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Abstract

A unification method based on the Ase-style of explicit substitution is proposed. This method
together with appropriate translations, provide a Higher Order Unification (HOU) procedure for
the pure A-calculus. Our method is influenced by the treatment introduced by Dowek, Hardin and
Kirchner using the Ao-style of explicit substitution. Correctness and completeness properties of the
proposed Ase-unification method are shown and its advantages, inherited from the qualities of the
Ase-calculus, are pointed out. Our method needs only one sort of objects: terms. And in contrast to
the HOU approach based on the Ao-calculus, it avoids the use of substitution objects. This makes
our method closer to the syntax of the A-calculus. Furthermore, detection of redices depends on the
search for solutions of simple arithmetic constraints which makes our method more operational than
the one based on the Ao-style of explicit substitution.
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1 Introduction

After Robinson’s successful introduction of his well-known first order Resolution Prin-
ciple based on substitution, unification and resolution [41], much work has been done
in order to formalize these basic notions in other settings. Such extensions are essential
for amongst other things, automated deduction in higher order logics. Mechanizations
of second order and full higher order unification were initially formulated in [38] and
[23]. In [22] Huet successfully formulated a practical higher order unification method,
specifically for the typed A-calculus. Since then several Higher Order Unification
(HOU) approaches have been developed and used in practical languages and theo-
rem provers such as Aprolog and Isabelle [35, 37]. In most of these approaches, the
notion of substitution plays an important role. The importance of the notion of sub-
stitution led to an explosion of work on making substitutions explicit in recent years
[1,7,24,26,19,9, 21]. Moreover, a number of works have been devoted to establishing
the usefulness of explicit substitution to automated deduction and theorem proving
[32, 34], to proof theory [43], to programming languages [29, 6, 8] and to HOU [16].
The latter paper [16] shows that in the HOU framework, if substitution was made
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explicit, many benefits can be obtained in computation. In particular, [16] presented
a HOU method based on the Ao-calculus which was proved useful for deduction in
the typed A-calculus and subsequently generalized for treating higher order equational
unification problems [30] and restricted for the case of higher order patterns [17]. The
novelity of this method is that higher order unification problems in the language of
the pure A-calculus can be solved by first order unification over the language of the
Ao-calculus once they have been translated or pre-cooked into the language of the
Ao-calculus. Then, solutions can be translated back into the range of the pre-cooking
translation and subsequently to solutions of the original problems. In this paper, we
develop a unification method based on the As.-style of explicit substitution which
jointly with adequate pre-cooking and back translations between the languages of the
A-calculus and the Ase-calculus (cf. [2]) give a HOU procedure, which takes advan-
tage of the qualities of the As. calculus. In particular, Ase-unification avoids the use
of two different sorts of objects as in the Ao-calculus. Moreover, the decidability of
the application of our unification rules (i.e., the detection of redices) depends on the
search for natural solutions of simple arithmetic constraints. Since arithmetic deci-
sion mechanisms are built-in in most of the computational languages and automated
assistants systems, this makes As.-HOU more operational than the Ac-HOU.

1.1 Huigher order unification

Higher order objects arise naturally in many fields of computer science. For ex-
ample, in the context of implementation of functional languages it is necessary to
develop mechanisms for the treatment of higher order functions. Take for instance,
the rewriting system that specifies the well-known MAP function, which applies a
function to all the elements of a list: MAP(f,NIL) — NIL; MAP(f, cONS(z,l)) —
CONS(f(x),maP(f,l)), where NIL and CONS are the usual LISP empty list and con-
structor list function. Observe that f appears both as a variable and as a functional
symbol. From the point of view of first oder rewriting, it is not possible to manip-
ulate this kind of objects; in fact, for simple rewrite based deduction processes such
as one-step reduction or critical pair deduction, first order matching and unification,
respectively, do not apply. The solution of these problems, at least in the rewriting
context, is the A-calculus. Rewriting could be performed modulo the rules of the
A-calculus or combining specifications with the rules of the A-calculus.

The function MAP is a typical example of a second-order function, but functions of
third-order or above have practical interest too. In [36], useful third- until sixth-order
functions were presented in the context of combinator parsing.

A simple example of a HOU problem is to search for solutions for the equality
F(f(a)) = f(F(a)). The identity function {F/A,.z} is a solution, and so are the
functions {F(z)/f™(z) | n € N}.

HOU is essential in higher order automated reasoning, where it has formed the
basis for generalizations of the Resolution Principle in second-order logic.

Huet’s work [22] was relevant because he realized that to generalize Robinson’s
first order Resolution Principle [41] to higher order theories, it is useful to verify the
existence of unifiers without computing them explicitly. Huet’s algorithm is a semi-
decision one that may never stop when the input unification problem has no unifiers,
but when the problem has a solution it implicitly allows one to recover any unifier
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always. This completeness is an essential feature of Huet’s algorithm. Unification for
second-order logic was proved undecidable in general by Goldfarb [20]. Goldfarb’s
proof is based on a reduction from Hilbert’s Tenth Problem. This result shows that
there are arbitrary higher order theories where unification is undecidable, but there
exist particular higher order languages of practical interest that have a decidable
unification problem. In particular, for the second-order case, unification is decidable,
when the language is restricted to monadic functions [18]. Another problem of HOU
is that the notion of most general unifier does not apply and that a more complex
notion than complete sets of unifiers is necessary. Huet has shown that equations of
the form (A\,.F a) =7 (\;.G b) (called flez-flez) of third-order may not have minimal
complete sets of unifiers and that there may exist an infinite chain of unifiers, one
more general than the other, without having a most general one (section 4.1 in [39]).

For a very simple presentation of HOU see [42] and for a detailed introduction in
the context of declarative programming see [39].

1.2 Contribution of this work

The Ao-calculus [1] introduces two different sets of entities, one for terms and one for
substitutions. The As.-calculus [27] insists on remaining closer to the A-calculus and
uses a philosophy started with de Bruijn in his system AUTOMATH and elaborated
extensively through the new item notation [25]. The philosophy states that terms of
the A-calculus are either application terms such as a function applied to an argument,
abstraction terms such as a function. Substitution or updating are made explicit in
item notation, by introducing substitution terms and updating terms. The advantages
of this philosophy are listed in [25] and include remaining as close as possible to the
familiar A-calculus. Therefore, we propose to study HOU in the As.-style of explicit
substitution, which makes our approach closer to the syntax of the A-calculus than
that of the Ag-approach in that we avoid the use of two different sorts of objects. We
establish the following properties of As.-unification:

1. Correctness: If P and P’ are unification problems such that P reduces to P’ then
every unifier of P’ is a unifier of P.

2. Completeness: If P and P’ are unification problems such that P reduces to P’
then every unifier of P is a unifier of P'.

3. The search for unification redices and detection of flex-flex (i.e. implicitly solvable)
equations is simpler in our approach than in the Ao-approach.

In Section 2, we introduce the basic machinery. In Section 3, we recall the Ao- and As,-
calculi and establish As.-normalisation properties needed for unification. In Section 4,
we recall the unification approach in the Ao-calculus. In Section 5, we present our
Asc-unification method. In Section 6, we provide some arithmetic properties of the
Ase-unification rules. In section 7, we discuss the application of our unification method
for higher order unification and conclude.

A preliminary version of this work was presented in [3].
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2 Preliminaries

We assume familiarity with A-calculus (cf. [5]) and the notion of term algebra 7 (F, X')
built on a (countable) set of variables X and a set of operators F. Variables in X are
denoted by X,Y, ... and for a term a € T(F,X), var(a) denotes the set of variables
occurring in a. In every calculus we consider, we use a,b,c,... to range over terms.
Additionally, we assume familiarity with basic notions of rewriting as presented in
[4]. In particular, for a reduction relation R over a set A, we denote with —p the
reflexive closure of 2, with =} or just = the reflexive and transitive closure
of R and with —>E or just =T the transitive closure of R. When a —* b we say
that there exists a derivation from a to b. By a =" b, we mean that the derivation
consists of n steps of reduction and call n the length of the derivation. Syntactical
identity is denoted by a = b. For a reduction relation R over A, (4,—g), we use
the standard definitions of (local) confluence or (weakly) Church Rosser (W)CR,
normal forms and strong and weak normalization/termination SN and WN.
A valuation is a mapping from X to 7(F,X’). The homeomorphic extension of
a valuation, 6, from its domain X to the domain 7 (F,X) is called the grafting
of 8. As usual, valuations and their corresponding graftings are denoted by the
same Greek letter. The application of a valuation # or its corresponding grafting
to a term a € T(F,X) will be written in postfix notation af. The domain of a
grafting 6, is defined by Dom(f) = {X | X0 # X, X € X}. Its range, is defined
by Ran(0) = Uxepom(oyvar(X0). We let var(f) = Dom(0) U Ran(f). For explicit
representations of a valuation and its corresponding grafting €, we use the notation
0 ={X— X0 | X € Dom(f)}. Note that the notion of grafting, usually called first
order substitution, corresponds to simple syntactic substitution without renaming.

2.1 The \-calculus with names

In this section, we present the A-calculus with names emphasizing the role of unifi-
cation variables and substitutions. Let V be a (countable) set of variables (different
from the ones in X') denoted by lowercase last letters of the Roman alphabet x,y, ...

Definition 2.1 Terms A(V), of the A-calculus with names are inductively defined
by:

a:z=z|(a a)|Az.a, where z € V.
Az-a and (a b) are called abstraction and application terms, respectively.

An abstraction A,.a represents a function of parameter z, whose body is a. Its
application to an argument b, (A;.a b), returns the value of a, where the formal
parameter z is replaced with the argument b. This replacement of formal parameters
with arguments is known as f-reduction. In the first order context of the term
algebra T({Az.- | z € VIU{(- -)},V) and its first order substitution or grafting,
B-reduction would be defined by (A\;.a b) = a{z—b}.

But in this context some problems arise making it necessary to rename bound
variables, i.e. executing a-conversion. In fact, firstly suppose § = {z + b}. There
are no semantic differences between the abstractions A;.z and A, .z; both abstractions
represent the identity function. But (A;.z)0 = A,.b and (A,.2)0 = ..z are different.
Secondly, suppose 6 = {x—y}. (A\y.x)8 = A\y.y and (A\;.x)0 = A..y, thus a capture
is possible. Consequently, S-reduction, should be defined in a way that takes care of
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renaming bound variables when necessary to avoid harmful capture of variables.

Most of the literature on unification and on the A-calculus considers substitution
as an atomic operation leaving implicit the computational steps needed to effectively
perform computational operations based on substitution such as matching and uni-
fication. In any real higher order deductive system, the substitution required by
basic operations such as (-reduction should be implemented via smaller operations.
Explicit substitution is an appropriate formalism for reasoning about the operations
involved in real implementations of substitution. Since explicit substitution is closer
to real implementations than to the classic theory of the A-calculus, it provides a
more accurate theoretical model to analyze essential properties of real systems (such
as termination, confluence, correctness, completeness, etc.) as well as their time/space
complexity. For further details of the importance of explicit substitution see [29].

We denote by a" (a) the a-conversion of a resulting by renaming the variables in
V CV occurring at a € A(V) with fresh variables (i.e. variables not yet used).

Definition 2.2 Let V' C V. The renaming application o is defined by structural
induction on A(V) as follows:
1)a"(z)=2
2) a¥((a b)) = (¥ (a) a¥ (b))
Az.aV (a), ifzegV
3) @V (A\p.a) = Ay.(@V(a){z—y}, ifx €V wherey is a fresh variable
neither occurring in a nor in V'

Now we are able to define the usual substitution operation.

Definition 2.3 For a valuation (over V) 6 = {z1+—a1,... ,2, > ay}, the substitu-
tion extending , written #¢%t, is defined by induction structural as follows:
1) 0% (z) =ab if z €V
2) 6°*((a b)) = (6°*(a) 6°°(D))
3) 07t (N\p.a) = X, .07 ((verOUAIV{zE(q)) {x/2}), where z is a fresh variable; i.e.,
z & var(f) and z does not occur in a.
The substitution §°*! is explicitly denoted by 6%t = {z;/ai,... ,z,/a,}.

