
tors.It is 
lear that the 
orresponden
e between an o

urren
e of a bound variable and itsasso
iated abstra
tor operator is uniquely determined by its depth, that is the numberof abstra
tors between them. Hen
e, � terms 
an be written in a term algebra overthe natural numbers N, representing depth indi
es, the appli
ation operator ( ) anda sole abstra
tor operator �: ; i.e., T (f( ); �: g [ N).In de Bruijn's notation, the solution for indexing o

urren
es of free variables isgiven by the 
reation of a referential a

ording to a �xed enumeration of the set ofvariables V , say x; y; z; : : : , and pre�xing all �-terms with : : : �z :�y:�x: .Example 2.8 Using the referential x; y; z; : : : the term�x:((�z :(x �x:(z x)) x) �x:(x y)) is rewritten as �:((�:(2 �:(2 1)) 1) �:(2 4)) and�x:((�z :(y �x:(y x)) y) �x:(z y)), whi
h has a multiple o

urren
e of free variables,as �:((�:(4 �:(5 1)) 3) �:(5 4)).Now we 
an de�ne the �-
al
ulus in de Bruijn notation with meta-variables.De�nition 2.9 The set �dB(X ) of �-terms in de Bruijn notation is de�ned in-du
tively as:a ::= n j X j (a a) j �:a where X 2 X and n 2 N n f0g.We type de Bruijn indi
es as 1; 2; 3; : : : ; n; : : : , to distinguish them from s
ripts.An attempt to de�ne �-redu
tion in the 
ontext of the �-
al
ulus in de Bruijnnotation is (�:a b) ! f1=bga where f1=bga is the substitution of the index 1 in awith b. But it fails be
ause: �rstly, when eliminating the leading abstra
tor all indi
esasso
iated with free variable o

urren
es in a should be de
remented by one; se
ondly,when propagating the substitution f1=bg 
rossing abstra
tors through a the indi
esof the substitution (initially 1) and of the free variables in b should be in
remented.Consequently, we need new operators for dete
ting and in
rementing and de
re-menting free variables to de�ne a new notion of substitution.De�nition 2.10 Let a 2 �dB(X ). The i-lift of a, denoted a+i is de�ned indu
tivelyas follows:1) X+i = X , for X 2 X 2) (a1 a2)+i = (a+i1 a+i2 )3) (�:a1)+i = �:a+(i+1)1 4) n+i = � n+ 1; if n > in; if n � i for n 2 N :The lift of a term a is its 0-lift and is denoted brie
y as a+.De�nition 2.11 The appli
ation of the substitution with b at the depth n� 1; n 2N n f0g, denoted fn=bga, on a term a in �dB(X ) is de�ned indu
tively as follows:1) fn=bgX = X , for X 2 X 2) fn=bg(a1 a2) = (fn=bga1 fn=bga2)3) fn=bg�:a1 = �:fn+ 1=b+ga1 4) fn=bgm =8<: m� 1; if m > nb; if m = nm; if m < n if m 2 N.Now we 
an de�ne �-redu
tion in �dB(X ).De�nition 2.12 �-redu
tion in the �-
al
ulus with de Bruijn indi
es is de�ned as(�:a b)! f1=bga.



528 Uni�
ation via the �se-Style of Expli
it SubstitutionsObserve that the rewriting system of the sole �-redu
tion rule is left linear andnon overlapping (i.e. orthogonal). Consequently, the rewriting system de�ned over�dB(X ) by the �-redu
tion rule is CR.Turning to the �-redu
tion rule, in the setting of the �-
al
ulus with names, thisis de�ned as �x:(a x) ! a; if x 62 Fvar(a). In the language of �dB(X ), the left sideof this rule is written as �:(a0 1), where a0 stands for the 
orresponding translationof a under some �xed referential of variables into the language of �dB(X ). \a has nofree o

urren
es of x" means, in �(X ), that there are neither o

urren
es in a0 of theindex 1 at height zero nor of the index 2 at height one nor of the index 3 at heighttwo et
. This means, in general, that there exists a term b su
h that b+ = a.De�nition 2.13 �-redu
tion in the �-
al
ulus with de Bruijn indi
es is: �:(a 1)!b if 9b b+ = a.De�nition 2.14 Let � = fX1 7! a1; : : : ; Xn 7! ang be a valuation from the set ofmeta-variables X to �dB(X ). The 
orresponding substitution, also denoted �, isde�ned indu
tively by:1) �(m) = m for m 2 N 2) �(X) = X�, for X 2 X3) �(a1 a2) = (�(a1) �(a2)) 4) ��:a1 = �:�+(a1)where �+ denotes the substitution �+ = fX1=a+1 ; : : : ; xn=a+n g built from the graft-ing fX1 7!a+1 ; : : : ; xn 7!a+n g.3 Cal
uli �a la �� and �seIn this se
tion we present the ��- and �se-
al
uli and their typed versions and estab-lish properties of the �se-
al
ulus needed for the uni�
ation pro
ess.3.1 The ��-
al
ulusWe introdu
e the ��-
al
ulus whi
h works on 2-sorted terms: (proper) terms andsubstitutions. We use s; t; : : : to range over the set of substitutions.De�nition 3.1 The ��-
al
ulus is de�ned as the 
al
ulus of the rewriting system ��of Table 1 where terms a ::= 1 j X j (a a) j �a j a[s℄ and subs s ::= id j "j a:s j s Æ s:For every substitution s we de�ne the iteration of the 
omposition of s indu
tivelyas s1 = s and sn+1 = s Æ sn. We use the 
onvention s0 = id . Note that the only deBruijn index used is 1 , but we 
an 
ode n by the term 1["n�1℄ .The equational theory asso
iated with the rewriting system �� de�nes a 
ongruen
edenoted =��. The 
ongruen
e obtained by dropping Beta and Eta is denoted =�.When we restri
t redu
tion to these rules, we will use expressions su
h as �-redu
tion,�-normal form, et
, with the obvious meaning.The rewriting system �� is lo
ally 
on
uent [1℄, CR on substitution-
losed terms(i.e., terms without substitution variables) [40℄ and not CR on open terms (i.e., termswith term and substitution variables) [12, 11℄. The possible forms of a ��-term in ��-normal form were given in [40℄ as: 1. �:a, where a is a normal term; 2. a1 : : : ap: "n,where a1; : : : ; ap are normal terms and ap 6= n or 3. (a b1 : : : bn), where a is either 1,1["n℄, X or X [s℄ for s a substitution term di�erent from id in normal form.



3. CALCULI �A LA �� AND �SE 529Table 1. The �� Rewriting System of the ��-
al
ulus(Beta) (�:a b) �! a [b � id℄(Id) a[id℄ �! a(VarCons) 1 [a � s℄ �! a(App) (a b)[s℄ �! (a [s℄) (b [s℄)(Abs) (�:a)[s℄ �! �:a [1 � (s Æ ")℄(Clos) (a [s℄)[t℄ �! a [s Æ t℄(IdL) id Æ s �! s(IdR) s Æ id �! s(ShiftCons) " Æ (a � s) �! s(Map) (a � s) Æ t �! a [t℄ � (s Æ t)(Ass) (s Æ t) Æ u �! s Æ (t Æ u)(VarShift) 1� " �! id(SCons) 1[s℄ � (" Æ s) �! s(Eta) �:(a 1) �! b if a =� b["℄In the �-
al
ulus with names or de Bruijn indi
es, the rule Xfy=ag = X , where yis an element of V or a de Bruijn index, respe
tively, is ne
essary be
ause there is noway to suspend the substitution fy=ag until X is instantiated. In the ��-
al
ulus, theappli
ation of this substitution 
an be delayed, sin
e the term X [s℄ does not redu
e toX . The fa
t that the appli
ation of a substitution to a meta-variable 
an be suspendeduntil the meta-variable is instantiated will be used to 
ode the substitution of variablesin X by \X -grafting" and expli
it lifting. Consequently a notion of X -substitution inthe ��-
al
ulus is unne
essary. Observe that the 
ondition a =� b["℄ of the Eta ruleis stronger than the 
ondition a = b+ given in De�nition 2.13 as X = X+, but thereexists no term b su
h that X =� b["℄. Note that ��-redu
tion is 
ompatible with �rstorder substitution or grafting and hen
e X -grafting and ��-redu
tion 
ommute.De�nition 3.2 (The ��dB-
al
ulus) The syntax of the ��dB-
al
ulus is that of the��-
al
ulus where 1 is repla
ed by N. The set, ��dB , of rules of the ��dB-
al
ulusis �� where (VarId) is repla
ed by the four rules: a[id℄ ! a, n+ 1[a � s℄ ! n[s℄,n["℄! n+ 1 and n[" Æs℄! n+ 1[s℄.Noti
e that the ��dB-
al
ulus 
onsists of an in�nite set of rules that should betreated modulo linear arithmeti
.3.2 The �s-
al
ulusThe �s-
al
ulus was introdu
ed in [26℄ with the aim of providing a 
al
ulus thatpreserves strong normalization and has a 
on
uent extension on open terms [27℄. Itavoids introdu
ing two di�erent sets of entities and insists on remaining 
lose to thesyntax of the �-
al
ulus. Next to � and appli
ation, substitution (�) and updating



530 Uni�
ation via the �se-Style of Expli
it Substitutions(') operators are introdu
ed. A term 
ontaining neither � nor ' is 
alled a pure term.The �s-
al
ulus is CR on 
losed terms, preserves strong normalisation, its substitution
al
ulus is SN, and it has a 
on
uent extension on open terms, the �se-
al
ulus. This
al
ulus was originally introdu
ed without the Eta rule that we 
onsider here.De�nition 3.3 Terms of the �s-
al
ulus are given by:�s ::= N j �s�s j ��s j �s �i�s j 'ik�swhere i � 1 ; k � 0 : The set of rules �s is given in Table 2.Table 2. The Rewriting System of the �s-
al
ulus with �-rule(�-generation) (�:a b) �! a �1 b(�-�-transition) (�:a)�ib �! �:(a �i+1 b)(�-app-transition) (a1 a2)�ib �! ((a1 �ib) (a2 �ib))(�-destru
tion) n�ib �! 8<: n� 1 if n > i'i0 b if n = in if n < i('-�-transition) 'ik(�:a) �! �:('ik+1 a)('-app-transition) 'ik(a1 a2) �! (('ik a1) ('ik a2))('-destru
tion) 'ik n �! � n+ i� 1 if n > kn if n � k(Eta) �:(a 1) �! b if a =s '20bThe equational theory asso
iated to the rewriting system �s de�nes a 
ongruen
e=�s. The 
ongruen
e obtained by dropping �-generation and Eta is denoted by =s.In order to 
larify di�eren
es between the ��-
al
ulus and the �s-
al
ulus, we showthe 
orresponden
e between their Eta rules; i.e., the 
orresponden
e between both
onditions b["℄ = a and '20b = a of their asso
iated Eta rules.Lemma 3.4 Let n 2 N a de Bruijn index. Then for all k � 0 the s-normal form of'2kn and the �-normal form of n[1:1["℄:1["2℄: : : : :1["k�1℄: "k+1℄ are a de Bruijn indexand its 
orresponding 
ode in the language of the ��-
al
ulus.Proof. If k = 0 then we have n["℄ = 1["n�1℄["℄ �! 1["n℄ = n+ 1 and '20n �! n+ 1else if k > 0, by applying rule 
los on
e, we have:1["n�1℄[1:1["℄:1["2℄: : : : :1["k�1℄: "k+1℄ �! 1["n�1 Æ(1:1["℄: : : : :1["k�1℄: "k+1)℄.Two 
ases should be 
onsidered noting that if n > k then '2kn �!'�destru
tion n+ 1and if n � k then '2kn �!'�destru
tion n.Sub
ase 1: n � k. Then 1["n�1 Æ(1:1["℄: : : : :1["k�1℄: "k+1)℄ �!n�1ShiftCons1[1["n�1℄: : : : :1["k�1℄: "k+1℄ �!VarCons 1["n�1℄ = nSub
ase 2: n > k. Then 1["n�1 Æ(1:1["℄: : : : :1["k�1℄: "k+1)℄ �!kShiftCons1[1["n�1�k℄Æ "k+1℄ = 1["n℄ = n+ 1



