International Journal of Foundations of Computer Science
© World Scientific Publishing Company

AN EXTENSION OF AN AUTOMATED TERMINATION METHOD
OF RECURSIVE FUNCTIONS*

FAIROUZ KAMAREDDINE

Department of Computing and Electrical Engineering, Heriot-Watt University,
Edinburgh EH1/ 4AS, Scotland.
fairouz@cee.hw.ac.uk

and

FRANCOIS MONIN

IRISA, Campus de Beaulieu, Rennes Cedex 35042, France.
moninQirisa.fr

Received (received date)
Revised (revised date)
Communicated by Editor’s name

ABSTRACT

Inductive proofs are commonly used in automated deduction systems or functional
programming, such as for instance the ProPre system, for establishing the termination of
recursively defined functions. Such proofs deal with the structural orderings of the term
algebras that define the domain of the functions. However there exists other interesting
functions whose termination requires different underlying orderings. To treat a class of
such functions that are not taken into account by systems such as ProPre, we develop
termination properties that can be shown automatically. In contrast with the ProPre
system that builds formal trees based on inductive proofs, we generate measures that
satisfy an extended termination property and well-founded orderings which ensure the
termination of the functions.

1. Introduction

Termination of functions defined on recursive data structures is an important
property in the development of correct software such as functional programming and
automated deduction. The standard approach to show the termination of recursively
defined functions is to prove that the arguments in each recursive call are smaller
than the initially given input with respect to a well-founded ordering.

Usually, most termination methods use predefined orders, or lexicographic com-
binations of it (see e.g. [30, 24, 26]), or orderings given by the users (see e.g. [3, 6]).
However, in the standard approach, finding suitable orderings is essential for the
automation of the termination. In [8] a method was developed to automatically syn-

*Supported by EPSRC GR/L15685. We are grateful for the anonymous referees for their useful
comments.

thesise suitable measures based on polynomial orderings and in [22] a termination
procedure was proposed to generate orderings with the use of ordinal measures.

The latter method comes from the analysis of another approach, the formal
approach, that relies on formal termination proofs [21] built in a natural deduction
style. The formal approach is essentially used to allow the extraction of A-terms that
compute the functions as codes of programs (see e.g. [16]). Based on this paradigm
of proofs as programs, the ProPre system, designed in [20], shows the automated
termination of a recursive function by building a (partial) formal tree, associated
with the specification of the function, which satisfies the so-called right terminal
state property. Due to this property, ProPre is then able to derive, from the partial
tree, a complete formal proof tree ensuring the termination of the function.

It has been shown in [22, 10] that it is possible to extract well-founded order-
ings, namely ordinal measures, from the above formal proofs devised in the fully
automated system ProPre [21, 20], such that the arguments in each recursive call
of the given function are smaller than the initially given input (i.e., the calls de-
crease wrt the well-founded ordering). The extraction of a special class of measures,
called ramified measures, appears as a useful way to find out new orderings as these
measures are in particular not limited to lexicographic orderings.

In this paper we propose to extend both the termination procedure of ProPre
and the extraction of new orderings. In contrast to earlier work where the synthesis
of suitable measures especially relied on ProPre’s procedure, we do not work in
the context of formal proofs but in a setting released from the particular logical
framework of ProPre. The new context allows us to construct trees associated with
the specifications of functions which must satisfy a property, called the hierarchical
property. Instead of finding a formal proof, we can now directly infer measures,
from the trees, whose decreasing property is ensured by the hierarchical property.

Work already carried out on the concept of trees developed from specifications
includes: completeness of definition (see e.g. [9]), test sets and inductive reducibility
(see e.g. [23, 13, 2]) and ProPre itself. But such trees have mainly been used for
proving inductive properties for equational or conditional theories, or in the case
of ProPre, trees appear in a formal contert where they takes advantage of the
structure of the function definition. However, the main property that allows the
system to find termination proofs of recursive functions is not simply the definition
of trees but the right terminal state property that they must satisfy. This one gives
the soundness of the method and also characterises in some sense the class of the
recursively defined functions that can be proven terminating in the system.

Like the above approaches, we make use of some kind of trees as in [22] with some
refinements, in particular to deal specifications of incompletely defined functions.
However, the novelty of our termination method relies on the hierarchical property
developed in this paper and on the introduction of new measures.

Functional programs can also be regarded as term rewriting systems. However,
due to the special forms of functions, it seems more convenient to consider in the case
of functional programming, well-founded orderings for which only the arguments of
the function and the recursive subcalls are taken into account. Compare this with

rewriting systems where the usual orderings are considered for all the left-hand
sides and right-hand sides of the terms, as it is for instance with the recursive path
ordering [5]. In particular, the rewrite terms that are proven terminating by such
orderings are characterised by the simple termination property [28], namely the
monotonicity and the subterm property. Our results imply that this condition is
not necessary and we are able to deal with a larger set of functions even those whose
termination does not require these notions of simple termination, monotonicity and
subterm property.

The above mentioned standard approach is often used by theorem provers such as
the well-known Nqthm prover [3], which aim at establishing the decreasing property
of measures on the recursive calls of the algorithms. But usually the measures are a
lexicographic combination of a fixed ordering or are given by the user. The present
method aims at providing suitable measures in an automated way and therefore
could be used by other theorem provers by providing the measures obtained from
the formal proofs in ProPre [22, 12].

Hence, our work has the advantage that now we can automatically establish:

e the termination of all those functions that could be shown terminating by
ProPre (and hence whose specifications are complete and whose termination
methods require structural induction),

e the termination of functions whose specifications are not necessarily complete
and whose termination requires other orderings than those used in structural
induction, simple termination, monotonicity and the subterm property,

e suitable measures that could be passed to other theorem provers to be used
in establishing the decreasing number of recursive calls.

The paper is divided as follows:

e In Section 2, we introduce the ProPre system where the formal framework has
been fully abstracted while keeping the termination part. This gives the term
distributing trees for specifications of recursive functions, and the abstracted
terminal state property satisfied by term distributing trees.

e In Section 3, we extend the notion of a term distributing tree into the recursive
term distributing tree in order to consider recursive functions that may be
incomplete in the sense of [29]. We also introduce the split specifications that
enable us to enlarge the set of term distributing trees.

e In Section 4, we introduce a termination property called the hierarchical prop-
erty. We show that our notion strictly includes the ProPre notion of the right
terminal state property by establishing in Theorem 1 that if a distributing
tree A has the terminal state property in the system ProPre, then A has the
hierarchical property and that the opposite does not hold.

e In Section 5, in order to make sense of the concept of the hierarchical property
satisfied by the recursive term distributing trees, we explain how it is possible

from specifications, to define ordinal measures against trees. Our main theo-
rem of this section, Theorem 2, establishes that our new notion of hierarchical
property implies that the measures decrease in the recursive call of the func-
tions, and as a consequence enable us to establish the termination of functions.
We also explain why the ramified measures that come from the analysis of the
ProPre system are not suited in the extended context. The inadequacy of the
earlier measures and the necessity to build new ordinal measures characterise
in some sense the new class of functions that extend those functions whose
termination can be established in ProPre.

2. The ProPre system in an abstract context

The ProPre system is a program synthesis system presented in [20, 21, 19] based
on the paradigm of Programming by Proofs. In this approach programs are coded
by A-terms extracted from proofs of termination of functions defined by a set of
equations. The extraction is obtained by syntactical termination proofs in a formal
deduction style exploiting the Curry-Howard correspondence. The theory can be
found for instance in [16, 18, 17, 25]. In this system, the user can specify data types
and functions in an ML like syntax, but when compiling, a fully automated proof
search strategy is used. The input of that search strategy is a specification of a
function and the output is either a termination proof providing a A-term that com-
pute the function or an error message in case of failure. Notice that the termination
method of a first version of ProPre was also implemented in a former version of Coq
in [19] to deal with first order definitions of functions.

The analysis of the formal proof trees obtained in the system made it possible to
relate measures [22, 10, 11] that have the decreasing property in the recursive calls of
the specifications of the functions. These measures can be defined from distributing
trees, devised in [20], which are partial trees; and their decreasing property relies
on the notion of a right terminal state property that must satisfy the distributing
trees in ProPre in order to be extended into a complete formal proof trees.