When no confusion arises we use 6 to denote both a valuation # and its corre-
sponding substitution. In this section, in order to emphasize the difference between
valuations and substitutions, we use prefixed notation 6(a) for the application of
substitution 8 to term a while keeping af for the application of grafting.

The third item of Definition 2.3 means that bound a-conversion or variable renam-
ing should be performed before applying the substitution in the body of an abstrac-
tion. The grafting of a fresh variable avoids the possibility of capture. Again it is
very important to remark that the renaming application selects fresh variables that
are not used previously in the process. Additionally, observe that since fresh variables
are selected randomly, the result of the application of a substitution can be conceived
as a class of equivalence terms rather than only one.

Definition 2.4 -reduction is the rewriting relation defined by the rewrite rule ()
and n-reduction is the rewriting relation defined by the rewrite rule (7), where:
(B) (Ae.a b) = {z/b}"(a) and (n) Az.(a z) = a, if x & Fuar(a)

Unification in A(V) differs from the one in the context of first order term algebras,
because bound variables in A(V) are not affected by unification substitutions.
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Notice that our notion of substitution is not completely satisfactory because the
idea of fresh variables is implicit and depends on the history of the renaming process.

Unification variables in the A-calculus are free variables. Thus free variables oc-
curring in terms of a unification problem can be partitioned into true unification
variables and constants, that cannot be bound by the unifiers. Observe that con-
stants, as free variables, cannot be changed by the f-reduction process. However,
from the point of view of unification, both constants and bound variables can be
considered to be of the same syntactical category, since they cannot belong to the
domain of unifiers. To differentiate between unification and constant variables, we
will consider unification variables as meta-variables in a set X'. Thus, A-calculus is
defined as the term algebra over the set of operators {A;._ |z € V}U{(_ )} UV and
the set of variables X'. Unification and constant variables are written as uppercase
(X,Y,...) and lowercase (z,y, ...) last letters of the Roman alphabet, respectively.

Definition 2.5 Terms A(V, X), of the A-calculus with names are inductively de-
fined by:
az:=z|X|(a a)l| \.a where z € V and X € &,

Now, substitution over X" should be defined and substitution is modified to include:
Modified Definition 2.3 4) 6Y(X) =X, if X € X.

Grafting appears to be appropriate for the substitution of meta-variables since
bound variables (in V) remain unchanged when grafting variables in X'. But the
problem of capture by abstractors remains when a meta-variable is replaced with
a term containing constants; for instance, consider the grafting § = {X + z} and
the term A,.X. Then (A,.X)0 = A,.z. Consequently, the notion of substitution for
meta-variables should involve bound variable renaming.

Definition 2.6 Let § a valuation from X to A(V, X'). The substitution extending
6, denoted by 6°* is defined by induction on the structure of terms in A(V,X) as
follows:

1) 6°°t(X) = X6, if X € X;2) 6“t(z) =z ifx € V; 3) 0°**((a b)) = (0°**(a) 0°“t(b));
4) 057t (\p.a) = ,.0°% (Vo Oz} z} (g)) {2z 2}), where 2 is a fresh variable.

It can be easily checked that the non commutativity problem of - or n-reduction
and grafting does not occur with our previous notion of substitution.

Lemma 2.7 -reduction as well as 7-reduction commute with substitution.

2.2 The A-calculus in de Bruijn notation

In the previous section we have seen that the names of bound variables and their
corresponding abstractors play a semantically irrelevant role in the A-calculus. So any
term in A(V) (or in A(V, X)) can be seen as a syntactical representative of its obvious
equivalence class. Thus, one can conclude that the role that names of bound variables
and their corresponding abstractors play, when treating syntactically unification in
the A-calculus, increases the complexity of the process and creates confusion.
Consequently, avoiding names in the A-calculus is an effective way of clarifying
the meaning of A\-terms and, for the unification process, of eliminating dummy and
redundant renaming. N. de Bruijn developed a notation for the A-calculus where
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names of bound variables were replaced by indices [13, 15, 14]. These indices relate
bound variables to their corresponding abstractors.

It is clear that the correspondence between an occurrence of a bound variable and its
associated abstractor operator is uniquely determined by its depth, that is the number
of abstractors between them. Hence, A terms can be written in a term algebra over
the natural numbers N, representing depth indices, the application operator (- _) and
a sole abstractor operator A._; i.e., T({(- -),A\.-.} UN).

In de Bruijn’s notation, the solution for indexing occurrences of free variables is
given by the creation of a referential according to a fixed enumeration of the set of
variables V, say z,y, z,..., and prefixing all A-terms with ... A.. Ay Ap._.

Example 2.8 Using the referential z,y, z, ... the term

Az-((Az(z Ap(z @) ) Ap.(z y))isrewritten as A.((A.(2 A.(2 1)) 1) A.(2 4)) and
Ae-((Az-(y Ae-(y ) y) Ae.(z y)), which has a multiple occurrence of free variables,
as A.((A.(4 XA.(5 1)) 3) A\.(5 4)).

Now we can define the A-calculus in de Bruijn notation with meta-variables.

Definition 2.9 The set Agp(X) of A-terms in de Bruijn notation is defined in-

ductively as:
ax=n|X|(a a)|Ara where X € X and n € N\ {0}.

We type de Bruijn indices as 1,2,3,... ,n,..., to distinguish them from scripts.

An attempt to define B-reduction in the context of the A-calculus in de Bruijn
notation is (A.a b) — {1/b}a where {1/b}a is the substitution of the index 1 in a
with b. But it fails because: firstly, when eliminating the leading abstractor all indices
associated with free variable occurrences in a should be decremented by one; secondly,
when propagating the substitution {1/b} crossing abstractors through a the indices
of the substitution (initially 1) and of the free variables in b should be incremented.

Consequently, we need new operators for detecting and incrementing and decre-
menting free variables to define a new notion of substitution.

Definition 2.10 Let a € Agp(X). The i-lift of a, denoted a*? is defined inductively
as follows:

1) Xti=X ,for X € X 2) (a1 az)tt = (af" ag?)
+i oy G i Jn+1ifn>id
3) (Aa1)™ = Ay 4) ntt= { n, ifn < i for n € N.

The lift of a term a is its 0-lift and is denoted briefly as a™.

Definition 2.11 The application of the substitution with b at the depth n—1,n €
N\ {0}, denoted {n/b}a, on a term a in Agp(X’) is defined inductively as follows:

1) {n/b}X =X, for X e X 2) {n/b}(a1 a2) = ({n/b}ar {n/b}as)
m—1,ifm>n
3) {n/b}r.a; = A{n+ 1/b"}ay 4) {n/blm=¢ b, ifm=n ifmeN.

m, if m <n
Now we can define g-reduction in Agp(X).

Definition 2.12 -reduction in the A-calculus with de Bruijn indices is defined as
(Aa b) = {1/b}a.
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Observe that the rewriting system of the sole f-reduction rule is left linear and
non overlapping (i.e. orthogonal). Consequently, the rewriting system defined over
Agp(X) by the B-reduction rule is CR.

Turning to the np-reduction rule, in the setting of the A-calculus with names, this
is defined as A\;.(a x) = a, if z € Fvar(a). In the language of Agp(X), the left side
of this rule is written as A.(a’ 1), where a’ stands for the corresponding translation
of a under some fixed referential of variables into the language of Azp(X). “a has no
free occurrences of 2” means, in A(X'), that there are neither occurrences in a’ of the
index 1 at height zero nor of the index 2 at height one nor of the index 3 at height
two etc. This means, in general, that there exists a term b such that b = a.

Definition 2.13 n-reduction in the A-calculus with de Bruijn indices is: A.(a 1) —
bif I bt = a.

Definition 2.14 Let § = {X; — ay,... ,X, — ap} be a valuation from the set of
meta-variables X' to Agp(X). The corresponding substitution, also denoted 6, is

defined inductively by:
1) é(m) =m for m € N 2)9(X)=X0,for X € X
3) 0(&1 ag) = (0(&1) 0(&2)) 4:) 0)\.(11 = )\.0+(a1)
where 61 denotes the substitution 0+ = {X,/a],... ,z,/a}} built from the graft-
ing {X1—af,...,zp—at}.

3 Calculi a la Ao and \s.

In this section we present the Ao- and As.-calculi and their typed versions and estab-
lish properties of the As.-calculus needed for the unification process.

3.1 The \o-calculus

We introduce the Ao-calculus which works on 2-sorted terms: (proper) terms and

substitutions. We use s,t,... to range over the set of substitutions.

Definition 3.1 The Ao-calculus is defined as the calculus of the rewriting system Ao
of Table 1 where TERMS @ ::= 1| X | (¢ a) | Aa | a[s] and SUBS s == id | 1
|a.s|sos.

For every substitution s we define the iteration of the composition of s inductively
as s' = s and s"™! = 50 s". We use the convention s® = id. Note that the only de
Bruijn index used is 1, but we can code n by the term 1[t"~!].

The equational theory associated with the rewriting system Ao defines a congruence
denoted =,,. The congruence obtained by dropping Beta and FEta is denoted =,.
When we restrict reduction to these rules, we will use expressions such as o-reduction,
o-normal form, etc, with the obvious meaning.

The rewriting system Ao is locally confluent [1], CR on substitution-closed terms
(i-e., terms without substitution variables) [40] and not CR on open terms (i.e., terms
with term and substitution variables) [12, 11]. The possible forms of a Ao-term in Ao-
normal form were given in [40] as: 1. A.a, where a is a normal term; 2. a; ...ap. 17,
where a1,. .. ,a, are normal terms and a, #n or 3. (a b1 ...b,), where a is either 1,
1[1"], X or X[s] for s a substitution term different from id in normal form.
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TABLE 1. The Ao Rewriting System of the Ao-calculus

(Beta) (Aa b)) — alb-id

(Id) afidf — a

(VarCons) lla-s] — a

(App) (@bls — (als) Bs)
(Abs) (Aa)[s] — Aall-(so?)]
(Clos) (a[s][t] — a[sot]

(IdL) idos — s

(IdR) soid — s

(ShiftCons) to(a-s) — s

(Map) (a-s)ot —> alt]-(sot)
(Ass) (sot)ou — so(tou)
(VarShift) 1.1 — id

(SCons) 1[s] - (Tos) — s

(Eta) Afa 1) — b if a=,b[1]

In the A-calculus with names or de Bruijn indices, the rule X{y/a} = X, where y
is an element of V or a de Bruijn index, respectively, is necessary because there is no
way to suspend the substitution {y/a} until X is instantiated. In the Ao-calculus, the
application of this substitution can be delayed, since the term X[s] does not reduce to
X. The fact that the application of a substitution to a meta-variable can be suspended
until the meta-variable is instantiated will be used to code the substitution of variables
in X by “X-grafting” and explicit lifting. Consequently a notion of AX'-substitution in
the Ao-calculus is unnecessary. Observe that the condition a =, b[1] of the Eta rule
is stronger than the condition a = b given in Definition 2.13 as X = X T, but there
exists no term b such that X =, b[1]. Note that Ao-reduction is compatible with first
order substitution or grafting and hence X'-grafting and Ao-reduction commute.

Definition 3.2 (The Aogp-calculus) The syntax of the Aoyp-calculus is that of the
Ao-calculus where 1 is replaced by N. The set, Aogp, of rules of the Aoyp-calculus
is Ao where (Varld) is replaced by the four rules: a[id] = a, n+ 1[a - s] — n[s],
n[f] - n+ 1 and n[f os] = n + 1[s].

Notice that the Aogp-calculus consists of an infinite set of rules that should be
treated modulo linear arithmetic.

