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AN EXTENSION OF AN AUTOMATED TERMINATION METHODOF RECURSIVE FUNCTIONS�FAIROUZ KAMAREDDINEDepartment of Computing and Eletrial Engineering, Heriot-Watt University,Edinburgh EH14 4AS, Sotland.fairouz�ee.hw.a.ukandFRANCOIS MONINIRISA, Campus de Beaulieu, Rennes Cedex 35042, Frane.monin�irisa.frReeived (reeived date)Revised (revised date)Communiated by Editor's nameABSTRACTIndutive proofs are ommonly used in automated dedution systems or funtionalprogramming, suh as for instane the ProPre system, for establishing the termination ofreursively de�ned funtions. Suh proofs deal with the strutural orderings of the termalgebras that de�ne the domain of the funtions. However there exists other interestingfuntions whose termination requires di�erent underlying orderings. To treat a lass ofsuh funtions that are not taken into aount by systems suh as ProPre, we developtermination properties that an be shown automatially. In ontrast with the ProPresystem that builds formal trees based on indutive proofs, we generate measures thatsatisfy an extended termination property and well-founded orderings whih ensure thetermination of the funtions.1. IntrodutionTermination of funtions de�ned on reursive data strutures is an importantproperty in the development of orret software suh as funtional programming andautomated dedution. The standard approah to show the termination of reursivelyde�ned funtions is to prove that the arguments in eah reursive all are smallerthan the initially given input with respet to a well-founded ordering.Usually, most termination methods use prede�ned orders, or lexiographi om-binations of it (see e.g. [30, 24, 26℄), or orderings given by the users (see e.g. [3, 6℄).However, in the standard approah, �nding suitable orderings is essential for theautomation of the termination. In [8℄ a method was developed to automatially syn-�Supported by EPSRC GR/L15685. We are grateful for the anonymous referees for their usefulomments. 1



thesise suitable measures based on polynomial orderings and in [22℄ a terminationproedure was proposed to generate orderings with the use of ordinal measures.The latter method omes from the analysis of another approah, the formalapproah, that relies on formal termination proofs [21℄ built in a natural dedutionstyle. The formal approah is essentially used to allow the extration of �-terms thatompute the funtions as odes of programs (see e.g. [16℄). Based on this paradigmof proofs as programs, the ProPre system, designed in [20℄, shows the automatedtermination of a reursive funtion by building a (partial) formal tree, assoiatedwith the spei�ation of the funtion, whih satis�es the so-alled right terminalstate property. Due to this property, ProPre is then able to derive, from the partialtree, a omplete formal proof tree ensuring the termination of the funtion.It has been shown in [22, 10℄ that it is possible to extrat well-founded order-ings, namely ordinal measures, from the above formal proofs devised in the fullyautomated system ProPre [21, 20℄, suh that the arguments in eah reursive allof the given funtion are smaller than the initially given input (i.e., the alls de-rease wrt the well-founded ordering). The extration of a speial lass of measures,alled rami�ed measures, appears as a useful way to �nd out new orderings as thesemeasures are in partiular not limited to lexiographi orderings.In this paper we propose to extend both the termination proedure of ProPreand the extration of new orderings. In ontrast to earlier work where the synthesisof suitable measures espeially relied on ProPre's proedure, we do not work inthe ontext of formal proofs but in a setting released from the partiular logialframework of ProPre. The new ontext allows us to onstrut trees assoiated withthe spei�ations of funtions whih must satisfy a property, alled the hierarhialproperty. Instead of �nding a formal proof, we an now diretly infer measures,from the trees, whose dereasing property is ensured by the hierarhial property.Work already arried out on the onept of trees developed from spei�ationsinludes: ompleteness of de�nition (see e.g. [9℄), test sets and indutive reduibility(see e.g. [23, 13, 2℄) and ProPre itself. But suh trees have mainly been used forproving indutive properties for equational or onditional theories, or in the aseof ProPre, trees appear in a formal ontext where they takes advantage of thestruture of the funtion de�nition. However, the main property that allows thesystem to �nd termination proofs of reursive funtions is not simply the de�nitionof trees but the right terminal state property that they must satisfy. This one givesthe soundness of the method and also haraterises in some sense the lass of thereursively de�ned funtions that an be proven terminating in the system.Like the above approahes, we make use of some kind of trees as in [22℄ with somere�nements, in partiular to deal spei�ations of inompletely de�ned funtions.However, the novelty of our termination method relies on the hierarhial propertydeveloped in this paper and on the introdution of new measures.Funtional programs an also be regarded as term rewriting systems. However,due to the speial forms of funtions, it seems more onvenient to onsider in the aseof funtional programming, well-founded orderings for whih only the arguments ofthe funtion and the reursive suballs are taken into aount. Compare this with2



rewriting systems where the usual orderings are onsidered for all the left-handsides and right-hand sides of the terms, as it is for instane with the reursive pathordering [5℄. In partiular, the rewrite terms that are proven terminating by suhorderings are haraterised by the simple termination property [28℄, namely themonotoniity and the subterm property. Our results imply that this ondition isnot neessary and we are able to deal with a larger set of funtions even those whosetermination does not require these notions of simple termination, monotoniity andsubterm property.The above mentioned standard approah is often used by theorem provers suh asthe well-known Nqthm prover [3℄, whih aim at establishing the dereasing propertyof measures on the reursive alls of the algorithms. But usually the measures are alexiographi ombination of a �xed ordering or are given by the user. The presentmethod aims at providing suitable measures in an automated way and thereforeould be used by other theorem provers by providing the measures obtained fromthe formal proofs in ProPre [22, 12℄.Hene, our work has the advantage that now we an automatially establish:� the termination of all those funtions that ould be shown terminating byProPre (and hene whose spei�ations are omplete and whose terminationmethods require strutural indution),� the termination of funtions whose spei�ations are not neessarily ompleteand whose termination requires other orderings than those used in struturalindution, simple termination, monotoniity and the subterm property,� suitable measures that ould be passed to other theorem provers to be usedin establishing the dereasing number of reursive alls.The paper is divided as follows:� In Setion 2, we introdue the ProPre system where the formal framework hasbeen fully abstrated while keeping the termination part. This gives the termdistributing trees for spei�ations of reursive funtions, and the abstratedterminal state property satis�ed by term distributing trees.� In Setion 3, we extend the notion of a term distributing tree into the reursiveterm distributing tree in order to onsider reursive funtions that may beinomplete in the sense of [29℄. We also introdue the split spei�ations thatenable us to enlarge the set of term distributing trees.� In Setion 4, we introdue a termination property alled the hierarhial prop-erty. We show that our notion stritly inludes the ProPre notion of the rightterminal state property by establishing in Theorem 1 that if a distributingtree A has the terminal state property in the system ProPre, then A has thehierarhial property and that the opposite does not hold.� In Setion 5, in order to make sense of the onept of the hierarhial propertysatis�ed by the reursive term distributing trees, we explain how it is possible3



from spei�ations, to de�ne ordinal measures against trees. Our main theo-rem of this setion, Theorem 2, establishes that our new notion of hierarhialproperty implies that the measures derease in the reursive all of the fun-tions, and as a onsequene enable us to establish the termination of funtions.We also explain why the rami�ed measures that ome from the analysis of theProPre system are not suited in the extended ontext. The inadequay of theearlier measures and the neessity to build new ordinal measures haraterisein some sense the new lass of funtions that extend those funtions whosetermination an be established in ProPre.2. The ProPre system in an abstrat ontextThe ProPre system is a program synthesis system presented in [20, 21, 19℄ basedon the paradigm of Programming by Proofs. In this approah programs are odedby �-terms extrated from proofs of termination of funtions de�ned by a set ofequations. The extration is obtained by syntatial termination proofs in a formaldedution style exploiting the Curry-Howard orrespondene. The theory an befound for instane in [16, 18, 17, 25℄. In this system, the user an speify data typesand funtions in an ML like syntax, but when ompiling, a fully automated proofsearh strategy is used. The input of that searh strategy is a spei�ation of afuntion and the output is either a termination proof providing a �-term that om-pute the funtion or an error message in ase of failure. Notie that the terminationmethod of a �rst version of ProPre was also implemented in a former version of Coqin [19℄ to deal with �rst order de�nitions of funtions.The analysis of the formal proof trees obtained in the system made it possible torelate measures [22, 10, 11℄ that have the dereasing property in the reursive alls ofthe spei�ations of the funtions. These measures an be de�ned from distributingtrees, devised in [20℄, whih are partial trees; and their dereasing property relieson the notion of a right terminal state property that must satisfy the distributingtrees in ProPre in order to be extended into a omplete formal proof trees.Though the spei�ations are �rst order equations, the logial framework ofthe programming language designed in ProPre is a seond order language whih ismandatory by the theory [16, 25℄. That is, in order to assoiate �-terms to funtions,the system builds proof trees with seond order formulas whih are haraterised,as earlier mentioned, by the right terminal state property. An analysis in [12℄ showsthat it was possible to abstrat all proposition informations from eah proof treeso that one an look at the skeleton form of the proof tree, alled term distributingtree, where now only �rst order is involved giving rise the notion of abstratedterminal state property instead of the right terminal state property. Notie thatthe study of [12℄ has shown that one an also go bak to the former proof treesfrom the skeleton tree and the abstrated terminal state property. Therefore thingsbeome learer sine in some sense the termination part an be further investigatedindependently of the extration part of �-terms. The onnetion between formalproofs and abstrated property with measures an be illustrated by Figure 1.Beause in this paper we onsider the termination part and not the extration4



