
IJFCS.sty �leInternational Journal of Foundations of Computer Sciencec
 World Scienti�c Publishing Company
The Soundness of Explicit Substitution with Nameless VariablesFAIROUZ KAMAREDDINEUniversity of Glasgow, Department of Computing Science, 17 Lilybank Gardens,Glasgow G12 8RZ, Scotland, email fairouz@dcs.gla.ac.ukReceived 1 November 1995Revised todayCommunicated by D. T. Lee

1

April 13, 1998ABSTRACTWe show the soundness of a �-calculus B where de Bruijn indices are used, substitu-tion is explicit, and reduction is step-wise. This is done by interpreting B in the classicalcalculus where the explicit substitution becomes implicit and de Bruijn indices becomenamed variables. This is the �rst
at semantics of explicit substitution and step-wisereduction and the �rst clear account of exactly when �-reduction is needed.Keywords: Explicit Substitution, de Bruijn indices, Variable names, Soundness.1. IntroductionVariables play a very demanding role in the reduction and substitution of the�-calculus. This has lead in many cases to using explicit rather than implicit sub-stitution. Implementations of the �-calculus provide their own explicit substitutionprocedures as in Nuprl9 and Automath23. Furthermore, research on theories of ex-plicit substitution has been striving lately5;12;13;22;4;18. In this paper, we extend thecalculus of [13] (which is in
uenced by Automath) giving B, a calculus which usesde Bruijn indices and where reduction and substitution are step-wise and explicit.The species of variable names is cultivated and ordered so that a �ne inter-marriagebetween de Bruijn's indices and variable names takes place. We show the consis-tency of the �ne reduction and explicit substitution of B in terms of the classical�-calculus and re
ect on the use and necessity of �-conversion.Basic to our work is the item notation16. To write classical terms into itemnotation, we use I where I(t) � t if t 2 V , I(�x:t:t0) � (I(t)�x)I(t0) and I(tt0) �(I(t0)�)I(t) (note the order). Hence, a term t is of the form s1s2 : : : snt0 where t0is a variable and si for 1 � i � n is an item (of the form (ti!) where ! is anoperator such as � or � (with or without a subscript)). When the operators getincreased to include substitution (�), updating (') and decreasing (�) operators,the representation of terms remains simple to describe and enables one to de�nereduction and substitution in a step-wise fashion where at every step it is clearwhich item moves inside (or over) which one. This step-wise fashion gives explicitsubstitution and enables local and global reduction as shown in [13].We provide a method which takes any term of the �-calculus with named vari-ables and implicit substitution, �, into B such that all �-equivalent terms in � aremapped into a unique element of B. The other direction however, of mapping ele-ments of B into elements of � is more di�cult. This is because in B, the �'s do nothave variable names as subscripts and so we have to look for such subscripts in away that no free variables in the term get bound. Moreover, a term in B representsa whole class of terms in � (�-equivalent terms). In translating B to �, we avoid2

�-conversion in � and associate to each term of B a unique term of � rather thanan arbitrary element of the �-equivalence class. Now, having such a translation[j�]j from B to �, we show that the variable updating, the substitution and the re-duction rules in B are sound by showing that if t ! t0 where ! is either �-, or'- or �-reduction (excluding �- or �-generation and �-transition, see below), then[jt]j � [jt0]j. Hence the rules which accommodate variable updating and substitutionresult in syntactically equal terms. We shall moreover, show that if t ! t0 wherethe reduction includes �- or �-generation, then [jt]j =�� [jt0]j. That is, the rules whichactually reduce �-redexes in B are nothing more than the � rule in �. Finally if! is �-transition then [jt]j =� [jt0]j. Like this, we provide a
at semantics wheremost reduction steps are mapped to syntactical equality and not to a correspondingreduction. This semantics shows that our reduction and substitution rules are are�nement of those of the classical calculus.We believe that our approach is the �rst to be so precise about variable manipu-lation, substitution and reduction. There is never a confusion of which variable is theone manipulated and hence a machine can easily carry out our reduction strategiesand translate the terms using variables in a straightforward manner. This approachshould be considered in implementations of the �-calculus. Our work here mightlook too involved, but we have actually carried out the hard part of manipulatingvariables once and for all.2. Basic NotationWe take IN to be the set of natural numbers, i.e. � 0, IP to be the set of positivenatural numbers, i.e. > 0, ZZ to be the set of integers and take i; j;m; n; : : : to rangeover numbers. We let F = fx1; x2; : : :g be an ordered set whose elements are alldistinct and call the left in�nite list of �s as drawn in Figure 1, the free variablelist F7;8. We let V , the set of variables of �, be f"g [F where " can be looked ats s s s s�x4 �x3 �x2 �x1Figure 1: The free variable list Fas a special variable or as a constant and is never used as a subscript for �.a Wetake � = f"g [IP to be the set of variables of B and let v; v0; v00; v1; v2; : : : rangeover F [�. We take
� = f�g [f�v ; v 2 Fg and
B = f�; �; �; '; �g to be thesets of operators of � and B respectively. We let !; !0; !1; : : : range over
� [
B.We let t; t1; : : : range over terms of � and B. We take FV (t) and BV (t) to bede�ned as usual and to represent the free and bound variables of t in � and B; weassume that " is neither free nor bound. For r 2 f�; �; �; '; �; �00; �0g, we assumethat !r is compatible2, call the re
exive transitive closure of !r, !!r and let =rthe least equivalence relation closed under !!r. = is the least equivalence relationclosed under !!� and !!� . We use � to be syntactic identity and when t = t0 in�, we write `� t = t0. We assume familiarity with de Bruijn indices. For example,a" is added because it enables us to generalise the calculus. By taking all types of variablesafter � to be ", we obtain the type free �-calculus13. " has further uses such as the 2 in [3].3

for i 6= 3; i 2 IP , (�xi:x2 :(xix3))x1 or (x1�)(x2�xi)(x3�)xi is written (�1:1 4)1 or(1�)(2�)(4�)1 (see Figure 2) where the free variable list is used to account for thefree variables x1, x2 and x3. To translate (x1�)(x2�xi)(x3�)xi when i = 1 or i = 2(i.e., xi occurs bound and free), we rename xi to xj for j > 3.bs s s s s s ss s s� � � � � � 11 2 4(�x4:x2 :x4x3)x1(x1�)(x2�x4)(x3�)x4(1�)(2�)(4�)1 �� ��
Figure 2: A tree with de Bruijn's indicesTerms of � and B are given by the following syntax:� ::= V j I�� where I� ::= (�
�)B ::= � j IBB where IB ::= (B
) for given
 �
BWe may write B�� when
 = f�; �g, and call those terms
��-terms. Later onwe increase
 by adding �, ' and �. �-terms will only be used with
��-terms.Example 2.1 shows terms both in � and B. The translation between � and B willbe given in Sections 3 and 5.Ex 2.1 (The de Bruijn trees of these lambda terms are given in Figure 3.)1. In B, both (x1�)(x2�x5)x5 and (x1�)(x2�x3)x3 are denoted as (1�)(2�)1. Notehowever, that (x1�)(x2�x5)x5 6� (x1�)(x2�x3)x3 for example, unless (�) is assumedin �.2. The term ((x2�x5)x5�)x1 in � is written as ((2�)1�)1 in B.

s s s s ss s21 1� �� � s s s sss s2
11��� �(1�)(2�)1(x1�)(x2�x5)x5(�x5:x2 : x5)x1 ((2�)1 �)1((x2�x5)x5 �)x1x1(�x5:x2 : x5)

�� � � ��
Figure 3: de Bruijn trees with explicit free variable lists and reference numbersNow, we de�ne a number of concepts of � and B that will be used in the rest of thepaper.Def 2.2 ((main) items, (main) segments, !-items, ��-segments, body, weight, nl)bIt is usual in the lambda calculus community, to use the barendregt variable convention whenreasoning about terms (but not in implementation). The Barendregt variable convention avoids(amongst other things) the use of the same name for di�erent bound variables in a term. In thisarticle, we attempt to be very explicit about our variables and this explains the variable lists thatwe assume throughout the paper. 4

� If ! is an operator and t is a term then (t!) is an item called !-item. Weuse s; s1; si; : : : to range over items.� A concatenation of zero or more items is a segment. We use s, s1, si : : : torange over segments and write ; for the empty segment. A reducible or ��-segment, is a �-item next to a �-item. If s � s1s2 : : : sn, we call s1; s2; : : : ; snthe main items of s.� Each term t is the concatenation of zero or more items and a variable: t �s1s2 : : : snv. s1; s2; : : : ; sn are called the main items and s1s2 : : : sn is thebody of t; a concatenation of adjacent main items, sm : : : sm+k, is called amain segment of t.� The weight of a segment or a term is the number of its main items.� We de�ne the total numbers of �'s in t, nl(t) by: nl(v) = ; if v is a variable,nl((t1!)t2) = nl(t1) + nl(t2) if ! 6= � and nl((t1�)t2) = nl(t1) + 1 + nl(t2).Ex 2.3 In this example, we take t 2 B. Let t � ("�)((1�)("�)1�)(2�)1 ands � ("�)((1�)("�)1�)(2�). The main items of t and s are ("�), ((1�)("�)1�) and(2�), being a �-, a �-, and a �-item. s is therefore also called a ���-segment.((1�)("�)1�)(2�) is a main (��-) segment of t and s. Moreover, weight(t) is notnecessarily the same as nl(t) (which counts the number of �s in t). For example,weight(((1�)2�)3) = 1 whereas nl(((1�)2�)3) = 2.Def 2.4 (Substitution in �) If t; t0 are terms in � and v is a variable in F , wede�ne t[v := t0], the result of substituting t0 for all the free occurrences of v in t asfollows:8>>>>>>>>>>>><>>>>>>>>>>>>:
t0 if t � vt if t � v0 6� v or t � "(t2[v := t0]�)t1[v := t0] if t � (t2�)t1(t2[v := t0]�v)t1 if t � (t2�v)t1(t2[v := t0]�v0)t1[v := t0] if t � (t2�v0)t1; v 6� v0;(v 62 FV (t1) or v0 62 FV (t0))(t2[v := t0]�v00)t1[v0 := v00][v := t0] if t � (t2�v0)t1; v 6� v0; v 2 FV (t1);v0 2 FV (t0); v00is the �rst variablein F which does not occur in (t�)t0The (�) and (�) axioms in � are de�ned as follows:(�) (t�v)t0 !� (t�v0)t0[v := v0] where v0 62 FV (t0)(�) (t00�)(t�v)t0 !� t0[v := t00]3. Translating � in BWe enumerate F via y, so that: yx1 = 1; yx2 = 2; yx3 = 3; : : : and de�ne, forv 2 F , y�v to be �, y� to be � and y" to be ". We need the following notions:5