3.2 The As-calculus

The As-calculus was introduced in [26] with the aim of providing a calculus that
preserves strong normalization and has a confluent extension on open terms [27]. It
avoids introducing two different sets of entities and insists on remaining close to the
syntax of the A-calculus. Next to A and application, substitution (o) and updating
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() operators are introduced. A term containing neither o nor ¢ is called a pure term.
The As-calculus is CR on closed terms, preserves strong normalisation, its substitution
calculus is SN, and it has a confluent extension on open terms, the As.-calculus. This
calculus was originally introduced without the Eta rule that we consider here.

Definition 3.3 Terms of the As-calculus are given by:

As =N | AsAs | AMs | AsoiAs | piAs
where i > 1, k> 0. The set of rules As is given in Table 2.

TABLE 2. The Rewriting System of the As-calculus with n-rule

(o-generation) (Aa b) — aocld
(o -A-transition) Aa)o'b — A(ac™ttb)
(o -app-transition) (a1 az)odb — ((a10') (azo'b))
n—1 if n>i
(o-destruction) nolb — ohb if n=i
n it n<i
(p-A-transition) er(Aa)  —  A(p),, a)
(p-app-transition) oi(ar az) —  ((pLar) (¥} az))
i ) i n+i—-1 if n>k
(p-destruction) Yo — { 0 if <k
(Eta) Ala 1) — b if a=s pib

The equational theory associated to the rewriting system As defines a congruence
=)s- The congruence obtained by dropping o-generation and Eta is denoted by =;.

In order to clarify differences between the Ao-calculus and the As-calculus, we show
the correspondence between their Fta rules; i.e., the correspondence between both
conditions b[1] = a and ¢2b = a of their associated Eta rules.

Lemma 3.4 Let n € N a de Bruijn index. Then for all £ > 0 the s-normal form of
¢?n and the o-normal form of n[1.1[1].1[1?].... .1[t*~1]. t¥*1] are a de Bruijn index
and its corresponding code in the language of the Ao-calculus.

PROOF. If k = 0 then we have n[t] = 1[t"7'][t{] — 11"/ =n+1and pin — n+1
else if k£ > 0, by applying rule clos once, we have:

| il PO N i B ) IS =Y U PO i A K

Two cases should be considered noting that if n > k then @in —o—destruction 1 + 1
and if n < k then pin —,_ gestruction -

Subcase 1: n < k. Then 1[1"~" o(1.A[f].... A[tF=1] pFHY)] G o
1A AT R — parcons 11T =10
Subcase 2: n > k. Then 1/t~ o(LA[H].... AP AMH] —, o0

1171 Fo 1] = 1[p7] = n + 1 n
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Lemma 3.5 Let A.a be an abstraction over the language of Agp. Then we have:
for k >0, (\.a)[t.1[1]-... 1[tF~1]. 1%F1] g-reduces into A.(a[1.1[1].... .1[1*]. 1¥12)).

PROOF. If k = 0 then A.a[t] — aps A.a[1. 12]. If k > 0 then
Aa[tA[] . AR — aps a1 (L[] A AR o 1] —
Na[L(AA A AR o )] kL Naltaft).... At 2

The correspondence between b[t] and p3b is the case k = 0 of the following lemma.

Lemma 3.6 Let a € Ayp and o' its translation in the Ao-calculus, where all indices
n € N occurring at a are replaced with 1[t"~!]. Then, for all k& > 0, the o-normal
form of a’[1.1[1].... .1[t*~1]. t¥+1] is the translation of the s-normal form of p2a.

PRrooOF. This is proved by induction on the structure of terms.

Firstly, observe that it holds for a = n € N because of Lemma 3.4.

Secondly, suppose it holds for all £ > 0 for terms a and b. Then for the application
(a b) we have ©2(a b) —>y_app—transition (Poa @3ib) and (a b)[1.1[1].... .1[thF~1
] R — app (@[t 1] ..o AR AAF] B[LA[M]. .. A[HRTL] AREL).

Finally, suppose it holds for all £ > 0 and for a term a. Thus by Lemma 3.5 we
have (A.a)[1.1[1].... A[PF71L AR —* X(a[1.1[1]. ... .1[t*]. tF2]) and piX.a —
)\.npiﬂa. By the induction hypothesis the lemma holds for the corresponding normal
forms of @7, a and a[1.1[f].... .1[t*]. $¥72]. Hence, it holds for the abstraction.

The previous lemma can be easily extended for terms a € Agp(X). In fact, observe
that for a meta-variable X € X at a position i € O(a), the corresponding subterms of
the o- and s-normal forms of a[t] and p3a are of the form X[1.1[1].... .1[tF=1]. th+1]
and ¢? X, respectively, when the height of the occurrence of X at position i is k.

3.8 The \s,-calculus

We introduce the open terms and the rules that extend As to obtain the As.-calculus.

Definition 3.7 The set of open terms, noted As,,is given as follows:

Asop := X N AsopAsop | AMsop | Asop 09 Asep | @i As,, where j,i>1, k>0
and A stands for a set of variables, over which X, Y, ... range. Closures, pure terms
and compatibility are defined as for As.

Working with open terms one loses confluence as shown by the following example:
(AX)Y)o'1 = (XolY)olt (AX)Y)ort = ((AX)o'1)(Yol1)

and (Xo'Y)o!1 and (AX)o'1)(Yo'1) have no common reduct. This example shows
that even the WCR, property is lost. But the solution lies in the properties of meta-
substitutions and updating functions of the A-calculus in de Bruijn notation [27].
These properties are equalities which can be given a suitable orientation and the new
rules, thus obtained, added to As give origin to a rewriting system which is WCR.

Definition 3.8 The set of rules As,. is obtained by adding the rules given in Table
3 to the set As in Table 2. The As.-calculus is the reduction system (Asop, —as.)
where —,;_ is the least compatible reduction on As,, generated by the set of rules
ASe. The calculus of substitutions associated with the \s.-calculus is the
rewriting system generated by the set of rules s, = As, — {o-generation, Eta} and we
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TABLE 3. The Rewriting System of the As.-calculus without rules in Table 2

(o-0-transition) (acb)oic — (aocitlc) ot (bol=le) if i<
o-p-transition 1 via)yolb — ¢ la if k<j<k+i
k k
o-p-transition 2 ta)yolb — ¢i(ac? b if k+i<j
14 Pk Pk
(p-o-transition) pi(ac?d) — (phyya)0? (phyy ;) if j<k+1
(p-p-transition 1) ot ((,0{ a) — <p{ (‘P;;Hﬂ' a) it [+j<k
-p-transition 2 i(pla) — iTilg if I<k<l+j
p-p LAY gl

call it s.-calculus. Additionally, condition of the Eta rule should be changed with
2
©ob =5, a.

We can describe operators of the As.-calculus over the signature of a first order
sorted term algebra Tys, (X') built on X, the set of variables of sort TERM and its
subsort NATC TERM:

n — NAT, Vn €N\ {0}
(- ) : TERM X TERM — TERM
A TERM — TERM
_o'_ : TERM X TERM — TERM, Vi€ N\ {0}
Lo TERM — TERM, Vie Nk €N\ {0}

Notice that for the Ao-calculus we need two sorts: TERM and SUBSTITUTION [16].
The set of variables of sort TERM in a term a € Ty, (X) is denoted by T wvar(a).

Proposition 3.9 X-grafting and As.-reduction commute.

Theorem 3.10 ([27]) e WN and CR of s.: The s.-calculus is WN and CR.
e Simulation of B-reduction: Let a, b € A, if a =5 b then a =3, b.
e CR of As.: The As.-calculus is CR on open terms.
e Soundness: Let a, b€ A, if a =3, b then a =5b.

The characterization of the s.-normal forms is given by the following theorem:

Theorem 3.11 ([27]) A term a € As, is an se-normal form if and only if one of the
following holds:
lL.ae XUN;
2.a = (b ¢), where b, c are s.-normal forms;
3. a = A\.b, where b is an s.-normal form;
4. a = bo’c, where c is an s.-normal 'form and b is an se—normal form of one of the
following forms: (a) X, (b) do'e, with j < i or (c) pid, with j < k;
5. a = pLb, where b is an s.-normal form of one of the following forms:
(a) X, (b) codd, with j > k + 1 or (¢) e, with k < ;
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PRrROOF. We verify the non existence of redices from the rules of the s.-calculus. The
first three cases are obviously normalized forms. For the fourth case we should analyse,
possible redices from the o-rules (i.e., rules whose name begin with ¢). Analyzing
each of the corresponding subcases we have: a) no o-rule applies; b) the sole possible
redex is from the o-o-transition rule, that does not apply because of the restriction on
the scripts; ¢) both o-@-transition rules 1 and 2 do not apply because of the restriction
on scripts. For the fifth case we should analyse, possible redices from the ¢-rules (i.e.,
rules whose name begin with ¢). We have the following subcases: a) obviously we
have a normal form; b) the sole possible redex is the one from the @-o-transition rule,
that does not applies because of the restriction on scripts; ¢) both candidate rules,
the p-p-transition ones do not apply because of the restriction on scripts. [ |
As corollary we obtain a characterization of As.-normal forms.

Corollary 3.12 (As.-normal forms) A term a € As,, is a Ase-normal form if and
only if one of the following holds:

lL.ae XUN;

2. a = (b ¢), where b, ¢ are Asc-normal forms and b is not an abstraction A.d;

3. a = A.b, where b is a As.-normal form excluding applications of the form (¢ 1)
such that there exists d with p3d =5, ¢;

4. a = bole, where ¢ is a As.-normal form and b is an As.-normal form of one of the
following forms: (a) X, (b) do'e, with j < i or (c) pid, with j < k;

5. a = pib, where b is a As.-normal form of one of the following forms:
(a) X, (b) co’d, with j > k+ 1 or (c) ¢le, with k < [

PROOF. Items 2 and 3 result from adapting the proof of Theorem 3.10 to avoid redices
of the o-generation and FEta rules of the As.-calculus. [ |

3.4 Typed \-calculi

We recall that environments in de Bruijn setting are simply lists of types and in the
case of the Ao-calculus, substitutions receive environments as types. We introduce the
following notation concerning environments. If ' is the environment I';.T's. . . .. I',,.nil,
then I'>; denotes the environment I';.'j1q..... [',,.nil; analogously, I'<; stands for
ry..... [';, etc. The rewrite rules of the corresponding typed calculi are exactly the
same (except that rules involving abstractions are now typed). In all these calculi, we
assume types and environments built by TYPES A | A — B and ENVIRS ' nil | A.T.
Here are the typing rules for the simply typed A-calculus in de Bruijn notation:

Definition 3.13 The syntax of simply typed A-calculus in de Bruijn notation
is defined by:

The set of terms ~ TERMSa :== n| (a b) | Aa.a

The typing system, called L1, and given by the following rules:

ATFb: B
L1- ATHF1: A L1-
(L1-var) (L1-3) TFA.b:A—B
I'kn:B 'rb:A—-B T'tFa:A

(L1-varn) (L1-app)

Al'tn+1:B 'k a):B
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Observe that typing and grafting are not compatible.

Example 3.14 Consider the environment I' = A.(A — A) —» (B — A) — A.nil and
a variable X of type A. Let us show that I' F ((2 Aa.X) Ap.X) : A. Firstly, 2 is
typed:

(var)(A—- A) > (B—>A) - AnilkF1:(A—-A) - (B—-A) — A
AA—-A) - (B—>A) > AnilkF2:(A—-A) > (B—-A) - A

(varn)

Afterwards, the necessary abstractions are typed:

ATHFX: A BTFX:A

@) FFAsX:A— A @) A X:B— A

'F2:(A—-A)-(B—>A)—>A TFHMX: Ao A
r-2MX):(B>A) —-A TrHMNp.X:B— A
(2 M\a.X) Ag.X): 4

Finally, (app)

(app)

Observe that applying the grafting {X/1} to the term ((2 A4.X) Ap.X) we obtain
the term ((2 As.1) Ap.1), which is not well-typed.

The next proposition establishes compatibility between substitution and typing.

Proposition 3.15 ([16]) Take a variable X of type B and an environment I'. If
F'ta:AandTFb:BthenI'F {X/b}a: A.