Though the specifications are first order equations, the logical framework of
the programming language designed in ProPre is a second order language which is
mandatory by the theory [16, 25]. That is, in order to associate A-terms to functions,
the system builds proof trees with second order formulas which are characterised,
as earlier mentioned, by the right terminal state property. An analysis in [12] shows
that it was possible to abstract all proposition informations from each proof tree
so that one can look at the skeleton form of the proof tree, called term distributing
tree, where now only first order is involved giving rise the notion of abstracted
terminal state property instead of the right terminal state property. Notice that
the study of [12] has shown that one can also go back to the former proof trees
from the skeleton tree and the abstracted terminal state property. Therefore things
become clearer since in some sense the termination part can be further investigated
independently of the extraction part of A-terms. The connection between formal
proofs and abstracted property with measures can be illustrated by Figure 1.

Because in this paper we consider the termination part and not the extraction

Formal proof trees
and
Right terminal state property

Term distributing trees
and
Abstracted terminal state property

Formal termination proofs

and lambda-terms A Termination with ordinal measures

Figure 1: A connection between the two approaches.

part of A-terms, we will describe in this section the right part of the above picture.
We refer to [25, 20] for details on the extraction of formal proofs in ProPre and
of the associated A-terms from function specifications We refer to [12] for detail on
how one can establish the correspondence of the two parts in the above picture.

Note that the definitions presented in the section below, that are basic defini-
tions, do not only concern ProPre but our work too.

2.1. Specifications

Before presenting the term distributing trees and the abstracted terminal state
property in the next section, we introduce the specifications of functions that can
be defined in the system ProPre. Although they play an important role in the
functional programming language of the system ProPre, we do not mention the
definition of data types of ProPre for the sake of simplicity, but we will assume
for our purpose a set of sorts for the definition of the types of the functions. We
will also use here, the terminology of rewrite systems. Though the first definitions
below apply to higher order as well, these are useful in the presentation of the
specifications that are first order definitions of the functions considered in ProPre.

Definition 2.1. (functions) We assume a set F of function symbols, called signa-
ture, and a set S of sorts. To each function f € F we associate a natural number
n that denotes its arity and a type sq,...,s, — s with s,s1,...,s, € S. We may
write f : s1,...,8, — s to introduce both the function f and its type. A function
is called constant if its arity is 0. We assume that the set of functions F is divided
into two disjoint sets F. and F;. Functions in F, (which includes the constants)
are called constructor symbols or constructors and those in Fy are called defined
function symbols or defined functions.

Definition 2.2. (terms) Let X' be a countable set of wvariables disjoint from F.
We assume that only one sort is associated to each variable of X and that for each
sort s there is a countable number of variables in X" of sort s. If s is a sort and if
F and X are respectively subsets of F. U F; and X, then the set T (F, X), of the
terms of sort s is the smallest set such that:

1. every element z of X of sort s is a term of sort s,

2. if f is a function in F of type si,...,s, — s and if t;,...,t, are terms
respectively of sorts si,... ,s,, then f(t1,...,t,) is a term of sort s.

If X is empty, T (F, X)s is also denoted by G(F)s. The set T (F, X) is LEJST(F, X)s
s

for every subset F' of F and every subset X of X. An element of G(F);, is called
a ground term (of sort s); i.e., no variable occurs in a ground term. An element of
T(F.,X)s is called a constructor term (of sort s); i.e., every function symbol which
occurs in a ground term is a constructor symbol. An element of 7 (F., X')sNG(F)s =
G(Fe)s is called a ground constructor term (of sort s). If ¢ : s denotes a constant
(of sort s), i.e. its arity is 0, the constant term c() (of sort s) is also denoted c. For
each term ¢, Var(t) denotes the set of variables that occur in ¢.

Definition 2.3. (substitutions) A sorted ground substitution o is a substitution,
i.e. a mapping from the set X" of variables to the set of terms 7 (F,X), such that
for every sort s and every variable z of sort s, o(z) is a ground term of sort s. A
sorted constructor substitution o is a substitution such that for every sort s and
every variable z of sort s, o(z) is a constructor term of sort s.

Any substitution o from Definition 2.3 can be extended, as usual, into a mapping
from T (F,X) to T(F,X), such that o(T(F,X)s) C T(F,X)s for each sort s.
Definition 2.4. (rewrite system) A rewrite system R is a subset of 7(F, X) x
T(F,X) with Var(r) C Var(l) for each element (I,r) of R. An element (I,r) of
R is called a rewrite rule and is denoted by I — r. A rewrite rule [— r is called
left-linear iff each variable occurs only once in the left-hand side [of the rewrite rule
[— r. A rewrite system is non overlapping iff no left-hand sides unify each other.

In functional programming languages close to ML that use data types, functions
are described by sets of equations whose terms have the same type, and the argu-
ments of the functions are constructor terms. The specifications of the functions
can be described in term of rewrite systems that correspond to first order equations:
Definition 2.5. (specification) A specification or a (sorted) constructor system
& of a function f : s1,...,s, — s in Fy is a non overlapping rewriting system of
left-linear rules {e; — €/,... ,e, — e},} such that for all 1 <7 < p, e; is of the form
flte, ... ty) with t; € T(Fe, X)s;, 5 =1,...,n, and €] € T(F. U Fq, X)s.

The expression sorted in the above definitions may be omitted, and we will say
constructor substitution instead of sorted constructor substitution for short.

Definition 2.6. (recursive calls)

Let & be a specification of a function f : sy,...,s, = s. A recursive call of f is a
pair (f(t1,... ,tn), f(u1,...,u,)) where f(t1,...,t,) is a left-hand side of a rewrite
rule of £ and f(ui,...,u,) is a subterm of the corresponding right hand side.

To illustrate the above definitions with examples, let nat € S be the sort of
natural numbers, with the constant 0 in F, of type nat and the constructor successor
s : nat — nat in F.. Let bool be the boolean sort in S, the constants true and
false in F. be of type bool, and the function not : bool — bool be in Fy; with the
specification given by the usual rules: not(true) — false, not(false) — true.
Example 2.7. Let Ack : nat,nat — nat be the Ackermann function in Fy. A

specification &€ 4.1, of the function Ack is given by the rewrite rules: Ack(0,y) — s(y),
Ack(s(x),0) = Ack(z,s(0)), and Ack(s(x), s(y)) = Ack(x, Ack(s(x),y))-

The three recursive calls of the above specification are (Ack(s(x),0), Ack(x, s(0)));
(Ack(s(x), s(y)), Ack(s(x),y)); and (Ack(s(x), s(y)), Ack(z, Ack(s(x),y)))-

Note that the function Ack is completely defined in the following sense: for each
(w1, ws2) in G(Fe)nat * G(Fe)nat there is a left-hand side Ack(ty,t2) of a rewrite rule
of the specification €4, and a substitution ¢ with (¢(t1),¢(t2)) = (w1, ws). This
corresponds to the completeness of definition in [9] (see also e.g. [29]). We give now
another example of a specification, coming from [1], whose definition is incomplete.
Example 2.8. Let &, be the specification of the function evenodd : nat,nat —
bool in Fy with the rewrite rules: evenodd(z,0) — not(evenodd(x, s(0))),
evenodd(0,s(0)) — false, and evenodd(s(z),s(0)) — evenodd(z,0).

The specification &, is incomplete as no left-hand side of the rules of the spec-
ification matches the term evenodd(u,s(s(v))) for (u,v) in G(F;)nat * G(Fe)nat-
According to the second argument, the evenodd function computes either the even
function or the odd function. The two recursive calls of the above specification are
(evenodd(z,0), evenodd(z, s(0))) and (evenodd(s(z), s(0)), evenodd(z,0)).

2.2. Term distributing trees and the terminal state property

We present the term distributing trees of [22] which can be viewed as a skeleton
form of partial trees built in ProPre [20] where all proposition informations have
been abstracted. A lot of information is lost from the proof trees by this abstract-
ing operation and different formal trees may reduce to the same term distributing
tree [12]. But all the termination information from the formal proof trees is fortu-
nately recovered by our new notion of terminal state property in Definition 2.18.

Definition 2.9. (term distributing trees) Let £ be a specification of a function
fist, ..., sy, = s. A term distributing tree A for £ is defined as follows:

1. The root of A is a tuple of the form (z1,... ,x,) where z; is a variable of sort
s; for each 7 < n;

2. eachnode of A is of the form (¢, ... ,t,) and there is a variable 2’ of a sort s’ in
the term f(t1,...,t,) such that the set of children of the node, for z}, ...,z
not in t1,...ty, is {(t1, ... t,)[C(x),...2)) /2], C :s),... s = s € Fc}.

