IJFCS. sty file

International Journal of Foundations of Computer Science
© World Scientific Publishing Company

The Soundness of Explicit Substitution with Nameless Variables

FAIROUZ KAMAREDDINE
University of Glasgow, Department of Computing Science, 17 Lilybank Gardens,
Glasgow G12 8RZ, Scotland, email fairouz@dcs.gla.ac.uk
Received 1 November 1995
Revised today
Communicated by D. T. Lee

April 13, 1998

ABSTRACT

‘We show the soundness of a A-calculus B where de Bruijn indices are used, substitu-
tion is explicit, and reduction is step-wise. This is done by interpreting B in the classical
calculus where the explicit substitution becomes implicit and de Bruijn indices become
named variables. This is the first flat semantics of explicit substitution and step-wise
reduction and the first clear account of exactly when a-reduction is needed.

Keywords: Explicit Substitution, de Bruijn indices, Variable names, Soundness.

1. Introduction

Variables play a very demanding role in the reduction and substitution of the
A-calculus. This has lead in many cases to using explicit rather than implicit sub-
stitution. Implementations of the A-calculus provide their own explicit substitution
procedures as in Nuprl® and Automath?®. Furthermore, research on theories of ex-
plicit substitution has been striving lately®12:13:22:4.18 Tp this paper, we extend the
calculus of [13] (which is influenced by Automath) giving B, a calculus which uses
de Bruijn indices and where reduction and substitution are step-wise and explicit.
The species of variable names is cultivated and ordered so that a fine inter-marriage
between de Bruijn’s indices and variable names takes place. We show the consis-
tency of the fine reduction and explicit substitution of B in terms of the classical
A-calculus and reflect on the use and necessity of a-conversion.

Basic to our work is the item notation'®. To write classical terms into item
notation, we use Z where Z(t) =t if t € V., Z(Agt-t') = (Z(t)Az)Z(t") and Z(tt') =
(Z(t')6)Z(t) (note the order). Hence, a term ¢ is of the form s;s5...s,t" where ¢/
is a variable and s; for 1 < ¢ < n is an item (of the form (¢;w) where w is an
operator such as 6 or A (with or without a subscript)). When the operators get
increased to include substitution (o), updating () and decreasing (u) operators,
the representation of terms remains simple to describe and enables one to define
reduction and substitution in a step-wise fashion where at every step it is clear
which item moves inside (or over) which one. This step-wise fashion gives explicit
substitution and enables local and global reduction as shown in [13].

We provide a method which takes any term of the A-calculus with named vari-
ables and implicit substitution, A, into B such that all a-equivalent terms in A are
mapped into a unique element of B. The other direction however, of mapping ele-
ments of B into elements of A is more difficult. This is because in B, the A’s do not
have variable names as subscripts and so we have to look for such subscripts in a
way that no free variables in the term get bound. Moreover, a term in B represents
a whole class of terms in A (a-equivalent terms). In translating B to A, we avoid

a-conversion in A and associate to each term of B a unique term of A rather than
an arbitrary element of the a-equivalence class. Now, having such a translation
|-] from B to A, we show that the variable updating, the substitution and the re-
duction rules in B are sound by showing that if ¢ — ' where — is either o-, or
- or p-reduction (excluding o- or p-generation and o-transition, see below), then
[t] = [t']. Hence the rules which accommodate variable updating and substitution
result in syntactically equal terms. We shall moreover, show that if ¢ — t' where
the reduction includes o- or p-generation, then [¢] =4 [']. That is, the rules which
actually reduce (-redexes in B are nothing more than the § rule in A. Finally if
— is o-transition then [t] =g [t']. Like this, we provide a flat semantics where
most reduction steps are mapped to syntactical equality and not to a corresponding
reduction. This semantics shows that our reduction and substitution rules are a
refinement of those of the classical calculus.

We believe that our approach is the first to be so precise about variable manipu-
lation, substitution and reduction. There is never a confusion of which variable is the
one manipulated and hence a machine can easily carry out our reduction strategies
and translate the terms using variables in a straightforward manner. This approach
should be considered in implementations of the A-calculus. Our work here might
look too involved, but we have actually carried out the hard part of manipulating
variables once and for all.

2. Basic Notation

We take IN to be the set of natural numbers, i.e. > 0, IP to be the set of positive
natural numbers, i.e. > 0, Z to be the set of integers and take i, j,m,n, ... to range
over numbers. We let F = {z1,x2,...} be an ordered set whose elements are all

distinct and call the left infinite list of As as drawn in Figure 1, the free variable
list F78. We let V, the set of variables of A, be {¢} U F where ¢ can be looked at

>\x4 >\x3 >\w2 >\Zl
Figure 1: The free variable list F

as a special variable or as a constant and is never used as a subscript for A.% We

take & = {e} U IP to be the set of variables of B and let v,v',v", vy, vs,... range
over F UZ. We take Qp = {6} U {Ay;v € F} and Qp = {6,A,0,¢, u} to be the
sets of operators of A and B respectively. We let w,w’, w1, ... range over 2 U Qp.

We let ¢,t1,... range over terms of A and B. We take FV (t) and BV (t) to be
defined as usual and to represent the free and bound variables of ¢t in A and B; we
assume that ¢ is neither free nor bound. For r € {a,f,0,¢,u,3",5'}, we assume
that —, is compatible?, call the reflexive transitive closure of —,, =%, and let =,
the least equivalence relation closed under —,. = is the least equivalence relation
closed under —», and —»3. We use = to be syntactic identity and when ¢ = ¢’ in
A, we write Fp ¢t = t'. We assume familiarity with de Bruijn indices. For example,

%¢ is added because it enables us to generalise the calculus. By taking all types of variables
after \ to be €, we obtain the type free A-calculus'®. ¢ has further uses such as the O in [3].

for i # 3,i € IP, (Mg;wo-(wix3))x1 or (210) (w2,)(x30)x; is written (A1.14)1 or
(16)(2X)(40)1 (see Figure 2) where the free variable list is used to account for the
free variables x1, zo and zs. To translate (x10)(z2A;;)(230)x; when i =1 or i =2

(ie., ; occurs bound and free), we rename z; to x; for j > 3.0
1 2 4

‘ll ® ‘
= | B Ia 1

()\1:4:1:2-334333)371
(210) (220,) (230) 74
(16)(2A)(40)1
Figure 2: A tree with de Bruijn’s indices

Terms of A and B are given by the following syntax:

A==V | IxA where Ix ::= (AQ4)

B:=E|IgB where Ig ::= (BRQ) for given 2 C Qp
We may write BA when Q = {),§}, and call those terms 2ys-terms. Later on
we increase 2 by adding o, ¢ and p. p-terms will only be used with 2)5-terms.
Example 2.1 shows terms both in A and B. The translation between A and B will
be given in Sections 3 and 5.
Ex 2.1 (The de Bruijn trees of these lambda terms are given in Figure 3.)
1. In B, both (z10)(z2Az;)2s and (z10)(z2Az,)3 are denoted as (16)(2A)1. Note
however, that (z10)(z2\;;)xs Z (10)(x2Az,)zs for example, unless («) is assumed
in A.
2. The term ((@2Ag;)zs50)z1 in A is written as ((2A)16)1 in B.

2
9
[] 2 A<_= 1
— —— —e— —¢ 1 —_— —— —————o 1]
(16)(20)1 (201 8)1
(210)(z2Ae;)T5 (w2 Ags) s 0)x1
(>\x5:x2 . 51/'5)331 $1(>\w5:x2 . ;L'5)

Figure 3: de Bruijn trees with explicit free variable lists and reference numbers

Now, we define a number of concepts of A and B that will be used in the rest of the
paper.
Def 2.2 ((main) items, (main) segments, w-items, d\-segments, body, weight, nl)

bIt is usual in the lambda calculus community, to use the barendregt variable convention when
reasoning about terms (but not in implementation). The Barendregt variable convention avoids
(amongst other things) the use of the same name for different bound variables in a term. In this
article, we attempt to be very explicit about our variables and this explains the variable lists that
we assume throughout the paper.

o If w is an operator and t is a term then (tw) is an item called w-item. We
use s, 81, Si,-.. to range over items.

e A concatenation of zero or more items is a segment. We use s, 51, §;... to
range over segments and write () for the empty segment. A reducible or d)\-
segment, is a 0-item next to a A-item. If5 = s182...8y, we call s1,S2,-..,5,
the main items of s.

e FEach term t is the concatenation of zero or more items and a variable: t =
$182...8pV. S1,S82,...,8, are called the main items and s1S2...s, s the
body of t; a concatenation of adjacent main items, Spy, ... Smik, S called a
main segment of t.

e The weight of a segment or a term is the number of its main items.

o We define the total numbers of X’s in t, nl(t) by: nl(v) =0 if v is a variable,
nl((tiw)ta) = nl(t1) + nl(tz) if w # X and nl((t1\)t2) = nl(t1) + 1 + nl(ts).

Ex 2.3 In this example, we take t € B. Let t = (eA)((16)(eA)16)(2A)1 and
5 = (eA)((10)(eA)19)(2A). The main items of ¢ and 5 are (eA), ((1)(eA)1d) and
(2)\), being a A-, a d-, and a A-item. 3 is therefore also called a AJA-segment.
((10)(eA)10)(2)) is a main (0A-) segment of ¢ and 5. Moreover, weight(t) is not
necessarily the same as nl(¢) (which counts the number of As in ¢). For example,
weight(((1A)2A)3) = 1 whereas nl(((1\)2))3) = 2.