A BFormal proof treesandRight terminal state property () Term distributing treesandAbstrated terminal state propertyFormal termination proofsand lambda-terms Termination with ordinal measuresFigure 1: A onnetion between the two approahes.part of �-terms, we will desribe in this setion the right part of the above piture.We refer to [25, 20℄ for details on the extration of formal proofs in ProPre andof the assoiated �-terms from funtion spei�ations We refer to [12℄ for detail onhow one an establish the orrespondene of the two parts in the above piture.Note that the de�nitions presented in the setion below, that are basi de�ni-tions, do not only onern ProPre but our work too.2.1. Spei�ationsBefore presenting the term distributing trees and the abstrated terminal stateproperty in the next setion, we introdue the spei�ations of funtions that anbe de�ned in the system ProPre. Although they play an important role in thefuntional programming language of the system ProPre, we do not mention thede�nition of data types of ProPre for the sake of simpliity, but we will assumefor our purpose a set of sorts for the de�nition of the types of the funtions. Wewill also use here, the terminology of rewrite systems. Though the �rst de�nitionsbelow apply to higher order as well, these are useful in the presentation of thespei�ations that are �rst order de�nitions of the funtions onsidered in ProPre.De�nition 2.1. (funtions) We assume a set F of funtion symbols, alled signa-ture, and a set S of sorts. To eah funtion f 2 F we assoiate a natural numbern that denotes its arity and a type s1; : : : ; sn ! s with s; s1; : : : ; sn 2 S. We maywrite f : s1; : : : ; sn ! s to introdue both the funtion f and its type. A funtionis alled onstant if its arity is 0. We assume that the set of funtions F is dividedinto two disjoint sets F and Fd. Funtions in F (whih inludes the onstants)are alled onstrutor symbols or onstrutors and those in Fd are alled de�nedfuntion symbols or de�ned funtions.De�nition 2.2. (terms) Let X be a ountable set of variables disjoint from F .We assume that only one sort is assoiated to eah variable of X and that for eahsort s there is a ountable number of variables in X of sort s. If s is a sort and ifF and X are respetively subsets of F [ Fd and X , then the set T (F;X)s of theterms of sort s is the smallest set suh that:1. every element x of X of sort s is a term of sort s,2. if f is a funtion in F of type s1; : : : ; sn ! s and if t1; : : : ; tn are termsrespetively of sorts s1; : : : ; sn, then f(t1; : : : ; tn) is a term of sort s.5



If X is empty, T (F;X)s is also denoted by G(F )s. The set T (F;X) is [s2ST (F;X)sfor every subset F of F and every subset X of X . An element of G(F)s is alleda ground term (of sort s); i.e., no variable ours in a ground term. An element ofT (F;X )s is alled a onstrutor term (of sort s); i.e., every funtion symbol whihours in a ground term is a onstrutor symbol. An element of T (F;X )s\G(F)s =G(F)s is alled a ground onstrutor term (of sort s). If  : s denotes a onstant(of sort s), i.e. its arity is 0, the onstant term () (of sort s) is also denoted . Foreah term t, Var(t) denotes the set of variables that our in t.De�nition 2.3. (substitutions) A sorted ground substitution � is a substitution,i.e. a mapping from the set X of variables to the set of terms T (F ;X ), suh thatfor every sort s and every variable x of sort s, �(x) is a ground term of sort s. Asorted onstrutor substitution � is a substitution suh that for every sort s andevery variable x of sort s, �(x) is a onstrutor term of sort s.Any substitution � from De�nition 2.3 an be extended, as usual, into a mappingfrom T (F ;X ) to T (F ;X ), suh that �(T (F ;X )s) � T (F ;X )s for eah sort s.De�nition 2.4. (rewrite system) A rewrite system R is a subset of T (F ;X ) �T (F ;X ) with Var(r) � Var(l) for eah element (l; r) of R. An element (l; r) ofR is alled a rewrite rule and is denoted by l ! r. A rewrite rule l ! r is alledleft-linear i� eah variable ours only one in the left-hand side l of the rewrite rulel! r. A rewrite system is non overlapping i� no left-hand sides unify eah other.In funtional programming languages lose to ML that use data types, funtionsare desribed by sets of equations whose terms have the same type, and the argu-ments of the funtions are onstrutor terms. The spei�ations of the funtionsan be desribed in term of rewrite systems that orrespond to �rst order equations:De�nition 2.5. (spei�ation) A spei�ation or a (sorted) onstrutor systemE of a funtion f : s1; : : : ; sn ! s in Fd is a non overlapping rewriting system ofleft-linear rules fe1 ! e01; : : : ; ep ! e0pg suh that for all 1 � i � p, ei is of the formf(t1; : : : ; tn) with tj 2 T (F;X )sj , j = 1; : : : ; n; and e0i 2 T (F [ Fd;X )s.The expression sorted in the above de�nitions may be omitted, and we will sayonstrutor substitution instead of sorted onstrutor substitution for short.De�nition 2.6. (reursive alls)Let E be a spei�ation of a funtion f : s1; : : : ; sn ! s. A reursive all of f is apair (f(t1; : : : ; tn); f(u1; : : : ; un)) where f(t1; : : : ; tn) is a left-hand side of a rewriterule of E and f(u1; : : : ; un) is a subterm of the orresponding right hand side.To illustrate the above de�nitions with examples, let nat 2 S be the sort ofnatural numbers, with the onstant 0 in F of type nat and the onstrutor suessors : nat ! nat in F. Let bool be the boolean sort in S, the onstants true andfalse in F be of type bool, and the funtion not : bool ! bool be in Fd with thespei�ation given by the usual rules: not(true)! false, not(false)! true.Example 2.7. Let Ak : nat; nat ! nat be the Akermann funtion in Fd. Aspei�ation EAk of the funtion Ak is given by the rewrite rules: Ak(0; y)! s(y);Ak(s(x); 0)! Ak(x; s(0)); and Ak(s(x); s(y)) ! Ak(x;Ak(s(x); y)):6