Def 3.1 (termi) We de�ne termi to be a partial function which takes non emptysegments of � and returns terms of � as follows:term1((t1!1)s) =df t1, and termi((t1!1)s) =df termi�1(s), for i � 2; s 6= ;.Def 3.2 (lami) lami takes s of � and returns (�v1)(�v2) : : : (�vk) obtained by re-moving all the main �-items from the �rst (i� 1) main-items of s and by removingall the t's from the main �-items (t�v) of these (i� 1) main-items. lami is de�nedas follows:lam1(s) =df ;lami((t�v)s) =df (�v)lami�1(s) for i � 2 and weight(s) � i� 2lami((t�)s) =df lami�1(s) for i � 2 and weight(s) � i� 2Let Seqi=ni=1 (ti!i) be (t1!1)(t2!2) : : : (tn!n), n � 0. The translation from � into Bis as follows:Def 3.3 (b) For t; t1; t2 2 �; v; v0 2 F ; s segment of �, we de�ne b as follows:b(t) =df b0(t; ;) b0(v; s(�v)) =df 1b(s) =df body(b(s")) b0(v; s(�v0)) =df 1 + b0(v; s) if v0 6� vb0("; s) =df " b0((t1�v)t2; s) =df (b0(t1; s)�)b0(t2; s(�v))b0(v; ;) =df yv (note v 6� ") b0((t1�)t2; s) =df (b0(t1; s)�)b0(t2; s)Here b0(v; s) �nds the de Bruijn number corresponding to v within context s (seeEx 3.5). b0((t1�v)t2; s) translates t1 with respect to s and t2 with respect to s(�v).Lem 3.4 If s1; s2 are segments of �; v 2 F [f"g, thenb0(s1v; s2) = Seqi=ni=1 (b0(termi(s1); s2lami(s1))yopi(s1))b0(v; s2lamn+1(s1)); for n =weight(s1) and opi(s1) is the i-th main operator of s� 1. For example, if s1 �(t1!1)(t2!2) : : : (tn!n), then opi(s1) = !i.Proof: By induction on the length of s1. 2So, if t � (t1!1)(t2!2) : : : (tn!n)v � s1v 2 �, then b0(t; s2) = (t01y!1)(t02y!2) : : : (t0ny!n)v0 where t0i � b0(ti; s2lami(s1)) and v0 � b0(v; s2lamn+1(body(t))). Hence, t andb0(t; s2) have the same trees, except that �'s lose their subscripts and variables arereplaced by correct indices found by tracing the �'s. That is why, in t0i, we had toattach all the �s preceding t0i.Ex 3.51. b((x1�x4)(x2�x3)x4) � (b0(x1; ;)�)(b0(x2; (�x4))�)b0(x4; (�x4)(�x3)) � (yx1�)(3�)2 �(1�)(3�)2.2. b((x1�)(x2�x4)(x3�)x4) � (1�)(2�)(4�)1.3. b(((x3�x4)x4�)x1) � b0((x3�x4)x4; ;)�)b0(x1; ;) � ((b0(x3; ;)�)b0(x4; (�x4))�)1 �((3�)1�)1Lem 3.6 For any t in �, b(t) is well de�ned.Proof: By induction on t 2 �. 2b is not injective: b((x1�x2)x2) � b((x1�x3)x3) but (x1�x2)x2 6� (x1�x3)x3. bhowever is surjective (see Lem 5.16). The following lemma is informative about b.Lem 3.7 If t; t0 are terms in � such that t =� t0 then b(t) � b(t0).Proof: By induction on t =� t0. 26

4. Axioms of B(x1�)(x2�x4)(x3�)x4 �-reduces to (x3�)x1. Using de Bruijn's indices, this is(1�)(2�)(4�)1 reduces to (3�)1. In fact, if you look at Figure 4, you see that whatis happening is that the ��-segment (1�)(2�) has been cut o� the tree, and the 4has been decreased to 3 as we have lost one �. The 1 in (4�)1 is replaced by the 1of (1�) giving (3�)1. We could say that when contracting (t1�)(t2�) in (t1�)(t2�)t,all free variables in t must be decreased by 1 and all variables in t that are boundby the � of (t2�) must be replaced by t1. This can be tricky however, for assumewe take t � ("�)t0 and write the rule as:(t1�)(t2�)t!� t[1 := t1; 2 := 1; 3 := 2; : : :] (where substitution is simultaneous)then replacing (("�)t0)[1 := t1; 2 := 1; 3 := 2; : : :] by ("�)t0[1 := t1; 2 := 1; 3 := 2; : : :]would not work. It should be: ("�)t0[1 := 1; 2 := t1[1 := 2; 2 := 3; : : :]; 3 := 2; : : :].Based on this observation, we need to increment variables (via ') correctly in aterm. s s s s s s ss s s� � � � � � 11 2 4 s s s s ss� � � �3 1(�xi:x2 :xix3)x1(x1�)(x2�xi)(x3�)xi(1�)(2�)(4�)1 x1x3(x3�)x1(3�)1�� �� � �
Figure 4: �-reduction in our notationRem 4.1 (Compatibility) Let r 2 f�; '; �g. We introduce!r as a relation betweensegments, although it is meant to be a relation between terms. Rule s!r s0 statesthat t!r t0 when a segment s occurs in t, where t0 is the result of the replacementof s by s0 in t.4.1. '-reductionWe index ' with two parameters k � 0 and i � 1. 8i � 1, let '(i) denote '(0;i)and ' denote '(1). The intention of the superscripts when ('(k;i)) travels throught1 is the following:� i preserves the increment for FV (t1) and does not increase when passingother �'s.� k counts the �'s that are internally passed by in t1 (k = `threshold') andincreases when passing another �. Only variables > k are increased, as therest are bound.Updating means all free variables in t1 increase with an amount of i; k identi�esthe free variables in t1. Updating variables by looking at the tree is easy: count the�'s you have gone through before a free variable and increase the free variable bythat number. 7

Ex 4.2 Replacing in ("�)(2�)3, the 2 and the 3 by ("�)2 results in ("�)(("�)3�)("�)4.I.e. the 2 has been replaced by ("�)3 and the 3 by ("�)4. Figure 5 is self explanatory.s s s s ss s� � � � 3" 2 s s s ss ss s ss s� � � ��"" 3 "� 4�x2:":�x3:x1 :x1("�x2)(x1�x3)x1("�)(2�)3 �x2:":�x3:(�x4:":x1):�x4:":x1("�x2)(("�x4)x1�x3)("�x4)x1("�)(("�)3�)("�)4�� ��
Figure 5: Substitution in our notationThe de�nition below formalises the updating process.Def 4.3 ('-reduction) Let k 2 IN; i 2 IP; v 2 � and t an
��-term.('-transition rules:) ('(k;i))(t�) !' (('(k;i))t�)('(k+1;i))('(k;i))(t�) !' (('(k;i))t�)('(k;i))('-destruction rules:) ('(k;i))v !' v + i if v > k('(k;i))v !' v if v � k or v � "Ex 4.4 In substituting ("�)2 for 2 in ("�)(2�)3, we compensate for the preceding� in the item ("�) of ("�)(2�)3. We substitute ('(0;1))("�)2 for this 2 (the order 1in ('(0;1)) is due to the number of preceding �'s, being 1):("�)(('(0;1))("�)2�)3!' ("�)((('(0;1))"�)('(1;1))2�)3!!' ("�)(("�)3�)3Similarly, in the substitution of ("�)2 for 3 in ("�)(2�)3, we compensate for twoextra �s:("�)(2�)('(0;2))("�)2!!' ("�)(2�)("�)4.4.2. �-reduction�-items can move through the branches of the term, step-wise, from one nodeto an adjacent one, until they reach a leaf of the tree. At the leaf, if appropriate, a�-item (or a substitution item) can cause the desired substitution e�ect. We use �as an indexed operator: �(1); �(2); : : :. The intended meaning of a �-item (t0�(i)) is:t0 is a candidate to be substituted for one or more occurrences of a certain variable;i selects the appropriate occurrences.Def 4.5 (one-step �-reduction) Let i 2 IP; v 2 �; t1; t2
��-terms.(�-generation rule:) (t1�)(t2�)!� (t1�)(t2�)((')t1�(1))(�-transition rules:) (t1�(i))(t2�) !� ((t1�(i))t2�)((')t1�(i+1))(t1�(i))(t2�) !� ((t1�(i))t2�)(t1�(i))(�-destruction rules:) (t1�(i))i !� t1(t1�(i))v !� v if v 6� i8

Note that (') = ('(1)) = ('(0;1)) by the notational convention. Note also that our�-transition rules do not allow for �-items to \pass" other �-items. The followingshows that �-reduction, which is the transitive closure of one-step �-reduction,reaches all occurrences to be substituted.Lem 4.6 In (t1�)(t2�)t3, �-reduction substitutes t1 for all occurrences of the vari-ables bound by the � of (t2�) in t3. I.e., there is a path for global �-reduction (seeSection 4.3).Proof: The proof is by an easy induction on t3 in (t1�)(t2�)((')t1�(1))t3. 2Lem 4.7 In (t1�(i))t2, �-reduction substitutes t1 for all occurrences of variables int2 which are bound by the same � being the i-th entry (from the right) in the freevariable list of t2. Moreover, the (')s look after the updating of t2.Proof: By induction on t2, noting that during propagation, when the �-itempasses a �, the superscript of � is incremented, keeping track of the variable to besubstituted for. 2Ex 4.81. (2�(1))(4�)1!� ((2�(1))4�)(2�(1))1!!� (4�)2.2. ((3�)2�(1))(1�)1!� (((3�)2�(1))1�)((')(3�)2�(2))1!!�' ((3�)2�)((4�)3�(2))1!�((3�)2�)1.3. ((3�)2�(4))(1�)1 !� (((3�)2�(4))1�)((')(3�)2�(5))1 !!�' (1�)((4�)3�(5))1 !�(1�)1.4. (1�)(2�)(3�)2!� (1�)(2�)((')1 �(1))(3�)2!�(1�)(2�)(((')1 �(1))3�)((')(')1 �(2))2!!�;'(1�)(2�)(((')1 �(1))3�)3!� (1�)(2�)(3�)3The following shows that the bond between variables and their binding �'s is main-tained.Lem 4.9 If s(t1�)(t2�)t!� s(t1�)(t2�)((')t1�(1))t then in s(t1�)(t2�)((')t1�(1))t,all variable occurrences are bound by the same �'s which bound them in s(t1�)(t2�)t.Proof: left to the reader. 2To get local substitution, one adds to Def 4.5 the �-destruction rule: (t1�(i))t !�t13.4.3. �-reductionIn the �-generation rule, the reducible segment may be \without customers"and so �-generation is undesirable since it leads to useless e�orts. Hence we restrict�-generation to those cases where the main � of the reducible segment binds at leastone variable. When this is not the case, we speak of a void ��-segment (whichmay be removed by replacing it by (�(1))). This can be compared to the applicationof a constant function to some argument; the result is always the (unchanged) bodyof the function. The meaning of (�(i))t is: decrease by 1 all variables in t > i.Variables � i in t are bound by some �s in t and hence should not be decreased.Now the � rules are de�ned as follows:Def 4.10 (�-reduction) Let t1; t2; t 2
��-terms, v 2 � and i 2 IP .(�-generation rule:) (t1�)(t2�)t!� (�(1))t if (t1�)(t2�) is void in t9