Def 2.4 (Substitution in A) If ¢,t' are terms in A and v is a variable in F, we
define tlv := t'], the result of substituting t' for all the free occurrences of v in t as
follows:

(¢ ift=v
t ift=v Zvort=e
(tz[’l) = t’]5)t1 [1) = t’] th = (tzé)tl
(tz[’l) = t’])\v)tl th = (tQAfu)tl
(tz[’l) = tl])\vf)tl [1) = tl] th = (tzAvl)tl,’U :7é ’UI,

(v FV(t1) orv' & FV(t'))

(t2v =t A)1 [V = 0" v :=¢] if t = (b2Ap)t1, v Z V', v € FV(t1),
v' € FV(t'),v"is the first variable
in F which does not occur in (t)t'

\

The (a) and (8) axioms in A are defined as follows:

() (A =4 (tAy)t'[v := 0] where o' & FV (¢')
(B) (") (tA)t —p t'[v:=t"]

3. Translating A in B

We enumerate F via f, so that: fz; = 1,7z = 2,7z3 = 3,... and define, for
v E€F, Ay to be A, 16 to be 6 and fe to be £. We need the following notions:

Def 3.1 (term;) We define term; to be a partial function which takes non empty
segments of A and returns terms of A as follows:

termy ((tiw1)3) =ar t1, and term;((tiw1)3) =q4r term;_1(3), for i > 2,5 # 0.
Def 3.2 (lam;) lam; takes s of A and returns (Ay,)(Ayy) - - - (Ay,) obtained by re-
moving all the main §-items from the first (i — 1) main-items of 5 and by removing
all the t’s from the main \-items (t\,) of these (i — 1) main-items. lam; is defined
as follows:

lam; (3) =q 0
lam;((tAy)3) =ar (Ao)lami—1(3) for i > 2 and weight(s) > i —2
lam;((t0)s) =g lam;_1(3) for i > 2 and weight(s) > i — 2

Let Seq!=0(t;w;) be (tiw1)(taws) ... (tpwy), n > 0. The translation from A into B
is as follows.
Def 3.3 (b) For t,ti,t2 € A,v,v' € F,5 segment of A, we define b as follows:

b(t) =a V(t0) b'(v,5(A)) =aqr 1

b(s) =ar body(b(se)) bV'(v,5(A)) =g 1+V(v,5) ifv' £
b'(e,3) =ar ¢ O'((tiAo)t2,5) =ap (U'(11,5)N)D'(E2,5(A0))
b'(v,0) =ar fv(notev#e) V((t10)t2,5) =4 (V'(t2,5)0)'(t2,5)

Here b'(v,s) finds the de Bruijn number corresponding to v within context 5 (see
Ex 3.5). b'((t1Ay)t2,5) translates ¢; with respect to 5 and ¢, with respect to 5(A,).
Lem 3.4 If 51,53 are segments of A,v € F U {e}, then

V' (51v,52) = Seqi={ (V' (term;(51), 52lam;(51)) topi (51))b' (v, S2lamp+1 (31)), for n
weight(s1) and op;(s1) is the i-th main operator of s — 1. For exzample, if 57 =
(trwr) (taw2) - . - (tpwn), then opi(s1) = w;.

Proof: By induction on the length of s1. a
So, if t = (tyw1)(taw2) . . . (tpwp)v = STv € A, then b'(¢,53) = (] fw1) (ty Twa) ... (¢, T
wn)v" where t} = b'(t;,s52lam;(57)) and v’ = b (v, 5z2lamy+1(body(t))). Hence, t and
b'(t,s2) have the same trees, except that \’s lose their subscripts and variables are
replaced by correct indices found by tracing the X’s. That is why, in ¢}, we had to
attach all the As preceding t}.

Ex 3.5

L b((z1Ae,) (22A05)24) = (U (21, D)) (V' (22, (Aes)) A (24, (Aas) (Aay)) = (T22A)(3X)2 =

(1N (3N)2.
2. b((210)(zaAe,) (230)24) = (16)(2X)(46)1.
3. b(((z3Az,)x40)x1) = 0 ((23A0,) 24, 0)0)V (21,0) = (b (23, D)N)b (24, (Az,))d)1 =
((3N\)14)1
Lem 3.6 For any t in A, b(t) is well defined.

Proof: By induction ont € A. a
b is not injective: b((z1Az,)22) = b((1Ags)x3) but (x1Az,)x2 Z (T1Az5)T3. b
however is surjective (see Lem 5.16). The following lemma is informative about b.
Lem 3.7 If t,t" are terms in A such that t =4 t' then b(t) = b(t').

Proof: By induction ont =, t'. ad

4. Axioms of B

(210)(z2Az,)(x30)24 B-reduces to (z3d)z1. Using de Bruijn’s indices, this is
(16)(2X)(40)1 reduces to (36)1. In fact, if you look at Figure 4, you see that what
is happening is that the dA-segment (10)(2A) has been cut off the tree, and the 4
has been decreased to 3 as we have lost one A. The 1 in (46)1 is replaced by the 1
of (16) giving (36)1. We could say that when contracting (¢10)(t2A) in (£16)(t2A)t,
all free variables in ¢ must be decreased by 1 and all variables in ¢ that are bound
by the A of (t2\) must be replaced by ;. This can be tricky however, for assume
we take t = (¢A)t' and write the rule as:

(t10)(t2A)t = t[l :=t1,2:= 1,3 := 2,...] (where substitution is simultaneous)

then replacing ((e\)t')[1 :==¢1,2:=1,3:=2,..] by (eNt'[1 :=#;,2:=1,3:=2,..]
would not work. It should be: (e\)t'[1:=1,2:=#[1:=2,2:=3,...],3:=2,..].
Based on this observation, we need to increment variables (via ¢) correctly in a
term.
1 2 4 3

|
)\/\/\‘—'6/\[6_1)\)\/)61

(/\wi:wz-xiﬂfb‘)ml Tr1T3
(216) (22 A2,) (36) 4 (z30)x1
(18)(2)(40)1 (301

Figure 4: -reduction in our notation

Rem 4.1 (Compatibility) Let r € {0, ¢, n}. We introduce —, as a relation between
segments, although it is meant to be a relation between terms. Rule 3 —, s’ states
that ¢ —, t’ when a segment 5 occurs in ¢, where t' is the result of the replacement
of 3 by s in t.

4.1. p-reduction

We index ¢ with two parameters k& > 0 and i > 1. Vi > 1, let (9 denote (%)
and ¢ denote 1), The intention of the superscripts when (p(¥)) travels through
t; is the following:

e j preserves the increment for F'V(t;) and does not increase when passing
other \’s.

e k counts the X’s that are internally passed by in t; (k = ‘threshold’) and
increases when passing another A. Only variables > k are increased, as the
rest are bound.

Updating means all free variables in ¢; increase with an amount of i; k identifies
the free variables in ¢;. Updating variables by looking at the tree is easy: count the
A’s you have gone through before a free variable and increase the free variable by
that number.

Ex 4.2 Replacing in (€X)(2))3, the 2 and the 3 by (eA)2 results in (eX)((e\)3N)(e)4.
Le. the 2 has been replaced by (¢A)3 and the 3 by (¢A)4. Figure 5 is self explanatory.

€
e 2 e I3 e
[] ® [] ® ¢
A A A A 3 A A A A A 4
— —— —— ® — —e— —e— ®
>\x2:s->\x3:x1-$1 AZQ:E'Amgl()\w4;E.I1)'>\Z4:8'$1
(5>\x2)($1>\z3)$1 (€>‘Z2)((8>‘Z4)$1>‘Z3)(8>‘Z4)$1
(eX)(2M)3 (eX)((eN)3N)(eN)4
Figure 5: Substitution in our notation
The definition below formalises the updating process.
Def 4.3 (p-reduction) Let k € IN,i € IP,v € Z and t an Qxs-term.
(p-transition rules:) (@ENEN) =y ((PHFD)EN) (pE+1D)
(PN =y (")) (")
(p-destruction rules:) (*ENw =, v+i ifv>k
("N =, v ifv<korv=e

Ex 4.4 In substituting (eX)2 for 2 in (e\)(2A)3, we compensate for the preceding
X in the item (X) of (e\)(2)\)3. We substitute (p(%1))(e))2 for this 2 (the order 1
in (1) is due to the number of preceding \’s, being 1):

EN(EOD)(EN20)3 = (EN (")) (1)20)3 =, (eA)((EN)3N)3
Similarly, in the substitution of (¢\)2 for 3 in (eA)(2A)3, we compensate for two
extra As:

(ENEN) () (EN2 =y (EA)(2N) (EN)4.

4.2. o-reduction

o-items can move through the branches of the term, step-wise, from one node
to an adjacent one, until they reach a leaf of the tree. At the leaf, if appropriate, a
o-item (or a substitution item) can cause the desired substitution effect. We use o

as an indezed operator: o), ¢(?) The intended meaning of a o-item ('o(?) is:
t' is a candidate to be substituted for one or more occurrences of a certain variable;

1 selects the appropriate occurrences.
Def 4.5 (one-step o-reduction) Let i € IP,v € Z,t1,ts Qps-terms.

(o-generation rule:) (t10)(ta) =4 (t10)(t2N) (@)t ™M)

(o-transition rules:) (tioD)(tA) =6 (1o D)) ((p)tro D)
(o D) (t20) =4 (010 D)t28) (t10D)

(o-destruction rules:) (tioD)i =,
(tio o =, vifoZi

Note that (¢) = (pM) = (%) by the notational convention. Note also that our
o-transition rules do not allow for o-items to “pass” other o-items. The following
shows that o-reduction, which is the transitive closure of one-step o-reduction,
reaches all occurrences to be substituted.

Lem 4.6 In (t10)(t2M\)ts, o-reduction substitutes t; for all occurrences of the vari-
ables bound by the A of (t2A) in t3. Le., there is a path for global B-reduction (see
Section 4.3).