3. CALCULI �A LA �� AND �SE 531Lemma 3.5 Let �:a be an abstra
tion over the language of �dB. Then we have:for k � 0, (�:a)[1:1["℄: : : : :1["k�1℄: "k+1℄ �-redu
es into �:(a[1:1["℄: : : : :1["k℄: "k+2℄).Proof. If k = 0 then �:a["℄ �!Abs �:a[1: "2℄. If k > 0 then�:a[1:1["℄: : : : :1["k�1℄: "k+1℄ �!Abs �:a[1:((1:1["℄: : : : :1["k�1℄: "k+1)Æ ")℄ �!kMap�:a[1:(1["℄:1["℄["℄: : : : :1["k�1℄["℄: "k+1 Æ ")℄ �!k�1Clos �:a[1:1["℄: : : : :1["k℄: "k+2℄.The 
orresponden
e between b["℄ and '20b is the 
ase k = 0 of the following lemma.Lemma 3.6 Let a 2 �dB and a0 its translation in the ��-
al
ulus, where all indi
esn 2 N o

urring at a are repla
ed with 1["n�1℄. Then, for all k � 0, the �-normalform of a0[1:1["℄: : : : :1["k�1℄: "k+1℄ is the translation of the s-normal form of '2ka.Proof. This is proved by indu
tion on the stru
ture of terms.Firstly, observe that it holds for a = n 2 N be
ause of Lemma 3.4.Se
ondly, suppose it holds for all k � 0 for terms a and b. Then for the appli
ation(a b) we have '2k(a b) �!'�app�transition ('2ka '2kb) and (a b)[1:1["℄: : : : :1["k�1℄: "k+1℄ �!App (a[1:1["℄: : : : :1["k�1℄: "k+1℄ b[1:1["℄: : : : :1["k�1℄: "k+1℄).Finally, suppose it holds for all k � 0 and for a term a. Thus by Lemma 3.5 wehave (�:a)[1:1["℄: : : : :1["k�1℄: "k+1℄ �!� �:(a[1:1["℄: : : : :1["k℄: "k+2℄) and '2k�:a �!�:'2k+1a. By the indu
tion hypothesis the lemma holds for the 
orresponding normalforms of '2k+1a and a[1:1["℄: : : : :1["k℄: "k+2℄. Hen
e, it holds for the abstra
tion.The previous lemma 
an be easily extended for terms a 2 �dB(X ). In fa
t, observethat for a meta-variable X 2 X at a position i 2 O(a), the 
orresponding subterms ofthe �- and s-normal forms of a["℄ and '20a are of the form X [1:1["℄: : : : :1["k�1℄: "k+1℄and '2kX , respe
tively, when the height of the o

urren
e of X at position i is k.3.3 The �se-
al
ulusWe introdu
e the open terms and the rules that extend �s to obtain the �se-
al
ulus.De�nition 3.7 The set of open terms, noted �sop is given as follows:�sop ::= X jN j�sop�sop j��sop j�sop �j�sop j'ik�sop where j; i � 1 ; k � 0and X stands for a set of variables, over whi
h X , Y , ... range. Closures, pure termsand 
ompatibility are de�ned as for �s.Working with open terms one loses 
on
uen
e as shown by the following example:((�X)Y )�11! (X�1Y )�11 ((�X)Y )�11! ((�X)�11)(Y �11)and (X�1Y )�11 and ((�X)�11)(Y �11) have no 
ommon redu
t. This example showsthat even the WCR property is lost. But the solution lies in the properties of meta-substitutions and updating fun
tions of the �-
al
ulus in de Bruijn notation [27℄.These properties are equalities whi
h 
an be given a suitable orientation and the newrules, thus obtained, added to �s give origin to a rewriting system whi
h is WCR.De�nition 3.8 The set of rules �se is obtained by adding the rules given in Table3 to the set �s in Table 2. The �se-
al
ulus is the redu
tion system (�sop;!�se)where !�se is the least 
ompatible redu
tion on �sop generated by the set of rules�se. The 
al
ulus of substitutions asso
iated with the �se-
al
ulus is therewriting system generated by the set of rules se = �se �f�-generation;Etag and we



532 Uni�
ation via the �se-Style of Expli
it SubstitutionsTable 3. The Rewriting System of the �se-
al
ulus without rules in Table 2(�-�-transition) (a �ib)�j 
 �! (a �j+1 
) �i (b �j�i+1 
) if i � j(�-'-transition 1) ('ik a)�j b �! 'i�1k a if k < j < k + i(�-'-transition 2) ('ik a)�j b �! 'ik(a �j�i+1 b) if k + i � j('-�-transition) 'ik(a �j b) �! ('ik+1 a)�j ('ik+1�j b) if j � k + 1('-'-transition 1) 'ik ('jl a) �! 'jl ('ik+1�j a) if l + j � k('-'-transition 2) 'ik ('jl a) �! 'j+i�1l a if l � k < l + j
all it se-
al
ulus. Additionally, 
ondition of the Eta rule should be 
hanged with'20b =se a.We 
an des
ribe operators of the �se-
al
ulus over the signature of a �rst ordersorted term algebra T�se(X ) built on X , the set of variables of sort term and itssubsort nat�term:n : ! nat; 8n 2 N n f0g( ) : term� term ! term�: : term ! term�i : term� term ! term; 8i 2 N n f0g'ik : term ! term; 8i 2 N; k 2 N n f0gNoti
e that for the ��-
al
ulus we need two sorts: term and substitution [16℄.The set of variables of sort term in a term a 2 T�se(X ) is denoted by T var(a).Proposition 3.9 X -grafting and �se-redu
tion 
ommute.Theorem 3.10 ([27℄) �WN and CR of se: The se-
al
ulus is WN and CR.� Simulation of �-redu
tion: Let a; b 2 �, if a!� b then a!��se b .� CR of �se: The �se-
al
ulus is CR on open terms.� Soundness: Let a; b 2 � , if a!��se b then a!�� b .The 
hara
terization of the se-normal forms is given by the following theorem:Theorem 3.11 ([27℄) A term a 2 �sop is an se-normal form if and only if one of thefollowing holds:1. a 2 X [ N;2. a = (b 
), where b; 
 are se-normal forms;3. a = �:b, where b is an se-normal form;4. a = b�j
, where 
 is an se-normal form and b is an se-normal form of one of thefollowing forms: (a) X , (b) d�ie, with j < i or (
) 'ikd, with j � k;5. a = 'ikb, where b is an se-normal form of one of the following forms:(a) X , (b) 
�jd, with j > k + 1 or (
) 'jl 
, with k < l;



3. CALCULI �A LA �� AND �SE 533Proof. We verify the non existen
e of redi
es from the rules of the se-
al
ulus. The�rst three 
ases are obviously normalized forms. For the fourth 
ase we should analyse,possible redi
es from the �-rules (i.e., rules whose name begin with �). Analyzingea
h of the 
orresponding sub
ases we have: a) no �-rule applies; b) the sole possibleredex is from the �-�-transition rule, that does not apply be
ause of the restri
tion onthe s
ripts; 
) both �-'-transition rules 1 and 2 do not apply be
ause of the restri
tionon s
ripts. For the �fth 
ase we should analyse, possible redi
es from the '-rules (i.e.,rules whose name begin with '). We have the following sub
ases: a) obviously wehave a normal form; b) the sole possible redex is the one from the '-�-transition rule,that does not applies be
ause of the restri
tion on s
ripts; 
) both 
andidate rules,the '-'-transition ones do not apply be
ause of the restri
tion on s
ripts.As 
orollary we obtain a 
hara
terization of �se-normal forms.Corollary 3.12 (�se-normal forms) A term a 2 �sop is a �se-normal form if andonly if one of the following holds:1. a 2 X [ N;2. a = (b 
), where b; 
 are �se-normal forms and b is not an abstra
tion �:d;3. a = �:b, where b is a �se-normal form ex
luding appli
ations of the form (
 1)su
h that there exists d with '20d =se 
;4. a = b�j
, where 
 is a �se-normal form and b is an �se-normal form of one of thefollowing forms: (a) X , (b) d�ie, with j < i or (
) 'ikd, with j � k;5. a = 'ikb, where b is a �se-normal form of one of the following forms:(a) X , (b) 
�jd, with j > k + 1 or (
) 'jl 
, with k < l;Proof. Items 2 and 3 result from adapting the proof of Theorem 3.10 to avoid redi
esof the �-generation and Eta rules of the �se-
al
ulus.3.4 Typed �-
al
uliWe re
all that environments in de Bruijn setting are simply lists of types and in the
ase of the ��-
al
ulus, substitutions re
eive environments as types. We introdu
e thefollowing notation 
on
erning environments. If � is the environment �1:�2: : : : :�n:nil ,then ��i denotes the environment �i:�i+1: : : : :�n:nil ; analogously, ��i stands for�1: : : : :�i, et
. The rewrite rules of the 
orresponding typed 
al
uli are exa
tly thesame (ex
ept that rules involving abstra
tions are now typed). In all these 
al
uli, weassume types and environments built by types A j A! B and envirs � nil j A:�.Here are the typing rules for the simply typed �-
al
ulus in de Bruijn notation:De�nition 3.13 The syntax of simply typed �-
al
ulus in de Bruijn notationis de�ned by:The set of terms terms a :== n j (a b) j �A:aThe typing system, 
alled L1, and given by the following rules:(L1-var) A:� ` 1 : A (L1-�) A:� ` b : B� ` �A:b : A! B(L1-varn) � ` n : BA;� ` n+ 1 : B (L1-app) � ` b : A! B � ` a : A� ` (b a) : B