3. each leaf (t1,...,t,) of A is exactly one left-hand side f(¢,...,%,) of an
equation of £ (up to the root function symbol f and the renaming of variables
of the equations).

For instance if (s(z),y) is a node in a term distributing tree where s is the
successor function, then its two children can be either of the form (s(0),y) and
(s(s(z")),y), or of the form (s(x),0) and (s(z),s(y’)). An example of a distributing
tree is given with Example 2.11 below using also Notation 2.10. The following
notation will be particularly useful for the next Section and for the definition of
ordinal measures in Section 5.

Notation 2.10. Let £ be a specification of a function f : s1,...,s, — s, and take
a term distributing tree A of the specification £. If b is a branch in A from the root

0, i.e. of the form (z1,...,x,), to a leaf #’, we then will use the following notation
(01,21),-.,(Or—1,2}_;), 0k to denote the branch b with 6; =0, 6 = 0', where
denotes the variable ' for the node 6; in clause 2 of Definition 2.9 for every i < k.
Example 2.11. (example of term distributing trees) A distributing tree A of
the Ackermann function is described in Figure 2.

11 :((z,9);7)

2,1 : (0,) 0221 ((s(2"),9);)
b -
031 : (s(z'),0) O3 : (s(z'),s(y"))

Figure 2: Term distributing tree of & sc-

The definition of term distributing trees leads to the following:
Remark 2.12. (ProPre deals with completely defined functions) Let f :
$1,---,8, — § be a function with specification £. Let A be a term distributing tree
of £. For each (w1,...,wy) of G(Fe)s, *...xG(F,)s, there is one and only one leaf
0 of A and a ground constructor substitution ¢ such that ¢(0) = (w1, ... ,wy)-
This means in particular that if one wants to associate a term distributing tree
to a specification &, then £ must be completely defined.
Fact 2.13. The Ackermann function of Example 2.7 is completely defined and has
a term distributing tree.
Fact 2.14. The evenodd function of Example 2.8 is not completely defined and
hence there is no term distributing tree associated to its specification &,.

In ProPre, the termination method deals with inductive proofs that require the
completeness of the functions for the extraction of A-terms. However this restriction
can be removed in the new setting where Clause 3 of Definition 2.9 will be modified
in the next section so that the termination method will become insensible to the fact
that the function is completely or incompletely defined. Note that the algorithm
devised in [29] was probably the first efficient algorithm to test whether a definition
of a function is ambiguous and/or complete. However, the termination method here
is insensible of the completeness of a definition of a function.

Remark-Notation 2.15. Let A be a term distributing tree for a specification
and b= (61,21),...,(0i—1,%1-1),6; be a branch from the root 8; of A to a leaf 6;.

e Then for each node 6;,6; with 1 <4 < j </, there exists a constructor sub-
stitution op, g, such that oy, ¢,(6;) = 6;. Furthermore we have the following
equality oy, g, 0 09; 9, = 09, 0, for all i <j <k <.

e If a node 6; in the branch b matches a term u of a recursive call (¢,u), then
the substitution will be denoted by pg; -

Notation 2.16. For a term distributing tree A of a specification and a left-hand
side ¢ of an equation of the specification, we will use the notation b(t) to denote

the branch in A that leads to the leaf ¢’ (which is a tuple) such that ¢ = f(t').
Conversely if b is a branch of A, L; will denote the leaf of the branch b.

The rest of this section is devoted to the new terminal state property that char-
acterises the formal proofs in ProPre abstracted in the present setting (part B of
Figure 1). We do not recall ProPre’s notion of right terminal state property (part
A) because it involves sophisticated second order formulas which are not necessary
for our purpose. This notion however can be found in [20].

An effective measure m on the terms ranging over natural numbers, closed under
substitutions (i.e. m(u) > m(v) implies m(o(u)) > m(o(v))) is used in ProPre.
This is made explicit by the following size measure | . | that consists, for each
term ¢, in counting the number of its subterms including ¢ itself:

i, = {1 ift e X,
FTU 14 tlg 4+ tale it =gt tn), g € Fe.

Such a measure or variants are often used as for instance in Nqthm [3] with
the function count or in [30] although the ordering is a fixed one. In contrast with
mentioned works where the ordering is a fixed one, it turns out that it is not the
case in ProPre as other more complex orderings, called ramified measures in [22],
can be extracted from the formal proofs obtained in the system.

An auziliary ordering C on terms is introduced to deal with the above measure.
Definition 2.17. (the ordering relation C) Let u,v € T(F., X); for a given
sort s. We say that v C v iff: (a) |u|x < |v|#, and (b) Var(u) C Var(v), and (c)
u is linear.

The relation C is only used as a part of the terminal state property but does
not correspond to the general ordering ensuring the termination of the functions
obtained in ProPrein part B. As mentioned, this one has to be obtained in relation
to the full statement of the abstracted terminal state property defined below. We
recall that we will use Remark-Notation 2.15 and 2.16: 4, 9,, Pg; us- - - -

Definition 2.18. (abstracted terminal state property) Let 4 be a term dis-
tributing tree for a specification. We say that A has the abstracted terminal state
property if there is an application y : A — {0, 1} defined on the nodes of A such that
u(L) = 0 for each leaf L, and for all recursive calls (¢,u), there is a node (0, z) in
the branch b(t) with pu(f) = 1 such that § matches u with pg () C or,,,,¢(z) and
for all ancestors (¢,z') of 6 in b(t) with (') = 1, we have pg: ,(2') E op,,,,0'(2).
Example 2.19. Take the term distributing tree of the Ackermann function of
Example 2.11 given in Figure 2. Let pu(61,1) = p(f2,2) = 1. Using Definition 2.17,
Definition 2.18 applies to the term distributing tree of the Ackermann function.

For simplicity, we will use the same terminology in both part of Figure 1, and drop
the term abstracted as no confusion will be possible. In the same way that the right
terminal state property in part A makes sense in the formal context, the above
definition makes sense with ordinal measures. That is, it is possible to associate
measures to distributing trees that satisfy the above property, decreasing in the
recursive call of the functions. The connection between terminal state property and

the decreasing measures is postponed until Section 5 where it will be done in the
context of the new measures and the hierarchical property defined further.

3. Recursive distributing trees

This section modifies the concepts of distributing tree while the main core of the
termination method will be given in the next sections. We take advantage of the
connection shown in Figure 1. As earlier mentioned, ProPre deals with complete
definitions in the sense of [29] using formal proof trees based on inductive methods
and characterised by the right terminal state property (part A of Figure 1). Instead
of formal proofs we will still consider trees but in the abstract context where ordinal
measures will be associated and for which the decreasing property in the recursive
calls will ensure the termination of the algorithms. In the latter case the definitions
of function do not need to be complete. This will allow us to introduce recursive
distributing trees. The second refinement consists in enlarging the set of candidate
trees for the same specification by introducing split specifications as follows:

Definition 3.1. (split specifications) Let £ be a specification of a function f :
S1,..+,8n = 8. A split specification £ of £ is a specification of the same function
f:s1,...,8, — s such that for every equation (¢',u’) of £ there is an equation
(t,u) of £ and a substitution o such that (o(t),o(u)) = (¢',u’').

A term distributing can be associated indifferently to a specification or to one
of its split specifications due to the following lemma:
Lemma 3.2. (relating specifications and split specifications) Let £ be a
specification of a function f : s1,...,s, — s and let £ be a split specification of £
which is complete. f is terminating for the specification &’ iff f is terminating for
the specification &.
Proof: «) is clear. For =), we assume that f is non terminating for £. So there
is an infinite sequel t; — to — ... — t,, — ... coming from the rules with the
specifications of defined functions and £. Consider each i such that ¢; = C[o(1)]
and t;41 = C[o(r)] where o is a substitution, a context C' and an equation I — r
of & with [of the form f(u1,...,uy). But £ is complete, so there is an equation
of I' = r' of £ and a substitution 7 such that 7(I') = o(l). According to the
definition of the split specification, there is an equation (¢, ") of £ and a substi-
tution p with (p(I"), p(r')) = (I',r"). As & is non-overlapping we have Top = ¢
with (I",r") = (I,r) and so o(r) = 7(r'). Therefore we can write t; = C[r(I')] and
tiv1 = C[r(r")], and we deduce that f is non terminating for &£’. |

Note that a specification is a split specification of itself. In the rest of the paper
we may use the expression specification to denote both a specification or a split
specification. Now, we introduce the recursive distributing trees that correspond to
the term distributing trees but where a condition of the definition is weakened, and
we give two examples after the definition.