PROOF. By induction on the structure of terms. Firstly, if a = X, then A = B.
Secondly, if @ = n then {X/b}a = n. Thirdly, if @ = (a1 a2) then we have that
'kas: A and 'k ay : Ay — A and by the app typing rule I' F (a1 a2) : A4; by
induction hypothesis I' - {X/b}as : A; and ' + {X/b}a; : A1 — A which implies
I' F {X/b}(a1 a2) : A. Finally, if a is an abstraction of the form Ac.a; then A
should be of the form C — D and C.I' F a; : D. By definition of substitution
{X/b}Ac.ar = Ac.{X/bT}a;. Observe that if we can prove that C.I' + bt : B
then, since C.I' - X : B, we can suppose inductively that C.I' - {X/b*}a; : D and
subsequently, by applying the A typing rule, we can conclude that T' - Ac.{X/bT }a; :
C — D. To prove that if I' - b : B then C.I' - bt : B we prove by induction on the
structure of terms that the following more general affirmation holds:
if C;.....C1.TFb:B then C;.....C;.CT bt :B
Firstly, if b = X then bt? = X. Secondly, if b = n then if n > i then n*? = n+1
and the type of n and of n + 1 in the environments C;.... .C1.I' and C;.... .C;.C.T,
respectively, coincide (in fact, it is the one of n — i in the environment I'). Else,
if n < i then nt? = n. Thirdly, if b is an application of the form (b; by) then
(by by)™* = (bf* bF*) and by the induction hypothesis we have C;.....C;.C.I'
bi"iE — Band C;.... .C;.CTF b;iE, for some type E, which enables us to conclude
that C;.....C;.C.T F (b" by%) : B. Finally, if b is an abstraction of the form
Ag.by then B = E — F and E.C;.....Ch.' F by : F. By induction hypothesis
E.C;.....C;.C.T' - bf": F and consequently C;.... .C;.C.T b E—-F. 1
We recall now the typing rules for A\s and Ase.
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Definition 3.16 The syntax of simply typed As- and As.-calculus is given by:
The set of terms TERMSa :==n | X | (a b) | Aa.a | ac’h | @la, Vn,k>0, Vi>1
The typing system Ls1, given by the rules Ls1-var, Ls1l-varn, Ls1-\ and Ls1-

app which are exactly the same as L1-var, L1-varn, L1-\A and L1-app, respectively,

and the new rules:

FZZ'—bB F<i.B.F2il—a:A

(Lsl-0)

I'Faocib: A
(Ls1- Mtv) xFX:Ax
(le_@) ng-F2k+i Fa:A

PHela: A

(Ls1-Mtv) is added to type open terms and is taken to mean: for every metavariable
X, there exists an environment I'y and a type Ax such that the rule holds. In order
to obtain compatibility between typing and grafting, to each meta-variable X we
associate a unique type Ax and a unique environment I'y. We assume for each pair
(T, A) an infinite set of variables X such that 'y =T and Ax = A.

Now we present the simply typed Ao-calculus.

Definition 3.17 The syntax of simply typed Ao-calculus is given by the sets of
terms and substitutions: TERMS @ :==1| X | (a b) | Aa.a | a[s] and SUBS s :==
id | 1 | a.s|sos and the rules Lol-var, Lol-A and Lol-app which are exactly the
same as L1-var, L1-\ and L1-app, respectively, together with the new rules:

'ksplY IMka:A

Lol- Lol-i ElFid>T
(Lo1-clos) T o] 4 (Lo1-id) id >
F'ta:A TFs»>IY )
(Lo1-cons) TFa A so AT (Lol-shift) AT Ftol
" " " ! !
(Lol-comp) o0 DTES ol M) Tk XAy

I'ks'os">IV

The reduction rules of both the typed Ac-calculus and the typed As.-calculus are
defined by adding to the rules in Ao and in As. the necessary typing information.

Definition 3.18 (Typed \o-calculus) The typed Ao-calculus is defined by the
rewrite rules of the rewriting system Ao (Table 1) changing the rules that involve
abstractions as in Table 4. The resulting rewriting system is also called Ao.

TABLE 4. The Beta, Abs and Eta rules of the typed Ao-calculus

(Beta) (Aa.a b) — alb-id]
(Abs)  (Aa.a)[s] — Aa.afl-(so1)]
(Eta) Aa.(a 1) — b if a =, b[t]

The typed version of ¢ has the same properties as the untyped one.
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Proposition 3.19 (Grafting and typing are compatible [16]) If X is a variable
and b a term such that I'x + b : A, then:
1.V environment A and term a such that A - a: A, we have: A - a{X/b}: A.
2.V environments A, A’ and substitution s such that A F s> A’, we have:
At s{X/b}> A"

PRrROOF. By simultaneous induction on the structure of typing derivation of A Fa: A

and A F s> A’ | |
Since a unique environment and a unique type are associated to every meta-variable,

terms as (Y X) X[1]) and (Y A4.X) X) cannot be typed in any environment.

Proposition 3.20 ([40]) The typed Ac-calculus is WN and CR.

Definition 3.21 (7-long normal forms in A\o) Let a be a Ao-term of type A; —
... = A, — B in the environment I and in Ao-normal form. The 7-long normal
form of a, written a’, is defined by:

1l.if a = A\g.b then a’' = AoV

2.if @ = (k by...bp) then @' = A4, ... Aa,(k+neci...cpn' ... 1), where ¢; is the
n-long normal form of the normal form of b;[1"]

3.ifa= (X[s]by...bp) then ' = Aa, ... A4, (X[s'] c1...cpn'...1"), where ¢; is the
n-long normal form of b;[1"] and if s = d; ...d,. t* then s' = e, ...e,. t**" where
e; is the n-long normal form of d;[1"]

Definition 3.21 has been proven correct and well-founded in [16]. The long normal
form of a Ao-term is defined as the n-long normal form of its Sn-normal form. Two
terms are fn-equivalent if and only if they have the same long normal form [16].

Definition 3.22 (Typed \s.-calculus) The typed As.-calculus is defined by the
rewrite rules of the rewriting system As. (rules in Tables 2 and 3) changing the rules
that involve abstractions as in Table 5. The resulting rewriting system is also called
ASe.

TABLE 5. The generation, transition and Eta rules of the typed Ase-calculus

(o-generation) (Aa.a b) — actd

(o-\-transition) (Aa.a)o'db —  Aa.(act'D)
(p-A-transition) — pi(Aa.a) — )‘A'(WZ+1 a)
BN

(Eta) Aa.(a 1) b if a=s, pib

We recall now the main results concerning typed As and As.:
Theorem 3.23 ([26]) 1. Subject Reduction of As: If ' - a : A and a —)s b
then T'Fb: A.

2. SN of As: Every well typed term is SN in the simply typed As-calculus.
3. Subject Reduction of As.: If 'Fa: Aand a =5, bthen I' - b: A.
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The characterization of n-long normal forms in As., to be introduced, is necessary
to simplify our set of unification rules. Essentially this is the way to guarantee that
meta-variables of functional type A — B are instantiated with typed As.-terms of the
form A\4.a.

Definition 3.24 (n-long normal form in As.) Let a be a As.-term of type A; —
... > A, — B in the environment I' and in Asc-normal form. The n-long normal
form of a, written a’, is defined by:
1.if a = A\¢.b then a' = \g.b'
2.if a = (by...by) then a' = Aa, ... a,(c1...cpn’ ... 1"), where ¢; is the n-long
normal form of the normal form of @6‘“1),-

3.if @ = bo'c then a' = A4, ... A4, (d'0"™™e'n’... 1), where d’,e’ are the n-long

normal forms of the normal forms of j b and f*te, respectively

4.if a = ¢ib then @’ = A4, ... Aa, (pic'n’...1"), where ¢’ is the n-long normal form

of the normal form of <p6‘+1b

Lemma 3.25 Definition 3.24 of n-long normal form is correct and well-founded.

PRrROOF. In the first case the number of occurrences of meta-variables is preserved
and the size of the term is strictly decreasing. In the second case, if p = 0 the type
is strictly decreasing and if p # 0 the number of occurrences of meta-variables is
decreasing and the size of the term is strictly decreasing. In case 3 the number of
occurrences of meta-variables is strictly decreasing. [ |

Definition 3.26 The long normal form of a As.-term is the n-long normal form of
its Anp-normal form.

In Ao the reduction of an n-redex may create o-redices as in X[A.(2 1). 1] — Eta
X[1. 1] —varsnipe X[id] — 14 X. Hence, to compute the long normal form, all
redices, including the n-redices, should be reduced before expanding the term. That
is not the case for the Asc-calculus. In fact, by checking rule by rule, one can easily
verify that no n-reduction may generate new s.-redices. Then one could replace in
the previous definition gn with 3. But the use of n-reduction, being it unessential at
all, makes the unification process more efficient as it is explained after introduction
of the As.-unification rules (Definition 5.2).

As in the Ao-calculus, two As.-terms are fn-equivalent if and only if they have
the same long normal form. Subsequently we present characterizations of As.-normal
terms whose main operators are either ¢ or ¢ (i.e., of type 3. and 4. in Corollary 3.12).
This is essential in order to simplify our presentation of the unification rules and of
Flez-Flex equations. Our characterization is similar to that of [27] and is obtained by
observing when arithmetic restrictions for the application of the transition rules of
the As.-calculus do not hold. For instance, in order to apply a ¢-p-transition rule to
reduce a term of the form ¢ (7 a), we need either [ +j < kor !l <k <[+ j as such
a rule does not apply if I +j > k and (I > k or k < [+ j) or, equivalently, if [ > k.
Note that there are no other rules to reduce, at root position, a term of this form.

Observe firstly that by the As. rewrite rules left arguments of the o operator or ar-
guments of ¢ operators at As.-normal terms are neither applications nor abstractions
nor de Bruijn indices. For instance, ¢! (a b) = (¢ha ¢ib), (a b)o'c = (acic bo'c).
Then the sole possibility is to have as a left argument a meta-variable. Thus one has to
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consider terms alternating sequences of operators ¢ and o whose left innermost argu-
ment is a meta variable; consider, for instance, the term ((¢f2 (¢! X)o*-))o™ )",
where right arguments of the operator ¢ are denoted by “”.

Definition 3.27 Consider a As.-normal term ¢ whose leading operator is either o or ¢
and whose left innermost meta-variable is X. Denote by 1/ © the operator at position
k following the sequence of operators ¢ and o, considering only left arguments of
the o operators, in the order innermost outermost. Additionally, if ¢)/* corresponds
to an operator ¢ then j, and i denote its super and subscripts, respectively and if

Z: corresponds to an operator o then j; = 0 and i; denotes its superscript. Let
ar denote the corresponding right argument of the kt* operator if Q,lej: = ¢ and
the empty argument if 1/15: = @{f The skeleton of ¢, written sk(t), is defined as:

wz: (X, a1, ap).

Example 3.28 Let (¢ ((¢¢]' X)o'2a))o?b)o’c be a Asc-normal term. Then its rep-
resentation as a skeleton is given by g ¢, 29 ' (X, a, b, ¢).

In the sequel, for a As.-normal term whose leading operator is either ¢ or o we will
eventually abuse its skeleton representation sk(t). Thus, for instance, for a As.-term
a we can write a —* sk(t) representing a —* t or a =4, sk(t) representing a =, .

Lemma 3.29 Let ¢ be a As.-normal term whose leading operator is either o or ¢ and
whose skeleton is ¢Z: ... le (X,a1,...,ap). Successive scripts iy and ig41 satisfy the
following:

1. > igg1 if both ¥ and g1 are either o operators or ¢ operators;

2.0 > igy if ¢y and 41 are ¢ and o operators, respectively;

3.0k > igy1 + 1if ¢ and Y41 are o and @ operators, respectively.

PROOF. By simple analysis of the arithmetic constraints at the As, rewrite rules. W

4 Unification in the \o-calculus

In this section we recall higher order unification in the Ao-calculus as originally intro-
duced in [16]. Another approach of higher order unification by explicit substitution
was presented by Lescanne, Benaissa and Briaud in [31] and based on the Av-calculus
of [7]. The Av-calculus preserves strong normalization but its confluence is restricted
to closed terms. [31] informally suggests to close terms before unification is realized.

