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tive proofs are 
ommonly used in automated dedu
tion systems or fun
tionalprogramming, su
h as for instan
e the ProPre system, for establishing the termination ofre
ursively de�ned fun
tions. Su
h proofs deal with the stru
tural orderings of the termalgebras that de�ne the domain of the fun
tions. However there exists other interestingfun
tions whose termination requires di�erent underlying orderings. To treat a 
lass ofsu
h fun
tions that are not taken into a

ount by systems su
h as ProPre, we developtermination properties that 
an be shown automati
ally. In 
ontrast with the ProPresystem that builds formal trees based on indu
tive proofs, we generate measures thatsatisfy an extended termination property and well-founded orderings whi
h ensure thetermination of the fun
tions.1. Introdu
tionTermination of fun
tions de�ned on re
ursive data stru
tures is an importantproperty in the development of 
orre
t software su
h as fun
tional programming andautomated dedu
tion. The standard approa
h to show the termination of re
ursivelyde�ned fun
tions is to prove that the arguments in ea
h re
ursive 
all are smallerthan the initially given input with respe
t to a well-founded ordering.Usually, most termination methods use prede�ned orders, or lexi
ographi
 
om-binations of it (see e.g. [30, 24, 26℄), or orderings given by the users (see e.g. [3, 6℄).However, in the standard approa
h, �nding suitable orderings is essential for theautomation of the termination. In [8℄ a method was developed to automati
ally syn-�Supported by EPSRC GR/L15685. We are grateful for the anonymous referees for their useful
omments. 1



thesise suitable measures based on polynomial orderings and in [22℄ a terminationpro
edure was proposed to generate orderings with the use of ordinal measures.The latter method 
omes from the analysis of another approa
h, the formalapproa
h, that relies on formal termination proofs [21℄ built in a natural dedu
tionstyle. The formal approa
h is essentially used to allow the extra
tion of �-terms that
ompute the fun
tions as 
odes of programs (see e.g. [16℄). Based on this paradigmof proofs as programs, the ProPre system, designed in [20℄, shows the automatedtermination of a re
ursive fun
tion by building a (partial) formal tree, asso
iatedwith the spe
i�
ation of the fun
tion, whi
h satis�es the so-
alled right terminalstate property. Due to this property, ProPre is then able to derive, from the partialtree, a 
omplete formal proof tree ensuring the termination of the fun
tion.It has been shown in [22, 10℄ that it is possible to extra
t well-founded order-ings, namely ordinal measures, from the above formal proofs devised in the fullyautomated system ProPre [21, 20℄, su
h that the arguments in ea
h re
ursive 
allof the given fun
tion are smaller than the initially given input (i.e., the 
alls de-
rease wrt the well-founded ordering). The extra
tion of a spe
ial 
lass of measures,
alled rami�ed measures, appears as a useful way to �nd out new orderings as thesemeasures are in parti
ular not limited to lexi
ographi
 orderings.In this paper we propose to extend both the termination pro
edure of ProPreand the extra
tion of new orderings. In 
ontrast to earlier work where the synthesisof suitable measures espe
ially relied on ProPre's pro
edure, we do not work inthe 
ontext of formal proofs but in a setting released from the parti
ular logi
alframework of ProPre. The new 
ontext allows us to 
onstru
t trees asso
iated withthe spe
i�
ations of fun
tions whi
h must satisfy a property, 
alled the hierar
hi
alproperty. Instead of �nding a formal proof, we 
an now dire
tly infer measures,from the trees, whose de
reasing property is ensured by the hierar
hi
al property.Work already 
arried out on the 
on
ept of trees developed from spe
i�
ationsin
ludes: 
ompleteness of de�nition (see e.g. [9℄), test sets and indu
tive redu
ibility(see e.g. [23, 13, 2℄) and ProPre itself. But su
h trees have mainly been used forproving indu
tive properties for equational or 
onditional theories, or in the 
aseof ProPre, trees appear in a formal 
ontext where they takes advantage of thestru
ture of the fun
tion de�nition. However, the main property that allows thesystem to �nd termination proofs of re
ursive fun
tions is not simply the de�nitionof trees but the right terminal state property that they must satisfy. This one givesthe soundness of the method and also 
hara
terises in some sense the 
lass of there
ursively de�ned fun
tions that 
an be proven terminating in the system.Like the above approa
hes, we make use of some kind of trees as in [22℄ with somere�nements, in parti
ular to deal spe
i�
ations of in
ompletely de�ned fun
tions.However, the novelty of our termination method relies on the hierar
hi
al propertydeveloped in this paper and on the introdu
tion of new measures.Fun
tional programs 
an also be regarded as term rewriting systems. However,due to the spe
ial forms of fun
tions, it seems more 
onvenient to 
onsider in the 
aseof fun
tional programming, well-founded orderings for whi
h only the arguments ofthe fun
tion and the re
ursive sub
alls are taken into a

ount. Compare this with2



rewriting systems where the usual orderings are 
onsidered for all the left-handsides and right-hand sides of the terms, as it is for instan
e with the re
ursive pathordering [5℄. In parti
ular, the rewrite terms that are proven terminating by su
horderings are 
hara
terised by the simple termination property [28℄, namely themonotoni
ity and the subterm property. Our results imply that this 
ondition isnot ne
essary and we are able to deal with a larger set of fun
tions even those whosetermination does not require these notions of simple termination, monotoni
ity andsubterm property.The above mentioned standard approa
h is often used by theorem provers su
h asthe well-known Nqthm prover [3℄, whi
h aim at establishing the de
reasing propertyof measures on the re
ursive 
alls of the algorithms. But usually the measures are alexi
ographi
 
ombination of a �xed ordering or are given by the user. The presentmethod aims at providing suitable measures in an automated way and therefore
ould be used by other theorem provers by providing the measures obtained fromthe formal proofs in ProPre [22, 12℄.Hen
e, our work has the advantage that now we 
an automati
ally establish:� the termination of all those fun
tions that 
ould be shown terminating byProPre (and hen
e whose spe
i�
ations are 
omplete and whose terminationmethods require stru
tural indu
tion),� the termination of fun
tions whose spe
i�
ations are not ne
essarily 
ompleteand whose termination requires other orderings than those used in stru
turalindu
tion, simple termination, monotoni
ity and the subterm property,� suitable measures that 
ould be passed to other theorem provers to be usedin establishing the de
reasing number of re
ursive 
alls.The paper is divided as follows:� In Se
tion 2, we introdu
e the ProPre system where the formal framework hasbeen fully abstra
ted while keeping the termination part. This gives the termdistributing trees for spe
i�
ations of re
ursive fun
tions, and the abstra
tedterminal state property satis�ed by term distributing trees.� In Se
tion 3, we extend the notion of a term distributing tree into the re
ursiveterm distributing tree in order to 
onsider re
ursive fun
tions that may bein
omplete in the sense of [29℄. We also introdu
e the split spe
i�
ations thatenable us to enlarge the set of term distributing trees.� In Se
tion 4, we introdu
e a termination property 
alled the hierar
hi
al prop-erty. We show that our notion stri
tly in
ludes the ProPre notion of the rightterminal state property by establishing in Theorem 1 that if a distributingtree A has the terminal state property in the system ProPre, then A has thehierar
hi
al property and that the opposite does not hold.� In Se
tion 5, in order to make sense of the 
on
ept of the hierar
hi
al propertysatis�ed by the re
ursive term distributing trees, we explain how it is possible3



from spe
i�
ations, to de�ne ordinal measures against trees. Our main theo-rem of this se
tion, Theorem 2, establishes that our new notion of hierar
hi
alproperty implies that the measures de
rease in the re
ursive 
all of the fun
-tions, and as a 
onsequen
e enable us to establish the termination of fun
tions.We also explain why the rami�ed measures that 
ome from the analysis of theProPre system are not suited in the extended 
ontext. The inadequa
y of theearlier measures and the ne
essity to build new ordinal measures 
hara
terisein some sense the new 
lass of fun
tions that extend those fun
tions whosetermination 
an be established in ProPre.2. The ProPre system in an abstra
t 
ontextThe ProPre system is a program synthesis system presented in [20, 21, 19℄ basedon the paradigm of Programming by Proofs. In this approa
h programs are 
odedby �-terms extra
ted from proofs of termination of fun
tions de�ned by a set ofequations. The extra
tion is obtained by synta
ti
al termination proofs in a formaldedu
tion style exploiting the Curry-Howard 
orresponden
e. The theory 
an befound for instan
e in [16, 18, 17, 25℄. In this system, the user 
an spe
ify data typesand fun
tions in an ML like syntax, but when 
ompiling, a fully automated proofsear
h strategy is used. The input of that sear
h strategy is a spe
i�
ation of afun
tion and the output is either a termination proof providing a �-term that 
om-pute the fun
tion or an error message in 
ase of failure. Noti
e that the terminationmethod of a �rst version of ProPre was also implemented in a former version of Coqin [19℄ to deal with �rst order de�nitions of fun
tions.The analysis of the formal proof trees obtained in the system made it possible torelate measures [22, 10, 11℄ that have the de
reasing property in the re
ursive 
alls ofthe spe
i�
ations of the fun
tions. These measures 
an be de�ned from distributingtrees, devised in [20℄, whi
h are partial trees; and their de
reasing property relieson the notion of a right terminal state property that must satisfy the distributingtrees in ProPre in order to be extended into a 
omplete formal proof trees.Though the spe
i�
ations are �rst order equations, the logi
al framework ofthe programming language designed in ProPre is a se
ond order language whi
h ismandatory by the theory [16, 25℄. That is, in order to asso
iate �-terms to fun
tions,the system builds proof trees with se
ond order formulas whi
h are 
hara
terised,as earlier mentioned, by the right terminal state property. An analysis in [12℄ showsthat it was possible to abstra
t all proposition informations from ea
h proof treeso that one 
an look at the skeleton form of the proof tree, 
alled term distributingtree, where now only �rst order is involved giving rise the notion of abstra
tedterminal state property instead of the right terminal state property. Noti
e thatthe study of [12℄ has shown that one 
an also go ba
k to the former proof treesfrom the skeleton tree and the abstra
ted terminal state property. Therefore thingsbe
ome 
learer sin
e in some sense the termination part 
an be further investigatedindependently of the extra
tion part of �-terms. The 
onne
tion between formalproofs and abstra
ted property with measures 
an be illustrated by Figure 1.Be
ause in this paper we 
onsider the termination part and not the extra
tion4