Definition 3.3. (recursive distributing trees) Let £ be a specification of a
function f : s1,...,8, = s. A recursive distributing tree A for £ is defined by:

10

1. The root of A is tuple of the form (z1,...,x,) where x; is a variable of sort
s; for each ¢ < n,

2. eachnode of A is of the form (t1,. .. ,t,) and there is a variable 2’ of a sort s’ in
f(t1,... ,tn) such that the set of children of the node, for variables z, ... , 2/
not in t1,...ty, is {(t1,...tn)[C(z],...zL)/z'], C:sy,...,sl. = s € Fe},

3. There is an injective mapping Z between the set of the left-hand sides of the
equations and the set of leaves of A, with Z(f(t1,... ,t,)) = (t1,... ,tn), for
each left-hand side f(¢1,... ,t,) of an equation (up to a renaming of variables).

Note that a term distributing tree is also a recursive distributing tree and that
the same notations in the earlier section apply for recursive distributing trees. For
a recursive distributing tree 4, we will note A’ the associated tree for which the
leaves of A that have no antecedent by the application Z are removed.

Example 3.4. (a recursive distributing tree for a specification) A recursive
distributing tree for the specification of the function evenodd is described in Figure 3
with an associated tree (where the ® symbol denotes the removed leaves).

01: ((z,y);9)
01,1: (x,0) 01,2 ((z,s(y"))y")
b1
02,1 ((w,5(0)),z) (z,5(s(y"")))
‘l .
03,1 : (0,5(0)) 03,2 : (s(z),s(0))
b2 b3

Figure 3: Recursive distributing tree of £, and the associated tree.

Example 3.5. (a recursive distributing tree for a (split) specification) In
Figure 4, we give a recursive distributing tree for a split specification of the function
evenodd with its associated tree.

01: ((z,y)i=

)
o]
; 01,20 ((s(z'),

01,0 ((0,9);9) Y);y)
02,1 : (0,0) 02,2 (0,8(y"),y') O23: (s(2'),0) O24: ((s(z),s(y"));y")
e
03,1 : (0,5(0)) (0,5(s(y"))) 03,2 (s(2'),5(0)) (s(z'),s(s(y"")))
bz ® b4 ®

Figure 4: Recursive distributing tree of a split specification of &, and its associated
tree.

Work has been done around the concept of recursive distributing tree with the
concept of completeness of definition (e.g. [9, 29]) or test sets (e.g. [23, 13, 2]).
However the main extension here relies on the establishment of the termination
property and the associated ordinal functions that can also be defined on term
distributing trees (part B of Figure 1). Therefore we will show that the termination
method extends the method of the earlier section.

4. Extending the ProPre terminal state property

We want take advantage of the method of ProPre but given in the new setting
(part B of Figure 1) instead of the former context (part A). We believe that it is
easier to investigate ordinal measures as they are more flexible, at least in the present
context, than the formal proofs which carry information that is not necessarily
related to the termination part. We use the structure of the trees and introduce
a termination property, called hierarchical property. This property allows us to
show the decreasing property of measures in the recursive call of the functions and
therefore the termination of these functions.

Let us consider an inductive data type D defined in ProPre. This gives rise to
natural structural orderings according to its buidling (see [25, 20]). Let us denote
< such an ordering. Based on an usual induction schema, it allows a property P(z)
to be proven for every x by first showing P(c) for each constant ¢ of type D and
then proving P(cf(u1,-..,un)) for each constructor ¢f assuming P(v) with v <
cf(ur, ... ,un). This can for instance be applied when P expresses the termination
property of the Ackermann function of Example 2.7.

Well-founded orderings are particularly suited for termination using inductive
proofs and as it is claimed in [25] any other well-founded orderings are actually
difficult to find automatically. As a simple illustration, the function equal to O
whose dummy specification & can be described as follows:

fO0) = f(s(0)); f(s(0)) = f(s(s(0)); f(s(s(z)) = 0.
Although a well-founded ordering can of course be easily found by a human in this
case, it is difficult to obtain one in an automated way. In particular it appears that
automatically proving the following correctness of the specification: f(z) = 0 with
the termination statement is not so adequate as it is usually done with a structural
ordering. In fact, simplifying the rules in this case by merely applying the rules
to each ground term provides a solution. But this cannot always be easily done
as the example of the quot function, coming from [15, 1], shows while the above
discussion on the structural ordering remains the same. A specification &yt oOf the
quot : nat, nat,nat — nat function is: quot(0, s(y),s(z)) — 0,
quot(s(x), s(y), z) = quot(z,y, z), and quot(z,0, s(z)) = s(quot(zx, s(z), s(z)).
As mentioned in [1], the value of quot(z,y, z) corresponds to 1+ | *2¥| when 2z # 0
and y < z, that is to say quot(z,y,y) computes L%J

Because of the last equation in the above specification, we would like to have a
well-founded ordering on nat x nat xnat for which at least (, 0, s(z)) < (z, s(z), s(z))
holds. But a lexicographic combinations of the usual ordering on natural numbers
is not suitable there, nor are the ramified measures that come from the inductive

12

method of ProPre [12]. The ProPre system also fails for the evenodd function for
similar reasons to those of the quot function.

Note that a direct application of the recursive path orderings [5] or polynomial
interpretations [4, 7, 27], or the Knuth-Bendix orderings [14] fails as well. These
have been designed to be applied in a large context (rewrite system or algebraic
systems for the Knuth-Bendix algorithm). However, it turns out that a similar
argument on the inductive methods concerning the earlier examples also holds for
the simplification orderings. That is, they fail because of the two first rules of the
specification &, the first rule of &, and the third rule of Eyyet-

The usual inductive methods do not deal with the termination of such func-
tions and of the evenodd function. The specifications of these functions and of
the evenodd functions are not complete. But even adding dummy equations that
preserve the termination property of the functions, the new specifications cannot
still be treated by usual inductive methods (such as those used by ProPre) because
of the mentioned rules in the specification. In particular it can be easily checked
that the recursive distributing trees of Figure 3 and Figure 4 which correspond to
a refinement of term distributing trees do not have the terminal state property.

The approach we follow in the next section is to first introduce a notion of a
recursive distributing tree which, like in inductive methods, takes advantage of the
structure of the left-hand side of the equations. But in contrast to usual inductive
termination methods, the construction of recursive distributing trees allows us to
state a new terminal state property in the search of termination that also takes
account of orderings that may now be different from usual structural orderings.

We introduce here some definitions that will allow us to state a new terminal
state property. This new terminal state will be crucial in the study of termination
of recursive functions whose proofs of termination require non structural orderings.
We show in Theorem 1 that the new terminal state property strictly extends the
terminal state property which corresponds to that of the ProPre system.

4.1. The hierarchical property

We first need to introduce fresh variables as follows. For each position ¢ and
sort s, we will assume a new variable of sort s indexed by ¢ and distinct from those
of X'. This allows us to introduce the following definition.

Definition 4.1. Let ¢ be a term and ¢ be a position. The term [[t]], is defined as

follows: [[z]]; = z if = is a variable, [[C(t1,... ,tn)]lg = C([[t1]lg1,--- s [tnllg-n) if
C € F,, and [[g(t1,... ,tn)]]lg = x4 if g € Fy.
For a term u = g(uy, ... ,u,) and a substitution ¢, g(p[[u]]) will denote the term

g(e([[ully), - .-, e(([u]]n))-

Along with the ordering C defined in Section 2, we introduce the following
relations: for w,v in T(F., X)s, we say that v > v if u Z v with —(b) or —(c) or
|v|# < |u|x in Definition 2.17; and we say that v < v if w Z v with (b) and (c) and
|uls = |v]4-

In the following definitions, we consider a function f : s1,...,s, — s, a (split)