(�-transition rules:) (�(i))(t�) !� ((�(i))t�)(�(i+1))(�(i))(t�) !� ((�(i))t�)(�(i))(�-destruction rules:) (�(i))v !� v if v � " or v < i(�(i))v !� v � 1 if i < vNote in the second �-destruction rule that v > 1 as i � 1. Note moreover that wenever reach the case where we get (�(i))i (see Lem 4.13).Def 4.11 (One-step �-reduction !�0) One-step �-reduction of an
��-term is thecombination of one �-generation from a ��-segment s, the transition of the generated�-item through the appropriate subterm in a global manner, followed by a numberof �-destructions, and updated by '-items until again an
��-term is obtained.Finally, we replace the now void segment s by (�(1))t and we use the �-reductionrules to dispose completely of � in (�(1))t.Ex 4.12 (4�)(�)(1�)(1�)3 !�0 (4�)(1�)6:(4�)(�)(1�)(1�)3 !� (4�)(�)((')4�(1))(1�)(1�)3!!�;' (4�)(�)(5�)(1�)7!� (�(1))(5�)(1�)7!� ((�(1))5�)(�(2))(1�)7!� (4�)(�(2))(1�)7!!� (4�)(1�)(�(3))7!� (4�)(1�)6The following Lemma is needed when discussing the semantics of �-reduction:Lem 4.13 If t is an
��-term and t!!� t0 then for all (�(i))t00 subterm of t0 with t00an
��-term, we have that i does not refer to any free variable of t00. In particular,if t!!� t0 then we never �nd in t0, (�(i))i as a subterm.Proof: By induction on !!�. 25. Translating B in �Here, we have to be careful. For example, we can translate (�)2 as any of (�xi)x1for i 6= 1 but not as (�x1)x1. The following example gives another case where wehave to be careful:Ex 5.1 t � ((1�)2�)(1�)3 has for any i; j 6= 1, ((x1�)x2�xi)(xi�xj)x1 as a corre-sponding �-term. Here the subterm 3 of t should be considered relative to a freevariable list extended with �xi and �xj : : : : ; �x4 ; �x3 ; �x2 ; �x1 ; �xi ; �xj , and hencecorresponds with x1.To avoid choosing wrong subscripts of �'s, we work at a mid-level �, between B and�. In �, subscripts of �'s will be in a list l = x0; x00; : : : such that F \ l = ;. Weassume all elements of l are distinct. We take � = l [F , let �; �1; �2; �0; � � � rangeover �, and X;X 0; X1; X2; : : : range over l. We call elements of F free variablesand elements of l bound variables.Def 5.2 (�) Terms of � are de�ned similarly to those of � except that all boundvariables are indexed by elements from l (all free variables are in F [l).10

Examples of terms of � are "; (x1�x0)x0 and (x1�x0)(x0�)x00. Bound and free vari-ables, �, �, and � de�ned for � can be easily extended to �. We use FV (t) andBV (t) for the free and bound variables of t in �. We use �, � for � and � in �.Def 5.3 (Substitution in �) If t; t0 are terms in � and if v 2 F[l, then t[v := t0]0 isexactly de�ned as in Def 2.4 except that, [v := t0] is replaced everywhere by [v := t0]0,[v0 := v00] is replaced by [v0 := v00]0 and in the last clause, F is replaced by l.If t 2 � translates t0 2 B, then FV (t) � F and BV (t) � l by Lem 5.42. In thiscase, t can be mapped to � by replacing its l-variables by variables in F which donot occur in t:Def 5.4 (Translating � in � via �) If t is a term in � such that FV (t) � F andBV (t) � l then we translate t to t0 by �rst looking for the greatest free variable int, xi for i 2 IP , and for the smallest bound variable (i.e. the bound variable withthe smallest amount of primes) in t. We replace all the occurrences of this boundvariable by xi+1. Then we replace the second smallest bound variable by xi+2 andso on until no variables from l appear in t. We call the translation of the �-term tin �, �(t).Ex 5.5 (�)2 and ((1�)2�)(1�)3 translate in � as (�x0)x1 and ((x1�)x2�x0)(x0�x00)x1as we shall see. Now, these terms in � are transformed into terms of � in a uniqueway as follows:The greatest variable of F in (�x0)x1 is x1, hence x0 gets replaced by x2, giving(�x2)x1.The greatest variable of F in ((x1�)x2�x0)(x0�x00)x1 is x2, hence all occurrences ofx0; x00 get replaced by x3; x4 respectively giving ((x1�)x2�x3)(x3�x4)x1.As � and � are similar, we avoid the trivial step of translating between � and �and show the soundness in �. This simpli�cation does not a�ect the results of thispaper.5.1. Variables and listsWe assume the usual basic list operations such as concatenation ++ and head andtail, hd and tl. For i 2 IP , we take hd1 =df hd and hdi+1 =df hd � hdi, and wede�ne tli similarly. Moreover, the set of operators n;�;� and 2 are also applicablefor lists and we will mix sets and lists at will. We take v; v0; v1; v2; : : : to range over(�nite and in�nite) lists.Def 5.6 Every list is written as the concatenation of its ordered elements from rightto left. If v = : : : ++�2 ++�1 and m � 1, we de�ne v�m = : : : ++�m+1 ++�m to bethe left part of v starting at m, and v<m = �m�1 ++�m�2 ++ : : :++�1 to be the rightpart of v ending before m. Note that v�m = tlm�1(v), v<1 is the empty list andv<2 = hd(v).Ex 5.7 F = : : : ++x2 ++x1, l = : : : ++x00 ++x0, F�m = : : : xm+1 ++xm and F<m =xm�1 ++ : : :++x1.Def 5.8 We take 62 � to be a special symbol whose meaning will be clear below.We write 1 as and 0 as the empty string ;. n will be ++ � � �++ | {z }n .11

� For a set A, L(A) = fB;B is a �nite list of distinct elements of Ag.� L1(v) = fv�i; i 2 IPg, Lsp = fF�m ++v;m 2 IP; v 2 L(� [f g)g,L�1(�) = fv; v 2 Lsp ^ v is -freeg, and L = Lsp [L(� [f g)� 8v 2 L(�[f g); � 2 �, let jj;jj = 0; jjv++ jj = jjvjj�1 and jjv++�jj = jjvjj+1.� For a segment s, let sl(;) = ;, sl((t1�)s0) = sl(s0) and sl((t��)s0) = �++sl(s0).Note that l 62 L(l) and that ; 2 L(A) for every set A. We write jvj for the lengthof v.Lem 5.9 For all v 2 L(�[f g), jjvjj � jvj. Moreover, if v 2 L(�) then jjvjj = jvj.Def 5.10 (comp) For all v 2 L ; � 2 �; n 2 IP :comp1(v ++�) =df �compn+1(v ++�) =df compn(v)compn(v ++� ++ i+1) =df compn(v ++ i); i 2 INThe idea of comp is to select the appropriate named variable, given a list of (di�er-ent) named variables. We write compn(v) #, when compn(v) is de�ned.Lem 5.11 For all v 2 L(�[f g); n 2 IP , if n � jjvjj then compn(v) # ^compn(v) 2v. Proof: By induction on jvj noting that if jjvjj � 1 then 9� 2 � such that � 2 v.2Cor 5.12 For all v 2 L(�); n 2 IP , if n � jvj then compn(v) # ^compn(v) 2 v.Proof: Obvious, using lemmas 5.9 and 5.11. 2Lem 5.13 For all v 2 Lsp; n 2 IP; i 2 IN , we have compn(v) # ^compn(v) 2 v.Moreover, compn(v ++ i) = compn+i(v).Proof: The �rst is by induction on n. The second is easy. 2Note that the only case where compn(v) is unde�ned is when n > jjvjj.Lem 5.14 For all v0 2 Lsp; v 2 L(� [f g); � 2 �; n 2 IP , and i 2 IN , we have:1. If n > jjvjj � 0 then compn(v0 ++v) � compn�jjvjj(v0).2. If n > jjvjj � 0 then compn(v0 ++ i ++v) � compn+i(v0 ++v).3. If n � jjvjj then compn(v0 ++v) � compn(v).4. compn(v0 ++� ++ ++v) � compn(v0 ++v).Proof: 1 and 3, by induction on jvj using Lem 5.13. 2, using Lem 5.13 and 1.For 4:Case n � jjvjj or n > jjvjj � 0, use the de�nition of comp and cases 1+3 above.Case n > jjvjj and jjvjj < 0 then by induction on jvj. 25.2. The inverse function e
12