The problem to be considered is how to solve equational systems on typed Ao-
terms (i.e., in A(X,))) modulo the equational theory of Ao. Equational systems are
restricted to be on substitution-closed terms, because of the fact that Ao is CR on
terms without substitution variables, but non CR on open terms (i.e., when substitu-
tion variables are admitted). Since the main goal is to provide a mechanism to solve
unification problems in the A-calculus this restriction is not relevant.

Definition 4.1 Let 7 (F, X') be a term algebra over a set of function symbols F and
a countable set of variables A" and let A be an F-algebra. An (F, X, A)-unification
problem, for short unification problem, is a first order formula without universal
quantifier nor negation whose atoms are of the form F, T and s 234 t, where both
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s,t € T(F,X). Unification problems will be written as disjunctions of existentially
quantified conjunctions of atomic equational unification problems

D:\/E’LE’J/\SZ:?AtZ

jed i€l

When there is a sole disjunctor, the unification problem is called a unification sys-
tem. The variables in the set « in a unification system P = 3 \;; s; :34 t; are
called bound and denoted Bvar(P), while those occurring in s;’s and ¢;’s are called
free and denoted Fvar(P). T and F stand for the empty conjunction and disjunction,
respectively. The empty disjunction, corresponds to an unsatisfiable problem.

Definition 4.2 A unifier of an (F, X, A)-unification system I A
grafting o where A = 30 A
the domain X'\ .

A unifier of an (F, X', A)-unification problem, Vc;3uw} Aicr; si :?A t;, is a grafting o
that unifies at least one of the unification systems involved.

=7t
iGISl =A i 1S a

ie1 5i0\@ = tio\g and o\ denotes the restriction of o to

For simplicity, all references to the term algebra 7 (F, X) and to the algebra A are
omitted, when they are clear from the context. When the algebra A considered is
the quotient algebra over T (F, X) defined by the congruence associated with a set of
equations F, i.e. A=T(F,X)/E, then we denote :?A by =%. The set of unifiers of
a unification problem, D, or system, P, is denoted by U4 (D) or U (P), respectively.

Definition 4.3 Let 0,6 be grafting valuations from A into 7(F, &) and A be an
algebra over 7 (F,X). 0 is more general modulo A than o, denoted 8 <4 o, if 3
7 such that A =6y =o.

<4 induces a quasi ordering over the set of grafting valuations. When necessary, we
restrict § <4 o to a set Y C X writing 6 g% 0.

Definition 4.4 Let D be an (F, X, A)-unification problem. A complete set of
unifiers of D is a set of grafting valuations, denoted by ClU4(D), such that:

1. CUA(D) CUA(D) (Correctness)
2.Y0 € Ux(D)3o € CUA(D) such that o §f4'"(D) 0 (Completeness)
3.V0 € CU4(D), Ran(0) N Dom(6) = (Idempotency)

A complete set of most general unifiers of D, denoted by CMGU4(D), is a
complete set of unifiers that additionally satisfies:
4.Y0,0 € CMGUAD) 6 <4 6.0 = o (Minimality)

[16] presents a set of rewrite rule schemata that simplify unification problems in
order to obtain the set of unifiers. The simplest are the boolean simplification rules.

Definition 4.5 The boolean simplification rules for unification problems are those
of Table 6 modulo associativity and commutativity of the boolean conjunction and
disjunction. In that table P, @, R stand for unification problems, e for an equation
and s, t for terms.

Basic decomposition rules for unification (to be defined after specializing unification
notions to Ao-terms) should be applied modulo boolean simplification rules.
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TABLE 6. The Boolean simplification rules for unification problems

(Trivial) PAs="s - P

(AndIdem) PAeAe — PAe

(Orldem) PveVe —» PVe
(SimpAndT) PAT —» P

(SimpAndF) PVF —- F

(SimpOrT) PvT - T

(SimpOrF) PVF — P

(Distrib) PA(QVR) - (PANQ)V(PAR)
(Propag) Z(PVQ) — FZPV3IZQ
(ElimQE) 3zP — P,if z & var(P)
(ElimBYV) 3z z="tAP — P,if z € var(P) Uvar(t)

Definition 4.6 A Ao-unification problem P is a unification problem in the algebra
Tao(X) modulo the equational theory of Ac. An equation of such a problem is
denoted a :Z\G b, where a and b are substitution-closed Ao-terms of the same sort.
An equation of the form a :‘;0' a is called trivial. For a unification problem P,
Twvar(P) denotes the set of variables of sort TERM and Uy, (P) denotes the set of all
unifiers of P.

Definition 4.7 The Ao-unification rules for typed Ac-unification problems are
given in Table 7.

Since Ao is CR and WN, the search can be restricted to n-long normal solutions
that are graftings of the form {X/A.a} or {X/(n a1 ...ap)} and {X/(Z[s]a1...ap)},
when the type of X is functional respectively atomic. The rules Normalize and Dec-),
use the fact that Ao is CR and WN to normalize equations of the form A.a :?M AD
into equations of the form a' =5_ '. The rule Ezp-\ generates the grafting {X/\.Y'}
for a variable X of type A — B, where Y is a new variable of type B.

Example 4.8 Consider the unification problem (X 1) =5 1, where X has type A —
A. The rule Ezp-) takes a new variable Y of type A and by the grafting {X/\4.Y'}
the problem is transformed into (\.Y" 1) =%, 1 that S-reduces to Y[1.id] =5, 1.

Since Y has an atomic type A, a normal solution can only be a grafting of the form
{Y/(may...ap)} or {Y/(Z[s]a;...ap)}. Grafting valuations of the second form are
not solutions because normal forms of terms of the form (Z[s]a; ...a,)[1.id] cannot
be 1. Then all solutions should be of the first form. Performing the corresponding
grafting {Y/(n Y1 ...Y,)}, where Y7,...,Y} are new variables. Observe that n can
only be 1 or 2 (equivalently, 1[1]), because in the other case the head in the reduction of
(nay...ap)[1.id]is n—1. For terms with heads 1 and 2 we have: (1 a; ...ap)[1.9d] —*
(1 a1[1.4d]...ap[1.id]) and (1[1] a1 ...ap)[1.9d] —* (L[T][1.id] a1[1.id]...ap[1.id]) —
(1t o(L.id)] a1[1.4d] . . . ap[L.id]) =* (1 a1[1.id] ... ap[1.id]).

For an equation of the form X|a; ...ap. 1"] =%, (m by ...b,), where X has an atomic
type A, solutions can only be grafting valuations of the form {X/(r ¢; ...c)}, where
re{l,...,p} U{m —n+ p}. Exp-App advances in direction towards this solution.
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TABLE 7. The Ao-unification rules

(Dec-)) PAXsa=5, b — PAa=i,b

(Dec-App) PA(may...ap) =4, (nby...by) — PNy pai =5, b;
(App-Fail) PA(may...ap) =5, (mby...b,) — F ifn#m
(Exp-)) P — 3(Y where ATFY : B),PAX =}, \aY

if('FX : A— B) € Tvar(P),Y ¢ Twvar(P), and X is an
unsolved variable

(Bzp-App) PAX[ay...ap 1] =4, (mby...b;) —
PAX[ay...ap. t"] =5, (mby...b;) A
VreRpURi HHl, . ,Hk,X :?)\0 (I’ H1 . Hk)
e if X has an atomic type and is not solved
e Hy,..., Hj are variables of appropriate types, not occurring in
P and the environments 'y, ='x
e R, C{1,...,p} such that (r Hy ... Hy) has the right type
eRi={m—n+plifm>n+1lelse
(Replace) PANX={,a — {X/a}PAX =}, a
if X € Tvar(P),X ¢ Tvar(a) and a € X = a € Tvar(P)

(Normalize) PAa=5,b — PAd =V
if @ or b is not in long normal form,
o = the long normal form of @ if a is an unsolved variable
a otherwise
b’ is defined from b similarly to o' from a.

During the unification process the rule Replace simply propagates, to the current
unification problem, the grafting {X/a} corresponding to equations X =% a previ-
ously added by the application of the other unification rules.

Definition 4.9 A unification system P is a Ao-solved form if all its meta-variables
are of atomic type and it is a conjunction of non trivial equations of the following
forms:

(Solved) X =%, a, where the variable X does not occur anywhere else in P and
a is in long normal form. Both X and X :Z\G a are said to be solved in P.
(Flez-Fler) non solved equations of the form X[aj...a,. 1" =},
Ya...ay. 1], where X[a; ... ap. T"] and Ya; ...ay. 7] are long normal
terms with X and Y of atomic type.

In the previous definition some of the scripts p, p',n,n’ may be zero.

Example 4.10 Consider the equation X :?M Y[X. 1]. This is a flez-flex equation,
but the variable X is unsolved since it occurs in the right-hand side of the equation.
Observe that the left-hand side can be written as X[id]. The same holds for X [1?

=5, Y[L.1].

Since solved forms appearing in a system P define straightforwardly the binding
between the variables that do not appear anywhere else in P and the terms (in long
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normal form), proving that flez-flex equations have unifiers one obtains that any
Ao-solved form has Ao-unifiers.

[16] showed that: deduction by the Ao-unification rules of a well typed equation
gives rise only to well typed equations, T and F; solved problems are normalized for
the Ao-unification rules; a conjunction of equations irreducible by the Ac-unification
rules is a solved system; and the Ao-unification rules are correct and complete.

5 Unification in the \s.-calculus

The main characteristics of the typed Ac-calculus needed in the development of the
unification method of the previous section are its weak normalization and confluence
(Proposition 3.20) and its characterization of normal forms (Definition 3.21).

Definition 5.1 A As.-unification problem P is a unification problem in the algebra
Tas, (X) modulo the equational theory presented by As.. An equation of such a
problem is denoted a zise b, where a and b are two As.-terms of the same sort. An
equation is called trivial when of the form a :?)\se a. The set of meta-variables in a
unification problem P is denoted 7T wvar(P). The set of all unifiers of a problem P is
denoted Uy, (P).

Definition 5.2 The As.-unification rules for typed As.-unification problems are
given in Table 8.

Here is how the As.-unification rules of Table 8 simplify Ase-unification problems:

Since As. is CR and WN, the search can be restricted to n-long normal solutions
that are graftings binding functional variables into 7-long normal terms of the form
A.a and atomic variables into n-long normal terms of the form (k b ...b,) or ac’b or
¢t a, where in the first case k could be omitted and p could be zero. Use of the n
rule is important to reduce the number of cases (or unification rules) to be considered
when defining the unification algorithm, but as for the Ao-calculus, one can develop
a HOU method based on the B-conversion alone [16]. This is not surprising since
the original Huet’s algorithm was developed only for the [-conversion. The rules
Normalize and Dec-A, use the fact that As. is CR and WN to normalize equations of
the form X.a =}, A.bin equations of the form o’ =}, V.

During the unification process the rule Replace simply propagates, to the current
problem, the grafting {X/a} corresponding to equations X =}, a previously added
by the application of the other unification rules.

The rule Ezp-\ generates the grafting {X/A.Y'} for a variable X of type A — B,
where Y is a new variable of type B.

Equations of the form (n ay ...ap) =}, (m by ...b,) are transformed by the rules
Dec-App and App-Fail into the empty disjunction when n # m (as there are no solu-
tion), or into the conjunction A,_; ,a; :?)\Se b;, when n = m (note that terms of the
form (n a; ...ap) include those where n is omitted or p = 0).

Example 5.3 Consider the unification problem (A.(A.(X 2) 1) Y) :?)\Se (A (Z 1) U)
where X,Y, Z and U are meta-variables.