Proof: The proof is by an easy induction on ts3 in (t16)(t2\)((@)tiocM)ts. O
Lem 4.7 In (tla(i))tg, o-reduction substitutes t1 for all occurrences of variables in
to which are bound by the same X\ being the i-th entry (from the right) in the free
variable list of to. Moreover, the (p)s look after the updating of ts.

Proof: By induction on ts, noting that during propagation, when the o-item
passes a X, the superscript of o is incremented, keeping track of the variable to be
substituted for. a

Ex 4.8
. (20M)(40)1 =, ((20(1)48) (201 —», (46)2.
((36)206M) (AN T =, (((36)20M)1IN) ((9)(36)20)1 =44 ((36)2X)((46)30D)1 —,

(36)20™)(IN)1 =4, (((38)20™) 1IN ((9)(38)20)1 =, (1N)((46)30)1 —,

8)(2N)(BN)2 =4 (18)(2N)((¢)1 0V)(3A)2 =4
(18)2N (((9)1 eM)3N) () ()1 022 =,
(16)2A) (((p)1 M)3X)3 =, (16)(2X)(3N)3
The following shows that the bond between variables and their binding A’s is main-
tained.
Lem 4.9 If5(t16)(taA\)t =4 5(£10)(t2X) ((0)t1oM)t then in 5(t18) (t2\) (@) tioM)t,
all variable occurrences are bound by the same X’s which bound them in 5(t10)(t2\)t.
Proof: left to the reader. |

To get local substitution, one adds to Def 4.5 the o-destruction rule: (t;0))t —,
3.

!.l;

~—~~

—
—~

4.3. B-reduction

In the o-generation rule, the reducible segment may be “without customers”
and so o-generation is undesirable since it leads to useless efforts. Hence we restrict
o-generation to those cases where the main A of the reducible segment binds at least
one variable. When this is not the case, we speak of a void dA-segment (which
may be removed by replacing it by (u("))). This can be compared to the application
of a constant function to some argument; the result is always the (unchanged) body
of the function. The meaning of (u(¥)t is: decrease by 1 all variables in ¢t > i.
Variables < ¢ in t are bound by some As in ¢ and hence should not be decreased.
Now the p rules are defined as follows:

Def 4.10 (u-reduction) Let t1,ta,t € Qxs-terms, v € Z and i € IP.

(u-generation rule:) (t16) (ta M)t =, (W)t if (£10)(t2N) s void in t

(u-transition rules:) (,u(’:))(t)\) —u ((u(l:))t)\)(u('i“))
(W) E8) =y (nD)10) ()

(u-destruction rules:) (N =, v ifv=ecorv<i
(v =, v-1 ifi<v

Note in the second p-destruction rule that v > 1 as ¢ > 1. Note moreover that we
never reach the case where we get (u(¥)i (see Lem 4.13).

Def 4.11 (One-step B-reduction —g') One-step (-reduction of an Qxs-term is the
combination of one o-generation from a dA-segments, the transition of the generated
o-item through the appropriate subterm in a global manner, followed by a number
of o-destructions, and updated by p-items until again an Qys-term is obtained.
Finally, we replace the now void segment 5 by (uV)t and we use the p-reduction
rules to dispose completely of p in (u™M)t.

Ex 4.12 (46)(A)(IN)(1X)3 =5 (4X)(1A)6:

NANAN3 =, ()N ((p)40M)(IN)(1N)3
oo (40)(N)(BN)(ANT
—=u (WM)ENANT
“u ()5 () (ANT
=u (AN EP)ANT
= (AN ()7
5 (4N (1N)6

The following Lemma is needed when discussing the semantics of u-reduction:
Lem 4.13 Ift is an Qxs-term and t —», t' then for all (uD)t" subterm of t' with t"
an Qys-term, we have that i does not refer to any free variable of t". In particular,
if t —»,, t' then we never find in t', (u9)i as a subterm.

Proof: By induction on —»,. a

5. Translating B in A

Here, we have to be careful. For example, we can translate (A)2 as any of (\;,)z1
for i # 1 but not as (A,)z;. The following example gives another case where we
have to be careful:

Ex 5.1 t = ((16)2X\)(1))3 has for any i,j # 1, ((z10)72As;)(2iAe;)71 as a corre-
sponding A-term. Here the subterm 3 of ¢ should be considered relative to a free
variable list extended with Ay, and Ag;: ..., Auy, Aey, Awyy Aay s Awys Ay, and hence
corresponds with ;.

To avoid choosing wrong subscripts of A’s, we work at a mid-level A, between B and
A. In A, subscripts of X’s will be in a list $ = #',2",... such that FN$ = 0. We
assume all elements of § are distinct. We take @ = JU F, let 6,61,02,6', - -- range
over O, and X, X', X1, X»,... range over §. We call elements of F free variables
and elements of J bound variables.

Def 5.2 (A) Terms of A are defined similarly to those of A except that all bound
variables are indexed by elements from § (all free variables are in F U7J).

10

Examples of terms of A are ¢, (x1\p)z’ and (21 Ay)(2'6)z". Bound and free vari-
ables, a, 3, and = defined for A can be easily extended to A. We use FV(t) and
BV (t) for the free and bound variables of ¢ in A. We use @, 3 for @ and 3 in A.
Def 5.3 (Substitution in A) Ift,t' are terms in A and if v € FUZ, then tjv :=t']" is
exactly defined as in Def 2.4 except that, [v := t'] is replaced everywhere by [v :=t']’,
[v" :=v"] is replaced by [v' :=v"]" and in the last clause, F is replaced by J.

If t € A translates t' € B, then FV(t) C F and BV (t) C { by Lem 5.42. In this
case, t can be mapped to A by replacing its J-variables by variables in F which do
not occur in ¢:

Def 5.4 (Translating A in A via 7) If t is a term in A such that FV (t) C F and
BV (t) C 1 then we translate t to t' by first looking for the greatest free variable in
t, z; for i € IP, and for the smallest bound variable (i.e. the bound variable with
the smallest amount of primes) in t. We replace all the occurrences of this bound
variable by x;41. Then we replace the second smallest bound variable by x;12 and
so on until no variables from § appear in t. We call the translation of the A-term t
in A, 7(t).

Ex 5.5 ()2 and ((18)2))(1)\)3 translate in A as (A\,r)71 and ((216)z2 e) (7' Aprr)21
as we shall see. Now, these terms in A are transformed into terms of A in a unique
way as follows:

The greatest variable of F in (A/)z1 is x1, hence z' gets replaced by 2, giving
(Aw2)$1.

The greatest variable of F in ((x10)@aAyr)(z' Ay)21 is 22, hence all occurrences of
x', 2" get replaced by x3, x4 respectively giving ((10)zaAes) (T3 s,)T1.

As A and A are similar, we avoid the trivial step of translating between A and A
and show the soundness in A. This simplification does not affect the results of this

paper.

5.1. Variables and lists

We assume the usual basic list operations such as concatenation + and head and
tail, hd and tl. For i € IP, we take hd' =4 hd and hd"™' =4 hd o hd’, and we
define t[? similarly. Moreover, the set of operators \, C, C and € are also applicable
for lists and we will mix sets and lists at will. We take v, v', o7, 73, . . . to range over
(finite and infinite) lists.

Def 5.6 FEvery list is written as the concatenation of its ordered elements from right

toleft. If v = ... 402 #6; and m > 1, we define Usy, = ... #0pmq1 #H0p, Lo be

the left part of v starting at m, and V<p, = Opp—1 #0m—2 # ... #01 to be the right

part of U ending before m. Note that Us,, = ™' (v), V<1 is the empty list and

V<o = hd(D).

Ex 5.7 F = ... #xs #a1, § = ... #a" 2, Form = ... Timp1 2y and Foppy =

Tm—1 H ... Hx].

Def 5.8 We take 1) € © to be a special symbol whose meaning will be clear below.

We write ' as 1 and ¢)° as the empty string 0. ™ will be Y 4 - - - 41).
————

n

11

e For a set A, L(A) = {B; B is a finite list of distinct elements of A}.

o Loo(0) = {U541 € P}, Lop = {Fom #0;m € IP,T € LIOU{¢})},
L7HO) = {v;v € Ly AT is 1-free}, and Ly = L5, ULO U {¢})

o Vi € LIOU{y}),0 €O, let [[0]| = 0,|[v+|| = ||v]| =1 and ||[v+6]| = ||7]|+1.
e For a segment 3, let sl(0) = 0, sl((t16)s’) = sl(s') and sl((tXg)s') = O +sl(s").

Note that § & £(3) and that § € £L(A) for every set .A. We write [7] for the length
of 7.

Lem 5.9 For allT € LOU{Y}), ||T|| < [0]. Moreover, if v € L(O) then ||[7|| = |7].
Def 5.10 (comp) For allT € Ly,0 € O,n € P:

comp, (U +-6) =g 0
compn11 (U 40) =qr compp(v)
compy (U0 +9') =4 comp,(TH1'), i€

The idea of comp is to select the appropriate named variable, given a list of (differ-
ent) named variables. We write comp,, (0) |, when comp,, (0) is defined.
Lem 5.11 Forallv € L(OU{Y}),n € IP, ifn < ||T|| then comp, () | Acomp,(T) €
v.

Proof: By induction on [v| noting that if ||v]| > 1 then 30 € © such that 0 € T.

O

Cor 5.12 For allT € L(©),n € IP, if n < |v| then comp, (V) | Acomp,,(T) € T.

Proof: Obvious, using lemmas 5.9 and 5.11. a
Lem 5.13 For all v € Lsp,n € IP,i € IN, we have compy (V) | Acomp,(T) € .
Moreover, comp,, (0 41*) = comp,,+; (D).