The three reursive alls of the above spei�ation are (Ak(s(x); 0); Ak(x; s(0)));(Ak(s(x); s(y)); Ak(s(x); y)); and (Ak(s(x); s(y)); Ak(x;Ak(s(x); y))).Note that the funtion Ak is ompletely de�ned in the following sense: for eah(w1; w2) in G(F)nat � G(F)nat there is a left-hand side Ak(t1; t2) of a rewrite ruleof the spei�ation EAk and a substitution ' with ('(t1); '(t2)) = (w1; w2). Thisorresponds to the ompleteness of de�nition in [9℄ (see also e.g. [29℄). We give nowanother example of a spei�ation, oming from [1℄, whose de�nition is inomplete.Example 2.8. Let Eeo be the spei�ation of the funtion evenodd : nat; nat !bool in Fd with the rewrite rules: evenodd(x; 0)! not(evenodd(x; s(0))),evenodd(0; s(0))! false; and evenodd(s(x); s(0))! evenodd(x; 0).The spei�ation Eeo is inomplete as no left-hand side of the rules of the spe-i�ation mathes the term evenodd(u; s(s(v))) for (u; v) in G(F)nat � G(F)nat.Aording to the seond argument, the evenodd funtion omputes either the evenfuntion or the odd funtion. The two reursive alls of the above spei�ation are(evenodd(x; 0); evenodd(x; s(0))) and (evenodd(s(x); s(0)); evenodd(x; 0)).2.2. Term distributing trees and the terminal state propertyWe present the term distributing trees of [22℄ whih an be viewed as a skeletonform of partial trees built in ProPre [20℄ where all proposition informations havebeen abstrated. A lot of information is lost from the proof trees by this abstrat-ing operation and di�erent formal trees may redue to the same term distributingtree [12℄. But all the termination information from the formal proof trees is fortu-nately reovered by our new notion of terminal state property in De�nition 2.18.De�nition 2.9. (term distributing trees) Let E be a spei�ation of a funtionf : s1; : : : ; sn ! s. A term distributing tree A for E is de�ned as follows:1. The root of A is a tuple of the form (x1; : : : ; xn) where xi is a variable of sortsi for eah i � n;2. eah node ofA is of the form (t1; : : : ; tn) and there is a variable x0 of a sort s0 inthe term f(t1; : : : ; tn) suh that the set of hildren of the node, for x01; : : : ; x0rnot in t1; : : : tn, is f(t1; : : : tn)[C(x01; : : : x0r)=x0℄; C : s01; : : : ; s0r ! s0 2 Fg.3. eah leaf (t1; : : : ; tn) of A is exatly one left-hand side f(t1; : : : ; tn) of anequation of E (up to the root funtion symbol f and the renaming of variablesof the equations).For instane if (s(x); y) is a node in a term distributing tree where s is thesuessor funtion, then its two hildren an be either of the form (s(0); y) and(s(s(x0)); y), or of the form (s(x); 0) and (s(x); s(y0)). An example of a distributingtree is given with Example 2.11 below using also Notation 2.10. The followingnotation will be partiularly useful for the next Setion and for the de�nition ofordinal measures in Setion 5.Notation 2.10. Let E be a spei�ation of a funtion f : s1; : : : ; sn ! s, and takea term distributing tree A of the spei�ation E . If b is a branh in A from the root7



�, i.e. of the form (x1; : : : ; xn), to a leaf �0, we then will use the following notation(�1; x01); : : : ; (�k�1; x0k�1); �k to denote the branh b with �1 = �, �k = �0, where x0idenotes the variable x0 for the node �i in lause 2 of De�nition 2.9 for every i < k.Example 2.11. (example of term distributing trees) A distributing tree A ofthe Akermann funtion is desribed in Figure 2.�1;1 : ((x; y);x)? ?�2;1 : (0; y) �2;2 : ((s(x0); y); y)? ?�3;1 : (s(x0); 0) �3;2 : (s(x0); s(y0))Figure 2: Term distributing tree of EAk.The de�nition of term distributing trees leads to the following:Remark 2.12. (ProPre deals with ompletely de�ned funtions) Let f :s1; : : : ; sn ! s be a funtion with spei�ation E . Let A be a term distributing treeof E . For eah (w1; : : : ; wn) of G(F)s1 � : : : � G(F)sn there is one and only one leaf� of A and a ground onstrutor substitution ' suh that '(�) = (w1; : : : ; wn).This means in partiular that if one wants to assoiate a term distributing treeto a spei�ation E , then E must be ompletely de�ned.Fat 2.13. The Akermann funtion of Example 2.7 is ompletely de�ned and hasa term distributing tree.Fat 2.14. The evenodd funtion of Example 2.8 is not ompletely de�ned andhene there is no term distributing tree assoiated to its spei�ation Eeo.In ProPre, the termination method deals with indutive proofs that require theompleteness of the funtions for the extration of �-terms. However this restritionan be removed in the new setting where Clause 3 of De�nition 2.9 will be modi�edin the next setion so that the termination method will beome insensible to the fatthat the funtion is ompletely or inompletely de�ned. Note that the algorithmdevised in [29℄ was probably the �rst eÆient algorithm to test whether a de�nitionof a funtion is ambiguous and/or omplete. However, the termination method hereis insensible of the ompleteness of a de�nition of a funtion.Remark-Notation 2.15. Let A be a term distributing tree for a spei�ationand b = (�1; x1); : : : ; (�l�1; xl�1); �l be a branh from the root �1 of A to a leaf �l.� Then for eah node �i; �j with 1 � i � j � l, there exists a onstrutor sub-stitution ��j ;�i suh that ��j ;�i(�i) = �j . Furthermore we have the followingequality ��k;�j Æ ��j ;�i = ��k;�i for all i � j � k � l.� If a node �i in the branh b mathes a term u of a reursive all (t; u), thenthe substitution will be denoted by ��i;u.Notation 2.16. For a term distributing tree A of a spei�ation and a left-handside t of an equation of the spei�ation, we will use the notation b(t) to denote8



the branh in A that leads to the leaf t0 (whih is a tuple) suh that t = f(t0).Conversely if b is a branh of A, Lb will denote the leaf of the branh b.The rest of this setion is devoted to the new terminal state property that har-aterises the formal proofs in ProPre abstrated in the present setting (part B ofFigure 1). We do not reall ProPre's notion of right terminal state property (partA) beause it involves sophistiated seond order formulas whih are not neessaryfor our purpose. This notion however an be found in [20℄.An e�etive measurem on the terms ranging over natural numbers, losed undersubstitutions (i.e. m(u) > m(v) implies m(�(u)) > m(�(v))) is used in ProPre.This is made expliit by the following size measure j : j# that onsists, for eahterm t, in ounting the number of its subterms inluding t itself:jtj# = � 1 if t 2 X ,1 + jt1j# + : : :+ jtnj# if t = g(t1; : : : ; tn); g 2 F.Suh a measure or variants are often used as for instane in Nqthm [3℄ withthe funtion ount or in [30℄ although the ordering is a �xed one. In ontrast withmentioned works where the ordering is a �xed one, it turns out that it is not thease in ProPre as other more omplex orderings, alled rami�ed measures in [22℄,an be extrated from the formal proofs obtained in the system.An auxiliary ordering v on terms is introdued to deal with the above measure.De�nition 2.17. (the ordering relation �) Let u; v 2 T (F;X )s for a givensort s. We say that u � v i�: (a) juj# < jvj#, and (b) Var(u) � Var(v), and ()u is linear.The relation � is only used as a part of the terminal state property but doesnot orrespond to the general ordering ensuring the termination of the funtionsobtained in ProPre in part B. As mentioned, this one has to be obtained in relationto the full statement of the abstrated terminal state property de�ned below. Wereall that we will use Remark-Notation 2.15 and 2.16: ��i;�j ; ��i;u; : : : .De�nition 2.18. (abstrated terminal state property) Let A be a term dis-tributing tree for a spei�ation. We say that A has the abstrated terminal stateproperty if there is an appliation � : A ! f0; 1g de�ned on the nodes of A suh that�(L) = 0 for eah leaf L, and for all reursive alls (t; u), there is a node (�; x) inthe branh b(t) with �(�) = 1 suh that � mathes u with ��;u(x) � �Lb(t) ;�(x) andfor all anestors (�0; x0) of � in b(t) with �(�0) = 1, we have ��0;u(x0) v �Lb(t);�0(x0).Example 2.19. Take the term distributing tree of the Akermann funtion ofExample 2.11 given in Figure 2. Let �(�1;1) = �(�2;2) = 1. Using De�nition 2.17,De�nition 2.18 applies to the term distributing tree of the Akermann funtion.For simpliity, we will use the same terminology in both part of Figure 1, and dropthe term abstrated as no onfusion will be possible. In the same way that the rightterminal state property in part A makes sense in the formal ontext, the abovede�nition makes sense with ordinal measures. That is, it is possible to assoiatemeasures to distributing trees that satisfy the above property, dereasing in thereursive all of the funtions. The onnetion between terminal state property and9