Def 5.15 (e) Let t; t1; t2 2 B��; s be a segment of � consisting of items of the form(�X) for X 2 l; l 2 L1(l); j 2 IP; v 2 �; X 2 l. e takes
��-terms into terms in �as follows:e(t) =df c(t; ;; l)c(v; s; l) =df d(v; s)c((t1�)t2; s; l) =df (c(t1; s; l)�)c(t2; s; tlnl(t1)(l))c((t1�)t2; s; l) =df (c(t1; s; l)�hd1+nl(t1)(l))c(t2; s(�hd1+nl(t1)(l)); tl1+nl(t1)(l))d(j; ;) =df xjd("; s) =df "d(1; s(�X)) =df Xd(n; s(�X)) =df d(n� 1; s) if n > 1d associates with each de Bruijn's index, the right variable in F [l which shouldreplace it.Lem 5.16 e is well de�ned and b � � � e(t) � t for any t 2 B��Ex 5.17e(((2�)2�)1) � c(((2�)2�)1; ;; l)� (c((2�)2; ;; l)�x00)c(1; (�x00); fx000; xiv ; : : :g)� ((c(2; ;; l)�x0)c(2; (�x0); fx00; x000; : : :g)�x00)d(1; (�x00))� ((d(2; ;)�x0)d(2; (�x0))�x00)x00� ((x2�x0)d(1; ;)�x00)x00� ((x2�x0)x1�x00)x00(The �rst � becomes �x00 and not �x0 , as there is one � in (2�)2; i.e. nl((2�)2) = 1,so �hd1+nl((2�)2)(l) = �hd2(l) = �x00 .) This �-term is replaced by ((x2�x3)x1�x4)x4in �.Ex 5.18e((�)(1�)(1�)3)� c((�)(1�)(1�)3; ;; l)� (c("; ;; l)�x0)c((1�)(1�)3; (�x0); fx00; x000; : : :g)� (d("; ;)�x0)(c(1; (�x0); fx00; x000; : : :g)�x00)c((1�)3; (�x0)(�x00); fx000; : : :g)� ("�x0)(d(1; (�x0))�x00)(c(1; (�x0)(�x00); fx000; : : :g)�)c(3; (�x0)(�x00); fx000; : : :g)� ("�x0)(x0�x00)(d(1; (�x0)(�x00))�)d(3; (�x0)(�x00))� (�x0)(x0�x00)(x00�)d(2; (�x0))� (�x0)(x0�x00)(x00�)d(1; ;)� (�x0)(x0�x00)(x00�)x1Finally, we replace x0 and x00 of l by x2 and x3 resp. obtaining (�x2)(x2�x3)(x3�)x1.e does not take into account '-, �- and �-items. It is di�cult to provide thetranslation of '-items without watching what happens in the lists F and l. Forexample:Ex 5.19 ('(1;2))(1�)(2�)3 of B should be: (x1�)(x4�x0)x4 in � and (x1�)(x4�x5)x4in �. Due to ('(1;2)), we use F 0 rather than F where F 0 = : : : x5++x4++x1. I.e. thex2 and x3 disappear. 13

5.3. The semantics of B-terms: an initial accountWe provide the translation of B-terms into the lambda calculus with variablenames using lists of variables v and v0 so that [jv; v0; t]j translates t 2 B. In fact,e(t) = [j;; l; t]j translates t 2 B into the corresponding e(t) 2 �. We use v and v0to give names to the free and bound variables in t respectively. Moreover, v \ v0 istaken to be ; in order to avoid binding any free variable. If we were to translate ofB�� only, then it is enough to take v 2 L(l). With ' however, we need v 2 Lsp.We start �rst with only �nite lists in L(l) and translate of B�� as follows:Def 5.20 (�-, �-semantics) 8t1; t2 2 B��; v 2 L(l); v0 2 L1(l); v \ v0 = ;; n 2 �,[jv; v0; (t1�)t2]j =df ([jv; v0; t1]j�X)[jv ++X ; v0�i+1; t2]j for i = nl(t1) + 1; X = hdi(v0)[jv; v0; (t1�)t2]j =df ([jv; v0; t1]j�)[jv; v0�i; t2]j for i = nl(t1) + 1[jv; v0;n]j =df 8<: compn(v) if n � jvjxn�jvj if n > jvj" if n = "Ex 5.21 (see Example 5.17)[j;; l; ((2�)2�)1]j �([j;; l; (2�)2]j�x00)[jx00; l�3; 1]j �(([j;; l; 2]j�x0)[jx0; l�2; 2]j�x00)comp1(x00) �((x2�j;j�x0)x2�jx0j�x00)x00 �((x2�x0)x1�x00)x00 �Lem 5.22 For any v 2 L(l); v0 2 L1(l); v \ v0 = ;; t 2 B��; FV ([jv; v0; t]j) � v [F .Proof: By induction on t, recalling that " is neither free nor bound. 2Lem 5.23 8v 2 L(l); v0 2 L1(l); v \ v0 = ;; t 2 B��, [jv; v0; t]j is well-de�ned +unique in �.Proof: By induction on t 2 B�� using Cor 5.12. 2Lem 5.24 For all t 2 B��; e(t) � [j;; l; t]j.Proof: Show by induction on t 8t 2 B��; s 2 � and v 2 L1(l); c(t; s; v) �[jsl(s); v; t]j. 2Ex 5.25 Let t � ("�)((1�)((1�)(2�)3�)(2�)2�)3. Now, the reader can check that:e(t) � [j;; l; t]j � ("�x0)((x0�x00)((x00�)(x0�x000)x0�xiv)(x00�xv)xiv�xvi)x1:Furthermore, �(e(t)) � ("�x2)((x2�x3)((x3�)(x2�x4)x2�x5)(x3�x6)x5�x7)x1 (see Fig-ure 6).5.4. Extending the initial account('(k;i))t means: add i to all free variables > k, occurring in t. When we look for[jv; v0; ('(k;i))t]j, all the variables in t � k take the same value as in [jv; v0; t]j. Thosevariables > k must not take the values they would have taken in [jv; v0; t]j. Rather,looking for their corresponding variables in v, we have to shift still i positions tothe left. I.e. if the index is n, where n > k then the variable corresponding to n isnot the nth variable from right to left in v. Rather, it is the (n+ i)th variable fromthe right. For example:[jx0000x000x00x0; l�5; ('(1;2))(1�)2]j � (x0�)x000014

s s ss s s s ss ss s ss s
" x2 x3 x2x3

x1 x5x2�x2 �x7�x3 �x5 �x6� �x4
t � ("�x2)((x2�x3)((x3�)(x2�x4)x2�x5)(x3�x6)x5�x7)x1� ("�)((1�)((1�)(2�)3�)(2�)2�)3Figure 6: The tree of �(e(t))For this, we allow a special symbol to become an element of v. The operationalmeaning of is: on going left, delete the �rst named variable. Such a , will notonly be used to erase variables but will also say which free variable in F correpondsto the variable in hand.Ex 5.26 The idea is that:1. If jvj � k+i; v = v1++v2 and jv2j = k, then [jv; v0; ('(k;i))t]j = [jv1++ i++v2; v0; t]j.Hence for [jx0000x000x00x0; l�5; ('(1;2))2]j, we need [jx0000x000x00++ 2++x0; l�5; 2]j. Thisevaluates to [jx0000x000x00 ++ 2; l�5; 1]j. The presence of 2 means ignore x000x00.Therefore the result reduces to [jx0000; l�5; 1]j which is x0000.2. For every n 2 IN;m 2 IP; [jv++ n; v0;m]j = [jv; v0;n+m]j and [j n; v0;m]j = xn+m.Looking at the �rst part of Example 5.26, we see that we need to have v = v1 ++v2where jv2j = k. In other words, we have to go through the list v from right toleft until we pass the kth element. In order to accommodate this, we introducean extra argument in the semantic meaning of '-terms. We will give an examplewhich explains the point even though it is ahead of its time in the section. Webelieve however, that the reader can still follow it, once point 2 of Example 5.26 isremembered.Ex 5.27 Notice how we save x0 to use it later on:[jx00x0; l�3; ('(1;2))(1�)2]j �[jx00;x0; l�3; ('(1;2))(1�)2]j �[jx00 ++ 2 ++x0; l�3; (1�)2]j �([jx00 ++ 2 ++x0; l�3; 1]j�)[jx00 ++ 2 ++x0; l�3; 2]j �(x0�)[jx00 ++ 2; l�3; 1]j �(x0�)[jx00; l�3; 3]j � (x0�)x2We extend lists from elements of L(l) (as in Def 5.20) to elements of Lsp. Now ourlists include 's, bound and free variables, and are denumerably in�nite. Now, hereis [j�; �; �]je, the extended de�nition of the semantics of �- and �-items.Def 5.28 (Extended �- and �-semantics) [j�; �; �]je : Lsp �L1(l)� B���' 7! �:15

8t1; t2 2 B��; v 2 Lsp; v0 2 L1(l); v \ v0 = ;; n 2 IP ,[jv; v0; (t1�)t2]je =df ([jv; v0; t1]je�X)[jv ++X ; v0�i+1; t2]je for i = nl(t1) + 1; X = hdi(v0)[jv; v0; (t1�)t2]je =df ([jv; v0; t1]je�)[jv; v0�i; t2]je for i = nl(t1) + 1[jv; v0;n]je =df compn(v)[jv; v0; "]je =df "Lem 5.29 Let v 2 Lsp; v0 2 L1(l); (v ++�) \ v0 = ;; � 2 �; n;m 2 IP and k 2 IN .1: [jv ++�; v0; 1]je � �2: [jv; v0;n+ k]je � [jv ++ k; v0;n]je3: [jv ++�; v0;n+ 1]je � [jv; v0;n]je4: [jF�m ++ k; v0;n]je � xn+k+m�15: [jv; v0;n]je 2 v6: If n 6= m then [jv; v0;n]je 6� [jv; v0;m]jeProof: Easy, using Lem 5.13 and the de�nition of comp. 2Lem 5.30 8v0 2 Lsp; v 2 L(�[f g); v00 2 L1(l); (v0++v)\v00 = ;; � 2 � n; i 2 IP :1. If n > jjvjj � 0 then [jv0 ++v; v00;n]je � [jv0; v00;n� jjvjj]je2. If n > jjvjj � 0 then [jv0 ++ i ++v; v00;n]je � [jv0 ++v; v00;n+ i]je.3. If n � jjvjj then [jv0 ++v; v00;n]je � compn(v)4. [jv0 ++� ++ ++v; v00;n]je � [jv0 ++v; v00;n]jeProof: This follows from Lem 5.14. 2Cor 5.31 8v0 2 Lsp, v00 2 L1(l); (v0 ++v) \ v00 = ;, n; i 2 IP , v 2 L(�):1. If n > jvj then [jv0 ++v; v00;n]je � [jv0; v00;n� jvj]je2. If n > jvj then [jv0 ++ i ++v; v00;n]je � [jv0 ++v; v00;n+ i]je.3. If n � jvj then [jv0 ++v; v00;n]je � compn(v)Proof: Obvious by lemmas 5.9 and 5.30. 2Rem 5.32 Note that if v 2 Lsp; v0 2 L(� [f g); v00 2 L1(l); (v0 ++v) \ v00 =;; n; i 2 IP; jjv0jj < 0, then even though n > jjv0jj, it is not necessarily the case that:1. [jv ++v0; v00;n]je � [jv; v00;n� jjv0jj]je2. [jv ++ i ++v0; v00;n]je � [jv ++v0; v00;n+ i]jeFor example, [jF ++ 5x0; l�2; 1]je � x0 whereas [jF ; l�2; 1� jj 5x0jj]je � [jF ; l�2; 5]je �x5.Lem 5.33 For all v 2 L(l); v0 2 L1(l); v\v0 = ;; t 2 B��, [jv; v0; t]j � [jF++v; v0; t]je.Proof: Show 8n 2 IP [f"g: [jv; v0;n]j � [jF ++v; v0;n]je and then use induction ont. 216