Then (A\.(A.(X 2) 1) Y) —=* (\.(Xo'1 20'1) V) =* (\.(Xo'1 1) Y) —*
(Xot)olY 10'Y) =* ((Xo?Y)ot(10'Y) p}Y) — (Xo?Y)ol(plY) ¢iY) and
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TABLE 8. The As.-unification rules

(Dec-)\) PAMXsa zg\se Aab = P/\azg\s b
(Dec-App) PA(@may...ap) :;SE @br...by) — PA_ ,a ?Ase b;
(App-Fail)  PA(nay...ap) =5, (mby...by) — F 1fn7£m
Dec-p PAgia =5 ©ib — P Aa =% b, where pia, pib are
kY =Xs. Pk Ase kD Pr
long-normal terms.
(Ezp-)\) P — 3(Y where ATFY : B),PAX =}, AsY

if(C'FX : A— B) € Toar(P),Y & Twvar(P), and X is a
unsolved variable
(Ezp-App) P A ’I/JZJ: (X a, . ap) :;SE mby...b,) —
P/\ng: PN (X ar, . ap) =3, (mbyo b)) A

\/TGRPUR,- E|H1, . ,Hk,X :g\se (I’ H1 . Hk)

o if ’I/JZ;: . fll (X,a1,...,ap) is the skeleton of a As.-normal term

e X has an atomic type and is not solved

e Hy,...  Hj are variables of appropriate types, not occurring in

P, with the environments I'y, = I'x

e R, C {i1,...,ip} of superscripts of the o operator such that

: _f Uisoddr ifg >k
(r Hy...H}) has the right type R; = { 0 otherwise

andg=m+p—k—=>1_, 1 ji, to=00, ip1=0
(Replace) PANX =}, a — {X/a}PAX=}, a

if X € Tvar(P),X ¢ Twvar(a) and a € X = a € Tvar(P)
(Normalize) PAa=5, b — PAad =}, V

if @ or b is not in long normal form,

o — the long normal form of a if a is an unsolved variable

| a otherwise
b’ is defined from b similarly to o' from a.

(A(Z 1) U) =* (Zo'U 10'U) = (Zo'U §U). Hence:

( ( ( ) 1) Y) _;s (>‘ (Z 1) U) —? Normalize
(Xo?Y)o' (ppY) wpY) =4, (Zo'U ¢pU) — Dec—App
(Xo2Y)ot (oY) _r';\se ZalU A @sY :Z\se wsU — Dec—¢

(Xo?Y)ol (p§Y) =4, Zo'U N Y =}, U

Observe that solutions of ¥ =}, U are graftings of the form {Y/V,U/V}. Ad-
ditionally, a variety of solutions can be given for (Xo?Y)o!(ppY) =3, Zo'Y: take
{X/n}; thusif n > 2, {Z/n — 1}.

Note that the equations of this example correspond to those of Ag-unification:
AA(X 2) 1) V)=, (AN(Z 1) U) S Normatize (X[YYiid] V) =3, (Z[U.id) U),
can be decomposed into X[Y.Y.id] =%, Z[U.id] A Y =}, U. Note that since X and
Z are meta-variables of functional type, X[Y.Y.id] =%, Z[U.id] is not flex-flex.

In the Ao-calculus, the unification rule Ezp-App advances in direction towards so-
lutions for equations of the form X[a;...ap. 1] =}, (m b1...b,), where X is an
unsolved variable of an atomic type, say A. Solutions are grafting valuations of the
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form {X/(rep...cp)}, wherer € {1,...,p} U {m —n + p}. The As.-unification rule
Exp-App develops the analogous role for unification problems over the As.-calculus.
It is important to note that explicit use of Ase-normal forms in the unification rule
Exp-App is not essential. It is done however, with the sole objective of simplifying the
case analysis presented in the definition of the rule and thus in its completeness proof.
In fact, this can be dropped from the general presentation of the As.-unification pro-
cedure and be subsequently incorporated as an efficient unification strategy, where
before applying the Ezp-App rule, unification problems are normalized. Normaliza-
tion before applying other unification rules is usually proposed in any unification
strategy including the Ao-unification approach in [16]. This is a consequence of the
fundamental commutation theorem between substitution and reduction in A-calculus.
Now, we give important properties for the Asc-unification rules (Definition 5.2).

Lemma 5.4 (Well-typedness) Deduction by the As.-unification rules of a well typed
equation gives rise only to well typed equations, T and F.

PRrROOF. By analyzing, rule by rule, the types of the resulting transformed equation.

e Normalize: this is consequence of the fact that the rewriting system s, is well
typed and of the correctness of the definition of long normal forms.

e Dec-): if Ag.a :?)\Se Aa.b is well typed then the types of a and b coincide.

e App-Fuail: obvious.

e Dec-App, Dec-p: if (nay ...ap) =}, (nbi...by) is well typed then so is (a; . . . ap)
:?)\Se (b1 ...bp). Without loss of generality we can suppose that a; and b; are
normalized concluding that the equations a; :?Ase b; are well typed. Well typing
of the unification rule Dec-¢p is proved similarly.

e Exzp-A: by definition of the rule, since X : T A — BandY : A.I F B then by
the typing rule L1-A\, A4.Y : ' A — B. Hence, X :;SE Aa-Y is well typed.

e Exp-App: we present a simple sketch of the inductive proof on ¢ and p. We omit
the case in which m occurs and consider a simple equation of the form Xo'b =},
(b1 b2) where X is an atomic meta-variable. We have I'c;.B.I'>; F X : A and
I's;i Fa : B and by the typing rule Lsl-o, for some environment I' and types
Aand B, T+ Xo'b : A. By assumption Xo'b :?)\se (b1 b2) is well typed thus
Lk (by b)) : A. By the typing rule Ls1-App we have some type C' such that
kb : C—>Aand 'k by : C. Then by assumption of the Ezp-App unification
rule, variables Hy, Hy can be appropriately selected such that ' H; : C — A
and ' F Hy : C. Hence the equation X :?)\Se (Hy H,) is well typed. The proof
is finished by analyzing combined cases of successive o and ¢ operators and by
completing in the straightforward form the inductive reasoning.

e Replace: well typing of equations is preserved because, as P A X :?)\Se a well
typed, by replacing X with a in P, types are not changed. This is a consequence
of the compatibility between grafting and typing. i

Example 5.5 We present three different unification problems and corresponding equa-
tions, to be treated with the Fxp-App Ao- and As.-unification rules, which result from
the application of both unification methods. The reader is invited to complete the
computations.
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1. Consider the problem (A.(A.(X 2) 1) Y) =" (\.(\.V 1) U). Related equations
to be treated by applying the corresponding Exp-App uniﬁcation rules are:
(X[Y.Yid] V) =}, VIU.U.id] and (X0?Y)o! (p5Y) @) =3,. (Vo?U)o*(psU).
Solutions are reached after applying Ezp-App unification rules with V/ :Z\G (Vi Vo)
and V =3}, (Vi V), where Vi, V5 are new variables.

2. From the problem A.(A.(Y 1) A.(X 1)) =" A (A.V A.W) we reach the equations:
(Y[A(X 1)dd] A(X 1)) =5, VIAWid] and (YorA(X 1) A(ef 1)) =5,
VolAW After applying the corresponding Exp-App rules, with V =5_ (V4 V3)
and V :?)\Se (Vi Va), new equations appear: A.(X 1) =% V2[A.(X 1).id] and
A(p1X 1) =}, Vool A(X 1). Solutions result by selecting the case Vo =

3. Consider the problem (A.(X AW) 1) =" (\.(Z A.(U 1)) V). Related equations
to be treated by the application of Fzp-App unification rules are:
WILA[]. 1] =5, (U[L.V[1]. 1] 1) and Wo?1 =}, (Uo®V 1). Solutions are found
after applying Ezp-App unification rules with W =7 (W, Ws).

Before formalizing flex-flex equations in As., we give an example where the application
of Exp-\ and Exp-App is essential. Solutions are those of the flex-flex equations.

Example 5.6 (Continuing Example 5.3 and 5.5 1.)
Consider the problem (A.(A.(X 2) 1) Y) =%, (\.(Z 1) U), where now we make
considerations about the types of meta-variables. Let Y and U be of type A and X
and Z be of type A — A. In the Ao-unification setting:

AA(X 2) 1) V) ={, (\(Z 1) U) — Hap—X, Replace

A(X 2) 1) Y) =, AV 1) U) AN Z =5, AV = Normatize

(X[Y.Y.id] V) =5, VU.Uid] A Z =5, AV

where V' is a new meta-variable of type A. The interesting step in the whole process
is the application of the Ezp-App Ao-unification rule to the first equation, which, by
case analysis, could transform this into the search for solutions of (X[Y.Y.id] V) =5
VIU.U.id] A V =}, (Vi Vz) that by Replace and Normalize gives (X[Y.Y.id] Y)
=}, VW [U.U.id) WU.U.id)) A V =%, (Vi V) and, finally, by decomposition and
Replace gives the unification problem: X [V,[U.U.id].Vo[U.U.id).id] =5, Vi[U.U.id] A
Y =, W[U.Uid] A V =5, (Vi V2). Note that both X and V; are of type A —
A. Then by, firstly, applying twice Ezp-A introducing new equations X =% A\.X’
and Vi =%, AV, where X' and V{ are fresh atomic meta-variables; afterwards,
by applying twice Replace and, finally, by applying Normalize and Dec-\ we obtain
XLV [UIU M. LV URLUT 1 4] =%, VILUILUM A A Y =%, ValU.U.id]
ANV =i, (Vi Vo) A X =, AX" A Vi =5, A\V/. The flez-flex equation has:
{X/)\Xl, Z/)\()\Xl 2), Y/XQ, U/XQ} and {X/)\Xl, Z/)\()\Xl 1),Y/X2, U/XQ} as
the obvious solutions. In the As.-setting (taking Py = Z =}, AV AV =}, (Vi V)):

(A (A (X 2) 1) Y) :I?)\se ()\(Z 1) U) —> Ezp—\, Replace
( ( ( ) 1) Y) 713 ()‘ ()‘V 1) U) A Z:?/\se AV — Normalize
(Xa?Y)a! (ppY) ‘P(l)Y) >\ (VU2U)01(‘P(%U) A Z:?)\se AV — Eap—App
(Xo2Y)al(phY) 9hV) =S, (Vo2U)o (wbU) A Py  Replace
(Xo?Y)o' (ppY) 9pY) Z\ (Vi Va)a?U)al (ppU) A P — Normalize
(X V) (oY) @hY) =\ (Via*D)a (¢hU) (Vao’D)o (ph0)) A P > Deepp
(Xo?Y)ol (p§Y) =3, (Vlo’2U) LpsU) A ppY =5, (Vao?U)at (pfU) A Py

As for the the Ao case, applying twice FExp- X and Replace and then Normalize and
Dec-\ we obtain
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(X'0°Y)0?(pY) =5, (V[®U)o?(pU) A @pY =5, (Vao?U)a' (psU) A

X =3, AX' A V=5, AV

From the first flex-flex equation we obtain, by simple decomposition, the partial
solution {X/A.X1,Z/A.(A. X1 V2),Y/X5,U/X>}. To obtain a complete solution it
remains to resolve the flez-flex equation ¢} X» zise (Vao? X2)o! (9§ X2). Observe that
(102 X3)0t (9§ X2) — 1ot (0§ X2) = (e X2) — phXs and also (202 Xs)ot (9§ X2) —
(P2X2)o! (ph X2) — piXo. This, analogously to the Ao setting, gives the solutions
(X/NX1, Z/AMAX,y 1),Y/Xo,U/Xo} and {X/A\X1, Z/AAX, 2),Y/X2,U/Xa)}.

Definition 5.7 A unification system P is a As.-solved form if all its meta-variables
are of atomic type and it is a conjunction of non trivial equations of the following
forms:

(Solved) X =3, a, where the variable X does not occur anywhere else in P and
a is in long normal form. Both X and X :Z\se a are said to be solved in P.
(Flez-Flez) unsolved equations between long normal terms whose leading op-
erator are o or ¢ which can be represented as equations between their skele-
ton: Wl (X, ar,. . ,ap) =5, W - (Voby, ., by) with X, Y of atomic
type.