Proof: The first is by induction on n. The second is easy. O

Note that the only case where compy, (v) is undefined is when n > ||v]|.
Lem 5.14 For allv' € Ly,,7 € LOU{}),0 € O,n € IP, and i € IN, we have:

1. If n.> |[v]| > 0 then compy, (V' 470) = comp,_ |7 (v')-

2. If n > ||9]| > 0 then comp,, (v' 1" 40) = comp,i(v' +0).
3. If n < ||9|| then comp, (v 470) = comp, (V).

4. comp, (v 48 4 40) = comp,, (v 47).

Proof: 1 and 3, by induction on |0| using Lem 5.13. 2, using Lem 5.13 and 1.

For 4:
Case n < ||7|| or n > ||U]| > 0, use the definition of comp and cases 1+3 above.
Case n > |[7]| and |[T|| < 0 then by induction on [v]. O

5.2. The inverse function e

12

Def 5.15 (e) Let t,t1,t> € B, 5 be a segment of A consisting of items of the form
(Ax) for X € 3,1 € Loo(]),j € P,v € E,X € 1. e takes Qys-terms into terms in A
as follows:

e(t) =q c,0,7)

C(U,g, l) =df d(’l},g)

c((t0)t2,5,1) =g (c(t1,5,1)0)c(t2,5, t1M) (1))

C((tl)\)tz,g,l) =df (C(tl,g,l))\hd1+nl(t1)(l))c(t2,E(Ahd1+nl(t1)(l)),tl1+nl(t1)(l))
d(j, ") =4 Tj

d(sag) =df €

d1,3(Ax)) =4 X

d(n,E()\X)) =df d(n — 1,5) ifn>1

d associates with each de Bruijn’s index, the right variable in F U § which should
replace it.
Lem 5.16 ¢ is well defined and bo 7o e(t) =t for any t € B

Ex 5.17

e(((2020)1) = ¢(((21)2M1,0,7) ,
= (c((2N)2,0, DAz)e(L, (Agr), {2, 2™, ...})
= ((e(2,0, DA)c(2, (Agr), {z" 2", ..) Ap)d(1, (Agr))
= ((d(2,0)Ae)d(2, (Ao) A)z
= (oA)d(1, D) Agr)"
= ((mg/\wr)ml/\ww):l?"

(The first A becomes A~ and not A,-, as there is one A in (2))2; i.e. nl((2))2) =1,
SO)\hdunz((zx)z)(i) = >\hd2(¢) =)\x”.) This K—term is replaced by ((l‘z)\m)xl)\“)m
in A.

Ex 5.18

A
8 >
—
=
Rl

™
> >
&\

NN N N N N N

Finally, we replace ' and z" of § by z2 and z3 resp. obtaining (A,,)(z2As,) (230)21.
e does not take into account ¢-, o- and p-items. It is difficult to provide the
translation of p-items without watching what happens in the lists F and J. For
example:

Ex 5.19 (p(12))(16)(2)\)3 of B should be: (16)(z4As)74 in A and (10)(24\s,)74
in A. Due to (¢(1?), we use F' rather than F where F' = ...254x4+4z;. Le. the
2 and x3 disappear.

—

13

5.8. The semantics of B-terms: an initial account

We provide the translation of B-terms into the lambda calculus with variable
names using lists of variables ¥ and v’ so that [v;v';1] translates ¢t € B. In fact,
e(t) = [0;7;] translates ¢ € B into the corresponding e(t) € A. We use ¥ and v’
to give names to the free and bound variables in t respectively. Moreover, T N v’ is
taken to be () in order to avoid binding any free variable. If we were to translate of
B only, then it is enough to take & € £(]). With ¢ however, we need ¥ € L.
We start first with only finite lists in £(]) and translate of B*® as follows:

Def 5.20 (\-, 6-semantics) Vt;,ts € B, 0 € L(]),v" € Loo(]), 7NV =B,n € Z,

[v; Z; (t1Nt2] =g ([7; v st Ax) [0 X0 V'sip;te] for i = nl(t) +1,X = hd'(v')
[T;0"; (t10)t2] =ap ([T;0";t1)0)[0; 0" >i;to| for i = nl(t1) + 1
compy(T) if n < |7

[0;v";n] =df { Tn—3] if n> [o]
€ ifn=c¢
Ex 5.21 (see Ezample 5.17)

i ((2X)2X) 1]
|[(0 T (2N) 2])\)z 3>351]
([0; 35 2)Me) [$>2,2])\$u)comp1("
(T2—|p| Aar) Ta|or| Agrr) 2"
(332)\93/)331/\ H):U"

Lem 5.22 For any v € L(}),v' € Loo(]),5N0' = 0,t € B FV([5;0';t]) CTUF.

Proof: By induction on t, recalling that ¢ is neither free nor bound. a
Lem 5.23 Vo € L(]),v' € Lo(1), N0 = 0,t € BN, [v;0';4] is well-defined +
unique in A.

Proof: By induction on t € B\ using Cor 5.12. a
Lem 5.24 For all t € BN e(t) = [0;1; 1]

Proof: Show by induction on t ¥Vt € B 5 € A and v € L(]),c(t,5,0) =
[sl(3);T; 1] O

Ex 5.25 Let t = (eA)((IA)((16)(2A)3A)(2A)2X)3. Now, the reader can check that:

e(t) = [0;35t] = (eXa) (@' Aprr) (2" 8) (3" Agrrr)" A) (2" Ao) 2T Ao) 21 -
Furthermore, 7(e(t)) = (Az,) (T2 Agy) ((230) (X2 Az,) T2 Ags) (T3 24)T5 s,)21 (S€€ Fig
ure 6).

5.4. Eztending the initial account

(¢#9)t means: add i to all free variables > k, occurring in t. When we look for
[7;07; (0*9))¢], all the variables in ¢t < k take the same value as in [7;v";¢]. Those
variables > k must not take the values they would have taken in [;v’;¢]. Rather,
looking for their corresponding variables in v, we have to shift still ¢ positions to
the left. I.e. if the index is n, where n > k then the variable corresponding to n is
not the n'* variable from right to left in . Rather, it is the (n +4)"* variable from
the right. For example:

[wllll " ”:L'I i (1 2 16)2] = (wl(s)xllll

14

o
€ A A I/\
s T &0 ors

t = (eAe,) ((T2A25) ((230) (T2 A2 T2 A0y) (T3 Ai6) T5 Az) 1
= (V) (LN ((16)(20)30)(23)20)3
Figure 6: The tree of 7(e(t))

For this, we allow a special symbol ¢ to become an element of . The operational
meaning of ¢ is: on going left, delete the first named variable. Such a 1, will not
only be used to erase variables but will also say which free variable in F correponds
to the variable in hand.

Ex 5.26 The idea is that:

1. If 5| > k+i,7 = 71 473 and |T3| = k, then [7; v"; (0F)t] = [o7 +¢* +72; v'; 1.
Hence fOI‘ [.’L‘””.’L‘”ILEHZIII $>5 (p(l 2)2] we need [.,L,IIII nr Il+¢2+$ $>5, 2] ThlS
evaluates to [z"""z"'z" 4% 1>5;1]. The presence of /> means ignore z""z".
Therefore the result reduces to [¢"";]>5; 1] which is 2.

2. Foreveryn € IN,m € IP,[v+4™;v";m] = [0;v";n+m] and [)™;v"; m]| = Tpim-

Looking at the first part of Example 5.26, we see that we need to have v = o7 #v3
where |vz] = k. In other words, we have to go through the list T from right to
left until we pass the k' element. In order to accommodate this, we introduce
an extra argument in the semantic meaning of ¢-terms. We will give an example
which explains the point even though it is ahead of its time in the section. We
believe however, that the reader can still follow it, once point 2 of Example 5.26 is
remembered.

Ex 5.27 Notice how we save z’ to use it later on:

[2"2"; 3205 (o1 2)) (19)2]

[2; 23 o8 (12)) (16)2]

o 0 o $>3, (16)2]

(2" 4 Ha's Tos; 10) 2" 4007 42’3 T5: 2]
(2’6)[w” 2 3o 1]

('0)[2";3>5; 3] (a'9)s

We extend lists from elements of £(3) (as in Def 5.20) to elements of L,,. Now our
lists include #’s, bound and free variables, and are denumerably infinite. Now, here
is [; -5]e, the extended definition of the semantics of A- and J-items.

Def 5.28 (Extended \- and §-semantics) [+]e : Lsp X Loo(]) x B¢ 5 A:

s
T

15

Vi, ts € BN, T € Lgp,v" € Loo(D), 7NV =0,n € P,

[T;0; (1)t2]e =ap (U505 ta]eAx) [0 ‘|+X;F2i+1;t2]e fori=nl(t;) +1,X = hd'(v')
[T;0; (t10)ta]e =a ([050"; ta]e6)[T; ?Zi;tgle fori=mnl(t;) +1

[7;v; n)e =q4r compy(7)
[0;v";). =af €
Lem 5.29 Let v € L,,v' € Loo(D), @ #0) Nv' =0,0 € O,n,m € IP and k € IN.