A BFormal proof treesandRight terminal state property () Term distributing treesandAbstra
ted terminal state propertyFormal termination proofsand lambda-terms Termination with ordinal measuresFigure 1: A 
onne
tion between the two approa
hes.part of �-terms, we will des
ribe in this se
tion the right part of the above pi
ture.We refer to [25, 20℄ for details on the extra
tion of formal proofs in ProPre andof the asso
iated �-terms from fun
tion spe
i�
ations We refer to [12℄ for detail onhow one 
an establish the 
orresponden
e of the two parts in the above pi
ture.Note that the de�nitions presented in the se
tion below, that are basi
 de�ni-tions, do not only 
on
ern ProPre but our work too.2.1. Spe
i�
ationsBefore presenting the term distributing trees and the abstra
ted terminal stateproperty in the next se
tion, we introdu
e the spe
i�
ations of fun
tions that 
anbe de�ned in the system ProPre. Although they play an important role in thefun
tional programming language of the system ProPre, we do not mention thede�nition of data types of ProPre for the sake of simpli
ity, but we will assumefor our purpose a set of sorts for the de�nition of the types of the fun
tions. Wewill also use here, the terminology of rewrite systems. Though the �rst de�nitionsbelow apply to higher order as well, these are useful in the presentation of thespe
i�
ations that are �rst order de�nitions of the fun
tions 
onsidered in ProPre.De�nition 2.1. (fun
tions) We assume a set F of fun
tion symbols, 
alled signa-ture, and a set S of sorts. To ea
h fun
tion f 2 F we asso
iate a natural numbern that denotes its arity and a type s1; : : : ; sn ! s with s; s1; : : : ; sn 2 S. We maywrite f : s1; : : : ; sn ! s to introdu
e both the fun
tion f and its type. A fun
tionis 
alled 
onstant if its arity is 0. We assume that the set of fun
tions F is dividedinto two disjoint sets F
 and Fd. Fun
tions in F
 (whi
h in
ludes the 
onstants)are 
alled 
onstru
tor symbols or 
onstru
tors and those in Fd are 
alled de�nedfun
tion symbols or de�ned fun
tions.De�nition 2.2. (terms) Let X be a 
ountable set of variables disjoint from F .We assume that only one sort is asso
iated to ea
h variable of X and that for ea
hsort s there is a 
ountable number of variables in X of sort s. If s is a sort and ifF and X are respe
tively subsets of F
 [ Fd and X , then the set T (F;X)s of theterms of sort s is the smallest set su
h that:1. every element x of X of sort s is a term of sort s,2. if f is a fun
tion in F of type s1; : : : ; sn ! s and if t1; : : : ; tn are termsrespe
tively of sorts s1; : : : ; sn, then f(t1; : : : ; tn) is a term of sort s.5



If X is empty, T (F;X)s is also denoted by G(F )s. The set T (F;X) is [s2ST (F;X)sfor every subset F of F and every subset X of X . An element of G(F)s is 
alleda ground term (of sort s); i.e., no variable o

urs in a ground term. An element ofT (F
;X )s is 
alled a 
onstru
tor term (of sort s); i.e., every fun
tion symbol whi
ho

urs in a ground term is a 
onstru
tor symbol. An element of T (F
;X )s\G(F)s =G(F
)s is 
alled a ground 
onstru
tor term (of sort s). If 
 : s denotes a 
onstant(of sort s), i.e. its arity is 0, the 
onstant term 
() (of sort s) is also denoted 
. Forea
h term t, Var(t) denotes the set of variables that o

ur in t.De�nition 2.3. (substitutions) A sorted ground substitution � is a substitution,i.e. a mapping from the set X of variables to the set of terms T (F ;X ), su
h thatfor every sort s and every variable x of sort s, �(x) is a ground term of sort s. Asorted 
onstru
tor substitution � is a substitution su
h that for every sort s andevery variable x of sort s, �(x) is a 
onstru
tor term of sort s.Any substitution � from De�nition 2.3 
an be extended, as usual, into a mappingfrom T (F ;X ) to T (F ;X ), su
h that �(T (F ;X )s) � T (F ;X )s for ea
h sort s.De�nition 2.4. (rewrite system) A rewrite system R is a subset of T (F ;X ) �T (F ;X ) with Var(r) � Var(l) for ea
h element (l; r) of R. An element (l; r) ofR is 
alled a rewrite rule and is denoted by l ! r. A rewrite rule l ! r is 
alledleft-linear i� ea
h variable o

urs only on
e in the left-hand side l of the rewrite rulel! r. A rewrite system is non overlapping i� no left-hand sides unify ea
h other.In fun
tional programming languages 
lose to ML that use data types, fun
tionsare des
ribed by sets of equations whose terms have the same type, and the argu-ments of the fun
tions are 
onstru
tor terms. The spe
i�
ations of the fun
tions
an be des
ribed in term of rewrite systems that 
orrespond to �rst order equations:De�nition 2.5. (spe
i�
ation) A spe
i�
ation or a (sorted) 
onstru
tor systemE of a fun
tion f : s1; : : : ; sn ! s in Fd is a non overlapping rewriting system ofleft-linear rules fe1 ! e01; : : : ; ep ! e0pg su
h that for all 1 � i � p, ei is of the formf(t1; : : : ; tn) with tj 2 T (F
;X )sj , j = 1; : : : ; n; and e0i 2 T (F
 [ Fd;X )s.The expression sorted in the above de�nitions may be omitted, and we will say
onstru
tor substitution instead of sorted 
onstru
tor substitution for short.De�nition 2.6. (re
ursive 
alls)Let E be a spe
i�
ation of a fun
tion f : s1; : : : ; sn ! s. A re
ursive 
all of f is apair (f(t1; : : : ; tn); f(u1; : : : ; un)) where f(t1; : : : ; tn) is a left-hand side of a rewriterule of E and f(u1; : : : ; un) is a subterm of the 
orresponding right hand side.To illustrate the above de�nitions with examples, let nat 2 S be the sort ofnatural numbers, with the 
onstant 0 in F
 of type nat and the 
onstru
tor su

essors : nat ! nat in F
. Let bool be the boolean sort in S, the 
onstants true andfalse in F
 be of type bool, and the fun
tion not : bool ! bool be in Fd with thespe
i�
ation given by the usual rules: not(true)! false, not(false)! true.Example 2.7. Let A
k : nat; nat ! nat be the A
kermann fun
tion in Fd. Aspe
i�
ation EA
k of the fun
tion A
k is given by the rewrite rules: A
k(0; y)! s(y);A
k(s(x); 0)! A
k(x; s(0)); and A
k(s(x); s(y)) ! A
k(x;A
k(s(x); y)):6



The three re
ursive 
alls of the above spe
i�
ation are (A
k(s(x); 0); A
k(x; s(0)));(A
k(s(x); s(y)); A
k(s(x); y)); and (A
k(s(x); s(y)); A
k(x;A
k(s(x); y))).Note that the fun
tion A
k is 
ompletely de�ned in the following sense: for ea
h(w1; w2) in G(F
)nat � G(F
)nat there is a left-hand side A
k(t1; t2) of a rewrite ruleof the spe
i�
ation EA
k and a substitution ' with ('(t1); '(t2)) = (w1; w2). This
orresponds to the 
ompleteness of de�nition in [9℄ (see also e.g. [29℄). We give nowanother example of a spe
i�
ation, 
oming from [1℄, whose de�nition is in
omplete.Example 2.8. Let Eeo be the spe
i�
ation of the fun
tion evenodd : nat; nat !bool in Fd with the rewrite rules: evenodd(x; 0)! not(evenodd(x; s(0))),evenodd(0; s(0))! false; and evenodd(s(x); s(0))! evenodd(x; 0).The spe
i�
ation Eeo is in
omplete as no left-hand side of the rules of the spe
-i�
ation mat
hes the term evenodd(u; s(s(v))) for (u; v) in G(F
)nat � G(F
)nat.A

ording to the se
ond argument, the evenodd fun
tion 
omputes either the evenfun
tion or the odd fun
tion. The two re
ursive 
alls of the above spe
i�
ation are(evenodd(x; 0); evenodd(x; s(0))) and (evenodd(s(x); s(0)); evenodd(x; 0)).2.2. Term distributing trees and the terminal state propertyWe present the term distributing trees of [22℄ whi
h 
an be viewed as a skeletonform of partial trees built in ProPre [20℄ where all proposition informations havebeen abstra
ted. A lot of information is lost from the proof trees by this abstra
t-ing operation and di�erent formal trees may redu
e to the same term distributingtree [12℄. But all the termination information from the formal proof trees is fortu-nately re
overed by our new notion of terminal state property in De�nition 2.18.De�nition 2.9. (term distributing trees) Let E be a spe
i�
ation of a fun
tionf : s1; : : : ; sn ! s. A term distributing tree A for E is de�ned as follows:1. The root of A is a tuple of the form (x1; : : : ; xn) where xi is a variable of sortsi for ea
h i � n;2. ea
h node ofA is of the form (t1; : : : ; tn) and there is a variable x0 of a sort s0 inthe term f(t1; : : : ; tn) su
h that the set of 
hildren of the node, for x01; : : : ; x0rnot in t1; : : : tn, is f(t1; : : : tn)[C(x01; : : : x0r)=x0℄; C : s01; : : : ; s0r ! s0 2 F
g.3. ea
h leaf (t1; : : : ; tn) of A is exa
tly one left-hand side f(t1; : : : ; tn) of anequation of E (up to the root fun
tion symbol f and the renaming of variablesof the equations).For instan
e if (s(x); y) is a node in a term distributing tree where s is thesu

essor fun
tion, then its two 
hildren 
an be either of the form (s(0); y) and(s(s(x0)); y), or of the form (s(x); 0) and (s(x); s(y0)). An example of a distributingtree is given with Example 2.11 below using also Notation 2.10. The followingnotation will be parti
ularly useful for the next Se
tion and for the de�nition ofordinal measures in Se
tion 5.Notation 2.10. Let E be a spe
i�
ation of a fun
tion f : s1; : : : ; sn ! s, and takea term distributing tree A of the spe
i�
ation E . If b is a bran
h in A from the root7