the dereasing measures is postponed until Setion 5 where it will be done in theontext of the new measures and the hierarhial property de�ned further.3. Reursive distributing treesThis setion modi�es the onepts of distributing tree while the main ore of thetermination method will be given in the next setions. We take advantage of theonnetion shown in Figure 1. As earlier mentioned, ProPre deals with ompletede�nitions in the sense of [29℄ using formal proof trees based on indutive methodsand haraterised by the right terminal state property (part A of Figure 1). Insteadof formal proofs we will still onsider trees but in the abstrat ontext where ordinalmeasures will be assoiated and for whih the dereasing property in the reursivealls will ensure the termination of the algorithms. In the latter ase the de�nitionsof funtion do not need to be omplete. This will allow us to introdue reursivedistributing trees. The seond re�nement onsists in enlarging the set of andidatetrees for the same spei�ation by introduing split spei�ations as follows:De�nition 3.1. (split spei�ations) Let E be a spei�ation of a funtion f :s1; : : : ; sn ! s. A split spei�ation E 0 of E is a spei�ation of the same funtionf : s1; : : : ; sn ! s suh that for every equation (t0; u0) of E 0 there is an equation(t; u) of E and a substitution � suh that (�(t); �(u)) = (t0; u0).A term distributing an be assoiated indi�erently to a spei�ation or to oneof its split spei�ations due to the following lemma:Lemma 3.2. (relating spei�ations and split spei�ations) Let E be aspei�ation of a funtion f : s1; : : : ; sn ! s and let E 0 be a split spei�ation of Ewhih is omplete. f is terminating for the spei�ation E 0 i� f is terminating forthe spei�ation E .Proof: () is lear. For )), we assume that f is non terminating for E . So thereis an in�nite sequel t1 ! t2 ! : : : ! tm ! : : : oming from the rules with thespei�ations of de�ned funtions and E . Consider eah i suh that ti = C[�(l)℄and ti+1 = C[�(r)℄ where � is a substitution, a ontext C and an equation l ! rof E with l of the form f(u1; : : : ; un). But E 0 is omplete, so there is an equationof l0 ! r0 of E 0 and a substitution � suh that �(l0) = �(l). Aording to thede�nition of the split spei�ation, there is an equation (t00; u00) of E and a substi-tution � with (�(l00); �(r00)) = (l0; r0). As E is non-overlapping we have � Æ � = �with (l00; r00) = (l; r) and so �(r) = �(r0). Therefore we an write ti = C[�(l0)℄ andti+1 = C[�(r0)℄, and we dedue that f is non terminating for E 0. 2Note that a spei�ation is a split spei�ation of itself. In the rest of the paperwe may use the expression spei�ation to denote both a spei�ation or a splitspei�ation. Now, we introdue the reursive distributing trees that orrespond tothe term distributing trees but where a ondition of the de�nition is weakened, andwe give two examples after the de�nition.De�nition 3.3. (reursive distributing trees) Let E be a spei�ation of afuntion f : s1; : : : ; sn ! s. A reursive distributing tree A for E is de�ned by:10



1. The root of A is tuple of the form (x1; : : : ; xn) where xi is a variable of sortsi for eah i � n,2. eah node ofA is of the form (t1; : : : ; tn) and there is a variable x0 of a sort s0 inf(t1; : : : ; tn) suh that the set of hildren of the node, for variables x01; : : : ; x0rnot in t1; : : : tn, is f(t1; : : : tn)[C(x01; : : : x0r)=x0℄; C : s01; : : : ; s0r ! s0 2 Fg,3. There is an injetive mapping I between the set of the left-hand sides of theequations and the set of leaves of A, with I(f(t1; : : : ; tn)) = (t1; : : : ; tn), foreah left-hand side f(t1; : : : ; tn) of an equation (up to a renaming of variables).Note that a term distributing tree is also a reursive distributing tree and thatthe same notations in the earlier setion apply for reursive distributing trees. Fora reursive distributing tree A, we will note A0 the assoiated tree for whih theleaves of A that have no anteedent by the appliation I are removed.Example 3.4. (a reursive distributing tree for a spei�ation) A reursivedistributing tree for the spei�ation of the funtion evenodd is desribed in Figure 3with an assoiated tree (where the 
 symbol denotes the removed leaves).�1 : ((x; y); y)? ?�1;1 : (x; 0)b1 �1;2 : ((x; s(y0)); y0)? ?(x; s(s(y00)))��2;1 : ((x; s(0)); x)? ?�3;1 : (0; s(0))b2 �3;2 : (s(x); s(0))b3Figure 3: Reursive distributing tree of Eeo and the assoiated tree.Example 3.5. (a reursive distributing tree for a (split) spei�ation) InFigure 4, we give a reursive distributing tree for a split spei�ation of the funtionevenodd with its assoiated tree.�1 : ((x; y); x)? ?�1;1 : ((0; y); y)? ? �1;2 : ((s(x0); y); y)? ?�2;1 : (0; 0)b1 �2;2 : (0; s(y0); y0)? ?�3;1 : (0; s(0))b2 (0; s(s(y00)))��2;3 : (s(x0); 0)b3 �2;4 : ((s(x0); s(y0)); y0)? ?�3;2 : (s(x0); s(0))b4 (s(x0); s(s(y00)))�Figure 4: Reursive distributing tree of a split spei�ation of Eeo and its assoiatedtree. 11



Work has been done around the onept of reursive distributing tree with theonept of ompleteness of de�nition (e.g. [9, 29℄) or test sets (e.g. [23, 13, 2℄).However the main extension here relies on the establishment of the terminationproperty and the assoiated ordinal funtions that an also be de�ned on termdistributing trees (part B of Figure 1). Therefore we will show that the terminationmethod extends the method of the earlier setion.4. Extending the ProPre terminal state propertyWe want take advantage of the method of ProPre but given in the new setting(part B of Figure 1) instead of the former ontext (part A). We believe that it iseasier to investigate ordinal measures as they are more exible, at least in the presentontext, than the formal proofs whih arry information that is not neessarilyrelated to the termination part. We use the struture of the trees and introduea termination property, alled hierarhial property. This property allows us toshow the dereasing property of measures in the reursive all of the funtions andtherefore the termination of these funtions.Let us onsider an indutive data type D de�ned in ProPre. This gives rise tonatural strutural orderings aording to its buidling (see [25, 20℄). Let us denote� suh an ordering. Based on an usual indution shema, it allows a property P (x)to be proven for every x by �rst showing P () for eah onstant  of type D andthen proving P (f(u1; : : : ; um)) for eah onstrutor f assuming P (v) with v �f(u1; : : : ; um). This an for instane be applied when P expresses the terminationproperty of the Akermann funtion of Example 2.7.Well-founded orderings are partiularly suited for termination using indutiveproofs and as it is laimed in [25℄ any other well-founded orderings are atuallydiÆult to �nd automatially. As a simple illustration, the funtion equal to 0whose dummy spei�ation E0 an be desribed as follows:f(0)! f(s(0)); f(s(0))! f(s(s(0)); f(s(s(x)) ! 0:Although a well-founded ordering an of ourse be easily found by a human in thisase, it is diÆult to obtain one in an automated way. In partiular it appears thatautomatially proving the following orretness of the spei�ation: f(x) = 0 withthe termination statement is not so adequate as it is usually done with a struturalordering. In fat, simplifying the rules in this ase by merely applying the rulesto eah ground term provides a solution. But this annot always be easily doneas the example of the quot funtion, oming from [15, 1℄, shows while the abovedisussion on the strutural ordering remains the same. A spei�ation Equot of thequot : nat; nat; nat! nat funtion is: quot(0; s(y); s(z))! 0;quot(s(x); s(y); z)! quot(x; y; z); and quot(x; 0; s(z))! s(quot(x; s(z); s(z)):As mentioned in [1℄, the value of quot(x; y; z) orresponds to 1+ bx�yz  when z 6= 0and y � x, that is to say quot(x; y; y) omputes bxy .Beause of the last equation in the above spei�ation, we would like to have awell-founded ordering on nat�nat�nat for whih at least (x; 0; s(z)) � (x; s(z); s(z))holds. But a lexiographi ombinations of the usual ordering on natural numbersis not suitable there, nor are the rami�ed measures that ome from the indutive12