1. [v -IiG;U; 1] = 0 B
2. [5;0sn + K] = [vHyfoin)
3. [0 n+1 = [5050)
4. [}—z_m #ykoin). = Tntkt+m—1
5. [7;v";n]e € v
6. Ifn#m then [v;v';n)e Z [T;0"; me

Proof: Easy, using Lem 5.13 and the definition of comp. a
Lem 5.30 Yv' € L,,,7 € LOU{}),v" € Loo(]), W' +D)N0" = 0,0 € O n,i € IP:

1. If n > ||5]] > 0 then [v' 47;0";n). = [v;07;n — ||5]|].

2. If n> ||v]| >0 then [v' 4¢° #7;0";n]e = [v" #0;0";n + ..
8. If n < ||v|| then [v" #70;v";n]. = comp,, ()

4. [v" 46 9 +7;0"; 0] = [v' 4T;0";n)e

Proof: This follows from Lem 5.14. a
Cor 5.31 Yo' € Ly, v" € Loo(]), ' #0) Nv" =0, n,i € IP, v € L(O):

1. If n > [v| then [v' #T;0";n]e = [v';0";n — [0]]
2. If n > [v] then [v" ¢ 40;0";n]e = [v" #0300 + ..
8. If n < [v] then [v" #7;v";n]. = comp,, ()

Proof: Obvious by lemmas 5.9 and 5.50. |
Rem 5.32 Note that if v € Ly,,v" € L(O U {¢}),v" € L(), v #0) Nv" =
0,n,i € IP,||[v'|| < 0, then even though n > |[v'|], it is not necessarily the case that:

L. [0 #4050 n)e = [0;0";n — |[v']]]e

2. [v 4yt #0507 n)e = [0 405070 + e
For example, [F 4¢°2';J>2; 1]e = @’ whereas [F; >2;1 — |[¢52|||le = [F;>2; 5] =
Is5.

Lem 5.33 For allv € L(]),v' € Loo(]), N0 = 0,t € BY, [5;0';t] = [F +7;0'; t] -

Proof: Show Vn € PU{¢c}: [0;v";n] = [F +7;v';n). and then use induction on
t. O

16

5.5. The semantics of o- and p-terms

Def 5.34 (0-semantics) Vi1, t2 € BN 5 € Ly,,v" € Loo(]), 7NV =0,i € IP:
[0;07; (10 D) tale =ap [0;07; 2] [[05 07 il 2= [030" 5 14 mit) tale]’

Def 5.35 (p-semantics and Y-semantics)

Vt € B9 T € Lgp,v' € L(O),0" € Loo(]), @H#0) NV =0,0 € O,i € Pk € IN:

[©; 0"; ()], =ar [0;0;0"; (p'F9)1]

[7; 07505 ()] =4 [0 40" #0507 1),

[0 46 075 0; (@108 =gp (050 4075 075 (050
[0 40 #0075t =4 [0 #2055 0"507]

Note here that v” does not play a role because we do not have bound variables that
we are trying to replace by variable names. What the v/ does however is to save
the first k£ variables of ¥ which are actually the variables in ¢ which should not be
updated because they are < k. Once the first k£ variables of v have been saved in
v/, we remove the first ¢ variables from the resulting . Hence in the end, we get
the correct list from which we find the meaning of t.

Ex 5.36

Lo [F 425300 (03 = 17 42503505 (9%)3]

[F; 253525 (9119))3]

[Foz;m1 4253505 (0002)3]

= [Foo #¢° Ha1 #2352 3] = a5
:L'I

2. [F 4a'; 30 (031,
3. [Fils0; (@) (O] = x4

Now the following lemma is basic about ¢-items.
Lem 5.37 Lett € BM7%, 0 € Lyp,0" € L(O),0" € Loo(F), @40) NV =0, i € IP.
[B 4075 07; (91 10)), = [0 4 407 075 1
Proof: Easy. First prove by induction on || that if v € Ls,,v', 01 € L(O) such
that (T 40" 407) Nv" = B then [0 40";77;0"; (V' 1) = [7;0" 4073075 (90D)t] O
The following lemma opens the road to working with lists which do not contain 1.
Lem 5.38 Vo' € L,,0 € L(O U {¢}),07 € Lo(]), W #0 #0) N7 = 0,0 € O,
nelP:
[v" 46 4 +7; 013] = [V 47;01; e
Proof: By nested induction. We prove by induction on t that IHy(t) holds
where [H, (t)
is: [V 46+ 40;071; t]e = [v" #0;07;).
o Ift =n, use case 4 of Lem 5.30.
o If (t16)ty or (ty Nty or (tLo)ty where TH,(t,) and IH,(t3) hold, easy.
o If (0*)t and I H,(t). Prove IHy(k) by induction on k where IHy(k), Vo' €
L(O) is:
[v" 46 44 +0; 07715 (9] = [V 47507775 (91D)],
— If k=0, use [H(t).
— Assume IHy(k). Prove by induction on |v| that IHs(U) holds where

[H;(7)

17

is [46 44 +0; 07 o7; (9Dt = o7 405075015 (0RTED)e] :

x If |] =0, use Def 5.35.

x If U 46 where 0 € © and IHs(V) holds, use Def 5.35 and IH,(k).

x If #6497, 0 € ©,j € IP and TH3(v H4771), use Def 5.35 and
TH3 (U 497 1).

x Case 1) where j € IP, use Def 5.35. |
The following lemma is important. It says that all the 9’s can be removed from
lists.
Lem 5.39 For all v € Ly,,30' € Ly, which is free for 1 such that for all t €
B7e W € Lo(3) such that 7N =, [5;0";t]. = [v";0"; 1.

Proof: If T is not already free of 1’s we can write U as U1 +6 +v3 such that
0 € 0,71 € Lyp,T7 € LIOU{}), U1 is free of Y and T3 has ¢ as its leftmost
element. Now, the proof is by induction on |vz| using Lem 5.88. Note moreover,
that v' is independent of t. Hence, we may assume from now on that our start lists
do not contain 1. O
Finally, we give the translation of any term t of B)7¢:
Def 5.40 (The semantic function) Define [| : BN7% s A such that [t] =q4r [F;T; t]e
Lem 5.41 [] is well defined. That is, for all t € B¢, [t] is a unique term in A.
Proof: By induction on t € BM7%. a

Now here is our first lemma towards the correctness of our translation:
Lem 5.42 For all t € B¢, we have:

1. BV ([o;v;t]e) C v’ for every 0 € Ly, and v' € Loo(L) such that vNo' = 0.
2. FV([7;v';t]e) C U for every © € Lgp and v' € Loo(]) such that vNo’ =).
3. BV([t]) C T and FV([t]) C F.

Proof: 1 and 2 are by induction on t. 3 follows from 1 and 2. a
Hence, a term [t] in A can be translated using Def 5.4 to a term in A.
Ex 5.43 (Note that we sometimes combine many steps in one.)

[(>1)(16)(21)3] [F33; (931) (15)(2>\)3]e

[F;0; $ 1) (16)(2))3]

[F>2; xl;i: (e D)(16)(22)3]

[Fos; 22 41335 (91)(16)(20)3]

[Fos 40 Hao 21575 (16)(20)3]e = (210)(22A0r) 24

[F53; (023) (12)(16) (26)3)]e

[Foos 21335 (013) (012))(16)(26)3]

[Fos; 2 413 35 (00%) (012))(16) (26)3]

[Fos 4% 4y 21535 (04)(16)(20)3)]e

[Fos 0% Ha2; 21335 (002)(16)(26)3]

[F>s 402 Hx2 410 4213 35 (10)(26)3]e
(218)([F>3 #¢3 4o #9? 421; 33 2]0)

[Fs3 40° a2 497 H21;7; 3]

(210)([F>s 4% 41 35 110) [Fos 4% 453 2]
(210)([F>7; 3 Ued)[F>73 352l = (216)(270) w8

[(2)) (p12))(16)(26)3]

18

6. The soundness of o- and p-reduction

Here, we show that if ¢ — ¢' where — is -transition or destruction, or o-
destruction, then [t] = [¢']. That is, ¢ and o are sound with respect to variable
updating and substitution. We show moreover, that if ¢ —, t' where — is o-
generation, then [¢f] = [¢']. That is, o-generation is a form of -conversion. Further-
more, the translation of o-transition yields a-conversion. That is, if ¢ —, ¢’ where
—, is o-transition, then [t] =g [t']. For this, let us repeat the semantic function:
Def 6.1 (Semantics of B7%) Vt, t;,ts € B¢ T € Ly, 0" € L(O),v" € Loo(D),
@H#0)Nv" =0,0 € ©,i,n € IP and k € IN, we define:

M1] =4 [FYe

M2. [7;v";¢]e =4 €

M3. [7;0v";n)e =qr compp (V)

M4, [0" (N0l =g (507 0]A) [0 X507 50005t
fori=mnl(t;)+1,X = hd*(v")

M5. [7;0"; (t16)ta]e =g ([U;0";t1]e0)[0; 0" 555 ta]e for i =nl(t1) + 1

M6. [7;0"; (tla(i))tQIe =y [7; v to]e[[0; 0"] == [sz;tlle]’
for j =nl(ts) + 1

M7, [5;07; (RN e =g [7;0;07; (0B
M8. [5;v;0"; (9 0D)t] =g [0 407075 1]
M9. [746;0507; (@* LN =4 [7;0 4007 (R
M10. [0 40 44" 00 =g [P #5050]

The following lemmas inform us about the place of (3) and («) in our system.
Lem 6.2 Vn € IP,U € L),v',v" € Lo(]), DN =0N0v" =0 = [7;0;n). =
[7; 0" 7.
Lem 6.3 Vt € BN7% 5 € L;,,v' € Loo(]), TNV =0 = V"' € Lo (v)), [0;0; e ==
[7;0"; 8]..-

Proof: By induction on t. |
Now we define the notions of (a-, 3-) soundness:
Def 6.4 Let — be a reduction rule. We say:

e — is sound if: (Vt,t', 7,0)[t = t' = [7;0';t). = [7;0';]].

o — is a-sound if: (Vt,t',0,0)[t = t' = [0;V';t]. =g [7;0;1).].