�, i.e. of the form (x1; : : : ; xn), to a leaf �0, we then will use the following notation(�1; x01); : : : ; (�k�1; x0k�1); �k to denote the bran
h b with �1 = �, �k = �0, where x0idenotes the variable x0 for the node �i in 
lause 2 of De�nition 2.9 for every i < k.Example 2.11. (example of term distributing trees) A distributing tree A ofthe A
kermann fun
tion is des
ribed in Figure 2.�1;1 : ((x; y);x)? ?�2;1 : (0; y) �2;2 : ((s(x0); y); y)? ?�3;1 : (s(x0); 0) �3;2 : (s(x0); s(y0))Figure 2: Term distributing tree of EA
k.The de�nition of term distributing trees leads to the following:Remark 2.12. (ProPre deals with 
ompletely de�ned fun
tions) Let f :s1; : : : ; sn ! s be a fun
tion with spe
i�
ation E . Let A be a term distributing treeof E . For ea
h (w1; : : : ; wn) of G(F
)s1 � : : : � G(F
)sn there is one and only one leaf� of A and a ground 
onstru
tor substitution ' su
h that '(�) = (w1; : : : ; wn).This means in parti
ular that if one wants to asso
iate a term distributing treeto a spe
i�
ation E , then E must be 
ompletely de�ned.Fa
t 2.13. The A
kermann fun
tion of Example 2.7 is 
ompletely de�ned and hasa term distributing tree.Fa
t 2.14. The evenodd fun
tion of Example 2.8 is not 
ompletely de�ned andhen
e there is no term distributing tree asso
iated to its spe
i�
ation Eeo.In ProPre, the termination method deals with indu
tive proofs that require the
ompleteness of the fun
tions for the extra
tion of �-terms. However this restri
tion
an be removed in the new setting where Clause 3 of De�nition 2.9 will be modi�edin the next se
tion so that the termination method will be
ome insensible to the fa
tthat the fun
tion is 
ompletely or in
ompletely de�ned. Note that the algorithmdevised in [29℄ was probably the �rst eÆ
ient algorithm to test whether a de�nitionof a fun
tion is ambiguous and/or 
omplete. However, the termination method hereis insensible of the 
ompleteness of a de�nition of a fun
tion.Remark-Notation 2.15. Let A be a term distributing tree for a spe
i�
ationand b = (�1; x1); : : : ; (�l�1; xl�1); �l be a bran
h from the root �1 of A to a leaf �l.� Then for ea
h node �i; �j with 1 � i � j � l, there exists a 
onstru
tor sub-stitution ��j ;�i su
h that ��j ;�i(�i) = �j . Furthermore we have the followingequality ��k;�j Æ ��j ;�i = ��k;�i for all i � j � k � l.� If a node �i in the bran
h b mat
hes a term u of a re
ursive 
all (t; u), thenthe substitution will be denoted by ��i;u.Notation 2.16. For a term distributing tree A of a spe
i�
ation and a left-handside t of an equation of the spe
i�
ation, we will use the notation b(t) to denote8



the bran
h in A that leads to the leaf t0 (whi
h is a tuple) su
h that t = f(t0).Conversely if b is a bran
h of A, Lb will denote the leaf of the bran
h b.The rest of this se
tion is devoted to the new terminal state property that 
har-a
terises the formal proofs in ProPre abstra
ted in the present setting (part B ofFigure 1). We do not re
all ProPre's notion of right terminal state property (partA) be
ause it involves sophisti
ated se
ond order formulas whi
h are not ne
essaryfor our purpose. This notion however 
an be found in [20℄.An e�e
tive measurem on the terms ranging over natural numbers, 
losed undersubstitutions (i.e. m(u) > m(v) implies m(�(u)) > m(�(v))) is used in ProPre.This is made expli
it by the following size measure j : j# that 
onsists, for ea
hterm t, in 
ounting the number of its subterms in
luding t itself:jtj# = � 1 if t 2 X ,1 + jt1j# + : : :+ jtnj# if t = g(t1; : : : ; tn); g 2 F
.Su
h a measure or variants are often used as for instan
e in Nqthm [3℄ withthe fun
tion 
ount or in [30℄ although the ordering is a �xed one. In 
ontrast withmentioned works where the ordering is a �xed one, it turns out that it is not the
ase in ProPre as other more 
omplex orderings, 
alled rami�ed measures in [22℄,
an be extra
ted from the formal proofs obtained in the system.An auxiliary ordering v on terms is introdu
ed to deal with the above measure.De�nition 2.17. (the ordering relation �) Let u; v 2 T (F
;X )s for a givensort s. We say that u � v i�: (a) juj# < jvj#, and (b) Var(u) � Var(v), and (
)u is linear.The relation � is only used as a part of the terminal state property but doesnot 
orrespond to the general ordering ensuring the termination of the fun
tionsobtained in ProPre in part B. As mentioned, this one has to be obtained in relationto the full statement of the abstra
ted terminal state property de�ned below. Were
all that we will use Remark-Notation 2.15 and 2.16: ��i;�j ; ��i;u; : : : .De�nition 2.18. (abstra
ted terminal state property) Let A be a term dis-tributing tree for a spe
i�
ation. We say that A has the abstra
ted terminal stateproperty if there is an appli
ation � : A ! f0; 1g de�ned on the nodes of A su
h that�(L) = 0 for ea
h leaf L, and for all re
ursive 
alls (t; u), there is a node (�; x) inthe bran
h b(t) with �(�) = 1 su
h that � mat
hes u with ��;u(x) � �Lb(t) ;�(x) andfor all an
estors (�0; x0) of � in b(t) with �(�0) = 1, we have ��0;u(x0) v �Lb(t);�0(x0).Example 2.19. Take the term distributing tree of the A
kermann fun
tion ofExample 2.11 given in Figure 2. Let �(�1;1) = �(�2;2) = 1. Using De�nition 2.17,De�nition 2.18 applies to the term distributing tree of the A
kermann fun
tion.For simpli
ity, we will use the same terminology in both part of Figure 1, and dropthe term abstra
ted as no 
onfusion will be possible. In the same way that the rightterminal state property in part A makes sense in the formal 
ontext, the abovede�nition makes sense with ordinal measures. That is, it is possible to asso
iatemeasures to distributing trees that satisfy the above property, de
reasing in there
ursive 
all of the fun
tions. The 
onne
tion between terminal state property and9



the de
reasing measures is postponed until Se
tion 5 where it will be done in the
ontext of the new measures and the hierar
hi
al property de�ned further.3. Re
ursive distributing treesThis se
tion modi�es the 
on
epts of distributing tree while the main 
ore of thetermination method will be given in the next se
tions. We take advantage of the
onne
tion shown in Figure 1. As earlier mentioned, ProPre deals with 
ompletede�nitions in the sense of [29℄ using formal proof trees based on indu
tive methodsand 
hara
terised by the right terminal state property (part A of Figure 1). Insteadof formal proofs we will still 
onsider trees but in the abstra
t 
ontext where ordinalmeasures will be asso
iated and for whi
h the de
reasing property in the re
ursive
alls will ensure the termination of the algorithms. In the latter 
ase the de�nitionsof fun
tion do not need to be 
omplete. This will allow us to introdu
e re
ursivedistributing trees. The se
ond re�nement 
onsists in enlarging the set of 
andidatetrees for the same spe
i�
ation by introdu
ing split spe
i�
ations as follows:De�nition 3.1. (split spe
i�
ations) Let E be a spe
i�
ation of a fun
tion f :s1; : : : ; sn ! s. A split spe
i�
ation E 0 of E is a spe
i�
ation of the same fun
tionf : s1; : : : ; sn ! s su
h that for every equation (t0; u0) of E 0 there is an equation(t; u) of E and a substitution � su
h that (�(t); �(u)) = (t0; u0).A term distributing 
an be asso
iated indi�erently to a spe
i�
ation or to oneof its split spe
i�
ations due to the following lemma:Lemma 3.2. (relating spe
i�
ations and split spe
i�
ations) Let E be aspe
i�
ation of a fun
tion f : s1; : : : ; sn ! s and let E 0 be a split spe
i�
ation of Ewhi
h is 
omplete. f is terminating for the spe
i�
ation E 0 i� f is terminating forthe spe
i�
ation E .Proof: () is 
lear. For )), we assume that f is non terminating for E . So thereis an in�nite sequel t1 ! t2 ! : : : ! tm ! : : : 
oming from the rules with thespe
i�
ations of de�ned fun
tions and E . Consider ea
h i su
h that ti = C[�(l)℄and ti+1 = C[�(r)℄ where � is a substitution, a 
ontext C and an equation l ! rof E with l of the form f(u1; : : : ; un). But E 0 is 
omplete, so there is an equationof l0 ! r0 of E 0 and a substitution � su
h that �(l0) = �(l). A

ording to thede�nition of the split spe
i�
ation, there is an equation (t00; u00) of E and a substi-tution � with (�(l00); �(r00)) = (l0; r0). As E is non-overlapping we have � Æ � = �with (l00; r00) = (l; r) and so �(r) = �(r0). Therefore we 
an write ti = C[�(l0)℄ andti+1 = C[�(r0)℄, and we dedu
e that f is non terminating for E 0. 2Note that a spe
i�
ation is a split spe
i�
ation of itself. In the rest of the paperwe may use the expression spe
i�
ation to denote both a spe
i�
ation or a splitspe
i�
ation. Now, we introdu
e the re
ursive distributing trees that 
orrespond tothe term distributing trees but where a 
ondition of the de�nition is weakened, andwe give two examples after the de�nition.De�nition 3.3. (re
ursive distributing trees) Let E be a spe
i�
ation of afun
tion f : s1; : : : ; sn ! s. A re
ursive distributing tree A for E is de�ned by:10