5.5. The semantics of �- and '-termsDef 5.34 (�-semantics) 8t1; t2 2 B���'; v 2 Lsp; v0 2 L1(l); v \ v0 = ;; i 2 IP :[jv; v0; (t1�(i))t2]je =df [jv; v0; t2]je[[jv; v0; i]je := [jv; v0�1+nl(t2); t1]je]0Def 5.35 ('-semantics and -semantics)8t 2 B���'; v 2 Lsp; v0 2 L(�); v00 2 L1(l); (v ++�) \ v00 = ;; � 2 �; i 2 IP; k 2 IN :[jv; v00; ('(k;i))t]je =df [jv; ;; v00; ('(k;i))t]j[jv; v0; v00; ('(0;i))t]j =df [jv ++ i ++v0; v00; t]je[jv ++�; v0; v00; ('(k+1;i)t]j =df [jv; � ++v0; v00; ('(k;i))t]j[jv ++� ++ k+1; v0; v00; t]j =df [jv ++ k; v0; v00; t]jNote here that v00 does not play a role because we do not have bound variables thatwe are trying to replace by variable names. What the v0 does however is to savethe �rst k variables of v which are actually the variables in t which should not beupdated because they are � k. Once the �rst k variables of v have been saved inv0, we remove the �rst i variables from the resulting v. Hence in the end, we getthe correct list from which we �nd the meaning of t.Ex 5.361: [jF ++x0; l�2; ('(2;3))3]je = [jF ++x0; ;; l�2; ('(2;3))3]j= [jF ;x0; l�2; ('(1;3))3]j= [jF�2;x1 ++x0; l�2; ('(0;3))3]j= [jF�2 ++ 3 ++x1 ++x0; l�2; 3]je = x52: [jF ++x0; l�2; ('(2;3))1]je = x03: [jF ; l�2; ('(1;2))('(0;1))1]j = x4Now the following lemma is basic about '-items.Lem 5.37 Let t 2 B���', v 2 Lsp; v0 2 L(�); v00 2 L1(l); (v++v0)\ v00 = ;, i 2 IP .[jv ++v0; v00; ('(jv0j;i))t]je � [jv ++ i ++v0; v00; t]je.Proof: Easy. First prove by induction on jv0j that if v 2 Lsp; v0; v1 2 L(�) suchthat (v++v0++v1)\ v00 = ; then [jv++v0; v1; v00; ('(jv0j;i))t]j � [jv; v0++v1; v00; ('(0;i))t]j 2The following lemma opens the road to working with lists which do not contain .Lem 5.38 8v0 2 Lsp; v 2 L(� [f g); v1 2 L1(l); (v0 ++� ++v) \ v1 = ;; � 2 �,n 2 IP :[jv0 ++� ++ ++v; v1; t]je � [jv0 ++v; v1; t]jeProof: By nested induction. We prove by induction on t that IH1(t) holdswhere IH1(t)is: [jv0 ++� ++ ++v; v1; t]je � [jv0 ++v; v1; t]je� If t = n, use case 4 of Lem 5.30.� If (t1�)t2 or (t1�)t2 or (t1�(i))t2 where IH1(t1) and IH1(t2) hold, easy.� If ('(k;i))t and IH1(t). Prove IH2(k) by induction on k where IH2(k), 8v00 2L(�) is:[jv0 ++� ++ ++v; v00; v1; ('(k;i))t]je � [jv0 ++v; v00; v1; ('(k;i))t]je� If k = 0, use IH1(t).� Assume IH2(k). Prove by induction on jvj that IH3(v) holds whereIH3(v) 17

is [jv0 ++� ++ ++v; v00; v1; ('(k+1;i))t]je � [jv0 ++v; v00; v1; ('(k+1;i))t]je:� If jvj = 0, use Def 5.35.� If v ++� where � 2 � and IH3(v) holds, use Def 5.35 and IH2(k).� If v ++� ++ j, � 2 �; j 2 IP and IH3(v ++ j�1), use Def 5.35 andIH3(v ++ j�1).� Case j where j 2 IP , use Def 5.35. 2The following lemma is important. It says that all the 's can be removed fromlists.Lem 5.39 For all v 2 Lsp; 9v0 2 Lsp which is free for such that for all t 2B���'; v00 2 L1(l) such that v \ v00 = ;; [jv; v00; t]je � [jv0; v00; t]je.Proof: If v is not already free of 's we can write v as v1 ++� ++v2 such that� 2 �; v1 2 Lsp; v2 2 L(� [f g), v1 is free of and v2 has as its leftmostelement. Now, the proof is by induction on jv2j using Lem 5.38. Note moreover,that v0 is independent of t. Hence, we may assume from now on that our start listsdo not contain . 2Finally, we give the translation of any term t of B���':Def 5.40 (The semantic function) De�ne [j�]j : B���' 7! � such that [jt]j =df [jF ; l; t]jeLem 5.41 [j�]j is well de�ned. That is, for all t 2 B���', [jt]j is a unique term in �.Proof: By induction on t 2 B���'. 2Now here is our �rst lemma towards the correctness of our translation:Lem 5.42 For all t 2 B���', we have:1. BV ([jv; v0; t]je) � v0 for every v 2 Lsp and v0 2 L1(l) such that v \ v0 = ;.2. FV ([jv; v0; t]je) � v for every v 2 Lsp and v0 2 L1(l) such that v \ v0 = ;.3. BV ([jt]j) � l and FV ([jt]j) � F .Proof: 1 and 2 are by induction on t. 3 follows from 1 and 2. 2Hence, a term [jt]j in � can be translated using Def 5.4 to a term in �.Ex 5.43 (Note that we sometimes combine many steps in one.)[j('(2;1))(1�)(2�)3]j � [jF ; l; ('(2;1))(1�)(2�)3]je� [jF ; ;; l; ('(2;1))(1�)(2�)3]j� [jF�2;x1; l; ('(1;1))(1�)(2�)3]j� [jF�3;x2 ++x1; l; ('(0;1))(1�)(2�)3]j� [jF�3 ++ ++x2 ++x1; l; (1�)(2�)3]je � (x1�)(x2�x0)x4[j('(2;3))('(1;2))(1�)(2�)3]j � [jF ; l; ('(2;3))('(1;2))(1�)(2�)3]je� [jF�2;x1; l; ('(1;3))('(1;2))(1�)(2�)3]j� [jF�3;x2 ++x1; l; ('(0;3))('(1;2))(1�)(2�)3]j� [jF�3 ++ 3 ++x2 ++x1; l; ('(1;2))(1�)(2�)3]je� [jF�3 ++ 3 ++x2;x1; l; ('(0;2))(1�)(2�)3]j� [jF�3 ++ 3 ++x2 ++ 2 ++x1; l; (1�)(2�)3]je� (x1�)([jF�3 ++ 3 ++x2 ++ 2 ++x1; l; 2]je�)[jF�3 ++ 3 ++x2 ++ 2 ++x1; l; 3]je� (x1�)([jF�3 ++ 3 ++ ; l; 1]je�)[jF�3 ++ 3 ++ ; l; 2]je� (x1�)([jF�7; l; 1]je�)[jF�7; l; 2]je � (x1�)(x7�)x818

6. The soundness of �- and '-reductionHere, we show that if t ! t0 where ! is '-transition or destruction, or �-destruction, then [jt]j � [jt0]j. That is, ' and � are sound with respect to variableupdating and substitution. We show moreover, that if t !� t0 where ! is �-generation, then [jt]j = [jt0]j. That is, �-generation is a form of �-conversion. Further-more, the translation of �-transition yields �-conversion. That is, if t !� t0 where!� is �-transition, then [jt]j =� [jt0]j. For this, let us repeat the semantic function:Def 6.1 (Semantics of B���') 8t; t1; t2 2 B���'; v 2 Lsp; v0 2 L(�); v00 2 L1(l),(v ++�) \ v00 = ;; � 2 �; i; n 2 IP and k 2 IN , we de�ne:M1: [jt]j =df [jF ; l; t]jeM2: [jv; v00; "]je =df "M3: [jv; v00;n]je =df compn(v)M4: [jv; v00; (t1�)t2]je =df ([jv; v00; t1]je�X)[jv ++X ; v00�i+1; t2]jefor i = nl(t1) + 1; X = hdi(v00)M5: [jv; v00; (t1�)t2]je =df ([jv; v00; t1]je�)[jv; v00�i; t2]je for i = nl(t1) + 1M6: [jv; v00; (t1�(i))t2]je =df [jv; v00; t2]je[[jv; v00; i]je := [jv; v00�j ; t1]je]0for j = nl(t2) + 1M7: [jv; v00; ('(k;i))t]je =df [jv; ;; v00; ('(k;i))t]jM8: [jv; v0; v00; ('(0;i))t1]j =df [jv ++ i ++v0; v00; t]jeM9: [jv ++�; v0; v00; ('(k+1;i))t1]j =df [jv; � ++v0; v00; ('(k;i))t]jM10: [jv ++� ++ k+1; v0; v00; t]j =df [jv ++ k; v0; v00; t]jThe following lemmas inform us about the place of (�) and (�) in our system.Lem 6.2 8n 2 IP; v 2 Lsp; v0; v00 2 L1(l), v \ v0 = v \ v00 = ;) [jv; v0;n]je =[jv; v00;n]je.Lem 6.3 8t 2 B���'; v 2 Lsp; v0 2 L1(l), v\v0 = ;) 8v00 2 L1(v0), [jv; v0; t]je =�[jv; v00; t]je.Proof: By induction on t. 2Now we de�ne the notions of (�-, �-) soundness:Def 6.4 Let ! be a reduction rule. We say:� ! is sound if: (8t; t0; v; v0)[t! t0) [jv; v0; t]je � [jv; v0; t0]je].� ! is �-sound if: (8t; t0; v; v0)[t! t0) [jv; v0; t]je =� [jv; v0; t0]je].� ! is �-sound if: (8t; t0; v; v0)[t! t0) [jv; v0; t]je =� [jv; v0; t0]je].� ! is ��-sound if: (8t; t0; v; v0)[t! t0) [jv; v0; t]je = [jv; v0; t0]je].Lem 6.5 '-transition through a �-item is sound. I.e., 8t1; t2 2 B���'; v1 2 Lsp; v00 2L1(l); v1 \ v00 = ;; i 2 IP , k 2 IN :[jv1; v00; ('(k;i))(t1�)t2]je � [jv1; v00; (('(k;i))t1�)('(k;i))t2]je
19