534 Uni�
ation via the �se-Style of Expli
it SubstitutionsObserve that typing and grafting are not 
ompatible.Example 3.14 Consider the environment � = A:(A ! A) ! (B ! A) ! A:nil anda variable X of type A. Let us show that � ` ((2 �A:X) �B :X) : A. Firstly, 2 istyped:(varn) (var)(A! A)! (B ! A)! A:nil ` 1 : (A! A)! (B ! A)! AA:(A! A)! (B ! A)! A:nil ` 2 : (A! A)! (B ! A)! AAfterwards, the ne
essary abstra
tions are typed:(�) A:� ` X : A� ` �A:X : A! A (�) B:� ` X : A� ` �B :X : B ! AFinally, (app) � ` 2 : (A! A)! (B ! A)! A � ` �A:X : A! A(app)� ` (2 �A:X) : (B ! A)! A � ` �B :X : B ! A� ` ((2 �A:X) �B :X) : AObserve that applying the grafting fX=1g to the term ((2 �A:X) �B :X) we obtainthe term ((2 �A:1) �B :1), whi
h is not well-typed.The next proposition establishes 
ompatibility between substitution and typing.Proposition 3.15 ([16℄) Take a variable X of type B and an environment �. If� ` a : A and � ` b : B then � ` fX=bga : A.Proof. By indu
tion on the stru
ture of terms. Firstly, if a = X , then A = B.Se
ondly, if a = n then fX=bga = n. Thirdly, if a = (a1 a2) then we have that� ` a2 : A1 and � ` a1 : A1 ! A and by the app typing rule � ` (a1 a2) : A; byindu
tion hypothesis � ` fX=bga2 : A1 and � ` fX=bga1 : A1 ! A whi
h implies� ` fX=bg(a1 a2) : A. Finally, if a is an abstra
tion of the form �C :a1 then Ashould be of the form C ! D and C:� ` a1 : D. By de�nition of substitutionfX=bg�C:a1 = �C :fX=b+ga1. Observe that if we 
an prove that C:� ` b+ : Bthen, sin
e C:� ` X : B, we 
an suppose indu
tively that C:� ` fX=b+ga1 : D andsubsequently, by applying the � typing rule, we 
an 
on
lude that � ` �C :fX=b+ga1 :C ! D. To prove that if � ` b : B then C:� ` b+ : B we prove by indu
tion on thestru
ture of terms that the following more general aÆrmation holds:if Ci: : : : :C1:� ` b : B then Ci: : : : :C1:C:� ` b+i : BFirstly, if b = X then b+i = X . Se
ondly, if b = n then if n > i then n+i = n+ 1and the type of n and of n+ 1 in the environments Ci: : : : :C1:� and Ci: : : : :C1:C:�,respe
tively, 
oin
ide (in fa
t, it is the one of n� i in the environment �). Else,if n � i then n+i = n. Thirdly, if b is an appli
ation of the form (b1 b2) then(b1 b2)+i = (b+i1 b+i2 ) and by the indu
tion hypothesis we have Ci: : : : :C1:C:� `b+i1 E ! B and Ci: : : : :C1:C:� ` b+i2 E, for some type E, whi
h enables us to 
on
ludethat Ci: : : : :C1:C:� ` (b+i1 b+i2 ) : B. Finally, if b is an abstra
tion of the form�E :b1 then B = E ! F and E:Ci: : : : :C1:� ` b1 : F . By indu
tion hypothesisE:Ci: : : : :C1:C:� ` b+i1 : F and 
onsequently Ci: : : : :C1:C:� ` �E :b+i1 : E ! F .We re
all now the typing rules for �s and �se.



3. CALCULI �A LA �� AND �SE 535De�nition 3.16 The syntax of simply typed �s- and �se-
al
ulus is given by:The set of terms terms a :== n j X j (a b) j �A:a j a�ib j 'ika; 8n; k � 0; 8i � 1The typing system Ls1, given by the rules Ls1-var, Ls1-varn, Ls1-� and Ls1-app whi
h are exa
tly the same as L1-var, L1-varn, L1-� and L1-app, respe
tively,and the new rules:(Ls1-�) ��i ` b : B �<i:B:��i ` a : A� ` a �ib : A(Ls1-Mtv) �X ` X : AX(Ls1-') ��k:��k+i ` a : A� ` 'ika : A(Ls1-Mtv) is added to type open terms and is taken to mean: for every metavariableX , there exists an environment �X and a type AX su
h that the rule holds. In orderto obtain 
ompatibility between typing and grafting, to ea
h meta-variable X weasso
iate a unique type AX and a unique environment �X . We assume for ea
h pair(�; A) an in�nite set of variables X su
h that �X = � and AX = A.Now we present the simply typed ��-
al
ulus.De�nition 3.17 The syntax of simply typed ��-
al
ulus is given by the sets ofterms and substitutions: terms a :== 1 j X j (a b) j �A:a j a[s℄ and subs s :==id j " j a:s j s Æ s and the rules L�1-var, L�1-� and L�1-app whi
h are exa
tly thesame as L1-var, L1-� and L1-app, respe
tively, together with the new rules:(L�1-
los) � ` s . �0 �0 ` a : A� ` a[s℄ : A (L�1-id) E ` id . �(L�1-
ons) � ` a : A � ` s . �0� ` a : A � s . A;�0 (L�1-shift) A:� `" .�(L�1-
omp) � ` s00 . �00 �00 ` s0 . �0� ` s0 Æ s00 . �0 (L�1-Mtv) �X ` X : AXThe redu
tion rules of both the typed ��-
al
ulus and the typed �se-
al
ulus arede�ned by adding to the rules in �� and in �se the ne
essary typing information.De�nition 3.18 (Typed ��-
al
ulus) The typed ��-
al
ulus is de�ned by therewrite rules of the rewriting system �� (Table 1) 
hanging the rules that involveabstra
tions as in Table 4. The resulting rewriting system is also 
alled ��.Table 4. The Beta, Abs and Eta rules of the typed ��-
al
ulus(Beta) (�A:a b) �! a [b � id℄(Abs) (�A:a)[s℄ �! �A:a [1 � (s Æ ")℄(Eta) �A:(a 1) �! b if a =� b["℄The typed version of � has the same properties as the untyped one.



536 Uni�
ation via the �se-Style of Expli
it SubstitutionsProposition 3.19 (Grafting and typing are 
ompatible [16℄) IfX is a variableand b a term su
h that �X ` b : Ax then:1. 8 environment � and term a su
h that � ` a : A, we have: � ` afX=bg : A.2. 8 environments �;�0 and substitution s su
h that � ` s .�0, we have:� ` sfX=bg .�0.Proof. By simultaneous indu
tion on the stru
ture of typing derivation of � ` a : Aand � ` s .�0.Sin
e a unique environment and a unique type are asso
iated to every meta-variable,terms as ((Y X) X ["℄) and ((Y �A:X) X) 
annot be typed in any environment.Proposition 3.20 ([40℄) The typed ��-
al
ulus is WN and CR.De�nition 3.21 (�-long normal forms in ��) Let a be a ��-term of type A1 !: : : ! An ! B in the environment � and in ��-normal form. The �-long normalform of a, written a0, is de�ned by:1. if a = �C :b then a0 = �C :b02. if a = (k b1 : : : bp) then a0 = �A1 : : : �An(k+ n 
1 : : : 
p n0 : : : 10), where 
i is the�-long normal form of the normal form of bi["n℄3. if a = (X [s℄ b1 : : : bp) then a0 = �A1 : : : �An(X [s0℄ 
1 : : : 
p n0 : : : 10), where 
i is the�-long normal form of bi["n℄ and if s = d1 : : : dq: "k then s0 = e1 : : : eq : "k+n whereei is the �-long normal form of di["n℄De�nition 3.21 has been proven 
orre
t and well-founded in [16℄. The long normalform of a ��-term is de�ned as the �-long normal form of its ��-normal form. Twoterms are ��-equivalent if and only if they have the same long normal form [16℄.De�nition 3.22 (Typed �se-
al
ulus) The typed �se-
al
ulus is de�ned by therewrite rules of the rewriting system �se (rules in Tables 2 and 3) 
hanging the rulesthat involve abstra
tions as in Table 5. The resulting rewriting system is also 
alled�se.Table 5. The generation, transition and Eta rules of the typed �se-
al
ulus(�-generation) (�A:a b) �! a �1 b(�-�-transition) (�A:a)�ib �! �A:(a �i+1 b)('-�-transition) 'ik(�A:a) �! �A:('ik+1 a)(Eta) �A:(a 1) �! b if a =se '20bWe re
all now the main results 
on
erning typed �s and �se:Theorem 3.23 ([26℄) 1. Subje
t Redu
tion of �s: If � ` a : A and a !�s bthen � ` b : A.2. SN of �s: Every well typed term is SN in the simply typed �s-
al
ulus.3. Subje
t Redu
tion of �se: If � ` a : A and a!�se b then � ` b : A.
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hara
terization of �-long normal forms in �se, to be introdu
ed, is ne
essaryto simplify our set of uni�
ation rules. Essentially this is the way to guarantee thatmeta-variables of fun
tional type A! B are instantiated with typed �se-terms of theform �A:a.De�nition 3.24 (�-long normal form in �se) Let a be a �se-term of type A1 !: : : ! An ! B in the environment � and in �se-normal form. The �-long normalform of a, written a0, is de�ned by:1. if a = �C :b then a0 = �C :b02. if a = (b1 : : : bp) then a0 = �A1 : : : �An(
1 : : : 
p n0 : : : 10), where 
i is the �-longnormal form of the normal form of 'n+10 bi3. if a = b�i
 then a0 = �A1 : : : �An(d0�i+ne0 n0 : : : 10), where d0; e0 are the �-longnormal forms of the normal forms of 'n+10 b and 'n+10 
, respe
tively4. if a = 'ikb then a0 = �A1 : : : �An('ik
0 n0 : : : 10), where 
0 is the �-long normal formof the normal form of 'n+10 bLemma 3.25 De�nition 3.24 of �-long normal form is 
orre
t and well-founded.Proof. In the �rst 
ase the number of o

urren
es of meta-variables is preservedand the size of the term is stri
tly de
reasing. In the se
ond 
ase, if p = 0 the typeis stri
tly de
reasing and if p 6= 0 the number of o

urren
es of meta-variables isde
reasing and the size of the term is stri
tly de
reasing. In 
ase 3 the number ofo

urren
es of meta-variables is stri
tly de
reasing.De�nition 3.26 The long normal form of a �se-term is the �-long normal form ofits ��-normal form.In �� the redu
tion of an �-redex may 
reate �-redi
es as in X [�:(2 1): "℄ �!EtaX [1: "℄ �!VarShift X [id ℄ �!Id X . Hen
e, to 
ompute the long normal form, allredi
es, in
luding the �-redi
es, should be redu
ed before expanding the term. Thatis not the 
ase for the �se-
al
ulus. In fa
t, by 
he
king rule by rule, one 
an easilyverify that no �-redu
tion may generate new se-redi
es. Then one 
ould repla
e inthe previous de�nition �� with �. But the use of �-redu
tion, being it unessential atall, makes the uni�
ation pro
ess more eÆ
ient as it is explained after introdu
tionof the �se-uni�
ation rules (De�nition 5.2).As in the ��-
al
ulus, two �se-terms are ��-equivalent if and only if they havethe same long normal form. Subsequently we present 
hara
terizations of �se-normalterms whose main operators are either � or ' (i.e., of type 3. and 4. in Corollary 3.12).This is essential in order to simplify our presentation of the uni�
ation rules and ofFlex-Flex equations. Our 
hara
terization is similar to that of [27℄ and is obtained byobserving when arithmeti
 restri
tions for the appli
ation of the transition rules ofthe �se-
al
ulus do not hold. For instan
e, in order to apply a '-'-transition rule toredu
e a term of the form 'ik('jl a), we need either l + j � k or l � k < l + j as su
ha rule does not apply if l + j > k and (l > k or k < l + j) or, equivalently, if l > k.Note that there are no other rules to redu
e, at root position, a term of this form.Observe �rstly that by the �se rewrite rules left arguments of the � operator or ar-guments of ' operators at �se-normal terms are neither appli
ations nor abstra
tionsnor de Bruijn indi
es. For instan
e, 'ji (a b) ! ('ika 'ikb), (a b)�i
 ! (a�i
 b�i
).Then the sole possibility is to have as a left argument a meta-variable. Thus one has to
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onsider terms alternating sequen
es of operators ' and � whose left innermost argu-ment is a meta variable; 
onsider, for instan
e, the term (('j3i3 (('j1i1X)�i2 �))�i4 �)�i5 �,where right arguments of the operator � are denoted by \�".De�nition 3.27 Consider a �se-normal term t whose leading operator is either � or 'and whose left innermost meta-variable is X . Denote by  jkik the operator at positionk following the sequen
e of operators ' and �, 
onsidering only left arguments ofthe � operators, in the order innermost outermost. Additionally, if  jkik 
orrespondsto an operator ' then jk and ik denote its super and subs
ripts, respe
tively and if jkik 
orresponds to an operator � then jk = 0 and ik denotes its supers
ript. Letak denote the 
orresponding right argument of the kth operator if  jkik = �ik andthe empty argument if  jkik = 'jkik . The skeleton of t, written sk(t), is de�ned as: jpip : : :  j1i1 (X; a1; : : : ; ap).Example 3.28 Let (('j3i3 (('j1i1X)�i2a))�i4b)�i5
 be a �se-normal term. Then its rep-resentation as a skeleton is given by  0i5 0i4 j3i3 0i2 j1i1 (X; a; b; 
).In the sequel, for a �se-normal term whose leading operator is either ' or � we willeventually abuse its skeleton representation sk(t). Thus, for instan
e, for a �se-terma we 
an write a!� sk(t) representing a!� t or a =se sk(t) representing a =se t.Lemma 3.29 Let t be a �se-normal term whose leading operator is either � or ' andwhose skeleton is  jpip : : :  j1i1 (X; a1; : : : ; ap). Su