~— ~—

e — is B-sound if: (Vt,t',0,0")[t = t' = [0;0; e =3 [7;0;t].].
e — is af-sound if: (Vt,t', 7,0)[t = t' = [7;0';t] = [7;0';¢]].

Lem 6.5 @-transition through a §-item is sound. Le., Vt,,ty € B7% o7 € L), 0" €
Lo@),o1Nv" =0i€ P, ke IN:
[01;0"; (5 0) (t10)ta]e = [o1;07; ((01F)116) (05D].

19

Proof: Assume o1 t-free (Lem 5.39). Assume also vy =0 40’ for [v'| = k.

([0 47507 ((50)16) (9)], ==t

([7 473 7 (4 o)T 4075 075 (o], e 557

([7 4" #v"5 0" 11]e0) [T #00" #0'50" > 55 to]e =

[0 4" 40507 (816) o] =Lem 5.37

[0 405 0"; (kD) (£10) b O

Lem 6.6 p-transition through a A-item is sound. Le., Vt|,ty € BM% 77 € ESP,W €
Loo(@),oinv" =0,i€ P, ke IN:
[o7; 05 (0% 0) (1 Mta]e = [0750; (0B D)t A) (B0)2,

Proof: Similar to Lem 6.5, asume vy is {-free and v =0 #v' for |v'| = k.

(G 0507 ((<p(k,i))tl)\)(<p(k+1,i))t2ﬂe —j=1+nl(t1),X=hd’ (v"")
([0 4075075 (D)t] A) [0 07 X507 415 (U FH D)) =Pem 537

([T #0" #v'5 0"t Ax) [T H90 #0" 420" > 11580 =

[T 4" #0507 (E1 N Eo]e =Lem 5.37

[0 407507; (59 (11 M) 2] O

Lem 6.7 p-destruction is sound: Vv € Ly, 02 € Loo(]), 01 NU2 = O,n,i € Pk €
IN:

1. If n > k then [o7;75; (¢ ")nl. = [o1;02;0 + ..
2. If n < k then [v7;73; (<p(’“’i))n]|e = [v1; 025 1. -

Proof: Assume 1 is 1-free and o1 = v v’ such that [v'| = k and use Lem 5.37
and Cor 5.31:

L[o +07;03; (0%)n)e = [0 #4° 405035 1)e = [0 40730351 + i

2.[0 0" 03; (0] = [0 44" 4037351 = comp, (V') = [0 405 0350) O
Lem 6.8 o-destruction is sound: ¥Vt € B¢ 0 € L, 0" € Loo(]),5N0" = 0,i,j €
P:

1. [;0'; (toD)i]. = [7;0"; t]e.-
2. [0;0%; (toD)j). = [0;07; jle if j # i-
3. [7;0"; (toD)e]. = .
Proof: Note that if i # j then [0;v'; j]. Z [0;0;i] by Lem 5.29:
[7;07; (to)i, = [6; 07 i) [[7; ;). := [T;07; t]e)" = [;07; 8]e.
[7;07; (t) jle = [0;07; jle[[7; 075 i) = [0307;8)e)" = [050 4]
[T;07; (toD)e]e = [0;07; €)e[[T; V5 i]e := [T;07; 1)) =€, as e €T, for everyv. O

Lem 6.9 o-transition is a-sound: Yo € Ls,,v' € L(1), 0NV =0,i € IP,ty,t2,t €
B)\dmp:

1. [o;0'; (tla(i))(tg)\)t]e =7 [;7'; ((151z7("))t2)\)(((,0)2510(""‘1))t]|6

2. [507; (10D (t20)the = [(1109} 20) (110D o

20

Proof: This is a straightforward application of Definition 6.1 and of the laws

of a- and B-reduction. a
The 6.10 Let r be r'-transition or r'-destruction rule for r' € {o,0}. t =, t' =
[t = [¢]

Proof: Use lemmas 6.5, 6.6, 6.7, 6.8 and 6.9. (Note t,t' € BM7¢.) |

Transition and destruction rules of ¢ and ¢ work like substitution and variable
updating and so return equivalent terms. o-generation on the other hand, accom-
modates S-reduction.

Ex 6.11 [F;3;(20)(3MN)1]e = ([F;3:20) (1F5 35 3le A) [FH2"; T2 e = (220)(23A00) 2
Also

[73 35 (20) (3N (()20))1]. =

(I75% 2]6)(ﬂ}"i e e)[F Ha'37>2; (o)116 =

(.7" i 2]6)(ﬂf,i,:;]e /) f—H—HZ $>2,1]e f—H—HZ $>2,1]6 = [f—H-x $>2, 2]]) =
(175 20e0) (7335 3leAer) (@' [2" i= 22]') =

(‘7: i 2]6)(I[]:;izgle ’)

(iL“z(;)(:lﬁgA I)ZUZ

Of course (z20) (23,7)2 and (x20) (23 A,)22 are not a-equivalent but are S-equivalent:
(220)(23A0r)2 =7 T2 and (220)(z3Aer)72 S5 ©

Lem 6.12 o-generation is af-sound. Le. for all t,t,ty € BM7%, for allD € Ly,

V' € Loo(D), such that TN = 0, [5;07; (,.0) (2 A\t = [7;07; (110) (22 X) ((0)t1 0D 1]...
Proof: Leti =1+nl(t1),j = 1+nl(tz), X = hd’(U>;),k = 1 +nl(t). Note that
[050"; (216) (t2 M)t = ([03 0" 1]e0) ([05 07543 tole Ax) [0 X350 55455t =5
[04X;0"> 15 t]e[X := [0;0; t1)e])'. Moreover,

T; v__,(tld)(tQ)\)(sz)tla(l))t]]e _
U_ t1]e0) (175 0> 45 t2le Ax) ([0 4 X350 55455 ()t)])
sv' T

|

(v v v _

([075 111 8) (150> 55 12l Ax) ([T 4 X507 5053 e [X 1= [0 4507 5ij a5 (0)01e)) =257 5%
([7 X530 55455t [X = |[5§ZZi+j+k:t1]e} (X =[50 t1)e]') =Lem 6.3
(174575 g thLX = 507 eV X o= 5575 1])) =Lem 5.4
[74#X; U’ZiJrj;t]]e[X = 7505 t1]e] O

7. The meaning and soundness of -reduction

Recall from Def 4.11 that SB-reduction was defined as a combination of o-, ¢-
and p-reduction. Hence, as - and @-reduction are sound, all we have left to show
here is that p-reduction is sound. More precisely, we will show that u-generation is
af-sound and that p-destruction and transition are sound. Let us first define the
meaning of terms with u-leading items.

Def 7.1 (u-semantics) If t is an Qxs-term, T € L™H(O),v" € L£(0),0 € ©,v" €
Loo(}),

N =0,i € IP and i does not refer to any free variable of t, we define:
[©; 0" (D)t [©; 0;07; (u)d]
[7;07; v'; (u_(l))tl [v ‘H'hdLU'l‘H'U'Q.U"zz; te
040657307 (W) =[50 47507 ()]

[\

1

The provision “; does not refer to a free variable of ¢t” can be assumed due to
Lem 4.13; this is the only case we need to define the semantics for. Moreover, it
suffice to take v € £L71(©), because t is an Qys-term, so we never generate 1’s in
the list v.

Ex 7.2

L [(ut)(2>\)1]
[75 35 (M) (2M)1].
[F30 i (1) (20)1]
[F 42’ T>2; (2M)1)e
(

I[j: —H';U :I:>27 2]6 m”)l[j: Hz'; :I:>3,]-]e (gjl)\m,,)w”
2. [(u®)(1>\)1] =

135 (1) (L)1) -

LF36: 3) L0 -

|[7:>2,5U1,$,(WY (1N)1] -

|[.7:>2 ‘H’SU 'H'CU1,$>2,].)\] =

(I[]j>2 ' ‘H‘$1;$>2, 1] z”)IFZQ +’ Hx1 -H-:II”;$Z3;]-]e = (J/'l)\z”)x”

Note that [(u(M)(1A)1] is not allowed, since 1 refers to the free variable 1 in (1\)1.
Lem 7.3 Let t be an Qxs-term. If in (A\°)(AY)(A?)...(AF)t, X° does not bind any
variable, then Vo € L71(0),v" € L(0),v" € L(1),0,0' € O, such that (v 40v") N
v =0,0,0 UV UV V| =k, we have: [0 40 40507 t]. = [T 40" 4075075 e

Proof: By induction on t using lemmas 5.29 and 6.2. a
Lem 7.4 Let (t19)(t2A) be void in (t10)(t2\)t, i = 1+nl(t1) and j = 1+nl(ts). VU €
L7YO), v € Lo(D), DNV =0AX = hd™ ") = ([7;0'; t1]e6) ([U; 0545 t2le Ax)
is void in [D;0'; (t10) (taA)t]e.

Proof: By induction on Qys-terms t.
Lem 7.5 p-generation is af-sound. Le., Yt;,ts,t Qys-terms, Yo € L71(0),v'
Loo(1) such that vNv' = 0, if (t16)(t2)) is void in t then: [0;0"; (t16)(t2A)te
[7; 0" (u)l

Proof: By induction ont. Leti =1+ nl(t1),j = 1+ nl(t2),X = hd'(v'>;) =
hd =1 (7).