Proof: Assume v1 -free (Lem 5.39). Assume also v1 = v ++v0 for jv0j = k.([jv ++v0; v00; (('(k;i))t1�)('(k;i))t2]je �j=1+nl(t1)([jv ++v0; v00; ('(k;i))t1]je�)[jv ++v0; v00�j ; ('(k;i))t2]je �Lem 5:37([jv ++ i ++v0; v00; t1]je�)[jv ++ i ++v0; v00�j ; t2]je �[jv ++ i ++v0; v00; (t1�)t2]je �Lem 5:37[jv ++v0; v00; ('(k;i))(t1�)t2]je 2Lem 6.6 '-transition through a �-item is sound. I.e., 8t1; t2 2 B���'; v1 2 Lsp; v00 2L1(l); v1 \ v00 = ;; i 2 IP , k 2 IN :[jv1; v00; ('(k;i))(t1�)t2]je � [jv1; v00; (('(k;i))t1�)('(k+1;i))t2]jeProof: Similar to Lem 6.5, asume v1 is -free and v1 = v ++v0 for jv0j = k.([jv ++v0; v00; (('(k;i))t1�)('(k+1;i))t2]je �j=1+nl(t1);X=hdj(v00)([jv ++v0; v00; ('(k;i))t1]je�X)[jv ++v0 ++X ; v00�j+1; ('(k+1;i))t2]je �Lem 5:37([jv ++ i ++v0; v00; t1]je�X)[jv ++ i ++v0 ++x; v00�j+1; t2]je �[jv ++ i ++v0; v00; (t1�)t2]je �Lem 5:37[jv ++v0; v00; ('(k;i))(t1�)t2]je 2Lem 6.7 '-destruction is sound: 8v1 2 Lsp; v2 2 L1(l); v1 \ v2 = ;; n; i 2 IP; k 2IN :1. If n > k then [jv1; v2; ('(k;i))n]je � [jv1; v2;n+ i]je.2. If n � k then [jv1; v2; ('(k;i))n]je � [jv1; v2;n]je.Proof: Assume v1 is -free and v1 = v ++v0 such that jv0j = k and use Lem 5.37and Cor 5.31:1:[jv ++v0; v2; ('(k;i))n]je � [jv ++ i ++v0; v2;n]je � [jv ++v0; v2;n+ i]je2:[jv ++v0; v2; ('(k;i))n]je � [jv ++ i ++v0; v2;n]je � compn(v0) � [jv ++v0; v2;n]je 2Lem 6.8 �-destruction is sound: 8t 2 B���'; v 2 Lsp; v0 2 L1(l); v \ v0 = ;; i; j 2IP :1. [jv; v0; (t�(i))i]je � [jv; v0; t]je.2. [jv; v0; (t�(i))j]je � [jv; v0; j]je if j 6= i.3. [jv; v0; (t�(i))"]je � ".Proof: Note that if i 6= j then [jv; v0; j]je 6� [jv; v0; i]je by Lem 5.29:[jv; v0; (t�(i))i]je � [jv; v0; i]je[[jv; v0; i]je := [jv; v0; t]je]0 � [jv; v0; t]je.[jv; v0; (t�(i))j]je � [jv; v0; j]je[[jv; v0; i]je := [jv; v0; t]je]0 � [jv; v0; j]je.[jv; v0; (t�(i))"]je � [jv; v0; "]je[[jv; v0; i]je := [jv; v0; t]je]0 � ", as " 62 v, for every v. 2Lem 6.9 �-transition is �-sound: 8v 2 Lsp; v0 2 L1(l); v\v0 = ;; i 2 IP; t1; t2; t 2B���':1. [jv; v0; (t1�(i))(t2�)t]je =� [jv; v0; ((t1�(i))t2�)((')t1�(i+1))t]je2. [jv; v0; (t1�(i))(t2�)t]je =� [jv; v0; ((t1�(i))t2�)(t1�(i))t]je20

Proof: This is a straightforward application of De�nition 6.1 and of the lawsof �- and �-reduction. 2The 6.10 Let r be r0-transition or r0-destruction rule for r0 2 f�; 'g. t !r t0)[jt]j � [jt0]j.Proof: Use lemmas 6.5, 6.6, 6.7, 6.8 and 6.9. (Note t; t0 2 B���'.) 2Transition and destruction rules of � and ' work like substitution and variableupdating and so return equivalent terms. �-generation on the other hand, accom-modates �-reduction.Ex 6.11 [jF ; l; (2�)(3�)1]je � ([jF ; l; 2]je�)([jF ; l; 3]je�x0)[jF++x0; l�2; 1]je � (x2�)(x3�x0)x0.Also[jF ; l; (2�)(3�)((')2�(1))1]je �([jF ; l; 2]je�)([jF ; l; 3]je�x0)[jF ++x0; l�2; ((')2�(1))1]je �([jF ; l; 2]je�)([jF ; l; 3]je�x0)([jF ++x0; l�2; 1]je[[jF ++x0; l�2; 1]je := [jF ++x0; l�2; (')2]je]0) �([jF ; l; 2]je�)([jF ; l; 3]je�x0)(x0[x0 := x2]0) �([jF ; l; 2]je�)([jF ; l; 3]je�x0)x2 �(x2�)(x3�x0)x2Of course (x2�)(x3�x0)x0 and (x2�)(x3�x0)x2 are not �-equivalent but are �-equivalent:(x2�)(x3�x0)x0 !� x2 and (x2�)(x3�x0)x2 !� x2:Lem 6.12 �-generation is ��-sound. I.e. for all t; t1; t2 2 B���', for all v 2 Lsp,v0 2 L1(l), such that v\v0 = ;, [jv; v0; (t1�)(t2�)t]je = [jv; v0; (t1�)(t2�)((')t1�(1))t]je.Proof: Let i = 1+nl(t1); j = 1+nl(t2); X = hdj(v�i); k = 1+nl(t). Note that[jv; v0; (t1�)(t2�)t]je � ([jv; v0; t1]je�)([jv; v0�i; t2]je�X)[jv ++X ; v0�i+j ; t]je =�[jv ++X ; v0�i+j ; t]je[X := [jv; v0; t1]je]0. Moreover,[jv; v0 ; (t1�)(t2�)((')t1�(1))t]je �([jv; v0; t1]je�)([jv; v0�i; t2]je�X)([jv ++X; v0�i+j ; ((')t1�(1))t]je) �([jv; v0; t1]je�)([jv; v0�i; t2]je�X)([jv ++X; v0�i+j ; t]je[X := [jv ++x; v0�i+j+k; (')t1]je]0) = 5:37; 5:38�([jv ++X; v0�i+j ; t]je[X := [jv; v0�i+j+k; t1]je]0[X := [jv; v0; t1]je]0) =Lem 6:3�([jv ++X; v0�i+j ; t]je[X := [jv; v0; t1]je]0[X := [jv; v0; t1]je]0) �Lem 5:42[jv ++X; v0�i+j ; t]je[X := [jv; v0; t1]je]0 27. The meaning and soundness of �-reductionRecall from Def 4.11 that �-reduction was de�ned as a combination of �-, '-and �-reduction. Hence, as �- and '-reduction are sound, all we have left to showhere is that �-reduction is sound. More precisely, we will show that �-generation is��-sound and that �-destruction and transition are sound. Let us �rst de�ne themeaning of terms with �-leading items.Def 7.1 (�-semantics) If t is an
��-term, v 2 L�1(�); v0 2 L(�); � 2 �; v00 2L1(l),v \ v00 = ;; i 2 IP and i does not refer to any free variable of t, we de�ne:[jv; v00; (�(i))t]je � [jv; ;; v00; (�(i))t]j[jv; v0; v00; (�(1))t]j � [jv ++hd(v00) ++v0; v00�2; t]je[jv ++�; v0; v00; (�(i+1))t]j � [jv; � ++v0; v00; (�(i))t]j21

The provision \i does not refer to a free variable of t" can be assumed due toLem 4.13; this is the only case we need to de�ne the semantics for. Moreover, itsu�ce to take v 2 L�1(�), because t is an
��-term, so we never generate 's inthe list v.Ex 7.21: [j(�(1))(2�)1]j �[jF ; l; (�(1))(2�)1]je �[jF ; ;; l; (�(1))(2�)1]j �[jF ++x0; l�2; (2�)1]je �([jF ++x0; l�2; 2]je�x00)[jF ++x0; l�3; 1]je � (x1�x00)x002: [j(�(2))(1�)1]j �[jF ; l; (�(2))(1�)1]je �[jF ; ;; l; (�(2))(1�)1]j �[jF�2;x1; l; (�(1))(1�)1]j �[jF�2 ++x0 ++x1; l�2; (1�)1]je �([jF�2 ++x0 ++x1; l�2; 1]je)�x00)[jF�2 ++x0 ++x1 ++x00; l�3; 1]je � (x1�x00)x00Note that [j(�(1))(1�)1]j is not allowed, since 1 refers to the free variable 1 in (1�)1.Lem 7.3 Let t be an
��-term. If in (��)(�1)(�2) : : : (�k)t, �� does not bind anyvariable, then 8v 2 L�1(�); v00 2 L(�); v0 2 L1(l); �; �0 2 �, such that (v0 ++v00) \v0 = ;; �; �0 62 v [v0 [v00; jv00j = k, we have: [jv ++� ++v00; v0; t]je � [jv ++�0 ++v00; v0; t]jeProof: By induction on t using lemmas 5.29 and 6.2. 2Lem 7.4 Let (t1�)(t2�) be void in (t1�)(t2�)t, i = 1+nl(t1) and j = 1+nl(t2). 8v 2L�1(�), v0 2 L1(l), v \ v0 = ; ^X = hdi+j�1(v0)) ([jv; v0; t1]je�)([jv; v0�i; t2]je�X)is void in [jv; v0; (t1�)(t2�)t]je.Proof: By induction on
��-terms t. 2Lem 7.5 �-generation is ��-sound. I.e., 8t1; t2; t
��-terms, 8v 2 L�1(�); v0 2L1(l) such that v \ v0 = ;, if (t1�)(t2�) is void in t then: [jv; v0; (t1�)(t2�)t]je =[jv; v0; (�(1))t]jeProof: By induction on t. Let i = 1 + nl(t1); j = 1 + nl(t2); X = hdi(v0�j) =hdi+j�1(v0).� If t � " then obvious.� If t � m thenm > 1. Moreover, ([jv; v0; t1]je�)([jv; v0�i; t2]je�X)[jv++x; v0�i+j ;m]je� ([jv; v0; t1]je�)([jv; v0�i; t2]je�X)[jv; v0�i+j ;m� 1]je =Lem 7:4�[jv; v0�i+j ;m� 1]je �lemmas 5:29 and 6:2 [jv++hd(v0); v0�2;m]je � [jv; v0; (�(1))m]je.� If t � (t01�)t02 then: [jv; v0; (t1�)(t2�)(t01�)t02]je �k=1+nl(t01);X0=hdk(v0�i+j)([jv; v0; t1]je�)([jv; v0�i; t2]je�X)([jv++x; v0�i+j ; t01]je�X0)[jv++x++x0; (v0�i+j)�k+1; t02]je=Lem 7:4� [jv ++X ; v0�i+j ; (t01�)t02]je =Lem 6:3� [jv ++X ; v0�2; (t01�)t02]je �Lem 7:3[jv ++hd(v0); v0�2; (t01�)t02]je � [jv; v0; (�(1))(t01�)t02]je� If t � (t01�)t02 then similar. 222