essive s
ripts ik and ik+1 satisfy thefollowing:1. ik > ik+1 if both  k and  k+1 are either � operators or ' operators;2. ik � ik+1 if  k and  k+1 are ' and � operators, respe
tively;3. ik > ik+1 + 1 if  k and  k+1 are � and ' operators, respe
tively.Proof. By simple analysis of the arithmeti
 
onstraints at the �se rewrite rules.4 Uni�
ation in the ��-
al
ulusIn this se
tion we re
all higher order uni�
ation in the ��-
al
ulus as originally intro-du
ed in [16℄. Another approa
h of higher order uni�
ation by expli
it substitutionwas presented by Les
anne, Benaissa and Briaud in [31℄ and based on the ��-
al
ulusof [7℄. The ��-
al
ulus preserves strong normalization but its 
on
uen
e is restri
tedto 
losed terms. [31℄ informally suggests to 
lose terms before uni�
ation is realized.The problem to be 
onsidered is how to solve equational systems on typed ��-terms (i.e., in �(X ;Y)) modulo the equational theory of ��. Equational systems arerestri
ted to be on substitution-
losed terms, be
ause of the fa
t that �� is CR onterms without substitution variables, but non CR on open terms (i.e., when substitu-tion variables are admitted). Sin
e the main goal is to provide a me
hanism to solveuni�
ation problems in the �-
al
ulus this restri
tion is not relevant.De�nition 4.1 Let T (F ;X ) be a term algebra over a set of fun
tion symbols F anda 
ountable set of variables X and let A be an F-algebra. An hF ;X ;Ai-uni�
ationproblem, for short uni�
ation problem, is a �rst order formula without universalquanti�er nor negation whose atoms are of the form F;T and s =?A t, where both
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ation problems will be written as disjun
tions of existentiallyquanti�ed 
onjun
tions of atomi
 equational uni�
ation problemsD = _j2J 9 ~wj î2Ij si =?A tiWhen there is a sole disjun
tor, the uni�
ation problem is 
alled a uni�
ation sys-tem. The variables in the set ~w in a uni�
ation system P = 9~wVi2I si =?A ti are
alled bound and denoted Bvar(P ), while those o

urring in si's and ti's are 
alledfree and denoted Fvar(P ). T and F stand for the empty 
onjun
tion and disjun
tion,respe
tively. The empty disjun
tion, 
orresponds to an unsatis�able problem.De�nition 4.2 A uni�er of an hF ;X ;Ai-uni�
ation system 9~wVi2I si =?A ti is agrafting � where A j= 9~wVi2I si�n~w = ti�n~w and �n~w denotes the restri
tion of � tothe domain X n ~w.A uni�er of an hF ;X ;Ai-uni�
ation problem, _j2J9 ~wj ^i2Ij si =?A ti, is a grafting �that uni�es at least one of the uni�
ation systems involved.For simpli
ity, all referen
es to the term algebra T (F ;X ) and to the algebra A areomitted, when they are 
lear from the 
ontext. When the algebra A 
onsidered isthe quotient algebra over T (F ;X ) de�ned by the 
ongruen
e asso
iated with a set ofequations E, i.e. A = T (F ;X )=E, then we denote =?A by =?E . The set of uni�ers ofa uni�
ation problem, D, or system, P , is denoted by UA(D) or UA(P ), respe
tively.De�nition 4.3 Let �; � be grafting valuations from X into T (F ;X ) and A be analgebra over T (F ;X ). � is more general modulo A than �, denoted � �A �, if 9
 su
h that A j= �
 = �.�A indu
es a quasi ordering over the set of grafting valuations. When ne
essary, werestri
t � �A � to a set Y � X writing � �YA �.De�nition 4.4 Let D be an hF ;X ;Ai-uni�
ation problem. A 
omplete set ofuni�ers of D is a set of grafting valuations, denoted by CUA(D), su
h that:1. CUA(D) � UA(D) (Corre
tness)2. 8� 2 UA(D)9� 2 CUA(D) su
h that � �var(D)A � (Completeness)3. 8� 2 CUA(D), Ran(�) \ Dom(�) = ; (Idempoten
y)A 
omplete set of most general uni�ers of D, denoted by CMGUA(D), is a
omplete set of uni�ers that additionally satis�es:4. 8�; � 2 CMGUA(D) � �var(D)A �; � = � (Minimality)[16℄ presents a set of rewrite rule s
hemata that simplify uni�
ation problems inorder to obtain the set of uni�ers. The simplest are the boolean simpli�
ation rules.De�nition 4.5 The boolean simpli�
ation rules for uni�
ation problems are thoseof Table 6 modulo asso
iativity and 
ommutativity of the boolean 
onjun
tion anddisjun
tion. In that table P;Q;R stand for uni�
ation problems, e for an equationand s; t for terms.Basi
 de
omposition rules for uni�
ation (to be de�ned after spe
ializing uni�
ationnotions to ��-terms) should be applied modulo boolean simpli�
ation rules.
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ation via the �se-Style of Expli
it SubstitutionsTable 6. The Boolean simpli�
ation rules for uni�
ation problems(Trivial) P ^ s =? s ! P(AndIdem) P ^ e ^ e ! P ^ e(OrIdem) P _ e _ e ! P _ e(SimpAndT) P ^ T ! P(SimpAndF) P _ F ! F(SimpOrT) P _ T ! T(SimpOrF) P _ F ! P(Distrib) P ^ (Q _ R) ! (P ^Q) _ (P ^ R)(Propag) 9~z(P _Q) ! 9~zP _ 9~zQ(ElimQE) 9zP ! P , if z 62 var (P )(ElimBV) 9z z =? t ^ P ! P , if z 62 var (P ) [ var (t)De�nition 4.6 A ��-uni�
ation problem P is a uni�
ation problem in the algebraT��(X ) modulo the equational theory of ��. An equation of su
h a problem isdenoted a =?�� b, where a and b are substitution-
losed ��-terms of the same sort.An equation of the form a =?�� a is 
alled trivial. For a uni�
ation problem P ,T var(P ) denotes the set of variables of sort term and U��(P ) denotes the set of alluni�ers of P .De�nition 4.7 The ��-uni�
ation rules for typed ��-uni�
ation problems aregiven in Table 7.Sin
e �� is CR and WN, the sear
h 
an be restri
ted to �-long normal solutionsthat are graftings of the form fX=�:ag or fX=(n a1 : : : ap)g and fX=(Z[s℄a1 : : : ap)g,when the type of X is fun
tional respe
tively atomi
. The rules Normalize and De
-�,use the fa
t that �� is CR and WN to normalize equations of the form �:a =?�� �:binto equations of the form a0 =?�� b0. The rule Exp-� generates the grafting fX=�:Y gfor a variable X of type A! B, where Y is a new variable of type B.Example 4.8 Consider the uni�
ation problem (X 1) =?�� 1, whereX has type A!A. The rule Exp-� takes a new variable Y of type A and by the grafting fX=�A:Y gthe problem is transformed into (�:Y 1) =?�� 1 that �-redu
es to Y [1:id℄ =?�� 1.Sin
e Y has an atomi
 type A, a normal solution 
an only be a grafting of the formfY=(n a1 : : : ap)g or fY=(Z[s℄a1 : : : ap)g. Grafting valuations of the se
ond form arenot solutions be
ause normal forms of terms of the form (Z[s℄a1 : : : ap)[1:id℄ 
annotbe 1. Then all solutions should be of the �rst form. Performing the 
orrespondinggrafting fY=(n Y1 : : : Yp)g, where Y1; : : : ; Yp are new variables. Observe that n 
anonly be 1 or 2 (equivalently, 1["℄), be
ause in the other 
ase the head in the redu
tion of(n a1 : : : ap)[1:id℄ is n�1. For terms with heads 1 and 2 we have: (1 a1 : : : ap)[1:id℄!�(1 a1[1:id℄ : : : ap[1:id℄) and (1["℄ a1 : : : ap)[1:id℄ !� (1["℄[1:id℄ a1[1:id℄ : : : ap[1:id℄) !(1[" Æ(1:id)℄ a1[1:id℄ : : : ap[1:id℄)!� (1 a1[1:id℄ : : : ap[1:id℄).For an equation of the formX [a1 : : : ap: "n℄ =?�� (m b1 : : : bq), whereX has an atomi
type A, solutions 
an only be grafting valuations of the form fX=(r 
1 : : : 
k)g, wherer 2 f1; : : : ; pg [ fm� n+ pg. Exp-App advan
es in dire
tion towards this solution.
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ation rules(De
-�) P ^ �A:a =?�� �A:b ! P ^ a =?�� b(De
-App) P ^ (n a1 : : : ap) =?�� (n b1 : : : bp) ! P Vi=1::p ai =?�� bi(App-Fail) P ^ (n a1 : : : ap) =?�� (m b1 : : : bq) ! F if n 6= m(Exp-�) P ! 9(Y where A:� ` Y : B); P ^X =?�� �A:Yif (� ` X : A ! B) 2 T var (P ); Y 62 T var(P ), and X is anunsolved variable(Exp-App) P ^X [a1 : : : ap: "n℄ =?�� (m b1 : : : bq) !P ^X [a1 : : : ap: "n℄ =?�� (m b1 : : : bq) ^Wr2Rp[Ri 9H1; : : : ; Hk; X =?�� (r H1 : : : Hk)� if X has an atomi
 type and is not solved� H1; : : : ; Hk are variables of appropriate types, not o

urring inP and the environments �Hi = �X� Rp � f1; : : : ; pg su
h that (r H1 : : :Hk) has the right type� Ri = fm� n+ pg if m � n+ 1 else ;(Repla
e) P ^X =?�� a ! fX=agP ^X =?�� aif X 2 T var (P ); X 62 T var (a) and a 2 X ) a 2 T var(P )(Normalize) P ^ a =?�� b ! P ^ a0 =?�� b0if a or b is not in long normal form,a0 = � the long normal form of a if a is an unsolved variablea otherwiseb0 is de�ned from b similarly to a0 from a.During the uni�
ation pro
ess the rule Repla
e simply propagates, to the 
urrentuni�
ation problem, the grafting fX=ag 
orresponding to equations X =?�� a previ-ously added by the appli
ation of the other uni�
ation rules.De�nition 4.9 A uni�
ation system P is a ��-solved form if all its meta-variablesare of atomi
 type and it is a 
onjun
tion of non trivial equations of the followingforms:(Solved) X =?�� a, where the variable X does not o