13

specification £, and the associated tree A’ of a recursive distributing tree A of £.
Definition 4.2. For each node 6, Cy will denote {b € A',0 € b} and Ry the
set of recursive calls (¢,u) such that b(t) € Cy. If (t,u) is a recursive call, then
My (u) = {b € A',3p,¢" such that f(p[[u]]) = ¢'(f(Ly))} and Qa(t,u) = {0 €
b(t), 30, 0(£(6)) = u}.
Note that the set Q4(t,u) is not empty since the root node belongs to Q4(t,u).
Let b be a branch and two nodes 6,6’ € b, we say that 6 < 6" if 6 is closer than 6’
to the root (i.e. if 6 is an ancestor of 8’). So we can write N 4(t,u) = maxQ(t, u).
For each node 6 of A" we assume an associated subset Gy of Ry which will be
made explicit in Definition 4.5. The meaning of the two following definitions is to
give decreasing criteria that extends those of Definitions 2.17 and 2.18 and relies
in particular on the hierarchical structure of the trees. Notice that the definitions
below should be given simultaneously (Definitions 4.3, 4.4, 4.5, 4.6), but these,
defined on the height of the tree 4, are introduced separately to ease the readability.
Definition 4.3. Let (#,2) be a node of A" and Gy be a subset of Ry. For each
recursive call (¢,u) of Gy such that 8 € Q4(t,u), we assume that one of the two

following cases below holds and we define f(et)

LI pg,u(®) C oLy, 0(z) or pgu(x) > oL, 0(z), then f?tm =1,

2. If pp,u(z) X 0Ly, 0(), then 5(9t,u) =0.
The above definition is intended to deal with orderings that may be different from
the usual structural orderings. This leads to also introduce the following:
Definition 4.4. Let (A,) be a node of A" and Gy be a subset of Ry. For each
recursive call (¢, u) of Gy such that 8 € Q 4(¢,u) and for each branch b € Cy, we will

define n(0t7u),b in the following way:

1. We first consider all (¢,u) such that pg .(z) > oL, 0(7) and take for b € Cp:

[/} _{ 0 ibeM_AI(U),
Ntu),b =

as follows:

1 otherwise

2. Next, we consider each (¢,) in Gy such that thereis a (¢', ') with n(ot’,u’)7b(t) =

0, and for which no n?t’u%b, is defined for any b’ € Cy. We then take

0 - 0 lf b € MA’ (U')a
Mewdb =) 1 otherwise

3. Finally if item 2 cannot be applied, we put n?tvu%b =1 for each b € Cy.
Note that cases 1 and 2 in Definition 4.4 are distinct because 5& w) is algorithmically
defined; namely case 1 is the initial case and case 2 is a (finite) loop case.
Now we can define, for each node 6 of A’ and each left-hand side ¢ of an equation
such that 6 with b(¢) € Cy, the value:

n = [I T}(et/ w'),b(t) if Gg # 0 and 0 otherwise.
(' u')EGe 77
0eQA(tu")
We now explicit the subset Gy of Ry for each node 6. The following definition states

whether from each node, a recursive call can be eliminated from a set of recursive
calls according to some conditions.

14

Definition 4.5. Let 6; be the root of the recursive distributing tree A. We first
put Gy, = Ry,. Now assume that Gy is defined for a node 6 of A" and let 8’ be
a child of 8 with 8" in A’. The set Gy is then defined as follows: (t,u) € Gy iff
(tau) € Rg' NGy and (£(9t7u)7n1:9) 7é (17 1)

We also define an application F' on each node 6 distinct from a leaf. The application
F can be seen as a necessary condition for the termination statement. That is,
roughly, if a recursive call (¢,u) has to still be considered for a node 6 while § >
N4(t,u), then the recursive distributing tree will not have the hierarchical property.
Note that an analogous condition also holds for the terminal state property.
Definition 4.6. (F: a necessary condition for termination) Let 6 be a node
of associated tree A’ of the recursive distributing tree A which is distinct from a leaf.
We put F(f) = 0 if there is a child 6’ of § and (¢,u) in Gp such that 8 > N4(t,u);
and we put F'(f) = 1 otherwise.

Now the hierarchical property can be defined below.
Definition 4.7. (hierarchical property) The recursive distributing tree A is said
to have the new terminal state property if for each node 6 of A’ distinct from a leaf
we have F'(#) = 1 and for each branch b there is node 6" in b such that Gs = 0.
Let us now present again the two examples of recursive distributing tree of
the specification of &, and a split specification of &, introduced respectively in
Figure 3 and Figure 4. The first one does not have the new terminal state property
(Example 4.8), while the second does (Example 4.9).

01: ((z,9);9)

01,1: (z,0) O12: ((z,5(y'));v")

Figure 5: The associated tree of a recursive distributing tree of &,.

Example 4.8. (recursive distributing tree without the new terminal state
property) We show that the recursive distributing tree A given in Figure 5 of the
specification of the evenodd function does not have the new terminal state property.
Let t1 = (,0), to = (0,s(0)), t3 = (s(z),s(0)). The set Gy, is Ry, = {r1,72}
with 1 = ((z,0), (z,5(0))), r2 = ((s(z),s(0)), (z,0)). We have & =1, ¢ =1,
772117b1 =1, Wfll7b2 = 0 and nfll’bg = 0. Then we have Wf;7b1 =0, nf;m = 0 and
nf;bg = 1. Therefore nfll =0, nf; = 0 and nf; = 0. Thus Gy, , = {r1}; that is
enough to conclude that 4 does not satisfy the new terminal state property.

Example 4.9. (recursive distributing tree with the new terminal state
property) Let us consider the recursive distributing tree 4 given in Figure 6 of

15

01,1 ((0,9);9) 01,2 ((s(z),9)5y)

62,1 : (0,0) O22: (0,s(3),%y) 02,3 : (s(z'),0) 02,4 : ((s(z"),5(y'));9")
e .
03,1 : (0,5(0)) (0,s(s(¥'"))) 03,2: (s(2'),5(0)) (s(z'),s(s(y"")))

bo ® by ®

Figure 6: Associated tree of a recursive distributing tree of a split specification of
Eeo-

the (split) specification of the evenodd function. A satisfies the new terminal state

property:

Let t; = (0,0), t2 = (0,s(0)), t3 = (s(x),0)), ts = (s(m),s(O)) The set Gy, is

Ro, = {ri,r2,r3} with 1= ((0,0),(0,5(0))), r (s(2),0), (s(z),5(0))), and
rs = ((s(2),5(0)), (z,0)).
It is easy to see that 501 = 501 = 591 =1, and 17,,1 p = 1, 17,,2 p = L, nrs p =1

for each branch b. We have, therefore, nt = 1 for each term ¢. We then obtain
g91.1 = {rl}a g91.2 = {TZ} and F(el) =1

We now get &0 = 1, nfllju =0, nrl p, = 1 and therefore nfll' =1, nle t=0.

So Go,, =0, Gp,, = Re,, = 0, and F(6,1) = 1. Furthermore ¢l1? = 1, and

7727;1 =0, nf;;zg = 1. We then get ntl ? =1, 01 *=0. Thus Gy, , = 0, and we also

have Gy, , = 0); hence F(f12) = 1. Now ggm = 992’4 =0 and F(024) = 1.
Therefore we can conclude that A satisfies the new terminal state property.

4.2. The theorem of generalisation

The new terminal state property can be viewed as a faithful extension of the
terminal state property devised in the ProPre system in the following way:
Theorem 1 Let A be a term distributing tree of a specification £ of a function. If
A has the terminal state property in the system ProPre, then A satisfies the new
terminal state property. The opposite does not hold.

Proof: See Appendix.

Notice that the extension does not only rely on the fact that a recursive dis-
tributing tree may not be a term distributing tree but on the new state property.
For instance, the specification & and any split specification of & does not have any
term distributing tree that has the terminal state property. This is also the case for
the evenodd function and the quot function. That is to say, one can add to the spec-
ification of the function evenodd, an equation which is harmless for the termination
of the function but which completes the domain of the definition of the function.
For example, one can add the dummy equation evenodd(z,s(s(y))) = true. One
can also use any split specification of the new completed specification, nevertheless

16

the evenodd function cannot be handled by the ProPre system which implies there
is no term distributing tree for this function that has the terminal state property.

The terminal state property defined in the ProPre system ensures the termi-
nation of the concerned functions because a complete formal proof tree can be
built from any distributing tree that enjoys the terminal state property (see [20]).
In [22, 10] it was shown that ordinal functions can also be associated to distributing
trees. These functions were proven to have the decreasing property in the recursive
calls of the specifications if the trees satisfy the terminal state property too. As this
also implies the termination of the concerned functions, this therefore can be seen,
but with a different approach, as a new proof of the soundness of the mentioned
property. In this paper, as we work on recursive term trees with a new terminal
state property, it appears that formal proofs cannot be built, as it can be done with
ProPre, in order to state the soundness of the new terminal state property. However
we will establish the soundness by associating ordinal measures that will enjoy the
decreasing property. In the next section, we explain why the measures associated
to the formal proofs found by ProPre do not fit in our new context and why we will
need to extend the definition of the measures of [22] to obtain new ordinal measures
suited to the new terminal state property.