method of ProPre [12℄. The ProPre system also fails for the evenodd funtion forsimilar reasons to those of the quot funtion.Note that a diret appliation of the reursive path orderings [5℄ or polynomialinterpretations [4, 7, 27℄, or the Knuth-Bendix orderings [14℄ fails as well. Thesehave been designed to be applied in a large ontext (rewrite system or algebraisystems for the Knuth-Bendix algorithm). However, it turns out that a similarargument on the indutive methods onerning the earlier examples also holds forthe simpli�ation orderings. That is, they fail beause of the two �rst rules of thespei�ation E0, the �rst rule of Eeo and the third rule of Equot.The usual indutive methods do not deal with the termination of suh fun-tions and of the evenodd funtion. The spei�ations of these funtions and ofthe evenodd funtions are not omplete. But even adding dummy equations thatpreserve the termination property of the funtions, the new spei�ations annotstill be treated by usual indutive methods (suh as those used by ProPre) beauseof the mentioned rules in the spei�ation. In partiular it an be easily hekedthat the reursive distributing trees of Figure 3 and Figure 4 whih orrespond toa re�nement of term distributing trees do not have the terminal state property.The approah we follow in the next setion is to �rst introdue a notion of areursive distributing tree whih, like in indutive methods, takes advantage of thestruture of the left-hand side of the equations. But in ontrast to usual indutivetermination methods, the onstrution of reursive distributing trees allows us tostate a new terminal state property in the searh of termination that also takesaount of orderings that may now be di�erent from usual strutural orderings.We introdue here some de�nitions that will allow us to state a new terminalstate property. This new terminal state will be ruial in the study of terminationof reursive funtions whose proofs of termination require non strutural orderings.We show in Theorem 1 that the new terminal state property stritly extends theterminal state property whih orresponds to that of the ProPre system.4.1. The hierarhial propertyWe �rst need to introdue fresh variables as follows. For eah position q andsort s, we will assume a new variable of sort s indexed by q and distint from thoseof X . This allows us to introdue the following de�nition.De�nition 4.1. Let t be a term and q be a position. The term [[t℄℄q is de�ned asfollows: [[x℄℄q = x if x is a variable, [[C(t1; : : : ; tn)℄℄q = C([[t1℄℄q�1; : : : ; [[tn℄℄q�n) ifC 2 F, and [[g(t1; : : : ; tn)℄℄q = xq if g 2 Fd.For a term u = g(u1; : : : ; un) and a substitution ', g('[[u℄℄) will denote the termg('([[u℄℄1); : : : ; '([[u℄℄n)).Along with the ordering � de�ned in Setion 2, we introdue the followingrelations: for u; v in T (F;X )s, we say that u D v if u 6� v with :(b) or :() orjvj# < juj# in De�nition 2.17; and we say that u 4 v if u 6� v with (b) and () andjuj# = jvj#.In the following de�nitions, we onsider a funtion f : s1; : : : ; sn ! s, a (split)13



spei�ation E , and the assoiated tree A0 of a reursive distributing tree A of E .De�nition 4.2. For eah node �, C� will denote fb 2 A0; � 2 bg and R� theset of reursive alls (t; u) suh that b(t) 2 C�. If (t; u) is a reursive all, thenMA0(u) = fb 2 A0; 9'; '0 suh that f('[[u℄℄) = '0(f(Lb))g and QA(t; u) = f� 2b(t); 9�; �(f(�)) = ug.Note that the set QA(t; u) is not empty sine the root node belongs to QA(t; u).Let b be a branh and two nodes �; �0 2 b, we say that � < �0 if � is loser than �0to the root (i.e. if � is an anestor of �0). So we an write NA(t; u) = maxQA(t; u).For eah node � of A0 we assume an assoiated subset G� of R� whih will bemade expliit in De�nition 4.5. The meaning of the two following de�nitions is togive dereasing riteria that extends those of De�nitions 2.17 and 2.18 and reliesin partiular on the hierarhial struture of the trees. Notie that the de�nitionsbelow should be given simultaneously (De�nitions 4.3, 4.4, 4.5, 4.6), but these,de�ned on the height of the tree A, are introdued separately to ease the readability.De�nition 4.3. Let (�; x) be a node of A0 and G� be a subset of R�. For eahreursive all (t; u) of G� suh that � 2 QA(t; u), we assume that one of the twofollowing ases below holds and we de�ne ��(t;u), as follows:1. If ��;u(x) � �Lb(t) ;�(x) or ��;u(x) D �Lb(t);�(x), then ��(t;u) = 1,2. If ��;u(x) 4 �Lb(t) ;�(x), then ��(t;u) = 0.The above de�nition is intended to deal with orderings that may be di�erent fromthe usual strutural orderings. This leads to also introdue the following:De�nition 4.4. Let (�; x) be a node of A0 and G� be a subset of R�. For eahreursive all (t; u) of G� suh that � 2 QA(t; u) and for eah branh b 2 C�, we willde�ne ��(t;u);b in the following way:1. We �rst onsider all (t; u) suh that ��;u(x) D �Lb(t) ;�(x) and take for b 2 C�:��(t;u);b = � 0 if b 2 MA0(u),1 otherwise2. Next, we onsider eah (t; u) in G� suh that there is a (t0; u0) with ��(t0;u0);b(t) =0, and for whih no ��(t;u);b0 is de�ned for any b0 2 C�. We then take��(t;u);b = � 0 if b 2 MA0(u),1 otherwise3. Finally if item 2 annot be applied, we put ��(t;u);b = 1 for eah b 2 C�.Note that ases 1 and 2 in De�nition 4.4 are distint beause ��(t;u) is algorithmiallyde�ned; namely ase 1 is the initial ase and ase 2 is a (�nite) loop ase.Now we an de�ne, for eah node � of A0 and eah left-hand side t of an equationsuh that � with b(t) 2 C�, the value:��t = Q(t0;u0)2G��2QA(t0;u0)��(t0;u0);b(t) if G� 6= ; and 0 otherwise.We now expliit the subset G� of R� for eah node �. The following de�nition stateswhether from eah node, a reursive all an be eliminated from a set of reursivealls aording to some onditions. 14



De�nition 4.5. Let �1 be the root of the reursive distributing tree A. We �rstput G�1 = R�1 . Now assume that G� is de�ned for a node � of A0 and let �0 bea hild of � with �0 in A0. The set G�0 is then de�ned as follows: (t; u) 2 G�0 i�(t; u) 2 R�0 \ G� and (��(t;u); ��t ) 6= (1; 1).We also de�ne an appliation F on eah node � distint from a leaf. The appliationF an be seen as a neessary ondition for the termination statement. That is,roughly, if a reursive all (t; u) has to still be onsidered for a node � while � >NA(t; u), then the reursive distributing tree will not have the hierarhial property.Note that an analogous ondition also holds for the terminal state property.De�nition 4.6. (F : a neessary ondition for termination) Let � be a nodeof assoiated tree A0 of the reursive distributing tree A whih is distint from a leaf.We put F (�) = 0 if there is a hild �0 of � and (t; u) in G�0 suh that � > NA(t; u);and we put F (�) = 1 otherwise.Now the hierarhial property an be de�ned below.De�nition 4.7. (hierarhial property) The reursive distributing tree A is saidto have the new terminal state property if for eah node � of A0 distint from a leafwe have F (�) = 1 and for eah branh b there is node �0 in b suh that G�0 = ;.Let us now present again the two examples of reursive distributing tree ofthe spei�ation of Eeo and a split spei�ation of Eeo introdued respetively inFigure 3 and Figure 4. The �rst one does not have the new terminal state property(Example 4.8), while the seond does (Example 4.9).�1 : ((x; y); y)? ?�1;1 : (x; 0)b1 �1;2 : ((x; s(y0)); y0)? ?(x; s(s(y00)))��2;1 : ((x; s(0)); x)? ?�3;1 : (0; s(0))b2 �3;2 : (s(x); s(0))b3Figure 5: The assoiated tree of a reursive distributing tree of Eeo.Example 4.8. (reursive distributing tree without the new terminal stateproperty) We show that the reursive distributing tree A given in Figure 5 of thespei�ation of the evenodd funtion does not have the new terminal state property.Let t1 = (x; 0), t2 = (0; s(0)), t3 = (s(x); s(0)). The set G�1 is R�1 = fr1; r2gwith r1 = ((x; 0); (x; s(0))), r2 = ((s(x); s(0)); (x; 0)). We have ��1r1 = 1, ��1r2 = 1,��1r1;b1 = 1, ��1r1;b2 = 0 and ��1r1;b3 = 0. Then we have ��1r2;b1 = 0, ��1r2;b2 = 0 and��1r2;b3 = 1. Therefore ��1t1 = 0, ��1t2 = 0 and ��1t3 = 0. Thus G�1;1 = fr1g; that isenough to onlude that A does not satisfy the new terminal state property.Example 4.9. (reursive distributing tree with the new terminal stateproperty) Let us onsider the reursive distributing tree A given in Figure 6 of15