ur anywhere else in P anda is in long normal form. Both X and X =?�� a are said to be solved in P .(Flex-Flex) non solved equations of the form X [a1 : : : ap: "n℄ =?��Y [a01 : : : a0p0 : "n0 ℄, where X [a1 : : : ap: "n℄ and Y [a01 : : : a0p0 : "n0 ℄ are long normalterms with X and Y of atomi
 type.In the previous de�nition some of the s
ripts p; p0; n; n0 may be zero.Example 4.10 Consider the equation X =?�� Y [X: "℄. This is a 
ex-
ex equation,but the variable X is unsolved sin
e it o

urs in the right-hand side of the equation.Observe that the left-hand side 
an be written as X [id℄. The same holds for X ["3℄ =?�� Y [1: "℄.Sin
e solved forms appearing in a system P de�ne straightforwardly the bindingbetween the variables that do not appear anywhere else in P and the terms (in long
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ation via the �se-Style of Expli
it Substitutionsnormal form), proving that 
ex-
ex equations have uni�ers one obtains that any��-solved form has ��-uni�ers.[16℄ showed that: dedu
tion by the ��-uni�
ation rules of a well typed equationgives rise only to well typed equations, T and F; solved problems are normalized forthe ��-uni�
ation rules; a 
onjun
tion of equations irredu
ible by the ��-uni�
ationrules is a solved system; and the ��-uni�
ation rules are 
orre
t and 
omplete.5 Uni�
ation in the �se-
al
ulusThe main 
hara
teristi
s of the typed ��-
al
ulus needed in the development of theuni�
ation method of the previous se
tion are its weak normalization and 
on
uen
e(Proposition 3.20) and its 
hara
terization of normal forms (De�nition 3.21).De�nition 5.1 A �se-uni�
ation problem P is a uni�
ation problem in the algebraT�se(X ) modulo the equational theory presented by �se. An equation of su
h aproblem is denoted a =?�se b, where a and b are two �se-terms of the same sort. Anequation is 
alled trivial when of the form a =?�se a. The set of meta-variables in auni�
ation problem P is denoted T var (P ). The set of all uni�ers of a problem P isdenoted U�se(P ).De�nition 5.2 The �se-uni�
ation rules for typed �se-uni�
ation problems aregiven in Table 8.Here is how the �se-uni�
ation rules of Table 8 simplify �se-uni�
ation problems:Sin
e �se is CR and WN, the sear
h 
an be restri
ted to �-long normal solutionsthat are graftings binding fun
tional variables into �-long normal terms of the form�:a and atomi
 variables into �-long normal terms of the form (k b1 : : : bp) or a�ib or'ika, where in the �rst 
ase k 
ould be omitted and p 
ould be zero. Use of the �rule is important to redu
e the number of 
ases (or uni�
ation rules) to be 
onsideredwhen de�ning the uni�
ation algorithm, but as for the ��-
al
ulus, one 
an developa HOU method based on the �-
onversion alone [16℄. This is not surprising sin
ethe original Huet's algorithm was developed only for the �-
onversion. The rulesNormalize and De
-�, use the fa
t that �se is CR and WN to normalize equations ofthe form �:a =?�se �:b in equations of the form a0 =?�se b0.During the uni�
ation pro
ess the rule Repla
e simply propagates, to the 
urrentproblem, the grafting fX=ag 
orresponding to equations X =?�se a previously addedby the appli
ation of the other uni�
ation rules.The rule Exp-� generates the grafting fX=�:Y g for a variable X of type A ! B,where Y is a new variable of type B.Equations of the form (n a1 : : : ap) =?�se (m b1 : : : bq) are transformed by the rulesDe
-App and App-Fail into the empty disjun
tion when n 6= m (as there are no solu-tion), or into the 
onjun
tion Vi=1::p ai =?�se bi, when n = m (note that terms of theform (n a1 : : : ap) in
lude those where n is omitted or p = 0).Example 5.3 Consider the uni�
ation problem (�:(�:(X 2) 1) Y ) =?�se (�:(Z 1) U)where X;Y; Z and U are meta-variables.Then (�:(�:(X 2) 1) Y ) !� (�:(X�11 2�11) Y ) !� (�:(X�11 1) Y ) !�((X�11)�1Y 1�1Y ) !� ((X�2Y )�1(1�1Y ) '10Y ) ! ((X�2Y )�1('10Y ) '10Y ) and
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ation rules(De
-�) P ^ �A:a =?�se �A:b ! P ^ a =?�se b(De
-App) P ^ (n a1 : : : ap) =?�se (n b1 : : : bp) ! P Vi=1::p ai =?�se bi(App-Fail) P ^ (n a1 : : : ap) =?�se (m b1 : : : bq) ! F if n 6= m(De
-') P ^ 'ika =?�se 'ikb ! P ^ a =?�se b, where 'ika; 'ikb arelong-normal terms.(Exp-�) P ! 9(Y where A:� ` Y : B); P ^X =?�se �A:Yif (� ` X : A ! B) 2 T var(P ); Y 62 T var (P ), and X is aunsolved variable(Exp-App) P ^  jpip : : :  j1i1 (X; a1; : : : ; ap) =?�se (m b1 : : : bq) !P ^  jpip : : :  j1i1 (X; a1; : : : ; ap) =?�se (m b1 : : : bq) ^Wr2Rp[Ri 9H1; : : : ; Hk; X =?�se (r H1 : : : Hk)� if  jpip : : :  j1i1 (X; a1; : : : ; ap) is the skeleton of a �se-normal term� X has an atomi
 type and is not solved� H1; : : : ; Hk are variables of appropriate types, not o

urring inP , with the environments �Hi = �X� Rp � fi1; : : : ; ipg of supers
ripts of the � operator su
h that(r H1 : : : Hk) has the right type Ri = � Spj=0fqg if q > ik+1; otherwiseand q = m+ p� k �Ppl=k+1 jl; i0 =1; ip+1 = 0(Repla
e) P ^X =?�se a ! fX=agP ^X =?�se aif X 2 T var (P ); X 62 T var (a) and a 2 X ) a 2 T var(P )(Normalize) P ^ a =?�se b ! P ^ a0 =?�se b0if a or b is not in long normal form,a0 = � the long normal form of a if a is an unsolved variablea otherwiseb0 is de�ned from b similarly to a0 from a.(�:(Z 1) U)!� (Z�1U 1�1U)! (Z�1U '10U). Hen
e:(�:(�:(X 2) 1) Y ) =?�se (�:(Z 1) U) !Normalize((X�2Y )�1('10Y ) '10Y ) =?�se (Z�1U '10U) !De
�App(X�2Y )�1('10Y ) =?�se Z�1U ^ '10Y =?�se '10U !De
�'(X�2Y )�1('10Y ) =?�se Z�1U ^ Y =?�se UObserve that solutions of Y =?�se U are graftings of the form fY=V; U=V g. Ad-ditionally, a variety of solutions 
an be given for (X�2Y )�1('10Y ) =?�se Z�1Y : takefX=ng; thus if n � 2, fZ=n� 1g.Note that the equations of this example 
orrespond to those of ��-uni�
ation:(�:(�:(X 2) 1) Y ) =?�� (�:(Z 1) U) !Normalize (X [Y:Y:id℄ Y ) =?�� (Z[U:id℄ U),
an be de
omposed into X [Y:Y:id℄ =?�� Z[U:id℄ ^ Y =?�� U . Note that sin
e X andZ are meta-variables of fun
tional type, X [Y:Y:id℄ =?�� Z[U:id℄ is not 
ex-
ex.In the ��-
al
ulus, the uni�
ation rule Exp-App advan
es in dire
tion towards so-lutions for equations of the form X [a1 : : : ap: "n℄ =?�se (m b1 : : : bq), where X is anunsolved variable of an atomi
 type, say A. Solutions are grafting valuations of the



544 Uni�
ation via the �se-Style of Expli
it Substitutionsform fX=(r 
1 : : : 
k)g, where r 2 f1; : : : ; pg [ fm� n+ pg. The �se-uni�
ation ruleExp-App develops the analogous role for uni�
ation problems over the �se-
al
ulus.It is important to note that expli
it use of �se-normal forms in the uni�
ation ruleExp-App is not essential. It is done however, with the sole obje
tive of simplifying the
ase analysis presented in the de�nition of the rule and thus in its 
ompleteness proof.In fa
t, this 
an be dropped from the general presentation of the �se-uni�
ation pro-
edure and be subsequently in
orporated as an eÆ
ient uni�
ation strategy, wherebefore applying the Exp-App rule, uni�
ation problems are normalized. Normaliza-tion before applying other uni�
ation rules is usually proposed in any uni�
ationstrategy in
luding the ��-uni�
ation approa
h in [16℄. This is a 
onsequen
e of thefundamental 
ommutation theorem between substitution and redu
tion in �-
al
ulus.Now, we give important properties for the �se-uni�
ation rules (De�nition 5.2).Lemma 5.4 (Well-typedness) Dedu
tion by the �se-uni�
ation rules of a well typedequation gives rise only to well typed equations, T and F.Proof. By analyzing, rule by rule, the types of the resulting transformed equation.� Normalize: this is 
onsequen
e of the fa
t that the rewriting system �se is welltyped and of the 
orre
tness of the de�nition of long normal forms.� De
-�: if �A:a =?�se �A:b is well typed then the types of a and b 
oin
ide.� App-Fail: obvious.� De
-App, De
-': if (n a1 : : : ap) =?�se (n b1 : : : bp) is well typed then so is (a1 : : : ap)=?�se (b1 : : : bp). Without loss of generality we 
an suppose that ai and bi arenormalized 
on
luding that the equations ai =?�se bi are well typed. Well typingof the uni�
ation rule De
-' is proved similarly.� Exp-�: by de�nition of the rule, sin
e X : � ` A! B and Y : A:� ` B then bythe typing rule L1-�, �A:Y : � ` A! B. Hen
e, X =?�se �A:Y is well typed.� Exp-App: we present a simple sket
h of the indu
tive proof on q and p. We omitthe 
ase in whi
h m o

urs and 
onsider a simple equation of the form X�ib =?�se(b1 b2) where X is an atomi
 meta-variable. We have �<i:B:��i ` X : A and��i ` a : B and by the typing rule Ls1-�, for some environment � and typesA and B, � ` X�ib : A. By assumption X�ib =?�se (b1 b2) is well typed thus� ` (b1 b2) : A. By the typing rule Ls1-App we have some type C su
h that� ` b1 : C ! A and � ` b2 : C. Then by assumption of the Exp-App uni�
ationrule, variables H1; H2 
an be appropriately sele
ted su
h that � ` H1 : C ! Aand � ` H2 : C. Hen
e the equation X =?�se (H1 H2) is well typed. The proofis �nished by analyzing 
ombined 
ases of su

essive � and ' operators and by
ompleting in the straightforward form the indu
tive reasoning.� Repla
e: well typing of equations is preserved be
ause, as P ^ X =?�se a welltyped, by repla
ing X with a in P , types are not 
hanged. This is a 
onsequen
eof the 
ompatibility between grafting and typing.Example 5.5We present three di�erent uni�
ation problems and 
orresponding equa-tions, to be treated with the Exp-App ��- and �se-uni�
ation rules, whi
h result fromthe appli
ation of both uni�
ation methods. The reader is invited to 
omplete the
omputations.