1. The root of A is tuple of the form (x1; : : : ; xn) where xi is a variable of sortsi for ea
h i � n,2. ea
h node ofA is of the form (t1; : : : ; tn) and there is a variable x0 of a sort s0 inf(t1; : : : ; tn) su
h that the set of 
hildren of the node, for variables x01; : : : ; x0rnot in t1; : : : tn, is f(t1; : : : tn)[C(x01; : : : x0r)=x0℄; C : s01; : : : ; s0r ! s0 2 F
g,3. There is an inje
tive mapping I between the set of the left-hand sides of theequations and the set of leaves of A, with I(f(t1; : : : ; tn)) = (t1; : : : ; tn), forea
h left-hand side f(t1; : : : ; tn) of an equation (up to a renaming of variables).Note that a term distributing tree is also a re
ursive distributing tree and thatthe same notations in the earlier se
tion apply for re
ursive distributing trees. Fora re
ursive distributing tree A, we will note A0 the asso
iated tree for whi
h theleaves of A that have no ante
edent by the appli
ation I are removed.Example 3.4. (a re
ursive distributing tree for a spe
i�
ation) A re
ursivedistributing tree for the spe
i�
ation of the fun
tion evenodd is des
ribed in Figure 3with an asso
iated tree (where the 
 symbol denotes the removed leaves).�1 : ((x; y); y)? ?�1;1 : (x; 0)b1 �1;2 : ((x; s(y0)); y0)? ?(x; s(s(y00)))
��2;1 : ((x; s(0)); x)? ?�3;1 : (0; s(0))b2 �3;2 : (s(x); s(0))b3Figure 3: Re
ursive distributing tree of Eeo and the asso
iated tree.Example 3.5. (a re
ursive distributing tree for a (split) spe
i�
ation) InFigure 4, we give a re
ursive distributing tree for a split spe
i�
ation of the fun
tionevenodd with its asso
iated tree.�1 : ((x; y); x)? ?�1;1 : ((0; y); y)? ? �1;2 : ((s(x0); y); y)? ?�2;1 : (0; 0)b1 �2;2 : (0; s(y0); y0)? ?�3;1 : (0; s(0))b2 (0; s(s(y00)))
��2;3 : (s(x0); 0)b3 �2;4 : ((s(x0); s(y0)); y0)? ?�3;2 : (s(x0); s(0))b4 (s(x0); s(s(y00)))
�Figure 4: Re
ursive distributing tree of a split spe
i�
ation of Eeo and its asso
iatedtree. 11



Work has been done around the 
on
ept of re
ursive distributing tree with the
on
ept of 
ompleteness of de�nition (e.g. [9, 29℄) or test sets (e.g. [23, 13, 2℄).However the main extension here relies on the establishment of the terminationproperty and the asso
iated ordinal fun
tions that 
an also be de�ned on termdistributing trees (part B of Figure 1). Therefore we will show that the terminationmethod extends the method of the earlier se
tion.4. Extending the ProPre terminal state propertyWe want take advantage of the method of ProPre but given in the new setting(part B of Figure 1) instead of the former 
ontext (part A). We believe that it iseasier to investigate ordinal measures as they are more 
exible, at least in the present
ontext, than the formal proofs whi
h 
arry information that is not ne
essarilyrelated to the termination part. We use the stru
ture of the trees and introdu
ea termination property, 
alled hierar
hi
al property. This property allows us toshow the de
reasing property of measures in the re
ursive 
all of the fun
tions andtherefore the termination of these fun
tions.Let us 
onsider an indu
tive data type D de�ned in ProPre. This gives rise tonatural stru
tural orderings a

ording to its buidling (see [25, 20℄). Let us denote� su
h an ordering. Based on an usual indu
tion s
hema, it allows a property P (x)to be proven for every x by �rst showing P (
) for ea
h 
onstant 
 of type D andthen proving P (
f(u1; : : : ; um)) for ea
h 
onstru
tor 
f assuming P (v) with v �
f(u1; : : : ; um). This 
an for instan
e be applied when P expresses the terminationproperty of the A
kermann fun
tion of Example 2.7.Well-founded orderings are parti
ularly suited for termination using indu
tiveproofs and as it is 
laimed in [25℄ any other well-founded orderings are a
tuallydiÆ
ult to �nd automati
ally. As a simple illustration, the fun
tion equal to 0whose dummy spe
i�
ation E0 
an be des
ribed as follows:f(0)! f(s(0)); f(s(0))! f(s(s(0)); f(s(s(x)) ! 0:Although a well-founded ordering 
an of 
ourse be easily found by a human in this
ase, it is diÆ
ult to obtain one in an automated way. In parti
ular it appears thatautomati
ally proving the following 
orre
tness of the spe
i�
ation: f(x) = 0 withthe termination statement is not so adequate as it is usually done with a stru
turalordering. In fa
t, simplifying the rules in this 
ase by merely applying the rulesto ea
h ground term provides a solution. But this 
annot always be easily doneas the example of the quot fun
tion, 
oming from [15, 1℄, shows while the abovedis
ussion on the stru
tural ordering remains the same. A spe
i�
ation Equot of thequot : nat; nat; nat! nat fun
tion is: quot(0; s(y); s(z))! 0;quot(s(x); s(y); z)! quot(x; y; z); and quot(x; 0; s(z))! s(quot(x; s(z); s(z)):As mentioned in [1℄, the value of quot(x; y; z) 
orresponds to 1+ bx�yz 
 when z 6= 0and y � x, that is to say quot(x; y; y) 
omputes bxy 
.Be
ause of the last equation in the above spe
i�
ation, we would like to have awell-founded ordering on nat�nat�nat for whi
h at least (x; 0; s(z)) � (x; s(z); s(z))holds. But a lexi
ographi
 
ombinations of the usual ordering on natural numbersis not suitable there, nor are the rami�ed measures that 
ome from the indu
tive12



method of ProPre [12℄. The ProPre system also fails for the evenodd fun
tion forsimilar reasons to those of the quot fun
tion.Note that a dire
t appli
ation of the re
ursive path orderings [5℄ or polynomialinterpretations [4, 7, 27℄, or the Knuth-Bendix orderings [14℄ fails as well. Thesehave been designed to be applied in a large 
ontext (rewrite system or algebrai
systems for the Knuth-Bendix algorithm). However, it turns out that a similarargument on the indu
tive methods 
on
erning the earlier examples also holds forthe simpli�
ation orderings. That is, they fail be
ause of the two �rst rules of thespe
i�
ation E0, the �rst rule of Eeo and the third rule of Equot.The usual indu
tive methods do not deal with the termination of su
h fun
-tions and of the evenodd fun
tion. The spe
i�
ations of these fun
tions and ofthe evenodd fun
tions are not 
omplete. But even adding dummy equations thatpreserve the termination property of the fun
tions, the new spe
i�
ations 
annotstill be treated by usual indu
tive methods (su
h as those used by ProPre) be
auseof the mentioned rules in the spe
i�
ation. In parti
ular it 
an be easily 
he
kedthat the re
ursive distributing trees of Figure 3 and Figure 4 whi
h 
orrespond toa re�nement of term distributing trees do not have the terminal state property.The approa
h we follow in the next se
tion is to �rst introdu
e a notion of are
ursive distributing tree whi
h, like in indu
tive methods, takes advantage of thestru
ture of the left-hand side of the equations. But in 
ontrast to usual indu
tivetermination methods, the 
onstru
tion of re
ursive distributing trees allows us tostate a new terminal state property in the sear
h of termination that also takesa

ount of orderings that may now be di�erent from usual stru
tural orderings.We introdu
e here some de�nitions that will allow us to state a new terminalstate property. This new terminal state will be 
ru
ial in the study of terminationof re
ursive fun
tions whose proofs of termination require non stru
tural orderings.We show in Theorem 1 that the new terminal state property stri
tly extends theterminal state property whi
h 
orresponds to that of the ProPre system.4.1. The hierar
hi
al propertyWe �rst need to introdu
e fresh variables as follows. For ea
h position q andsort s, we will assume a new variable of sort s indexed by q and distin
t from thoseof X . This allows us to introdu
e the following de�nition.De�nition 4.1. Let t be a term and q be a position. The term [[t℄℄q is de�ned asfollows: [[x℄℄q = x if x is a variable, [[C(t1; : : : ; tn)℄℄q = C([[t1℄℄q�1; : : : ; [[tn℄℄q�n) ifC 2 F
, and [[g(t1; : : : ; tn)℄℄q = xq if g 2 Fd.For a term u = g(u1; : : : ; un) and a substitution ', g('[[u℄℄) will denote the termg('([[u℄℄1); : : : ; '([[u℄℄n)).Along with the ordering � de�ned in Se
tion 2, we introdu
e the followingrelations: for u; v in T (F
;X )s, we say that u D v if u 6� v with :(b) or :(
) orjvj# < juj# in De�nition 2.17; and we say that u 4 v if u 6� v with (b) and (
) andjuj# = jvj#.In the following de�nitions, we 
onsider a fun
tion f : s1; : : : ; sn ! s, a (split)13