�1 : ((x; y); x)? ?�1;1 : ((0; y); y)? ? �1;2 : ((s(x0); y); y)? ?�2;1 : (0; 0)b1 �2;2 : (0; s(y0); y0)? ?�3;1 : (0; s(0))b2 (0; s(s(y00)))��2;3 : (s(x0); 0)b3 �2;4 : ((s(x0); s(y0)); y0)? ?�3;2 : (s(x0); s(0))b4 (s(x0); s(s(y00)))�Figure 6: Assoiated tree of a reursive distributing tree of a split spei�ation ofEeo.the (split) spei�ation of the evenodd funtion. A satis�es the new terminal stateproperty:Let t1 = (0; 0), t2 = (0; s(0)), t3 = (s(x); 0)), t4 = (s(x); s(0)). The set G�1 isR�1 = fr1; r2; r3g with r1 = ((0; 0); (0; s(0))), r2 = ((s(x); 0); (s(x); s(0))), andr3 = ((s(x); s(0)); (x; 0)).It is easy to see that ��1r1 = 0, ��1r2 = 0, ��1r3 = 1, and ��1r1;b = 1, ��1r2;b = 1, ��1r3;b = 1for eah branh b. We have, therefore, ��1t = 1 for eah term t. We then obtainG�1;1 = fr1g, G�1;2 = fr2g and F (�1) = 1.We now get ��1;1r1 = 1, ��1;1r1;b2 = 0, ��1r1;b1 = 1 and therefore ��1;1t1 = 1, ��1;1t2 = 0.So G�2;1 = ;, G�2;2 = R�2;2 = ;, and F (�1;1) = 1. Furthermore ��1;2r2 = 1, and��1;2r2;b4 = 0, ��1;2r2;b3 = 1. We then get ��1;2t3 = 1, ��1;2t4 = 0. Thus G�2;3 = ;, and we alsohave G�2;4 = ;; hene F (�1;2) = 1. Now G�3;2 = G�2;4 = ; and F (�2;4) = 1.Therefore we an onlude that A satis�es the new terminal state property.4.2. The theorem of generalisationThe new terminal state property an be viewed as a faithful extension of theterminal state property devised in the ProPre system in the following way:Theorem 1 Let A be a term distributing tree of a spei�ation E of a funtion. IfA has the terminal state property in the system ProPre, then A satis�es the newterminal state property. The opposite does not hold.Proof: See Appendix.Notie that the extension does not only rely on the fat that a reursive dis-tributing tree may not be a term distributing tree but on the new state property.For instane, the spei�ation E0 and any split spei�ation of E0 does not have anyterm distributing tree that has the terminal state property. This is also the ase forthe evenodd funtion and the quot funtion. That is to say, one an add to the spe-i�ation of the funtion evenodd, an equation whih is harmless for the terminationof the funtion but whih ompletes the domain of the de�nition of the funtion.For example, one an add the dummy equation evenodd(x; s(s(y))) = true. Onean also use any split spei�ation of the new ompleted spei�ation, nevertheless16



the evenodd funtion annot be handled by the ProPre system whih implies thereis no term distributing tree for this funtion that has the terminal state property.The terminal state property de�ned in the ProPre system ensures the termi-nation of the onerned funtions beause a omplete formal proof tree an bebuilt from any distributing tree that enjoys the terminal state property (see [20℄).In [22, 10℄ it was shown that ordinal funtions an also be assoiated to distributingtrees. These funtions were proven to have the dereasing property in the reursivealls of the spei�ations if the trees satisfy the terminal state property too. As thisalso implies the termination of the onerned funtions, this therefore an be seen,but with a di�erent approah, as a new proof of the soundness of the mentionedproperty. In this paper, as we work on reursive term trees with a new terminalstate property, it appears that formal proofs annot be built, as it an be done withProPre, in order to state the soundness of the new terminal state property. Howeverwe will establish the soundness by assoiating ordinal measures that will enjoy thedereasing property. In the next setion, we explain why the measures assoiatedto the formal proofs found by ProPre do not �t in our new ontext and why we willneed to extend the de�nition of the measures of [22℄ to obtain new ordinal measuressuited to the new terminal state property.5. Soundness of the method with dereasing measuresIn this setion we explain how it is possible to de�ne ordinal measures againsttrees of funtions where if the ordinal measure dereases in the reursive all ofthe funtion, then this funtion terminates. We reall the rami�ed measures thatome from the analysis of the ProPre system and we give new measures whih willhelp in establishing terminations of funtions where the proofs of terminations arenon-indutive. Our main theorem of this setion (Theorem 2) establishes that ournew notion of right terminal state and our extended notion of measures, enable usto establish the termination of funtions (indutive and non indutive).We �rst reall the ordinal measures of [22, 10℄. We need the following de�nition:De�nition 5.1. (height of a node in a tree) Let A be a tree and � be a nodeof A. The height of � in A, denoted by H(�;A), is the height of the subtree of A,whose root is �, minus one.Let A be a term distributing tree of a spei�ation. We assume that for eah node�i distint from a leaf, there is an assoiated appliation mi to �i from the set ofground terms to the set of natural numbers.De�nition 5.2. (rami�ed measures) Let E be a spei�ation of a funtion f :s1; : : : ; sn ! s and A a term distributing tree of E . We de�ne the rami�ed measure
A : G(F)s1 � : : : � G(F)sn ! !!, where ! is the least in�nite ordinal, as follows:Let v be an element of the domain G(F)s1 � : : : � G(F)sn and � be the leaf of Asuh that there is a substitution ' with '(�) = v (f. Remark 2.12). Let b bethe branh (�1; x1); : : : ; (�k�1; xk�1); � of A from the root �1 to �, let ��j ;�i be thesubstitutions related to b (f. Remark-Notation 2.15) and for eah �l the assoiated17



appliation ml, l � k � 1. Then
A(v) = k�1Xi=1 !H(�i;A) �mi('(��k ;�i(xi))) :The rami�ed measures an be illustrated with Figure 7.�i; xi���mi 




mi miQQQQmi
Node of term distributing tree.

�0��� QQQm0 m0L1 �1��� QQQm1 m1L4�2��� QQQm2 m2L2 L3Figure 7: Term distributing tree and rami�ed measure.Amongst the lass of the rami�ed measures de�ned above, two sublasses of mea-sures were related to the formal proofs obtained in ProPre. A �rst lass of measures,alled R-measures, was related to formal proofs oming from an earlier version ofProPre (see [22℄) by substituting a mapping lg for the mi measures in 
A (seeFigure 8). The funtion lg, sometimes alled size measure like j : j#, is de�ned by:lg(t) =8<: 1 if t 2 X ,1 +Xsj=s lg(tj) if t = g(t1; : : : ; tn); g : s1; : : : ; sn ! s 2 F .It was shown that any formal termination proof found by ProPre implies the or-responding ordinal measures to have the dereasing property in the reursive allsof the spei�ations (see [22℄). �i; xi���lg ���� lgQQQQlgFigure 8: Node of term distributing tree and rami�ed measure.Example 5.3. (rami�ed measure of the term distributing tree of Ak)The rami�ed measure of the term distributing tree of the Akermann Ak funtionde�ned in Setion 2 is: 
A(0; y) = !, 
A(s(x); 0) = ! � (1 + lg(x)) + 1and 
A(s(x); s(y)) = ! � (1 + lg(x)) + (1 + lg(y)):Another lass of measures ould also be de�ned from new formal proofs using anextended version of ProPre (see [10℄) in whih new indutive rules were introdued.18