I m 0O

o Ift =¢e then obuious.

e Ift =m thenm > 1. Moreover, ([;v';t1].0)([v; U_>ut2]e>\X)[5+fC;?2i+j;m]e
= (505 01]e0) (15 075 tale Ax) [0 074 53 m — 1] = 7
[0; 0 54 j; m — 1] Stemmas 520 and 6.2 [55 4 h(v'); 0" 22; mle = [0;07; (uM)m)..
o Ift = (t\\)t) then: [T;07; (t16)(ta\) (£ N)th]. —k=1+nl(t;), X' =hd" (V" 3:4;)

([7: 07 t1]e0) ([T3 0355 tole A) ([T4; 07> 5455 81 Je Axc o) [OHa+a’s (07> 14) >t 15 o)
=2 T[T X0 5045 (L) tle =57 ©F [0 4 X5 07505 (1 V) t5]e =P T2

[7 4+ hd (&) 025 (BN = 557 () (8 Ve

o Ift = (t10)t,, then similar. O

22

Rem 7.6 Note that p-generation is not sound. In particular, [F;J;(40)(N)2]e =
(€40)(Apr)21 and [F;T; (2], = [F H#a';7>2;2]e = 1. Now (240)(Apr)z1 =p 21
and (240)(Ayr)z1 Z 271.

Lem 7.7 p-transition is sound: VYQys-terms t1,t2, 0 € L71(0), v € Loo(]) such
that vNv" =0, Vi € P, if i € FV((t1\)t2), k = 1+ nl(ty), X = hd* (") then:
([0; 0" (D)t [e X) [0 450" > g (00D) o)
([05 (') t1[e6) [0; 0" 5 15 (D))o

Lo 30" (D) (8 M) o],
2. [7;0™; (D) (t16)]

Proof: We show 1 only as 2 is similar. Let © = v' 40" such that |v"| =i — 1:

([73 05 (W) 1] A) [0 #2505 k15 (D))

() 4 A5 A1) 45 5, =
[v" 4hd(0"") 40" 0" 525 (E1A) E2]e =
[0; 0™; (D) (81 \)t]e -

Lem 7.8 p-destruction is sound: Yo € L71(0), v"" € Loo(1) such that vNv" =0,
Vi,m € IP:

o [7;0"; (uD)e]. = €.
o [0;07; (W)m]e = [V 40750 mle if m< i
o [5; 05 (uD)ym]. = [0 #0750 m — 1) if m > .

Proof: [7;0v"; (,1;("))5]8 =¢, easy. [v;0"; (u(i))m]]e = [v'+hd(v"")+0"; Wzg;m]e
=t where v = v #v" and || = i—1. If m < ithenm <i—1andt =
[V 400" m)e. If m >0 thenm > i+ 1 and t = [v" #0";0";m — 1]e. |

8. Conclusions and comparison

In order to show the soundness of our calculus we provided a translation from
B into A, a variant of A where bound variables are taken from a particular ordered
list. Our translation functions are important on their own. First, it is nice to
have a mechanical procedure which takes terms written with variable names and
returns terms with de Bruijn’s indices. Second, it is equally important and inter-
esting to go the other way. For instance, when translating a term (with de Bruijn
indices) that represents some mathematical theory/proof to a term with named
variables, we want particular names to be used. In fact, one of the advantages of de
Bruijn’s indices is that a-conversion is no longer needed. Now, terms written with
de Bruijn’s indices are difficult to understand even for those who are familiar with
them. Variable names on the other hand, clarify the term in hand but cause a lot of
complications when applying reduction and substitution. If however, we order our
lists of free and bound variables, then we can avoid the difficulty caused by variable
names. In fact, this is what we do in this paper. We take our lists of variables to
be ordered and we translate B into A (i.e. using variable names) in a unique way
via [-]. When in A, it is up to us to equate terms modulo a-conversion rather than
being forced to do it in the translation (see Appendix B).

23

In order to make substitution explicit and to discuss B-reduction, we had to add
three kinds of reduction rules: the -, - and p-reductions. ¢ updates variables,
o substitutes terms for variables and p decreases the indices as a result of a -
conversion which removes a A from a term. Each kind of reduction has three rules:
generation, transition and destruction. Now, substitution and reduction in A are
given similarly to that of the classical calculus; i.e. implicit and global. Therefore,
we show that our reduction rules actually do represent reduction and substitution
in A and are hence sound. In particular, we show that o-, - (-destruction and
-, p-transition are sound in that if ¢ —, ¢’ where r is one of these rules, then
[t] = [t']- This is very nice because the corresponding reductions in A also return
equivalent rather than a-equivalent terms. Furthermore, we show that o-transition
is a-sound in that if ¢ =, _transition t' then [t] =g [t']. We also show that o- and
p-generation are af-sound in that if ¢ —,. ¢’ where r is one of these two rules, then
[{] =57 [t']. Now, we are satisfied with the result concerning S-conversion. In fact,
o- and p-generation do actually represent S-conversion in B. Note moreover that in
the soundness proof of o-transition and o- and p-generation, a-conversion appears
despite the fact that we avoided it in our translation function. Look for example
at the proof of Lem 7.5. When ¢t = (¢} \)t},, we had to apply Lem 6.3 to obtain
an a-equivalent term. We have hence singled out the steps in which a must be
used: o- and p-generation and in o-transition. Finally, note that we did not discuss
completeness because this becomes here a trivial matter. In fact, everything that
can be shown in the classical A-calculus can be shown in our own. Even better, our
calculus is more expressive in that it accommodates explicit substitution whereas
the classical one does not.

Work on explicit substitution with de Bruijn indices has been first done in depth
by Curien (in his PhD thesis, 1983) and was based on categorical combinators.
Curien’s original work was pursued by applications such as the categorical abstract
machine of [10]. [1] provides an algebraic syntax and semantics for explicit substitu-
tion where de Bruijn’s indices are used. The connection with the classical A-calculus
is not investigated. [12] proposes confluent systems of substitution based on the
study of categorical combinators and [11] provides an account of explicit substi-
tution similar to that of [1]. Our approach in this paper follows de Bruijn rather
than Curien in using concepts which belong to the A-calculus rather than to Cat-
egory Theory. In fact, we believe that as A and § are operators of the A-calculus
whose behaviour is well-understood, o, ¢ and p should also be treated similarly.
This approach of treating the A-calculus via items has proven advantageous in our
various extensions as in [6,15,17]. [13] provides an account of explicit substitution
which is used to discuss local and global substitution and reduction. No semantics
is provided for that account and the precision of this paper is not assumed there.
The reduction rules however of the present paper are based on [13] even though
there, there was no p-reduction and a-reduction was assumed. We believe that we
have in this paper presented the most extensive approach of variable manipulation,
substitution and reduction. Our approach can be easily and in a straightforward
fashion implemented because we have carried out all the difficult work related to

24

variables. Furthermore, as [13] has shown that [1] can be interpreted in [13] and as
B is an extension of [13], our work here also applies to [1]. [21] provides a semantics
of the explicit substitution of an extension of [13]. The work of [21] originated from
our function e of this paper but ignores to order the list of bound variables which
we call J imposing a-conversion. In Appendix B, we provide a semantics where all
a-equivalent terms are identifiable.

In [18], As, the subsystem of B where o-generation does not preserve the JA-
couple, has been studied. As along with the system of [4] are the first calculi of
explicit substitution which enjoy confluence on closed terms and preserve strong
normalisation. In [19], it was shown that in the simply typed version of As, well-
typed terms are strongly normalising. In [20], it was shown that As extended with
open terms is confluent. At the moment, we are extending the work of [18,19,20]
to study the properties of As where o-generation preserves the d\-couple, hence
resulting in the system B of this paper. Finally, Daniel Briaud noted our attention
that adding intersection types to [4] is problematic as there will be terms that are
strongly normalising but not typable. This is not the case when intersection types
are added to As. This could be seen as an advantage to our framework of remaining
close to the A-calculus rather than using combinators as in [1,4].

Acknowledgements

I am grateful for the discussions with Jeroen Krabbendam and Rob Nederpelt.
Furthermore, I am grateful to the Department of Mathematics and Computing
Science, Eindhoven University of Technology, for their financial support and hospi-
tality from October 1991 to September 1992, and during various short visits since
1993 and to the Department of Mathematics and Computer Science, University of
Amsterdam, and in particulr to Jan Bergstra and Inge Bethke for their hospitality
during the preparation of this article. Finally, this work is supported by the EPSRC
grant GR/K 25014 and by the ESPRIT Basic Research Action project “Types for
Proofs and Programs”.

References

1. M. Abadi, L. Cardelli, P.L. Curien, and Lévy, J.-J., Explicit substitutions, Func-
tional Programming 1 (4), (1991) 375-416.

2. H. Barendregt, Lambda Calculus: its Syntaz and Semantics, (North-Holland, 1984).
3. H. Barendregt, Lambda calculi with types, in Handbook of Logic in Computer Sci-

ence, volume II, eds. S. Abramsky, D. Gabbay and T.S.E. Maibaum (Oxford Uni-
versity Press, 1992).

4. 7. Benaissa, D. Briaud, P. Lescanne and J. Rouyer-Degli, Av, a calculus of explicit
substitutions which preserves strong normalisation, Functional programming 6(5),
(1997).

5. C.J. Bloo, Preservation of termination for Ezplicit Substitution. Ph.D. thesis, Eind-
hoven University of technology, the Netherlands, 1997.

6. C.J. Bloo, F. Kamareddine and R. Nederpelt, The Barendregt Cube with Definitions
and Generalised Reduction, Information and Computation 126(2),:123-143, (1996)

25

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

123-143.

N.G. de Bruijn, Lambda calculus notation with nameless dummies, a tool for auto-
matic formula manipulation with application to the Church-Rosser theorem. Konin-
lijke Nederlandse Akademie van Wetenschappen, Series A, Mathematical Sciences,
75 (1972) 381—392. Also chapter C.2 of*3.

N.G. de Bruijn, A namefree lambda calculus with facilities for internal definition of
expressions and segments. Technical Report 78-WSK-03, Eindhoven University of
Technology, the Netherlands, 1978.