5. Soundness of the method with decreasing measures

In this section we explain how it is possible to define ordinal measures against
trees of functions where if the ordinal measure decreases in the recursive call of
the function, then this function terminates. We recall the ramified measures that
come from the analysis of the ProPre system and we give new measures which will
help in establishing terminations of functions where the proofs of terminations are
non-inductive. Our main theorem of this section (Theorem 2) establishes that our
new notion of right terminal state and our extended notion of measures, enable us
to establish the termination of functions (inductive and non inductive).

We first recall the ordinal measures of [22, 10]. We need the following definition:
Definition 5.1. (height of a node in a tree) Let A be a tree and 6 be a node
of A. The height of 6 in A, denoted by H (8, .A), is the height of the subtree of A,
whose root is €, minus one.

Let A be a term distributing tree of a specification. We assume that for each node
0; distinct from a leaf, there is an associated application m; to 6; from the set of
ground terms to the set of natural numbers.

Definition 5.2. (ramified measures) Let £ be a specification of a function f :
S1,-..,8, = s and A a term distributing tree of £. We define the ramified measure
Qa:G(F)sy *-..xG(Fe)s, — w*, where w is the least infinite ordinal, as follows:
Let v be an element of the domain G(F.)s, * ... * G(F.)s, and 6 be the leaf of A
such that there is a substitution ¢ with ¢(#) = v (cf. Remark 2.12). Let b be
the branch (61,71),..., (01,71 1),0 of A from the root 6, to 6, let oy, 5, be the
substitutions related to b (cf. Remark-Notation 2.15) and for each 6; the associated

17

application my, [< k — 1. Then

k—1
Qalv) =D WP semy(p(o, 0, (2:))) -
i=1

The ramified measures can be illustrated with Figure 7.

0i7 Z; 00
mNO
Ly 61
92 L4
meo mo
Node of term distributing tree.
L, Ls

Figure 7: Term distributing tree and ramified measure.

Amongst the class of the ramified measures defined above, two subclasses of mea-
sures were related to the formal proofs obtained in ProPre. A first class of measures,
called R-measures, was related to formal proofs coming from an earlier version of
ProPre (see [22]) by substituting a mapping lg for the m; measures in Q4 (see
Figure 8). The function lg, sometimes called size measure like | . |4, is defined by:

1 ift e X,
lgt) =< 1+ Zlg(tj) ift=g(tr,...,tn), g:81,...,8, > s€F.

§j=s

It was shown that any formal termination proof found by ProPre implies the cor-
responding ordinal measures to have the decreasing property in the recursive calls
of the specifications (see [22]).

0i7wi

lg

Figure 8: Node of term distributing tree and ramified measure.

Example 5.3. (ramified measure of the term distributing tree of Ack)
The ramified measure of the term distributing tree of the Ackermann Ack function
defined in Section 2 is: Q4(0,y) = w, Qa(s(2),0) =w* (1 +1g(z)) +1
and Q4(s(z), s(y)) = w * (1 +1g(x)) + (1 +lg(y))-

Another class of measures could also be defined from new formal proofs using an
extended version of ProPre (see [10]) in which new inductive rules were introduced.

18

These measures, called I-measures, can be defined using both the skeleton form
of distributing trees (i.e., term distributing trees) and the terminal state property
given in Section 2.2. The m; functions are obtained with m; = p(6;) *| . | in the
definition of Q 4 illustrated with Figure 9.

0;,

Figure 9: Node of term distributing tree and ramified measure.

[20] showed that each function proven to terminate in the first version of ProPre
can also be proven terminating in the new version. Note that, unlike the case of
R-measures, the m; functions depend on the nodes 6; in the definition of I-measures.

A natural question is to know whether there is also a suitable subclass of the
ramified measures that can be related to the recursive distributing trees that have
the new terminal state property. This is important as it would enable the termina-
tion of functions to be established in our context.

As already mentioned there is no term distributing tree for & that has the
terminal state property. This does not a priori imply that an R-measure or an I-
measure associated to a term distributing tree does not have the decreasing property.
However, it can be easily checked that the decreasing property actually does not
hold for these measures. This is also the case for instance with the evenodd function
or the quot function (even with completed specifications). However the ordinal
function: M (u,0) =w=*|ujg +1 N1 (u,s(v)) = w*|ulx
satisfies the decreasing property in the recursive calls of the specification &.

Also, the following ordinal function satisfies the decreasing property for the specifi-
cation of the quot function: Qa(u, s(v), w) = w*|u|x Q2 (u,0,w) = wsk|u|x+1.

It would be possible to find, amongst the class of the ramified measures, decreas-
ing measures for the mentioned functions. But the choice of the m; functions that
occur in) 4 is difficult to obtain in an automated way dealing with the termination
of such functions. In particular we would like to have m; functions as simple as
possible, as is the case for those obtained for the R-measures or the I-measures.
We will therefore need to enlarge the definition of the ramified measures in order
to obtain a new class which will be related to the recursive distributing tree. We
will then show that the new terminal state property implies the decreasing of the
associated measures. We first need to introduce the following definition:
Definition 5.4. (node measures) Let A be a recursive distributing tree of a
specification of a function. For each node 6; of A4, and each subranch starting
from the 6;, we will assume that there is an associated application m;, called node
measure, from the set of ground terms to the set of natural numbers. The application
m; will be also noted my, ¢ where 6 is the leaf of the concerned subranch.

Example 5.5. (an illustration of node measures) The node measures can be
illustrated with Figure 10.

19

Figure 10: Nodes measure.

For a function f : s1,...,s, — s with a specification £, we will note T£7...7Sn
the set of the elements (vy,...,v,) in G(Fe)s, X ... X G(F.)s, such that there is
substitution o and a left-hand side (¢1, ... ,t,) of an equation of £ with o(t;) = v;

for every 1 <i <mn.

We now define the extended ramified measures as follows:
Definition 5.6. (extended ramified measures) Let £ be a specification of a
function f : s1,...,s, — s and A’ be the associated tree of a recursive distributing
tree A of £. The extended ramified measure Q4 : T, — w" is defined by:

814040380
Let v be an element of the domain 7,7 . and 6 be the leaf of A’ such that

there is a substitution ¢ with p() = v (cf"Remark 2.12). Let b be the branch
(01,21),...,(Ok—1,7r—1),0 of A’ from the root 6 to 0, let oy, 4, be the substitutions
related to b (cf. Remark-Notation 2.15) and let myg, ¢ be the associated node measure

for each 6;. Then

k—1
Q) = > WA sy, 4(p(og, 0, (2:)) -
=1

Example 5.7. (an illustration of an extended ramified measure) Considering
the earlier term distributing tree (which is also a recursive tree) of Figure 7, an
extended ramified measures can be illustrated with Figure 11.

to
/ Mey,Ly
Meo,L,
Mey,Lo Meo,Ls
Ly 01 01 01

mMo,,Lo

me,,Ls ‘ Mg, Ly

6> 02 Ly

me,,Ls ‘

me,,Lo

Ly Ls

Figure 11: Extended ramified measure.

Amongst the class of ramified measures, the R- and I-measures turned out to
be suitable for the termination of a class of functions as they could be associated to
formal proofs obtained in ProPre. We show here that there also exists a subclass of
the extended ramified measures that fit with the recursive term distributing trees
that satisfy the new terminal state property. These are defined as follows:

20

Definition 5.8. (hole measures) Let £ be a specification of a function f :

s1,-..,58, — s and let A’ be the associated tree of a recursive distributing tree
A of £. The hole measure Qq : TS . — w* is defined as follows:

Let v be an element of the domain 7 and 6 be the leaf of A’ such that there
is a substitution ¢ with ¢(8) = v. Let b be the branch (61,x1),...,(0k—1,2x—-1),0

of A’ from the root 6; to 6. Then

k—1
Qa(t) = Y WM A s (| (p(0w, 0, (@) |4e) -

i=1

That is to say mg, g = 0" | . | 4.

Note that, due to the relation between the leaf # and the term ¢, nf" x| . | depends
both on 6; and € in the above definition. This can be illustrated with Figure 12.
0i7 T

0; |

T’til *1 . |#

0;
77t,-2 *| . |

Figure 12: Node measure of hole measures.