These measures, alled I-measures, an be de�ned using both the skeleton formof distributing trees (i.e., term distributing trees) and the terminal state propertygiven in Setion 2.2. The mi funtions are obtained with mi = �(�i) � j : j# in thede�nition of 
A illustrated with Figure 9.�i; xi����(�i) � j : j# �����(�i) � j : j# QQQQ�(�i) � j : j#Figure 9: Node of term distributing tree and rami�ed measure.[20℄ showed that eah funtion proven to terminate in the �rst version of ProPrean also be proven terminating in the new version. Note that, unlike the ase ofR-measures, themi funtions depend on the nodes �i in the de�nition of I-measures.A natural question is to know whether there is also a suitable sublass of therami�ed measures that an be related to the reursive distributing trees that havethe new terminal state property. This is important as it would enable the termina-tion of funtions to be established in our ontext.As already mentioned there is no term distributing tree for E0 that has theterminal state property. This does not a priori imply that an R-measure or an I-measure assoiated to a term distributing tree does not have the dereasing property.However, it an be easily heked that the dereasing property atually does nothold for these measures. This is also the ase for instane with the evenodd funtionor the quot funtion (even with ompleted spei�ations). However the ordinalfuntion: 
1(u; 0) = ! � juj# + 1 
1(u; s(v)) = ! � juj#satis�es the dereasing property in the reursive alls of the spei�ation E0.Also, the following ordinal funtion satis�es the dereasing property for the spei�-ation of the quot funtion: 
2(u; s(v); w) = !�juj# 
2(u; 0; w) = !�juj#+1.It would be possible to �nd, amongst the lass of the rami�ed measures, dereas-ing measures for the mentioned funtions. But the hoie of the mi funtions thatour in 
A is diÆult to obtain in an automated way dealing with the terminationof suh funtions. In partiular we would like to have mi funtions as simple aspossible, as is the ase for those obtained for the R-measures or the I-measures.We will therefore need to enlarge the de�nition of the rami�ed measures in orderto obtain a new lass whih will be related to the reursive distributing tree. Wewill then show that the new terminal state property implies the dereasing of theassoiated measures. We �rst need to introdue the following de�nition:De�nition 5.4. (node measures) Let A be a reursive distributing tree of aspei�ation of a funtion. For eah node �i of A, and eah subranh startingfrom the �i, we will assume that there is an assoiated appliation mi, alled nodemeasure, from the set of ground terms to the set of natural numbers. The appliationmi will be also noted m�i;� where � is the leaf of the onerned subranh.Example 5.5. (an illustration of node measures) The node measures an beillustrated with Figure 10. 19



�i; xi���m�i;Li;1 ����m�i;Li;2 QQQQm�i;Li;jFigure 10: Nodes measure.For a funtion f : s1; : : : ; sn ! s with a spei�ation E , we will note T fs1;::: ;snthe set of the elements (v1; : : : ; vn) in G(F)s1 � : : : � G(F)sn suh that there issubstitution � and a left-hand side (t1; : : : ; tn) of an equation of E with �(ti) = vifor every 1 � i � n.We now de�ne the extended rami�ed measures as follows:De�nition 5.6. (extended rami�ed measures) Let E be a spei�ation of afuntion f : s1; : : : ; sn ! s and A0 be the assoiated tree of a reursive distributingtree A of E . The extended rami�ed measure 
A : T fs1;::: ;sn ! !! is de�ned by:Let v be an element of the domain T fs1;::: ;sn and � be the leaf of A0 suh thatthere is a substitution ' with '(�) = v (f. Remark 2.12). Let b be the branh(�1; x1); : : : ; (�k�1; xk�1); � of A0 from the root �1 to �, let ��j ;�i be the substitutionsrelated to b (f. Remark-Notation 2.15) and letm�i;� be the assoiated node measurefor eah �l. Then 
A(v) = k�1Xi=1 !H(�i;A0) �m�i;�('(��k ;�i(xi))) :Example 5.7. (an illustration of an extended rami�ed measure)Consideringthe earlier term distributing tree (whih is also a reursive tree) of Figure 7, anextended rami�ed measures an be illustrated with Figure 11.�0


L1 ZZZXXXXXXXXXhhhhhhhhhhhhhhm�0;L1 m�0;L2 m�0;L3m�0;L4�1 �1 �1m�1;L2 m�1;L3 m�1;L4�2 �2 L4m�2;L2 m�2;L3L2 L3Figure 11: Extended rami�ed measure.Amongst the lass of rami�ed measures, the R- and I-measures turned out tobe suitable for the termination of a lass of funtions as they ould be assoiated toformal proofs obtained in ProPre. We show here that there also exists a sublass ofthe extended rami�ed measures that �t with the reursive term distributing treesthat satisfy the new terminal state property. These are de�ned as follows:20



De�nition 5.8. (hole measures) Let E be a spei�ation of a funtion f :s1; : : : ; sn ! s and let A0 be the assoiated tree of a reursive distributing treeA of E . The hole measure 
A : T fs1;::: ;sn ! !! is de�ned as follows:Let v be an element of the domain T fs1;::: ;sn and � be the leaf of A0 suh that thereis a substitution ' with '(�) = v. Let b be the branh (�1; x1); : : : ; (�k�1; xk�1); �of A0 from the root �1 to �. Then
A(t) = k�1Xi=1 !H(�i;A0) � (��it � j(�(��k;�i(xi)))j#) :That is to say m�i;� = ��it � j : j#.Note that, due to the relation between the leaf � and the term t, ��it � j : j# dependsboth on �i and � in the above de�nition. This an be illustrated with Figure 12.�i; xi�����iti1 � j : j# ������iti2 � j : j# QQQQ��itij � j : j#Figure 12: Node measure of hole measures.Example 5.9. (assoiated ordinal measure of a reursive distributing tree)By De�nition 5.8 and the values obtained in Example 4.9, the assoiated ordinalmeasure of the reursive distributing tree in Figure 3 of the evenodd funtion is:
A(x; 0) = !2 � jxj# + !; 
A(x; s(0)) = !2 � jxj#:Note that the above ordinal 
1 an also be derived from the shape of 
A on T eona;nat.It is lear that 
A has the dereasing property in eah reursive all on the domainof the funtion evenodd. This result an be generalised with Theorem 2 below.The following theorem allows us to state the soundness of the new terminal stateproperty. That is, if there a reursive distributing tree for a spei�ation of a fun-tion that enjoys the new terminal state property, then the funtion is terminating.Theorem 2 (soundness of the new terminal state property) Let E be aspei�ation of a funtion f : s1; : : : ; sn ! s and A be a reursive distributingtree for E that has the new terminal state property. Then the extended rami�edmeasure 
A satis�es the dereasing property. That is to say, for eah reursiveall (f(t1; : : : ; tn); f(u1; : : : ; un)) of E and every ground onstrutor substitution ',suh that '([[u1℄℄1); : : : ; '([[un℄℄n) is in T fs1;::: ;sn , we have:
A('(t1); : : : ; '(tn)) > 
A('([[u1℄℄1); : : : ; '([[un℄℄n)).Proof: Take a ground onstrutor substitution ' with '([[u1℄℄1); : : : ; '([[un℄℄n) 2T fs1;::: ;sn . We show that 
A('(t1); : : : ; '(tn)) > 
A('([[u1℄℄1); : : : ; '([[un℄℄n)). Lett and u respetively denote the terms f(t1; : : : ; tn) and f(u1; : : : ; un). By def-inition of the assoiated tree A0 of A, there is a branh b of A0 of the form(�1; x1); : : : ; (�k�1; xk�1); �k where �1 is the root of A0 and the leaf �k orrespondsto t, i.e. f(�k) = t and b(t) = b. As '([[u1℄℄1); : : : ; '([[un℄℄n) 2 T fs1;::: ;sn , there isan equation (v; v0) 2 E and a substitution � suh that �(v) = f('[[u℄℄) where [[u℄℄21