5. UNIFICATION IN THE �SE-CALCULUS 5451. Consider the problem (�:(�:(X 2) 1) Y ) =? (�:(�:V 1) U). Related equationsto be treated by applying the 
orresponding Exp-App uni�
ation rules are:(X [Y:Y:id℄ Y ) =?�� V [U:U:id℄ and ((X�2Y )�1('10Y ) '10Y ) =?�se (V �2U)�1('10U).Solutions are rea
hed after applying Exp-App uni�
ation rules with V =?�� (V1 V2)and V =?�se (V1 V2), where V1; V2 are new variables.2. From the problem �:(�:(Y 1) �:(X 1)) =? �:(�:V �:W ) we rea
h the equations:(Y [�:(X 1):id℄ �:(X 1)) =?�� V [�:W:id℄ and (Y �1�:(X 1) �:('11 1)) =?�seV �1�:W After applying the 
orresponding Exp-App rules, with V =?�� (V1 V2)and V =?�se (V1 V2), new equations appear: �:(X 1) =?�� V2[�:(X 1):id℄ and�:('11X 1) =?�se V2�1�:(X 1). Solutions result by sele
ting the 
ase V2 =? 1.3. Consider the problem (�:(X �:W ) 1) =? (�:(Z �:(U 1)) V ). Related equationsto be treated by the appli
ation of Exp-App uni�
ation rules are:W [1:1["℄: "℄ =?�� (U [1:V ["℄: "℄ 1) andW�21 =?�se (U�2V 1). Solutions are foundafter applying Exp-App uni�
ation rules with W =? (W1 W2).Before formalizing 
ex-
ex equations in �se, we give an example where the appli
ationof Exp-� and Exp-App is essential. Solutions are those of the 
ex-
ex equations.Example 5.6 (Continuing Example 5.3 and 5.5 1.)Consider the problem (�:(�:(X 2) 1) Y ) =?�� (�:(Z 1) U), where now we make
onsiderations about the types of meta-variables. Let Y and U be of type A and Xand Z be of type A! A. In the ��-uni�
ation setting:(�:(�:(X 2) 1) Y ) =?�� (�:(Z 1) U) !Exp��;Repla
e(�:(�:(X 2) 1) Y ) =?�� (�:(�:V 1) U) ^ Z =?�� �:V !Normalize(X [Y:Y:id℄ Y ) =?�� V [U:U:id℄ ^ Z =?�� �:Vwhere V is a new meta-variable of type A. The interesting step in the whole pro
essis the appli
ation of the Exp-App ��-uni�
ation rule to the �rst equation, whi
h, by
ase analysis, 
ould transform this into the sear
h for solutions of (X [Y:Y:id℄ Y ) =?��V [U:U:id℄ ^ V =?�� (V1 V2) that by Repla
e and Normalize gives (X [Y:Y:id℄ Y )=?�� (V1[U:U:id℄ V2[U:U:id℄) ^ V =?�� (V1 V2) and, �nally, by de
omposition andRepla
e gives the uni�
ation problem: X [V2[U:U:id℄:V2[U:U:id℄:id℄ =?�� V1[U:U:id℄ ^Y =?�� V2[U:U:id℄ ^ V =?�� (V1 V2). Note that both X and V1 are of type A !A. Then by, �rstly, applying twi
e Exp-� introdu
ing new equations X =?�� �:X 0and V1 =?�� �:V 01 , where X 0 and V 01 are fresh atomi
 meta-variables; afterwards,by applying twi
e Repla
e and, �nally, by applying Normalize and De
-� we obtainX 0[1:V2[U ["℄:U ["℄: "℄:V2[U ["℄:U ["℄: "℄: "℄ =?�� V 01 [1:U ["℄:U ["℄: "℄ ^ Y =?�� V2[U:U:id℄^ V =?�� (V1 V2) ^ X =?�� �:X 0 ^ V1 =?�� �:V 01 . The 
ex-
ex equation has:fX=�:X1; Z=�:(�:X1 2); Y=X2; U=X2g and fX=�:X1; Z=�:(�:X1 1); Y=X2; U=X2g asthe obvious solutions. In the �se-setting (taking P1 = Z =?�se �:V ^ V =?�se (V1 V2)):(�:(�:(X 2) 1) Y ) =?�se (�:(Z 1) U) !Exp��;Repla
e(�:(�:(X 2) 1) Y ) =?�se (�:(�:V 1) U) ^ Z =?�se �:V !Normalize((X�2Y )�1('10Y ) '10Y ) =?�se (V �2U)�1('10U) ^ Z =?�se �:V !Exp�App((X�2Y )�1('10Y ) '10Y ) =?�se (V �2U)�1('10U) ^ P1 !Repla
e((X�2Y )�1('10Y ) '10Y ) =?�se ((V1 V2)�2U)�1('10U) ^ P1 !Normalize((X�2Y )�1('10Y ) '10Y ) =?�se ((V1�2U)�1('10U) (V2�2U)�1('10U)) ^ P1 !De
�App(X�2Y )�1('10Y ) =?�se (V1�2U)�1('10U) ^ '10Y =?�se (V2�2U)�1('10U) ^ P1As for the the �� 
ase, applying twi
e Exp-� and Repla
e and then Normalize andDe
-� we obtain



546 Uni�
ation via the �se-Style of Expli
it Substitutions(X 0�3Y )�2('10Y ) =?�se (V 01�3U)�2('10U) ^ '10Y =?�se (V2�2U)�1('10U) ^X =?�se �:X 0 ^ V1 =?�se �:V 01 .From the �rst 
ex-
ex equation we obtain, by simple de
omposition, the partialsolution fX=�:X1; Z=�:(�:X1 V2); Y=X2; U=X2g. To obtain a 
omplete solution itremains to resolve the 
ex-
ex equation '10X2 =?�se (V2�2X2)�1('10X2). Observe that(1�2X2)�1('10X2)! 1�1('10X2)! '10('10X2)! '10X2 and also (2�2X2)�1('10X2)!('20X2)�1('10X2) ! '10X2. This, analogously to the �� setting, gives the solutionsfX=�:X1; Z=�:(�:X1 1); Y=X2; U=X2g and fX=�:X1; Z=�:(�:X1 2); Y=X2; U=X2g.De�nition 5.7 A uni�
ation system P is a �se-solved form if all its meta-variablesare of atomi
 type and it is a 
onjun
tion of non trivial equations of the followingforms:(Solved) X =?�se a, where the variable X does not o

ur anywhere else in P anda is in long normal form. Both X and X =?�se a are said to be solved in P .(Flex-Flex) unsolved equations between long normal terms whose leading op-erator are � or ' whi
h 
an be represented as equations between their skele-ton:  jpip : : :  j1i1 (X; a1; : : : ; ap) =?�se  lqkq : : :  l1k1(Y; b1; : : : ; bq) with X;Y of atomi
type.Remark 5.8 Consider a �se-normal term 
 whose leading operator is either � or 'and with skeleton sk(
) =  jpip : : :  j1i1 (X; a1; : : : ; ap). By binding X with n, n > i1,one obtains as a 
onsequen
e of lemma 3.29, the normal form t!� n+Ppk=1 jk � p.We illustrate the situation with three simple 
ases of sear
hing for solutions of 
ex-
exequations.Firstly, (� � � ((X�i1a1)�i2a2) � � � )�ipap =?�se (� � � ((Y �j1b1)�j2b2) � � � )�jq bq alwayshas solutions sin
e both its sides are �se-normal terms and hen
e the sequen
esi1; : : : ; ip and j1; : : : ; jq are stri
tly de
reasing. Solutions are bindings fX=n+ pgand fY=n+ qg, with n > i1; j1.Se
ondly, sin
e the left-side of (� � � ((X�i1a1)�i2a2) � � � )�ipap =?�se 'jqkq � � �'j1k1Y is a�se-normal term, the sequen
e k1; : : : ; kq is stri
tly de
reasing. Now sele
t n;m su
hthat n > i1, m > k1 and n� p = m+Pql=1 jl � q, and the bindings fX=ng, fY=mg.Thirdly, for 'ipkp � � �'i1k1X =?�se 'jqlq � � �'j1l1 Y sele
t, for instan
e, bindings fX=ng,fY=mg, su
h that n > k1;m > l1 and n+Ppr=1 ir � p = m+Pqr=1 jr � q.Moreover, observe that by sele
ting graftings of the form fX=(H1 : : : Hl)g (whereH1; : : : ; Hl are meta-variables of appropriate types) the term 
 with skeleton sk(
)is split into appli
ations of terms with identi
al skeletons and left innermost meta-variables H1; : : : ; Hm su
h that:  jpip : : :  j1i1 ((H1 : : : Hk); a1; : : : ; ap) !�( jpip : : :  j1i1 (H1; a1; : : : ; ap); : : : ;  jpip : : :  j1i1 (Hk; a1; : : : ; ap)).Let 
onsider for instan
e, (('j3i3 (('j1i1 (H1: : :Hl))�i2 �))�i4 �)�i5 � !�((('j3i3 (('j1i1H1)�i2 �))�i4 �)�i5 � : : : (('j3i3 (('j1i1Hl)�i2 �))�i4 �)�i5 �).Lemma 5.9 Any �se-solved form has �se-uni�ers.Proof. For simpli
ity we omit the analysis of types. Sin
e solved forms appearing ina system P de�ne straightforwardly bindings between variables that do not appearanywhere else in P or in terms (in long normal form), it is only ne
essary to provethat 
ex-
ex equations have uni�ers.



5. UNIFICATION IN THE �SE-CALCULUS 547Let P be a system in �se-solved form in
luding a 
ex-
ex equation of the form jpip : : :  j1i1 (X; a1; : : : ; ap) =?�se  lqkq : : :  l1k1(Y; b1; : : : ; bq). This equation always hassolutions. Sele
t for example bindings fX=n; Y=mg su
h that n > i1;m > l1 andn+Ppr=1 jr � p = m+Pqr=1 lr � q (see previous Remark 5.8).Lemma 5.10 Solved problems are normalized for the �se-uni�
ation rules and, 
on-versely, if a system is a 
onjun
tion of equations that 
annot be redu
ed by the�se-uni�
ation rules then it is solved.Proof. It is easy to verify, rule by rule, that solved and 
ex-
ex equations 
annot betransformed by the �se-uni�
ation rules. So solved forms (or problems) are in normalform for the �se-uni�
ation rules. Conversely, suppose P is a non solved system, thenP 
ontains an equation a =?�se b that is neither solved nor 
ex-
ex. If either a or bare not in long normal form then the rule Normalize applies . If the equation is of theform X =?�se b, where X o

urs in other position at P , then the rule Repla
e applies.The remaining 
ases, where both a and b are long normal terms, are subsequentlylisted using the 
hara
terization of �se-normal forms at Corollary 3.12.Observe �rstly that if a is of the form �:a0 then, sin
e b is a long normal term, thesole possibility to have a well typed equation is if b is of the form �:b0 in whi
h 
aserule De
-� applies.Se
ondly, suppose that a is of the form (k a1 : : : ap). Then if b is of the form(l b1 : : : bq) then either De
-App or App-Fail applies (remember here that both k andl 
ould be omitted and p and q 
ould be zero). If b has a leading operator � or 'then rule Exp-App applies.Finally, the remaining 
ases of equations between terms with main operators � and' are either 
ex-
ex or 
an be redu
ed with rule De
-'.De�nition 5.11 Let P and P 0 be �se-uni�
ation problems, let \rule" denote thename of a �se-uni�
ation rule and \!rule" its 
orresponding dedu
tion relation overuni�
ation problems. By 
orre
tness and 
ompleteness of rule we understand thefollowing:� P !rule P 0 implies U�se (P 0) � U�se(P ) (
orre
tness)� P !rule P 0 implies U�se (P ) � U�se(P 0) (
ompleteness)Theorem 5.12 (Corre
tness and Completeness) The �se-rules are 
orre
t and
omplete.Proof. Firstly, we verify the 
orre
tness of all rules.� De
-�: is 
orre
t sin
e grafting is a 
ongruen
e on �se-terms.� App-Fail: is 
orre
t be
ause of trivial in
lusion of the empty set.� De
-App, De
-': are 
orre
t be
ause grafting is a 
ongruen
e on �se-terms.� Exp-�, Exp-App: are 
orre
t be
ause of the properties of the �se rewriting system.� Repla
e: observe that this rule 
orresponds to the sele
tion of bindings in the �rstorder uni�
ation algorithm and its 
orre
tness is similarly proved.� Normalize: is 
orre
t sin
e normalization 
orresponds to simpli�
ation of termsbetween the same equivalen
e 
lass in the �se-
al
ulus.Se
ondly, we verify the 
ompleteness of the rules.