Remark 5.8 Consider a As.-normal term ¢ whose leading operator is either o or ¢
and with skeleton sk(c) = 1/JZ: le (X,a1,...,ap). By binding X with n, n > iy,
one obtains as a consequence of lemma 3.29, the normal form ¢ =* n+ Y 7_, jx — p.
We illustrate the situation with three simple cases of searching for solutions of flez-flex
equations.

Firstly, (---((Xo"a1)o®as) - )o'ra, =5, (- ((YoI'b1)o”by)---)odab, always
has solutions since both its sides are As.-normal terms and hence the sequences
i1,...,ip and j1,...,J, are strictly decreasing. Solutions are bindings {X/n+ p}
and {Y/n+ q}, with n > iy, ;.

Secondly, since the left-side of (- (X0 a1)0™2as) -+ )o'ra, =5, @' - LpillY is a
Ase-normal term, the sequence kq, ... , k, is strictly decreasing. Now sefect n, m such
that n > i1, m > ky and n —p=m+ Y., ji — ¢, and the bindings {X/n}, {Y/m}.

Thirdly, for @Z‘; ---@ZIIX :;se @?: ---@{fY select, for instance, bindings {X/n},
{Y/m}, such that n > ki,m >l andn+ Y _ i, —p=m+>'_ j —q.

Moreover, observe that by selecting graftings of the form {X/(H; ... H;)} (where
H,,...,H; are meta-variables of appropriate types) the term ¢ with skeleton sk(c)
is split into applications of terms with identical skeletons and left innermost meta-
variables Hy, ..., H,, such that: 1/15}’)’ o UP((Hy .. Hp),aq,. .. ,0p) =F

(Wi -l (Hyan, ), 7] (H - a)).
Let consider for instance, ((¢72 (¢! (Hi...H;))o™:))o" )0’ —*
(P (Pl H)o™ )t )a™- . (@l (@] Hi)o™)a™)os-).
Lemma 5.9 Any As.-solved form has As-unifiers.
ProOF. For simplicity we omit the analysis of types. Since solved forms appearing in
a system P define straightforwardly bindings between variables that do not appear

anywhere else in P or in terms (in long normal form), it is only necessary to prove
that flex-flex equations have unifiers.
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Let P be a system in As.-solved form including a flez-flex equation of the form
zpf: (X ay, . ap) =, zpf;; P (Y, by, ... ,by). This equation always has
solutions. Select for example bindings {X/n,Y/m} such that n > i1,m > Il and
n+> "t jr—p=m+>"!_ I, —q (see previous Remark 5.8). ||

Lemma 5.10 Solved problems are normalized for the Ase-unification rules and, con-
versely, if a system is a conjunction of equations that cannot be reduced by the
As.-unification rules then it is solved.

PROOF. It is easy to verify, rule by rule, that solved and flex-flex equations cannot be
transformed by the As.-unification rules. So solved forms (or problems) are in normal
form for the Asc-unification rules. Conversely, suppose P is a non solved system, then
P contains an equation a :ise b that is neither solved nor flex-flex. If either a or b
are not in long normal form then the rule Normalize applies . If the equation is of the
form X :?)\Se b, where X occurs in other position at P, then the rule Replace applies.

The remaining cases, where both a and b are long normal terms, are subsequently
listed using the characterization of As.-normal forms at Corollary 3.12.

Observe firstly that if a is of the form A.a’ then, since b is a long normal term, the
sole possibility to have a well typed equation is if b is of the form A.b’ in which case
rule Dec-\ applies.

Secondly, suppose that a is of the form (k a1...ap). Then if b is of the form
(1 by ...b,) then either Dec-App or App-Fail applies (remember here that both k and
1 could be omitted and p and ¢ could be zero). If b has a leading operator o or ¢
then rule Exp-App applies.

Finally, the remaining cases of equations between terms with main operators ¢ and
o are either flex-flex or can be reduced with rule Dec-p. [ |

Definition 5.11 Let P and P’ be As.-unification problems, let “rule” denote the
name of a As.-unification rule and “—""“¢” its corresponding deduction relation over
unification problems. By correctness and completeness of rule we understand the
following:

. P —rule P'implies Us,, (P') C Uss, (P) (correctness)
. P —"e P! implies Uy, (P) C Uns, (P') (completeness)

Theorem 5.12 (Correctness and Completeness) The As-rules are correct and
complete.

PRroor. Firstly, we verify the correctness of all rules.
e Dec-): is correct since grafting is a congruence on As.-terms.
e App-Fuail: is correct because of trivial inclusion of the empty set.
e Dec-App, Dec-p: are correct because grafting is a congruence on As.-terms.
e Exp-A\, Exp-App: are correct because of the properties of the As, rewriting system.

e Replace: observe that this rule corresponds to the selection of bindings in the first
order unification algorithm and its correctness is similarly proved.

e Normalize: is correct since normalization corresponds to simplification of terms
between the same equivalence class in the As.-calculus.

Secondly, we verify the completeness of the rules.
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e Dec-\: let 6 be a As.-unifier of an equation of the form A.a :ise A.b. Thus
A.0(a) :?)\Se A.6(b) and since no As.-rule could be applied at root position of these
terms then 0(a) =3, 6(b).

e Dec-App: suppose that 6 is a As.-unifier of (n a;...a,p) :?)\se (n by ...bp). Thus,
because of confluence and weakly terminating properties of the As. rewriting
system we have: 6(n ay...ap) =4, O bi...by) iff (n 6(a1)...0(ap)) =3,
(n O(by)...0(bp)) iff for all 1 < i < p, B(a;) =4, 6(b;). This means that 6 is
a unifier of a; :;SE biA...ANay :;SE bp.

® Dec-p: analogous to the former case.

e App-Fail: it follows from the sequence of logical equivalences in the proof of
completeness of rule Dec-App that if n # m then there are no As.-unifier of
(Il a1 ...ap) :?)\Se (m b1 bp)

e Ezp-): Let 6 be a As.-unifier of P and X € Twar(P) such that X : ' A — B.
Thus (X)) =a : A — B and we can assume that a is of the form \4.b with
b : B. Define ¢’ such that for all Z € Dom(0), 0'(Z) = 6(Z) and §(Y) = b for a
new variable Y & Dom(6) of type B. Then 6 is a Asc-unifier of PAX =}, Aa.Y.
Consequently 6 is a Asc-unifier of 3(Y : AT+ B),PAX =}, Aa.Y.

e Exp-App: consider P A Q/Jf: fll (X,a1,-..,ap) :7;\se (m b1...b;) and suppose
that 6 is a As.-unifier of this unification problem.

Then 6(X) = (rc; ...cs) and the interesting equation in the unification problem

becomes (m b} ...b) =5, Z: ]1((1”01 . Cs), 01, .. ,a;)) —* (m by .. by) =3,

(Q/JZJ: z711(1“,(1'1,... ,a;) wz: jl(cl,al,... , p) . 1/1 .. (cs,al,... ,a;)).
Since 1/15}’)’ e le (X,a1,...,ap) is the skeleton of a /\se—normal term then the se-
quence iy, ... ,i, is decreasing, being possible i = ir+1 only when both the k"
and k + 1" 4)’s correspond to ¢ operators. We have two simple cases to consider:
either r different from all 7; such that wf: corresponds to a o operator or r = iy
for some k such that ¢7* = o'

In the first case, let g = 0o and 4,41 = 0 and suppose that ix41 < r < 7 for some
0 > k > p such that either £k = p or Tﬁf,f corresponds to a ¢ operator. Then

J j ] j * .

wz: Z?11(1“,(1’1,... ,a,) — wz: g::ll(r,a}cﬂ,... ,a,) —* T+ Ef:kﬂ ji —
(p — k). Observe that this coincides with the definition of R; in rule Ezp-App;
in fact, if r=m—3)_,  ji+p—kandigp <m-—-3,_,  qi+tp—k>i—k
for k = p or ig+1 corresponding to a superscript of an operator o in the skeleton

thenwlj»: jl(r ay,- -5 a,) =" m.

Ifr =4 for some 1 < j < p correspondlng to a o operator, then we have
the following reduction: 1/1J” I Hr,al,...,a,) = 1/1J” o H(r,ap,...,a,) =
« Zk —p+k+37 Ji

wip . Z:Ll(gog’“a;g,... ,a;,) =" 9y =R
Thus, in the first case the equation becomes
? J
(mby...b)) =5 (m ;P ]1(01,(11,... ,ay) - 1/1 . (cs,al,... ,ay))

: ?
and in the second, (m b].. b’) :}\s
( i —ptk+307 g1 1 a

@Yo w .. (cl,al,..., ap) .- 1/1 .. (cs,al,...,a;))
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In both cases 6 is clearly solution of 3Hy,... , Hy, X :?Ase (r Hy ... Hy), selecting
H,, ..., Hj appropriately and, consequently, it is solution of the original problem
and VreRPURi E|H1, ce ,Hk,X :?)\Se (I‘ H1 .. Hk)

e Replace: its completeness is similarly proved to the first order case.

e Normalize: as for correctness its completeness is consequence of the fact that
normalization corresponds to simplification of terms between the same equivalence
class in the As.-calculus. [

6 Arithmetic properties of the \s.-unification rules

The arithmetic constraint that naturally has resulted when defining the Ezp-App As.-
unification rule is more expressive than the one of the Ao HOU setting. This, jointly
with an efficient arithmetic deductive method, speed up the verification of possible
splittings and the search for solutions in the corresponding case analysis.

For the Ao-calculus, the equation X[aj ...a,. 1] =%, (m by ...b,) has for solutions
(rHi...Hy), where r —p+n =m. In fact, 11" [a; ... a,. t"] =* L[~ 17P+n].

In [16] the Ao-calculus is presented using only the de Bruijn index 1. Thus the
detection of the previous kind of solutions is very inefficient. In fact, observe that
since 1" abbreviates (n — 1)-compositions of 1, finding the first component 1[t"~1] of
these possible solutions can be done only after realizing a process of enumeration of
the p a; components and the (n — 1) 1 of n = 1[t"!]. Since As.-terms are written
using all the natural indices, one can state that searching for redices of the unification
rules and determining solved and flez-flex equations in our unification setting are
more efficient than in the language of the Ao-calculus.

We show that the first numeric components of bindings for a meta-variable X
of solutions of equations of the form 1/}%’; ill (X,a1,...,ap) :?)\Se (m by ...by) are
determined in a unique way.

Lemma 6.1 Let n > k1, m < kp and take a skeleton 1/1?61; 1/1%11 (X,a1,...,ap) of a
Ase-normal term. @ZJ,J;; it (nan, . ap) =F n—p+Y ot g > n—(ki—kp+1) > m.
Proor. Firstly, observe that since k1, ... ,k, is a decreasing sequence, we have n >

k1 > ... >k, > m and thus k; — k, <n —m which implies m <n — (k1 — k, + 1).

Secondly, observe that Zle jr > 0. Thus the sole possibility to have n — p +
S e <n— (ki —k,+1) is being p —1 >k — kp. We consider two cases:

If p—1=ky —k, then wii...@b,jcll(n,al,... Jap) = n—p+ > g > n—p=
n—(k1—kp+1) > m. Moreover, observe that if there exists some operator ¢, say ¢ in
the sequence of the skeleton, then Zle Jr > ji > 0 which implies n—p+Zf:1 Jr >m.
If the sequence consists only of o operators, then m < k, and also n—p+ Zle jr' > m.

If p— 1> k; — k, then there exists at least one 1 <i < p such that ¢;' = ¢}’ and
1/;%':11 = o%i+1 being k; = k;;1. Thus i’:i@/}k’ (n,a;,a;41) = 1/}%’:11 (n+ji—1,a;41) =
n+ji+jir1—2 > n—(k;—k;y+1). For each of these subsequences we have the analogous
situation, obtaining for the whole sequence n—p+ > *_ j,. > n— (ki —k, +1) > m.l

Lemma 6.2 (Unicity) Take a skeleton 1/1?62 1/1%11 (X,a1,...,ap) of a As.-normal

term and the equation Q,ZJ,J;; . ﬁ (X,a1,...,ap) =4,, @by ...b,). The first numerical
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component of bindings for the meta-variable X of solutions of this equations are
unique.