denotes the uplet (([[u1℄℄1); : : : ; ([[un℄℄n)).Let b(v) be the branh (�01; x01); : : : ; (�0r�1; x0r�1); �0r of A0 with f(�0r) = v.As A has the new terminal state property, there is a node � in b suh that G� = ;.But G�1 = R�1 ontains all the reursive alls of E , and so (t; u) 2 G�1 . Hene, thereis a value J , suh that (t; u) 2 G�J but (t; u) =2 G�J+1 .Aording to De�nition 4.5, we have (t; u) 2 G�J � G�J�1 � : : : � G�1 and for all1 � i < J , (��i(t;u); ��it ) 6= (1; 1). Furthermore, beause A has the new terminalterminal state property, F (�J ) = 1. But (t; u) 2 G�J , thus �J < NA(t; u) by De�-nition 4.6, that is to say �J 2 QA(t; u). So f(�J) mathes u and therefore mathes'(u). Sine f(�J) is linear and ' is a ground onstrutor substitution, we deduethat f(�J) also mathes f('[[u℄℄). But f(�0r) mathes f('[[u℄℄) as well with thesubstitution � . As f(�J) and f(�0r) math a ommon term, by onstrution of thereursive distributing trees, this implies that �J and �0r are in the same branh; andso �J � �0r beause �0r is a leaf. Thus we have x0i = xi and �0i = �i for 1 � i � J .This gives us the relation ' Æ ��i;u(xi) = � Æ ��0r;�0i(xi) for 1 � i � J aording tothe substitutions � Æ ��0r ;�0i and ', and to the fat ��i;u(xi) is a onstrutor term byDe�nition 4.3. So we an write:
A('([[u1℄℄1); : : : ; '([[un℄℄n)) =PJ�1i=1 !H(�i;A0) �m�i;�0r(' Æ ��i;u(xi))+!H(�J ;A0) �m�J ;�0r(' Æ ��J ;u(xJ )) +Pr�1i=J+1 !H(�i;A0) �m�0i;�0r(� Æ ��0r ;�0i(x0i))(1)We are going now to show thatm�i;�0r(' Æ ��i;u(xi)) � m�i;�k(' Æ ��k;�i(xi)); i < J and (2)m�J ;�0r(' Æ ��J ;u(xJ )) < m�J ;�k(' Æ ��k;�J (xJ )) (3)� Let 1 � i < J . We know that �i 2 QA(t; u), and (��i(t;u); ��it ) 6= (1; 1).- Let us onsider the ase ��it = 0. By de�nition of ��i�;�, this implies there is areursive all (t0; u0) suh that ��i(t0;u0);b(t) = 0. But �(v) = f('[[u℄℄) and b(v) is inMA0(u). Hene, due to ��i(t0;u0);b(t) = 0 and b(v) 2 MA0(u), we get ��i(t;u);b(v) = 0with De�nition 4.4, and thus ��iv = 0. The later equality implies m�i;�0r = 0 andInequality (2) then holds.- We now onsider the ase ��it = 1 with ��i(t;u) = 0. This gives us m�i;�k = j : j# and��i;u(xi) 4 ��k;�i(xi). We dedue, from the de�nition of 4, that j' Æ ��i;u(xi))j# �j'Æ��k;�i(xJ )j#. Hene, Inequality (2) holds again whatever the value ��iv in m�i;�0r .� We now show Inequality (3). By de�nition of J , we have ��J(t;u) = 1 and ��Jt = 1,and Inequality (3) boils down to m�J ;�0r(' Æ ��J ;u(xJ )) < j' Æ ��k;�J (xJ )j#. As��J(t;u) = 1, two ases are then possible:- i) ��J ;u(xJ ) � ��k ;�J (xJ ). But � is losed under substitutions, so (3) holds what-ever the value ��Jv in m�J ;�0r .- ii) ��J ;u(xJ ) D ��k ;�J (xJ ). This implies ��J(t;u);b(v) = 0 sine b(v) 2MA0(u). Hene��Jv = 0 and thus m�J ;�0r = 0. As jwj# > 0 for every w, we get Inequality (3).22



We know that
A('(t1); : : : ; '(tn)) =PJ�1i=1 !H(�i;A0) �m�i;�k(' Æ ��k;�i(xi))+!H(�J;A0) �m�J ;�k(' Æ ��k;�J (xJ )) +Pk�1i=J+1 !H(�i;A0) �m�i;�k(' Æ ��k ;�i(xi))(4)Due to the expression of (1) and (4) and the inequalities (2) and (3), we an nowonlude that 
A('(t1); : : : ; '(tn)) > 
A('([[u1℄℄1); : : : ; '([[un℄℄n)). 26. ConlusionThe system ProPre treats a lass of term rewriting systems speifying a reur-sive funtion and deals with the automation of the proofs of termination of thesereursive funtions. Beause the termination proofs of the ProPre system dependon strutural orderings, e.g. by the size of terms, the system is diÆult to provespei�ations in whih a reursive all in the right-hand side of a rule is not smallerthan the left-hand side of the rule.In this paper we proposed a method that extends the automation of the proofsof termination of reursive funtions used in ProPre. Whereas ProPre ould onlydeal with the automation of indutive proofs, our method allows the automation ofa larger lass of reursive funtions beause it an handle non strutural orderings.The extension of the ProPre system proposed by this paper onsists of mainly threeparts.1. If any term whose root symbol is a funtion de�ned by a spei�ation anmath the left-hand side of a rule, the spei�ation is alled omplete. Theoriginal ProPre system an deal with omplete spei�ations only. Indeed, theterm distributing tree of a spei�ation, whih is de�ned for proving termina-tion in the ProPre system, must satisfy the following ondition: eah leaf ofthe term distributing tree orresponds exatly one left-hand side of a rule ofthe spei�ation. In this paper we de�ned the new distributing tree, alled thereursive distributing tree, whih has the weaker ondition than the original.The reursive distributing tree an treat non-omplete spei�ations.2. For a spei�ation that is hard to deal with diretly, we propose the split spe-i�ation. The split spei�ation an be obtained by replaing a rule with rulesthat are instanes of it. It is easier to prove the termination of a split spe-i�ation than that of the soure spei�ation. We prove that a spei�ationterminates if and only if the split one does.3. Finally, we ome to the main part of our extension: A termination proof inthe ProPre system works as follows:(a) De�ne a term distributing tree of a given spei�ation.(b) Verify that the tree has the terminal state property. If so, the spei-�ation is terminating. Roughly speaking, the terminal state property23



means that eah reursive all is struturally smaller than the left-handside.In this paper, we proposed the new terminal state property. Beause we usethe ordering by whih a reursive all ompared to the left-hand side doesnot depend the struture of terms, our method an apply to spei�ations inwhih simpli�ation orderings fail, suh as the reursive path ordering and soon.Beause onstruting a reursive distributing tree and verifying whether thedistributing tree has the terminal state property an be omputed in a �nite time,our paper ontributes to the area of establishing automatially termination proofsof reursive funtions. Indeed, we also prove that our method is stronger than thetermination method of the original ProPre system. Moreover, we show that thereare examples of spei�ations that annot be proved terminating using ProPre, butan using our proposed extension. Our results may help in handling more realisitiexamples that annot be proved terminating (automatially) by strutural methods.AppendixWe give the proof of Theorem 1 stated again here below.Theorem 3 Let A be a term distributing tree of a spei�ation E of a funtion. IfA has the terminal state property in the system ProPre, then A satis�es the newterminal state property. The opposite does not hold.Proof: Let us onsider a term distributing tree A of a spei�ation. Reall that aterm distributing tree A is a reursive distributing tree.We are going to show that the appliation F of De�nition 4.6 has the value 1 oneah node distint from a leaf. In order to get a ontradition we assume thereis a node � in A, distint from a leaf, suh that F (�a) = 0. So, as F (�a) = 0,there is a hild �0a of �a and a reursive all (t; u) in G�0a � R�0a with �a > NA(t; u).Beause A has the terminal state property, there is a node (�?; y) in the branh b(t),with �(�?) = 1, that mathes u with ��?;u(y) � �Lb(t);�?(y) and for every anestor(�0?; y0) of �? in b(t), suh that �(�0?) = 1, we have ��0?;u(y0) v �Lb(t);�0?(y0). So�? is in QA(t; u) and we also have ��?(t;u) = 1. As �? < �a sine �? � NA(t; u), let�0 be the hild of �? in the branh b(t) where is also �a. We have in partiularG�0a � G�a � G�0 and thus (t; u) 2 G�0 . Hene, aording to De�nition 4.5 and thefat that ��?(t;u) = 1, we dedue that ��?t = 0. This means that there is a reursiveall (t00; u00) 2 G�? with ��?(t00;u00);b(t) = 0. Therefore, by onstrution of ��?�;�, thisimplies that there is also a reursive all (t0; u0) 2 G�? , with ��?;u0(y) D �Lb(t0);�?(y),and a branh b0 2 C�? with ��?(t0;u0);b0 = 0.As A has the terminal state property, there is a node (�?p ; xp), with �(�?p) = 1, inthe branh b(t0) suh that ��?p;u0(xp) � �Lb(t0);�?p(xp) and for every anestor (�0?p; x0p)of �?p suh that �(�0?p) = 1, we have ��0?p;u0(x0p) v �Lb(t0);�0?p(x0p). Beause (t0; u0)is in G�? � R�? , this implies that �? is also in b(t0). Therefore we an ompare�? and �?p in the branh b(t0). The ase �? � �?p is not possible otherwise, due24
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