Example 5.9. (associated ordinal measure of a recursive distributing tree)
By Definition 5.8 and the values obtained in Example 4.9, the associated ordinal
measure of the recursive distributing tree in Figure 3 of the evenodd function is:

Qa(z,0) = w? * |z|2 + w, Qa(z,5(0) = w? * |z|4.
Note that the above ordinal €2; can also be derived from the shape of 4 on T7¢ ;-
It is clear that 24 has the decreasing property in each recursive call on the domain
of the function evenodd. This result can be generalised with Theorem 2 below.
The following theorem allows us to state the soundness of the new terminal state
property. That is, if there a recursive distributing tree for a specification of a func-
tion that enjoys the new terminal state property, then the function is terminating.
Theorem 2 (soundness of the new terminal state property) Let £ be a
specification of a function f : s1,...,8, — s and A be a recursive distributing
tree for £ that has the new terminal state property. Then the extended ramified
measure 4 satisfies the decreasing property. That is to say, for each recursive
call (f(t1,.-. ,tn), f(u1,-..,uy)) of £ and every ground constructor substitution ¢,
such that o([[u1]]1), .-, e([[unlln) is in T ., we have:

Qalp(t)s- > p(tn) > Qale({fa])s - o ([Tnlln))-

Proof: Take a ground constructor substitution ¢ with @([[u1]]1), .., e([[un]]ln) €
TS .. We show that Q((t),.. ., @(tn)) > Qale(([wall)s - - » @((unlln))- Let
t and u respectively denote the terms f(ti,...,t,) and f(ui,...,u,). By def-
inition of the associated tree A’ of A, there is a branch b of A’ of the form
01,21),...,(0k_1,Tr_1),0r where 6, is the root of A" and the leaf 8}, corresponds
to t, ie. f(0r) =t and b(t) = b. As o([[ua]l1),- .., e([un]ln) € TS ., thereis
an equation (v,v') € £ and a substitution 7 such that 7(v) = f(p[[u]]) where [[u]]

21

denotes the uplet (([[u1]1), - -, ([[un]]n))-

Let b(v) be the branch (67, 2}),...,(0._,,z._,),0. of A" with f(6.) = v.

As A has the new terminal state property, there is a node 6 in b such that Gy = (.
But Gy, = Ry, contains all the recursive calls of £, and so (¢,u) € Gy, . Hence, there
is a value J, such that (t,u) € Gg, but (t,u) ¢ G, -

According to Deﬁnition 4.5, we have (t,u) € Gy, C Gyp,_, C ... C Gp, and for all
1<i < J, (f(t)’ .0’y # (1,1). Furthermore, because A has the new terminal
terminal state property, F'(8;) = 1. But (¢,u) € Gy,, thus 65 < N4(t,u) by Defi-
nition 4.6, that is to say 65 € Q4 (t,u). So f(fy) matches u and therefore matches
p(u). Since f(@y) is linear and ¢ is a ground constructor substitution, we deduce
that f(6s) also matches f(p[[u]]). But f(6.) matches f(p[[u]]) as well with the
substitution 7. As f(6;) and f(¢,) match a common term, by construction of the
recursive distributing trees, this implies that 8; and 6., are in the same branch; and
so 0y < 0] because . is a leaf. Thus we have 2} = x; and 8} = 0; for 1 < i < J.
This gives us the relation ¢ o pg, u(z;) = 70 0gr g:(2;) for 1 < i < J according to
the substitutions 700y, o and p, and to the fact pg, . (z;) is a constructor term by
Definition 4.3. So we can write:

Qale([lurll), .- ([[unlln)) = Yiw EQ“A) * 1,01 (0 0 po;,u(@i))
+wM A semg, o0 (0 0 po,y (@) + E: T WA om0 (T 0 091 g1 (}))
(1)
We are going now to show that
my, 0, (¢ © po;u(2i)) < ma 0, (0 0 06, 0,(2i)), i <J and (2)
mg, 6: (9 © pg, u(s)) <me,9.(po0s,6,(xs)) (3)
e Let 1 <i< J. We know that 0; € Q4(t,u), and (f(t) ol £ (1,1).
- Let us consider the case nf" = 0. By definition of 17_7_, this implies there is a

recursive call (¢',u') such that 17(9;,7u,)’b(t) = 0. But 7(v) = f(¢[u]) and b(v) is in
M4 (u). Hence, due to n(t,), (y = 0 and b(v) € M (u), we get 77(9;’”)71)(1)) =0
with Definition 4.4, and thus n?* = 0. The later equality implies mg, ¢r = 0 and
Inequality (2) then holds.

- We now consider the case 7/ = 1 with 5?;&) = 0. This gives us my, g9, = | . | and
p0; u(®;) < 00,0, (z:). We deduce, from the definition of <, that |p o pgi7u($i))|# <
lpooy, 0,(xs)|x. Hence, Inequality (2) holds again whatever the value i in mg 0
e We now show Inequality (3). By definition of J, we have f(ot{ y=1 and 0!’ =1,
and Inequality (3) boils down to my, g (@ © pg, u(xs)) < | © 06,0, (.’L'J)|#. As
§(t w = =1, two cases are then possible:

- 1) po, u(xy) T oo, 0, (xy). But C is closed under substitutions, so (3) holds what-
ever the value 9’ in my, g .

-i1) po, u(xy) > 09, 0, (xs). This implies n(t) p(vy = 0 since b(v) € M4 (u). Hence
n%7 =0 and thus mg, g = 0. As |w|4x > 0 for every w, we get Inequality (3).

22

We know that

Q-A(Qo(tl)a s 790(tn)) = Z‘i]:ill wH(oi’A’) *km0i70k (90 0 09y,0; (wl))
’ —1 . !
+wH A smyg, g, (0 0 00,0, () + 2y g WA wmy, g, (0 0 0y, 9, ()

(4)

Due to the expression of (1) and (4) and the inequalities (2) and (3), we can now
conclude that Q4(¢(tr), .-, ¢(tn)) > Qale([[wall), - s e([[un]]n)- O

6. Conclusion

The system ProPre treats a class of term rewriting systems specifying a recur-
sive function and deals with the automation of the proofs of termination of these
recursive functions. Because the termination proofs of the ProPre system depend
on structural orderings, e.g. by the size of terms, the system is difficult to prove
specifications in which a recursive call in the right-hand side of a rule is not smaller
than the left-hand side of the rule.

In this paper we proposed a method that extends the automation of the proofs
of termination of recursive functions used in ProPre. Whereas ProPre could only
deal with the automation of inductive proofs, our method allows the automation of
a larger class of recursive functions because it can handle non structural orderings.
The extension of the ProPre system proposed by this paper consists of mainly three
parts.

1. If any term whose root symbol is a function defined by a specification can
match the left-hand side of a rule, the specification is called complete. The
original ProPre system can deal with complete specifications only. Indeed, the
term distributing tree of a specification, which is defined for proving termina-
tion in the ProPre system, must satisfy the following condition: each leaf of
the term distributing tree corresponds exactly one left-hand side of a rule of
the specification. In this paper we defined the new distributing tree, called the
recursive distributing tree, which has the weaker condition than the original.
The recursive distributing tree can treat non-complete specifications.

2. For a specification that is hard to deal with directly, we propose the split spec-
ification. The split specification can be obtained by replacing a rule with rules
that are instances of it. It is easier to prove the termination of a split spec-
ification than that of the source specification. We prove that a specification
terminates if and only if the split one does.

3. Finally, we come to the main part of our extension: A termination proof in
the ProPre system works as follows:

(a) Define a term distributing tree of a given specification.

(b) Verify that the tree has the terminal state property. If so, the speci-
fication is terminating. Roughly speaking, the terminal state property

23

means that each recursive call is structurally smaller than the left-hand
side.

In this paper, we proposed the new terminal state property. Because we use
the ordering by which a recursive call compared to the left-hand side does
not depend the structure of terms, our method can apply to specifications in
which simplification orderings fail, such as the recursive path ordering and so
on.

Because constructing a recursive distributing tree and verifying whether the
distributing tree has the terminal state property can be computed in a finite time,
our paper contributes to the area of establishing automatically termination proofs
of recursive functions. Indeed, we also prove that our method is stronger than the
termination method of the original ProPre system. Moreover, we show that there
are examples of specifications that cannot be proved terminating using ProPre, but
can using our proposed extension. Our results may help in handling more realisitic
examples that cannot be proved terminating (automatically) by structural methods.