Rem 7.6 Note that �-generation is not sound. In particular, [jF ; l; (4�)(�)2]je �(x4�)(�x0)x1 and [jF ; l; (�(1))2]je � [jF ++x0; l�2; 2]je � x1. Now (x4�)(�x0)x1 =� x1and (x4�)(�x0)x1 6� x1.Lem 7.7 �-transition is sound: 8
��-terms t1; t2, v 2 L�1(�), v000 2 L1(l) suchthat v \ v000 = ;, 8i 2 IP , if i 62 FV ((t1�)t2), k = 1 + nl(t1); X = hdk(v000) then:1: [jv; v000; (�(i))(t1�)t2]je � ([jv; v000; (�(i))t1]je�X)[jv ++x; v000�k+1(�(i+1))t2]je2: [jv; v000; (�(i))(t1�)t2]je � ([jv; v000; (�(i))t1]je�)[jv; v000�k; (�(i+1))t2]jeProof: We show 1 only as 2 is similar. Let v = v0 ++v00 such that jv00j = i� 1:([jv; v000; (�(i))t1]je�X)[jv ++x; v000�k+1; (�(i+1))t2]je �([jv0 ++hd(v000) ++v00; v000�2; t1]je�X)[jv0 ++hd(v000�k+1) ++v00 ++x; v000�k+2; t2]je �7:3[jv0 ++hd(v000) ++v00; v000�2; (t1�)t2]je �[jv; v000; (�(i))(t1�)t2]je 2Lem 7.8 �-destruction is sound: 8v 2 L�1(�), v000 2 L1(l) such that v \ v000 = ;,8i;m 2 IP :� [jv; v000; (�(i))"]je � ".� [jv; v000; (�(i))m]je � [jv0 ++v00; v000;m]je if m < i.� [jv; v000; (�(i))m]je � [jv0 ++v00; v000;m� 1]je if m > i.Proof: [jv; v000; (�(i))"]je � ", easy. [jv; v000; (�(i))m]je � [jv0++hd(v000)++v00; v000�2;m]je� t where v = v0 ++v00 and jv00j = i � 1. If m < i then m � i � 1 and t �[jv0 ++v00; v000;m]je. If m > i then m � i+ 1 and t � [jv0 ++v00; v000;m� 1]je. 28. Conclusions and comparisonIn order to show the soundness of our calculus we provided a translation fromB into �, a variant of � where bound variables are taken from a particular orderedlist. Our translation functions are important on their own. First, it is nice tohave a mechanical procedure which takes terms written with variable names andreturns terms with de Bruijn's indices. Second, it is equally important and inter-esting to go the other way. For instance, when translating a term (with de Bruijnindices) that represents some mathematical theory/proof to a term with namedvariables, we want particular names to be used. In fact, one of the advantages of deBruijn's indices is that �-conversion is no longer needed. Now, terms written withde Bruijn's indices are di�cult to understand even for those who are familiar withthem. Variable names on the other hand, clarify the term in hand but cause a lot ofcomplications when applying reduction and substitution. If however, we order ourlists of free and bound variables, then we can avoid the di�culty caused by variablenames. In fact, this is what we do in this paper. We take our lists of variables tobe ordered and we translate B into � (i.e. using variable names) in a unique wayvia [j�]j. When in �, it is up to us to equate terms modulo �-conversion rather thanbeing forced to do it in the translation (see Appendix B).23

In order to make substitution explicit and to discuss �-reduction, we had to addthree kinds of reduction rules: the '-, �- and �-reductions. ' updates variables,� substitutes terms for variables and � decreases the indices as a result of a �-conversion which removes a � from a term. Each kind of reduction has three rules:generation, transition and destruction. Now, substitution and reduction in � aregiven similarly to that of the classical calculus; i.e. implicit and global. Therefore,we show that our reduction rules actually do represent reduction and substitutionin � and are hence sound. In particular, we show that �-, �- '-destruction and'-, �-transition are sound in that if t !r t0 where r is one of these rules, then[jt]j � [jt0]j. This is very nice because the corresponding reductions in � also returnequivalent rather than �-equivalent terms. Furthermore, we show that �-transitionis �-sound in that if t !��transition t0 then [jt]j =� [jt0]j. We also show that �- and�-generation are ��-sound in that if t!r t0 where r is one of these two rules, then[jt]j =�� [jt0]j. Now, we are satis�ed with the result concerning �-conversion. In fact,�- and �-generation do actually represent �-conversion in B. Note moreover that inthe soundness proof of �-transition and �- and �-generation, �-conversion appearsdespite the fact that we avoided it in our translation function. Look for exampleat the proof of Lem 7.5. When t � (t01�)t02, we had to apply Lem 6.3 to obtainan �-equivalent term. We have hence singled out the steps in which � must beused: �- and �-generation and in �-transition. Finally, note that we did not discusscompleteness because this becomes here a trivial matter. In fact, everything thatcan be shown in the classical �-calculus can be shown in our own. Even better, ourcalculus is more expressive in that it accommodates explicit substitution whereasthe classical one does not.Work on explicit substitution with de Bruijn indices has been �rst done in depthby Curien (in his PhD thesis, 1983) and was based on categorical combinators.Curien's original work was pursued by applications such as the categorical abstractmachine of [10]. [1] provides an algebraic syntax and semantics for explicit substitu-tion where de Bruijn's indices are used. The connection with the classical �-calculusis not investigated. [12] proposes con
uent systems of substitution based on thestudy of categorical combinators and [11] provides an account of explicit substi-tution similar to that of [1]. Our approach in this paper follows de Bruijn ratherthan Curien in using concepts which belong to the �-calculus rather than to Cat-egory Theory. In fact, we believe that as � and � are operators of the �-calculuswhose behaviour is well-understood, �, ' and � should also be treated similarly.This approach of treating the �-calculus via items has proven advantageous in ourvarious extensions as in [6,15,17]. [13] provides an account of explicit substitutionwhich is used to discuss local and global substitution and reduction. No semanticsis provided for that account and the precision of this paper is not assumed there.The reduction rules however of the present paper are based on [13] even thoughthere, there was no �-reduction and �-reduction was assumed. We believe that wehave in this paper presented the most extensive approach of variable manipulation,substitution and reduction. Our approach can be easily and in a straightforwardfashion implemented because we have carried out all the di�cult work related to24

variables. Furthermore, as [13] has shown that [1] can be interpreted in [13] and asB is an extension of [13], our work here also applies to [1]. [21] provides a semanticsof the explicit substitution of an extension of [13]. The work of [21] originated fromour function e of this paper but ignores to order the list of bound variables whichwe call l imposing �-conversion. In Appendix B, we provide a semantics where all�-equivalent terms are identi�able.In [18], �s, the subsystem of B where �-generation does not preserve the ��-couple, has been studied. �s along with the system of [4] are the �rst calculi ofexplicit substitution which enjoy con
uence on closed terms and preserve strongnormalisation. In [19], it was shown that in the simply typed version of �s, well-typed terms are strongly normalising. In [20], it was shown that �s extended withopen terms is con
uent. At the moment, we are extending the work of [18,19,20]to study the properties of �s where �-generation preserves the ��-couple, henceresulting in the system B of this paper. Finally, Daniel Briaud noted our attentionthat adding intersection types to [4] is problematic as there will be terms that arestrongly normalising but not typable. This is not the case when intersection typesare added to �s. This could be seen as an advantage to our framework of remainingclose to the �-calculus rather than using combinators as in [1,4].AcknowledgementsI am grateful for the discussions with Jeroen Krabbendam and Rob Nederpelt.Furthermore, I am grateful to the Department of Mathematics and ComputingScience, Eindhoven University of Technology, for their �nancial support and hospi-tality from October 1991 to September 1992, and during various short visits since1993 and to the Department of Mathematics and Computer Science, University ofAmsterdam, and in particulr to Jan Bergstra and Inge Bethke for their hospitalityduring the preparation of this article. Finally, this work is supported by the EPSRCgrant GR/K 25014 and by the ESPRIT Basic Research Action project \Types forProofs and Programs".References1. M. Abadi, L. Cardelli, P.L. Curien, and L�evy, J.-J., Explicit substitutions, Func-tional Programming 1 (4), (1991) 375-416.2. H. Barendregt, Lambda Calculus: its Syntax and Semantics, (North-Holland, 1984).3. H. Barendregt, Lambda calculi with types, in Handbook of Logic in Computer Sci-ence, volume II, eds. S. Abramsky, D. Gabbay and T.S.E. Maibaum (Oxford Uni-versity Press, 1992).4. Z. Benaissa, D. Briaud, P. Lescanne and J. Rouyer-Degli, ��, a calculus of explicitsubstitutions which preserves strong normalisation, Functional programming 6(5),(1997).5. C.J. Bloo, Preservation of termination for Explicit Substitution. Ph.D. thesis, Eind-hoven University of technology, the Netherlands, 1997.6. C.J. Bloo, F. Kamareddine and R. Nederpelt, The Barendregt Cube with De�nitionsand Generalised Reduction, Information and Computation 126(2),:123{143, (1996)25