spe
i�
ation E , and the asso
iated tree A0 of a re
ursive distributing tree A of E .De�nition 4.2. For ea
h node �, C� will denote fb 2 A0; � 2 bg and R� theset of re
ursive 
alls (t; u) su
h that b(t) 2 C�. If (t; u) is a re
ursive 
all, thenMA0(u) = fb 2 A0; 9'; '0 su
h that f('[[u℄℄) = '0(f(Lb))g and QA(t; u) = f� 2b(t); 9�; �(f(�)) = ug.Note that the set QA(t; u) is not empty sin
e the root node belongs to QA(t; u).Let b be a bran
h and two nodes �; �0 2 b, we say that � < �0 if � is 
loser than �0to the root (i.e. if � is an an
estor of �0). So we 
an write NA(t; u) = maxQA(t; u).For ea
h node � of A0 we assume an asso
iated subset G� of R� whi
h will bemade expli
it in De�nition 4.5. The meaning of the two following de�nitions is togive de
reasing 
riteria that extends those of De�nitions 2.17 and 2.18 and reliesin parti
ular on the hierar
hi
al stru
ture of the trees. Noti
e that the de�nitionsbelow should be given simultaneously (De�nitions 4.3, 4.4, 4.5, 4.6), but these,de�ned on the height of the tree A, are introdu
ed separately to ease the readability.De�nition 4.3. Let (�; x) be a node of A0 and G� be a subset of R�. For ea
hre
ursive 
all (t; u) of G� su
h that � 2 QA(t; u), we assume that one of the twofollowing 
ases below holds and we de�ne ��(t;u), as follows:1. If ��;u(x) � �Lb(t) ;�(x) or ��;u(x) D �Lb(t);�(x), then ��(t;u) = 1,2. If ��;u(x) 4 �Lb(t) ;�(x), then ��(t;u) = 0.The above de�nition is intended to deal with orderings that may be di�erent fromthe usual stru
tural orderings. This leads to also introdu
e the following:De�nition 4.4. Let (�; x) be a node of A0 and G� be a subset of R�. For ea
hre
ursive 
all (t; u) of G� su
h that � 2 QA(t; u) and for ea
h bran
h b 2 C�, we willde�ne ��(t;u);b in the following way:1. We �rst 
onsider all (t; u) su
h that ��;u(x) D �Lb(t) ;�(x) and take for b 2 C�:��(t;u);b = � 0 if b 2 MA0(u),1 otherwise2. Next, we 
onsider ea
h (t; u) in G� su
h that there is a (t0; u0) with ��(t0;u0);b(t) =0, and for whi
h no ��(t;u);b0 is de�ned for any b0 2 C�. We then take��(t;u);b = � 0 if b 2 MA0(u),1 otherwise3. Finally if item 2 
annot be applied, we put ��(t;u);b = 1 for ea
h b 2 C�.Note that 
ases 1 and 2 in De�nition 4.4 are distin
t be
ause ��(t;u) is algorithmi
allyde�ned; namely 
ase 1 is the initial 
ase and 
ase 2 is a (�nite) loop 
ase.Now we 
an de�ne, for ea
h node � of A0 and ea
h left-hand side t of an equationsu
h that � with b(t) 2 C�, the value:��t = Q(t0;u0)2G��2QA(t0;u0)��(t0;u0);b(t) if G� 6= ; and 0 otherwise.We now expli
it the subset G� of R� for ea
h node �. The following de�nition stateswhether from ea
h node, a re
ursive 
all 
an be eliminated from a set of re
ursive
alls a

ording to some 
onditions. 14



De�nition 4.5. Let �1 be the root of the re
ursive distributing tree A. We �rstput G�1 = R�1 . Now assume that G� is de�ned for a node � of A0 and let �0 bea 
hild of � with �0 in A0. The set G�0 is then de�ned as follows: (t; u) 2 G�0 i�(t; u) 2 R�0 \ G� and (��(t;u); ��t ) 6= (1; 1).We also de�ne an appli
ation F on ea
h node � distin
t from a leaf. The appli
ationF 
an be seen as a ne
essary 
ondition for the termination statement. That is,roughly, if a re
ursive 
all (t; u) has to still be 
onsidered for a node � while � >NA(t; u), then the re
ursive distributing tree will not have the hierar
hi
al property.Note that an analogous 
ondition also holds for the terminal state property.De�nition 4.6. (F : a ne
essary 
ondition for termination) Let � be a nodeof asso
iated tree A0 of the re
ursive distributing tree A whi
h is distin
t from a leaf.We put F (�) = 0 if there is a 
hild �0 of � and (t; u) in G�0 su
h that � > NA(t; u);and we put F (�) = 1 otherwise.Now the hierar
hi
al property 
an be de�ned below.De�nition 4.7. (hierar
hi
al property) The re
ursive distributing tree A is saidto have the new terminal state property if for ea
h node � of A0 distin
t from a leafwe have F (�) = 1 and for ea
h bran
h b there is node �0 in b su
h that G�0 = ;.Let us now present again the two examples of re
ursive distributing tree ofthe spe
i�
ation of Eeo and a split spe
i�
ation of Eeo introdu
ed respe
tively inFigure 3 and Figure 4. The �rst one does not have the new terminal state property(Example 4.8), while the se
ond does (Example 4.9).�1 : ((x; y); y)? ?�1;1 : (x; 0)b1 �1;2 : ((x; s(y0)); y0)? ?(x; s(s(y00)))
��2;1 : ((x; s(0)); x)? ?�3;1 : (0; s(0))b2 �3;2 : (s(x); s(0))b3Figure 5: The asso
iated tree of a re
ursive distributing tree of Eeo.Example 4.8. (re
ursive distributing tree without the new terminal stateproperty) We show that the re
ursive distributing tree A given in Figure 5 of thespe
i�
ation of the evenodd fun
tion does not have the new terminal state property.Let t1 = (x; 0), t2 = (0; s(0)), t3 = (s(x); s(0)). The set G�1 is R�1 = fr1; r2gwith r1 = ((x; 0); (x; s(0))), r2 = ((s(x); s(0)); (x; 0)). We have ��1r1 = 1, ��1r2 = 1,��1r1;b1 = 1, ��1r1;b2 = 0 and ��1r1;b3 = 0. Then we have ��1r2;b1 = 0, ��1r2;b2 = 0 and��1r2;b3 = 1. Therefore ��1t1 = 0, ��1t2 = 0 and ��1t3 = 0. Thus G�1;1 = fr1g; that isenough to 
on
lude that A does not satisfy the new terminal state property.Example 4.9. (re
ursive distributing tree with the new terminal stateproperty) Let us 
onsider the re
ursive distributing tree A given in Figure 6 of15



�1 : ((x; y); x)? ?�1;1 : ((0; y); y)? ? �1;2 : ((s(x0); y); y)? ?�2;1 : (0; 0)b1 �2;2 : (0; s(y0); y0)? ?�3;1 : (0; s(0))b2 (0; s(s(y00)))
��2;3 : (s(x0); 0)b3 �2;4 : ((s(x0); s(y0)); y0)? ?�3;2 : (s(x0); s(0))b4 (s(x0); s(s(y00)))
�Figure 6: Asso
iated tree of a re
ursive distributing tree of a split spe
i�
ation ofEeo.the (split) spe
i�
ation of the evenodd fun
tion. A satis�es the new terminal stateproperty:Let t1 = (0; 0), t2 = (0; s(0)), t3 = (s(x); 0)), t4 = (s(x); s(0)). The set G�1 isR�1 = fr1; r2; r3g with r1 = ((0; 0); (0; s(0))), r2 = ((s(x); 0); (s(x); s(0))), andr3 = ((s(x); s(0)); (x; 0)).It is easy to see that ��1r1 = 0, ��1r2 = 0, ��1r3 = 1, and ��1r1;b = 1, ��1r2;b = 1, ��1r3;b = 1for ea
h bran
h b. We have, therefore, ��1t = 1 for ea
h term t. We then obtainG�1;1 = fr1g, G�1;2 = fr2g and F (�1) = 1.We now get ��1;1r1 = 1, ��1;1r1;b2 = 0, ��1r1;b1 = 1 and therefore ��1;1t1 = 1, ��1;1t2 = 0.So G�2;1 = ;, G�2;2 = R�2;2 = ;, and F (�1;1) = 1. Furthermore ��1;2r2 = 1, and��1;2r2;b4 = 0, ��1;2r2;b3 = 1. We then get ��1;2t3 = 1, ��1;2t4 = 0. Thus G�2;3 = ;, and we alsohave G�2;4 = ;; hen
e F (�1;2) = 1. Now G�3;2 = G�2;4 = ; and F (�2;4) = 1.Therefore we 
an 
on
lude that A satis�es the new terminal state property.4.2. The theorem of generalisationThe new terminal state property 
an be viewed as a faithful extension of theterminal state property devised in the ProPre system in the following way:Theorem 1 Let A be a term distributing tree of a spe
i�
ation E of a fun
tion. IfA has the terminal state property in the system ProPre, then A satis�es the newterminal state property. The opposite does not hold.Proof: See Appendix.Noti
e that the extension does not only rely on the fa
t that a re
ursive dis-tributing tree may not be a term distributing tree but on the new state property.For instan
e, the spe
i�
ation E0 and any split spe
i�
ation of E0 does not have anyterm distributing tree that has the terminal state property. This is also the 
ase forthe evenodd fun
tion and the quot fun
tion. That is to say, one 
an add to the spe
-i�
ation of the fun
tion evenodd, an equation whi
h is harmless for the terminationof the fun
tion but whi
h 
ompletes the domain of the de�nition of the fun
tion.For example, one 
an add the dummy equation evenodd(x; s(s(y))) = true. One
an also use any split spe
i�
ation of the new 
ompleted spe
i�
ation, nevertheless16