PROOF. Observe firstly the possible cases for bindings {X/(n...)}:

n < kp: 1/1?62 ...@/}ill(n,al,... ,ap) —* @/}ii(n,ap). Since case n = k),
Jp _  Jp Jp
thjus Vi, = ¢k, we have ¢ (n;ap) —>n
ki1 <n <k oty cpt(nyan,. . ap) = i i (nyai, ..y ap). Since
case n = k; we have 1 = 90?917 then in both
cases: n = k; and n < Ky, zpf;; ...wi’;(n,ai,... ,ap) —
J Ji . .
1/),; k:: (Ny@ig1,y...yap) 2 n—(p—1i)+ Zf:i+1 Jr-
J j .
k< m: wk:...@b,jcll(n,al,...,ap) =*n—p+Yr_

We analyse the more general case of naturals between subscripts k. Select k;11 <

ny < k; and ki1 < n < ky, for i > 1. Then wi’; ...w,jc'll(nl,al,... Jap) = g — (p—
i)+ Y01 Jr and 1/;;1; P (nayan, .y ay) = e — (p— 1) + P e
Since ki, ...,k is a decreasing sequence we have n; < no. By previous lemma:
1/1{6’ 1/1%:11 c Pt (g, an, . a) =T A ...wi’li(nz,alﬂ,... ya;) = g —(i—1)+
> reiy1dr > n1. Thenny — (p—1) + Zle+1'j7‘ >ny—(p—1)+ 2oy n
When searching for solutions of wi’; (X an, s ap) =}, (m b1...by), one

should select a binding for X to an application whose first component is a natural
number n such that for some i k;41 <n <k; andn— (p—1i) + Zf:i-i—l jr = m. This
corresponds to searching for solutions of an integer linear problem.

By analyzing the intrinsic implementation techniques involved in our method and
that of the A\o-HOU of [10], we have observed that pre-cooked A-terms in the Ase-
calculus have linear decorations on the size of the A-terms and the magnitude of their
de Bruijn indices, while in Ao these decorations are quadratic. We don’t make any
consideration about use of efficient data structures. For a reasonable implementation
of the Ao-HOU approach, a variation of the Ao-calculus which includes all de Bruijn
indices, as the Aogp one, should be used. Additionally, variations of this calculus, as
the left-linear A.-calculus [33], are adequate for implementations since they encode
the infinite rules of the Aogp in a first-class substitution. From the theoretical point
of view, our approach is the first one to treat this problem in a natural way, because
of the simple syntax of the As.-calculus, where all de Bruijn indices are included.
But it is not the sole use of all de Bruijn indices that makes the As. approach more
efficient. Another problem in the decoration of substitution objects of the Ao-calculus
is that they are decorated with two environments that are lists of types. While the
main marks in the decoration of a term object are a sole environment and its type.
This makes decorations of As.-terms smaller than those of Ao-terms. Moreover, the
size of decorated A-terms enlarges in an inadequate way when normalizing via the
Ao-calculus, because there exist rules in the Aco-calculus, that are expensive as they
enlarge the number of substitution objects to be marked in decorated terms.
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7 Future Work and Conclusion

As pointed out in [16], the use of explicit substitution enables one to translate higher
order unification problems into first order ones. This leads to simpler development
and analysis of HOU methods. The proposed unification method and its further
developments are relevant because of the necessity of analyzing, developing and im-
plementing HOU procedures to improve the performance and expressiveness of current
higher order deductive systems. Moreover, we think that our work is important due
to the necessity of comparing the advantages and appropriateness of both the As.-
and Ao-style of explicit substitution in a practical and relevant setting incrementing
in this way the theoretic knowledge about the properties of the involved calculi.

Advantages of the here proposed unification method, with respect to the one formu-
lated by Dowek, Hardin and Kirchner in [16], are mainly consequences of the inherent
differences between the Ao- and As.-styles of explicit substitution.

1. In As.-unification we remain close to A-calculus as we don’t use more than one
kind of objects: term objects. We don’t use substitution objects as is done in Ao-
unification. From this point of view, we think that our approach is semantically clear
because the principal intention of any unification via explicit substitution in some
version of A-calculus is, of course, to solve unification problems in pure A-calculus.

2. Because of the fact that for both methods, the Normalize unification rule depends
on the subjacent properties of the As, and Ao rewrite rules, correspondingly, and that
the underlying reduction processes based on the As.- and Ao-calculi are incomparable
(see for instance [28]), one cannot say that As.-unification is more (or less) efficient
than the unification setting proposed in [16]. But at least one can state that searching
for redices of the unification rules (and determining solved and flex-flex equations) is
more efficient, since As, terms are written using natural indices. Of course, in the
praxis, this problem can be easily solved in the Ao setting by overloading the notation
n to represent the corresponding Ao-term (1[1"~!]) incorporating to the unification
mechanism the necessary built-in linear arithmetic deductive method.

3. We think that the arithmetic constraint that naturally results when defining the
Exp-App unification rule in the As, setting is more expressive than the one of the Ao.
This, jointly with an efficient arithmetic deductive method, speed up the verification
of possible splittings and the search for solutions in the corresponding case analysis.

In order to obtain a HOU procedure useful in practice, an efficient and complete
unification strategy was developed in [2]. In [16] the rules for unification of Ao-terms
are related to HOU on the pure A-calculus by the pre-cooking and back translations.
This was also done for the As.-calculus in [2].

In the sequel we present in an informal way one example of how to apply our
unification method to HOU problems in the A-calculus.

Observe that unifying two terms a and b in the A-calculus consists in finding a
substitution 0 such that 6(a) =g, 6(b). But in A-calculus, Ao and As., substitution
is different from the first order one or grafting, as was shown in Section 2. Thus
using the notation of substitution in Definitions 2.11 and 2.14 a unifier in A-calculus
of the problem A.X :E?n A.2 is not a term ¢ = X such that A.t :};n A.2 but a term
t = 6X such that #(A.X) = X\0T(X) = A2 as {X/t}A\.X = A{X/tT}X = A\t
and not A.t. This observation can be extended to any unifier and by translating
appropriately A-terms a,b € Agp(X), the HOU problem a :Z?n b can be reduced to
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equational unification. In [16] a translation called pre-cooking from Agp(X') terms into
the language of Ao is given such that searching for solutions of the corresponding Ao-
unification problem corresponds to searching for solutions of the higher order problem
a :an b. In the next example, we illustrate informally the analogous situation in As..

Example 7.1 Consider the higher order unification problem \.(X 2) :én A.2, where
2 and X are of type A and A — A, respectively. Observe that applying a substitution
solution € to the Agp(X)-term A.(X 2) gives §(A\.(X 2)) = A.(6T(X) 2). Then in
the As.-calculus we are searching for a grafting 6’ such that 6’ (\.(03(X) 2)) =xs. A.2.
Correspondingly, in the Ao-calculus the term \.(X 2) is translated or pre-cooked into
A.(X[1] 2). Then we should search for unifiers for the problem X.(¢§(X) 2) =3, A.2.

Now we apply the As.-unification rules to \.(p3(X) 2) :?Ase A.2.

(P3(X) 2) =5, 2 > Dec—2
Y (3 (X) 2) :is,; 2AX :;Ss \Y — Hup A
HY((p%()\.Y) 2) =As. 2A X =As. AY — Replace
W (piY)o'2 =5, 2AX =5, AY — Norm.
@Y (piY)ol2=], 2AX =}, AY) A (Y =}, 1VY =], 2 = Bap—app
(pino'2 =5, 2AX =, A1) vV ((¢i2)0'2 =}, 2AX =5, A-2) = Replace
(2=%,. 2AX =}, AV (2=}, 2AX =}, A2) = Norm.

In this way substitution solutions {X/A.1} and {X/A.2} are found.

To complete the analysis observe that by definition of substitution (Definitions 2.11,
2.14) and B-reductionin Agp(X): {X/A1}A.(X 2)) = A{X/ADTHX) 2) =
A1 2) = A(A1 2) =5 A2 and {X/A2}(A.(X 2)) = A.({X/(A\2)T}(X) 2) =
A(A2 2) = A (A3 2) =5 A.{1/2}(3) = A\.2.

In general, before unification, a A-term a should be translated into the As.-term a'
resulting by simultaneously replacing each occurrence of a meta-variable X at position
1 in a with np’é“X, where & is the number of abstractors between the root position of
a, €, and position i. If £ = 0 then the occurrence of X remains unchanged.

Example 7.2 We turn back to the HOU problem given in the introduction: F(f(a)) =’
f(F(a)). In the language of Agp(X) this problem can be seen as (X (2 1)) :;377
(2 (X 1)), where both X and 2 are of type A — A and 1 is of type A. Ob-
serve that since there are no As in the problem, the equation remains unchanged:
(X (2 1) =, (2 (X 1)),

For simplicity we omit existential quantifiers. Here are the As.-unification steps on
this problem (Y is of type A):

(X (2 1) :?*Ss (2 (X 1))AX =}, Y = Fap—A
(AY (2 1)) :}\Se (2 ()\Y 1)) NX :(.;\Se AY _)Repla,ce
Yol(2 1) =}, 2 Yo'1)AX =}, \Y — Norm.

Yol(2 1) =}, 2 Yo'1)AX =, AYA(Y =}, 1VY =}, (3 Hy))

Observe that other possible cases do not produce solved forms. By Replace and
Normalize we obtain ((2 1) =5, (2 1)AX =}, A1)V ((2 Hio'(2 1)) =5,
(2 (2 Hiol1))A X :?)\Se A.(3 Hy)), from where we have the first solved system
corresponding to the identity solution: {X/A.1}.

Other solutions can be obtained from the equational system (2 Hyo'(2 1)) =%,
(2 (2 Hiol1))A X :?)\Se A.(3 Hy). In fact, by Dec-App and Ezp-App we obtain:

Hyo'(2 1) =}, (2 Hio'1)AX =}, A.(38 Hi)A(H, =}, 1V H, =}, (3 Hy))
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Again other possible cases do not produce solved forms. By Replace and Normalize we
obtain ((2 1) =3, (2 1)AX =}, A(3 1))V ((2 Hyo'(2 1)) =5, (2 (2 Hyo'1))A
X =}, A\.(3 (3 Hy))), from where we have the second solved system corresponding
to the grafting solution: {X/A.(3 1)}. Observe that this corresponds to the solution
F = f; in fact, observe that by replacing X with A.(3 1) in the original unification
problem we obtain (A.(3 1) (2 1)) :;Se (2 (A\.(3 1) 1)), from where it is clear that
de Bruijn indices 3 and 2 correspond to the same operator. Additionally, note that
(A(31) (21)—=5(2 (2 1)and (2 (A\(3 1) 1)) =5 (2 (2 1)).

Subsequently, by similarly applying Dec-App, Exp-App, Replace and Normalize to
the equational system ((2 Hyo'(2 1)) =}, (2 (2 Hao'1)) A X =}, A.(3 (3 H3)))
we obtain the third solved system giving the grafting solution {X/A.(3 (3 1))} cor-
responding to the solution F' = ff. The unification process continues infinitely pro-
ducing solved systems corresponding to the grafting solutions {X/A.(3 (3 (3 1)))}

(ie. F= f1), {X/\(3 (3 (3 (3 1)} (ie. F = ff[ ), etc.

In [10] it was shown that for an efficient implementation of Ac-HOU, the use of
terms decorated with their corresponding types and environments is useful. For in-
stance, observe that for applying unification rules such as Fzp-App and Exp-JA, it is
necessary to know the types and the environments of subterms of the current unifi-
cation problem. In relation with that implementation, where repeated execution of a
type-checking algorithm is avoided by decorating terms, As.-HOU has the clear ad-
vantage of having less expensive decorations than those of Ac-HOU. This is the case
because decorations of substitution objects are more expensive than those of term
objects.
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