123{143.7. N.G. de Bruijn, Lambda calculus notation with nameless dummies, a tool for auto-matic formula manipulation with application to the Church-Rosser theorem. Konin-lijke Nederlandse Akademie van Wetenschappen, Series A, Mathematical Sciences,75 (1972) 381|392. Also chapter C.2 of23.8. N.G. de Bruijn, A namefree lambda calculus with facilities for internal de�nition ofexpressions and segments. Technical Report 78-WSK-03, Eindhoven University ofTechnology, the Netherlands, 1978.9. R.L. Constable et al, Implementing Mathematics with the Nuprl proof developmentsystem, (Prentice Hall, 1986)10. G. Cousineau, P.-L. Curien and M. Mauny, The Categorical Abstract Machine,Science of Computer Programming 8, (1987) 173-202.11. J. Field, On laziness and optimality in �-interpreters: tools for speci�cation andanalysis, 17th Annual Symposium on Principles of Programming Languages, SanFransisco (1990) 1-15.12. T. Hardin and J.-J. L�evy, A con
uent calculus of substitutions, Lecture notes of theINRIA-ICOT symposium, Izu, Japan, November (1989).13. F. Kamareddine, and R. Nederpelt, On stepwise explicit substitution, InternationalJournal of Foundations of Computer Science 4 (3), (1993) 197{240.14. F. Kamareddine and R. Nederpelt, A uni�ed approach to type theory through are�ned �-calculus, Theoretical Computer Science 136, (1994) 183-216.15. F. Kamareddine and R. Nederpelt, Re�ning reduction in the �-calculus, Journal ofFunctional Programming 5 (4), (1995) 637{651.16. F. Kamareddine and R. Nederpelt, A useful �-notation, Theoretical Computer Sci-ence 155, (1996) 85{109.17. F. Kamareddine and Nederpelt, Canonical Typing and �{conversion in the Baren-dregt Cube, Journal of Functional Programming 6 (2) (1996).18. F. Kamareddine and A. R��os, �-calculus �a la de Bruijn & explicit substitution,Proceedings of PLILP '95, LNCS vol. 982, (Springer-Verlag, 1995) pp. 45{62.19. F. Kamareddine, R��os and J.B. Wells, Calculi of Generalised �-Reduction and Ex-plicit Substitutions: The Type free and Simply Typed Versions. To appear in theJournal of Functional and Logic Programming, Volume 1998, ISSN 1080-5230, (MITPress, 1998).20. F. Kamareddine and R��os, Extending a �-calculus with explicit substitution whichpreserves strong normalisation into a con
uent calculus on open terms, Journal ofFunctional Programming 7(4), (1997) 395-420.21. J. Krabbendam, On the soundness of explicit substitution, Master's thesis, Depart-ment of Mathematics and Computing Science, Eindhoven University of Technology(1993).22. P.-A. Melli�es, Typed �-calculi with explicit substitutions may not terminate, Pro-ceedings of TLCA'95, Lecture Notes in Computer Science 902, Springer-Verlag(1995).23. R. Nederpelt, H. Geuvers, and R. de Vrijer, eds, Selected papers on Automath,Studies in Logic and The foundations of Mathematics, 133, (North Holland, 1995).Appendix A: Making i negative in ('(k;i))26

Up to now, the i-superscript in ('(k;i)) has been considered an element of IP . Ifhowever, we allow in ('(k;i)), i to be negative, we could include the following rule:Def 8.1 (��-destruction rule) For all t1; t2
��-terms, we have: (t1�)(t2�) !;('(0;�1)) provided that the � in (t2�) does not bind any variable in the term fol-lowing (t1�)(t2�), i.e. provided that (t1�)(t2�) is void. Sometimes we denote !; byvoid �-reduction.Alas, negative superscripts identify di�erent variables as in: ('(1;�1))(2�)1 !!'(1�)1. Hence, updating is no longer an injection, which can be highly undesirable.This unpleasant e�ect however, does not occur in the setting presented above: a '-item with a negative exponent only occurs after the clean-up of a void ��-segment,hence with a � that does not bind any variable. Therefore, the injective property ofupdating is not threatened. Now the �-rules together with the ��-destruction rule,enable us to accomplish �-reduction:Def 8.2 (one-step �-reduction !�00) One-step �-reduction of an
��-term is thecombination of one �-generation from a ��-segment s, the transition of the generated�-item through the appropriate subterm in a global manner, followed by a numberof �-destructions, and updated by '-items until again an
��-term is obtained.Finally, there follows one void �-reduction for the disposal of s, and we use the'-rules to dispose completely of the '-items.Ex 8.3 (1�)(2�)(4�)1!�00 (3�)1 as follows:(1�)(2�)(4�)1 !� (1�)(2�)((')1�(1))(4�)1!�' (1�)(2�)((2�(1))4�)(2�(1))1!!� (1�)(2�)(4�)2!; ('(0;�1))(4�)2!' (('(0;�1))4�)('(0;�1))2!!' (3�)1:We used in this paper � instead of negative superscripts for ' in order to make a cleardistinction between the harmless positive updating and the potentially dangerousnegative updating (see our remark after Def 8.1). To be precise: (�(i)) is equivalentto ('(i�1;�1)); but in the case of void reductions, ('(i�1;�1)) has the same e�ect as('(i;�1)).Appendix B: An alternative semanticsIn the de�nition of the semantic function from B to �, we took F and l whichwere both ordered (see Def 6.1). This enabled us to translate every term t of Bto a unique term t0 of � rather than to t00 where t0 =� t00. In this appendix, wede�ne the semantic function which returns any element of the �-equivalence class.This is not the approach we use in the paper because implementation cannot relyon �-conversion. Of course we pay a price (which is not high compared with theadvantages) in that we had to manipulate not only the list of free variables but alsothe list of bound ones. 27

Def 8.4 (�- and �-semantics) For all t1; t2 2 B��; v 2 L(l); n 2 IP [f"g,[jv; (t1�)t2]j =df ([jv; t1]j�v)[jv ++v; t2]j where v 2 l n v[jv; (t1�)t2]j =df ([jv; t1]j�)[jv; t2]j[jv;n]j =df 8<: compn(v) if n � jvjxn�jvj n > jvj" if n = "Ex 8.5[j;; (�)(1�)(1�)3]j �X12l;X1 is arbitrary([j;; "]j�X1)[jX1; (1�)(1�)3]j �("�X1)([jX1; 1]j�X2)[jX1X2; (1�)3]j �X22l;X2 is arbitrary;X2 6�X1("�X1)(comp1(X1)�X2)([jX1X2; 1]j�)[jX1X2; 3]j �("�X1)(X1�X2)(comp1(X1X2)�)x3�jX1X2j �("�X1)(X1�X2)(X2�)x1We need the following which de�nes variable substitution of lists of variables.Def 8.6 (Substitution in lists) If v is a list of variables of �, then we de�ne v[v :=v0]0 to be the list v but where all occurrences of v have been replaced by v0.Now the following lemmas are needed to show that [j�; �]j is well de�ned.Lem 8.7 For any v; t; FV ([jv; t]j) � v [F .Proof: By induction on t, recalling that " is neither free nor bound. 2Lem 8.8 For X 0 2 l n v;X 2 v; v 2 L(l) and t 2 B��: [jv; t]j[X := X 0]0 =� [jv[X :=X 0]0; t]j.Proof: By induction on t 2 B��.1. [jv;n]j[X := X 0]0 � [jv[X := X 0]0;n]j for n 2 IP [f"g.2. [jv; (t1�)t2]j[X := X 0]0 � (([jv; t1]j�)[jv; t2]j)[X := X 0]0 �([jv; t1]j[X := X 0]0�)[jv; t2]j[X := X 0]0 =IH�([jv[X := X 0]0; t1]j�)[jv[X := X 0]0; t2]j � [jv[X := X 0]0; (t1�)t2]j.3. [jv; (t1�)t2]j[X := X 0]0 �X12lnv;X1 6�X0 (([jv; t1]j�X1)[jv ++x1; t2]j)[X := X 0]0 �([jv; t1]j[X := X 0]0�X1)[jv ++x1; t2]j[X := X 0]0 �IH([jv[X := X 0]0; t1]j�X1)[j(v ++x1)[X := X 0]0; t2]j �([jv[X := X 0]0; t1]j�X1)[jv[X := X 0]0 ++x1; t2]j � [jv[X := X 0]0; (t1�)t2]j.4. [jv; (t1�)t2]j[X := X 0]0 �X02lnv (([jv; t1]j�X0)[jv++x0; t2]j)[X := X 0]0 �X00 62FV ([jv++x0;t2]j)(([jv; t1]j�X00)[jv ++x0; t2]j[X 0 := X 00]0)[X := X 0]0 =Lem 8:7;IH�(([jv; t1]j�X00)[jv++x0[X 0 := X 00]0; t2]j)[X := X 0]0 � (([jv; t1]j�X00)[jv++x00; t2]j)[X :=X 0]0Now, refer to case 3 above. 2Lem 8.9 ([jv; t1]j�X1)[jv ++X1; t2]j =� ([jv; t1]j�X2)[jv ++X2; t2]j for X1; X2 2 l n v.Proof: If X1 = X2, then nothing to prove. If X1 6= X2, then:([jv; t1]j�X1)[jv ++X1; t2]j �X2 62FV ([jv++X1;t2]j);Lem 8:7([jv; t1]j�X2)[jv ++X1; t2]j[X1 := X2]0 =Lem 8:8�([jv; t1]j�X2)[j(v ++X1)[X1 := X2]0; t2]j �X1;X2 62v([jv; t1]j�X2)[jv ++X2; t2]j � [jv; (t1�)t2]j 228

Lem 8.10 [j�; �]j as de�ned in Def 8.4 is well de�ned: 8v; t, [jv; t]j is unique up to�-conversion, (I.e. does not depend on the choice of v in clause 1 of Def 8.4).Proof: By induction on t 2 B�� using Lem 8.9 for the interesting case t �(t1�)t2. 2Lem 8.11 8t 2 B��; c(t; s; l n sl(s)) =� [jsl(s); t]j. (Hence e(t) =� [j;; t]j.)Proof: By induction on t. 2Now the de�nition which replaces Def 6.1 is the following:Def 8.12 (Semantics of B���') 8t; t1; t2 2 B���'; v 2 Lsp; v0 2 L(�); � 2 �; i; n 2IP; k 2 IN : M1: [jt]j =df [jF ; t]jM2: [jv; "]j =df "M3: [jv;n]j =df compn(v)M4: [jv; (t1�)t2]j =df ([jv; t1]j�X)[jv ++X ; t2]j where X 2 l n vM5: [jv; (t1�)t2]j =df ([jv; t1]j�)[jv; t2]jM6: [jv; (t1�(i))t2]j =df [jv; t2]j[[j[v; i]j := [jv; t1]j]0M7: [jv; ('(k;i))t]j =df [jv; ;; ('(k;i))t]jM8: [jv; v0; ('(0;i))t1]j =df [jv ++ i ++v0; t]jM9: [jv ++�; v0; ('(k+1;i))t1]j =df [jv; � ++v0; ('(k;i))t]jM10: [jv ++� ++ k+1; v0; t]j =df [jv ++ k; v0; t]jSoundness of the reduction rules with respect to this de�nition is left to the reader.

29