the evenodd fun
tion 
annot be handled by the ProPre system whi
h implies thereis no term distributing tree for this fun
tion that has the terminal state property.The terminal state property de�ned in the ProPre system ensures the termi-nation of the 
on
erned fun
tions be
ause a 
omplete formal proof tree 
an bebuilt from any distributing tree that enjoys the terminal state property (see [20℄).In [22, 10℄ it was shown that ordinal fun
tions 
an also be asso
iated to distributingtrees. These fun
tions were proven to have the de
reasing property in the re
ursive
alls of the spe
i�
ations if the trees satisfy the terminal state property too. As thisalso implies the termination of the 
on
erned fun
tions, this therefore 
an be seen,but with a di�erent approa
h, as a new proof of the soundness of the mentionedproperty. In this paper, as we work on re
ursive term trees with a new terminalstate property, it appears that formal proofs 
annot be built, as it 
an be done withProPre, in order to state the soundness of the new terminal state property. Howeverwe will establish the soundness by asso
iating ordinal measures that will enjoy thede
reasing property. In the next se
tion, we explain why the measures asso
iatedto the formal proofs found by ProPre do not �t in our new 
ontext and why we willneed to extend the de�nition of the measures of [22℄ to obtain new ordinal measuressuited to the new terminal state property.5. Soundness of the method with de
reasing measuresIn this se
tion we explain how it is possible to de�ne ordinal measures againsttrees of fun
tions where if the ordinal measure de
reases in the re
ursive 
all ofthe fun
tion, then this fun
tion terminates. We re
all the rami�ed measures that
ome from the analysis of the ProPre system and we give new measures whi
h willhelp in establishing terminations of fun
tions where the proofs of terminations arenon-indu
tive. Our main theorem of this se
tion (Theorem 2) establishes that ournew notion of right terminal state and our extended notion of measures, enable usto establish the termination of fun
tions (indu
tive and non indu
tive).We �rst re
all the ordinal measures of [22, 10℄. We need the following de�nition:De�nition 5.1. (height of a node in a tree) Let A be a tree and � be a nodeof A. The height of � in A, denoted by H(�;A), is the height of the subtree of A,whose root is �, minus one.Let A be a term distributing tree of a spe
i�
ation. We assume that for ea
h node�i distin
t from a leaf, there is an asso
iated appli
ation mi to �i from the set ofground terms to the set of natural numbers.De�nition 5.2. (rami�ed measures) Let E be a spe
i�
ation of a fun
tion f :s1; : : : ; sn ! s and A a term distributing tree of E . We de�ne the rami�ed measure
A : G(F
)s1 � : : : � G(F
)sn ! !!, where ! is the least in�nite ordinal, as follows:Let v be an element of the domain G(F
)s1 � : : : � G(F
)sn and � be the leaf of Asu
h that there is a substitution ' with '(�) = v (
f. Remark 2.12). Let b bethe bran
h (�1; x1); : : : ; (�k�1; xk�1); � of A from the root �1 to �, let ��j ;�i be thesubstitutions related to b (
f. Remark-Notation 2.15) and for ea
h �l the asso
iated17



appli
ation ml, l � k � 1. Then
A(v) = k�1Xi=1 !H(�i;A) �mi('(��k ;�i(xi))) :The rami�ed measures 
an be illustrated with Figure 7.�i; xi���mi 




mi miQQQQmi
Node of term distributing tree.

�0��� QQQm0 m0L1 �1��� QQQm1 m1L4�2��� QQQm2 m2L2 L3Figure 7: Term distributing tree and rami�ed measure.Amongst the 
lass of the rami�ed measures de�ned above, two sub
lasses of mea-sures were related to the formal proofs obtained in ProPre. A �rst 
lass of measures,
alled R-measures, was related to formal proofs 
oming from an earlier version ofProPre (see [22℄) by substituting a mapping lg for the mi measures in 
A (seeFigure 8). The fun
tion lg, sometimes 
alled size measure like j : j#, is de�ned by:lg(t) =8<: 1 if t 2 X ,1 +Xsj=s lg(tj) if t = g(t1; : : : ; tn); g : s1; : : : ; sn ! s 2 F .It was shown that any formal termination proof found by ProPre implies the 
or-responding ordinal measures to have the de
reasing property in the re
ursive 
allsof the spe
i�
ations (see [22℄). �i; xi���lg ���� lgQQQQlgFigure 8: Node of term distributing tree and rami�ed measure.Example 5.3. (rami�ed measure of the term distributing tree of A
k)The rami�ed measure of the term distributing tree of the A
kermann A
k fun
tionde�ned in Se
tion 2 is: 
A(0; y) = !, 
A(s(x); 0) = ! � (1 + lg(x)) + 1and 
A(s(x); s(y)) = ! � (1 + lg(x)) + (1 + lg(y)):Another 
lass of measures 
ould also be de�ned from new formal proofs using anextended version of ProPre (see [10℄) in whi
h new indu
tive rules were introdu
ed.18



These measures, 
alled I-measures, 
an be de�ned using both the skeleton formof distributing trees (i.e., term distributing trees) and the terminal state propertygiven in Se
tion 2.2. The mi fun
tions are obtained with mi = �(�i) � j : j# in thede�nition of 
A illustrated with Figure 9.�i; xi����(�i) � j : j# �����(�i) � j : j# QQQQ�(�i) � j : j#Figure 9: Node of term distributing tree and rami�ed measure.[20℄ showed that ea
h fun
tion proven to terminate in the �rst version of ProPre
an also be proven terminating in the new version. Note that, unlike the 
ase ofR-measures, themi fun
tions depend on the nodes �i in the de�nition of I-measures.A natural question is to know whether there is also a suitable sub
lass of therami�ed measures that 
an be related to the re
ursive distributing trees that havethe new terminal state property. This is important as it would enable the termina-tion of fun
tions to be established in our 
ontext.As already mentioned there is no term distributing tree for E0 that has theterminal state property. This does not a priori imply that an R-measure or an I-measure asso
iated to a term distributing tree does not have the de
reasing property.However, it 
an be easily 
he
ked that the de
reasing property a
tually does nothold for these measures. This is also the 
ase for instan
e with the evenodd fun
tionor the quot fun
tion (even with 
ompleted spe
i�
ations). However the ordinalfun
tion: 
1(u; 0) = ! � juj# + 1 
1(u; s(v)) = ! � juj#satis�es the de
reasing property in the re
ursive 
alls of the spe
i�
ation E0.Also, the following ordinal fun
tion satis�es the de
reasing property for the spe
i�-
ation of the quot fun
tion: 
2(u; s(v); w) = !�juj# 
2(u; 0; w) = !�juj#+1.It would be possible to �nd, amongst the 
lass of the rami�ed measures, de
reas-ing measures for the mentioned fun
tions. But the 
hoi
e of the mi fun
tions thato

ur in 
A is diÆ
ult to obtain in an automated way dealing with the terminationof su
h fun
tions. In parti
ular we would like to have mi fun
tions as simple aspossible, as is the 
ase for those obtained for the R-measures or the I-measures.We will therefore need to enlarge the de�nition of the rami�ed measures in orderto obtain a new 
lass whi
h will be related to the re
ursive distributing tree. Wewill then show that the new terminal state property implies the de
reasing of theasso
iated measures. We �rst need to introdu
e the following de�nition:De�nition 5.4. (node measures) Let A be a re
ursive distributing tree of aspe
i�
ation of a fun
tion. For ea
h node �i of A, and ea
h subran
h startingfrom the �i, we will assume that there is an asso
iated appli
ation mi, 
alled nodemeasure, from the set of ground terms to the set of natural numbers. The appli
ationmi will be also noted m�i;� where � is the leaf of the 
on
erned subran
h.Example 5.5. (an illustration of node measures) The node measures 
an beillustrated with Figure 10. 19



�i; xi���m�i;Li;1 ����m�i;Li;2 QQQQm�i;Li;jFigure 10: Nodes measure.For a fun
tion f : s1; : : : ; sn ! s with a spe
i�
ation E , we will note T fs1;::: ;snthe set of the elements (v1; : : : ; vn) in G(F
)s1 � : : : � G(F
)sn su
h that there issubstitution � and a left-hand side (t1; : : : ; tn) of an equation of E with �(ti) = vifor every 1 � i � n.We now de�ne the extended rami�ed measures as follows:De�nition 5.6. (extended rami�ed measures) Let E be a spe
i�
ation of afun
tion f : s1; : : : ; sn ! s and A0 be the asso
iated tree of a re
ursive distributingtree A of E . The extended rami�ed measure 
A : T fs1;::: ;sn ! !! is de�ned by:Let v be an element of the domain T fs1;::: ;sn and � be the leaf of A0 su
h thatthere is a substitution ' with '(�) = v (
f. Remark 2.12). Let b be the bran
h(�1; x1); : : : ; (�k�1; xk�1); � of A0 from the root �1 to �, let ��j ;�i be the substitutionsrelated to b (
f. Remark-Notation 2.15) and letm�i;� be the asso
iated node measurefor ea
h �l. Then 
A(v) = k�1Xi=1 !H(�i;A0) �m�i;�('(��k ;�i(xi))) :Example 5.7. (an illustration of an extended rami�ed measure)Consideringthe earlier term distributing tree (whi
h is also a re
ursive tree) of Figure 7, anextended rami�ed measures 
an be illustrated with Figure 11.�0


L1 ZZZXXXXXXXXXhhhhhhhhhhhhhhm�0;L1 m�0;L2 m�0;L3m�0;L4�1 �1 �1m�1;L2 m�1;L3 m�1;L4�2 �2 L4m�2;L2 m�2;L3L2 L3Figure 11: Extended rami�ed measure.Amongst the 
lass of rami�ed measures, the R- and I-measures turned out tobe suitable for the termination of a 
lass of fun
tions as they 
ould be asso
iated toformal proofs obtained in ProPre. We show here that there also exists a sub
lass ofthe extended rami�ed measures that �t with the re
ursive term distributing treesthat satisfy the new terminal state property. These are de�ned as follows:20