R.L. Constable et al, Implementing Mathematics with the Nuprl proof development
system, (Prentice Hall, 1986)

G. Cousineau, P.-L. Curien and M. Mauny, The Categorical Abstract Machine,
Science of Computer Programming 8, (1987) 173-202.

J. Field, On laziness and optimality in A-interpreters: tools for specification and
analysis, 17" Annual Symposium on Principles of Programming Languages, San
Fransisco (1990) 1-15.

T. Hardin and J.-J. Lévy, A confluent calculus of substitutions, Lecture notes of the
INRIA-ICOT symposium, Izu, Japan, November (1989).

F. Kamareddine, and R. Nederpelt, On stepwise explicit substitution, International
Journal of Foundations of Computer Science 4 (3), (1993) 197-240.

F. Kamareddine and R. Nederpelt, A unified approach to type theory through a
refined A-calculus, Theoretical Computer Science 156, (1994) 183-216.

F. Kamareddine and R. Nederpelt, Refining reduction in the A-calculus, Journal of
Functional Programming 5 (4), (1995) 637-651.

F. Kamareddine and R. Nederpelt, A useful A-notation, Theoretical Computer Sci-
ence 155, (1996) 85-109.

F. Kamareddine and Nederpelt, Canonical Typing and II-conversion in the Baren-
dregt Cube, Journal of Functional Programming 6 (2) (1996).

F. Kamareddine and A. Rios, A-calculus & la de Bruijn & explicit substitution,
Proceedings of PLILP ’95, LNCS vol. 982, (Springer-Verlag, 1995) pp. 45-62.

F. Kamareddine, Rios and J.B. Wells, Calculi of Generalised 3-Reduction and Ex-
plicit Substitutions: The Type free and Simply Typed Versions. To appear in the
Journal of Functional and Logic Programming, Volume 1998, ISSN 1080-5230, (MIT
Press, 1998).

F. Kamareddine and Rios, Extending a A-calculus with explicit substitution which
preserves strong normalisation into a confluent calculus on open terms, Journal of
Functional Programming 7(4), (1997) 395-420.

J. Krabbendam, On the soundness of explicit substitution, Master’s thesis, Depart-
ment of Mathematics and Computing Science, Eindhoven University of Technology
(1993).

P.-A. Mellies, Typed A-calculi with explicit substitutions may not terminate, Pro-
ceedings of TLCA’95, Lecture Notes in Computer Science 902, Springer-Verlag
(1995).

R. Nederpelt, H. Geuvers, and R. de Vrijer, eds, Selected papers on Automath,
Studies in Logic and The foundations of Mathematics, 133, (North Holland, 1995).

Appendix A: Making i negative in (¢(%?)

26

Up to now, the i-superscript in (p(*9) has been considered an element of IP. If
however, we allow in (o(*9), i to be negative, we could include the following rule:
Def 8.1 (0A-destruction rule) For all ti,ts Qys-terms, we have: (t10)(taA) —¢
(0D provided that the \ in (to\) does not bind any variable in the term fol-
lowing (t10)(t2A), i.e. provided that (t10)(t2A) is void. Sometimes we denote —¢ by
void (-reduction.

Alas, negative superscripts identify different variables as in: (p(>~1))(26)1 —
(16)1. Hence, updating is no longer an injection, which can be highly undesirable.
This unpleasant effect however, does not occur in the setting presented above: a -
item with a negative exponent only occurs after the clean-up of a void d\-segment,
hence with a A that does not bind any variable. Therefore, the injective property of
updating is not threatened. Now the o-rules together with the JA-destruction rule,
enable us to accomplish B-reduction:

Def 8.2 (one-step B-reduction — i) One-step B-reduction of an Qxs-term is the
combination of one o-generation from a dA-segments, the transition of the generated
o-item through the appropriate subterm in a global manner, followed by a number
of o-destructions, and updated by p-items until again an Qys-term is obtained.
Finally, there follows one void B-reduction for the disposal of s, and we use the
p-rules to dispose completely of the p-items.

Ex 8.3 (19)(2A)(49)1 —p (30)1 as follows:

(16)(20)(40)1 =, (16)(2A)((p)1oM))(40)1
—op (10)(20)((201)46)(20M))1
o (16)(2))(46)2
=g (p©7)(46)2
o ((p"71)48)(p(*=1)2
-, (30)1.

We used in this paper p instead of negative superscripts for ¢ in order to make a clear
distinction between the harmless positive updating and the potentially dangerous
negative updating (see our remark after Def 8.1). To be precise: (u(?)) is equivalent
to (=1 =1); but in the case of void reductions, (¢(*=1~1) has the same effect as

(&),

Appendix B: An alternative semantics

In the definition of the semantic function from B to A, we took F and { which
were both ordered (see Def 6.1). This enabled us to translate every term ¢ of B
to a unique term ¢ of A rather than to ¢ where t' =, t/. In this appendix, we
define the semantic function which returns any element of the a-equivalence class.
This is not the approach we use in the paper because implementation cannot rely
on a-conversion. Of course we pay a price (which is not high compared with the
advantages) in that we had to manipulate not only the list of free variables but also
the list of bound ones.

27

Def 8.4 (\- and §-semantics) For all t,,t> € B 5 € L(1),n € IP U {e},

[T; (1 N)t2] =ap ([7; t1]N\0) [0 Hv; to] where v € T\ T
[05 (t10)t2] =ar ([0511]6)[0; t2]
compy(0) if n < 7]

[7] =i { Zn—[v] n > [7]
€ ifn=c¢
Ex 8.5

I[@ ()(].A)(].(S)?)] EX1€$7X1 is arbitrary
(19;elAx,) [X1; (1A) (16)3] = -
(>\X1)([X1; 1])\X2)[X1X2, (15)3] EXgEi,Xz is arbitrary,XoZX1
(8)\X1)(compl(Xl))\Xz)([Xng;1]5)[X1X2;3] =
(eAx,) (X1 Ax,) (compy (X1 X2)0)Z3_|x, X, | =

(eAx,) (X1Ax,)(X20)z1

We need the following which defines variable substitution of lists of variables.

Def 8.6 (Substitution in lists) If U is a list of variables of A, then we define D[v :=
v']" to be the list T but where all occurrences of v have been replaced by v'.

Now the following lemmas are needed to show that [-; -] is well defined.

Lem 8.7 For any v,t, FV([7;t]) CTUF.

Proof: By induction on t, recalling that € is neither free nor bound. |
Lem 8.8 For X' € $\7,X €9, € L(}) and t € BN: [5;4][X = X'] =5 [7[X :=
X5

Proof: By induction on t € B,
1. [o;n][X = X" = [v[X := X']';n] forn € PU{e}.
2. [v; (110)t2][X = X')" = (([v; t110)[7; tZIl)[X X' =

([7;][X = X'J'0)[7; 15[X = X']' =5

Oé

(P[X = X' 64)0)[0]X := X' te] = [0[X := X' (810) 2]
3. [(B ABLX = X7 =X ENTXEX ([5; 44\ x,) [T 415] [X := XT] =
([75][X = X'TAx) [0 Hag;][X o= X =17
([O[X = X156 Ax)@ Hr20) [X = X' to] =
([P[X = X' t1]Ax) [P[X = X) Haq;t] = [0[X = X' (81 M)E2]
4. [7; (N B][X = X1 =XENT ([0 Ay) [T+a) [X = X)) =X"EFV(ITHlita)
(([5; tl]P\X”)w -H-JJI;tQI[X’ .— X”]I)[X X']' Lem 8.7,IH
(([o; tiAx) [v 42’ [X" = X)) [X = X'] = (([v tiAx) [T "5t [X =
XI]I
Now, refer to case 3 above. a

Lem 8.9 ([5, tl])\Xl)[ﬁ ‘H’Xl, tg] = ([ﬁ, tﬂlA)@)[ﬁ -H—Xz, tz]l fOT Xl, X2 S i \ﬁ.
Proof: If X; = X5, then nothing to prove. If X1 # Xs, then:
([5; th\Xl)[E -H-Xl;t2] =Xo@FV([v+X15t2]),Lem 8.7
([T 1A x,) [0 # X015 8] [Xy 1= X)) =Eem 88
([7; 1) [(@ # X0)[Xy = Xo)'sty] =0 X087
([75 112,) [0 4 X5 5] = [v; (11 A)1e] =

28

Lem 8.10 [;¢] as defined in Def 8.4 is well defined: Vu,t, [U;t] is unique up to
a-conversion, (Le. does not depend on the choice of v in clause 1 of Def 8.4).

Proof: By induction on t € B using Lem 8.9 for the interesting case t

(t \)ts.

Lem 8.11 Vt € B* ¢(t,5,1\ sl(3)) =z [sl(3);t]. (Hence e(t) == [0;].)
Proof: By induction on t.

O

Now the definition which replaces Def 6.1 is the following:
Def 8.12 (Semantics of BN7¥) Vt, t1,t2 € BN 0 € L,,,v" € L(O),0 € O,i,n €

P kelN:

M?2.
M3.
M4.
M5.
M6.
M.

M1.
[7; €l =df
[7; 7] =df
[T; (t1 A)t2] =df

[0; (t0)ts] =a
[0; (tio)to] =a
[7; (p®NH] =g

M8. 0307 ()]

1l =a [F51

€

comp,, (V)

([7; t1)]Ax) [0 #X; to] where X € T\ ©
([v; ta]0)[v; t-]

[7; t2[[[0; 2] == [o; ta])’

[w; 0; (%)t

=g [04¢ 401

M9, [048;07 (pUF L] =g [5:0 407 (5)

M10. [040 405t =g [T 0" 07

Soundness of the reduction rules with respect to this definition is left to the reader.

29