548 Uni�
ation via the �se-Style of Expli
it Substitutions� De
-�: let � be a �se-uni�er of an equation of the form �:a =?�se �:b. Thus�:�(a) =?�se �:�(b) and sin
e no �se-rule 
ould be applied at root position of theseterms then �(a) =?�se �(b).� De
-App: suppose that � is a �se-uni�er of (n a1 : : : ap) =?�se (n b1 : : : bp). Thus,be
ause of 
on
uen
e and weakly terminating properties of the �se rewritingsystem we have: �(n a1 : : : ap) =?�se �(n b1 : : : bp) i� (n �(a1) : : : �(ap)) =?�se(n �(b1) : : : �(bp)) i� for all 1 � i � p, �(ai) =?�se �(bi). This means that � isa uni�er of a1 =?�se b1 ^ : : : ^ ap =?�se bp.� De
-': analogous to the former 
ase.� App-Fail: it follows from the sequen
e of logi
al equivalen
es in the proof of
ompleteness of rule De
-App that if n 6= m then there are no �se-uni�er of(n a1 : : : ap) =?�se (m b1 : : : bp).� Exp-�: Let � be a �se-uni�er of P and X 2 T var (P ) su
h that X : � ` A! B.Thus �(X) = a : A ! B and we 
an assume that a is of the form �A:b withb : B. De�ne �0 su
h that for all Z 2 Dom(�), �0(Z) = �(Z) and �(Y ) = b for anew variable Y 62 Dom(�) of type B. Then �0 is a �se-uni�er of P ^X =?�se �A:Y .Consequently � is a �se-uni�er of 9(Y : A:� ` B); P ^X =?�se �A:Y .� Exp-App: 
onsider P ^  jpip : : :  j1i1 (X; a1; : : : ; ap) =?�se (m b1 : : : bq) and supposethat � is a �se-uni�er of this uni�
ation problem.Then �(X) = (r 
1 : : : 
s) and the interesting equation in the uni�
ation problembe
omes (m b01 : : : b0q) =?�se  jpip : : :  j1i1 ((r 
1 : : : 
s); a01; : : : ; a0p) !� (m b01 : : : b0q) =?�se(  jpip : : :  j1i1 (r; a01; : : : ; a0p)  jpip : : :  j1i1 (
1; a01; : : : ; a0p) : : :  jpip : : :  j1i1 (
s; a01; : : : ; a0p)).Sin
e  jpip : : :  j1i1 (X; a1; : : : ; ap) is the skeleton of a �se-normal term then the se-quen
e i1; : : : ; ip is de
reasing, being possible ik = ik+1 only when both the kthand k+1th  's 
orrespond to ' operators. We have two simple 
ases to 
onsider:either r di�erent from all ik su
h that  jkik 
orresponds to a � operator or r = ikfor some k su
h that  jkik = �ik .In the �rst 
ase, let i0 =1 and ip+1 = 0 and suppose that ik+1 < r � ik for some0 � k � p su
h that either k = p or  jkik 
orresponds to a � operator. Then jpip : : :  j1i1 (r; a01; : : : ; a0p) !�  jpip : : :  jk+1ik+1 (r; a0k+1; : : : ; a0p) !� r + Ppl=k+1 jl �(p� k). Observe that this 
oin
ides with the de�nition of Ri in rule Exp-App;in fa
t, if r = m�Ppl=k+1 jl + p � k and ik+1 < m �Ppl=k+1 jl + p� k � i� kfor k = p or ik+1 
orresponding to a supers
ript of an operator � in the skeletonthen  jpip : : :  j1i1 (r; a01; : : : ; a0p)!� m.If r = ik for some 1 � j � p 
orresponding to a � operator, then we havethe following redu
tion:  jpip : : :  j1i1 (r; a01; : : : ; a0p) !�  jpip : : :  jkik (r; a0k; : : : ; a0p) ! jpip : : :  jk+1ik+1 ('ik0 a0k; : : : ; a0p) !� 'ik�p+k+Ppl=k+1 jl0 a0k.Thus, in the �rst 
ase the equation be
omes(m b01: : :b0q) =?�se (m  jpip : : :  j1i1 (
1; a01; : : : ; a0p) : : :  jpip : : :  j1i1 (
s; a01; : : : ; a0p))and in the se
ond, (m b01: : :b0q) =?�se('ik�p+k+Ppl=k+1 jl0 a0k  jpip : : :  j1i1 (
1; a01; : : : ; a0p) : : :  jpip : : :  j1i1 (
s; a01; : : : ; a0p))



6. ARITHMETIC PROPERTIES OF THE �SE-UNIFICATION RULES 549In both 
ases � is 
learly solution of 9H1; : : : ; Hk; X =?�se (rH1 : : : Hk), sele
tingH1; : : : ; Hk appropriately and, 
onsequently, it is solution of the original problemand Wr2Rp[Ri 9H1; : : : ; Hk; X =?�se (r H1 : : :Hk).� Repla
e: its 
ompleteness is similarly proved to the �rst order 
ase.� Normalize: as for 
orre
tness its 
ompleteness is 
onsequen
e of the fa
t thatnormalization 
orresponds to simpli�
ation of terms between the same equivalen
e
lass in the �se-
al
ulus.6 Arithmeti
 properties of the �se-uni�
ation rulesThe arithmeti
 
onstraint that naturally has resulted when de�ning the Exp-App �se-uni�
ation rule is more expressive than the one of the �� HOU setting. This, jointlywith an eÆ
ient arithmeti
 dedu
tive method, speed up the veri�
ation of possiblesplittings and the sear
h for solutions in the 
orresponding 
ase analysis.For the ��-
al
ulus, the equation X [a1 : : : ap: "n℄ =?�� (m b1 : : : bq) has for solutions(rH1 : : : Hk), where r � p+ n = m. In fa
t, 1["r�1℄[a1 : : : ap: "n℄ !� 1["r�1�p+n℄.In [16℄ the ��-
al
ulus is presented using only the de Bruijn index 1. Thus thedete
tion of the previous kind of solutions is very ineÆ
ient. In fa
t, observe thatsin
e "n abbreviates (n� 1)-
ompositions of ", �nding the �rst 
omponent 1["r�1℄ ofthese possible solutions 
an be done only after realizing a pro
ess of enumeration ofthe p ai 
omponents and the (n � 1) " of n � 1["n�1℄. Sin
e �se-terms are writtenusing all the natural indi
es, one 
an state that sear
hing for redi
es of the uni�
ationrules and determining solved and 
ex-
ex equations in our uni�
ation setting aremore eÆ
ient than in the language of the ��-
al
ulus.We show that the �rst numeri
 
omponents of bindings for a meta-variable Xof solutions of equations of the form  jpkp : : :  j1k1(X; a1; : : : ; ap) =?�se (m b1 : : : bq) aredetermined in a unique way.Lemma 6.1 Let n > k1, m � kp and take a skeleton  jpkp : : :  j1k1(X; a1; : : : ; ap) of a�se-normal term.  jpkp : : :  j1k1(n; a1; : : : ; ap)!� n�p+Ppr=1 jr > n�(k1�kp+1) � m.Proof. Firstly, observe that sin
e k1; : : : ; kp is a de
reasing sequen
e, we have n >k1 � : : : � kp � m and thus k1 � kp < n�m whi
h implies m � n� (k1 � kp + 1).Se
ondly, observe that Ppr=1 jr � 0. Thus the sole possibility to have n � p +Ppr=1 jr � n� (k1 � kp + 1) is being p� 1 � k1 � kp. We 
onsider two 
ases:If p � 1 = k1 � kp then  jpkp : : :  j1k1(n; a1; : : : ; ap) !� n � p +Ppr=1 jr � n � p =n�(k1�kp+1) � m. Moreover, observe that if there exists some operator ', say  jiki inthe sequen
e of the skeleton, thenPpr=1 jr � ji > 0 whi
h implies n�p+Ppr=1 jr > m.If the sequen
e 
onsists only of � operators, thenm < kp and also n�p+Ppr=1 jr > m.If p� 1 > k1 � kp then there exists at least one 1 � i < p su
h that  jiki = 'jiki and ji+1ki+1 = �ki+1 being ki = ki+1. Thus  ji+1ki+1 jiki(n; ai; ai+1)!  ji+1ki+1(n+ ji�1; ai+1)!n+ji+ji+1�2 � n�(ki�ki+1). For ea
h of these subsequen
es we have the analogoussituation, obtaining for the whole sequen
e n�p+Ppr=1 jr > n� (k1�kp+1) � m.Lemma 6.2 (Uni
ity) Take a skeleton  jpkp : : :  j1k1(X; a1; : : : ; ap) of a �se-normalterm and the equation  jpkp : : :  j1k1(X; a1; : : : ; ap) =?�se (m b1 : : : bq). The �rst numeri
al
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omponent of bindings for the meta-variable X of solutions of this equations areunique.Proof. Observe �rstly the possible 
ases for bindings fX=(n : : : )g:n � kp:  jpkp : : :  j1k1(n; a1; : : : ; ap) !�  jpkp(n; ap). Sin
e 
ase n = kpthus  jpkp = 'jpkp , we have  jpkp(n; ap)! n.ki+1 < n � ki:  jpkp : : :  j1k1(n; a1; : : : ; ap) !�  jpkp : : :  jiki(n; ai; : : : ; ap). Sin
e
ase n = ki we have  jiki = 'jiki , then in both
ases: n = ki and n < ki,  jpkp : : :  jiki(n; ai; : : : ; ap) ! jpkp : : :  ji+1ki+1(n; ai+1; : : : ; ap)!� n� (p� i) +Ppr=i+1 jr.k1 < n:  jpkp : : :  j1k1(n; a1; : : : ; ap)!� n� p+Ppr=1 jr.We analyse the more general 
ase of naturals between subs
ripts k. Sele
t ki+1 <n1 � ki and kl+1 < n2 � kl, for i > l. Then  jpkp : : :  j1k1(n1; a1; : : : ; ap) !� n1 � (p�i) +Ppr=i+1 jr and  jpkp : : :  j1k1(n2; a1; : : : ; ap)!� n2 � (p� l) +Ppr=l+1 jr.Sin
e k1; : : : ; kp is a de
reasing sequen
e we have n1 < n2. By previous lemma: jiki : : :  jl+1kl+1 : : :  j1k1(n2; a1; : : : ; ai) !�  jiki : : :  jl+1kl+1(n2; al+1; : : : ; ai) !� n2� (i� l)+Pir=l+1 jr > n1. Then n2 � (p� l) +Ppr=l+1 jr > n1 � (p� i) +Ppr=i+1 jr.When sear
hing for solutions of  jpkp : : :  j1k1(X; a1; : : : ; ap) =?�se (m b1 : : : bq), oneshould sele
t a binding for X to an appli
ation whose �rst 
omponent is a naturalnumber n su
h that for some i ki+1 < n � ki and n� (p� i) +Ppr=i+1 jr = m. This
orresponds to sear
hing for solutions of an integer linear problem.By analyzing the intrinsi
 implementation te
hniques involved in our method andthat of the ��-HOU of [10℄, we have observed that pre-
ooked �-terms in the �se-
al
ulus have linear de
orations on the size of the �-terms and the magnitude of theirde Bruijn indi
es, while in �� these de
orations are quadrati
. We don't make any
onsideration about use of eÆ
ient data stru
tures. For a reasonable implementationof the ��-HOU approa
h, a variation of the ��-
al
ulus whi
h in
ludes all de Bruijnindi
es, as the ��dB one, should be used. Additionally, variations of this 
al
ulus, asthe left-linear �L-
al
ulus [33℄, are adequate for implementations sin
e they en
odethe in�nite rules of the ��dB in a �rst-
lass substitution. From the theoreti
al pointof view, our approa
h is the �rst one to treat this problem in a natural way, be
auseof the simple syntax of the �se-
al
ulus, where all de Bruijn indi
es are in
luded.But it is not the sole use of all de Bruijn indi
es that makes the �se approa
h moreeÆ
ient. Another problem in the de
oration of substitution obje
ts of the ��-
al
ulusis that they are de
orated with two environments that are lists of types. While themain marks in the de
oration of a term obje
t are a sole environment and its type.This makes de
orations of �se-terms smaller than those of ��-terms. Moreover, thesize of de
orated �-terms enlarges in an inadequate way when normalizing via the��-
al
ulus, be
ause there exist rules in the ��-
al
ulus, that are expensive as theyenlarge the number of substitution obje
ts to be marked in de
orated terms.