Appendix

We give the proof of Theorem 1 stated again here below.

Theorem 3 Let A be a term distributing tree of a specification £ of a function. If
A has the terminal state property in the system ProPre, then A satisfies the new
terminal state property. The opposite does not hold.

Proof: Let us consider a term distributing tree A of a specification. Recall that a
term distributing tree A is a recursive distributing tree.

We are going to show that the application F' of Definition 4.6 has the value 1 on
each node distinct from a leaf. In order to get a contradiction we assume there
is a node 6 in A, distinct from a leaf, such that F(6,) = 0. So, as F(6,) = 0,
there is a child 6], of 6, and a recursive call (t,u) in Gy, C Rgr with 8, > Na(t,u).
Because A has the terminal state property, there is a node (6*,y) in the branch b(¢),
with p(6*) = 1, that matches u with pp- u(y) C 01,6+ (y) and for every ancestor
(0",y") of 6% in b(t), such that p(6'*) = 1, we have pg+ o(y') T oL, .6 (y'). So
0* is in Q 4(t,u) and we also have fgtiu) =1. As 6* < 6, since 6* < N4(t,u), let
0" be the child of #* in the branch b(t) where is also ,. We have in particular
Gor C Gy, C Gor and thus (t,u) € Gor. Hence, according to Definition 4.5 and the
fact that f(etju) = 1, we deduce that nf* = 0. This means that there is a recursive
call (¢",u") € Gp- with n€t7,7u,,)7b(t) = 0. Therefore, by construction of nﬂi_, this
implies that there is also a recursive call (¢, u') € Gy« with pg- w (y) > oL, .0+ (¥),
and a branch b’ € Cy- with n?;,’u,)’b, =0.

As A has the terminal state property, there is a node (6,), with u(6;) = 1, in
the branch b(t') such that pg: v (zp) C oL, ., ,0:(2p) and for every ancestor 0",)
of 8% such that u(6';) = 1, we have porsw (2p) C oL, . 0% (2p). Because (t',u')
is in Gy« C Ry«, this implies that 6* is also in b(¢'). Therefore we can compare
¢* and 6 in the branch b(t'). The case §* < ¢ is not possible otherwise, due

24

*

the above property of 6%, we would have pg- . (y) C OLyr) 0° (y) that contradicts
porw (Y) > oL, 0+ (y). So by <6, that in particular implies Gp+ C Gp. .

0 6. ... o o

(t,u) € Gor C Gy, C ... C Gp C Gy~ > (t',u)

We can now repeat the same reasoning for < 6*,(#',u’), (05,2,) > as we did

with < 0, (t,u), (6*,y) > because (¢',u’) € Gy, and we also have 5?;’,7”,) = 1 since
Pos.w (Tp) T 0L, 05 (Tp). This shows that we can construct an infinite sequence
of nodes starting from 6, with 8, > 6* > 67 > 67 > 6 > But this is obviously
impossible and we get our contradiction; hence F'(6,) = 1 and the application F
has only the value 1 on each node distinct from a leaf.

Likewise, using a similar reasoning as in the first part of the proof, we cannot have
G(0) # 0 for every node 6 of some branch b in A without getting a contradiction.
Hence, we deduce that A has the new terminal state property. Finally, the coun-
terexample 4.9 shows that the opposite does not hold. O

References

1. T. Arts and J. Giesl. Automatically proving termination where simplification
orderings fail. In Proceedings of Theory and Practice of Software Development
TAPSOFT’97, volume 1214 of Lecture Notes in Computer Science, 1997. Springer-
Verlag.

2. A. Bouhoula and M. Rusinowitch. Implicit induction in conditional theories. Jour-
nal of Automated Reasoning, 14(2):189-235, 1995.

3. R. S. Boyer and J S. Moore. A computational logic handbook. Academic Press,
1988.

4. A. Ben Cherifa and P. Lescanne. Termination of rewriting systems by polyno-
mial interpretations and its implementation. Science of Computer Programming,
9(2):137-159, 1987.

5. Dershowitz. Orderings for term-rewriting systems. Theoretical Computer Science,
17(3):279-301, 1982.

6. J. Giesl. Automated termination proofs with measures functions. In Proceedings of
the 19th annual german conference on artificial intelligence, volume 981 of Lecture
Notes in Artificial Intelligence, pages 149-160, 1995. Springer-Verlag.

7. J. Giesl. Generating polynomial orderings for termination proofs. In Proceedings of
the 6th International Conference on Rewriting Techniques and Application, volume
914 of Lecture Notes in Computer Science, 1995. Springer-Verlag.

8. J. Giesl. Termination analysis for functional programs using term orderings. In
Proceedings of the Second International Static Analysis Symposium, volume 983 of
Lecture Notes in Computer Science, pages 154-171, Glasgow, 1995. Springer-Verlag.

9. G. Huet and J. M. Hullot. Proofs by induction in equational theories with construc-
tors. Journal of Computer and System Sciences, 25(2):239-266, 1982.

10. F. Kamareddine and F. Monin. On formalised proofs of termination of recursive
functions. In G. Nadathur, editor, Proceedings of the International Conference on
Principles and Practice of Declarative Programming, volume 1702 of Lecture Notes

25

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

in Computer Science, pages 29-46, 1999. Springer-Verlag.

F. Kamareddine and F. Monin. On Automating Inductive and Non-Inductive Ter-
mination Methods. In P.S. Thiagarajan and R. Yap, editors, Proceedings of the
Asian Computing Science Conference, volume 1742 of Lecture Notes in Computer
Science, pages 177-189, 1999. Springer-Verlag.

F. Kamareddine and F. Monin. On the simplification of formal proofs with ab-
stracted propositions in an automated system for program synthesis. Technical
report, Heriot-Watt University, 2000.

D. Kapur, P. Narendran, and H. Zhang. Automatic inductionless induction using
test sets. Journal of Symbolic Computation, 11(1-20:83-111, 1991.

D. E. Knuth and P. B. Bendix. Simple word problems in universal algebras. In
J. Leech, editor, Computational problems in abstract algebra, pages 263—-297. Perg-
amon Press, 1970.

T. Kolbe. Challenge problems for automated termination proofs of term rewriting
systems. Technical report, Technische Hochshule Darmstadt, Alexanderstr 10, 64283
Darmstadt, Germany, 1996.

J. L. Krivine. Lambda-calculus, Types and Models. Computers and Their Applica-
tions. Ellis Horwood, 1993.

J. L. Krivine and M. Parigot. Programming with proofs. J. Inf. Process Cybern,
26(3):149-167, 1990.

D. Leivant. Typing and computational properties of lambda expression. Theoretical
Computer Science, 44:51-68, 1986.

P. Manoury. A user’s friendly syntax to define recursive functions as typed lambda-
terms. In Proceedings of Type for Proofs and Programs TYPES’94, volume 996 of
Lecture Note in Computer Science, 1994. Springer-Verlag.

P. Manoury and M. Simonot. Des preuves de totalité de fonctions comme synthése
de programmes. PhD thesis, University Paris 7, 1992.

P. Manoury and M. Simonot. Automatizing termination proofs of recursively defined
functions. Theoretical Computer Science, 135(2):319-343, 1994.

F. Monin and M. Simonot. An ordinal measure based procedure for termination of
functions. Theoretical Computer Science, 254:63-94, 2001.

D. R. Musser. On proving inductive properties of abstract data types. In Proceedings
7th ACM symposium on principles of Programming Languages, ACM, pages 154—
162, 1980.

F. Nielson and H. R. Nielson. operational semantics of termination types. Nordic
Journal of Computing, 3(2):144-187, 1996.

M. Parigot. Recursive programming with proofs. Theoretical Computer Science,
94(2):335-356, 1992.

C. Sangler. Termination of algorithms over non-freely generated data types. In
Proceedings of International Conference on Automated Deduction, volume 1104 of
Lecture Notes in Artificial Intelligence, pages 121-136, 1996. Springer-Verlag.

J. Steinbach. Generating polynomial orderings. Information Processing Letters, 49,
1994.

J. Steinbach. Simplification orderings: history of results. Fundamenta Informaticae,
24:47-87, 1995.

J. J. Thiel. Stop losing sleep over incomplete data type specifications. In Proceedings
11th ACM symposium on principles of programming languages, pages 76-82, 1984.

26

30. C. Walther. On proving the termination of algorithms by machine. Artificial
Intelligence, 71(1):101-157, 1994.

27