De�nition 5.8. (hole measures) Let E be a spe
i�
ation of a fun
tion f :s1; : : : ; sn ! s and let A0 be the asso
iated tree of a re
ursive distributing treeA of E . The hole measure 
A : T fs1;::: ;sn ! !! is de�ned as follows:Let v be an element of the domain T fs1;::: ;sn and � be the leaf of A0 su
h that thereis a substitution ' with '(�) = v. Let b be the bran
h (�1; x1); : : : ; (�k�1; xk�1); �of A0 from the root �1 to �. Then
A(t) = k�1Xi=1 !H(�i;A0) � (��it � j(�(��k;�i(xi)))j#) :That is to say m�i;� = ��it � j : j#.Note that, due to the relation between the leaf � and the term t, ��it � j : j# dependsboth on �i and � in the above de�nition. This 
an be illustrated with Figure 12.�i; xi�����iti1 � j : j# ������iti2 � j : j# QQQQ��itij � j : j#Figure 12: Node measure of hole measures.Example 5.9. (asso
iated ordinal measure of a re
ursive distributing tree)By De�nition 5.8 and the values obtained in Example 4.9, the asso
iated ordinalmeasure of the re
ursive distributing tree in Figure 3 of the evenodd fun
tion is:
A(x; 0) = !2 � jxj# + !; 
A(x; s(0)) = !2 � jxj#:Note that the above ordinal 
1 
an also be derived from the shape of 
A on T eona;nat.It is 
lear that 
A has the de
reasing property in ea
h re
ursive 
all on the domainof the fun
tion evenodd. This result 
an be generalised with Theorem 2 below.The following theorem allows us to state the soundness of the new terminal stateproperty. That is, if there a re
ursive distributing tree for a spe
i�
ation of a fun
-tion that enjoys the new terminal state property, then the fun
tion is terminating.Theorem 2 (soundness of the new terminal state property) Let E be aspe
i�
ation of a fun
tion f : s1; : : : ; sn ! s and A be a re
ursive distributingtree for E that has the new terminal state property. Then the extended rami�edmeasure 
A satis�es the de
reasing property. That is to say, for ea
h re
ursive
all (f(t1; : : : ; tn); f(u1; : : : ; un)) of E and every ground 
onstru
tor substitution ',su
h that '([[u1℄℄1); : : : ; '([[un℄℄n) is in T fs1;::: ;sn , we have:
A('(t1); : : : ; '(tn)) > 
A('([[u1℄℄1); : : : ; '([[un℄℄n)).Proof: Take a ground 
onstru
tor substitution ' with '([[u1℄℄1); : : : ; '([[un℄℄n) 2T fs1;::: ;sn . We show that 
A('(t1); : : : ; '(tn)) > 
A('([[u1℄℄1); : : : ; '([[un℄℄n)). Lett and u respe
tively denote the terms f(t1; : : : ; tn) and f(u1; : : : ; un). By def-inition of the asso
iated tree A0 of A, there is a bran
h b of A0 of the form(�1; x1); : : : ; (�k�1; xk�1); �k where �1 is the root of A0 and the leaf �k 
orrespondsto t, i.e. f(�k) = t and b(t) = b. As '([[u1℄℄1); : : : ; '([[un℄℄n) 2 T fs1;::: ;sn , there isan equation (v; v0) 2 E and a substitution � su
h that �(v) = f('[[u℄℄) where [[u℄℄21



denotes the uplet (([[u1℄℄1); : : : ; ([[un℄℄n)).Let b(v) be the bran
h (�01; x01); : : : ; (�0r�1; x0r�1); �0r of A0 with f(�0r) = v.As A has the new terminal state property, there is a node � in b su
h that G� = ;.But G�1 = R�1 
ontains all the re
ursive 
alls of E , and so (t; u) 2 G�1 . Hen
e, thereis a value J , su
h that (t; u) 2 G�J but (t; u) =2 G�J+1 .A

ording to De�nition 4.5, we have (t; u) 2 G�J � G�J�1 � : : : � G�1 and for all1 � i < J , (��i(t;u); ��it ) 6= (1; 1). Furthermore, be
ause A has the new terminalterminal state property, F (�J ) = 1. But (t; u) 2 G�J , thus �J < NA(t; u) by De�-nition 4.6, that is to say �J 2 QA(t; u). So f(�J) mat
hes u and therefore mat
hes'(u). Sin
e f(�J) is linear and ' is a ground 
onstru
tor substitution, we dedu
ethat f(�J) also mat
hes f('[[u℄℄). But f(�0r) mat
hes f('[[u℄℄) as well with thesubstitution � . As f(�J) and f(�0r) mat
h a 
ommon term, by 
onstru
tion of there
ursive distributing trees, this implies that �J and �0r are in the same bran
h; andso �J � �0r be
ause �0r is a leaf. Thus we have x0i = xi and �0i = �i for 1 � i � J .This gives us the relation ' Æ ��i;u(xi) = � Æ ��0r;�0i(xi) for 1 � i � J a

ording tothe substitutions � Æ ��0r ;�0i and ', and to the fa
t ��i;u(xi) is a 
onstru
tor term byDe�nition 4.3. So we 
an write:
A('([[u1℄℄1); : : : ; '([[un℄℄n)) =PJ�1i=1 !H(�i;A0) �m�i;�0r(' Æ ��i;u(xi))+!H(�J ;A0) �m�J ;�0r(' Æ ��J ;u(xJ )) +Pr�1i=J+1 !H(�i;A0) �m�0i;�0r(� Æ ��0r ;�0i(x0i))(1)We are going now to show thatm�i;�0r(' Æ ��i;u(xi)) � m�i;�k(' Æ ��k;�i(xi)); i < J and (2)m�J ;�0r(' Æ ��J ;u(xJ )) < m�J ;�k(' Æ ��k;�J (xJ )) (3)� Let 1 � i < J . We know that �i 2 QA(t; u), and (��i(t;u); ��it ) 6= (1; 1).- Let us 
onsider the 
ase ��it = 0. By de�nition of ��i�;�, this implies there is are
ursive 
all (t0; u0) su
h that ��i(t0;u0);b(t) = 0. But �(v) = f('[[u℄℄) and b(v) is inMA0(u). Hen
e, due to ��i(t0;u0);b(t) = 0 and b(v) 2 MA0(u), we get ��i(t;u);b(v) = 0with De�nition 4.4, and thus ��iv = 0. The later equality implies m�i;�0r = 0 andInequality (2) then holds.- We now 
onsider the 
ase ��it = 1 with ��i(t;u) = 0. This gives us m�i;�k = j : j# and��i;u(xi) 4 ��k;�i(xi). We dedu
e, from the de�nition of 4, that j' Æ ��i;u(xi))j# �j'Æ��k;�i(xJ )j#. Hen
e, Inequality (2) holds again whatever the value ��iv in m�i;�0r .� We now show Inequality (3). By de�nition of J , we have ��J(t;u) = 1 and ��Jt = 1,and Inequality (3) boils down to m�J ;�0r(' Æ ��J ;u(xJ )) < j' Æ ��k;�J (xJ )j#. As��J(t;u) = 1, two 
ases are then possible:- i) ��J ;u(xJ ) � ��k ;�J (xJ ). But � is 
losed under substitutions, so (3) holds what-ever the value ��Jv in m�J ;�0r .- ii) ��J ;u(xJ ) D ��k ;�J (xJ ). This implies ��J(t;u);b(v) = 0 sin
e b(v) 2MA0(u). Hen
e��Jv = 0 and thus m�J ;�0r = 0. As jwj# > 0 for every w, we get Inequality (3).22



We know that
A('(t1); : : : ; '(tn)) =PJ�1i=1 !H(�i;A0) �m�i;�k(' Æ ��k;�i(xi))+!H(�J;A0) �m�J ;�k(' Æ ��k;�J (xJ )) +Pk�1i=J+1 !H(�i;A0) �m�i;�k(' Æ ��k ;�i(xi))(4)Due to the expression of (1) and (4) and the inequalities (2) and (3), we 
an now
on
lude that 
A('(t1); : : : ; '(tn)) > 
A('([[u1℄℄1); : : : ; '([[un℄℄n)). 26. Con
lusionThe system ProPre treats a 
lass of term rewriting systems spe
ifying a re
ur-sive fun
tion and deals with the automation of the proofs of termination of thesere
ursive fun
tions. Be
ause the termination proofs of the ProPre system dependon stru
tural orderings, e.g. by the size of terms, the system is diÆ
ult to provespe
i�
ations in whi
h a re
ursive 
all in the right-hand side of a rule is not smallerthan the left-hand side of the rule.In this paper we proposed a method that extends the automation of the proofsof termination of re
ursive fun
tions used in ProPre. Whereas ProPre 
ould onlydeal with the automation of indu
tive proofs, our method allows the automation ofa larger 
lass of re
ursive fun
tions be
ause it 
an handle non stru
tural orderings.The extension of the ProPre system proposed by this paper 
onsists of mainly threeparts.1. If any term whose root symbol is a fun
tion de�ned by a spe
i�
ation 
anmat
h the left-hand side of a rule, the spe
i�
ation is 
alled 
omplete. Theoriginal ProPre system 
an deal with 
omplete spe
i�
ations only. Indeed, theterm distributing tree of a spe
i�
ation, whi
h is de�ned for proving termina-tion in the ProPre system, must satisfy the following 
ondition: ea
h leaf ofthe term distributing tree 
orresponds exa
tly one left-hand side of a rule ofthe spe
i�
ation. In this paper we de�ned the new distributing tree, 
alled there
ursive distributing tree, whi
h has the weaker 
ondition than the original.The re
ursive distributing tree 
an treat non-
omplete spe
i�
ations.2. For a spe
i�
ation that is hard to deal with dire
tly, we propose the split spe
-i�
ation. The split spe
i�
ation 
an be obtained by repla
ing a rule with rulesthat are instan
es of it. It is easier to prove the termination of a split spe
-i�
ation than that of the sour
e spe
i�
ation. We prove that a spe
i�
ationterminates if and only if the split one does.3. Finally, we 
ome to the main part of our extension: A termination proof inthe ProPre system works as follows:(a) De�ne a term distributing tree of a given spe
i�
ation.(b) Verify that the tree has the terminal state property. If so, the spe
i-�
ation is terminating. Roughly speaking, the terminal state property23