7. FUTURE WORK AND CONCLUSION 5517 Future Work and Con
lusionAs pointed out in [16℄, the use of expli
it substitution enables one to translate higherorder uni�
ation problems into �rst order ones. This leads to simpler developmentand analysis of HOU methods. The proposed uni�
ation method and its furtherdevelopments are relevant be
ause of the ne
essity of analyzing, developing and im-plementing HOU pro
edures to improve the performan
e and expressiveness of 
urrenthigher order dedu
tive systems. Moreover, we think that our work is important dueto the ne
essity of 
omparing the advantages and appropriateness of both the �se-and ��-style of expli
it substitution in a pra
ti
al and relevant setting in
rementingin this way the theoreti
 knowledge about the properties of the involved 
al
uli.Advantages of the here proposed uni�
ation method, with respe
t to the one formu-lated by Dowek, Hardin and Kir
hner in [16℄, are mainly 
onsequen
es of the inherentdi�eren
es between the ��- and �se-styles of expli
it substitution.1. In �se-uni�
ation we remain 
lose to �-
al
ulus as we don't use more than onekind of obje
ts: term obje
ts. We don't use substitution obje
ts as is done in ��-uni�
ation. From this point of view, we think that our approa
h is semanti
ally 
learbe
ause the prin
ipal intention of any uni�
ation via expli
it substitution in someversion of �-
al
ulus is, of 
ourse, to solve uni�
ation problems in pure �-
al
ulus.2. Be
ause of the fa
t that for both methods, the Normalize uni�
ation rule dependson the subja
ent properties of the �se and �� rewrite rules, 
orrespondingly, and thatthe underlying redu
tion pro
esses based on the �se- and ��-
al
uli are in
omparable(see for instan
e [28℄), one 
annot say that �se-uni�
ation is more (or less) eÆ
ientthan the uni�
ation setting proposed in [16℄. But at least one 
an state that sear
hingfor redi
es of the uni�
ation rules (and determining solved and 
ex-
ex equations) ismore eÆ
ient, sin
e �se terms are written using natural indi
es. Of 
ourse, in thepraxis, this problem 
an be easily solved in the �� setting by overloading the notationn to represent the 
orresponding ��-term (1["n�1℄) in
orporating to the uni�
ationme
hanism the ne
essary built-in linear arithmeti
 dedu
tive method.3. We think that the arithmeti
 
onstraint that naturally results when de�ning theExp-App uni�
ation rule in the �se setting is more expressive than the one of the ��.This, jointly with an eÆ
ient arithmeti
 dedu
tive method, speed up the veri�
ationof possible splittings and the sear
h for solutions in the 
orresponding 
ase analysis.In order to obtain a HOU pro
edure useful in pra
ti
e, an eÆ
ient and 
ompleteuni�
ation strategy was developed in [2℄. In [16℄ the rules for uni�
ation of ��-termsare related to HOU on the pure �-
al
ulus by the pre-
ooking and ba
k translations.This was also done for the �se-
al
ulus in [2℄.In the sequel we present in an informal way one example of how to apply ouruni�
ation method to HOU problems in the �-
al
ulus.Observe that unifying two terms a and b in the �-
al
ulus 
onsists in �nding asubstitution � su
h that �(a) =�� �(b). But in �-
al
ulus, �� and �se, substitutionis di�erent from the �rst order one or grafting, as was shown in Se
tion 2. Thususing the notation of substitution in De�nitions 2.11 and 2.14 a uni�er in �-
al
ulusof the problem �:X =?�� �:2 is not a term t = �X su
h that �:t =?�� �:2 but a termt = �X su
h that �(�:X) = �:�+(X) = �:2 as fX=tg�:X = �:fX=t+gX = �:t+and not �:t. This observation 
an be extended to any uni�er and by translatingappropriately �-terms a; b 2 �dB(X ), the HOU problem a =?�� b 
an be redu
ed to
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it Substitutionsequational uni�
ation. In [16℄ a translation 
alled pre-
ooking from �dB(X ) terms intothe language of �� is given su
h that sear
hing for solutions of the 
orresponding ��-uni�
ation problem 
orresponds to sear
hing for solutions of the higher order problema =?�� b. In the next example, we illustrate informally the analogous situation in �se.Example 7.1 Consider the higher order uni�
ation problem �:(X 2) =?�� �:2, where2 and X are of type A and A! A, respe
tively. Observe that applying a substitutionsolution � to the �dB(X )-term �:(X 2) gives �(�:(X 2)) = �:(�+(X) 2). Then inthe �se-
al
ulus we are sear
hing for a grafting �0 su
h that �0(�:('20(X) 2)) =�se �:2.Correspondingly, in the ��-
al
ulus the term �:(X 2) is translated or pre-
ooked into�:(X ["℄ 2). Then we should sear
h for uni�ers for the problem �:('20(X) 2) =?�se �:2.Now we apply the �se-uni�
ation rules to �:('20(X) 2) =?�se �:2.('20(X) 2) =?�se 2 !De
��9Y ('20(X) 2) =?�se 2 ^X =?�se �:Y !Exp��9Y ('20(�:Y ) 2) =?�se 2 ^X =?�se �:Y !Repla
e9Y ('21Y )�12 =?�se 2 ^X =?�se �:Y !Norm:(9Y ('21Y )�12 =?�se 2 ^X =?�se �:Y ) ^ (Y =?�se 1 _ Y =?�se 2) !Exp�app(('211)�12 =?�se 2 ^X =?�se �:1) _ (('212)�12 =?�se 2 ^X =?�se �:2) !Repla
e(2 =?�se 2 ^X =?�se �:1) _ (2 =?�se 2 ^X =?�se �:2) !Norm:In this way substitution solutions fX=�:1g and fX=�:2g are found.To 
omplete the analysis observe that by de�nition of substitution (De�nitions 2.11,2.14) and �-redu
tion in �dB(X ): fX=�:1g(�:(X 2)) = �:(fX=(�:1)+g(X) 2) =�:(�:1+1 2) = �:(�:1 2) =� �:2 and fX=�:2g(�:(X 2)) = �:(fX=(�:2)+g(X) 2) =�:(�:2+1 2) = �:(�:3 2) =� �:f1=2g(3) = �:2.In general, before uni�
ation, a �-term a should be translated into the �se-term a0resulting by simultaneously repla
ing ea
h o

urren
e of a meta-variableX at positioni in a with 'k+10 X , where k is the number of abstra
tors between the root position ofa, ", and position i. If k = 0 then the o

urren
e of X remains un
hanged.Example 7.2We turn ba
k to the HOU problem given in the introdu
tion: F (f(a)) =?f(F (a)). In the language of �dB(X ) this problem 
an be seen as (X (2 1)) =?��(2 (X 1)), where both X and 2 are of type A ! A and 1 is of type A. Ob-serve that sin
e there are no �s in the problem, the equation remains un
hanged:(X (2 1)) =?�se (2 (X 1)).For simpli
ity we omit existential quanti�ers. Here are the �se-uni�
ation steps onthis problem (Y is of type A):(X (2 1)) =?�se (2 (X 1)) ^X =?�se �:Y !Exp��(�:Y (2 1)) =?�se (2 (�:Y 1)) ^X =?�se �:Y !Repla
eY �1(2 1) =?�se (2 Y �11) ^X =?�se �:Y !Norm:Y �1(2 1) =?�se (2 Y �11) ^X =?�se �:Y ^ (Y =?�se 1 _ Y =?�se (3 H1))Observe that other possible 
ases do not produ
e solved forms. By Repla
e andNormalize we obtain ((2 1) =?�se (2 1) ^ X =?�se �:1) _ ((2 H1�1(2 1)) =?�se(2 (2 H1�11)) ^ X =?�se �:(3 H1)), from where we have the �rst solved system
orresponding to the identity solution: fX=�:1g.Other solutions 
an be obtained from the equational system (2 H1�1(2 1)) =?�se(2 (2 H1�11)) ^X =?�se �:(3 H1). In fa
t, by De
-App and Exp-App we obtain:H1�1(2 1) =?�se (2 H1�11) ^X =?�se �:(3 H1) ^ (H1 =?�se 1 _H1 =?�se (3 H2))
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ases do not produ
e solved forms. By Repla
e and Normalize weobtain ((2 1) =?�se (2 1)^X =?�se �:(3 1)) _ ((2 H2�1(2 1)) =?�se (2 (2 H2�11))^X =?�se �:(3 (3 H2))), from where we have the se
ond solved system 
orrespondingto the grafting solution: fX=�:(3 1)g. Observe that this 
orresponds to the solutionF = f ; in fa
t, observe that by repla
ing X with �:(3 1) in the original uni�
ationproblem we obtain (�:(3 1) (2 1)) =?�se (2 (�:(3 1) 1)), from where it is 
lear thatde Bruijn indi
es 3 and 2 
orrespond to the same operator. Additionally, note that(�:(3 1) (2 1)) !� (2 (2 1)) and (2 (�:(3 1) 1)) !� (2 (2 1)).Subsequently, by similarly applying De
-App, Exp-App, Repla
e and Normalize tothe equational system ((2 H2�1(2 1)) =?�se (2 (2 H2�11)) ^X =?�se �:(3 (3 H2)))we obtain the third solved system giving the grafting solution fX=�:(3 (3 1))g 
or-responding to the solution F = ff . The uni�
ation pro
ess 
ontinues in�nitely pro-du
ing solved systems 
orresponding to the grafting solutions fX=�:(3 (3 (3 1)))g(i.e. F = fff), fX=�:(3 (3 (3 (3 1))))g (i.e. F = ffff), et
.In [10℄ it was shown that for an eÆ
ient implementation of ��-HOU, the use ofterms de
orated with their 
orresponding types and environments is useful. For in-stan
e, observe that for applying uni�
ation rules su
h as Exp-App and Exp-�, it isne
essary to know the types and the environments of subterms of the 
urrent uni�-
ation problem. In relation with that implementation, where repeated exe
ution of atype-
he
king algorithm is avoided by de
orating terms, �se-HOU has the 
lear ad-vantage of having less expensive de
orations than those of ��-HOU. This is the 
asebe
ause de
orations of substitution obje
ts are more expensive than those of termobje
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