means that ea
h re
ursive 
all is stru
turally smaller than the left-handside.In this paper, we proposed the new terminal state property. Be
ause we usethe ordering by whi
h a re
ursive 
all 
ompared to the left-hand side doesnot depend the stru
ture of terms, our method 
an apply to spe
i�
ations inwhi
h simpli�
ation orderings fail, su
h as the re
ursive path ordering and soon.Be
ause 
onstru
ting a re
ursive distributing tree and verifying whether thedistributing tree has the terminal state property 
an be 
omputed in a �nite time,our paper 
ontributes to the area of establishing automati
ally termination proofsof re
ursive fun
tions. Indeed, we also prove that our method is stronger than thetermination method of the original ProPre system. Moreover, we show that thereare examples of spe
i�
ations that 
annot be proved terminating using ProPre, but
an using our proposed extension. Our results may help in handling more realisiti
examples that 
annot be proved terminating (automati
ally) by stru
tural methods.AppendixWe give the proof of Theorem 1 stated again here below.Theorem 3 Let A be a term distributing tree of a spe
i�
ation E of a fun
tion. IfA has the terminal state property in the system ProPre, then A satis�es the newterminal state property. The opposite does not hold.Proof: Let us 
onsider a term distributing tree A of a spe
i�
ation. Re
all that aterm distributing tree A is a re
ursive distributing tree.We are going to show that the appli
ation F of De�nition 4.6 has the value 1 onea
h node distin
t from a leaf. In order to get a 
ontradi
tion we assume thereis a node � in A, distin
t from a leaf, su
h that F (�a) = 0. So, as F (�a) = 0,there is a 
hild �0a of �a and a re
ursive 
all (t; u) in G�0a � R�0a with �a > NA(t; u).Be
ause A has the terminal state property, there is a node (�?; y) in the bran
h b(t),with �(�?) = 1, that mat
hes u with ��?;u(y) � �Lb(t);�?(y) and for every an
estor(�0?; y0) of �? in b(t), su
h that �(�0?) = 1, we have ��0?;u(y0) v �Lb(t);�0?(y0). So�? is in QA(t; u) and we also have ��?(t;u) = 1. As �? < �a sin
e �? � NA(t; u), let�0 be the 
hild of �? in the bran
h b(t) where is also �a. We have in parti
ularG�0a � G�a � G�0 and thus (t; u) 2 G�0 . Hen
e, a

ording to De�nition 4.5 and thefa
t that ��?(t;u) = 1, we dedu
e that ��?t = 0. This means that there is a re
ursive
all (t00; u00) 2 G�? with ��?(t00;u00);b(t) = 0. Therefore, by 
onstru
tion of ��?�;�, thisimplies that there is also a re
ursive 
all (t0; u0) 2 G�? , with ��?;u0(y) D �Lb(t0);�?(y),and a bran
h b0 2 C�? with ��?(t0;u0);b0 = 0.As A has the terminal state property, there is a node (�?p ; xp), with �(�?p) = 1, inthe bran
h b(t0) su
h that ��?p;u0(xp) � �Lb(t0);�?p(xp) and for every an
estor (�0?p; x0p)of �?p su
h that �(�0?p) = 1, we have ��0?p;u0(x0p) v �Lb(t0);�0?p(x0p). Be
ause (t0; u0)is in G�? � R�? , this implies that �? is also in b(t0). Therefore we 
an 
ompare�? and �?p in the bran
h b(t0). The 
ase �? � �?p is not possible otherwise, due24



the above property of �?p , we would have ��?;u0(y) v �Lb(t0);�?(y) that 
ontradi
ts��?;u0(y) D �Lb(t0);�?(y). So �?p < �?, that in parti
ular implies G�? � G�?p .��0a(t; u) 2 G�0a �� G�a�a� : : :: : : � G�0��0 � G�? 3 (t0; u0)��?We 
an now repeat the same reasoning for < �?; (t0; u0); (�?p ; xp) > as we didwith < �a; (t; u); (�?; y) > be
ause (t0; u0) 2 G�?p and we also have ��?p(t0;u0) = 1 sin
e��?p;u0(xp) � �Lb(t0);�?p(xp). This shows that we 
an 
onstru
t an in�nite sequen
eof nodes starting from �a with �a > �? > �?p > �?q > �?r > : : : . But this is obviouslyimpossible and we get our 
ontradi
tion; hen
e F (�a) = 1 and the appli
ation Fhas only the value 1 on ea
h node distin
t from a leaf.Likewise, using a similar reasoning as in the �rst part of the proof, we 
annot haveG(�) 6= ; for every node � of some bran
h b in A without getting a 
ontradi
tion.Hen
e, we dedu
e that A has the new terminal state property. Finally, the 
oun-terexample 4.9 shows that the opposite does not hold. 2Referen
es1. T. Arts and J. Giesl. Automati
ally proving termination where simpli�
ationorderings fail. In Pro
eedings of Theory and Pra
ti
e of Software DevelopmentTAPSOFT'97, volume 1214 of Le
ture Notes in Computer S
ien
e, 1997. Springer-Verlag.2. A. Bouhoula and M. Rusinowit
h. Impli
it indu
tion in 
onditional theories. Jour-nal of Automated Reasoning, 14(2):189-235, 1995.3. R. S. Boyer and J S. Moore. A 
omputational logi
 handbook. A
ademi
 Press,1988.4. A. Ben Cherifa and P. Les
anne. Termination of rewriting systems by polyno-mial interpretations and its implementation. S
ien
e of Computer Programming,9(2):137{159, 1987.5. Dershowitz. Orderings for term-rewriting systems. Theoreti
al Computer S
ien
e,17(3):279{301, 1982.6. J. Giesl. Automated termination proofs with measures fun
tions. In Pro
eedings ofthe 19th annual german 
onferen
e on arti�
ial intelligen
e, volume 981 of Le
tureNotes in Arti�
ial Intelligen
e, pages 149{160, 1995. Springer-Verlag.7. J. Giesl. Generating polynomial orderings for termination proofs. In Pro
eedings ofthe 6th International Conferen
e on Rewriting Te
hniques and Appli
ation, volume914 of Le
ture Notes in Computer S
ien
e, 1995. Springer-Verlag.8. J. Giesl. Termination analysis for fun
tional programs using term orderings. InPro
eedings of the Se
ond International Stati
 Analysis Symposium, volume 983 ofLe
ture Notes in Computer S
ien
e, pages 154{171, Glasgow, 1995. Springer-Verlag.9. G. Huet and J. M. Hullot. Proofs by indu
tion in equational theories with 
onstru
-tors. Journal of Computer and System S
ien
es, 25(2):239{266, 1982.10. F. Kamareddine and F. Monin. On formalised proofs of termination of re
ursivefun
tions. In G. Nadathur, editor, Pro
eedings of the International Conferen
e onPrin
iples and Pra
ti
e of De
larative Programming, volume 1702 of Le
ture Notes25



in Computer S
ien
e, pages 29{46, 1999. Springer-Verlag.11. F. Kamareddine and F. Monin. On Automating Indu
tive and Non-Indu
tive Ter-mination Methods. In P.S. Thiagarajan and R. Yap, editors, Pro
eedings of theAsian Computing S
ien
e Conferen
e, volume 1742 of Le
ture Notes in ComputerS
ien
e, pages 177-189, 1999. Springer-Verlag.12. F. Kamareddine and F. Monin. On the simpli�
ation of formal proofs with ab-stra
ted propositions in an automated system for program synthesis. Te
hni
alreport, Heriot-Watt University, 2000.13. D. Kapur, P. Narendran, and H. Zhang. Automati
 indu
tionless indu
tion usingtest sets. Journal of Symboli
 Computation, 11(1-20:83-111, 1991.14. D. E. Knuth and P. B. Bendix. Simple word problems in universal algebras. InJ. Lee
h, editor, Computational problems in abstra
t algebra, pages 263{297. Perg-amon Press, 1970.15. T. Kolbe. Challenge problems for automated termination proofs of term rewritingsystems. Te
hni
al report, Te
hnis
he Ho
hshule Darmstadt, Alexanderstr 10, 64283Darmstadt, Germany, 1996.16. J. L. Krivine. Lambda-
al
ulus, Types and Models. Computers and Their Appli
a-tions. Ellis Horwood, 1993.17. J. L. Krivine and M. Parigot. Programming with proofs. J. Inf. Pro
ess Cybern,26(3):149{167, 1990.18. D. Leivant. Typing and 
omputational properties of lambda expression. Theoreti
alComputer S
ien
e, 44:51{68, 1986.19. P. Manoury. A user's friendly syntax to de�ne re
ursive fun
tions as typed lambda-terms. In Pro
eedings of Type for Proofs and Programs TYPES'94, volume 996 ofLe
ture Note in Computer S
ien
e, 1994. Springer-Verlag.20. P. Manoury and M. Simonot. Des preuves de totalit�e de fon
tions 
omme synth�esede programmes. PhD thesis, University Paris 7, 1992.21. P. Manoury and M. Simonot. Automatizing termination proofs of re
ursively de�nedfun
tions. Theoreti
al Computer S
ien
e, 135(2):319{343, 1994.22. F. Monin and M. Simonot. An ordinal measure based pro
edure for termination offun
tions. Theoreti
al Computer S
ien
e, 254:63{94, 2001.23. D. R. Musser. On proving indu
tive properties of abstra
t data types. In Pro
eedings7th ACM symposium on prin
iples of Programming Languages, ACM, pages 154{162, 1980.24. F. Nielson and H. R. Nielson. operational semanti
s of termination types. Nordi
Journal of Computing, 3(2):144{187, 1996.25. M. Parigot. Re
ursive programming with proofs. Theoreti
al Computer S
ien
e,94(2):335{356, 1992.26. C. Sangler. Termination of algorithms over non-freely generated data types. InPro
eedings of International Conferen
e on Automated Dedu
tion, volume 1104 ofLe
ture Notes in Arti�
ial Intelligen
e, pages 121{136, 1996. Springer-Verlag.27. J. Steinba
h. Generating polynomial orderings. Information Pro
essing Letters, 49,1994.28. J. Steinba
h. Simpli�
ation orderings: history of results. Fundamenta Informati
ae,24:47{87, 1995.29. J. J. Thiel. Stop losing sleep over in
omplete data type spe
i�
ations. In Pro
eedings11th ACM symposium on prin
iples of programming languages, pages 76{82, 1984.26



30. C. Walther. On proving the termination of algorithms by ma
hine. Arti�
ialIntelligen
e, 71(1):101{157, 1994.

27


